ON k-CAPS IN $\mathbf{PG}(n,q)$, WITH q EVEN AND $n \geq 3$

J. A. THAS GHENT UNIVERSITY

ABSTRACT. Let $m_2(n,q)$ be the maximum size of k for which there exists a k-cap in $\mathbf{PG}(n,q)$, and let $m'_2(n,q)$ be the second largest value of k for which there exists a complete k-cap in $\mathbf{PG}(n,q)$. In this paper Chao's upper bound $q^2 - q + 5$ for $m'_2(3,q)$, q even and $q \ge 8$, will be improved. As a corollary new bounds for $m_2(n,q)$, q even, $q \ge 8$ and $n \ge 4$, are obtained. Cao and Ou published a better bound but there seems to be a gap in their proof.

Keywords: projective space, finite field, k-cap

1. INTRODUCTION

A *k*-arc of $\mathbf{PG}(2, q)$ is a set of k points, no three of which are collinear; a *k*-cap of $\mathbf{PG}(n, q)$, $n \ge 3$, is a set of k points, no three of which are collinear. A *k*-arc or *k*-cap is *complete* if it is not contained in a (k + 1)-arc or (k + 1)-cap. The largest value of k for which a *k*-arc of $\mathbf{PG}(2, q)$, or a *k*-cap of $\mathbf{PG}(n, q)$ with $n \ge 3$, exists is denoted by $m_2(n, q)$. The size of the second largest complete *k*-arc of $\mathbf{PG}(2, q)$ or *k*-cap of $\mathbf{PG}(n, q)$, $n \ge 3$, is denoted by $m'_2(n, q)$.

Theorem 1.1. (i) $m_2(2,q) = q + 2$, q even [7]; (ii) $m_2(3,q) = q^2 + 1$, q even, q > 2 [6, 1, 10]; (iii) $m_2(n,2) = 2^n$ [1]; (iv) $m_2(4,4) = 41$ [5]; (v) $m'_2(n,2) = 2^{n-1} + 2^{n-3}$ [4]; (vi) $m'_2(3,4) = 14$ [8].

Theorem 1.2 ([11, 13, 7]). Let K be a k-arc of PG(2,q), q even and q > 2, with $q-\sqrt{q}+1 < k \leq q+1$. Then K can be uniquely extended to a (q+2)-arc of PG(2,q).

For any *k*-arc *K* in $\mathbf{PG}(2, q)$ or *k*-cap *K* in $\mathbf{PG}(n, q)$, $n \ge 3$, a *tangent* of *K* is a line which has exactly one point in common with *K*. Let *t* be the number of tangents of *K* through a point *P* of *K* and let $\sigma_1(Q)$ be the number of tangents of *K* through a point $Q \notin K$. Then for a *k*-arc *K* t + k = q + 2 and for a *k*-cap *K* $t + k = q^{n-1} + q^{n-2} + \cdots + q + 2$.

Theorem 1.3 ([8]). If K is a complete k-arc in $\mathbf{PG}(2, q)$, q even, or a complete k-cap in $\mathbf{PG}(n, q)$, $n \ge 3$ and q even, then $\sigma_1(Q) \le t$ for each point Q not on K.

Theorem 1.4 ([3]).

(1)
$$m'_2(3,q) \le q^2 - q + 5, q \text{ even}, q \ge 8.$$

To prove Theorem 1.4 J.-M. Chao relies on the following crucial lemma.

Lemma 1.5 ([3]). Let K be a complete k-cap in PG(3,q) with q even. If Π is a plane such that $|\Pi \cap K| = x$, then

(2)
$$t(t-1) \ge q(q+2-x)x.$$

In the underlying paper the following improvement of Chao's result will be obtained.

Theorem 1.6 (Main Theorem).

(3)
$$m'_2(3,q) < q^2 - (\sqrt{5} - 1)q + 5, q \text{ even}, q \ge 8.$$

As a corollary new bounds for $m_2(n,q)$, q even, $q \ge 8$ and $n \ge 4$, are obtained.

Combining the main theorem of [12] with Theorem 1.6, there is an immediate improvement of the upper bound for $m'_2(3,q)$, $q \ge 2048$. We thank T. Szőnyi for bringing reference [12] to our attention.

Theorem 1.7.

(4)
$$m'_2(3,q) < q^2 - 2q + 3\sqrt{q} + 2, q \text{ even}, q \ge 2048.$$

2. A FIRST IMPROVEMENT OF CHAO'S BOUND

Theorem 2.1.

(5)
$$m'_2(3,q) \le q^2 - q + 3, q \text{ even}, q \ge 8$$

Proof. Let *K* be a complete *k*-cap in $\mathbf{PG}(3,q)$, *q* even, $q \ge 8$ and $k < q^2 + 1$. Let Π be a plane of $\mathbf{PG}(3,q)$ for which $4 \le |\Pi \cap K| \le q - 2$. Let f(X) = q(q+2-X)X. Then

(6)
$$t(t-1) \ge f(4) = f(q-2) = 4q(q-2),$$

by Lemma 1.5. So

(7)
$$t \ge \frac{1 + \sqrt{1 + 16q(q-2)}}{2} \ge 2q - \frac{7}{4} \text{ for } q \ge 8.$$

Hence $k \leq q^2 + q + 2 - 2q + \frac{7}{4} = q^2 - q + \frac{15}{4}$, and consequently $k \leq q^2 - q + 3$.

So we may assume that either $|\Pi \cap K| \le 3$, or $|\Pi \cap K| \ge q-1$, for any plane Π of PG(3, q). Let $l_1, l_2, ..., l_t$ be the *t* tangents of *K* through the point $P \in K$. We consider three cases depending on the number of planes containing l_i and intersecting *K* in at most 3 points.

(A) There exists exactly one plane Π_{l_i} containing l_i such that $|\Pi_{l_i} \cap K| \le 3, i = 1, 2, ..., t$. We will show that in this case $k \le q^2 - q + 3$.

Assume there is exactly one plane Π through P with $|\Pi \cap K| \leq 3$. Then for i = 1, 2, ..., t, $\Pi_{l_i} = \Pi$. Hence all tangents of K containing P are in Π . So $t \leq q + 1$,

a contradiction. Hence there are at least two planes Π_1, Π_2 through P such that $|\Pi_i \cap K| \leq 3, i = 1, 2$. Then $|\Pi_1 \cap \Pi_2 \cap K| = 2$. Consequently $t \geq 2(q-1)$, and so $k \leq q^2 + q + 2 - 2q + 2 = q^2 - q + 4$.

Assume, by way of contradiction, that $k = q^2 - q + 4$. So t = 2(q - 1). Then $|\Pi_1 \cap K| = |\Pi_2 \cap K| = 3$. All tangent lines at P are contained in Π_1 and Π_2 . Let l be a tangent of K at P in Π_1 , and consider the q + 1 planes containing l. The plane Π_1 is the only of these planes which intersects K in 3 points, exactly q - 1 planes through l contain 2 tangent lines at P and so intersect K in a q-arc and the remaining plane through l contains exactly one tangent line at P and so intersects K in a (q + 1)-arc.

Let $\widetilde{\Pi}$ be the unique plane containing l which intersects K in a (q + 1)-arc, let $\widetilde{\Pi} \cap K = O$, and let N be the kernel of O, that is, N is the unique point of $\widetilde{\Pi}$ which extends O to a (q + 2)-arc of $\widetilde{\Pi}$. Clearly $N \in l$.

If K' is a k'-arc of a plane $\mathbf{PG}(2,q)$ and $P' \in \mathbf{PG}(2,q) \setminus K'$, then the parity of the number of tangents of K' through P' is the parity of k', see Chapter 1 of [7]. Hence, by considering O and the q-1 q-arcs whose planes contain l, we see that the number of tangents of K through N is at least q + 1 + q - 1 = 2q. As K is complete we have $2q \leq t$, so $k \leq q^2 + q + 2 - 2q = q^2 - q + 2$, a contradiction.

Consequently $k \leq q^2 - q + 3$.

(B) Some tangent $l_i, 1 \le i \le t$, is contained in at least two planes having at most three points in common with K.

First we will prove that $k \le q^2 - q + 5$. For $k = q^2 - q + 5$ and $k = q^2 - q + 4$ a contradiction will be obtained; the case $k = q^2 - q + 4$ will be subdivided in two cases. Hence it follows that also in Case (B) we have $k \le q^2 - q + 3$.

Counting the points of K on the q + 1 planes containing l_i gives

(8)
$$k-1 \le 2.2 + (q-1)q = q^2 - q + 4$$

So $k \le q^2 - q + 5$.

(B.1) **First, assume** $k = q^2 - q + 5$. Then two planes Π_1, Π_2 containing l_i intersect K in 3 points, while the remaining planes $\Pi_3, \Pi_4, ..., \Pi_{q+1}$ containing l_i intersect K in q + 1 points. Let l be a tangent of K at P in Π_1 , distinct from l_i . Any plane ζ containing l, with $\zeta \neq \Pi_1$, intersects each (q + 1)-arc $\Pi_i \cap K, i = 3, 4, ..., q + 1$, in exactly two points. Hence $|\zeta \cap K| \ge q$. Considering the lines $\zeta \cap \Pi_2$, we see that exactly two of the planes ζ , say ζ_1 and ζ_2 , intersect K in (q + 1)-arcs O_1 and O_2 , while the q - 2 other planes ζ , say $\zeta_3, \zeta_4, ..., \zeta_q$, intersect K in a q-arc.

Let N_1 be the kernel of O_1 ; then $N_1 \in l$. The number of tangents of K containing N_1 is at least q + 1 + q - 2 = 2q - 1. As K is complete we have $2q - 1 \leq t$, so $k \leq q^2 + q + 2 - 2q + 1 = q^2 - q + 3$, a contradiction.

