ON k-CAPS IN PG (n, q), WITH q EVEN AND $n \geq 3$

J. A. THAS

GHENT UNIVERSITY

Abstract

Let $m_{2}(n, q)$ be the maximum size of k for which there exists a k-cap in $\mathbf{P G}(n, q)$, and let $m_{2}^{\prime}(n, q)$ be the second largest value of k for which there exists a complete k-cap in $\mathbf{P G}(n, q)$. In this paper Chao's upper bound $q^{2}-q+5$ for $m_{2}^{\prime}(3, q), q$ even and $q \geq 8$, will be improved. As a corollary new bounds for $m_{2}(n, q), q$ even, $q \geq 8$ and $n \geq 4$, are obtained. Cao and Ou published a better bound but there seems to be a gap in their proof.

Keywords: projective space, finite field, k-cap

1. Introduction

A k-arc of $\operatorname{PG}(2, q)$ is a set of k points, no three of which are collinear; a k-cap of $\mathbf{P G}(n, q), n \geq 3$, is a set of k points, no three of which are collinear. A k-arc or k-cap is complete if it is not contained in a $(k+1)$-arc or $(k+1)$-cap. The largest value of k for which a k-arc of $\mathbf{P G}(2, q)$, or a k-cap of $\mathbf{P G}(n, q)$ with $n \geq 3$, exists is denoted by $m_{2}(n, q)$. The size of the second largest complete k-arc of $\mathbf{P G}(2, q)$ or k-cap of $\operatorname{PG}(n, q), n \geq 3$, is denoted by $m_{2}^{\prime}(n, q)$.

Theorem 1.1. (i) $m_{2}(2, q)=q+2, q$ even [7];
(ii) $m_{2}(3, q)=q^{2}+1, q$ even, $q>2[6,1,10]$;
(iii) $m_{2}(n, 2)=2^{n}[1]$;
(iv) $m_{2}(4,4)=41$ [5];
(v) $m_{2}^{\prime}(n, 2)=2^{n-1}+2^{n-3}$ [4];
(vi) $m_{2}^{\prime}(3,4)=14$ [8].

Theorem 1.2 ([11, 13, 7]). Let K be a k-arc of $\mathbf{P G}(2, q)$, q even and $q>2$, with $q-\sqrt{q}+1<k \leq q+1$. Then K can be uniquely extended to $a(q+2)$-arc of $\mathbf{P G}(2, q)$.

For any k-arc K in $\mathbf{P G}(2, q)$ or k-cap K in $\mathbf{P G}(n, q), n \geq 3$, a tangent of K is a line which has exactly one point in common with K. Let t be the number of tangents of K through a point P of K and let $\sigma_{1}(Q)$ be the number of tangents of K through a point $Q \notin K$. Then for a k-arc $K t+k=q+2$ and for a k-cap K $t+k=q^{n-1}+q^{n-2}+\cdots+q+2$.

Theorem 1.3 ([8]). If K is a complete k-arc in $\mathbf{P G}(2, q)$, q even, or a complete k-cap in $\mathbf{P G}(n, q), n \geq 3$ and q even, then $\sigma_{1}(Q) \leq t$ for each point Q not on K.
Theorem 1.4 ([3]).

$$
\begin{equation*}
m_{2}^{\prime}(3, q) \leq q^{2}-q+5, q \text { even }, q \geq 8 \tag{1}
\end{equation*}
$$

To prove Theorem 1.4 J.-M. Chao relies on the following crucial lemma.

Lemma 1.5 ([3]). Let K be a complete k-cap in $\mathbf{P G}(3, q)$ with q even. If Π is a plane such that $|\Pi \cap K|=x$, then

$$
\begin{equation*}
t(t-1) \geq q(q+2-x) x \tag{2}
\end{equation*}
$$

In the underlying paper the following improvement of Chao's result will be obtained.

Theorem 1.6 (Main Theorem).

$$
\begin{equation*}
m_{2}^{\prime}(3, q)<q^{2}-(\sqrt{5}-1) q+5, q \text { even, } q \geq 8 \tag{3}
\end{equation*}
$$

As a corollary new bounds for $m_{2}(n, q), q$ even, $q \geq 8$ and $n \geq 4$, are obtained.
Combining the main theorem of [12] with Theorem 1.6, there is an immediate improvement of the upper bound for $m_{2}^{\prime}(3, q), q \geq 2048$. We thank T. Szőnyi for bringing reference [12] to our attention.

Theorem 1.7.

$$
\begin{align*}
& m_{2}^{\prime}(3, q)<q^{2}-2 q+3 \sqrt{q}+2, q \text { even, } q \geq 2048 . \tag{4}\\
& \text { 2. A FIRST IMPROVEMENT OF CHAO'S BOUND }
\end{align*}
$$

Theorem 2.1.

$$
\begin{equation*}
m_{2}^{\prime}(3, q) \leq q^{2}-q+3, q \text { even, } q \geq 8 \tag{5}
\end{equation*}
$$

Proof. Let K be a complete k-cap in $\mathbf{P G}(3, q), q$ even, $q \geq 8$ and $k<q^{2}+1$.
Let Π be a plane of $\mathbf{P G}(3, q)$ for which $4 \leq|\Pi \cap K| \leq q-2$. Let $f(X)=q(q+2-$ $X) X$. Then

$$
\begin{equation*}
t(t-1) \geq f(4)=f(q-2)=4 q(q-2) \tag{6}
\end{equation*}
$$

by Lemma 1.5. So

$$
\begin{equation*}
t \geq \frac{1+\sqrt{1+16 q(q-2)}}{2} \geq 2 q-\frac{7}{4} \text { for } q \geq 8 \tag{7}
\end{equation*}
$$

Hence $k \leq q^{2}+q+2-2 q+\frac{7}{4}=q^{2}-q+\frac{15}{4}$, and consequently $k \leq q^{2}-q+3$.

So we may assume that either $|\Pi \cap K| \leq 3$, or $|\Pi \cap K| \geq q-1$, for any plane Π of $\mathbf{P G}(3, q)$. Let $l_{1}, l_{2}, \ldots, l_{t}$ be the t tangents of K through the point $P \in K$. We consider three cases depending on the number of planes containing l_{i} and intersecting K in at most 3 points.
(A) There exists exactly one plane $\Pi_{l_{i}}$ containing l_{i} such that $\left|\Pi_{l_{i}} \cap K\right| \leq 3, i=$ $1,2, \ldots, t$. We will show that in this case $k \leq q^{2}-q+3$.

