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ABSTRACT. Let m2(n, q) be the maximum size of k for which there exists a k-cap
in PG(n, q), and let m′

2(n, q) be the second largest value of k for which there ex-
ists a complete k-cap in PG(n, q). In this paper Chao’s upper bound q2 − q + 5

for m′
2(3, q), q even and q ≥ 8, will be improved. As a corollary new bounds for

m2(n, q), q even, q ≥ 8 and n ≥ 4, are obtained. Cao and Ou published a better
bound but there seems to be a gap in their proof.
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1. INTRODUCTION

A k-arc of PG(2, q) is a set of k points, no three of which are collinear; a k-cap of
PG(n, q), n ≥ 3, is a set of k points, no three of which are collinear. A k-arc or
k-cap is complete if it is not contained in a (k + 1)-arc or (k + 1)-cap. The largest
value of k for which a k-arc of PG(2, q), or a k-cap of PG(n, q) with n ≥ 3, exists
is denoted by m2(n, q). The size of the second largest complete k-arc of PG(2, q)
or k-cap of PG(n, q), n ≥ 3, is denoted by m′2(n, q).

Theorem 1.1. (i) m2(2, q) = q + 2, q even [7];
(ii) m2(3, q) = q2 + 1, q even, q > 2 [6, 1, 10];

(iii) m2(n, 2) = 2n [1];
(iv) m2(4, 4) = 41 [5];
(v) m′2(n, 2) = 2n−1 + 2n−3 [4];

(vi) m′2(3, 4) = 14 [8].

Theorem 1.2 ([11, 13, 7]). Let K be a k-arc of PG(2, q), q even and q > 2, with
q−√q+1 < k ≤ q + 1. Then K can be uniquely extended to a (q+2)-arc of PG(2, q).

For any k-arc K in PG(2, q) or k-cap K in PG(n, q), n ≥ 3, a tangent of K is a
line which has exactly one point in common with K. Let t be the number of tan-
gents of K through a point P of K and let σ1(Q) be the number of tangents of
K through a point Q 6∈ K. Then for a k-arc K t + k = q + 2 and for a k-cap K
t+ k = qn−1 + qn−2 + · · ·+ q + 2.

Theorem 1.3 ([8]). If K is a complete k-arc in PG(2, q), q even, or a complete k-cap
in PG(n, q), n ≥ 3 and q even, then σ1(Q) ≤ t for each point Q not on K.

Theorem 1.4 ([3]).

(1) m′2(3, q) ≤ q2 − q + 5, q even, q ≥ 8.
1
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To prove Theorem 1.4 J.-M. Chao relies on the following crucial lemma.

Lemma 1.5 ([3]). Let K be a complete k-cap in PG(3, q) with q even. If Π is a plane
such that |Π ∩K| = x, then

(2) t(t− 1) ≥ q(q + 2− x)x.

In the underlying paper the following improvement of Chao’s result will be ob-
tained.

Theorem 1.6 (Main Theorem).

(3) m′2(3, q) < q2 − (
√

5− 1)q + 5, q even, q ≥ 8.

As a corollary new bounds for m2(n, q), q even, q ≥ 8 and n ≥ 4, are obtained.

Combining the main theorem of [12] with Theorem 1.6, there is an immediate
improvement of the upper bound for m′2(3, q), q ≥ 2048. We thank T. Szőnyi for
bringing reference [12] to our attention.

Theorem 1.7.

(4) m′2(3, q) < q2 − 2q + 3
√
q + 2, q even, q ≥ 2048.

2. A FIRST IMPROVEMENT OF CHAO’S BOUND

Theorem 2.1.

(5) m′2(3, q) ≤ q2 − q + 3, q even, q ≥ 8.

Proof. Let K be a complete k-cap in PG(3, q), q even, q ≥ 8 and k < q2 + 1.
Let Π be a plane of PG(3, q) for which 4 ≤ |Π ∩K| ≤ q − 2. Let f(X) = q(q + 2−
X)X. Then

(6) t(t− 1) ≥ f(4) = f(q − 2) = 4q(q − 2),

by Lemma 1.5. So

(7) t ≥
1 +

√
1 + 16q(q − 2)

2
≥ 2q − 7

4
for q ≥ 8.

Hence k ≤ q2 + q + 2− 2q + 7
4 = q2 − q + 15

4 , and consequently k ≤ q2 − q + 3.

So we may assume that either |Π ∩ K| ≤ 3, or |Π ∩ K| ≥ q − 1, for any plane
Π of PG(3, q). Let l1, l2, ..., lt be the t tangents of K through the point P ∈ K.
We consider three cases depending on the number of planes containing li and
intersecting K in at most 3 points.

(A) There exists exactly one plane Πli containing li such that |Πli ∩K| ≤ 3, i =
1, 2, ..., t. We will show that in this case k ≤ q2 − q + 3.

Assume there is exactly one plane Π through P with |Π ∩ K| ≤ 3. Then for i =
1, 2, ..., t, Πli = Π. Hence all tangents of K containing P are in Π. So t ≤ q + 1,
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a contradiction. Hence there are at least two planes Π1,Π2 through P such that
|Πi ∩K| ≤ 3, i = 1, 2. Then |Π1 ∩ Π2 ∩K| = 2. Consequently t ≥ 2(q − 1), and so
k ≤ q2 + q + 2− 2q + 2 = q2 − q + 4.

Assume, by way of contradiction, that k = q2 − q + 4. So t = 2(q − 1). Then
|Π1 ∩K| = |Π2 ∩K| = 3. All tangent lines at P are contained in Π1 and Π2. Let
l be a tangent of K at P in Π1, and consider the q + 1 planes containing l. The
plane Π1 is the only of these planes which intersects K in 3 points, exactly q − 1
planes through l contain 2 tangent lines at P and so intersect K in a q-arc and the
remaining plane through l contains exactly one tangent line at P and so intersects
K in a (q + 1)-arc.

Let Π̃ be the unique plane containing l which intersects K in a (q + 1)-arc, let
Π̃ ∩K = O, and let N be the kernel of O, that is, N is the unique point of Π̃ which
extends O to a (q + 2)-arc of Π̃. Clearly N ∈ l.
If K ′ is a k′-arc of a plane PG(2, q) and P ′ ∈ PG(2, q) \ K ′, then the parity of
the number of tangents of K ′ through P ′ is the parity of k′, see Chapter 1 of [7].
Hence, by considering O and the q − 1 q-arcs whose planes contain l, we see that
the number of tangents of K through N is at least q + 1 + q − 1 = 2q. As K is
complete we have 2q ≤ t, so k ≤ q2 + q + 2− 2q = q2 − q + 2, a contradiction.

Consequently k ≤ q2 − q + 3.

(B) Some tangent li, 1 ≤ i ≤ t, is contained in at least two planes having at
most three points in common with K.

First we will prove that k ≤ q2 − q + 5. For k = q2 − q + 5 and k = q2 − q + 4 a
contradiction will be obtained; the case k = q2 − q + 4 will be subdivided in two
cases. Hence it follows that also in Case (B) we have k ≤ q2 − q + 3.

Counting the points of K on the q + 1 planes containing li gives

(8) k − 1 ≤ 2.2 + (q − 1)q = q2 − q + 4.

So k ≤ q2 − q + 5.

(B.1) First, assume k = q2 − q + 5. Then two planes Π1,Π2 containing li intersect
K in 3 points, while the remaining planes Π3,Π4, ...,Πq+1 containing li intersect K
in q + 1 points. Let l be a tangent of K at P in Π1, distinct from li. Any plane ζ
containing l, with ζ 6= Π1, intersects each (q + 1)-arc Πi ∩K, i = 3, 4, ..., q + 1, in
exactly two points. Hence |ζ ∩ K| ≥ q. Considering the lines ζ ∩ Π2, we see that
exactly two of the planes ζ, say ζ1 and ζ2, intersect K in (q + 1)-arcs O1 and O2,
while the q − 2 other planes ζ, say ζ3, ζ4, ..., ζq, intersect K in a q-arc.