(B.2) Next, assume $k = q^2 - q + 4$. Then, considering all planes containing l_i , there are two cases to consider.

(B.2.1) Two planes Π_1, Π_2 containing l_i intersect K in three points, the plane Π_3 containing l_i intersects K in q points, and the remaining planes $\Pi_4, \Pi_5, ..., \Pi_{q+1}$ containing l_i intersect K in q + 1 points. Let l be a tangent of K at P in Π_1 ,

distinct from l_i . Any plane ζ containing l, distinct from Π_1 , intersects each (q + 1)arc $\Pi_i \cap K$, i = 4, 5, ..., q + 1, in exactly two points; q - 1 of these planes ζ intersect $\Pi_3 \cap K$ in exactly two points. So for at least q - 1 of these planes ζ we have $|\zeta \cap K| \ge q$, and for all planes ζ we have $|\zeta \cap K| \ge q - 1$.

Assume that for all q planes ζ we have $|\zeta \cap K| \ge q$. Let s be the number of planes ζ for which $|\zeta \cap K| = q$ and let u be the number of planes ζ for which $|\zeta \cap K| = q + 1$. Then

(9)
$$s(q-1) + uq + 3 = q^2 - q + 4, s + u = q.$$

So $s(q-1) + (q-s)q + 3 = q^2 - q + 4$, hence s = q - 1 and u = 1. Let ζ be the plane which intersects K in a (q+1)-arc O, and let $N \in l$ be the nucleus of O. The number of tangents of K containing N is at least q + 1 + q - 1 = 2q, so $k \leq q^2 + q + 2 - 2q = q^2 - q + 2$, a contradiction.

So we may assume that for exactly q - 1 planes ζ we have $|\zeta \cap K| \ge q$ and that for exactly one plane ζ we have $|\zeta \cap K| = q - 1$. Assume that for *s* planes ζ we have $|\zeta \cap K| = q$, and that for *u* planes ζ we have $|\zeta \cap K| = q + 1$. Then

(10)
$$s(q-1) + uq + q - 2 + 3 = q^2 - q + 4, s + u = q - 1.$$

So $s(q-1) + (q-1-s)q + q + 1 = q^2 - q + 4$, hence s = q-3 and u = 2. Let ζ_1, ζ_2 be the planes containing l which intersect K in (q+1)-arcs O_1, O_2 , let N_1, N_2 be the nuclei of O_1, O_2 , and let $\Pi_1 \cap K = \{P, P_1, P_2\}$. Assume first that $N_1 \notin P_1P_2$. Then the number of tangents of K containing N_1 is at least q + 1 + q - 3 + 2 = 2q, so $k \leq q^2 - q + 2$ a contradiction. Similarly if $N_2 \notin P_1P_2$. Hence we may assume that $N_1 = N_2 = P_1P_2 \cap l$. Then the number of tangents of K through N_1 is at least q + 1 + q - 3 = 3q - 2, so $k \leq q^2 + q + 2 - 3q + 2 = q^2 - 2q + 4$, again a contradiction.

(B.2.2) One plane Π_1 containing l_i intersects K in three points, and one plane Π_2 containing l_i intersects K in two points. Consequently the other q-1 planes $\Pi_3, \Pi_4, ..., \Pi_{q+1}$ containing l_i intersect K in q+1 points. Let l be a tangent of K at P in Π_1 , distinct from l_i . Any plane ζ containing l, distinct from Π_1 , intersects each (q+1)-arc $\Pi_i \cap K$, with i = 3, 4, ..., q+1, in exactly two points. As $k = q^2 - q + 4$ it easily follows that for q-1 of these planes ζ we have $|\zeta \cap K| = q$, while for the remaining plane ζ we have $|\zeta \cap K| = q+1$.

Let ζ be the plane containing *l* which intersects *K* in a (q+1)-arc *O*, and let *N* be the nucleus of *O*. The number of tangents of *K* containing *N* is at least q+1+q-1=2q, so $k \leq q^2 - q + 2$, again a contradiction.

(C) Some tangent l_i , with $1 \le i \le t$, is contained in no plane having at most three points in common with K.

First we will prove that $k \le q^2 - q + 5$. A contradiction will be obtained for $k \in \{q^2 - q + 5, q^2 - q + 4\}$; for $k = q^2 - q + 4$ two cases have to be considered. Hence again $k \le q^2 - q + 3$.

Then $|\Pi_j \cap K| \ge q-1$ for each plane Π_j containing l_i , with j = 1, 2, ..., q+1. The arc $\Pi_j \cap K$ of Π_j can be completed to a (q+2)-arc of Π_j ; see Theorem 1.2. This (q+2)-arc meets l_i in points P, P_j . As there are q+1 points P_j and $|l_i \setminus \{P\}| = q$,

two of the points P_j coincide, say $P_1 = P_2$. The number of tangents of K containing P_1 is at least 2(q-2) + 1 = 2q - 3, so $k \le q^2 - q + 5$.

Now we make some observations on (q-1)-arcs of $\mathbf{PG}(2,q)$, q even. Let \widetilde{K} be any (q-1)-arc of $\mathbf{PG}(2,q)$, q even, and let \tilde{l} be a tangent of \widetilde{K} at $\widetilde{P} \in \widetilde{K}$. Let \widetilde{C} be the unique (q+2)-arc which contains \widetilde{K} ; see Theorem 1.2. Put $\widetilde{C} \cap \tilde{l} = \{\widetilde{P}, \widetilde{N}\}$. Then it is easy to see that exactly q-2 points of $\tilde{l} \setminus \{\widetilde{P}, \widetilde{N}\}$ are on exactly three tangents of \widetilde{K} , and that exactly one point \widetilde{R} of $\tilde{l} \setminus \{\widetilde{P}, \widetilde{N}\}$ is on exactly one tangent of \widetilde{K} ; also, $\widetilde{R} = \widetilde{l} \cap \widetilde{N}' \widetilde{N}''$, with $\{\widetilde{N}, \widetilde{N}', \widetilde{N}''\} \cup \widetilde{K} = \widetilde{C}$.

(C.1) First, assume $k = q^2 - q + 5$. Then $\Pi_1 \cap K$ and $\Pi_2 \cap K$ are (q-1)-arcs of Π_1 and Π_2 . Let *r* be the number of (q-1)-arcs $\Pi_j \cap K$, let *s* be the number of *q*-arcs $\Pi_j \cap K$ and let *u* be the number of (q+1)-arcs $\Pi_j \cap K$. Then

(11)
$$r(q-2) + s(q-1) + uq + 1 = q^2 - q + 5, r + s + u = q + 1$$
, with $r \ge 2$.

So $r(q-2) + s(q-1) + (q+1-r-s)q + 1 = q^2 - q + 5$, hence 2r + s = 2q - 4, with $r \ge 2$. If $s \ge 1$, then we have an extra tangent of K containing P_1 , so $k \le q^2 - q + 4$, a contradiction. Hence s = 0, r = q - 2, u = 3.

As the number of tangents of K containing P_1 is exactly 2q - 3, the nuclei of the three (q + 1)-arcs $\Pi_j \cap K$ are distinct from P_1 . Let N be one of these nuclei. Also, P_1 is on exactly one tangent of each of the q - 4 (q - 1)-arcs $\Pi_j \cap K$, distinct from the (q - 1)-arcs $\Pi_1 \cap K, \Pi_2 \cap K$. So N is on at least three tangents of each of these q - 4 (q - 1)-arcs $\Pi_j \cap K$. Hence the number of tangents of K containing N is at least 2(q - 4) + q + 1 = 3q - 7 > 2q - 3, a contradiction.

(C.2) Finally, assume that $k = q^2 - q + 4$. We have to consider two cases depending of the sizes of $\Pi_1 \cap K$ and $\Pi_2 \cap K$.

(C.2.1) First, assume that $\Pi_1 \cap K$ and $\Pi_2 \cap K$ are (q-1)-arcs. The tangents of K containing P_1 are the tangents of $\Pi_1 \cap K$ and $\Pi_2 \cap K$ containing P_1 , and one extra tangent l. Assume that l is a tangent of $\Pi_3 \cap K$. If $\Pi_3 \cap K$ is a (q+1)-arc O, then P_1 is the nucleus of O, so there arise q extra tangents, a contradiction; if $\Pi_3 \cap K$ is a (q-1)-arc K', then P_1 is contained in at least three tangents of K', again a contradiction. Hence $\Pi_3 \cap K$ is a q-arc. Also, $\Pi_j \cap K$, with j = 4, 5, ..., q+1, cannot be a q-arc. Let r be the number of (q-1)-arcs $\Pi_j \cap K$, and let u be the number of (q+1)-arcs $\Pi_j \cap K$. Then

(12)
$$r(q-2) + uq + q - 1 + 1 = q^2 - q + 4, r + u + 1 = q + 1.$$

So $r(q-2) + (q-r)q + q = q^2 - q + 4$, hence r = q - 2 and u = 2. Let O_1, O_2 be the (q+1)-arcs $\Pi_j \cap K$, and let N_1, N_2 be the nuclei of O_1, O_2 . Then $N_i \neq P_1, i = 1, 2$. Also P_1 is contained in exactly one tangent of each of the q - 4 (q - 1)-arcs $\Pi_j \cap K$, with $j \neq 1, 2$. Hence the number of tangents of K containing N_1 is at least 2(q-4) + q + 1 = 3q - 7 > 2q - 2, clearly a contradiction.

