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Summary 

Quantitative mass spectrometry reveals how CD4+ and CD8+ T cells re-structure proteomes 

in response to antigen and mammalian target of rapamycin complex 1 (mTORC1). Analysis 

of copy numbers per cell of >9000 proteins provides new understanding of T cell phenotypes, 

exposing the metabolic and protein synthesis machinery and environmental sensors that 

shape T cell fate. We reveal that lymphocyte environment sensing was controlled by immune 

activation and that CD4+ and CD8+ T cells differed in their intrinsic nutrient transport and 

biosynthetic capacity. The data also revealed shared and divergent outcomes of mTORC1 

inhibition in naïve versus effector T cells: mTORC1 inhibition impaired cell cycle progression 

in activated naïve cells, but not effector cells, whereas metabolism was consistently impacted 

in both populations. This study provides a comprehensive map of naïve and effector T cell 

proteomes and a resource for exploring and understanding T cell phenotypes and cell context 

effects of mTORC1. 
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Introduction  

 

T lymphocytes respond to antigens, co-stimulators and cytokines by transcriptionally 

remodeling, proliferating, and differentiating to effector populations. T cell activation is also 

associated with dynamic changes in mRNA translation, amino acid transport and protein 

synthesis that shape how transcriptional programs are implemented1-3. The full effect of 

immune activation on T cells can thus only be understood by deep analysis of T cell 

proteomes. The use of high-resolution mass spectrometry for quantitative mapping of cellular 

protein signatures is thus a necessary tool for understanding lymphocyte phenotypes4-10. 

 

One key signaling molecule that controls protein turnover in mammalian cells is the nutrient 

sensing protein kinase mTORC111. In this context, mTORC1 is a key regulator of T cell 

differentiation but molecular understanding of how mTORC1 controls T cell biology is 

incomplete and it is still unclear whether mTORC1 controls the same biological processes in 

different T cell populations12-15. For example, a comparison of how mTORC1 inhibition 

remodeled proteomes of polyclonally activated naïve CD4+ T cells as they exit quiescence 

and effector CD8+ cytotoxic T cells suggested shared and unique effects of losing mTORC1 

activity5, 7. Moreover, mTORC1 inhibition restrains the first cell cycle entry of immune-activated 

naïve T cells, but has limited effect on the proliferation of rapidly cycling cells5, 12, 16, 17. The 

reasons for these differences is unresolved but could reflect intrinsic differences in mTORC1 

function in different T cell populations. In the present study, high-resolution mass spectrometry 

(MS) was used to analyze proteomes of naïve and antigen activated murine CD4+ and CD8+ 

T cells and CD4+ TH1 and CD8+ cytotoxic effector T cells. We also compared how mTORC1 

inhibition impacts CD4+ and CD8+ T cell exit from quiescence versus how mTORC1 reshapes 

differentiated effector CD4+ and CD8+ T cell proteomes. We quantify >9400 proteins providing 

a valuable resource that reveals how immune activation and mTORC1 reshape the proteomic 

landscape of naïve and effector CD4+ and CD8+ T cells. This open access data resource can 

be readily interrogated online via the Encyclopedia of Proteome Dynamics (EPD) 
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(www.peptracker.com/epd). The data show how immune activation shapes CD4+ and CD8+ T 

cell metabolic processes and their ability to sense environmental stimuli. The data also reveal 

no major differences in mTORC1 function in CD4+ and CD8+ T cells but different 

consequences of mTORC1 inhibition at different stages of T cell differentiation. The data 

highlight the power of quantitative analysis of protein copy numbers and the stoichiometry of 

protein complexes for understanding how immune regulators control T cell function. 

  

Results 

Proteome re-modelling during T cell differentiation 

Quantitative high-resolution mass spectrometry resolved proteomes of naïve CD4+ and CD8+ 

T cells before and after 24 h antigen activation and proteomes of CD8+ cytotoxic T cell (CTLs) 

and CD4+ T helper (TH1) populations. Antigen activation models were P14 CD8+ T cells 

expressing TCRs specific for lymphocytic choriomeningitis virus glycoprotein peptide gp33-41 

and OT-II CD4+ T cells expressing ovalbumin reactive TCRs. We also explored how mTORC1 

regulates the proteomes of antigen activated naïve CD4+ and CD8+ cells compared to effects 

of mTORC1 inhibition in differentiated TH1 and CTLs. We identified 9400 T cell proteins and 

estimated absolute protein copies per cell using the ‘proteomic ruler’ method which uses the 

mass spectrometry signal of histones as an internal standard18. This method avoids error 

prone steps of cell counting and protein concentration evaluation and can be used to estimate 

protein abundance per cell18. These analyses revealed that CD8+ T cells triple their protein 

content within 24 h of antigen activation and CTLs have a 4-fold higher total protein content 

than naïve CD8+ cells (Fig. 1a). Immune activated CD4+ T cells also increase protein content 

but consistently had a lower (20%-30%) protein content than the corresponding CD8+ 

population (Fig. 1a). Note there was a slightly lower protein content of naïve CD4+ versus 

CD8+ T cells (Fig. 1a) which is consistent with forward and side light scattering analysis which 

indicates that naive CD4+ T cells are slightly smaller than naïve CD8+ T cells (Fig. 1b).  
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To establish whether cell mass increases in activated T cells reflect scaled increases in 

expression of existing proteins or increased expression of new proteins, we used nearest 

neighbor analysis and Pearson correlation to align expression profiles of >8000 proteins in T 

cell populations. This analysis shows immune activation does not scale up all proteins but 

dynamically reshapes proteome landscapes (Fig. 1c and Supplementary Data File 1). There 

were increases in abundance of >6000 proteins in activated CD8+ cells and almost 5500 

proteins in activated CD4+ cells compared to naïve cells (Fig. 1d). However, 1300-1800 

proteins did not change abundance and a substantial proportion of the naïve cell proteome 

(7-9%) was downregulated as T cells respond to antigen (Fig. 1c,d,e). Proteins whose 

expression decreased upon immune activation had diverse functions (Supplementary Data 

File 2) and included translational repressors, cell cycle inhibitors and transcription factors.  

Protein copy number comparisons illustrates proteins exclusively found at a particular stage 

of T cell differentiation and proteins expressed in all populations at either equal, enriched or 

depleted levels (Fig. 1f, Supplementary Data File 2 and 3). We detected >800 proteins in 

effector CD4+ and CD8+ cells that were not found in naive T cells (Fig. 1f) including effector 

molecules such as interferon- (IFN-), granzymes and perforin, (Fig. 1f, Supplementary Data 

File 2). Interestingly, effector TH1 cells expressed comparably high levels of granzymes and 

perforin as CTLs (Fig. 1g,h). The pattern of expression of transcription factors and chromatin 

regulators is also remodeled as T cells differentiate (Fig. 2a,b). For example, immune 

activation causes T cells to downregulate expression of Kruppel-like family (KLF) transcription 

factors which maintain pluripotency and cell quiescence (Fig. 2a). The complexity and extent 

of the transcription factor and proteome remodeling driven by immune activation was 

remarkable. However, it was striking that there were more similarities than differences 

between CD4+ and CD8+ T cells reflecting that the bulk of cellular proteins comprise core 

machinery essential to every cell (Supplementary Fig. 1).  

Scaling versus enrichment of core proteins and processes in differentiating T cells 
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Many proteins change copy numbers in immune activated versus naïve T cells but as immune 

activation increases total T cell mass, only proteins whose abundance drops below or exceeds 

total cell mass will change concentration. Moreover, proteins with unchanged copy numbers 

in naïve versus activated cells decrease concentration. Hence, >6500 proteins increase copy 

number in CTLs versus CD8+ naïve cells, but only 3300 proteins increase concentration (Fig. 