Let N1 be the kernel of O1; then N1 ∈ l. The number of tangents of K containing
N1 is at least q + 1 + q − 2 = 2q − 1. As K is complete we have 2q − 1 ≤ t, so
k ≤ q2 + q + 2− 2q + 1 = q2 − q + 3, a contradiction.

(B.2) Next, assume k = q2−q+4. Then, considering all planes containing li, there
are two cases to consider.

(B.2.1) Two planes Π1,Π2 containing li intersectK in three points, the plane Π3

containing li intersects K in q points, and the remaining planes Π4,Π5, ...,Πq+1

containing li intersect K in q + 1 points. Let l be a tangent of K at P in Π1,
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distinct from li. Any plane ζ containing l, distinct from Π1, intersects each (q + 1)-
arc Πi ∩K, i = 4, 5, ..., q + 1, in exactly two points; q − 1 of these planes ζ intersect
Π3 ∩ K in exactly two points. So for at least q − 1 of these planes ζ we have
|ζ ∩K| ≥ q, and for all planes ζ we have |ζ ∩K| ≥ q − 1.

Assume that for all q planes ζ we have |ζ ∩K| ≥ q. Let s be the number of planes ζ
for which |ζ ∩K| = q and let u be the number of planes ζ for which |ζ ∩K| = q+ 1.
Then

(9) s(q − 1) + uq + 3 = q2 − q + 4, s+ u = q.

So s(q − 1) + (q − s)q + 3 = q2 − q + 4, hence s = q − 1 and u = 1. Let ζ be
the plane which intersects K in a (q + 1)-arc O, and let N ∈ l be the nucleus of
O. The number of tangents of K containing N is at least q + 1 + q − 1 = 2q, so
k ≤ q2 + q + 2− 2q = q2 − q + 2, a contradiction.

So we may assume that for exactly q − 1 planes ζ we have |ζ ∩K| ≥ q and that for
exactly one plane ζ we have |ζ ∩K| = q − 1. Assume that for s planes ζ we have
|ζ ∩K| = q, and that for u planes ζ we have |ζ ∩K| = q + 1. Then

(10) s(q − 1) + uq + q − 2 + 3 = q2 − q + 4, s+ u = q − 1.

So s(q − 1) + (q − 1 − s)q + q + 1 = q2 − q + 4, hence s = q − 3 and u = 2. Let
ζ1, ζ2 be the planes containing l which intersect K in (q+ 1)-arcs O1, O2, let N1, N2

be the nuclei of O1, O2, and let Π1 ∩K = {P, P1, P2}. Assume first that N1 6∈ P1P2.
Then the number of tangents of K containing N1 is at least q + 1 + q − 3 + 2 = 2q,
so k ≤ q2 − q + 2 a contradiction. Similarly if N2 6∈ P1P2. Hence we may assume
that N1 = N2 = P1P2 ∩ l. Then the number of tangents of K through N1 is at least
q + 1 + q + q − 3 = 3q − 2, so k ≤ q2 + q + 2 − 3q + 2 = q2 − 2q + 4, again a
contradiction.

(B.2.2) One plane Π1 containing li intersects K in three points, and one plane
Π2 containing li intersects K in two points. Consequently the other q − 1 planes
Π3,Π4, ...,Πq+1 containing li intersect K in q + 1 points. Let l be a tangent of K at
P in Π1, distinct from li. Any plane ζ containing l, distinct from Π1, intersects each
(q + 1)-arc Πi ∩K, with i = 3, 4, ..., q + 1, in exactly two points. As k = q2 − q + 4
it easily follows that for q − 1 of these planes ζ we have |ζ ∩K| = q, while for the
remaining plane ζ we have |ζ ∩K| = q + 1.

Let ζ̃ be the plane containing l which intersectsK in a (q+1)-arcO, and letN be the
nucleus ofO. The number of tangents ofK containingN is at least q+1+q−1 = 2q,
so k ≤ q2 − q + 2, again a contradiction.

(C) Some tangent li, with 1 ≤ i ≤ t, is contained in no plane having at most
three points in common with K.

First we will prove that k ≤ q2 − q + 5. A contradiction will be obtained for
k ∈ {q2 − q + 5, q2 − q + 4}; for k = q2 − q + 4 two cases have to be consid-
ered. Hence again k ≤ q2 − q + 3.

Then |Πj ∩K| ≥ q − 1 for each plane Πj containing li, with j = 1, 2, ..., q + 1. The
arc Πj ∩K of Πj can be completed to a (q + 2)-arc of Πj; see Theorem 1.2. This
(q + 2)-arc meets li in points P, Pj . As there are q + 1 points Pj and |li \ {P}| = q,
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two of the points Pj coincide, say P1 = P2. The number of tangents of K contain-
ing P1 is at least 2(q − 2) + 1 = 2q − 3, so k ≤ q2 − q + 5.

Now we make some observations on (q− 1)-arcs of PG(2, q), q even. Let K̃ be any
(q − 1)-arc of PG(2, q), q even, and let l̃ be a tangent of K̃ at P̃ ∈ K̃. Let C̃ be the
unique (q+ 2)-arc which contains K̃; see Theorem 1.2. Put C̃ ∩ l̃ = {P̃ , Ñ}. Then it
is easy to see that exactly q− 2 points of l̃ \ {P̃ , Ñ} are on exactly three tangents of
K̃, and that exactly one point R̃ of l̃ \ {P̃ , Ñ} is on exactly one tangent of K̃; also,
R̃ = l̃ ∩ Ñ ′Ñ ′′, with {Ñ , Ñ ′, Ñ ′′} ∪ K̃ = C̃.

(C.1) First, assume k = q2− q+ 5. Then Π1 ∩K and Π2 ∩K are (q− 1)-arcs of Π1

and Π2. Let r be the number of (q − 1)-arcs Πj ∩K, let s be the number of q-arcs
Πj ∩K and let u be the number of (q + 1)-arcs Πj ∩K. Then

(11) r(q − 2) + s(q − 1) + uq + 1 = q2 − q + 5, r + s+ u = q + 1, with r ≥ 2.

So r(q− 2) + s(q− 1) + (q+ 1− r− s)q+ 1 = q2− q+ 5, hence 2r+ s = 2q− 4, with
r ≥ 2. If s ≥ 1, then we have an extra tangent of K containing P1, so k ≤ q2−q+4,
a contradiction. Hence s = 0, r = q − 2, u = 3.

As the number of tangents of K containing P1 is exactly 2q − 3, the nuclei of the
three (q + 1)-arcs Πj ∩K are distinct from P1. Let N be one of these nuclei. Also,
P1 is on exactly one tangent of each of the q − 4 (q − 1)-arcs Πj ∩K, distinct from
the (q − 1)-arcs Π1 ∩K,Π2 ∩K. So N is on at least three tangents of each of these
q − 4 (q − 1)-arcs Πj ∩K. Hence the number of tangents of K containing N is at
least 2(q − 4) + q + 1 = 3q − 7 > 2q − 3, a contradiction.

(C.2) Finally, assume that k = q2−q+4. We have to consider two cases depending
of the sizes of Π1 ∩K and Π2 ∩K.

(C.2.1) First, assume that Π1 ∩K and Π2 ∩K are (q− 1)-arcs. The tangents of K
containing P1 are the tangents of Π1 ∩K and Π2 ∩K containing P1, and one extra
tangent l. Assume that l is a tangent of Π3 ∩K. If Π3 ∩K is a (q + 1)-arc O, then
P1 is the nucleus of O, so there arise q extra tangents, a contradiction; if Π3 ∩ K
is a (q − 1)-arc K ′, then P1 is contained in at least three tangents of K ′, again a
contradiction. Hence Π3 ∩K is a q-arc. Also, Πj ∩K, with j = 4, 5, ..., q+ 1, cannot
be a q-arc. Let r be the number of (q − 1)-arcs Πj ∩K, and let u be the number of
(q + 1)-arcs Πj ∩K. Then

(12) r(q − 2) + uq + q − 1 + 1 = q2 − q + 4, r + u+ 1 = q + 1.