Assume there is exactly one plane Π through P with $|\Pi \cap K| \leq 3$. Then for $i=$ $1,2, \ldots, t, \Pi_{l_{i}}=\Pi$. Hence all tangents of K containing P are in Π. So $t \leq q+1$,
a contradiction. Hence there are at least two planes Π_{1}, Π_{2} through P such that $\left|\Pi_{i} \cap K\right| \leq 3, i=1,2$. Then $\left|\Pi_{1} \cap \Pi_{2} \cap K\right|=2$. Consequently $t \geq 2(q-1)$, and so $k \leq q^{2}+q+2-2 q+2=q^{2}-q+4$.
Assume, by way of contradiction, that $k=q^{2}-q+4$. So $t=2(q-1)$. Then $\left|\Pi_{1} \cap K\right|=\left|\Pi_{2} \cap K\right|=3$. All tangent lines at P are contained in Π_{1} and Π_{2}. Let l be a tangent of K at P in Π_{1}, and consider the $q+1$ planes containing l. The plane Π_{1} is the only of these planes which intersects K in 3 points, exactly $q-1$ planes through l contain 2 tangent lines at P and so intersect K in a q-arc and the remaining plane through l contains exactly one tangent line at P and so intersects K in a $(q+1)$-arc.
Let $\widetilde{\Pi}$ be the unique plane containing l which intersects K in a $(q+1)$-arc, let $\widetilde{\Pi} \cap K=O$, and let N be the kernel of O, that is, N is the unique point of $\widetilde{\Pi}$ which extends O to a $(q+2)$-arc of $\widetilde{\Pi}$. Clearly $N \in l$.
If K^{\prime} is a k^{\prime}-arc of a plane $\mathbf{P G}(2, q)$ and $P^{\prime} \in \mathbf{P G}(2, q) \backslash K^{\prime}$, then the parity of the number of tangents of K^{\prime} through P^{\prime} is the parity of k^{\prime}, see Chapter 1 of [7]. Hence, by considering O and the $q-1 q$-arcs whose planes contain l, we see that the number of tangents of K through N is at least $q+1+q-1=2 q$. As K is complete we have $2 q \leq t$, so $k \leq q^{2}+q+2-2 q=q^{2}-q+2$, a contradiction.
Consequently $k \leq q^{2}-q+3$.
(B) Some tangent $l_{i}, 1 \leq i \leq t$, is contained in at least two planes having at most three points in common with K.

First we will prove that $k \leq q^{2}-q+5$. For $k=q^{2}-q+5$ and $k=q^{2}-q+4$ a contradiction will be obtained; the case $k=q^{2}-q+4$ will be subdivided in two cases. Hence it follows that also in Case (B) we have $k \leq q^{2}-q+3$.

Counting the points of K on the $q+1$ planes containing l_{i} gives

$$
\begin{equation*}
k-1 \leq 2.2+(q-1) q=q^{2}-q+4 \tag{8}
\end{equation*}
$$

So $k \leq q^{2}-q+5$.
(B.1) First, assume $k=q^{2}-q+5$. Then two planes Π_{1}, Π_{2} containing l_{i} intersect K in 3 points, while the remaining planes $\Pi_{3}, \Pi_{4}, \ldots, \Pi_{q+1}$ containing l_{i} intersect K in $q+1$ points. Let l be a tangent of K at P in Π_{1}, distinct from l_{i}. Any plane ζ containing l, with $\zeta \neq \Pi_{1}$, intersects each $(q+1)$-arc $\Pi_{i} \cap K, i=3,4, \ldots, q+1$, in exactly two points. Hence $|\zeta \cap K| \geq q$. Considering the lines $\zeta \cap \Pi_{2}$, we see that exactly two of the planes ζ, say ζ_{1} and ζ_{2}, intersect K in $(q+1)$-arcs O_{1} and O_{2}, while the $q-2$ other planes ζ, say $\zeta_{3}, \zeta_{4}, \ldots, \zeta_{q}$, intersect K in a q-arc.
Let N_{1} be the kernel of O_{1}; then $N_{1} \in l$. The number of tangents of K containing N_{1} is at least $q+1+q-2=2 q-1$. As K is complete we have $2 q-1 \leq t$, so $k \leq q^{2}+q+2-2 q+1=q^{2}-q+3$, a contradiction.
(B.2) Next, assume $k=q^{2}-q+4$. Then, considering all planes containing l_{i}, there are two cases to consider.
(B.2.1) Two planes Π_{1}, Π_{2} containing l_{i} intersect K in three points, the plane Π_{3} containing l_{i} intersects K in q points, and the remaining planes $\Pi_{4}, \Pi_{5}, \ldots, \Pi_{q+1}$ containing l_{i} intersect K in $q+1$ points. Let l be a tangent of K at P in Π_{1},
distinct from l_{i}. Any plane ζ containing l, distinct from Π_{1}, intersects each $(q+1)$ arc $\Pi_{i} \cap K, i=4,5, \ldots, q+1$, in exactly two points; $q-1$ of these planes ζ intersect $\Pi_{3} \cap K$ in exactly two points. So for at least $q-1$ of these planes ζ we have $|\zeta \cap K| \geq q$, and for all planes ζ we have $|\zeta \cap K| \geq q-1$.
Assume that for all q planes ζ we have $|\zeta \cap K| \geq q$. Let s be the number of planes ζ for which $|\zeta \cap K|=q$ and let u be the number of planes ζ for which $|\zeta \cap K|=q+1$. Then

$$
\begin{equation*}
s(q-1)+u q+3=q^{2}-q+4, s+u=q . \tag{9}
\end{equation*}
$$

So $s(q-1)+(q-s) q+3=q^{2}-q+4$, hence $s=q-1$ and $u=1$. Let ζ be the plane which intersects K in a $(q+1)$-arc O, and let $N \in l$ be the nucleus of O. The number of tangents of K containing N is at least $q+1+q-1=2 q$, so $k \leq q^{2}+q+2-2 q=q^{2}-q+2$, a contradiction.
So we may assume that for exactly $q-1$ planes ζ we have $|\zeta \cap K| \geq q$ and that for exactly one plane ζ we have $|\zeta \cap K|=q-1$. Assume that for s planes ζ we have $|\zeta \cap K|=q$, and that for u planes ζ we have $|\zeta \cap K|=q+1$. Then

$$
\begin{equation*}
s(q-1)+u q+q-2+3=q^{2}-q+4, s+u=q-1 \tag{10}
\end{equation*}
$$

So $s(q-1)+(q-1-s) q+q+1=q^{2}-q+4$, hence $s=q-3$ and $u=2$. Let ζ_{1}, ζ_{2} be the planes containing l which intersect K in $(q+1)$-arcs O_{1}, O_{2}, let N_{1}, N_{2} be the nuclei of O_{1}, O_{2}, and let $\Pi_{1} \cap K=\left\{P, P_{1}, P_{2}\right\}$. Assume first that $N_{1} \notin P_{1} P_{2}$. Then the number of tangents of K containing N_{1} is at least $q+1+q-3+2=2 q$, so $k \leq q^{2}-q+2$ a contradiction. Similarly if $N_{2} \notin P_{1} P_{2}$. Hence we may assume that $N_{1}=N_{2}=P_{1} P_{2} \cap l$. Then the number of tangents of K through N_{1} is at least $q+1+q+q-3=3 q-2$, so $k \leq q^{2}+q+2-3 q+2=q^{2}-2 q+4$, again a contradiction.
(B.2.2) One plane Π_{1} containing l_{i} intersects K in three points, and one plane Π_{2} containing l_{i} intersects K in two points. Consequently the other $q-1$ planes $\Pi_{3}, \Pi_{4}, \ldots, \Pi_{q+1}$ containing l_{i} intersect K in $q+1$ points. Let l be a tangent of K at P in Π_{1}, distinct from l_{i}. Any plane ζ containing l, distinct from Π_{1}, intersects each $(q+1)$-arc $\Pi_{i} \cap K$, with $i=3,4, \ldots, q+1$, in exactly two points. As $k=q^{2}-q+4$ it easily follows that for $q-1$ of these planes ζ we have $|\zeta \cap K|=q$, while for the remaining plane ζ we have $|\zeta \cap K|=q+1$.
Let $\widetilde{\zeta}$ be the plane containing l which intersects K in a $(q+1)-\operatorname{arc} O$, and let N be the nucleus of O. The number of tangents of K containing N is at least $q+1+q-1=2 q$, so $k \leq q^{2}-q+2$, again a contradiction.
(C) Some tangent l_{i}, with $1 \leq i \leq t$, is contained in no plane having at most three points in common with K.