3a). One way to assess scaling versus enrichment or depletion of core subcellular 

compartments is to consider what percentage a protein group contributes to total protein mass 

in different populations. For example, nuclear envelope protein copy numbers increase in 

activated versus naive T cells but the percentage of cell mass that comprises nuclear envelope 

proteins decreases (Fig. 3b,c). Immune activated T cells thus do not equally scale up their 

nuclear envelope proteins compared to other proteins which is consistent with images showing 

increases in cytoplasm volumes of effector versus naïve cells. What about metabolic 

compartments? There is enrichment of total glycolytic pathway and mitochondrial proteins in 

activated versus naïve T cells (Fig. 3b,c Supplementary Fig. 2) although it should be 

highlighted that these protein groups are already abundant in naïve T cells. Glycolytic 

enzymes represent 2-3% of naïve T cell proteomes versus 4-5% in effectors; mitochondrial 

proteins are 12-13% of naïve T cells versus 15-16 % of effectors (Fig. 3c). An examination of 

mitochondrial proteins reveals that some increase in scale with the overall increase in cell 

mass that occurs during T cell differentiation while others increase beyond scaling. For 

example, mitochondrial ribosomal proteins are 10-fold more abundant in effector cells versus 

naïve cells (Fig. 3d). Another interesting example of scaling versus enrichment is that of 

hexokinase 1 and 2 (HK1 and HK2). HK2, one of the hexokinases that phosphorylate glucose 

to direct glucose metabolic pathways, shows a >1000-fold increase in effector versus naïve T 

cells (Fig. 3e). Interestingly, despite this huge increase in HK2 expression it proved non-

essential for T cell activation19, 20. The current data explain why HK2 is redundant as they show 

that HK1 concentrations in naïve and activated T cells are very high and sufficient to 

compensate for HK2 loss (Fig. 3e and Supplementary Fig. 2).  
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As activated T cells increase volume they increase cell surface area and may change 

membrane densities of plasma membrane proteins. Simple modeling, that does not model 

alterations in membrane ruffling, predicts a 3-fold increase in membrane surface area in CTLs 

versus naïve T cells (Fig. 3f), Molecules such as THY1 and CD45, have higher copy numbers 

in activated versus naïve CD8+ T cells, but do not increase membrane density after immune 

activation (Fig. 3f). In contrast, the amino acid transporters SLC1A5 and SLC7A5 increase 40-

fold in copy number in CTLs versus naïve CD8+ cells; a 10-fold increase in membrane density 

(Fig. 3f). Further analysis shows naïve T cells have low expression of all amino acid and 

glucose transporters versus high levels of these transporters in activated T lymphocytes (Fig. 

4a). In comparison, mitochondrial transporters were highly abundant in naïve T cells. Previous 

studies have shown increased amino acid and glucose transport in activated T cells compared 

to naïve T cells and noted lower nutrient transport in effector CD4+ versus CD8+ populations2, 

21. The present data explain this result: activated CD4+ T cells have a similar nutrient 

transporter repertoire but consistently express lower copies of key amino acid and glucose 

transporters than activated CD8+ T cells (Fig. 4a). In this respect, although nutrient transporter 

expression in naive T cells is very low compared to activated T cells, transporters are not 

completely absent. For example, the System L amino acid transporter SLC7A5 was found at 

approximately 3000 copies in naïve CD4+ T cells and 8000 copies in naive CD8+ T cells (Fig. 

4b). These data predict some System L transport activity in naïve T cells and that CD8+ T cells 

would have higher basal levels than CD4+ cells. To challenge this prediction we used a 

sensitive flow cytometry assay to assess System L amino acid transport activity in naïve T 

cells22. The data show naïve CD4+ and CD8+ T cells have a detectable basal System L 

transport activity mediated by SLC7A5. Crucially, the data show that naïve CD8+ cells have a 

higher System L transport capacity than naïve CD4+ cells (Fig. 4c,d). These results highlight 

the predictive value of the proteomic ruler methodology.  

 

Immune activation controls RNA translational machinery. 
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T cell exit from quiescence is associated with essential increases in mRNA translation1, 3. The 

current data show that immune activation results in a strong upregulation of ribosomes and 

mRNA translational machinery. Antigen activated T cells increase ribosome numbers almost 

10 fold (Fig. 5a) and strongly increase levels of eukaryotic initiation factor 4 (eIF4F) complexes 

that translate methyl capped mRNAs (Fig. 5b) and EIF2 complexes which control tRNA 

transfer to ribosomes and tRNA synthetases (Supplementary Fig. 2). Hence, more of the cell 

mass of activated T cells is dedicated to protein synthesis than in naïve T cells. It was also 

notable that CD8+ cells consistently had higher ribosome and translational complex numbers 

than CD4+ T cells (Fig. 5a,b). However, how cells control mRNA translation also requires 

understanding translational repressor quantities in different T cell populations. T cells express 

the eIF4F inhibitors 4E-BP1 and 4E-BP2 (eukaryotic initiation factor 4E-binding proteins 1 and 

2) and the translational repressor PDCD4 (programmed cell death 4)(Fig. 5c,d)23,24. 4EBPs 

bind to eIF4E and displace eIF4G to prevent active eIF4F translation initiation complex 

assembly11. PDCD4 represses translation via eIF4A1 binding25. Interestingly, 4E-BPs were 

only detected in activated but not naïve T cells (Fig. 5c). Increased expression of translational 

repressors from naïve to activated cells seems inconsistent with the increased translation 

capacity in activated T cells but critically 4E-BPs are only expressed at maximum of 2104 

copies per cell whereas eIF4E, their target has >106 copies in immune activated CD8+ cells 

and over 5105 copies in activated CD4+ cells. eIF4E is thus always in large excess of 4EBPs 

(Fig. 5c). Hence any modeling of 4E-BP translation repression needs to consider repressor 

and effector stoichiometry: any effects will be restricted to a subpopulation of eIF4Es and not 

relevant in naïve T cells where these repressors cannot be detected. We next considered 

PDCD4:eIF4A1 ratios as to repress translation by eIF4F complexes, one PDCD4 molecule 

binds two eIF4A126. Naïve T cells have 3-5105 PDCD4 copies per cell, sufficient to saturate 

the majority of eIF4A1 (Fig. 5d). In activated T cells PDCD4 is downregulated (Fig. 5d) 

whereas eIF4A1 copies increase to over 4106 copies per effector cell (Fig. 5b) leaving very 

low PDCD4:eIF4A1 ratios and free eIF4A1 to promote cap-dependent translation (Fig. 5d)  
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Immune activation shapes environment sensing pathways in T cells 

T lymphocyte function is regulated by environmental factors such as glucose, amino acids, 

oxygen and iron availability2, 27-29. Moreover, activated T cells must actively take up nutrients 

to fuel metabolic processes and macromolecule biosynthesis and to control nutrient sensing 

kinase activity. The present data show immune activation increases expression of a limited 

repertoire of 12 amino acid transporters, two glucose transporters and 3 lactate transporters 

to fuel and regulate activated T cells (Fig. 4a). Nutrient transporters are essential components 

of T cell environment sensing machinery as they act as ‘gatekeepers’ to control the activity of 

nutrient sensing kinases. However, one other key insight herein is that immune activation quite 

comprehensively regulates expression of other environment sensing molecules (Fig. 6). The 

expression of oxygen-sensing proline hydroxylase (PHD) proteins, hypoxia inducible factor 1 

alpha (HIF-1), along with iron transport and iron sensing proteins, is thus predominantly 

restricted to activated and effector T cells (Fig. 6a,b). Antigen activation also modulates 

expression of DNA sensing pathways. Cyclic GMP-AMP synthase (cGAS)-stimulator of 

interferon genes (STING) DNA sensing pathway is present in naïve T cells but highly enriched 

in effector TH1 and CTLs (Fig. 6c). One other noteworthy observation is that immune activation 

increases expression of nutrient-regulated protein kinases AMPKa1 and mTORC1 and amino 

acid-sensing kinases GCN2 and PERK1 of the integrated stress response pathway30 (Fig. 6d). 

There is also immune control of components of the nutrient sensing regulatory pathways that 

control mTORC1 activity including the lysosomal arginine sensor SLC38A9, the cytosolic 

arginine and leucine sensors CASTOR1 and SESTRIN2, the GTPase RHEB and GATOR 

complexes11, 31-35 (Supplementary Fig. 3). Collectively these data show immune activation 

comprehensively shapes T cell responsiveness to environmental stimuli. 

 

mTORC1 control of CD4+ and CD8+ T cell proteomes  

The nutrient sensing kinase mTORC1 is a critical regulator of both CD4+ and CD8+ T cell 

differentiation, and one current objective was to explore consequences of mTORC1 inhibition 

in different T cell populations12-15, 36, 37.The data reveal that mTORC1 controls cell growth in 
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both CD4+ and CD8+ T cells: in TCR-activated CD8+ T cells mTORC1 inhibition with rapamycin 

caused a 26% loss of mass compared to a 16% loss of cell mass in the TCR activated CD4+ 

T cells (Fig. 7a). Using a >1.5-fold cut off, mTORC1 controlled expression of more than 2300 

proteins in the TCR activated CD8+ T cells compared to 600 in the CD4+ T cells (Fig 7b). 

However, it is evident that immune activation still induces a substantial increase in cell mass 

in the absence of mTORC1 activity (Fig. 7a). This limited effect of mTORC1 inhibition on T 

cell growth was also seen in CTLs and TH1 cells where the impact of 24 h mTORC1 inhibition 

was an approximate 20% loss of cell mass but cells did not return to naïve cell size (Fig. 7a). 