So r(q − 2) + (q − r)q + q = q2 − q + 4, hence r = q − 2 and u = 2. Let O1, O2 be
the (q + 1)-arcs Πj ∩K, and let N1, N2 be the nuclei of O1, O2. Then Ni 6= P1, i =
1, 2. Also P1 is contained in exactly one tangent of each of the q − 4 (q − 1)-arcs
Πj ∩K, with j 6= 1, 2. Hence the number of tangents of K containing N1 is at least
2(q − 4) + q + 1 = 3q − 7 > 2q − 2, clearly a contradiction.

(C.2.2) Consequently, we may assume that Π1 ∩ K is a (q − 1)-arc and that
Π2 ∩K is a q-arc . Let r be the number of (q− 1)-arcs Πj ∩K, let s be the number
of q-arcs Πj ∩K and let u be the number of (q + 1)-arcs Πj ∩K. Then

(13) r(q − 2) + s(q − 1) + uq + 1 = q2 − q + 4, r + s+ u = q + 1, r ≥ 1, s ≥ 1.
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So 2r + s = 2q − 3, r ≥ 1, s ≥ 1. Clearly, s = 1, as otherwise we have an extra
tangent containing P1, and then k < q2 − q + 4. Hence r = q − 2, s = 1, u = 2.
The nuclei of the two (q + 1)-arcs Πj ∩ K are distinct from P1. Let N be one of
these nuclei. Also, P1 is on exactly one tangent of each of the q − 3 (q − 1)-arcs
Πj ∩ K distinct from Π1 ∩ K. So N is on at least three tangents of each of these
q− 3 (q− 1)-arcs Πj ∩K. Consequently the number of tangents of K containing N
is at least 2(q − 3) + q + 1 = 3q − 5 > 2q − 2, a final contradiction. �

3. MAIN THEOREM

Theorem 3.1.

(14) m′2(3, q) < q2 − (
√

5− 1)q + 5, q even, q ≥ 8.

(15) m′2(3, 4) = 14.

Proof By [8] we have m′2(3, 4) = 14, and by Theorem 2.1 we have m′2(3, 8) ≤ 59,
which proves Theorem 3.1 for q = 8. So from now on we assume q > 8.

Let K be a complete k-cap in PG(3, q), q even, q > 8, and k < q2 + 1. Let Π be a
plane of PG(3, q) for which

(16) 5 ≤ |Π ∩K| ≤ q − 3.

Let f(X) = q(q + 2−X)X. Then by Lemma 1.5 of Chao

(17) t(t− 1) ≥ f(5) = f(q − 3) = 5q(q − 3).

So

(18) t ≥
1 +

√
1 + 20q(q − 3)

2
.

Put 1+
√

1+20q(q−3)
2 ≥

√
5q − α, that is,

(19)
√

1 + 20q(q − 3) ≥ 2
√

5q − 2α− 1.

For α ≤
√

5q − (1/2) this is equivalent to

(20) 1 + 20q(q − 3) ≥ 20q2 + 4α2 + 1− 8α
√

5q − 4
√

5q + 4α,

or

(21) 0 ≥ 4α2 + α(−8
√

5q + 4) + 60q − 4
√

5q,

or

(22) 0 ≥ α2 + α(−2
√

5q + 1) + 15q −
√

5q.

Put α = 3. Then there arises 0 ≥ 9 + 3(−2
√

5q + 1) + 15q −
√

5q, that is, 0 ≥
12 + 15q − 7

√
5q. This inequality is satisfied for q > 16.

Hence for q > 16 we have t ≥
√

5q − 3, and so,

(23) k ≤ q2 + q + 2−
√

5q + 3,

that is,

(24) k ≤ q2 + (1−
√

5)q + 5.
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For q = 16 it follows from (18) that t > 32 and so k ≤ 241, which is equivalent to
k ≤ q2 + (1−

√
5)q + 5 with q = 16.

From now on suppose that either |Π∩K| ≤ 4 or |Π∩K| ≥ q−2 for any plane Π
of PG(3, q). Let l1, l2, ..., lt be the t tangents of K containing the point P ∈ K.
Assume, by way of contradiction, that k > q2 +(1−

√
5)q+5. We consider three

cases depending on the number of planes containing li and intersecting K in
at most 4 points. In each case a contradiction will be obtained .

(A) Assume, by way of contradiction, that each li is contained in exactly one
plane Πli for which |Πli ∩K| ≤ 4, with i = 1, 2, ..., t.

(A.1) Assume that there is exactly one plane Π through P with |Π ∩ K| ≤ 4.
Then for i = 1, 2, ..., t we have Πli = Π. So t ≤ q+ 1, hence k ≥ q2 + 1, a contradic-
tion.

(A.2) There are at least two planes Π1,Π2 through P such that |Πi ∩ K| ≤
4, i = 1, 2. Then |Π1 ∩ Π2 ∩ K| = 2. Consequently t ≥ 2(q − 2), and so k ≤
q2 + q + 2− 2q + 4 = q2 − q + 6.

The plane Π1 intersects K in a m-arc, m ≤ 4, and contains at least q − 2 tangents
of K at P . Let P1 ∈ (K ∩ Π1) \ P and assume that PP1 is contained in α planes Π
with |Π ∩K| ≤ 4. Then t ≥ α(q − 2), so k ≤ q2 + (1− α)q + 2 + 2α. Consequently

(25) q2 + (1− α)q + 2 + 2α > q2 + (1−
√

5)q + 5,

or

(26) (
√

5− α)q + 2α− 3 > 0

This gives a contradiction for α > 2 with q > 8. So PP1 is contained in at most two
planes intersecting K in at most four points.

Assume, by way of contradiction, that for some plane Π of PG(3, q) we have Π ∩
K = {P}. As there are at least two planes Π,Π′ through P intersecting K in at
most four points, we have |Π ∩Π′ ∩K| = 2 and so |Π ∩K| ≥ 2, a contradiction.

Let PG(2, q) be a plane of PG(3, q) not containing P and let σ be the projection of
PG(3, q) \ {P} from P onto PG(2, q). Further, let P be the set of all images under
σ of all points of K \{P} contained in planes Π, with P ∈ Π, for which |Π∩K| ≤ 4,
and let B be the set of all images under σ of the sets Π \ {P}. Then there arises an
incidence structure (P,B) of points and lines for which

(1) |B| ≥ 2,
(2) any two distinct lines in B have exactly one point in common,
(3) each point is contained in at most two lines,
(4) each line contains at most three points and at least one point.

It follows easily that 2 ≤ |B| ≤ 4. For each value of |β| we will find a contradiction.

(α) |B| = 4

Then t = 4(q − 2), so k = q2 + q + 2− 4q + 8 = q2 − 3q + 10. Hence q2 − 3q + 10 >

q2 + (1−
√

5)q + 5, or 5 > (4−
√

5)q, a contradiction as q > 8.
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(β) |B| = 3

If |P| = 3, then t = 3(q−1), so k = q2−2q+5. Hence q2−2q+5 > q2+(1−
√

5)q+5,
or (3−

√
5)q < 0, a contradiction.

If |P| = 4, then t = 2(q− 1) + q− 2, so k = q2− 2q+ 6. Hence q2 + (1−
√

5)q+ 5 <

q2 − 2q + 6, or (3−
√

5)q − 1 < 0, a contradiction.

If |P| = 5, then t = q− 1 + 2(q− 2), so k = q2− 2q+ 7. Hence q2 + (1−
√

5)q+ 5 <

q2 − 2q + 7, or (3−
√

5)q < 2, a contradiction.

If |P| = 6, then t = 3(q−2), so k = q2−2q+8. Hence q2+(1−
√

5)q+5 < q2−2q+8,
or (3−

√
5)q < 3, a contradiction.

(γ) |B| = 2

By Theorem 2.1 we may assume that k ≤ q2 − q + 3.

If |P| = 1, then t = 2q, so k = q2 − q + 2.

If |P| = 2, then t = 2q − 1, so k = q2 − q + 3.

If |P| = 3, then t = 2q − 2, so k = q2 − q + 4, a contradiction.

If |P| = 4, then t = 2q − 3, so k = q2 − q + 5, a contradiction.

If |P| = 5, then t = 2q − 4, so k = q2 − q + 6, a contradiction.

Hence the cases k = q2 − q + 2 and k = q2 − q + 3 have still to be considered.