First we will prove that $k \leq q^{2}-q+5$. A contradiction will be obtained for $k \in\left\{q^{2}-q+5, q^{2}-q+4\right\}$; for $k=q^{2}-q+4$ two cases have to be considered. Hence again $k \leq q^{2}-q+3$.

Then $\left|\Pi_{j} \cap K\right| \geq q-1$ for each plane Π_{j} containing l_{i}, with $j=1,2, \ldots, q+1$. The arc $\Pi_{j} \cap K$ of Π_{j} can be completed to a $(q+2)$-arc of Π_{j}; see Theorem 1.2. This $(q+2)$-arc meets l_{i} in points P, P_{j}. As there are $q+1$ points P_{j} and $\left|l_{i} \backslash\{P\}\right|=q$,
two of the points P_{j} coincide, say $P_{1}=P_{2}$. The number of tangents of K containing P_{1} is at least $2(q-2)+1=2 q-3$, so $k \leq q^{2}-q+5$.

Now we make some observations on $(q-1)$-arcs of $\mathbf{P G}(2, q), q$ even. Let \widetilde{K} be any $(q-1)$-arc of $\mathbf{P G}(2, q), q$ even, and let \widetilde{l} be a tangent of \widetilde{K} at $\widetilde{P} \in \widetilde{K}$. Let \widetilde{C} be the unique $(q+2)$-arc which contains \widetilde{K}; see Theorem 1.2. Put $\widetilde{C} \cap \widetilde{l}=\{\widetilde{P}, \widetilde{N}\}$. Then it is easy to see that exactly $q-2$ points of $\widetilde{l} \backslash\{\widetilde{P}, \widetilde{N}\}$ are on exactly three tangents of \widetilde{K}, and that exactly one point \widetilde{R} of $\widetilde{l} \backslash\{\widetilde{P}, \widetilde{N}\}$ is on exactly one tangent of \widetilde{K}; also, $\widetilde{R}=\widetilde{l} \cap \widetilde{N}^{\prime} \widetilde{N}^{\prime \prime}$, with $\left\{\widetilde{N}, \widetilde{N}^{\prime}, \widetilde{N}^{\prime \prime}\right\} \cup \widetilde{K}=\widetilde{C}$.
(C.1) First, assume $k=q^{2}-q+5$. Then $\Pi_{1} \cap K$ and $\Pi_{2} \cap K$ are $(q-1)$-arcs of Π_{1} and Π_{2}. Let r be the number of $(q-1)$-arcs $\Pi_{j} \cap K$, let s be the number of q-arcs $\Pi_{j} \cap K$ and let u be the number of $(q+1)$-arcs $\Pi_{j} \cap K$. Then

$$
\begin{equation*}
r(q-2)+s(q-1)+u q+1=q^{2}-q+5, r+s+u=q+1, \text { with } r \geq 2 \tag{11}
\end{equation*}
$$

So $r(q-2)+s(q-1)+(q+1-r-s) q+1=q^{2}-q+5$, hence $2 r+s=2 q-4$, with $r \geq 2$. If $s \geq 1$, then we have an extra tangent of K containing P_{1}, so $k \leq q^{2}-q+4$, a contradiction. Hence $s=0, r=q-2, u=3$.
As the number of tangents of K containing P_{1} is exactly $2 q-3$, the nuclei of the three $(q+1)$-arcs $\Pi_{j} \cap K$ are distinct from P_{1}. Let N be one of these nuclei. Also, P_{1} is on exactly one tangent of each of the $q-4(q-1)$-arcs $\Pi_{j} \cap K$, distinct from the $(q-1)$-arcs $\Pi_{1} \cap K, \Pi_{2} \cap K$. So N is on at least three tangents of each of these $q-4(q-1)$-arcs $\Pi_{j} \cap K$. Hence the number of tangents of K containing N is at least $2(q-4)+q+1=3 q-7>2 q-3$, a contradiction.
(C.2) Finally, assume that $k=q^{2}-q+4$. We have to consider two cases depending of the sizes of $\Pi_{1} \cap K$ and $\Pi_{2} \cap K$.
(C.2.1) First, assume that $\Pi_{1} \cap K$ and $\Pi_{2} \cap K$ are ($q-1$)-arcs. The tangents of K containing P_{1} are the tangents of $\Pi_{1} \cap K$ and $\Pi_{2} \cap K$ containing P_{1}, and one extra tangent l. Assume that l is a tangent of $\Pi_{3} \cap K$. If $\Pi_{3} \cap K$ is a $(q+1)$-arc O , then P_{1} is the nucleus of O , so there arise q extra tangents, a contradiction; if $\Pi_{3} \cap K$ is a $(q-1)$-arc K^{\prime}, then P_{1} is contained in at least three tangents of K^{\prime}, again a contradiction. Hence $\Pi_{3} \cap K$ is a q-arc. Also, $\Pi_{j} \cap K$, with $j=4,5, \ldots, q+1$, cannot be a q-arc. Let r be the number of $(q-1)$-arcs $\Pi_{j} \cap K$, and let u be the number of $(q+1)$-arcs $\Pi_{j} \cap K$. Then

$$
\begin{equation*}
r(q-2)+u q+q-1+1=q^{2}-q+4, r+u+1=q+1 \tag{12}
\end{equation*}
$$

So $r(q-2)+(q-r) q+q=q^{2}-q+4$, hence $r=q-2$ and $u=2$. Let O_{1}, O_{2} be the $(q+1)$-arcs $\Pi_{j} \cap K$, and let N_{1}, N_{2} be the nuclei of O_{1}, O_{2}. Then $N_{i} \neq P_{1}, i=$ 1,2 . Also P_{1} is contained in exactly one tangent of each of the $q-4(q-1)$-arcs $\Pi_{j} \cap K$, with $j \neq 1,2$. Hence the number of tangents of K containing N_{1} is at least $2(q-4)+q+1=3 q-7>2 q-2$, clearly a contradiction.
(C.2.2) Consequently, we may assume that $\Pi_{1} \cap K$ is a $(q-1)$-arc and that $\Pi_{2} \cap K$ is a q-arc . Let r be the number of $(q-1)$-arcs $\Pi_{j} \cap K$, let s be the number of q-arcs $\Pi_{j} \cap K$ and let u be the number of $(q+1)$-arcs $\Pi_{j} \cap K$. Then

$$
\begin{equation*}
r(q-2)+s(q-1)+u q+1=q^{2}-q+4, r+s+u=q+1, r \geq 1, s \geq 1 \tag{13}
\end{equation*}
$$