In TH1 cells 800 proteins decreased expression whereas in CTLs the effects were restricted 

to around 260 proteins (Fig. 7b). One key point is that there were quantitative differences in 

the impact of mTORC1 inhibition on CD4+ and CD8+ proteomes, but no obvious qualitative 

differences. mTORC1 thus controls production of effector molecules IFN-, perforin and 

granzymes in both CD4+ and CD8+ cells (Supplementary Fig. 4) but does not radically prevent 

the dynamic remodeling of transcription factors that drives T cell differentiation 

(Supplementary Fig. 4). T cells activated in the presence of mTORC1 inhibition thus show 

effectively normal patterns of expression of T-bet, IRF4, BATF, MYC, and BLIMP-1 

(Supplementary Fig. 4). mTORC1 control of HIF-1 has been described and the present data 

show this is a consistent effect in CD4+ and CD8+ T cells12 (Supplementary Fig. 4).  

 

The main contribution to the loss of cell mass caused by mTORC1 inhibition in all populations 

was reduced expression of metabolic proteins notably ribosomes, glycolytic enzymes, 

mitochondrial proteins, glucose and lactate transporters and fatty acid and sterol metabolism 

proteins (Fig. 7c,d and Supplementary Fig. 4). It has been reported that loss of mTORC1 

activity decreased expression of mitochondrial ribosomal proteins and oxidative 

phosphorylation enzymes in CD3 and CD28 activated CD4+ T cells7. The current data found 

a statistically significant decreased expression of mitochondrial proteins in both CD4+ and 

CD8+ populations but these were very low in magnitude such that mitochondrial proteins were 
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highly abundant in mTORC1 inhibited T cells and unlikely to be rate limiting (Fig. 7c and 

Supplementary Fig. 5). Moreover, in no population did mTORC1 inhibition revert the 

expression levels of mitochondria or metabolic proteins back to naïve cell levels, indicating 

that the expression of these key components in T cells is also controlled by mTORC1 

independent pathways. For example, rapamycin treatment caused expression of the glucose 

transporter SLC2A1 to drop from around 50,000 to 17,000 copies per cell in TCR activated 

CD8+ cells and from 137,000 to 77,000 copies per cell in CTLs (Supplementary Fig. 4). 

Glucose transport is rate limiting for glucose metabolism in T cells so reducing glucose 

transporter abundance would allow mTORC1 to control glucose metabolic pathways in T 

cells5. Nevertheless, a key insight is that mTORC1 is not an on or off switch for glucose 

metabolism nor is it an absolute on or off switch for cell growth.  

 

Hence a salient point is that immune activated T cells still increase cell mass when mTORC1 

activity is suppressed and loss of mTORC1 activity in effector cells does not revert their mass 

to that of a naïve T cell. In this context, the selectivity of mTORC1 control of T cell proteomes 

is emphasized by the large number of proteins that were unchanged in copy numbers in all 

rapamycin treated populations as well as the examples of proteins that increased in 

abundance and concentration in mTORC1 inhibited cells (Fig. 7e and Supplementary Data 

File 4). Proteins increasing in concentration include the translational repressor PDCD4, which 

increased in both TCR activated and effector cells treated with rapamycin (Fig. 7e). However, 

EIF4A1 did not decrease pro-rata and remained in excess of PDCD4 in these populations 

allowing continued protein synthesis (Fig. 7f and Supplementary Fig 5). Another protein 

consistently showing increased copy number in mTORC1 inhibited cells was the adhesion 

molecule CD62L (Fig. 7e). The increased expression of CD62L in mTORC1 inhibited CTLs 

restores the ability of these cells to traffic into secondary lymphoid tissue38. mTORC1 

repression of CD62L expression in CD4+ T cells argues that mTORC1 could control CD4+ T 

cell positioning within lymphoid tissues. 
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Cell context effect of mTORC1 inhibition. 

One objective of the present study was to identify cell context effects of mTORC1 signaling. 

In this respect, GO term enrichment analysis indicated dominant mTORC1 control of lipid 

metabolism in effector TH1 and CTLs (Table 1). mTORC1 control of lipid metabolism was also 

seen in antigen activated CD4+ and CD8+ T cells but GO term enrichment analysis indicated 

that the dominant effect of mTORC1 inhibition in these populations was on cell cycle and DNA 

replication pathways (Table 1). This data is consistent with early studies showing rapamycin 

delayed the first cell cycle entry of PHA activated human T cells but did not block proliferation 

once cells had committed to the cell cycle16, 17. To orthogonally challenge these predictions 

we monitored DNA synthesis in TCR activated and effector CD8+ populations and found that 

rapamycin inhibited DNA synthesis of antigen activated naïve CD8+ T cells but not CTLs (Fig. 

8a). This is consistent with a decrease in expression of proteins implicated in DNA replication 

in rapamycin treated TCR activated cells but not in CTLs (Supplementary Fig. 6). In this 

respect, a critical cell cycle check point is mediated by D type cyclins and their associated 

kinases CDK4 and CDK6. Naive T cells have low levels of cyclin D’s and CDK4/6 but high 

levels of the cyclin dependent kinase inhibitor protein 1B (CDKN1B or p27) (Fig. 8b and 

Supplementary Fig. 6). Antigen activation increased cyclin D2 and D3 and CDK4/6 

expression, resulting in excess D type cyclins, relative to the inhibitor CDKN1B. Interestingly, 

rapamycin treatment caused decreased cyclin D expression in both TCR activated CD8+ T 

cells and effectors (Fig. 8c) but why then were there no cell cycle progression defects in 

effectors? Here insights come from considering cyclin D copy numbers in different T cell 

populations relative to numbers of CDK4/6 and CDKN1B. For example, naïve CD8+ T cells 

express high levels of CDKN1B, undetectable cyclin D3 and low cyclin D2 and CDK4/6 (Fig. 

8b). 24 h activated CD8+ cells upregulate cyclin D expression, increase CDK4/6 levels and 

downregulate CDKN1B: simple modeling predicts they have free cyclin D and CDK4/6 

complexes. In this experiment, TCR activated CD8+ cells have approximately 3000 and 8000 

copies per cell of cyclin D2 and 3 respectively and only 2000 copies of CDKN1B. As 60% of 

these cells are replicating DNA (Fig. 8a) this level of ‘free’ cyclin D and CDK complex 
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(estimated as approximately 9000) must be sufficient to drive S phase entry. mTORC1 

inhibition caused cyclin D2 and D3 levels to drop to 2000 copies per cell for each protein, while 

CDKN1B remained at 2000 copies, leaving little free cyclin complexes for cell cycle 

progression (Fig. 8c). In contrast, CTLs have high cyclin D2 and D3 levels: 60,000 and 

140,000 copies per cell compared to 7000 CDKN1B copies. Rapamycin treatment decreased 

cyclin D levels 2 fold but cyclin D:CDKN1B stoichiometry remained > 10:1, ie more than 85,000 

‘inhibitor’ free cyclin D and CDK complexes which would be sufficient to drive cell cycle 

progression (Fig. 8c). These data illustrate that to fully understand the consequences of a 

change in expression for a particular protein it is necessary to understand protein quantity and 

relative levels of expression of its regulatory partners. 

 

Discussion 

This study characterized murine naïve CD4+ and CD8+ T cell proteomes and mapped the 

impact of immune activation and mTORC1 inhibition on the expression of more than 9000 

proteins. The data show how environment signaling pathways are integrated with antigen and 

cytokine selective pathways to ensure the immune specificity of T cell activation. New, 

biologically relevant insights include that antigen exposure increases expression of key 

oxygen and nutrient sensors and nutrient transporters, revealing that T cell sensing of 

environmental cues is not intrinsic but shaped by immune activation and restricted to activated 

T cells. The considerable upregulation of essential amino acid and glucose transporters in 

response to immune activation highlights a fundamental mechanism that ensures the targeted 

supply of nutrients to T cells participating in an immune response. Only T cells triggered by 

cognate antigen will be able to fuel the key metabolic pathways that drive T cell proliferation 

and differentiation. In this context one new insight was the consistent quantitative differences 

between CD4+ T cells and equivalently activated CD8+ T cells in terms of the expression of 

ribosomes, nutrient transporters and translational complexes. Immune activated CD4+ and 

CD8+ T cells have the same nutrient transporter repertoire but activated CD4+ cells expressed 

nutrient transporters at lower copies per cell and also have lower numbers of ribosomes and 
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translational complexes than immune activated CD8+ cells. Collectively these data reveal a 

lower biosynthetic capacity in comparable activated CD4+ versus CD8+ cells which would 

explain why activated CD4+ cells have lower cell mass than activated CD8+ cells and could 

explain the competitive proliferative advantage of activated CD8+ versus CD4+ T cells. Other 

disparities and core parities between naïve and immune activated CD4+ and CD8+ T cell 

populations can be interrogated interactively via an online, searchable database the 

Encyclopaedia of Proteome Dynamics39 (www.peptracker.com/epd).  