(γ.1) k = q2 − q + 2
On K there are two points P, P1 such that PP1 is contained in two planes Π1,Π2

intersecting K in just {P, P1}, and in q− 1 planes Π3,Π4, ...,Πq+1 intersecting K in
a (q + 2)-arc.

Let P ′ ∈ (Π3 ∩K) \ {P, P1} and let l be a tangent of K at P ′. Assume, by way of
contradiction, that each plane containing l intersects K in a m-arc with m > 4, so
m ≥ q−2. These m-arcs K ′i, with i = 1, 2, ..., q+1, are extendable to (q+2)-arcs Ci.
Let Ci ∩ l = {Ni, P ′}, i = 1, 2, ..., q + 1. At least two of the points N1, N2, ..., Nq+1

coincide, say N1 = N2. A plane Π′ containing l, but not containing P nor P1,
intersects each of the (q + 2)-arcs Πi ∩ K, with i = 3, 4, ..., q + 1, in either 0 or 2
points; so |Π′ ∩ K| is even. A plane Π′ containing l and either P or P1 intersects
K in q points. Hence each plane containing l intersects K in a m-arc, with m even.
Counting tangents ofK containingN1, we obtain at least 2(q−3)+1+q−1 = 3q−6
tangents. So k ≤ q2 + q + 2 − 3q + 6 = q2 − 2q + 8, a contradiction for q > 8. We
conclude that there is a plane Π′ containing l with |Π′ ∩K| ≤ 4.

Assume, by way of contradiction, that l is contained in at least two planes Π′,Π′′

with |Π′ ∩K| ≤ 4, |Π′′ ∩K| ≤ 4. Then, by a previous argument, these intersections
have an even number of points and so |Π′∩K| ∈ {2, 4} and |Π′′∩K| ∈ {2, 4}. Now
we count the points of K in planes containing l, and obtain k ≤ (q−1)(q−1) + 7 =
q2 − 2q + 8, a contradiction for q > 8.

Hence l is contained in exactly one plane Π′ for which |Π′ ∩K| ≤ 4. It follows that
the roles of P and P ′ may be interchanged.

Let l′ be a second tangent of K containing P ′, with l′ 6⊂ Π′. Let K̃ = K ∩ Π3,Π
′ ∩

K̃ = {P ′, P ′1}. If P ′1 ∈ {P, P1}, then |Π′ ∩ K| = q, a contradiction. Hence P ′1 6∈
{P, P1}. With P ′ there corresponds an incidence structure (P′,B′) of points and
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lines. As k = q2 − q + 2, we necessarily have |P′| = 1 and |B′| = 2. Hence
Π′ ∩K = {P ′, P ′1}. If Π̃′ is the unique plane containing l′ and intersecting K in at
most 4 points, then Π̃′ ∩K = {P ′, P ′1}. Also, the roles of P and P ′1, P ′ and P ′1, P
and P1 can be interchanged.

Interchanging Π3 and Πi, i ∈ {3, 4, ...., q + 1}, and interchanging P ′ with any point
of (Πi ∩K) \ {P, P1}, we see that K is partitioned into (q2 − q + 2)/2 pairs, where
each pair is contained in two planes intersecting K in that pair and in q − 1 planes
intersecting K in a (q + 2)-arc. Any other plane contains either 0 or q points of K.
Each point Q of K is contained in 2q tangents; the two planes on Q intersecting K
in two points each contain q of these tangents.

Now we count the planes intersecting K in a (q + 2)-arc, and obtain

(27)
q2 − q + 2

2
.(q − 1)/

q + 2

2
.

Hence q + 2|(q2 − q + 2)(q − 1), so q + 2|24, that is q ∈ {2, 4}, a contradiction.

(γ.2) k = q2 − q + 3
Then on K there are points P, P1 such that PP1 is contained in two planes Π1,Π2

with Π1 ∩K = {P, P1},Π2 ∩K = {P, P1, P2}, and in q − 1 planes Π3,Π4, ...,Πq+1

intersecting K in a (q + 2)-arc.

Let P ′ ∈ (Π3 ∩K) \ {P, P1} and let l be a tangent of K at P ′. Assume, by way of
contradiction, that each plane containing l intersects K in a m-arc with m > 4, so
m ≥ q−2. These m-arcs K ′i, with i = 1, 2, ..., q+1, are extendable to (q+2)-arcs Ci.
Let Ci ∩ l = {Ni, P ′}, i = 1, 2, ..., q + 1. At least two of the points N1, N2, ..., Nq+1

coincide, say N1 = N2. A plane Π′ containing l, but not containing P nor P1,
intersects each of the (q + 2)-arcs Πi ∩ K, with i = 3, 4, ..., q + 1, in either 0 or 2
points. So if P2 6∈ Π′, then |Π′ ∩K| is even. A plane Π′ containing l and either P
or P1, but not P2, intersects K in q points. Hence q planes containing l intersect K
in a m-arc, with m even. Counting tangents of K containing N1, we obtain at least
2(q − 3) + 1 + q − 2 = 3q − 7 tangents. So k ≤ q2 + q + 2 − 3q + 7 = q2 − 2q + 9,
a contradiction for q > 8. We conclude that there is a plane Π′ containing l with
|Π′ ∩K| ≤ 4.

Assume, by way of contradiction, that l is contained in at least two planes Π′,Π′′

with |Π′∩K| ≤ 4, |Π′′∩K| ≤ 4. Now we count the points of K in planes containing
l, and obtain k ≤ q2 − 2q + 9, a contradiction for q > 8.

Hence l is contained in exactly one plane Π′ for which |Π′ ∩K| ≤ 4. As all tangents
of K at P1 are contained in Π1 ∪ Π2, it follows that each tangent of K at P1 is
contained in exactly one plane intersecting K in at most 4 points. Hence all points
of K \ {P2} play the same role.

Let l′ be a second tangent of K containing P ′, with l′ 6⊂ Π′. Let K ∩ Π3 = K̃,Π′ ∩
K̃ = {P ′, P ′1}. If P ′1 ∈ {P, P1}, then |Π′ ∩ K| ≥ q, a contradiction. Hence P ′1 6∈
{P, P1}. With P ′ there corresponds an incidence structure (P′,B′) of points and
lines (see first part of (A)).

As k = q2−q+3, we necessarily have |P′| = 2 and |B′| = 2. Hence |Π′∩K| ∈ {2, 3}
and Π′ ∩K ⊃ {P ′, P ′1}. Let Π̃′ be the unique plane containing l′ and intersecting
K in at most 4 points, and let Π̃′ ∩ K̃ = {P ′, P̃ ′1}. If P ′1 6= P̃ ′1, then by the structure
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of (P′,B′) we have {P ′1, P̃ ′1} ⊂ Π′, clearly a contradiction. Hence P ′1 = P̃ ′1, and so
{P ′, P ′1} ⊂ Π̃′ ∩K.

Without loss of generality we may assume that Π′ ∩K = {P ′, P ′1, P ′2} and Π̃′ ∩K =
{P ′, P ′1}. As |Π′∩K| is odd, the set Π′∩K has to contain the point P2. Consequently
P2 = P ′2.

Interchanging Π3 and Πi, i ∈ {3, 4, · · · , q+1}, and interchanging P ′ with any point
of (Πi ∩K) \ {P, P1}, we see that K \ {P2} is partitioned into (q2 − q + 2)/2 pairs,
where each pair is contained in one plane intersecting K in that pair, in one plane
intersecting K in that pair together with P2, and in q− 1 planes intersecting K in a
(q + 2)-arc. Any other plane contains 0, 1, q or q + 1 points of K.

Now we count the planes intersecting K in a (q + 2)-arc and obtain

(28)
q2 − q + 2

2
.(q − 1)/

q + 2

2
.

Hence q + 2|(q2 − q + 2)(q − 1), so q + 2|24, that is q ∈ {2, 4}, a final contradiction.

We conclude that there is some tangent li containing P , with i ∈ {1, 2, ..., t}, which
is contained in exactly θ > 1 planes having at most 4 points in common with K.

(B) Assume, by way of contradiction, that some tangent l of K is contained in
no plane intersecting K in at most 4 points.