So $2 r+s=2 q-3, r \geq 1, s \geq 1$. Clearly, $s=1$, as otherwise we have an extra tangent containing P_{1}, and then $k<q^{2}-q+4$. Hence $r=q-2, s=1, u=2$. The nuclei of the two $(q+1)$-arcs $\Pi_{j} \cap K$ are distinct from P_{1}. Let N be one of these nuclei. Also, P_{1} is on exactly one tangent of each of the $q-3(q-1)$-arcs $\Pi_{j} \cap K$ distinct from $\Pi_{1} \cap K$. So N is on at least three tangents of each of these $q-3(q-1)$-arcs $\Pi_{j} \cap K$. Consequently the number of tangents of K containing N is at least $2(q-3)+q+1=3 q-5>2 q-2$, a final contradiction.

3. Main Theorem

Theorem 3.1.

$$
\begin{gather*}
m_{2}^{\prime}(3, q)<q^{2}-(\sqrt{5}-1) q+5, q \text { even }, q \geq 8 \tag{14}\\
m_{2}^{\prime}(3,4)=14 \tag{15}
\end{gather*}
$$

Proof By [8] we have $m_{2}^{\prime}(3,4)=14$, and by Theorem 2.1 we have $m_{2}^{\prime}(3,8) \leq 59$, which proves Theorem 3.1 for $q=8$. So from now on we assume $q>8$.
Let K be a complete k-cap in $\mathbf{P G}(3, q), q$ even, $q>8$, and $k<q^{2}+1$. Let Π be a plane of PG $(3, q)$ for which

$$
\begin{equation*}
5 \leq|\Pi \cap K| \leq q-3 \tag{16}
\end{equation*}
$$

Let $f(X)=q(q+2-X) X$. Then by Lemma 1.5 of Chao

$$
\begin{equation*}
t(t-1) \geq f(5)=f(q-3)=5 q(q-3) \tag{17}
\end{equation*}
$$

So

$$
\begin{equation*}
t \geq \frac{1+\sqrt{1+20 q(q-3)}}{2} \tag{18}
\end{equation*}
$$

Put $\frac{1+\sqrt{1+20 q(q-3)}}{2} \geq \sqrt{5} q-\alpha$, that is,

$$
\begin{equation*}
\sqrt{1+20 q(q-3)} \geq 2 \sqrt{5} q-2 \alpha-1 \tag{19}
\end{equation*}
$$

For $\alpha \leq \sqrt{5} q-(1 / 2)$ this is equivalent to

$$
\begin{equation*}
1+20 q(q-3) \geq 20 q^{2}+4 \alpha^{2}+1-8 \alpha \sqrt{5} q-4 \sqrt{5} q+4 \alpha \tag{20}
\end{equation*}
$$

or

$$
\begin{equation*}
0 \geq 4 \alpha^{2}+\alpha(-8 \sqrt{5} q+4)+60 q-4 \sqrt{5} q \tag{21}
\end{equation*}
$$

or

$$
\begin{equation*}
0 \geq \alpha^{2}+\alpha(-2 \sqrt{5} q+1)+15 q-\sqrt{5} q \tag{22}
\end{equation*}
$$

Put $\alpha=3$. Then there arises $0 \geq 9+3(-2 \sqrt{5} q+1)+15 q-\sqrt{5} q$, that is, $0 \geq$ $12+15 q-7 \sqrt{5} q$. This inequality is satisfied for $q>16$.
Hence for $q>16$ we have $t \geq \sqrt{5} q-3$, and so,

$$
\begin{equation*}
k \leq q^{2}+q+2-\sqrt{5} q+3, \tag{23}
\end{equation*}
$$

that is,

$$
\begin{equation*}
k \leq q^{2}+(1-\sqrt{5}) q+5 \tag{24}
\end{equation*}
$$

For $q=16$ it follows from (18) that $t>32$ and so $k \leq 241$, which is equivalent to $k \leq q^{2}+(1-\sqrt{5}) q+5$ with $q=16$.

From now on suppose that either $|\Pi \cap K| \leq 4$ or $|\Pi \cap K| \geq q-2$ for any plane Π of $\operatorname{PG}(3, q)$. Let $l_{1}, l_{2}, \ldots, l_{t}$ be the t tangents of K containing the point $P \in K$. Assume, by way of contradiction, that $k>q^{2}+(1-\sqrt{5}) q+5$. We consider three cases depending on the number of planes containing l_{i} and intersecting K in at most 4 points. In each case a contradiction will be obtained .
(A) Assume, by way of contradiction, that each l_{i} is contained in exactly one plane $\Pi_{l_{i}}$ for which $\left|\Pi_{l_{i}} \cap K\right| \leq 4$, with $i=1,2, \ldots, t$.
(A.1) Assume that there is exactly one plane Π through P with $|\Pi \cap K| \leq 4$. Then for $i=1,2, \ldots, t$ we have $\Pi_{l_{i}}=\Pi$. So $t \leq q+1$, hence $k \geq q^{2}+1$, a contradiction.
(A.2) There are at least two planes Π_{1}, Π_{2} through P such that $\left|\Pi_{i} \cap K\right| \leq$ $4, i=1,2$. Then $\left|\Pi_{1} \cap \Pi_{2} \cap K\right|=2$. Consequently $t \geq 2(q-2)$, and so $k \leq$ $q^{2}+q+2-2 q+4=q^{2}-q+6$.

The plane Π_{1} intersects K in a m-arc, $m \leq 4$, and contains at least $q-2$ tangents of K at P. Let $P_{1} \in\left(K \cap \Pi_{1}\right) \backslash P$ and assume that $P P_{1}$ is contained in α planes Π with $|\Pi \cap K| \leq 4$. Then $t \geq \alpha(q-2)$, so $k \leq q^{2}+(1-\alpha) q+2+2 \alpha$. Consequently

$$
\begin{equation*}
q^{2}+(1-\alpha) q+2+2 \alpha>q^{2}+(1-\sqrt{5}) q+5 \tag{25}
\end{equation*}
$$

or

$$
\begin{equation*}
(\sqrt{5}-\alpha) q+2 \alpha-3>0 \tag{26}
\end{equation*}
$$

This gives a contradiction for $\alpha>2$ with $q>8$. So $P P_{1}$ is contained in at most two planes intersecting K in at most four points.