One experimental aim was to compare the impact of mTORC1 inhibition on CD4+ and CD8+ 

T cells since there are often general comments made about what mTORC1 does to control 

lymphocyte function based on experiments performed in a single cell population and assuming 

that observations can be extrapolated to all cells. In this context, a general comment frequently 

made about mTORC1 is that it regulates cell growth11, 40. The present data show this to be 

true but with the caveat that mTORC1 growth effects are relatively small and mTORC1  

independent pathways also control T cell growth. Indeed, the selectivity of mTORC1 shaping 

of CD4+ and CD8+ T cell proteomes was striking. The present data give insights as to why 

mTORC1 effects on T cell protein mass are limited. For example, mTORC1 is proposed to 

control cell growth by phosphorylating and inactivating the translational repressors 4E-BP1 

and 4E-BP211, 41. However, we show that 4E-BP copy numbers are very low relative to their 

target eIF4E, making it unlikely that releasing any 4E-BP repression would have a major 

impact on protein translation and would rather be highly selective to a small subset of proteins. 

Similarly, we have shown that mTORC1 inhibition increases expression of the translational 

repressor PDCD4 but that the PDCD4 target eIF4A1 remained in large excess to PDCD4 in 

rapamycin treated T cells. These considerations highlight the value of quantitative data that 

models protein complex stoichiometry for understanding how immunomodulatory stimuli effect 

T cell phenotypes.   
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What about cell context effects of mTORC1? A comparison of previous studies of how raptor 

deficient CD4+ T cells responded to CD3 and CD28 antibodies versus how CD8+ effector CTLs 

responded to rapamycin had indicated there might be differences between how mTORC1 

controls CD4+ and CD8+ T cell proteomes5, 7. The present study enabled direct comparisons 

between populations and revealed no major qualitative differences in how mTORC1 controls 

comparable CD4+ and CD8+ T cell populations. mTORC1 inhibition had an impact on glucose 

transporters, glycolysis, mitochondria, fatty acid metabolism, ribosomes and translational 

machinery and cell adhesion molecules in both antigen-activated and effector CD4+ and CD8+ 

T cells. There were differences in how mTORC1 inhibition impacted antigen activated 

lymphocytes as they exit quiescence versus mTORC1 control of effector T cells. In particular, 

mTORC1 inhibition had a dominant effect on cell cycle progression in antigen activated naïve 

CD4+ and CD8+ cells but not in TH1 or CTL effector populations. The basis for this difference 

was that key cell cycle regulators are so highly abundant in effectors compared to T cells 

progressing into their first cell cycle that decreases in expression caused by loss of mTORC1 

function are not rate limiting. These data indicate that for mTORC1 inhibitors to prevent T cell 

cycle progression it will be necessary to deliver the inhibitor before the T cell has accumulated 

high levels of D-type cyclins. The data reveal cell context dependent functions of mTORC1 

and show that these can be understood when there is knowledge and understanding of the 

stoichiometry of critical protein complexes and their positive and negative regulators plus 

some understanding of functional thresholds for different pathways. The current data provide 

comprehensive quantitative information about protein copy number and concentration in T 

cell populations that are used extensively as models to probe T cell biology. We provide an 

easily interrogated resource for exploring the protein landscape of key immune cells and 

for predicting T cell responses to environment and other immune modulators. 
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Figure Legends 

Figure 1 

Proteome re-modelling during T cell differentiation. (a) Total protein content of naïve, 24 

h TCR-activated (TCR) and effector (Eff) populations. (b) Mean fluorescence intensity (MFI) 
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of forward/side scatter for naïve CD4+ and CD8+ T cells. (c) Heat map of CD4+ and CD8+ 

proteomes during differentiation. The full list of proteins within the heat map is provided in 

Supplementary Data File 1. (d) Number of proteins changing in abundance during T cell 

differentiation: naïve to TCR activated and naïve to effector (P value <0.05, fold change >1.5 

(two-tailed t-test with unequal variance) or presence/absence expression). (e) The proportion 

of the cell mass that corresponds to proteins increasing, decreasing or not changing in naïve 

cells in response to TCR triggering. The number of proteins in each category is also provided. 

Proteins were categorized as changing as described above. (f) Protein copy number 

comparisons between naïve and effector populations for CD4+ and CD8+ T cells. Proteins 

highlighted in red are significantly different between naïve and effector or show a 

presence/absence expression profile (P value <0.05, fold change >2 standard deviations from 

the mean fold change, two-tailed t-test with unequal variance). Proteins that were not detected 

in one population are positioned on the axis and are highlighted in red. The dashed line = 

mean fold change between naïve and effector. Interferon- (IFN-), granzyme B (GZMB), T-

bet (TBX21) and Kruppel-like factor 2 and 3 (KLF2 and KLF3). (g) Abundance of effector 

molecules in CTLs and TH1 cells. (h) Abundance of GZMB and perforin (PRF1). For a, d, e, f, 

g and h, n = 6 biologically independent samples for CD8+ naïve cells and 3 biologically 

independent samples for each of the other T cell populations. For b, n = 4 biologically 

independent samples. For c, n = 3 biologically independent samples for each T cell population. 

Histogram bars represent the mean +/- SD. 

 

Figure 2 

Expression profile of transcription factors during T cell differentiation. Over 300 proteins 

annotated as DNA binding/transcription factor activity (GO:0003700) were identified in CD4+ 

and CD8+ T cell populations. Additional transcription factors without a GO annotation were 

added manually. (a) Transcription factor expression profiles during T cell differentiation. The 

full list of proteins included in heat maps is provided in Supplementary Data File 1. Histograms 

showing protein copy numbers per cell are provided for a selection of core transcription factors 
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essential for T cell differentiation and activity: Runt Related Transcription Factor 3 (RUNX3); 

Eomesodermin (EOMES); Interferon Regulatory Factor 8 (IRF8); BTB Domain And CNC 

Homolog 2 (BACH2). (b) Copy number comparisons for transcription factors in different T cell 

populations. Scatter plots show the average copy number for transcription factors and allow a 

two-way comparison between T cell populations. Proteins that were not detected in one 

population are positioned on the axis. Transcription factors significantly different between 2 

populations (P value <0.05 and a fold change >2 standard deviations from the mean fold 

change, two-tailed t-test with unequal variance) or showing a presence/absence expression 

profile, are represented with a red circle, while non-significant transcription factors are 

represented with a pink circle. The dashed line = the mean fold change between 2 populations. 

For heat maps in a, n = 3 biologically independent samples for each T cell population. For 

histograms in a and plots in b, n = 6 biologically independent samples for CD8+ naïve cells 

and 3 biologically independent samples for each of the other T cell populations. Histogram 

bars represent the mean +/- SD. 

 

Figure 3 

Scaling versus selective enrichment of proteins and processes during T cell 

differentiation. (a) Comparing protein copy number and concentration. Volcano plots show 

the ratio for proteins in CTLs versus naïve CD8+ T cells (CTL/naïve), using copies/cell or 

cellular protein concentration (M). Horizontal dashed line indicates a P value = 0.05, vertical 

dashed lines indicate a fold change = 1.5 (b) Protein content of ribosomes (KEGG 03010), 

mitochondria (GO:0005739), nuclear envelope (GO:0005635) and the glycolytic pathway. (c) 

Protein content of cellular compartments relative to the total cellular protein mass (%). (d) 

Expression profile and protein content of mitochondrial ribosomal proteins in naïve CD8+ T 

cells and CTLs. The vertical dashed line on the volcano plot is the mean fold change (copy 

number CTL/naïve) of all proteins. (e) The expression profile of mitochondrial proteins in CTLs 

versus naïve CD8+ T cells (copy number CTL/naïve). Mitochondrial proteins are highlighted 

with red circles. Hexokinase 1 (HK1) and hexokinase 2 (HK2) are highlighted with yellow 
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circles. Vertical dashed line is the mean fold change for all proteins. Copy number and 

concentration of HK1 and HK2 is also provided. (f) Protein copy numbers relative to cell 

surface area. The surface area of naïve and effector CD8+ T cells was estimated using the 

formula 4r2, assuming the radius of a naïve cell to be 2.8 m and a CTL to be 5 m42, 43. Data 

shows protein copy numbers per cell and protein copy numbers adjusted for cell surface area 

(copies/m2). For a-f, n = 6 biologically independent samples for CD8+ naïve cells and 3 

biologically independent samples for each of the other T cell populations. Histogram bars 

represent the mean +/- SD. For a, d and e, P values calculated using a two-tailed t-test with 

unequal variance.  