Hence each plane Πi containing l satisfies |Πi∩K| ≥ q−2, with i = 1, 2, ..., q+1. By
Theorem 1.2 the arc Πi∩K can be extended to a (q+2)-arc Ci; let Ci∩ l = {Ni, P}
with l ∩K = {P}. For at least two planes Πi, say Π1 and Π2, we have N1 = N2.

(B.1) First we prove that N1 is on a tangent of K not in Π1 ∪ Π2; clearly N1 is
on at least 2q−5 tangents of K contained in Π1∪Π2. Assume the contrary. Then
for any plane Πi 6∈ {Π1,Π2}, the arc Πi ∩K must have an odd number of points.
So Πi ∩K either is a (q − 1)-arc or a (q + 1)-arc, i ∈ {3, 4, ..., q + 1}. Also, Ni 6= N1

for i = 3, 4, ..., q− 1. If Πi ∩K is a (q− 1)-arc and Ci \ (Πi ∩K) = {Ni, N ′i , N ′′i }, i ∈
{3, 4, ..., q + 1}, then N1 ∈ N ′iN

′′
i , as otherwise N1N

′
i and N1N

′′
i are tangents of

Πi ∩K.

Let r be the number of planes Πi, with i 6= 1, 2, for which Πi ∩K is a (q − 1)-arc,
and let s be the number of planes Πi, with i 6= 1, 2, for which Πi∩K is a (q+1)-arc.
The number of points of K is at least

(29) r(q − 2) + sq + 2(q − 3) + 1,with r + s = q − 1.

As K is complete, by Theorem 2.1

(30) r(q − 2) + (q − 1− r)q + 2(q − 3) + 1 ≤ q2 − q + 3,

so

(31) r ≥ q − 4.

We may assume that Π3∩K is a (q−1)-arc. The number of tangents ofK containing
N3 is at least

(32) q − 1 + 2(r − 1) ≥ q − 1 + 2q − 10 = 3q − 11.

Hence

(33) k ≤ q2 + q + 2− 3q + 11 = q2 − 2q + 13.
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So

(34) q2 − 2q + 13 > q2 + (1−
√

5)q + 5,

a contradiction for q > 8.

Consequently N1 is on a tangent l′ of K not in Π1 ∪Π2.

(B.2) Now we consider all planes Π′i containing the tangent l′, with i = 1, 2, ..., q+
1. We will show that:
(a) For each plane Π′i such that |Π′i ∩K| ≥ q − 2 the point N1 does not extend
the arc Π′i ∩K.
(b) For each i we have |Π′i ∩K| ≥ q − 2.

(a) Let |Π1 ∩ K| = α, q − 2 ≤ α ≤ q + 1, |Π2 ∩ K| = β, q − 2 ≤ β ≤ q + 1. Then
N1 is contained in at least α + β tangents of K. Now we consider all planes Π′i
containing the tangent l′, with i = 1, 2, ..., q + 1. Assume, by way of contradiction,
that m = |Π′i ∩K| ≥ q − 2 and that the (q + 2)-arc C ′i extending Π′i ∩K intersects
l′ in {N1, P

′}, with l′ ∩K = {P ′}, i ∈ {1, 2, ..., q+ 1}. Then the number of tangents
of K containing N1 is at least

(35) α+ β +m− 3 ≥ 2q − 4 +m− 3 ≥ 3q − 9.

Hence

(36) k ≤ q2 + q + 2− 3q + 9 = q2 − 2q + 11.

So q2−2q+11 > q2+(1−
√

5)q+5, a contradiction. Consequently for |Π′i∩K| ≥ q−2
we have N1 6∈ C ′i, i ∈ {1, 2, ..., q + 1}.

(b) Next, assume by way of contradiction that for at least one plane Π′i containing
l′, say Π′1, we have |Π′1 ∩K| ≤ 4. Let Π′2 be the plane ll′. Now we count the points
of K in the planes Π′i, with i = 1, 2, ..., q + 1. Let
θ1 be the number of planes Π′i, i ∈ {3, 4, ..., q + 1}, containing a tangent of Π1 ∩K
through N1 and a tangent of Π2 ∩K through N1,
θ2 be the number of planes Π′i, i ∈ {3, 4, ..., q + 1}, containing a tangent of Π1 ∩K
through N1, but no tangent of Π2 ∩K through N1,
θ3 be the number of planes Π′i, i ∈ {3, 4, ..., q + 1}, containing a tangent of Π2 ∩K
through N1, but no tangent of Π1 ∩K through N1,
θ4 be the number of planes Π′i, i ∈ {3, 4, ..., q+1}, containing no one of the tangents
of Π1 ∩K or Π2 ∩K through N1.
Then, as N1 /∈ C ′i for |Π′i ∩K| ≥ q − 2, we have
(37)
k ≤ 4+q−1+θ1(q−2)+θ2(q−1)+θ3(q−1)+θ4q,with 2+θ1+θ2+θ3+θ4 = q+1.

Hence

(38) k ≤ q(θ1 + θ2 + θ3 + θ4)− (2θ1 + θ2 + θ3) + q + 3,

so

(39) k ≤ q(q − 1)− (2θ1 + θ2 + θ3) + q + 3.

Now we have
θ1 + θ2 ≥ |Π1 ∩K| − 2 ≥ q − 4,
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θ1 + θ3 ≥ |Π2 ∩K| − 2 ≥ q − 4.
Hence

(40) k ≤ q(q − 1)− 2q + 8 + q + 3 = q2 − 2q + 11.

So q2 − 2q + 11 > q2 + (1−
√

5)q + 5, a contradiction.

Hence no plane Π′i containing l′ intersects K in a m-arc, with m ≤ 4, 1 ≤ i ≤ q+ 1.
Consequently, for each plane Π′i containing l′ we have |Π′i ∩ K| ≥ q − 2. Also,
we know that the (q + 2)-arc C ′i extending Π′i ∩ K does not contain N1, with i =
1, 2, ..., q + 1.

(B.3) A final contradiction will be obtained by considering the possible inter-
sections Π′i ∩ K, i = 1, 2, ..., q + 1. It is easy to see that at least q − 6 planes Π′i
containing l′ intersect K in a m-arc having at least 3 tangents containing N1; these
planes are the planes containing l′ passing through distinct tangents of Π1 ∩K and
Π2 ∩K containing N1. For any such plane Π′i the arc Π′i ∩K is either a (q − 1)-arc
or a (q − 2)-arc. Let
θ′1 be the number of planes Π′i, with Π′i 6= ll′, containing a tangent of Π1 ∩ K
through N1, a tangent of Π2 ∩K through N1, where Π′i ∩K is a (q − 1)-arc,
θ′2 be the number of planes Π′i, with Π′i 6= ll′, containing a tangent of Π1 ∩ K
through N1, a tangent of Π2 ∩K through N1, where Π′i ∩K is a (q − 2)-arc.
Let C ′i ∩ l′ = {P ′, N ′i}, with l′ ∩ K = {P ′} and C ′i the (q + 2)-arc extending
Π′i ∩ K, i = 1, 2, ..., q + 1. Then N ′i 6= N1, i = 1, 2, ..., q + 1. We may assume
that N ′1 = N ′2. Assume, by way of contradiction, that N ′1 = N ′2 = N ′i , with
i ∈ {3, 4, ..., q + 1}. Then N ′1 is on at least 3(q − 3) + 1 tangents of K. So

(41) k ≤ q2 + q + 2− 3q + 8 = q2 − 2q + 10.