(C.2.2) Consequently, we may assume that $\Pi_1 \cap K$ is a (q-1)-arc and that $\Pi_2 \cap K$ is a *q*-arc. Let *r* be the number of (q-1)-arcs $\Pi_j \cap K$, let *s* be the number of *q*-arcs $\Pi_j \cap K$ and let *u* be the number of (q+1)-arcs $\Pi_j \cap K$. Then

(13)
$$r(q-2) + s(q-1) + uq + 1 = q^2 - q + 4, r + s + u = q + 1, r \ge 1, s \ge 1.$$

So 2r + s = 2q - 3, $r \ge 1$, $s \ge 1$. Clearly, s = 1, as otherwise we have an extra tangent containing P_1 , and then $k < q^2 - q + 4$. Hence r = q - 2, s = 1, u = 2. The nuclei of the two (q + 1)-arcs $\prod_j \cap K$ are distinct from P_1 . Let N be one of these nuclei. Also, P_1 is on exactly one tangent of each of the q - 3 (q - 1)-arcs $\prod_j \cap K$ distinct from $\prod_1 \cap K$. So N is on at least three tangents of each of these q - 3 (q - 1)-arcs $\prod_j \cap K$. Consequently the number of tangents of K containing N is at least 2(q - 3) + q + 1 = 3q - 5 > 2q - 2, a final contradiction.

3. MAIN THEOREM

Theorem 3.1.

- (14) $m'_2(3,q) < q^2 (\sqrt{5} 1)q + 5, q \text{ even}, q \ge 8.$
- (15) $m'_2(3,4) = 14.$

Proof By [8] we have $m'_2(3,4) = 14$, and by Theorem 2.1 we have $m'_2(3,8) \le 59$, which proves Theorem 3.1 for q = 8. So from now on we assume q > 8.

Let *K* be a complete *k*-cap in PG(3,q), *q* even, q > 8, and $k < q^2 + 1$. Let Π be a plane of PG(3,q) for which

 $(16) 5 \le |\Pi \cap K| \le q - 3.$

Let f(X) = q(q + 2 - X)X. Then by Lemma 1.5 of Chao

(17)
$$t(t-1) \ge f(5) = f(q-3) = 5q(q-3)$$

So

(18)
$$t \ge \frac{1 + \sqrt{1 + 20q(q-3)}}{2}.$$

Put $\frac{1+\sqrt{1+20q(q-3)}}{2} \ge \sqrt{5}q - \alpha$, that is, (10) $\sqrt{1+20q(q-3)} \ge 2\sqrt{5}q - 2\alpha - 1$.

(19)
$$\sqrt{1+20q(q-3)} \ge 2\sqrt{5q-2\alpha} -$$

For $\alpha \leq \sqrt{5}q - (1/2)$ this is equivalent to

(20)
$$1 + 20q(q-3) \ge 20q^2 + 4\alpha^2 + 1 - 8\alpha\sqrt{5q} - 4\sqrt{5q} + 4\alpha_2$$

or

(21)
$$0 \ge 4\alpha^2 + \alpha(-8\sqrt{5}q + 4) + 60q - 4\sqrt{5}q,$$

or

(22)
$$0 \ge \alpha^2 + \alpha(-2\sqrt{5}q + 1) + 15q - \sqrt{5}q.$$

Put $\alpha = 3$. Then there arises $0 \ge 9 + 3(-2\sqrt{5}q + 1) + 15q - \sqrt{5}q$, that is, $0 \ge 12 + 15q - 7\sqrt{5}q$. This inequality is satisfied for q > 16.

Hence for q > 16 we have $t \ge \sqrt{5}q - 3$, and so,

(23)
$$k \le q^2 + q + 2 - \sqrt{5}q + 3$$

that is,

(24)
$$k \le q^2 + (1 - \sqrt{5})q + 5.$$

For q = 16 it follows from (18) that t > 32 and so $k \le 241$, which is equivalent to $k \le q^2 + (1 - \sqrt{5})q + 5$ with q = 16.

From now on suppose that either $|\Pi \cap K| \le 4$ or $|\Pi \cap K| \ge q-2$ for any plane Π of PG(3,q). Let $l_1, l_2, ..., l_t$ be the t tangents of K containing the point $P \in K$. Assume, by way of contradiction, that $k > q^2 + (1 - \sqrt{5})q + 5$. We consider three cases depending on the number of planes containing l_i and intersecting K in at most 4 points. In each case a contradiction will be obtained.

(A) Assume, by way of contradiction, that each l_i is contained in exactly one plane \prod_{l_i} for which $|\prod_{l_i} \cap K| \le 4$, with i = 1, 2, ..., t.

(A.1) Assume that there is exactly one plane Π through P with $|\Pi \cap K| \le 4$. Then for i = 1, 2, ..., t we have $\Pi_{l_i} = \Pi$. So $t \le q+1$, hence $k \ge q^2 + 1$, a contradiction.

(A.2) There are at least two planes Π_1, Π_2 through P such that $|\Pi_i \cap K| \le 4, i = 1, 2$. Then $|\Pi_1 \cap \Pi_2 \cap K| = 2$. Consequently $t \ge 2(q-2)$, and so $k \le q^2 + q + 2 - 2q + 4 = q^2 - q + 6$.

The plane Π_1 intersects K in a m-arc, $m \leq 4$, and contains at least q-2 tangents of K at P. Let $P_1 \in (K \cap \Pi_1) \setminus P$ and assume that PP_1 is contained in α planes Π with $|\Pi \cap K| \leq 4$. Then $t \geq \alpha(q-2)$, so $k \leq q^2 + (1-\alpha)q + 2 + 2\alpha$. Consequently

(25)
$$q^{2} + (1-\alpha)q + 2 + 2\alpha > q^{2} + (1-\sqrt{5})q + 5,$$

or

$$(26) \qquad \qquad (\sqrt{5} - \alpha)q + 2\alpha - 3 > 0$$

This gives a contradiction for $\alpha > 2$ with q > 8. So PP_1 is contained in at most two planes intersecting K in at most four points.

Assume, by way of contradiction, that for some plane Π of $\mathbf{PG}(3, q)$ we have $\Pi \cap K = \{P\}$. As there are at least two planes Π, Π' through P intersecting K in at most four points, we have $|\Pi \cap \Pi' \cap K| = 2$ and so $|\Pi \cap K| \ge 2$, a contradiction.

Let $\mathbf{PG}(2, q)$ be a plane of $\mathbf{PG}(3, q)$ not containing P and let σ be the projection of $\mathbf{PG}(3, q) \setminus \{P\}$ from P onto $\mathbf{PG}(2, q)$. Further, let \mathcal{P} be the set of all images under σ of all points of $K \setminus \{P\}$ contained in planes Π , with $P \in \Pi$, for which $|\Pi \cap K| \leq 4$, and let \mathcal{B} be the set of all images under σ of the sets $\Pi \setminus \{P\}$. Then there arises an incidence structure $(\mathcal{P}, \mathcal{B})$ of points and lines for which

(1) $|\mathcal{B}| \ge 2$,

- (2) any two distinct lines in \mathcal{B} have exactly one point in common,
- (3) each point is contained in at most two lines,
- (4) each line contains at most three points and at least one point.

It follows easily that $2 \le |\mathcal{B}| \le 4$. For each value of $|\beta|$ we will find a contradiction. (α) $|\mathcal{B}| = 4$

Then $\overline{t = 4(q-2)}$, so $k = q^2 + q + 2 - 4q + 8 = q^2 - 3q + 10$. Hence $q^2 - 3q + 10 > q^2 + (1 - \sqrt{5})q + 5$, or $5 > (4 - \sqrt{5})q$, a contradiction as q > 8.

 (β) $|\mathcal{B}| = 3$ If $|\mathcal{P}| = 3$, then t = 3(q-1), so $k = q^2 - 2q + 5$. Hence $q^2 - 2q + 5 > q^2 + (1 - \sqrt{5})q + 5$, or $(3 - \sqrt{5})q < 0$, a contradiction. If $|\mathcal{P}| = 4$, then t = 2(q-1) + q - 2, so $k = q^2 - 2q + 6$. Hence $q^2 + (1 - \sqrt{5})q + 5 < 1$ $q^{2} - 2q + 6$, or $(3 - \sqrt{5})q - 1 < 0$, a contradiction. If $|\mathcal{P}| = 5$, then t = q - 1 + 2(q - 2), so $k = q^2 - 2q + 7$. Hence $q^2 + (1 - \sqrt{5})q + 5 < 1$ $q^2 - 2q + 7$, or $(3 - \sqrt{5})q < 2$, a contradiction. If $|\mathcal{P}| = 6$, then t = 3(q-2), so $k = q^2 - 2q + 8$. Hence $q^2 + (1 - \sqrt{5})q + 5 < q^2 - 2q + 8$, $(\gamma) |\mathcal{B}| = 2$ By Theorem 2.1 we may assume that $k \leq q^2 - q + 3$. If $|\mathcal{P}| = 1$, then t = 2q, so $k = q^2 - q + 2$. If $|\mathcal{P}| = 2$, then t = 2q - 1, so $k = q^2 - q + 3$. If $|\mathcal{P}| = 3$, then t = 2q - 2, so $k = q^2 - q + 4$, a contradiction. If $|\mathcal{P}| = 4$, then t = 2q - 3, so $k = q^2 - q + 5$, a contradiction. If $|\mathcal{P}| = 5$, then t = 2q - 4, so $k = q^2 - q + 6$, a contradiction. Hence the cases $k = q^2 - q + 2$ and $k = q^2 - q + 3$ have still to be considered. On K there are two points P, P_1 such that PP_1 is contained in two planes Π_1, Π_2 Let $P' \in (\Pi_3 \cap K) \setminus \{P, P_1\}$ and let *l* be a tangent of *K* at *P'*. Assume, by way of

or $(3 - \sqrt{5})q < 3$, a contradiction.

$$(\gamma.1) k = q^2 - q + 2$$

intersecting K in just $\{P, P_1\}$, and in q-1 planes $\Pi_3, \Pi_4, ..., \Pi_{q+1}$ intersecting K in a (q+2)-arc.

contradiction, that each plane containing l intersects K in a m-arc with m > 4, so $m \ge q-2$. These *m*-arcs K'_i , with i = 1, 2, ..., q+1, are extendable to (q+2)-arcs C_i . Let $C_i \cap l = \{N_i, P'\}, i = 1, 2, ..., q + 1$. At least two of the points $N_1, N_2, ..., N_{q+1}$ coincide, say $N_1 = N_2$. A plane Π' containing l, but not containing P nor P_1 , intersects each of the (q+2)-arcs $\Pi_i \cap K$, with i = 3, 4, ..., q+1, in either 0 or 2 points; so $|\Pi' \cap K|$ is even. A plane Π' containing l and either P or P_1 intersects K in q points. Hence each plane containing l intersects K in a m-arc, with m even. Counting tangents of K containing N_1 , we obtain at least 2(q-3)+1+q-1=3q-6tangents. So $k \le q^2 + q + 2 - 3q + 6 = q^2 - 2q + 8$, a contradiction for q > 8. We conclude that there is a plane Π' containing l with $|\Pi' \cap K| \leq 4$.