 

Figure 4 

Nutrient and amino acid transport in T cells. (a) Copy numbers for the major glucose, 

lactate and amino acid transporters and selected mitochondrial transporters in naïve, TCR 

activated and effector populations. (b) Copy numbers for the system L amino acid transporter 

SLC7A5 in naïve CD8+ and CD4+ T cells. For a and b, n = 6 biologically independent samples 

for CD8+ naïve cells and 3 biologically independent samples for each of the other T cell 

populations. Histogram bars represent the mean +/- SD. (c) Flow cytometric monitoring of 

System L dependent uptake in wild type and CD4Cre Slc7a5fl/fl naïve CD4+ and CD8+ cells. 

Lymph node cells from CD45.1+ (WT) and CD45.2+ (CD4Cre Slc7a5fl/fl, where SLC7A5 is 

deleted in all T cells) were mixed together and surface antibody stained for flow cytometric 

detection prior to the addition of the System L substrate kynurenine (KYN). Fluorescence 

emission was monitored over time using 405 nm excitation (violet laser) and band pass filter 

450 ± 50. The representative trace shows the fluorescence data acquired post addition of 

200 M KYN plotted against time (seconds). (d) Kynurenine uptake in naïve CD4+ and CD8+ 

T cells +/- 10 mM 2-amino-2-norbornanecarboxylic acid (BCH); a System L transport inhibitor. 

The System L uptake ratio is calculated as the MFI after 5 min KYN uptake compared with the 

MFI after 5 min of KYN uptake in the presence of 10 mM BCH (KYN MFI / KYN+BCH MFI). 
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For c and d, n = 3 biologically independent samples for WT and 3 biologically independent 

samples for CD4Cre Slc7a5fl/fl. Data presented in c is representative of one experiment and 

the experiment was carried out 3 times producing similar results. Bars shown in d represent 

the mean +/- SD. 

 

Figure 5 

Regulation of mRNA translation in T cells. (a) Number of ribosomes in naive, TCR activated 

and effector CD4+ and CD8+ T cell populations. Number of ribosomes was estimated by 

calculating the mean number of ribosomal subunits within each cell using the KEGG 

annotation: 03010. (b) Expression profile of key components of the Eukaryotic Initiation Factor 

4F (EIF4F) mRNA translation initiation complex during differentiation. EIF4F consists of 

Eukaryotic Translation Initiation Factor 4 Gamma 1 (EIF4G1), Eukaryotic Translation Initiation 

Factor 4A1 (EIF4A1), Eukaryotic Translation Initiation Factor 4E (EIF4E) and Poly(A) Binding 

Protein Cytoplasmic 1 (PABPC1). Data is presented as protein copies per cell in naïve, TCR 

activated and effector CD8+ and CD4+ T cell populations. (c) Stoichiometry of eukaryotic 

initiation factor 4E-binding proteins 1 and 2 (4E-BP1+2) to EIF4E in T cell populations. Copy 

numbers for 4E-BP1 and 2 were combined. 4E-BP1+2 are also plotted adjacent to copy 

numbers for EIF4E to assess whether inhibitor levels are adequate to block translation 

initiation, and the ratio of 4E-BP1+2 to EIF4E is presented (ND = not detected). (e) 

Stoichiometry of Programmed Cell Death 4 (PDCD4) and EIF4A1 during T cell differentiation. 

The ratio of PDCD4 to EIF4A1 in naïve, TCR triggered and effector CD4+ and CD8+ T cells is 

shown adjusted to account for 1 molecule of PDCD4 binding 2 molecules of EIF4A1 to inhibit 

CAP-dependent translation26. For a-d, n = 6 biologically independent samples for CD8+ naïve 

cells and 3 biologically independent samples for each of the other T cell populations. 

Histogram bars represent the mean +/- SD.  

 

Figure 6 
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Environmental sensing in T cells. (a) Protein copy numbers for components of oxygen 

sensing pathways including the transcription factor hypoxia-inducible factor-1 alpha (HIF-1), 

the oxygen sensing molecule prolyl hydroxylase domain-containing protein 2 (PHD2) and the 

E3 ligase that ubiquinates HIF-1, von Hippel-lindau tumor suppressor (VHL). (b) The 

abundance of CD71 (Transferrin receptor) and IREB1 (Iron-Responsive Element-Binding 

Protein 1/Aconitase 1). (c) The impact of immune activation on the cGAS-STING DNA sensing 

pathway: Cyclic GMP-AMP Synthase (cGAS); Stimulator Of Interferon Genes Protein (STING 

or TMEM173); TANK Binding Kinase 1 (TBK1); Interferon Regulatory Factor 3 (IRF3). (d) 

Abundance of the amino acid sensing kinases Eukaryotic Translation Initiation Factor 2 Alpha 

Kinases 1, 2, 3 and 4 (HRI, PKR, PERK and GCN2 respectively) and mTOR (glucose and 

amino acid sensing) and AMPK (glucose sensing). For a-d, n = 6 biologically independent 

samples for CD8+ naïve cells and 3 biologically independent samples for each of the other T 

cell populations. Histogram bars represent the mean +/- SD.  

 

Figure 7 

The impact of mTORC1 inhibition on CD4+ and CD8+ T cell proteomes. (a) Protein content 

of T cells in response to mTORC1 inhibition. Naïve CD4+ and CD8+ T cells were TCR triggered 

for 24 h +/- rapamycin while effector CD4+ and CD8+ cells were incubated for 24 h +/- 

rapamycin. (b) Volcano plots show the protein ratios for rapamycin treated cells versus control 

(+rapamycin/control copy numbers). Proteins highlighted in red have a P value <0.05 and a 

fold change >1.5 while proteins highlighted in grey did not change significantly. (c) The impact 

of rapamycin on the glycolytic pathway, ribosomes and mitochondria in CD4+ and CD8+ cells. 

(d) Summary of cellular processes impacted by mTORC1 inhibition. Arrows pointing 

downwards indicate decreased abundance while arrows pointing upwards indicate increased 

abundance. Proteins/processes changing in TCR stimulated cells only are labelled “TCR” 

while those changing in TCR and effector populations are labelled “TCR+Eff”. (e) The impact 

of inhibiting mTORC1 on protein concentration. Volcano plots were generated as described 
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above. (f) The ratio of PDCD4 to EIF4A1. 1 molecule of PDCD4 binds 2 molecules of EIF4A1 

and the ratios have been adjusted to account for this binding stoichiometry. For a-f, n = 6 

biologically independent samples for CD8+ naïve cells and 3 biologically independent samples 

for each of the other T cell populations. Histogram bars represent the mean +/- SD. For b and 

e, P values were calculated using a two-tailed t-test with unequal variance.  

 

Figure 8 

The impact of mTORC1 inhibition on cell cycle proteins. (a) Flow cytometric analysis of 

DNA synthesis in CD8+ T cells in response to rapamycin. Naïve CD8+ cells TCR triggered for 

24 h and effector CTLs were treated +/- rapamycin. DMSO was used as a vehicle control. 

DNA synthesis was assessed by incorporation of EdU (a thymidine analogue) into newly 

synthesized DNA which is fluorescently labelled using a copper-catalyzed click reaction. Naïve 

cells (IL7 treated) were included as a control. n = 3 biologically independent samples for IL7 

and TCR activated cells, n = 3 biologically independent samples for CTLs. The data shown is 

from 1 biologically independent sample and is representative of all replicates. (b) 

Stochiometric model for cell cycle entry and progression. Protein copy numbers are presented 

for cyclin D2 (CCND2), cyclin D3 (CCND3), cyclin dependent kinase 4 (CDK4), cyclin 

dependent kinase 6 (CDK6) and the cyclin dependent kinase inhibitor CDKN1B (P27). (c) The 

impact of rapamycin on the cyclin D/P27 model in CD8+ cells TCR triggered for 24 h and 

effector CD8+ cells incubated +/- rapamycin. Protein copy numbers are also presented in 

graphs for CCND2 + CCND3 adjacent to P27. For b and c, n = 6 biologically independent 

samples for CD8+ naïve cells and 3 biologically independent samples for each of the other T 

cell populations. Histogram bars represent the mean +/- SD. Copy numbers adjacent to cell 

cycle proteins are the average of replicates and were rounded to the nearest thousand. 