Hence

(42) q2 + (1−
√

5)q + 5 < q2 − 2q + 10,

that is,

(43) (3−
√

5)q < 5,

clearly a contradiction. Hence we may assume that N ′1 = N ′2, N
′
3 = N ′4, N

′
1 6=

N ′3, N
′
i 6∈ {N ′1, N ′3} for i = 5, 6, ..., q + 1. At least θ′1 − 4 of the arcs Π′5 ∩ K,Π′6 ∩

K, ...,Π′q+1∩K are (q−1)-arcs, say Π′5∩K,Π′6∩K, ...,Π′θ′1 ∩K are (q−1)-arcs. The
number of tangents of Π′i ∩K containing N ′j , with j ∈ {1, 3}, is either 1 or 3, with
i = 5, 6, ..., θ′1; if N ′j is contained in one tangent of Π′i ∩K, then N ′u is contained in
3 tangents of Π′i ∩K, with {j, u} = {1, 3} and i ∈ {5, 6, ..., θ′1}. So we may assume
that at least (θ′1 − 4)/2 of the (q − 1)-arcs Π′i ∩ K, i = 5, 6, ..., θ′1, have 3 tangents
containing N ′1. Counting the tangents of K through N ′1, we obtain at least

(44) 1 + (θ′1 − 4) + (θ′2 − 2) + 2(q − 3)

tangents. As θ′1+θ′2 ≥ q−6, this number of tangents is at least 1+q−6−6+2q−6 =
3q − 17. Hence

(45) k ≤ q2 + q + 2− 3q + 17 = q2 − 2q + 19.

So

(46) q2 + (1−
√

5)q + 5 < q2 − 2q + 19,
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or

(47) (3−
√

5)q < 14,

a contradiction for q > 16.

If at least one of the arcs Π′1 ∩ K,Π′2 ∩ K is a m-arc with m > q − 2, then (44)
becomes

(48) 1 + (θ′1 − 4) + (θ′2 − 1) + (q − 3) + (q − 2),

which is at least 3q− 15. Hence k ≤ q2− 2q+ 17. For q = 16 this gives k ≤ 241. But
for q = 16 the inequality k > q2 + (1−

√
5)q + 5 yields k ≥ 242, a contradiction.

Finally we assume that Π′1∩K and Π′2∩K are (q−2)-arcs. Then at least θ′1−2 of the
arcs Π′i∩K, with i = 5, 6, ..., q+1, are (q−1)-arcs, say Π′5∩K,Π′6∩K, ...,Π′θ′1+2∩K.
So at least (θ′1 − 2)/2 of the (q − 1)-arcs Π′i ∩ K, with i = 5, 6, ..., θ′1 + 2, have 3
tangents containing either N ′1 or N ′3. First, assume that this is the case for N ′3. If at
least one of the arcs Π′3 ∩K,Π′4 ∩K is a m-arc with m > q− 2, then the number of
tangents of K containing N ′3 is at least

(49) 1 + (θ′1 − 2) + (θ′2 − 1) + (q − 3) + (q − 2),

which is at least 3q − 13. Hence k ≤ q2 − 2q + 15, and so q2 + (1 −
√

5)q + 5 <

q2 − 2q + 15, that is, (3 −
√

5)q < 10, a contradiction. Hence the arcs Π′3 ∩K and
Π′4∩K are (q−2)-arcs. Then the number of tangents of K containing N ′3 is at least

(50) 1 + θ′1 + (θ′2 − 2) + 2(q − 3),

which is at least 3q − 13. This yields again a contradiction. Consequently at least
(θ′1 − 2)/2 of the (q − 1)-arcs Π′i ∩ K, with i = 5, 6, ..., θ′1 + 2, have 3 tangents
containing N ′1. But then in (44) θ′1 − 4 may be replaced by θ′1 − 2, yielding at least
3q − 15 tangents of K containing N ′1. Hence k ≤ q2 − 2q + 17, which is a final
contradiction.

We conclude that each tangent l of K is contained in at least one plane intersecting
K in at most four points.

(C) Assume, by way of contradiction, that there is a tangent l of K which is
contained in at least two planes Π1,Π2 intersecting K in a m-arc, with m ≤ 4.

Assume that l ∩K = {P} and that Π1 ∪ Π2 contains 2q + δ tangents of K through
P . We have −5 ≤ δ ≤ 1.

(C.1) Here we will show that 2q + δ is the total number of tangents of K
containing P ; as a corollary it will follow that k ∈ {q2−q+1, q2−q+2, q2−q+3}.
Assume, by way of contradiction, that there is a tangent l′ of K containing P with
l′ 6⊂ Π1 ∪ Π2. If |ll′ ∩K| ≤ 4, then the number of tangents of K containing P is at
least 2q+ δ+ q− 3 = 3q+ δ− 3 ≥ 3q− 8, so k ≤ q2 + q+ 2− 3q+ 8 = q2− 2q+ 10.
Hence

(51) q2 + (1−
√

5)q + 5 < q2 − 2q + 10,

or (3 −
√

5)q < 5, a contradiction. Now we consider all planes containing l′. By
(B) at least one of these planes intersects K in a m-arc, with m ≤ 4. If at least two
planes containing l′ intersect K in at most 4 points, then P is contained in at least
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2q − 5 + 2(q − 5) + 1 = 4q − 14 tangents of K. Hence k ≤ q2 + q + 2 − 4q + 14 =
q2 − 3q + 16, so

(52) q2 + (1−
√

5)q + 5 < q2 − 3q + 16,

that is, (4−
√

5)q < 11, clearly a contradiction. Consequently exactly one plane Π′

containing l′ intersects K in at most 4 points. Now we count the points of K in the
planes containing l′. Let
θ1 be the number of planes , distinct from ll′ and Π′, containing l′, containing a
tangent of K in Π1 and containing a tangent of K in Π2,
θ2 be the number of planes containing l′, distinct from Π′, containing a tangent of
K in Π1 and containing no tangent of K in Π2,
θ3 be the number of planes containing l′, distinct from Π′, containing a tangent of
K in Π2 and containing no tangent of K in Π1,
θ4 be the number of planes , distinct from Π′, containing l′ and containing no
tangent of K in Π1 or Π2.
Then

(53) k ≤ 1 + (q − 1) + θ1(q − 2) + θ2(q − 1) + θ3(q − 1) + θ4q + 3,

with

(54) θ1 + θ2 + θ3 + θ4 = q − 1and θ2 + θ3 + 2θ4 ≤ 6.

So

(55) k ≤ q + 3 + (q − 1− θ2 − θ3 − θ4)(q − 2) + θ2(q − 1) + θ3(q − 1) + θ4q,

that is,

(56) k ≤ q2 − 2q + 5 + (θ2 + θ3 + 2θ4),

hence

(57) k ≤ q2 − 2q + 5 + 6 = q2 − 2q + 11.

Consequently

(58) q2 + (1−
√

5)q + 5 < q2 − 2q + 11,

or (3−
√

5)q < 6, a contradiction.

It follows that 2q + δ is the total number of tangents of K containing P and so
k = q2 + q+ 2− 2q− δ = q2− q+ 2− δ. As k ≤ q2− q+ 3 by Theorem 2.1, we have
−1 ≤ δ ≤ 1.

(C.2) Some further properties of K. Let l′′ be any tangent of K not containing
P and let K ∩ l′′ = {P ′}. By (B) l′′ is contained in a plane Π′′ with |Π′′ ∩K| ≤ 4.
There is a tangent n of K at P ′ not contained in Π′′. The tangent n is contained
in a plane ρ with |ρ ∩K| ≤ 4. Let 2q + δ′ be the number of tangents of K at P ′ in
ρ ∪ Π′′. Then δ′ ≤ δ and if ρ ∩ Π′′ is a tangent, then by the foregoing section we
have δ′ = δ. Assume, by way of contradiction, that ρ ∩ Π′′ is not a tangent of K
and that δ′ < δ. Then there is a tangent n′ of K at P ′ not contained in ρ ∪Π′′. The
tangent n′ is contained in a plane ρ′ with |ρ′ ∩K| ≤ 4. If ρ ∩ ρ′ is a tangent of K,
then the 2q+δ tangents of K at P ′ are contained in ρ∪ρ′, a contradiction. So ρ∩ρ′
is not a tangent; similarly ρ′ ∩ Π′′ is not a tangent. Hence the number of tangents
of K at P ′ is at least 3(q − 2), so 2q + δ ≥ 3q − 6, hence δ ≥ q − 6, a contradiction.
We conclude that δ′ = δ and that all tangents of K at P ′ are contained in ρ ∪Π′′.
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Hence, given any point Q ∈ K there are two planes α1 and α2 containing all
tangents of K at Q; also |α1 ∩K| ≤ 4 and |α2 ∩K| ≤ 4. These planes are uniquely
defined by Q, and so is α1 ∩ α2. By Section (A) the line α1 ∩ α2 is a tangent of K
at Q. Let Π̃ be any plane containing Q, with Π̃ 6∈ {α1, α2}. Then Π̃ ∩K contains at
most two tangents at Q, so |Π̃ ∩K| ≥ q. It follows that K contains no (q − 2)-arcs
and no (q − 1)-arcs.