Assume, by way of contradiction, that for some plane Π of $\mathbf{P G}(3, q)$ we have $\Pi \cap$ $K=\{P\}$. As there are at least two planes Π, Π^{\prime} through P intersecting K in at most four points, we have $\left|\Pi \cap \Pi^{\prime} \cap K\right|=2$ and so $|\Pi \cap K| \geq 2$, a contradiction.
Let $\mathbf{P G}(2, q)$ be a plane of $\mathbf{P G}(3, q)$ not containing P and let σ be the projection of $\mathbf{P G}(3, q) \backslash\{P\}$ from P onto $\mathbf{P G}(2, q)$. Further, let \mathcal{P} be the set of all images under σ of all points of $K \backslash\{P\}$ contained in planes Π, with $P \in \Pi$, for which $|\Pi \cap K| \leq 4$, and let \mathcal{B} be the set of all images under σ of the sets $\Pi \backslash\{P\}$. Then there arises an incidence structure $(\mathcal{P}, \mathcal{B})$ of points and lines for which
(1) $|\mathcal{B}| \geq 2$,
(2) any two distinct lines in \mathcal{B} have exactly one point in common,
(3) each point is contained in at most two lines,
(4) each line contains at most three points and at least one point.

It follows easily that $2 \leq|\mathcal{B}| \leq 4$. For each value of $|\beta|$ we will find a contradiction.
(α) $|\mathcal{B}|=4$
The $\overline{t=4}(q-2)$, so $k=q^{2}+q+2-4 q+8=q^{2}-3 q+10$. Hence $q^{2}-3 q+10>$ $q^{2}+(1-\sqrt{5}) q+5$, or $5>(4-\sqrt{5}) q$, a contradiction as $q>8$.
(β) $|\mathcal{B}|=3$
If $|\mathcal{P}|=3$, then $t=3(q-1)$, so $k=q^{2}-2 q+5$. Hence $q^{2}-2 q+5>q^{2}+(1-\sqrt{5}) q+5$, or $(3-\sqrt{5}) q<0$, a contradiction.
If $|\mathcal{P}|=4$, then $t=2(q-1)+q-2$, so $k=q^{2}-2 q+6$. Hence $q^{2}+(1-\sqrt{5}) q+5<$ $q^{2}-2 q+6$, or $(3-\sqrt{5}) q-1<0$, a contradiction.
If $|\mathcal{P}|=5$, then $t=q-1+2(q-2)$, so $k=q^{2}-2 q+7$. Hence $q^{2}+(1-\sqrt{5}) q+5<$ $q^{2}-2 q+7$, or $(3-\sqrt{5}) q<2$, a contradiction.
If $|\mathcal{P}|=6$, then $t=3(q-2)$, so $k=q^{2}-2 q+8$. Hence $q^{2}+(1-\sqrt{5}) q+5<q^{2}-2 q+8$, or $(3-\sqrt{5}) q<3$, a contradiction.
$(\gamma)|\mathcal{B}|=2$
By Theorem 2.1 we may assume that $k \leq q^{2}-q+3$.
If $|\mathcal{P}|=1$, then $t=2 q$, so $k=q^{2}-q+2$.
If $|\mathcal{P}|=2$, then $t=2 q-1$, so $k=q^{2}-q+3$.
If $|\mathcal{P}|=3$, then $t=2 q-2$, so $k=q^{2}-q+4$, a contradiction.
If $|\mathcal{P}|=4$, then $t=2 q-3$, so $k=q^{2}-q+5$, a contradiction.
If $|\mathcal{P}|=5$, then $t=2 q-4$, so $k=q^{2}-q+6$, a contradiction.
Hence the cases $k=q^{2}-q+2$ and $k=q^{2}-q+3$ have still to be considered.
(γ.1) $k=q^{2}-q+2$
On K there are two points P, P_{1} such that $P P_{1}$ is contained in two planes Π_{1}, Π_{2} intersecting K in just $\left\{P, P_{1}\right\}$, and in $q-1$ planes $\Pi_{3}, \Pi_{4}, \ldots, \Pi_{q+1}$ intersecting K in a $(q+2)$-arc.
Let $P^{\prime} \in\left(\Pi_{3} \cap K\right) \backslash\left\{P, P_{1}\right\}$ and let l be a tangent of K at P^{\prime}. Assume, by way of contradiction, that each plane containing l intersects K in a m-arc with $m>4$, so $m \geq q-2$. These m-arcs K_{i}^{\prime}, with $i=1,2, \ldots, q+1$, are extendable to $(q+2)$-arcs C_{i}. Let $C_{i} \cap l=\left\{N_{i}, P^{\prime}\right\}, i=1,2, \ldots, q+1$. At least two of the points $N_{1}, N_{2}, \ldots, N_{q+1}$ coincide, say $N_{1}=N_{2}$. A plane Π^{\prime} containing l, but not containing P nor P_{1}, intersects each of the $(q+2)$-arcs $\Pi_{i} \cap K$, with $i=3,4, \ldots, q+1$, in either 0 or 2 points; so $\left|\Pi^{\prime} \cap K\right|$ is even. A plane Π^{\prime} containing l and either P or P_{1} intersects K in q points. Hence each plane containing l intersects K in a m-arc, with m even. Counting tangents of K containing N_{1}, we obtain at least $2(q-3)+1+q-1=3 q-6$ tangents. So $k \leq q^{2}+q+2-3 q+6=q^{2}-2 q+8$, a contradiction for $q>8$. We conclude that there is a plane Π^{\prime} containing l with $\left|\Pi^{\prime} \cap K\right| \leq 4$.
Assume, by way of contradiction, that l is contained in at least two planes $\Pi^{\prime}, \Pi^{\prime \prime}$ with $\left|\Pi^{\prime} \cap K\right| \leq 4,\left|\Pi^{\prime \prime} \cap K\right| \leq 4$. Then, by a previous argument, these intersections have an even number of points and so $\left|\Pi^{\prime} \cap K\right| \in\{2,4\}$ and $\left|\Pi^{\prime \prime} \cap K\right| \in\{2,4\}$. Now we count the points of K in planes containing l, and obtain $k \leq(q-1)(q-1)+7=$ $q^{2}-2 q+8$, a contradiction for $q>8$.