 

Table 1 

GO term enrichment analysis for proteins that significantly drop in abundance in rapamycin 

treated cells (significance = P value <0.05 (two-tailed t-test with unequal variance) and fold 
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change >2 standard deviations from the mean fold change). The top 5 enriched GO terms for 

biological processes, are presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Methods 

Mice 

For proteomics experiments P1444 and OT-II45 transgenic mice along with C57BL/6 (wild-type 

B6) mice were used. For the single-cell amino acid transport assay CD4Cre Slc7a5fl/fl 

(CD45.2+) and C57BL/6J Ly5.1 (CD45.1+) mice were used. Male and female mice aged 

between 50 and 120 days were used. Further details can be found in the Life Sciences 

Reporting Summary. All mice were maintained in the Biological Resource Unit at the 

University of Dundee using procedures that were approved by the University Ethical Review 

Committee and under the authorization of the UK Home Office Animals (Scientific Procedures) 

Act 1986.  

 

Flow cytometry 

Forward/side scatter analysis of naïve CD4+ and CD8+ T cells 

enriched GO term 
fold 

enrichment 
P value 

CD8+ TCR 

GO:0007049~cell cycle 6 1.7 x 10-35 
GO:0051301~cell division 7 5.5 x 10-35 
GO:0007067~mitotic nuclear division 8 6.4 x 10-31 
GO:0007059~chromosome segregation 10 6 x 10-14 
GO:0007018~microtubule-based movement 12 1.2 x 10-9 
   
CD4+ TCR 
GO:0006260~DNA replication 10 1.2 x 10-12 
GO:0007049~cell cycle 3 6.5 x 10-8 
GO:0006270~DNA replication initiation 14 2.9 x 10-4 
GO:0006974~response to DNA damage 2 8.5 x 10-4 
GO:0051726~regulation of cell cycle 5 1.2 x 10-3 
   
CTL 
GO:0006636~unsaturated fatty acid biosynth 35 1.3 x 10-4 
GO:0006633~fatty acid biosynthetic process 10 2.3 x 10-4 
GO:0006629~lipid metabolic process 3 1.0 x 10-3 
GO:0030154~cell differentiation 3 1.3 x 10-3 
GO:0016239~regulation of macroautophagy 14 2.3 x 10-3 
   
TH1 
GO:0016126~sterol biosynth process 12 9.3 x 10-5 
GO:0008202~steroid metabolic process 6 6.2 x 10-4 
GO:0006695~cholesterol biosynth process 11 7.9 x 10-4 
GO:0006694~steroid biosynthetic process 7 8.2 x 10-4 
GO:0035455~response to interferon-alpha 18 1.1 x 10-3 
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Lymph node derived naïve CD4+ and CD8+ cells were stained with CD4-PE and CD8-PeCy7. 

Forward and side scatter profiles were acquired on a LSR Fortessa II with DIVA software and 

data was analyzed using FlowJo software v9 (TreeStar). 4 biologically independent samples 

were analyzed. 

 

DNA Synthesis Assay 

To measure DNA synthesis cells were fed 10 M Click-iT EdU (Thermo Fisher) for 30 min. 

Cells were then harvested, stained with CD8-FITC (for TCR-activated cells), fixed with 1 % 

paraformaldehyde and permeabilized with 0.5 % Triton X 100 before undergoing a copper 

catalyzed click chemistry reaction with Alexa 647-azide (Thermo Fisher). Cells were analyzed 

by flow cytometry to determine the degree of incorporation of EdU. All flow cytometry data 

was acquired on either a LSR Fortessa II with DIVA software or a FACSVerse flow cytometer 

with FACSuite software (BD Biosciences). Data were analyzed using FlowJo software v9 

(TreeStar). 3 biologically independent samples were analyzed for each experiment. The gating 

strategy for flow cytometry analysis is provided in Supplementary Fig. 7.  

 

Monitoring System L amino acid transport 

A single cell assay to monitor System L amino acid transport, with kynurenine as a fluorescent 

system L transport substrate, was performed as described previously22. In brief, wild-type 

(C57BL/6J Ly5.1, CD45.1+) and CD4Cre Slc7a5fl/fl (CD45.2+) ex vivo lymph node cells were 

mixed. Surface antibody staining for CD45.1 (PerCP Cy 5.5), CD45.2 (FITC), CD4 (PE) and 

CD8 (PeCy7) was performed (15 min, at 37 °C). After surface antibody staining, cells were 

washed in pre-warmed HBSS, and resuspended in 200 l warmed HBSS (approx. 2.5 × 106 

cells in FACS tubes). Cells were kept in a water bath at 37 °C. 100 l of HBSS or the System 

L transport inhibitor BCH (2-amino-2-norbornanecarboxylic acid, Sigma) was added to 

appropriate samples. Finally, 100 l pre-warmed kynurenine (stock 800 M freshly made in 

HBSS; final concentration 200 M; final sample volume 400 l) was added. To monitor 
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kynurenine uptake in live cells, data was acquired on flow cytometer immediately following 

addition of kynurenine and fluorescence plotted against time. The 405 nm laser and 450/50 

BP filter were used for kynurenine fluorescence detection. To calculate the ratio of System L 

uptake, kynurenine uptake was fixed after 5 min by adding 125 l 4% PFA for 30 min at room 

temperature, in the dark. Flow cytometry data was acquired on either a LSR Fortessa II with 

DIVA software or a FACSVerse flow cytometer with FACSuite software (BD Biosciences) and 

analysed using FlowJo software v9 (TreeStar) and following the gating strategy as shown in 

Supplementary Fig. 7. 3 biologically independent samples were collected and analyzed from 

wild-type and CD4Cre Slc7a5fl/fl mice.  

 

Cells 

All cells were activated and cultured in RPMI 1640 containing glutamine (Invitrogen) and 

supplemented with 10 % FBS (Gibco), 50 M -mercaptoethanol (Sigma) and 

penicillin/streptomycin (Gibco). Cells were cultured at 37 ˚C with 5 % CO2. 

 

For all proteomics experiments 3 biological replicates were generated, except naïve CD8+ 

cells, for which 6 biological replicates were produced. For proteomics experiments pure 

populations of naïve CD8+ and CD4+ cells were generated by fluorescent-activated cell sorting 

(FACS). The gating strategy for cell sorting is provided in Supplementary Figs. 8-10. Cells 

were sorted to a purity >95%. For naïve CD8+ cells, lymph nodes were extracted from gender 

and age matched P14 mice and tissue mashed in RPMI media and filtered through a 70 m 

cell strainer. FC receptors were blocked using 1 g FC block (BD Pharmingen) per million 

cells. Cells were stained with the following fluorophore-conjugated antibodies; TCR-PerCP 

Cy 5.5, CD8-PE, CD44-APC, CD62L-FITC and DAPI and sorted on an Influx cell sorter 

(Becton Dickinson). Naïve CD8+ cells were collected (CD8+CD44loCD62Lhi) and cells were 

washed twice in HBSS before being snap frozen in liquid nitrogen. For naïve CD4+ cells, lymph 

nodes were isolated from age- and gender-matched C57BL/6 mice and processed as above 
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but stained with the following antibodies; TCRβ-PerCP Cy 5.5, CD4-PeCy7, CD8-PE, CD44-

APC, CD62L-FITC and DAPI. Naïve CD4+ cells were collected (CD4+CD44loCD62Lhi) and 

processed as above. 

 

To activate primary T cells for generating a 24 h-activated CD8+ T cell population, lymph nodes 

were removed from P14 mice and mashed before suspending in media with 100 ng/ml 

antigenic peptide (glycoprotein amino acids 33-41 – GP33), 20 ng/ml IL-2 (Proleukin, Novartis) 

and 2 ng/ml IL-12 (PeproTech) and where needed were treated with 20 nM rapamycin (Merck). 

After 24 h cells were harvested by centrifugation and prepared for cell sorting to isolate a pure 

population of CD8+ cells. FC receptors were blocked using 1 g FC block (BD Pharmingen) 

per million cells. Cells were stained with CD8-PE and DAPI and sorted cells were harvested 

as described above. TCR-activated CD4+ cells were generated from lymph nodes isolated 

from OT-II transgenic mice. To achieve effective TCR activation a preparation of antigen-

presenting cells was first generated. Spleens were taken from wild-type B6 mice and T 

lymphocytes removed using anti-TCR-biotin antibody and an immunomagnetic isolation kit 

(Stemcell Technologies) to generate an antigen-presenting cell population. Antigen-

presenting cells were incubated with lipopolysaccharide (4 g/ml) and OVA peptide (323-339, 

1 g/ml, Sigma) overnight before being combined with cells from OT-II lymph nodes. Antigen-

presenting cells were combined with OT-II lymph node cells at a ratio of 1:2 in RPMI media. 