Notice that |α1 ∩K|+ |α2 ∩K|+ δ = 3 and remind that −1 ≤ δ ≤ 1.

Let Π̃ be a plane containing Q, with Π̃ 6∈ {α1, α2}. The arc Π̃ ∩Kcontains always
at least one tangent of K at Q, except when δ = −1, k = q2 − q + 3, |α1 ∩ K| =
|α2 ∩ K| = 2. So if k ∈ {q2 − q + 1, q2 − q + 2} and if k = q2 − q + 3 with
|α1 ∩K| = |α2 ∩K| + 2 = 3 or |α2 ∩K| = |α1 ∩K| + 2 = 3, then Π̃ ∩K is not a
(q + 2)-arc. If |α1 ∩K| = |α2 ∩K| = 2, k = q2 − q + 3, then there is excactly one
plane Π̃ containing Q for which Π̃ ∩K is a (q + 2)-arc.

(C.3) k = q2 − q + 1
Then δ = 1 and |Π1 ∩K| = |Π2 ∩K| = 1. Let U1, U2 ∈ K, with U1 6= U2, and let
ξ1, ξ2 be the planes containing U1 intersecting K in at most 4 points. If U2 ∈ ξ1∪ξ2,
then δ ≤ 0, a contradiction. Hence U2 6∈ ξ1∪ξ2. Consequently any plane containing
the line U1U2 has more than 4 points in common with K.

Now we count the points of K in planes containing the line U1U2. Let θ1 be the
number of planes containing U1U2 intersecting K in a q-arc, and let θ2 be the
number of planes containing U1U2 intersecting K in a (q + 1)-arc. Then

(59) θ1(q − 2) + θ2(q − 1) + 2 = q2 − q + 1,with θ1 + θ2 = q + 1.

So

(60) θ1(q − 2) + (q + 1− θ1)(q − 1) + 2 = q2 − q + 1,

that is θ1 = q and θ2 = 1.

Now we count the number of (q + 1)-arcs on K, and obtain

(61)
(q2 − q + 1)(q2 − q)

(q + 1)q
.

So q + 1|(q2 − q + 1)(q − 1), so q + 1|6, a contradiction.

(C.4) k = q2 − q + 2
Then δ = 0 and {|Π1∩K|, |Π2∩K|} = {1, 2}. Let Q be any point of K and let lQ be
the tangent of K which is the intersection of the two planes α1 and α2 containing
the 2q tangents of K at Q. Let (α1 ∪ α2) ∩K = {Q,Q′}. Starting with Q′ and lQ′ ,
we find the same pair {Q′, Q}. It follows that K is partitioned into pairs of type
{Q,Q′}. Let L be the set of these (q2 − q + 2)/2 pairs.

Let {Q,Q′} ∈ L, let α1 and α2 be the planes containing the 2q tangents of K at
Q, and assume that Q′ ∈ α1. Then α1 = lQlQ′ . Let Π be a plane containing QQ′,
distinct from α1. As Π contains a tangent of K at Q, we have |Π ∩ K| ≤ q + 1.
Counting the points of K in the planes containing QQ′, we obtain |Π ∩K| = q + 1.
By an easy counting we see that the planes containing lQ, but distinct from α1 and
α2, intersectK in (q+1)-arcs. This way there arise q−1 (q+1)-arcsK1,K2, ...,Kq−1,
having kernels N1, N2, ..., Nq−1 on lQ \ {Q}. Assume, by way of contradiction, that
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Ni = Nj , i 6= j and i, j ∈ {1, 2, ..., q − 1}. Then Ni is on at least 2q + 1 tangents of
K, hence k ≤ q2 − q + 1, a contradiction. Let lQ \ {N1, N2, ..., Nq−1} = NQ.

Assume, by way of contradiction, that lQ ∩ lQ′ 6= NQ. Let lQ ∩ lQ′ = Ni, i ∈
{1, 2, ..., q−1}, and let R ∈ Ki \{Q}. Then lQ′R∩K is a (q+ 1)-arc with kernel Ni.
HenceNi is on at least q2+2 tangents, a contradiction. Consequently lQ∩lQ′ = NQ;
similarly, lQ ∩ lQ′ = NQ′ .

Assume, by way of contradiction, that lQ ∩ lS 6= ∅, with Q 6= S and {Q,S} 6∈ L.
Let {Q,Q′} and {S, S′} be elements of L. Now we count the number of tangents
of K containing lQ ∩ lS = M . The arc lQlS ∩K is a (q + 1)-arc with kernel M , so
lQlS contains q+ 1 tangents of K through M ; the arc lQS′ ∩K is a (q+ 1)-arc, and
as the line MS′ of the plane lSS′ is a tangent of K, the point M is the kernel of
lQS

′ ∩K, so lQS′ contains q+ 1 tangents of K through M ; similarly the plane lSQ′

contains q + 1 tangents of K through M . Hence M is contained in more than 2q
tangents of K, clearly a contradiction. It follows that if lQ ∩ lS 6= ∅, with Q 6= S,
then {Q,S} ∈ L.

Let {Q,S} 6∈ L, with Q and S distinct points of K. Then lQ ∩ lS = ∅. Now we
count the points of K in the planes containing the line QS. Let θ1 be the number
of planes which contain QS and intersect K in a q-arc, and let θ2 be the number of
planes which contain QS and intersect K in a (q + 1)-arc. Hence

(62) θ1(q − 2) + θ2(q − 1) + 2 = q2 − q + 2,with θ1 + θ2 = q + 1.

So θ1 = q − 1 and θ2 = 2. The 2 planes containing QS and intersecting K in a
(q + 1)-arc are the planes lQS and lSQ.

Let {Q,S} ∈ L and let lQ ∩ lS = N . Then N is kernel of no one of the q − 1
(q + 1)-arcs defined by planes containing the tangent lQ and of no one of the q − 1
(q+1)-arcs defined by planes containing the tangent lS . So for any line n 6∈ {lQ, lS}
containing N we have |n ∩K| ∈ {0, 2}. Let n ∩K = {U,U ′}.

First, assume that {U,U ′} 6∈ L. Then |lUU ′ ∩ K| = |lU ′U ∩ K| = q + 1. As
|lQU∩K| = |lSU∩K| = q+1, the planes lQU and lSU are the two planes containing
UU ′ and intersecting K in a (q + 1)-arc. Hence {lQU, lSU} = {lUU ′, lU ′U}. So
we may assume that lQU = lUU

′ and lSU = lU ′U . Consequently lQ ∩ lU 6= ∅ and
lS∩lU ′ 6= ∅, that is, {Q,U} ∈ L and {S,U ′} ∈ L. Hence |lQlU∩K| = |lSlU ′∩K| = 2,
clearly a contradiction as Q,U,U ′ ∈ lQlU .

It follows that {U,U ′} ∈ L. So for any pair {T, T ′} ∈ L, with {T, T ′} 6= {Q,S},
we have N ∈ TT ′. Let n′, n′′ be distinct lines containing N with n′ 6= n 6= n′′ and
n′, n′′ 6∈ {lQ, lS}. Assume also that n′ ∩K = {V, V ′} and n′′ ∩K = {W,W ′}. Then
{V, V ′} ∈ L and {W,W ′} ∈ L. By the foregoing the lines V V ′,WW ′, QS contain
N , clearly a contradiction.

(C.5) k = q2 − q + 3
Let P be any point of K and let lP be the tangent of K which is the intersection
of the two planes Π1,Π2 containing the 2q − 1 tangents of K at P . Two cases are
considered.

(C.5.1) Π1 ∩K = {P, P ′, P ′′},Π2 ∩K = {P}
Then K contains no plane (q + 2)-arcs containing P . Let l be a tangent of K at P ,
with l in Π1 and l 6= lP . We count the points of K in planes containing l. Let θ1 be
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the number of planes containing l and intersecting K in a (q + 1)-arc, and let θ2 be
the number of planes containing l and intersecting K in a q-arc. Then

(63) θ1q + θ2(q − 1) + 3 = q2 − q + 3,with θ1 + θ2 = q.