Hence l is contained in exactly one plane Π^{\prime} for which $\left|\Pi^{\prime} \cap K\right| \leq 4$. It follows that the roles of P and P^{\prime} may be interchanged.
Let l^{\prime} be a second tangent of K containing P^{\prime}, with $l^{\prime} \not \subset \Pi^{\prime}$. Let $\tilde{K}=K \cap \Pi_{3}, \Pi^{\prime} \cap$ $\tilde{K}=\left\{P^{\prime}, P_{1}^{\prime}\right\}$. If $P_{1}^{\prime} \in\left\{P, P_{1}\right\}$, then $\left|\Pi^{\prime} \cap K\right|=q$, a contradiction. Hence $P_{1}^{\prime} \notin$ $\left\{P, P_{1}\right\}$. With P^{\prime} there corresponds an incidence structure $\left(\mathcal{P}^{\prime}, \mathcal{B}^{\prime}\right)$ of points and
lines. As $k=q^{2}-q+2$, we necessarily have $\left|\mathcal{P}^{\prime}\right|=1$ and $\left|\mathcal{B}^{\prime}\right|=2$. Hence $\Pi^{\prime} \cap K=\left\{P^{\prime}, P_{1}^{\prime}\right\}$. If $\tilde{\Pi}^{\prime}$ is the unique plane containing l^{\prime} and intersecting K in at most 4 points, then $\tilde{\Pi}^{\prime} \cap K=\left\{P^{\prime}, P_{1}^{\prime}\right\}$. Also, the roles of P and $P_{1}^{\prime}, P^{\prime}$ and P_{1}^{\prime}, P and P_{1} can be interchanged.
Interchanging Π_{3} and $\Pi_{i}, i \in\{3,4, \ldots, q+1\}$, and interchanging P^{\prime} with any point of $\left(\Pi_{i} \cap K\right) \backslash\left\{P, P_{1}\right\}$, we see that K is partitioned into $\left(q^{2}-q+2\right) / 2$ pairs, where each pair is contained in two planes intersecting K in that pair and in $q-1$ planes intersecting K in a $(q+2)$-arc. Any other plane contains either 0 or q points of K. Each point Q of K is contained in $2 q$ tangents; the two planes on Q intersecting K in two points each contain q of these tangents.
Now we count the planes intersecting K in a $(q+2)$-arc, and obtain

$$
\begin{equation*}
\frac{q^{2}-q+2}{2} \cdot(q-1) / \frac{q+2}{2} \tag{27}
\end{equation*}
$$

Hence $q+2 \mid\left(q^{2}-q+2\right)(q-1)$, so $q+2 \mid 24$, that is $q \in\{2,4\}$, a contradiction.
(γ.2) $k=q^{2}-q+3$
Then on K there are points P, P_{1} such that $P P_{1}$ is contained in two planes Π_{1}, Π_{2} with $\Pi_{1} \cap K=\left\{P, P_{1}\right\}, \Pi_{2} \cap K=\left\{P, P_{1}, P_{2}\right\}$, and in $q-1$ planes $\Pi_{3}, \Pi_{4}, \ldots, \Pi_{q+1}$ intersecting K in a $(q+2)$-arc.
Let $P^{\prime} \in\left(\Pi_{3} \cap K\right) \backslash\left\{P, P_{1}\right\}$ and let l be a tangent of K at P^{\prime}. Assume, by way of contradiction, that each plane containing l intersects K in a m-arc with $m>4$, so $m \geq q-2$. These m-arcs K_{i}^{\prime}, with $i=1,2, \ldots, q+1$, are extendable to $(q+2)$-arcs C_{i}. Let $C_{i} \cap l=\left\{N_{i}, P^{\prime}\right\}, i=1,2, \ldots, q+1$. At least two of the points $N_{1}, N_{2}, \ldots, N_{q+1}$ coincide, say $N_{1}=N_{2}$. A plane Π^{\prime} containing l, but not containing P nor P_{1}, intersects each of the $(q+2)$-arcs $\Pi_{i} \cap K$, with $i=3,4, \ldots, q+1$, in either 0 or 2 points. So if $P_{2} \notin \Pi^{\prime}$, then $\left|\Pi^{\prime} \cap K\right|$ is even. A plane Π^{\prime} containing l and either P or P_{1}, but not P_{2}, intersects K in q points. Hence q planes containing l intersect K in a m-arc, with m even. Counting tangents of K containing N_{1}, we obtain at least $2(q-3)+1+q-2=3 q-7$ tangents. So $k \leq q^{2}+q+2-3 q+7=q^{2}-2 q+9$, a contradiction for $q>8$. We conclude that there is a plane Π^{\prime} containing l with $\left|\Pi^{\prime} \cap K\right| \leq 4$.
Assume, by way of contradiction, that l is contained in at least two planes $\Pi^{\prime}, \Pi^{\prime \prime}$ with $\left|\Pi^{\prime} \cap K\right| \leq 4,\left|\Pi^{\prime \prime} \cap K\right| \leq 4$. Now we count the points of K in planes containing l, and obtain $k \leq q^{2}-2 q+9$, a contradiction for $q>8$.

Hence l is contained in exactly one plane Π^{\prime} for which $\left|\Pi^{\prime} \cap K\right| \leq 4$. As all tangents of K at P_{1} are contained in $\Pi_{1} \cup \Pi_{2}$, it follows that each tangent of K at P_{1} is contained in exactly one plane intersecting K in at most 4 points. Hence all points of $K \backslash\left\{P_{2}\right\}$ play the same role.
Let l^{\prime} be a second tangent of K containing P^{\prime}, with $l^{\prime} \not \subset \Pi^{\prime}$. Let $K \cap \Pi_{3}=\tilde{K}, \Pi^{\prime} \cap$ $\tilde{K}=\left\{P^{\prime}, P_{1}^{\prime}\right\}$. If $P_{1}^{\prime} \in\left\{P, P_{1}\right\}$, then $\left|\Pi^{\prime} \cap K\right| \geq q$, a contradiction. Hence $P_{1}^{\prime} \notin$ $\left\{P, P_{1}\right\}$. With P^{\prime} there corresponds an incidence structure $\left(\mathcal{P}^{\prime}, \mathcal{B}^{\prime}\right)$ of points and lines (see first part of (A)).
As $k=q^{2}-q+3$, we necessarily have $\left|\mathcal{P}^{\prime}\right|=2$ and $\left|\mathcal{B}^{\prime}\right|=2$. Hence $\left|\Pi^{\prime} \cap K\right| \in\{2,3\}$ and $\Pi^{\prime} \cap K \supset\left\{P^{\prime}, P_{1}^{\prime}\right\}$. Let $\widetilde{\Pi}^{\prime}$ be the unique plane containing l^{\prime} and intersecting K in at most 4 points, and let $\widetilde{\Pi}^{\prime} \cap \widetilde{K}=\left\{P^{\prime}, \widetilde{P}_{1}^{\prime}\right\}$. If $P_{1}^{\prime} \neq \widetilde{P}_{1}^{\prime}$, then by the structure
of $\left(\mathcal{P}^{\prime}, \mathcal{B}^{\prime}\right)$ we have $\left\{P_{1}^{\prime}, \widetilde{P}_{1}^{\prime}\right\} \subset \Pi^{\prime}$, clearly a contradiction. Hence $P_{1}^{\prime}=\widetilde{P}_{1}^{\prime}$, and so $\left\{P^{\prime}, P_{1}^{\prime}\right\} \subset \widetilde{\Pi}^{\prime} \cap K$.
Without loss of generality we may assume that $\Pi^{\prime} \cap K=\left\{P^{\prime}, P_{1}^{\prime}, P_{2}^{\prime}\right\}$ and $\tilde{\Pi}^{\prime} \cap K=$ $\left\{P^{\prime}, P_{1}^{\prime}\right\}$. As $\left|\Pi^{\prime} \cap K\right|$ is odd, the set $\Pi^{\prime} \cap K$ has to contain the point P_{2}. Consequently $P_{2}=P_{2}^{\prime}$.
Interchanging Π_{3} and $\Pi_{i}, i \in\{3,4, \cdots, q+1\}$, and interchanging P^{\prime} with any point of $\left(\Pi_{i} \cap K\right) \backslash\left\{P, P_{1}\right\}$, we see that $K \backslash\left\{P_{2}\right\}$ is partitioned into $\left(q^{2}-q+2\right) / 2$ pairs, where each pair is contained in one plane intersecting K in that pair, in one plane intersecting K in that pair together with P_{2}, and in $q-1$ planes intersecting K in a $(q+2)$-arc. Any other plane contains $0,1, q$ or $q+1$ points of K.
Now we count the planes intersecting K in a $(q+2)$-arc and obtain

$$
\begin{equation*}
\frac{q^{2}-q+2}{2} \cdot(q-1) / \frac{q+2}{2} \tag{28}
\end{equation*}
$$