Cells were incubated with OVA peptide (1 g/ml) plus 2 ng/ml IL-12 (PeproTech) and activated 

for 24 h +/- 20 nM rapamycin. Once activated, cells were subject to cell sorting to generate a 

pure population of activated CD4+ cells. FC receptors were blocked using 1 g FC block (BD 

Pharmingen) per million cells. Cells were stained with CD4-PerCP Cy 5.5, V2-PE and DAPI 

before cell sorting. CD4+ and V2+ cells were collected. Purified cells were washed twice in 

HBSS before being snap frozen in liquid nitrogen.  
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To generate CTLs, spleens were extracted from P14 mice and mashed in red blood cell lysis 

buffer before being suspended in RPMI media supplemented with GP33 peptide and IL-2 and 

IL-12 (as described for TCR activation above). Cells were activated for 48 h, washed out of 

activation buffer and then cultured for 3 days in media supplemented with 20 ng/ml IL-2 and 

2 ng/ml IL-12. After 3 days cells were treated +/- 20 nM rapamycin for 24 h before being 

harvested. Dead cells were removed using a dead cell removal kit (Miltenyi Biotec), washed 

twice with HBSS and snap frozen. TH1 cells were cultured from wild-type C57BL/6 mice. 

Spleen and lymph nodes were extracted from mice, mashed, filtered through a 70-m cell 

strainer and CD8+ cells depleted using immunomagnetic selection (Stemcell Technologies). 

Cells were activated with CD28 antibody (3 g/ml), CD3 antibody (2 g/ml), IL-2 (20 ng/ml) 

and IL-12 (10 ng/ml). Cells were cultured for a total of 6 days with the last 24 h +/- rapamycin 

at 20 nM. Dead cells were removed as described above and cells were washed twice with 

HBSS before being snap frozen in liquid nitrogen. 

 

Proteomics sample preparation and TMT labelling 

Cell pellets were lysed in 400 L lysis buffer (4% SDS, 50 mM TEAB pH 8.5, 10 mM TCEP). 

Lysates were boiled and sonicated with a BioRuptor (30 cycles: 30 sec on, 30 sec off) before 

alkylation with 20 mM iodoacetamide for 1 h at 22 C in the dark. The lysates were subjected 

to the SP3 procedure for protein clean-up46 before elution into digest buffer (0.1% SDS, 50 

mM TEAB pH 8.5, 1mM CaCl2) and digested with LysC and Trypsin, each at a 1:50 

(enzyme:protein) ratio. TMT labelling and peptide clean-up were performed according to the 

SP3 protocol. T cell populations were TMT labelled in the following six batches: naïve CD4+ 

cells (mass tag 126, 127C and 128N), TCR activated CD4+ cells +/- rapamycin (mass tag 126, 

127N, 128C for control and 129N, 130C and 131 for rapamycin), TH1 +/- rapamycin (mass tag 

126, 127N, 127C for control and 128N, 128C and 129N for rapamycin), naïve CD8+ cells 

(mass tag 128N, 128C, 129N, 129C, 130C and 131) , TCR-activated CD8+ cells +/- rapamycin 

(mass tag 126, 127N, 128C for control and 128N, 128C, 129N for rapamycin) and CTLs +/- 
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rapamycin (mass tag 126, 127N, 128C for control and 129N, 130C and 131 for rapamycin). 

After labelling samples were eluted into 2% DMSO in water, combined and dried in vacuo.  

 

Peptide fractionation 

The TMT samples were fractionated using off-line high pH reverse phase chromatography: 

samples were loaded onto a 4.6  250 mm XbridgeTM BEH130 C18 column with 3.5 m 

particles (Waters). Using a Dionex BioRS system, the samples were separated using a 25-

minute multistep gradient of solvents A (10 mM formate at pH 9 in 2% acetonitrile) and B (10 

mM ammonium formate pH 9 in 80% acetonitrile), at a flow rate of 1 mL/min. Peptides were 

separated into 48 fractions which were consolidated into 24 fractions. The fractions were 

subsequently dried and the peptides dissolved in 5% formic acid and analyzed by LC-MS. 

 

Liquid chromatography electrospray tandem mass spectrometry analysis (LC-ES-

MS/MS) 

1 g per fraction was analysed using an Orbitrap Fusion Tribrid mass spectrometer (Thermo 

Scientific) equipped with a Dionex ultra high-pressure liquid chromatography system (nano 

RSLC). RP-LC was performed using a Dionex RSLC nano HPLC (Thermo Scientific). 

Peptides were injected onto a 75 m × 2 cm PepMap-C18 pre-column and resolved on a 75 

m × 50 cm RP- C18 EASY-Spray temperature controlled integrated column-emitter (Thermo) 

using a 4 h multistep gradient from 5% B to 35% B with a constant flow of 200 nL min-1. The 

mobile phases were: 2% ACN incorporating 0.1% FA (Solvent A) and 80% ACN incorporating 

0.1% FA (Solvent B). The spray was initiated by applying 2.5 kV to the EASY-Spray emitter 

and the data were acquired under the control of Xcalibur software in a data dependent mode 

using top speed and 4 s duration per cycle, the survey scan is acquired in the Orbitrap covering 

the m/z range from 400 to 1400 Thomson units (Th) with a mass resolution of 120,000 and an 

automatic gain control (AGC) target of 2.0 e5 ions. The most intense ions were selected for 

fragmentation using CID in the ion trap with 30 % CID collision energy and an isolation window 
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of 1.6 Th. The AGC target was set to 1.0 e4 with a maximum injection time of 70 ms and a 

dynamic exclusion of 80 s. During the MS3 analysis for more accurate TMT quantifications, 

10 fragment ions were co-isolated using synchronous precursor selection using a window of 

2 Th and further fragmented using HCD collision energy of 55%. The fragments were then 

analyzed in the Orbitrap with a resolution of 60,000. The AGC target was set to 1.0 e5 and 

the maximum injection time was set to 300 ms. 

 

Processing and analysis of proteomics data 

The data were processed, searched and quantified with the MaxQuant software package, 

version 1.5.8.3, Proteins and peptides were identified using the UniProt mouse database 

(SwissProt and Trembl) and the contaminants database integrated in MaxQuant using the 

Andromeda search engine47, 48 with the following search parameters: carbamidomethylation 

of cysteine and TMT modification on peptide N-termini and lysine side chains were fixed 

modifications, while methionine oxidation, acetylation of N-termini of proteins were selected 

as variable modifications. The false discovery rate was set to 1% for positive identification at 

the protein and PSM level. The data set was filtered to remove proteins categorized as 

“contaminants”, “reverse” and “only identified by site”. Copy numbers were calculated as 

described18 after allocating the summed MS1 intensities to the different experimental 

conditions according to their fractional MS3 reporter intensities. The accuracy of quantification 

was established using the following guidelines: proteins categorized as high accuracy had 

more than 8 unique and razor peptides and a ratio for unique/unique + razor greater than or 

equal to 0.75, proteins categorized as medium accuracy had at least 3 unique and razor 

peptides and a ratio for unique/unique + razor greater than or equal to 0.5, any proteins below 

these thresholds were classified as low accuracy.  

 

Statistics and calculations 

P-values were calculated via a two-tailed, unequal variance t-test on log normalized data. 

Elements with P values lower or equal to 0.05 were considered significant. Fold-change 
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thresholds were established using 2 methods. Method 1 established a fold-change cut-off ≥ 

1.5 or ≤ 0.67. Method 2 used the standard deviation of the log2 fold-change. A cut-off was then 

set as two standard deviations from the mean log2 fold change, allowing one to focus on those 

proteins showing the greatest change in expression. The mass of individual proteins was 

estimated using the following formula: CN*MW/NA = protein mass (g/cell) where CN is protein 

copy number, MW is the protein molecular weight in Daltons and NA is Avogadro’s Constant. 

Heat maps were generated using the Morpheus tool from the Broad Institute 

(https://software.broadinstitute.org/morpheus). Proteins included in heat maps had a copy 

number of at least 1000 copies per cell in at least one population, and were found in at least 

one CD4+ and CD8+ T cell population. Heat maps were arranged with T-bet positioned at the 

top and with all proteins ranked according to similarity in expression using nearest neighbor 

analysis and Pearson correlation. CD4+ and CD8+ T cell heat maps were aligned in the same 

order to enable side-by-side comparison. Proteomics data were uploaded to the Encyclopedia 

of Proteome Dynamics (EPD – www.peptracker.com/epd) allowing public interrogation of the 

full data set. 

 

Data Availability 

All proteomics data is available for interrogation using the Encyclopedia of Proteome 

Dynamics (EPD – https://peptracker.com/epd). Analysed proteomics data used to generate 

figures is available in Supplementary Files 1-5. Raw mass spec data files and MaxQuant 

analysis files are available on the ProteomeXchange data repository 

(http://proteomecentral.proteomexchange.org/cgi/GetDataset) and can be accessed with 

identifier PXD012058. Flow cytometry data that support the findings of this study are available 

from the corresponding author upon request. 
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Supplementary Figure 1 

The cumulative abundance of proteins within T cell populations. 