Hence θ1 = 0 and θ2 = q. Let Π̃1, Π̃2, ..., Π̃q be the planes containing l and inter-
secting K in a q-arc, let Π̃i ∩K = Ki, let Ci be the (q+ 2)-arc extending Ki and let
Ci ∩ l = {P,Ni}, with i = 1, 2, ..., q. Assume that for some i ∈ {1, 2, ..., q} we have
Ni /∈ P ′P ′′. The number of tangents of K containing Ni is at least

(64) q + (q − 1) + 2 = 2q + 1,

a contradiction. Hence N1 = N2 = · · · = Nq = l ∩ P ′P ′′. Then the number of
tangents of K containing N1 is at least

(65) q(q − 1) + 1 = q2 − q + 1,

again a contradiction.

(C.5.2) Π1 ∩K = {P, P ′},Π2 ∩K = {P, P ′′}
By (C.5.1), for each point Q ∈ K the two planes α1, α2 through Q intersecting K
in at most four points, intersect K in exactly two points. If α1 ∩K = {Q,Q′} and
α2 ∩K = {Q,Q′′}, then the plane QQ′Q′′ is the only plane on Q intersecting K in
a (q + 2)-arc. Hence the (q + 2)-arcs on K partition K. So

(66) q + 2|q2 − q + 3, so q + 2|q − 7, so q + 2|9,
a contradiction.

Now the theorem is proved. �

4. COROLLARIES

We are grateful to T. Szőnyi for bringing reference [12] to our attention which, in
combination with Theorem 1.6, gives the following considerable improvement of
the bound in Theorem 1.6; see also Remark 4.4.

Theorem 4.1.

(67) m′2(3, q) < q2 − 2q + 3
√
q + 2, q even, q ≥ 2048.

Proof. In [12] it is proved that there does not exist a complete k-cap in PG(3, q),
q even, q ≥ 64, for which

(68) k ∈ [q2 − (a− 1)q + a
√
q + 2− a+

a(a− 1)

2
, q2 − (a− 2)q − a2√q]

where a is an integer which satisfies

(69) 2 ≤ a ≤
−2
√
q + 3 +

√
16q
√
q + 12q − 44

√
q − 7

4
√
q + 2

.

Putting a = 3, the desired result immediately follows from Theorem 1.6. �

Theorem 4.2. (i) m2(4, 4) = 41,
(ii) m2(4, 8) ≤ 479,

(iii) m2(4, q) < q3 − q2 + 2
√

5q − 8, q even, q > 8.
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Proof. For q = 4, see [5]. Assume, by way of contradiction, that K is a k-
cap of PG(4, 8) with k > 479, or a k-cap of PG(4, q), q even and q > 8, with
k > q3 − q2 + 2

√
5q − 8. At each of its points the cap K has t = q3 + q2 + q + 2− k

tangents. Hence we assume that t < 107 for q = 8 and t < 2q2 + (1 − 2
√

5)q + 10
for q > 8. We obtain a contradiction in several stages.

I K contains no plane q-arc
Similar to the reasoning in Section I in the proof of Theorem 6.27 in [9].

II There exists no solid δ such that q2 + 1 > |δ ∩K| > q2 + (1−
√

5)q + 5
Suppose δ exists. Let δ ∩K = K ′. Then K ′ can be completed to an ovoid O of δ,
by Theorem 3.1. Let N ∈ O \ K ′ and let N ′ ∈ K ′. Consider the q + 1 planes of
δ through NN ′. Since each of these planes meets O in a (q + 1)-arc, each plane
meets K ′ in at most a q-arc. By I, there is no q-arc on K; so each plane meets K ′ in
at most a (q − 1)-arc.

Assume, by way of contradiction, that none of these intersections is a (q − 1)-arc.
Therefore a count of the points on K ′ gives

(70) |K ′| ≤ (q + 1)(q − 3) + 1,

whence

(71) q2 + (1−
√

5)q + 5 < q2 − 2q − 2,

so

(72) (3−
√

5)q + 7 < 0,

a contradiction.

So we may assume that for one of the planes δ through NN ′, say Π, we have
|Π ∩K ′| = q − 1. Now we consider all solids of PG(4, q) containing the plane Π.
Let θ be the number of solids Π′ for which |Π′∩K| > q2 +(1−

√
5)q+5, so q+1−θ

is the number of solids Π′′ for which |Π′′ ∩K| < q2 + (1−
√

5)q+ 5. We have θ ≥ 1.

First, assume θ ≥ 2. So there are at least two solids Π′1,Π
′
2 containing Π such that

|Π′i∩K| > q2+(1−
√

5)q+5, with i = 1, 2. By Theorem 3.1 Π′i∩K can be completed
to an ovoid Oi of Π′i, i = 1, 2. So Oi∩Π is a (q+1)-arc (Π∩K ′)∪{N ′i , N ′′i }, i = 1, 2.
Since Π ∩K ′ can be contained in no more than three (q + 1)-arcs, contained in a
common (q+ 2)-arc, we have |{N ′1, N ′′1 }∩ {N ′2, N ′′2 }| ≥ 1. Assume N ′1 = N ′2. So the
number of tangents of K containing N ′1 is at least

(73) 2(q2 + (1−
√

5)q + 5− q + 1) + q − 1,

so

(74) 2q2 + (1− 2
√

5)q + 11,

a contradiction.

Finally, assume that θ = 1. Counting the points of K in the q + 1 solids, we obtain

(75) k < q(q2 + (1−
√

5)q + 5− q + 1) + (q2 − 1),

that is,

(76) k < q3 + (1−
√

5)q2 + 6q − 1.

Hence, for q > 8,

(77) q3 − q2 + 2
√

5q − 8 < q3 + (1−
√

5)q2 + 6q − 1,
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so

(78) 0 < (2−
√

5)q2 + (6− 2
√

5)q + 7,

a contradiction. For q = 8, there arises 479 < 479, a contradiction.

III For a point N not in K, there do not exist planes Π1 and Π2 such that
Π1 ∩Π2 = N and such that Πi ∩K is a (q + 1)-arc with nucleus N for i = 1, 2
Similar to the reasoning in Section III in the proof of Theorem 6.27 in [9].

IV The tangents through any point Q off K lie in a solid
Similar to the reasoning in Section IV in the proof of Theorem 6.27 in [9].

V The final contradiction is obtained by counting the tangents of K
Similar to the reasoning in Section V in the proof of Theorem 6.27 in [9]. �

Theorem 4.3. For q even, q > 2, n ≥ 5,

(i) m2(n, 4) ≤ 118
3 .4n−4 + 5

3

(ii) m2(n, 8) ≤ 478.8n−4 − 2(8n−5 + · · ·+ 8 + 1) + 1,
(iii) m2(n, q) < qn−1− qn−2 + 2

√
5qn−3− 9qn−4− 2(qn−5 + · · ·+ q+ 1) + 1, for

q > 8.

Proof This follows directly from Theorem 1.1, Theorem 4.2 and Theorem 6.14(ii)
in [9]. �

Remark 4.4. The bound in Theorem 4.1 leads to considerable improvements of
Theorem 4.2 and Theorem 4.3. We just mention these bounds, but the proofs are
the theme of a subsequent paper.

For q even, q ≥ 2048,

(79) m2(4, q) < q3 − 2q2 + 3q
√
q + 8q − 9

√
q − 6.

For q even, q ≥ 2048, n ≥ 5,

(80)
m2(n, q) < qn−1−2qn−2+3qn−3

√
q+8qn−3−9qn−4

√
q−7qn−4−2(qn−5+· · ·+q+1)+1.

5. REMARK

The bound in the MAIN THEOREM is better than the bound of Chao, see [3]. In
2014 Cao and Ou, see [2], published the bound k < q2−2q+8 (q even and q ≥ 128),
which is better than ours. I did not follow some reasoning in their proof, so I sent
two mails to one of the authors explaining why I think Section 1.3 of the proof is
not correct. Unfortunately I never received an answer.
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