Assume, by way of contradiction, that *l* is contained in at least two planes Π', Π'' with $|\Pi' \cap K| \le 4$, $|\Pi'' \cap K| \le 4$. Then, by a previous argument, these intersections have an even number of points and so $|\Pi' \cap K| \in \{2, 4\}$ and $|\Pi'' \cap K| \in \{2, 4\}$. Now we count the points of K in planes containing l, and obtain $k \leq (q-1)(q-1) + 7 =$ $q^2 - 2q + 8$, a contradiction for q > 8.

Hence *l* is contained in exactly one plane Π' for which $|\Pi' \cap K| \leq 4$. It follows that the roles of P and P' may be interchanged.

Let l' be a second tangent of K containing P', with $l' \not\subset \Pi'$. Let $\tilde{K} = K \cap \Pi_3, \Pi' \cap$ $\tilde{K} = \{P', P_1'\}$. If $P_1' \in \{P, P_1\}$, then $|\Pi' \cap K| = q$, a contradiction. Hence $P_1' \notin I$ $\{P, P_1\}$. With P' there corresponds an incidence structure $(\mathcal{P}', \mathcal{B}')$ of points and

lines. As $k = q^2 - q + 2$, we necessarily have $|\mathcal{P}'| = 1$ and $|\mathcal{B}'| = 2$. Hence $\Pi' \cap K = \{P', P'_1\}$. If $\tilde{\Pi}'$ is the unique plane containing l' and intersecting K in at most 4 points, then $\tilde{\Pi}' \cap K = \{P', P'_1\}$. Also, the roles of P and P'_1 , P' and P'_1 , P and P_1 can be interchanged.

Interchanging Π_3 and Π_i , $i \in \{3, 4, ..., q + 1\}$, and interchanging P' with any point of $(\Pi_i \cap K) \setminus \{P, P_1\}$, we see that K is partitioned into $(q^2 - q + 2)/2$ pairs, where each pair is contained in two planes intersecting K in that pair and in q - 1 planes intersecting K in a (q + 2)-arc. Any other plane contains either 0 or q points of K. Each point Q of K is contained in 2q tangents; the two planes on Q intersecting Kin two points each contain q of these tangents.

Now we count the planes intersecting K in a (q + 2)-arc, and obtain

(27)
$$\frac{q^2 - q + 2}{2} \cdot (q - 1) / \frac{q + 2}{2}.$$

Hence $q + 2|(q^2 - q + 2)(q - 1)$, so q + 2|24, that is $q \in \{2, 4\}$, a contradiction.

(
$$\gamma$$
.2) $k = q^2 - q + 3$

Then on *K* there are points P, P_1 such that PP_1 is contained in two planes Π_1, Π_2 with $\Pi_1 \cap K = \{P, P_1\}, \Pi_2 \cap K = \{P, P_1, P_2\}$, and in q - 1 planes $\Pi_3, \Pi_4, ..., \Pi_{q+1}$ intersecting *K* in a (q + 2)-arc.

Let $P' \in (\Pi_3 \cap K) \setminus \{P, P_1\}$ and let l be a tangent of K at P'. Assume, by way of contradiction, that each plane containing l intersects K in a m-arc with m > 4, so $m \ge q-2$. These m-arcs K'_i , with i = 1, 2, ..., q+1, are extendable to (q+2)-arcs C_i . Let $C_i \cap l = \{N_i, P'\}, i = 1, 2, ..., q+1$. At least two of the points $N_1, N_2, ..., N_{q+1}$ coincide, say $N_1 = N_2$. A plane Π' containing l, but not containing P nor P_1 , intersects each of the (q+2)-arcs $\Pi_i \cap K$, with i = 3, 4, ..., q+1, in either 0 or 2 points. So if $P_2 \notin \Pi'$, then $|\Pi' \cap K|$ is even. A plane Π' containing l and either P or P_1 , but not P_2 , intersects K in q points. Hence q planes containing l intersect K in a m-arc, with m even. Counting tangents of K containing N_1 , we obtain at least 2(q-3) + 1 + q - 2 = 3q - 7 tangents. So $k \le q^2 + q + 2 - 3q + 7 = q^2 - 2q + 9$, a contradiction for q > 8. We conclude that there is a plane Π' containing l with $|\Pi' \cap K| \le 4$.

Assume, by way of contradiction, that l is contained in at least two planes Π', Π'' with $|\Pi' \cap K| \le 4, |\Pi'' \cap K| \le 4$. Now we count the points of K in planes containing l, and obtain $k \le q^2 - 2q + 9$, a contradiction for q > 8.

Hence *l* is contained in exactly one plane Π' for which $|\Pi' \cap K| \le 4$. As all tangents of *K* at P_1 are contained in $\Pi_1 \cup \Pi_2$, it follows that each tangent of *K* at P_1 is contained in exactly one plane intersecting *K* in at most 4 points. Hence all points of $K \setminus \{P_2\}$ play the same role.

Let l' be a second tangent of K containing P', with $l' \notin \Pi'$. Let $K \cap \Pi_3 = \tilde{K}, \Pi' \cap \tilde{K} = \{P', P'_1\}$. If $P'_1 \in \{P, P_1\}$, then $|\Pi' \cap K| \ge q$, a contradiction. Hence $P'_1 \notin \{P, P_1\}$. With P' there corresponds an incidence structure $(\mathcal{P}', \mathcal{B}')$ of points and lines (see first part of (A)).

As $k = q^2 - q + 3$, we necessarily have $|\mathcal{P}'| = 2$ and $|\mathcal{B}'| = 2$. Hence $|\Pi' \cap K| \in \{2, 3\}$ and $\Pi' \cap K \supset \{P', P'_1\}$. Let $\widetilde{\Pi}'$ be the unique plane containing l' and intersecting K in at most 4 points, and let $\widetilde{\Pi}' \cap \widetilde{K} = \{P', \widetilde{P}'_1\}$. If $P'_1 \neq \widetilde{P}'_1$, then by the structure of $(\mathcal{P}', \mathcal{B}')$ we have $\{P'_1, \widetilde{P}'_1\} \subset \Pi'$, clearly a contradiction. Hence $P'_1 = \widetilde{P}'_1$, and so $\{P', P'_1\} \subset \widetilde{\Pi}' \cap K$.

Without loss of generality we may assume that $\Pi' \cap K = \{P', P'_1, P'_2\}$ and $\widetilde{\Pi}' \cap K = \{P', P'_1\}$. As $|\Pi' \cap K|$ is odd, the set $\Pi' \cap K$ has to contain the point P_2 . Consequently $P_2 = P'_2$.

Interchanging Π_3 and Π_i , $i \in \{3, 4, \dots, q+1\}$, and interchanging P' with any point of $(\Pi_i \cap K) \setminus \{P, P_1\}$, we see that $K \setminus \{P_2\}$ is partitioned into $(q^2 - q + 2)/2$ pairs, where each pair is contained in one plane intersecting K in that pair, in one plane intersecting K in that pair together with P_2 , and in q - 1 planes intersecting K in a (q + 2)-arc. Any other plane contains 0, 1, q or q + 1 points of K.

Now we count the planes intersecting K in a (q + 2)-arc and obtain

(28)
$$\frac{q^2 - q + 2}{2} \cdot (q - 1) / \frac{q + 2}{2}.$$

Hence $q + 2|(q^2 - q + 2)(q - 1)$, so q + 2|24, that is $q \in \{2, 4\}$, a final contradiction. We conclude that there is some tangent l_i containing P, with $i \in \{1, 2, ..., t\}$, which is contained in exactly $\theta > 1$ planes having at most 4 points in common with K.

(B) Assume, by way of contradiction, that some tangent l of K is contained in no plane intersecting K in at most 4 points.

Hence each plane Π_i containing l satisfies $|\Pi_i \cap K| \ge q-2$, with i = 1, 2, ..., q+1. By Theorem 1.2 the arc $\Pi_i \cap K$ can be extended to a (q+2)-arc C_i ; let $C_i \cap l = \{N_i, P\}$ with $l \cap K = \{P\}$. For at least two planes Π_i , say Π_1 and Π_2 , we have $N_1 = N_2$.

(B.1) First we prove that N_1 is on a tangent of K not in $\Pi_1 \cup \Pi_2$; clearly N_1 is on at least 2q-5 tangents of K contained in $\Pi_1 \cup \Pi_2$. Assume the contrary. Then for any plane $\Pi_i \notin {\Pi_1, \Pi_2}$, the arc $\Pi_i \cap K$ must have an odd number of points. So $\Pi_i \cap K$ either is a (q-1)-arc or a (q+1)-arc, $i \in {3, 4, ..., q+1}$. Also, $N_i \neq N_1$ for i = 3, 4, ..., q-1. If $\Pi_i \cap K$ is a (q-1)-arc and $C_i \setminus (\Pi_i \cap K) = {N_i, N'_i, N''_i}$, $i \in {3, 4, ..., q+1}$, then $N_1 \in N'_i N''_i$, as otherwise $N_1 N'_i$ and $N_1 N''_i$ are tangents of $\Pi_i \cap K$.