Hence $q+2 \mid\left(q^{2}-q+2\right)(q-1)$, so $q+2 \mid 24$, that is $q \in\{2,4\}$, a final contradiction.
We conclude that there is some tangent l_{i} containing P, with $i \in\{1,2, \ldots, t\}$, which is contained in exactly $\theta>1$ planes having at most 4 points in common with K.
(B) Assume, by way of contradiction, that some tangent l of K is contained in no plane intersecting K in at most 4 points.

Hence each plane Π_{i} containing l satisfies $\left|\Pi_{i} \cap K\right| \geq q-2$, with $i=1,2, \ldots, q+1$. By Theorem 1.2 the arc $\Pi_{i} \cap K$ can be extended to a $(q+2)$-arc C_{i}; let $C_{i} \cap l=\left\{N_{i}, P\right\}$ with $l \cap K=\{P\}$. For at least two planes Π_{i}, say Π_{1} and Π_{2}, we have $N_{1}=N_{2}$.
(B.1) First we prove that N_{1} is on a tangent of K not in $\Pi_{1} \cup \Pi_{2}$; clearly N_{1} is on at least $2 q-5$ tangents of K contained in $\Pi_{1} \cup \Pi_{2}$. Assume the contrary. Then for any plane $\Pi_{i} \notin\left\{\Pi_{1}, \Pi_{2}\right\}$, the arc $\Pi_{i} \cap K$ must have an odd number of points. So $\Pi_{i} \cap K$ either is a $(q-1)$-arc or a $(q+1)$-arc, $i \in\{3,4, \ldots, q+1\}$. Also, $N_{i} \neq N_{1}$ for $i=3,4, \ldots, q-1$. If $\Pi_{i} \cap K$ is a $(q-1)$-arc and $C_{i} \backslash\left(\Pi_{i} \cap K\right)=\left\{N_{i}, N_{i}^{\prime}, N_{i}^{\prime \prime}\right\}, i \in$ $\{3,4, \ldots, q+1\}$, then $N_{1} \in N_{i}^{\prime} N_{i}^{\prime \prime}$, as otherwise $N_{1} N_{i}^{\prime}$ and $N_{1} N_{i}^{\prime \prime}$ are tangents of $\Pi_{i} \cap K$.
Let r be the number of planes Π_{i}, with $i \neq 1,2$, for which $\Pi_{i} \cap K$ is a $(q-1)$-arc, and let s be the number of planes Π_{i}, with $i \neq 1,2$, for which $\Pi_{i} \cap K$ is a $(q+1)$-arc. The number of points of K is at least

$$
\begin{equation*}
r(q-2)+s q+2(q-3)+1, \text { with } r+s=q-1 \tag{29}
\end{equation*}
$$

As K is complete, by Theorem 2.1

$$
\begin{equation*}
r(q-2)+(q-1-r) q+2(q-3)+1 \leq q^{2}-q+3, \tag{30}
\end{equation*}
$$

so

$$
\begin{equation*}
r \geq q-4 \tag{31}
\end{equation*}
$$

We may assume that $\Pi_{3} \cap K$ is a $(q-1)$-arc. The number of tangents of K containing N_{3} is at least

$$
\begin{equation*}
q-1+2(r-1) \geq q-1+2 q-10=3 q-11 \tag{32}
\end{equation*}
$$

Hence

$$
\begin{equation*}
k \leq q^{2}+q+2-3 q+11=q^{2}-2 q+13 \tag{33}
\end{equation*}
$$

So

$$
\begin{equation*}
q^{2}-2 q+13>q^{2}+(1-\sqrt{5}) q+5 \tag{34}
\end{equation*}
$$

a contradiction for $q>8$.
Consequently N_{1} is on a tangent l^{\prime} of K not in $\Pi_{1} \cup \Pi_{2}$.
(B.2) Now we consider all planes Π_{i}^{\prime} containing the tangent l^{\prime}, with $i=1,2, \ldots, q+$ 1. We will show that:
(a) For each plane Π_{i}^{\prime} such that $\left|\Pi_{i}^{\prime} \cap K\right| \geq q-2$ the point N_{1} does not extend the arc $\Pi_{i}^{\prime} \cap K$.
(b) For each i we have $\left|\Pi_{i}^{\prime} \cap K\right| \geq q-2$.
(a) Let $\left|\Pi_{1} \cap K\right|=\alpha, q-2 \leq \alpha \leq q+1,\left|\Pi_{2} \cap K\right|=\beta, q-2 \leq \beta \leq q+1$. Then N_{1} is contained in at least $\alpha+\beta$ tangents of K. Now we consider all planes Π_{i}^{\prime} containing the tangent l^{\prime}, with $i=1,2, \ldots, q+1$. Assume, by way of contradiction, that $m=\left|\Pi_{i}^{\prime} \cap K\right| \geq q-2$ and that the $(q+2)$-arc C_{i}^{\prime} extending $\Pi_{i}^{\prime} \cap K$ intersects l^{\prime} in $\left\{N_{1}, P^{\prime}\right\}$, with $l^{\prime} \cap K=\left\{P^{\prime}\right\}, i \in\{1,2, \ldots, q+1\}$. Then the number of tangents of K containing N_{1} is at least

$$
\begin{equation*}
\alpha+\beta+m-3 \geq 2 q-4+m-3 \geq 3 q-9 \tag{35}
\end{equation*}
$$

Hence

$$
\begin{equation*}
k \leq q^{2}+q+2-3 q+9=q^{2}-2 q+11 \tag{36}
\end{equation*}
$$