(a) Proteins ranked according to their abundance and plotted against their cumulative abundance. The number of proteins that comprise 
25%, 50%, 75% and 100% of the total cellular protein mass is provided adjacent to graphs. (b) Direct comparisons of CD4+ and CD8+ 
naïve populations and CD4+ and CD8+ effector populations. Proteins that make up the top 75% of naïve and effector proteomes (identified 
in a), are highlighted with red circles. For a and b, n = 6 biologically independent samples for CD8+ naïve cells and 3 biologically 
independent samples for each of the other T cell populations. For b, proteins were deemed to change significantly if they had a P value 
<0.05 (two-tailed t-test with unequal variance) and a fold change > 2 standard deviations from the mean fold change between populations 
(fold change cut-off indicated with dashed lines).  



 
 

 

Supplementary Figure 2 

Scaling versus enrichment during T cell differentiation. 

(a) The protein content of cellular compartments and processes during T cell differentiation. The protein content of ribosomes (KEGG 
03010), mitochondria (GO:0005739), nuclear envelope (GO:0005635) and the glycolytic pathway was calculated using estimates of 
protein copy numbers per cell as described in the methods section. Data is also presented showing the proportion of the cell that 
constitutes ribosomes, mitochondria, nuclear envelope and the glycolytic pathway (presented as a % of the total cellular protein content). 
(b) Copy numbers and concentration of hexokinase 1 and 2 (HK1 and HK2) in CD4+ and CD8+ cells. (c) Expression profile for tRNA 



 
 

synthetase enzymes in CD8+ T cells. The volcano plot compares the expression profile of enzymes in naïve versus effector CD8+ cells 
(CTL/naïve copy numbers). The horizontal dashed line indicates a P value = 0.05 (two-tailed t-test with unequal variance), vertical dashed 
line indicates the mean fold change between populations. The protein mass of these enzymes is also presented. (d) Copy numbers for 
components of the EIF2 complex – subunits alpha (EIF2S1), beta (EIF2S2) and gamma (EIF2S3). For a-d, n = 6 biologically independent 
samples for CD8+ naïve cells and 3 biologically independent samples for each of the other T cell populations. Histogram bars represent 
the mean +/- SD. 



 
 

 

Supplementary Figure 3 

Environmental sensing in T cells. 

(a) The impact of immune activation on the lysosomal arginine sensor SLC38A9, the cytosolic arginine sensor CASTOR1, the leucine 
sensor SESTRIN2 and the mTORC1 activating GTPase RHEB. Histogram bars represent the mean +/- SD. (b) Copy numbers for GATOR 
complex members in naïve (N), TCR activated (T) and effector (E) CD8+ populations. Copy numbers are the average of replicates. For a 
and b, n = 6 biologically independent samples for CD8+ naïve cells and 3 biologically independent samples for each of the other T cell 
populations. 



 
 

 

Supplementary Figure 4 

The impact of rapamycin on effector molecules, transcription factors, transporters and fatty acid metabolism. 

(a) Volcano plots showing the expression profile of effector molecules in T cells in response to mTORC1 inhibition: Granzyme B, C, D, E 

and N (GZMB, C, D, E and N); perforin (PRF1); interferon- (IFN-), lymphotoxin alpha (LTA); lymphotoxin beta (LTB); interleukin 2 (IL2); 
TNF Superfamily Member 11 (TNFSF11); TNF Superfamily Member 8 (TNFSF8); CD40 ligand (CD40LG). (b) The impact of inhibiting 
mTORC1 on key transcription factors in T cells – T-Box 21 (TBX21/T-bet), Proto-Oncogene C-Myc (MYC), Basic Leucine Zipper ATF-
Like Transcription Factor (BATF), Interferon Regulatory Factor 4 (IRF4) and PR Domain Containing 1 (PRDM1/BLIMP1). (c) Abundance 



 
 

of Hypoxia Inducible Factor 1 Subunit Alpha (HIF-1) in response to rapamycin. (d) The expression profile of glucose transporters 
SLC2A1 and SLC2A3 and the lactate transporter SLC16A3 in response to mTORC1 inhibition. (e) The impact of mTORC1 inhibition on 
proteins involved in fatty acid/sterol metabolism: Hydroxy-3-Methylglutaryl-CoA Synthase 1 (HMGCS1); Fatty Acid Desaturase 1 and 2 
(FADS1 and FADS2); Stearoyl-CoA Desaturase 2/3 (SCD2/3). For a, b and e fold change calculated as +rapamycin/control using protein 
copy numbers. The horizontal dashed line on volcano plots indicates a P value = 0.05 (two-tailed t-test with unequal variance) while 
vertical dashed lines indicate a fold change of 0.67, 1 and 1.5. For a-e, n = 6 biologically independent samples for CD8+ naïve cells and 
3 biologically independent samples for each of the other T cell populations. Histogram bars represent the mean +/- SD. 



 
 

 

Supplementary Figure 5 

The impact of mTORC1 inhibition on mitochondrial processes and the EIF4A1:PDCD4 complex. 

(a) The expression profile for all mitochondrial proteins, (b) mitochondrial ribosome proteins and (c) proteins implicated in oxidative 
phosphorylation. For a, b and c fold change calculated as +rapamycin/control using protein copy numbers. The horizontal dashed line 
on volcano plots indicates a P value = 0.05 (two-tailed t-test with unequal variance) while vertical dashed lines indicate a fold change of 
0.67, 1 and 1.5. (d) The abundance of Programmed Cell Death 4 (PDCD4) and Eukaryotic Translation Initiation Factor 4A1 (EIF4A1) in 
CD8+ and CD4+ T cells. Histogram bars represent the mean +/- SD. For a-d, n = 6 biologically independent samples for CD8+ naïve cells 
and 3 biologically independent samples for each of the other T cell populations.  



 
 

 

Supplementary Figure 6 

The impact of mTORC1 inhibition on DNA replication proteins and cell cycle protein complexes. 

(a) The impact of mTORC1 inhibition on proteins implicated in DNA replication (KEGG annotation 03030 plus the addition of thymidine 
kinase 1 and thymidine kinase 2). Fold change calculated as +rapamycin/control using protein copy numbers. The horizontal dashed line 
indicates a P value = 0.05 (two-tailed t-test with unequal variance) while vertical dashed lines indicate a fold change of 0.67, 1 and 1.5.  
(b) Stochiometric model for cell cycle entry and progression in CD4+ T cells. Protein copy numbers are presented for cyclin D2 (CCND2), 
cyclin D3 (CCND3), cyclin dependent kinase 4 (CDK4), cyclin dependent kinase 6 (CDK6) and the cyclin dependent kinase inhibitor 
CDKN1B (P27). (c) The impact of rapamycin on the cyclin D/P27 model in CD4+ cells TCR triggered for 24 h in the presence of rapamycin, 
and effector TH1 cells incubated with rapamycin for 24 h on day 5 of in vitro culture. For a, b and c, n = 3 biologically independent samples 
for each T cell populations. For b and c, copy numbers are rounded to the nearest thousand and are the average of biological replicates. 

 



 
 

 

Supplementary Figure 7 

Representative gating strategy for DNA synthesis data presented in Figure 8a and system L amino acid transport assay 
presented in Figure 4c. 

(a) Gating strategy for DNA synthesis assay for TCR activated CD8+ cells treated with rapamycin (Fig. 8a). (b) Gating strategy for DNA 
synthesis assay for CTLs treated with rapamycin (Fig. 8a). (c) Gating strategy for system L amino acid transport assay described in Fig. 
4c,d.  

 



 
 

 

Supplementary Figure 8 

Representative flow cytometry data and gating strategy for sorted CD8+ and CD4+ naïve cells. 

(a) Pure populations of naïve CD8+ cells (a) and CD4+ cells (b) were generated by cell sorting before processing for proteomics. 
Representative flow cytometry plots are shown. 

 
 



 
 

 

Supplementary Figure 9 

Representative flow cytometry data and gating strategy for sorted TCR activated CD8+ cells treated with rapamycin. 

(a) Pure populations of 24 h TCR activated CD8+ cells without rapamycin (a) and with rapamycin treatment (b) were generated by cell 
sorting before processing for proteomics. Representative flow cytometry plots are shown. 

 
 
 
 



 
 

 

Supplementary Figure 10 

Representative flow cytometry data and gating strategy for sorted TCR activated CD4+ cells treated with rapamycin. 

(a) Pure populations of 24 h TCR activated CD4+ cells without rapamycin (a) and with rapamycin treatment (b) were generated by cell 
sorting before processing for proteomics. Representative flow cytometry plots are shown. 
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