Let *r* be the number of planes Π_i , with $i \neq 1, 2$, for which $\Pi_i \cap K$ is a (q-1)-arc, and let *s* be the number of planes Π_i , with $i \neq 1, 2$, for which $\Pi_i \cap K$ is a (q+1)-arc. The number of points of *K* is at least

(29)
$$r(q-2) + sq + 2(q-3) + 1$$
, with $r + s = q - 1$.

As K is complete, by Theorem 2.1

(30)
$$r(q-2) + (q-1-r)q + 2(q-3) + 1 \le q^2 - q + 3,$$

so

$$(31) r \ge q - 4$$

We may assume that $\Pi_3 \cap K$ is a (q-1)-arc. The number of tangents of K containing N_3 is at least

(32)
$$q-1+2(r-1) \ge q-1+2q-10 = 3q-11.$$

Hence

(33)
$$k \le q^2 + q + 2 - 3q + 11 = q^2 - 2q + 13.$$

So

(34)
$$q^2 - 2q + 13 > q^2 + (1 - \sqrt{5})q + 5,$$

a contradiction for q > 8.

Consequently N_1 is on a tangent l' of K not in $\Pi_1 \cup \Pi_2$.

(B.2) Now we consider all planes Π'_i containing the tangent l', with i = 1, 2, ..., q+1. We will show that:

(a) For each plane Π'_i such that $|\Pi'_i \cap K| \ge q-2$ the point N_1 does not extend the arc $\Pi'_i \cap K$.

(b) For each *i* we have $|\Pi'_i \cap K| \ge q-2$.

(a) Let $|\Pi_1 \cap K| = \alpha, q-2 \le \alpha \le q+1, |\Pi_2 \cap K| = \beta, q-2 \le \beta \le q+1$. Then N_1 is contained in at least $\alpha + \beta$ tangents of K. Now we consider all planes Π'_i containing the tangent l', with i = 1, 2, ..., q+1. Assume, by way of contradiction, that $m = |\Pi'_i \cap K| \ge q-2$ and that the (q+2)-arc C'_i extending $\Pi'_i \cap K$ intersects l' in $\{N_1, P'\}$, with $l' \cap K = \{P'\}, i \in \{1, 2, ..., q+1\}$. Then the number of tangents of K containing N_1 is at least

(35)
$$\alpha + \beta + m - 3 \ge 2q - 4 + m - 3 \ge 3q - 9.$$

Hence

(36)
$$k \le q^2 + q + 2 - 3q + 9 = q^2 - 2q + 11.$$

So $q^2-2q+11 > q^2+(1-\sqrt{5})q+5$, a contradiction. Consequently for $|\Pi'_i \cap K| \ge q-2$ we have $N_1 \notin C'_i, i \in \{1, 2, ..., q+1\}$.

(b) Next, assume by way of contradiction that for at least one plane Π'_i containing l', say Π'_1 , we have $|\Pi'_1 \cap K| \le 4$. Let Π'_2 be the plane ll'. Now we count the points of K in the planes Π'_i , with i = 1, 2, ..., q + 1. Let

 θ_1 be the number of planes $\Pi'_i, i \in \{3, 4, ..., q+1\}$, containing a tangent of $\Pi_1 \cap K$ through N_1 and a tangent of $\Pi_2 \cap K$ through N_1 ,

 θ_2 be the number of planes $\Pi'_i, i \in \{3, 4, ..., q+1\}$, containing a tangent of $\Pi_1 \cap K$ through N_1 , but no tangent of $\Pi_2 \cap K$ through N_1 ,

 θ_3 be the number of planes $\Pi'_i, i \in \{3, 4, ..., q+1\}$, containing a tangent of $\Pi_2 \cap K$ through N_1 , but no tangent of $\Pi_1 \cap K$ through N_1 ,

 θ_4 be the number of planes $\Pi'_i, i \in \{3, 4, ..., q+1\}$, containing no one of the tangents of $\Pi_1 \cap K$ or $\Pi_2 \cap K$ through N_1 .

Then, as $N_1 \notin C'_i$ for $|\Pi'_i \cap K| \ge q-2$, we have (37)

$$k \leq 4+q-1+\theta_1(q-2)+\theta_2(q-1)+\theta_3(q-1)+\theta_4q, \text{with } 2+\theta_1+\theta_2+\theta_3+\theta_4=q+1$$

Hence

(38)
$$k \le q(\theta_1 + \theta_2 + \theta_3 + \theta_4) - (2\theta_1 + \theta_2 + \theta_3) + q + 3,$$

so

(39)
$$k \le q(q-1) - (2\theta_1 + \theta_2 + \theta_3) + q + 3.$$

Now we have

 $\theta_1+\theta_2\geq |\Pi_1\cap K|-2\geq q-4,$

$$\label{eq:rescaled_states} \begin{split} \theta_1 + \theta_3 \geq |\Pi_2 \cap K| - 2 \geq q - 4. \\ \text{Hence} \end{split}$$

(40)
$$k \le q(q-1) - 2q + 8 + q + 3 = q^2 - 2q + 11.$$

So $q^2 - 2q + 11 > q^2 + (1 - \sqrt{5})q + 5$, a contradiction.

Hence no plane Π'_i containing l' intersects K in a m-arc, with $m \le 4, 1 \le i \le q + 1$. Consequently, for each plane Π'_i containing l' we have $|\Pi'_i \cap K| \ge q - 2$. Also, we know that the (q + 2)-arc C'_i extending $\Pi'_i \cap K$ does not contain N_1 , with i = 1, 2, ..., q + 1.

(B.3) A final contradiction will be obtained by considering the possible intersections $\Pi'_i \cap K, i = 1, 2, ..., q + 1$. It is easy to see that at least q - 6 planes Π'_i containing l' intersect K in a m-arc having at least 3 tangents containing N_1 ; these planes are the planes containing l' passing through distinct tangents of $\Pi_1 \cap K$ and $\Pi_2 \cap K$ containing N_1 . For any such plane Π'_i the arc $\Pi'_i \cap K$ is either a (q - 1)-arc or a (q - 2)-arc. Let

 θ'_1 be the number of planes Π'_i , with $\Pi'_i \neq ll'$, containing a tangent of $\Pi_1 \cap K$ through N_1 , a tangent of $\Pi_2 \cap K$ through N_1 , where $\Pi'_i \cap K$ is a (q-1)-arc,

 θ'_2 be the number of planes Π'_i , with $\Pi'_i \neq ll'$, containing a tangent of $\Pi_1 \cap K$ through N_1 , a tangent of $\Pi_2 \cap K$ through N_1 , where $\Pi'_i \cap K$ is a (q-2)-arc.

Let $C'_i \cap l' = \{P', N'_i\}$, with $l' \cap K = \{P'\}$ and C'_i the (q+2)-arc extending $\Pi'_i \cap K, i = 1, 2, ..., q+1$. Then $N'_i \neq N_1, i = 1, 2, ..., q+1$. We may assume that $N'_1 = N'_2$. Assume, by way of contradiction, that $N'_1 = N'_2 = N'_i$, with $i \in \{3, 4, ..., q+1\}$. Then N'_1 is on at least 3(q-3) + 1 tangents of K. So

(41)
$$k \le q^2 + q + 2 - 3q + 8 = q^2 - 2q + 10.$$

Hence

(42)
$$q^2 + (1 - \sqrt{5})q + 5 < q^2 - 2q + 10,$$

that is,

(43)
$$(3 - \sqrt{5})q < 5$$

clearly a contradiction. Hence we may assume that $N'_1 = N'_2, N'_3 = N'_4, N'_1 \neq N'_3, N'_i \notin \{N'_1, N'_3\}$ for i = 5, 6, ..., q + 1. At least $\theta'_1 - 4$ of the arcs $\Pi'_5 \cap K, \Pi'_6 \cap K, ..., \Pi'_{q+1} \cap K$ are (q-1)-arcs, say $\Pi'_5 \cap K, \Pi'_6 \cap K, ..., \Pi'_{\theta'_1} \cap K$ are (q-1)-arcs. The number of tangents of $\Pi'_i \cap K$ containing N'_j , with $j \in \{1, 3\}$, is either 1 or 3, with $i = 5, 6, ..., \theta'_1$; if N'_j is contained in one tangent of $\Pi'_i \cap K$, then N'_u is contained in 3 tangents of $\Pi'_i \cap K$, with $\{j, u\} = \{1, 3\}$ and $i \in \{5, 6, ..., \theta'_1\}$. So we may assume that at least $(\theta'_1 - 4)/2$ of the (q - 1)-arcs $\Pi'_i \cap K, i = 5, 6, ..., \theta'_1$, have 3 tangents containing N'_1 . Counting the tangents of K through N'_1 , we obtain at least

(44)
$$1 + (\theta'_1 - 4) + (\theta'_2 - 2) + 2(q - 3)$$

tangents. As $\theta'_1 + \theta'_2 \ge q - 6$, this number of tangents is at least 1 + q - 6 - 6 + 2q - 6 = 3q - 17. Hence

(45)
$$k \le q^2 + q + 2 - 3q + 17 = q^2 - 2q + 19.$$

So

(46)
$$q^2 + (1 - \sqrt{5})q + 5 < q^2 - 2q + 19,$$

or

(47)
$$(3 - \sqrt{5})q < 14$$

a contradiction for q > 16.

If at least one of the arcs $\Pi'_1 \cap K, \Pi'_2 \cap K$ is a *m*-arc with m > q - 2, then (44) becomes

(48)
$$1 + (\theta'_1 - 4) + (\theta'_2 - 1) + (q - 3) + (q - 2),$$

which is at least 3q - 15. Hence $k \le q^2 - 2q + 17$. For q = 16 this gives $k \le 241$. But for q = 16 the inequality $k > q^2 + (1 - \sqrt{5})q + 5$ yields $k \ge 242$, a contradiction.

Finally we assume that $\Pi'_1 \cap K$ and $\Pi'_2 \cap K$ are (q-2)-arcs. Then at least $\theta'_1 - 2$ of the arcs $\Pi'_i \cap K$, with i = 5, 6, ..., q+1, are (q-1)-arcs, say $\Pi'_5 \cap K, \Pi'_6 \cap K, ..., \Pi'_{\theta'_1+2} \cap K$. So at least $(\theta'_1 - 2)/2$ of the (q-1)-arcs $\Pi'_i \cap K$, with $i = 5, 6, ..., \theta'_1 + 2$, have 3 tangents containing either N'_1 or N'_3 . First, assume that this is the case for N'_3 . If at least one of the arcs $\Pi'_3 \cap K, \Pi'_4 \cap K$ is a *m*-arc with m > q - 2, then the number of tangents of *K* containing N'_3 is at least

(49)
$$1 + (\theta'_1 - 2) + (\theta'_2 - 1) + (q - 3) + (q - 2),$$

which is at least 3q - 13. Hence $k \le q^2 - 2q + 15$, and so $q^2 + (1 - \sqrt{5})q + 5 < q^2 - 2q + 15$, that is, $(3 - \sqrt{5})q < 10$, a contradiction. Hence the arcs $\Pi'_3 \cap K$ and $\Pi'_4 \cap K$ are (q-2)-arcs. Then the number of tangents of K containing N'_3 is at least

(50)
$$1 + \theta'_1 + (\theta'_2 - 2) + 2(q - 3),$$

which is at least 3q - 13. This yields again a contradiction. Consequently at least $(\theta'_1 - 2)/2$ of the (q - 1)-arcs $\Pi'_i \cap K$, with $i = 5, 6, ..., \theta'_1 + 2$, have 3 tangents containing N'_1 . But then in (44) $\theta'_1 - 4$ may be replaced by $\theta'_1 - 2$, yielding at least 3q - 15 tangents of K containing N'_1 . Hence $k \le q^2 - 2q + 17$, which is a final contradiction.

We conclude that each tangent l of K is contained in at least one plane intersecting K in at most four points.

(C) Assume, by way of contradiction, that there is a tangent l of K which is contained in at least two planes Π_1, Π_2 intersecting K in a *m*-arc, with $m \le 4$.

Assume that $l \cap K = \{P\}$ and that $\Pi_1 \cup \Pi_2$ contains $2q + \delta$ tangents of K through P. We have $-5 \le \delta \le 1$.

(C.1) Here we will show that $2q + \delta$ is the total number of tangents of K containing P; as a corollary it will follow that $k \in \{q^2 - q + 1, q^2 - q + 2, q^2 - q + 3\}$. Assume, by way of contradiction, that there is a tangent l' of K containing P with $l' \not\subset \Pi_1 \cup \Pi_2$. If $|ll' \cap K| \le 4$, then the number of tangents of K containing P is at least $2q + \delta + q - 3 = 3q + \delta - 3 \ge 3q - 8$, so $k \le q^2 + q + 2 - 3q + 8 = q^2 - 2q + 10$. Hence

(51)
$$q^2 + (1 - \sqrt{5})q + 5 < q^2 - 2q + 10,$$

or $(3 - \sqrt{5})q < 5$, a contradiction. Now we consider all planes containing l'. By (B) at least one of these planes intersects K in a m-arc, with $m \le 4$. If at least two planes containing l' intersect K in at most 4 points, then P is contained in at least

2q - 5 + 2(q - 5) + 1 = 4q - 14 tangents of K. Hence $k \le q^2 + q + 2 - 4q + 14 = q^2 - 3q + 16$, so

(52)
$$q^2 + (1 - \sqrt{5})q + 5 < q^2 - 3q + 16,$$

that is, $(4 - \sqrt{5})q < 11$, clearly a contradiction. Consequently exactly one plane Π' containing l' intersects K in at most 4 points. Now we count the points of K in the planes containing l'. Let

 θ_1 be the number of planes , distinct from ll' and Π' , containing l', containing a tangent of K in Π_1 and containing a tangent of K in Π_2 ,

 θ_2 be the number of planes containing l', distinct from Π' , containing a tangent of K in Π_1 and containing no tangent of K in Π_2 ,

 θ_3 be the number of planes containing l', distinct from Π' , containing a tangent of K in Π_2 and containing no tangent of K in Π_1 ,

 θ_4 be the number of planes , distinct from $\Pi',$ containing l' and containing no tangent of K in Π_1 or $\Pi_2.$

Then

(53)
$$k \le 1 + (q-1) + \theta_1(q-2) + \theta_2(q-1) + \theta_3(q-1) + \theta_4q + 3$$

with

(54)
$$\theta_1 + \theta_2 + \theta_3 + \theta_4 = q - 1 \text{ and } \theta_2 + \theta_3 + 2\theta_4 \le 0$$

So

(55)
$$k \le q+3+(q-1-\theta_2-\theta_3-\theta_4)(q-2)+\theta_2(q-1)+\theta_3(q-1)+\theta_4q$$
,

that is,

(56)
$$k \le q^2 - 2q + 5 + (\theta_2 + \theta_3 + 2\theta_4),$$

hence

(57)
$$k \le q^2 - 2q + 5 + 6 = q^2 - 2q + 11.$$

Consequently

(58)
$$q^2 + (1 - \sqrt{5})q + 5 < q^2 - 2q + 11$$

or $(3 - \sqrt{5})q < 6$, a contradiction.

It follows that $2q + \delta$ is the total number of tangents of K containing P and so $k = q^2 + q + 2 - 2q - \delta = q^2 - q + 2 - \delta$. As $k \le q^2 - q + 3$ by Theorem 2.1, we have $-1 \le \delta \le 1$.

(C.2) Some further properties of *K*. Let l'' be any tangent of *K* not containing *P* and let $K \cap l'' = \{P'\}$. By (B) l'' is contained in a plane Π'' with $|\Pi'' \cap K| \leq 4$. There is a tangent *n* of *K* at *P'* not contained in Π'' . The tangent *n* is contained in a plane ρ with $|\rho \cap K| \leq 4$. Let $2q + \delta'$ be the number of tangents of *K* at *P'* in $\rho \cup \Pi''$. Then $\delta' \leq \delta$ and if $\rho \cap \Pi''$ is a tangent, then by the foregoing section we have $\delta' = \delta$. Assume, by way of contradiction, that $\rho \cap \Pi''$ is not a tangent of *K* and that $\delta' < \delta$. Then there is a tangent *n'* of *K* at *P'* not contained in $\rho \cup \Pi''$. The tangent *n* is contained in a plane ρ' with $|\rho' \cap K| \leq 4$. If $\rho \cap \rho'$ is a tangent of *K*, then the $2q + \delta$ tangents of *K* at *P'* are contained in $\rho \cup \rho'$, a contradiction. So $\rho \cap \rho'$ is not a tangent; similarly $\rho' \cap \Pi''$ is not a tangent. Hence the number of tangents of *K* at *P'* is at least 3(q - 2), so $2q + \delta \geq 3q - 6$, hence $\delta \geq q - 6$, a contradiction. We conclude that $\delta' = \delta$ and that all tangents of *K* at *P'* are contained in $\rho \cup \Pi''$.

Hence, given any point $Q \in K$ there are two planes α_1 and α_2 containing all tangents of K at Q; also $|\alpha_1 \cap K| \leq 4$ and $|\alpha_2 \cap K| \leq 4$. These planes are uniquely defined by Q, and so is $\alpha_1 \cap \alpha_2$. By Section (A) the line $\alpha_1 \cap \alpha_2$ is a tangent of K at Q. Let $\widetilde{\Pi}$ be any plane containing Q, with $\widetilde{\Pi} \notin {\alpha_1, \alpha_2}$. Then $\widetilde{\Pi} \cap K$ contains at most two tangents at Q, so $|\widetilde{\Pi} \cap K| \geq q$. It follows that K contains no (q-2)-arcs and no (q-1)-arcs.

Notice that $|\alpha_1 \cap K| + |\alpha_2 \cap K| + \delta = 3$ and remind that $-1 \le \delta \le 1$.

Let $\widetilde{\Pi}$ be a plane containing Q, with $\widetilde{\Pi} \notin \{\alpha_1, \alpha_2\}$. The arc $\widetilde{\Pi} \cap K$ contains always at least one tangent of K at Q, except when $\delta = -1, k = q^2 - q + 3, |\alpha_1 \cap K| = |\alpha_2 \cap K| = 2$. So if $k \in \{q^2 - q + 1, q^2 - q + 2\}$ and if $k = q^2 - q + 3$ with $|\alpha_1 \cap K| = |\alpha_2 \cap K| + 2 = 3$ or $|\alpha_2 \cap K| = |\alpha_1 \cap K| + 2 = 3$, then $\widetilde{\Pi} \cap K$ is not a (q+2)-arc. If $|\alpha_1 \cap K| = |\alpha_2 \cap K| = 2, k = q^2 - q + 3$, then there is excactly one plane $\widetilde{\Pi}$ containing Q for which $\widetilde{\Pi} \cap K$ is a (q+2)-arc.

(C.3) $k = q^2 - q + 1$

Then $\overline{\delta = 1}$ and $|\overline{\Pi_1} \cap K| = |\Pi_2 \cap K| = 1$. Let $U_1, U_2 \in K$, with $U_1 \neq U_2$, and let ξ_1, ξ_2 be the planes containing U_1 intersecting K in at most 4 points. If $U_2 \in \xi_1 \cup \xi_2$, then $\delta \leq 0$, a contradiction. Hence $U_2 \notin \xi_1 \cup \xi_2$. Consequently any plane containing the line U_1U_2 has more than 4 points in common with K.

Now we count the points of K in planes containing the line U_1U_2 . Let θ_1 be the number of planes containing U_1U_2 intersecting K in a q-arc, and let θ_2 be the number of planes containing U_1U_2 intersecting K in a (q + 1)-arc. Then

(59)
$$\theta_1(q-2) + \theta_2(q-1) + 2 = q^2 - q + 1$$
, with $\theta_1 + \theta_2 = q + 1$

So

(60)
$$\theta_1(q-2) + (q+1-\theta_1)(q-1) + 2 = q^2 - q + 1,$$

that is $\theta_1 = q$ and $\theta_2 = 1$.

Now we count the number of (q + 1)-arcs on K, and obtain

(61)
$$\frac{(q^2 - q + 1)(q^2 - q)}{(q + 1)q}$$

So $q + 1|(q^2 - q + 1)(q - 1)$, so q + 1|6, a contradiction.

(C.4)
$$k = q^2 - q + 2$$

Then $\overline{\delta = 0}$ and $\{|\Pi_1 \cap K|, |\Pi_2 \cap K|\} = \{1, 2\}$. Let Q be any point of K and let l_Q be the tangent of K which is the intersection of the two planes α_1 and α_2 containing the 2q tangents of K at Q. Let $(\alpha_1 \cup \alpha_2) \cap K = \{Q, Q'\}$. Starting with Q' and $l_{Q'}$, we find the same pair $\{Q', Q\}$. It follows that K is partitioned into pairs of type $\{Q, Q'\}$. Let \mathcal{L} be the set of these $(q^2 - q + 2)/2$ pairs.

Let $\{Q, Q'\} \in \mathcal{L}$, let α_1 and α_2 be the planes containing the 2q tangents of K at Q, and assume that $Q' \in \alpha_1$. Then $\alpha_1 = l_Q l_{Q'}$. Let Π be a plane containing QQ', distinct from α_1 . As Π contains a tangent of K at Q, we have $|\Pi \cap K| \leq q + 1$. Counting the points of K in the planes containing QQ', we obtain $|\Pi \cap K| = q + 1$. By an easy counting we see that the planes containing l_Q , but distinct from α_1 and α_2 , intersect K in (q+1)-arcs. This way there arise q-1 (q+1)-arcs $K_1, K_2, ..., K_{q-1}$, having kernels $N_1, N_2, ..., N_{q-1}$ on $l_Q \setminus \{Q\}$. Assume, by way of contradiction, that

 $N_i = N_j, i \neq j$ and $i, j \in \{1, 2, ..., q - 1\}$. Then N_i is on at least 2q + 1 tangents of K, hence $k \leq q^2 - q + 1$, a contradiction. Let $l_Q \setminus \{N_1, N_2, ..., N_{q-1}\} = N_Q$.

Assume, by way of contradiction, that $l_Q \cap l_{Q'} \neq N_Q$. Let $l_Q \cap l_{Q'} = N_i, i \in \{1, 2, ..., q-1\}$, and let $R \in K_i \setminus \{Q\}$. Then $l_{Q'}R \cap K$ is a (q+1)-arc with kernel N_i . Hence N_i is on at least q^2+2 tangents, a contradiction. Consequently $l_Q \cap l_{Q'} = N_Q$; similarly, $l_Q \cap l_{Q'} = N_{Q'}$.

Assume, by way of contradiction, that $l_Q \cap l_S \neq \emptyset$, with $Q \neq S$ and $\{Q, S\} \notin \mathcal{L}$. Let $\{Q, Q'\}$ and $\{S, S'\}$ be elements of \mathcal{L} . Now we count the number of tangents of K containing $l_Q \cap l_S = M$. The arc $l_Q l_S \cap K$ is a (q + 1)-arc with kernel M, so $l_Q l_S$ contains q + 1 tangents of K through M; the arc $l_Q S' \cap K$ is a (q + 1)-arc, and as the line MS' of the plane $l_S S'$ is a tangent of K, the point M is the kernel of $l_Q S' \cap K$, so $l_Q S'$ contains q + 1 tangents of K through M; there M is contained in more than 2q tangents of K, clearly a contradiction. It follows that if $l_Q \cap l_S \neq \emptyset$, with $Q \neq S$, then $\{Q, S\} \in \mathcal{L}$.

Let $\{Q, S\} \notin \mathcal{L}$, with Q and S distinct points of K. Then $l_Q \cap l_S = \emptyset$. Now we count the points of K in the planes containing the line QS. Let θ_1 be the number of planes which contain QS and intersect K in a q-arc, and let θ_2 be the number of planes which contain QS and intersect K in a (q + 1)-arc. Hence

(62)
$$\theta_1(q-2) + \theta_2(q-1) + 2 = q^2 - q + 2$$
, with $\theta_1 + \theta_2 = q + 1$.

So $\theta_1 = q - 1$ and $\theta_2 = 2$. The 2 planes containing QS and intersecting K in a (q+1)-arc are the planes l_QS and l_SQ .

Let $\{Q, S\} \in \mathcal{L}$ and let $l_Q \cap l_S = N$. Then N is kernel of no one of the q-1 (q+1)-arcs defined by planes containing the tangent l_Q and of no one of the q-1 (q+1)-arcs defined by planes containing the tangent l_S . So for any line $n \notin \{l_Q, l_S\}$ containing N we have $|n \cap K| \in \{0, 2\}$. Let $n \cap K = \{U, U'\}$.

First, assume that $\{U, U'\} \notin \mathcal{L}$. Then $|l_U U' \cap K| = |l_{U'}U \cap K| = q + 1$. As $|l_Q U \cap K| = |l_S U \cap K| = q+1$, the planes $l_Q U$ and $l_S U$ are the two planes containing UU' and intersecting K in a (q + 1)-arc. Hence $\{l_Q U, l_S U\} = \{l_U U', l_{U'}U\}$. So we may assume that $l_Q U = l_U U'$ and $l_S U = l_{U'}U$. Consequently $l_Q \cap l_U \neq \emptyset$ and $l_S \cap l_{U'} \neq \emptyset$, that is, $\{Q, U\} \in \mathcal{L}$ and $\{S, U'\} \in \mathcal{L}$. Hence $|l_Q l_U \cap K| = |l_S l_{U'} \cap K| = 2$, clearly a contradiction as $Q, U, U' \in l_Q l_U$.

It follows that $\{U, U'\} \in \mathcal{L}$. So for any pair $\{T, T'\} \in \mathcal{L}$, with $\{T, T'\} \neq \{Q, S\}$, we have $N \in TT'$. Let n', n'' be distinct lines containing N with $n' \neq n \neq n''$ and $n', n'' \notin \{l_Q, l_S\}$. Assume also that $n' \cap K = \{V, V'\}$ and $n'' \cap K = \{W, W'\}$. Then $\{V, V'\} \in \mathcal{L}$ and $\{W, W'\} \in \mathcal{L}$. By the foregoing the lines VV', WW', QS contain N, clearly a contradiction.

(C.5) $k = q^2 - q + 3$

Let P be any point of K and let l_P be the tangent of K which is the intersection of the two planes Π_1, Π_2 containing the 2q - 1 tangents of K at P. Two cases are considered.

(C.5.1) $\Pi_1 \cap K = \{P, P', P''\}, \Pi_2 \cap K = \{P\}$

Then K contains no plane (q + 2)-arcs containing P. Let l be a tangent of K at P, with l in Π_1 and $l \neq l_P$. We count the points of K in planes containing l. Let θ_1 be

the number of planes containing l and intersecting K in a (q+1)-arc, and let θ_2 be the number of planes containing l and intersecting K in a q-arc. Then

(63)
$$\theta_1 q + \theta_2 (q-1) + 3 = q^2 - q + 3$$
, with $\theta_1 + \theta_2 = q$.

Hence $\theta_1 = 0$ and $\theta_2 = q$. Let $\widetilde{\Pi}_1, \widetilde{\Pi}_2, ..., \widetilde{\Pi}_q$ be the planes containing l and intersecting K in a q-arc, let $\widetilde{\Pi}_i \cap K = K_i$, let C_i be the (q+2)-arc extending K_i and let $C_i \cap l = \{P, N_i\}$, with i = 1, 2, ..., q. Assume that for some $i \in \{1, 2, ..., q\}$ we have $N_i \notin P'P''$. The number of tangents of K containing N_i is at least

(64)
$$q + (q-1) + 2 = 2q + 1,$$

a contradiction. Hence $N_1 = N_2 = \cdots = N_q = l \cap P'P''$. Then the number of tangents of K containing N_1 is at least

(65)
$$q(q-1) + 1 = q^2 - q + 1,$$

again a contradiction.

(C.5.2) $\Pi_1 \cap K = \{P, P'\}, \Pi_2 \cap K = \{P, P''\}$ By (C.5.1), for each point $Q \in K$ the two planes α_1, α_2 through Q intersecting K

in at most four points, intersect *K* in exactly two points. If $\alpha_1 \cap K = \{Q, Q'\}$ and $\alpha_2 \cap K = \{Q, Q''\}$, then the plane QQ'Q'' is the only plane on *Q* intersecting *K* in a (q+2)-arc. Hence the (q+2)-arcs on *K* partition *K*. So

(66)
$$q+2|q^2-q+3$$
, so $q+2|q-7$, so $q+2|9$,

a contradiction.

Now the theorem is proved.

4. COROLLARIES

We are grateful to T. Szőnyi for bringing reference [12] to our attention which, in combination with Theorem 1.6, gives the following considerable improvement of the bound in Theorem 1.6; see also Remark 4.4.

Theorem 4.1.

(67)
$$m'_2(3,q) < q^2 - 2q + 3\sqrt{q} + 2, q \text{ even}, q \ge 2048.$$

Proof. In [12] it is proved that there does not exist a complete *k*-cap in PG(3, q), q even, $q \ge 64$, for which

(68)
$$k \in [q^2 - (a-1)q + a\sqrt{q} + 2 - a + \frac{a(a-1)}{2}, q^2 - (a-2)q - a^2\sqrt{q}]$$

where *a* is an integer which satisfies

(69)
$$2 \le a \le \frac{-2\sqrt{q} + 3 + \sqrt{16q\sqrt{q} + 12q - 44\sqrt{q} - 7}}{4\sqrt{q} + 2}.$$

Putting a = 3, the desired result immediately follows from Theorem 1.6.

Theorem 4.2. (i) $m_2(4,4) = 41$, (ii) $m_2(4,8) \le 479$, (iii) $m_2(4,q) < q^3 - q^2 + 2\sqrt{5}q - 8$, q even, q > 8.

Proof. For q = 4, see [5]. Assume, by way of contradiction, that K is a k-cap of $\mathbf{PG}(4, 8)$ with k > 479, or a k-cap of $\mathbf{PG}(4, q)$, q even and q > 8, with $k > q^3 - q^2 + 2\sqrt{5}q - 8$. At each of its points the cap K has $t = q^3 + q^2 + q + 2 - k$ tangents. Hence we assume that t < 107 for q = 8 and $t < 2q^2 + (1 - 2\sqrt{5})q + 10$ for q > 8. We obtain a contradiction in several stages.

I K contains no plane q-arc

Similar to the reasoning in Section I in the proof of Theorem 6.27 in [9].

II There exists no solid δ such that $q^2 + 1 > |\delta \cap K| > q^2 + (1 - \sqrt{5})q + 5$ Suppose δ exists. Let $\delta \cap K = K'$. Then K' can be completed to an ovoid O of δ , by Theorem 3.1. Let $N \in O \setminus K'$ and let $N' \in K'$. Consider the q + 1 planes of δ through NN'. Since each of these planes meets O in a (q + 1)-arc, each plane meets K' in at most a q-arc. By I, there is no q-arc on K; so each plane meets K' in at most a (q - 1)-arc.

Assume, by way of contradiction, that none of these intersections is a (q-1)-arc. Therefore a count of the points on K' gives

(70)
$$|K'| \le (q+1)(q-3) + 1$$

whence

(71) $q^2 + (1 - \sqrt{5})q + 5 < q^2 - 2q - 2,$

SO

(72)
$$(3 - \sqrt{5})q + 7 < 0$$

a contradiction.

So we may assume that for one of the planes δ through NN', say Π , we have $|\Pi \cap K'| = q - 1$. Now we consider all solids of $\mathbf{PG}(4, q)$ containing the plane Π . Let θ be the number of solids Π' for which $|\Pi' \cap K| > q^2 + (1 - \sqrt{5})q + 5$, so $q + 1 - \theta$ is the number of solids Π'' for which $|\Pi'' \cap K| < q^2 + (1 - \sqrt{5})q + 5$. We have $\theta \ge 1$.

First, assume $\theta \ge 2$. So there are at least two solids Π'_1, Π'_2 containing Π such that $|\Pi'_i \cap K| > q^2 + (1 - \sqrt{5})q + 5$, with i = 1, 2. By Theorem 3.1 $\Pi'_i \cap K$ can be completed to an ovoid O_i of $\Pi'_i, i = 1, 2$. So $O_i \cap \Pi$ is a (q+1)-arc $(\Pi \cap K') \cup \{N'_i, N''_i\}, i = 1, 2$. Since $\Pi \cap K'$ can be contained in no more than three (q + 1)-arcs, contained in a common (q + 2)-arc, we have $|\{N'_1, N''_1\} \cap \{N'_2, N''_2\}| \ge 1$. Assume $N'_1 = N'_2$. So the number of tangents of K containing N'_1 is at least

(73)
$$2(q^2 + (1 - \sqrt{5})q + 5 - q + 1) + q - 1,$$

SO

(74)
$$2q^2 + (1 - 2\sqrt{5})q + 11,$$

a contradiction.

Finally, assume that $\theta = 1$. Counting the points of K in the q + 1 solids, we obtain

(75)
$$k < q(q^2 + (1 - \sqrt{5})q + 5 - q + 1) + (q^2 - 1),$$

that is,

(76)
$$k < q^3 + (1 - \sqrt{5})q^2 + 6q - 1.$$

Hence, for q > 8,

(77)
$$q^3 - q^2 + 2\sqrt{5}q - 8 < q^3 + (1 - \sqrt{5})q^2 + 6q - 1,$$

(78)
$$0 < (2 - \sqrt{5})q^2 + (6 - 2\sqrt{5})q + 7,$$

a contradiction. For q = 8, there arises 479 < 479, a contradiction.

III For a point N not in K, there do not exist planes Π_1 and Π_2 such that $\Pi_1 \cap \Pi_2 = N$ and such that $\Pi_i \cap K$ is a (q+1)-arc with nucleus N for i = 1, 2Similar to the reasoning in Section III in the proof of Theorem 6.27 in [9].

IV The tangents through any point Q off K lie in a solid Similar to the reasoning in Section IV in the proof of Theorem 6.27 in [9].

V The final contradiction is obtained by counting the tangents of *K* Similar to the reasoning in Section V in the proof of Theorem 6.27 in [9].

Theorem 4.3. For q even, q > 2, $n \ge 5$,

(i) $m_2(n,4) \le \frac{118}{3} \cdot 4^{n-4} + \frac{5}{3}$ (ii) $m_2(n,8) \le 478 \cdot 8^{n-4} - 2(8^{n-5} + \dots + 8 + 1) + 1$, (iii) $m_2(n,q) < q^{n-1} - q^{n-2} + 2\sqrt{5}q^{n-3} - 9q^{n-4} - 2(q^{n-5} + \dots + q + 1) + 1$, for q > 8.

Proof This follows directly from Theorem 1.1, Theorem 4.2 and Theorem 6.14(ii) in [9]. ■

Remark 4.4. The bound in Theorem 4.1 leads to considerable improvements of Theorem 4.2 and Theorem 4.3. We just mention these bounds, but the proofs are the theme of a subsequent paper.

For q even, $q \ge 2048$,

(79)
$$m_2(4,q) < q^3 - 2q^2 + 3q\sqrt{q} + 8q - 9\sqrt{q} - 6$$

For q even, $q \ge 2048$, $n \ge 5$,

(80)
$$m_2(n,q) < q^{n-1} - 2q^{n-2} + 3q^{n-3}\sqrt{q} + 8q^{n-3} - 9q^{n-4}\sqrt{q} - 7q^{n-4} - 2(q^{n-5} + \dots + q + 1) + 1.$$

5. Remark

The bound in the MAIN THEOREM is better than the bound of Chao, see [3]. In 2014 Cao and Ou, see [2], published the bound $k < q^2 - 2q + 8$ (*q* even and $q \ge 128$), which is better than ours. I did not follow some reasoning in their proof, so I sent two mails to one of the authors explaining why I think Section 1.3 of the proof is not correct. Unfortunately I never received an answer.

J. A. THAS GHENT UNIVERSITY

References

- [1] R. C. Bose, Mathematicial theory of the symmetrical factorial design, $Sankhy\bar{a}$ 8 (1947), 107 166.
- [2] J. M. Cao and L. Ou, Caps in $\mathbf{PG}(n,q)$ with q even and $n \ge 3$, Discrete Math. 326 (2014), 61 65.
- [3] J. M. Chao, On the size of a cap in $\mathbf{PG}(n, q)$ with q even and $n \ge 3$, Geom. Dedicata 74 (1999), 91 94.
- [4] A. A. Davydov and L. M. Tombak, Quasiperfect linear binary codes with distance 4 and complete caps in projective geometry, *Problems Inform. Transmission* 25 (1990), 265 - 275.
- [5] Y. Edel and J. Bierbrauer, 41 is the largest size of a cap in PG(4, 4), *Des. Codes Cryptogr.* 16 (1999), 151 160.
- [6] J. W. P. Hirschfeld, *Finite Projective Spaces of Three Dimensions*, Oxford University Press, Oxford, 1985, x + 316 pp.
- [7] J. W. P. Hirschfeld, Projective Geometries over Finite Fields, Second Edition, Oxford University Press, Oxford, 1998, xiv + 555 pp.
- [8] J. W. P. Hirschfeld and J. A. Thas, Linear independence in finite spaces, *Geom. Dedicata* 23 (1987), 15 - 31.
- [9] J. W. P. Hirschfeld and J. A. Thas, *General Galois Geometries*, Second Edition, Springer, London, 2016, xvi + 409 pp.
- [10] B. Qvist, Some remarks concerning curves of the second degree in a finite plane, Ann. Acad. Sci. Fenn. Ser. A 134 (1952), 27 pp.
- [11] B. Segre, Introduction to Galois geometries, *Atti Accad. Naz. Lincei Mem.* 8 (1987), 133 236 (edited by J. W. P. Hirschfeld).
- [12] L. Storme and T. Szőnyi, Caps in $\mathbf{PG}(n,q)$, q even, $n \ge 3$, Geom. Dedicata 45 (1993), 163 169.
- [13] J. A. Thas, Complete arcs and algebraic curves in $\mathbf{PG}(2,q)$, J. Algebra 106 (1987), 451 464.

GHENT UNIVERSITY, DEPARTMENT OF MATHEMATICS, KRIJGSLAAN 281, S22, B-9000 GHENT, BELGIUM *E-mail address*: jat@cage.ugent.be