So $q^{2}-2 q+11>q^{2}+(1-\sqrt{5}) q+5$, a contradiction. Consequently for $\left|\Pi_{i}^{\prime} \cap K\right| \geq q-2$ we have $N_{1} \notin C_{i}^{\prime}, i \in\{1,2, \ldots, q+1\}$.
(b) Next, assume by way of contradiction that for at least one plane Π_{i}^{\prime} containing l^{\prime}, say Π_{1}^{\prime}, we have $\left|\Pi_{1}^{\prime} \cap K\right| \leq 4$. Let Π_{2}^{\prime} be the plane $l l^{\prime}$. Now we count the points of K in the planes Π_{i}^{\prime}, with $i=1,2, \ldots, q+1$. Let
θ_{1} be the number of planes $\Pi_{i}^{\prime}, i \in\{3,4, \ldots, q+1\}$, containing a tangent of $\Pi_{1} \cap K$ through N_{1} and a tangent of $\Pi_{2} \cap K$ through N_{1},
θ_{2} be the number of planes $\Pi_{i}^{\prime}, i \in\{3,4, \ldots, q+1\}$, containing a tangent of $\Pi_{1} \cap K$ through N_{1}, but no tangent of $\Pi_{2} \cap K$ through N_{1},
θ_{3} be the number of planes $\Pi_{i}^{\prime}, i \in\{3,4, \ldots, q+1\}$, containing a tangent of $\Pi_{2} \cap K$ through N_{1}, but no tangent of $\Pi_{1} \cap K$ through N_{1},
θ_{4} be the number of planes $\Pi_{i}^{\prime}, i \in\{3,4, \ldots, q+1\}$, containing no one of the tangents of $\Pi_{1} \cap K$ or $\Pi_{2} \cap K$ through N_{1}.
Then, as $N_{1} \notin C_{i}^{\prime}$ for $\left|\Pi_{i}^{\prime} \cap K\right| \geq q-2$, we have
(37)
$k \leq 4+q-1+\theta_{1}(q-2)+\theta_{2}(q-1)+\theta_{3}(q-1)+\theta_{4} q$, with $2+\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}=q+1$.
Hence

$$
\begin{equation*}
k \leq q\left(\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}\right)-\left(2 \theta_{1}+\theta_{2}+\theta_{3}\right)+q+3 \tag{38}
\end{equation*}
$$

so

$$
\begin{equation*}
k \leq q(q-1)-\left(2 \theta_{1}+\theta_{2}+\theta_{3}\right)+q+3 \tag{39}
\end{equation*}
$$

Now we have
$\theta_{1}+\theta_{2} \geq\left|\Pi_{1} \cap K\right|-2 \geq q-4$,
$\theta_{1}+\theta_{3} \geq\left|\Pi_{2} \cap K\right|-2 \geq q-4$.
Hence

$$
\begin{equation*}
k \leq q(q-1)-2 q+8+q+3=q^{2}-2 q+11 \tag{40}
\end{equation*}
$$

So $q^{2}-2 q+11>q^{2}+(1-\sqrt{5}) q+5$, a contradiction.
Hence no plane Π_{i}^{\prime} containing l^{\prime} intersects K in a m-arc, with $m \leq 4,1 \leq i \leq q+1$. Consequently, for each plane Π_{i}^{\prime} containing l^{\prime} we have $\left|\Pi_{i}^{\prime} \cap K\right| \geq q-2$. Also, we know that the $(q+2)$-arc C_{i}^{\prime} extending $\Pi_{i}^{\prime} \cap K$ does not contain N_{1}, with $i=$ $1,2, \ldots, q+1$.
(B.3) A final contradiction will be obtained by considering the possible intersections $\Pi_{i}^{\prime} \cap K, i=1,2, \ldots, q+1$. It is easy to see that at least $q-6$ planes Π_{i}^{\prime} containing l^{\prime} intersect K in a m-arc having at least 3 tangents containing N_{1}; these planes are the planes containing l^{\prime} passing through distinct tangents of $\Pi_{1} \cap K$ and $\Pi_{2} \cap K$ containing N_{1}. For any such plane Π_{i}^{\prime} the arc $\Pi_{i}^{\prime} \cap K$ is either a $(q-1)$-arc or a $(q-2)$-arc. Let
θ_{1}^{\prime} be the number of planes Π_{i}^{\prime}, with $\Pi_{i}^{\prime} \neq l l^{\prime}$, containing a tangent of $\Pi_{1} \cap K$ through N_{1}, a tangent of $\Pi_{2} \cap K$ through N_{1}, where $\Pi_{i}^{\prime} \cap K$ is a $(q-1)$-arc, θ_{2}^{\prime} be the number of planes Π_{i}^{\prime}, with $\Pi_{i}^{\prime} \neq l l^{\prime}$, containing a tangent of $\Pi_{1} \cap K$ through N_{1}, a tangent of $\Pi_{2} \cap K$ through N_{1}, where $\Pi_{i}^{\prime} \cap K$ is a $(q-2)$-arc.
Let $C_{i}^{\prime} \cap l^{\prime}=\left\{P^{\prime}, N_{i}^{\prime}\right\}$, with $l^{\prime} \cap K=\left\{P^{\prime}\right\}$ and C_{i}^{\prime} the $(q+2)$-arc extending $\Pi_{i}^{\prime} \cap K, i=1,2, \ldots, q+1$. Then $N_{i}^{\prime} \neq N_{1}, i=1,2, \ldots, q+1$. We may assume that $N_{1}^{\prime}=N_{2}^{\prime}$. Assume, by way of contradiction, that $N_{1}^{\prime}=N_{2}^{\prime}=N_{i}^{\prime}$, with $i \in\{3,4, \ldots, q+1\}$. Then N_{1}^{\prime} is on at least $3(q-3)+1$ tangents of K. So

$$
\begin{equation*}
k \leq q^{2}+q+2-3 q+8=q^{2}-2 q+10 \tag{41}
\end{equation*}
$$

Hence

$$
\begin{equation*}
q^{2}+(1-\sqrt{5}) q+5<q^{2}-2 q+10 \tag{42}
\end{equation*}
$$

that is,

$$
\begin{equation*}
(3-\sqrt{5}) q<5 \tag{43}
\end{equation*}
$$

clearly a contradiction. Hence we may assume that $N_{1}^{\prime}=N_{2}^{\prime}, N_{3}^{\prime}=N_{4}^{\prime}, N_{1}^{\prime} \neq$ $N_{3}^{\prime}, N_{i}^{\prime} \notin\left\{N_{1}^{\prime}, N_{3}^{\prime}\right\}$ for $i=5,6, \ldots, q+1$. At least $\theta_{1}^{\prime}-4$ of the arcs $\Pi_{5}^{\prime} \cap K, \Pi_{6}^{\prime} \cap$ $K, \ldots, \Pi_{q+1}^{\prime} \cap K$ are $(q-1)$-arcs, say $\Pi_{5}^{\prime} \cap K, \Pi_{6}^{\prime} \cap K, \ldots, \Pi_{\theta_{1}^{\prime}}^{\prime} \cap K$ are $(q-1)$-arcs. The number of tangents of $\Pi_{i}^{\prime} \cap K$ containing N_{j}^{\prime}, with $j \in\{1,3\}$, is either 1 or 3 , with $i=5,6, \ldots, \theta_{1}^{\prime}$; if N_{j}^{\prime} is contained in one tangent of $\Pi_{i}^{\prime} \cap K$, then N_{u}^{\prime} is contained in 3 tangents of $\Pi_{i}^{\prime} \cap K$, with $\{j, u\}=\{1,3\}$ and $i \in\left\{5,6, \ldots, \theta_{1}^{\prime}\right\}$. So we may assume that at least $\left(\theta_{1}^{\prime}-4\right) / 2$ of the $(q-1)$-arcs $\Pi_{i}^{\prime} \cap K, i=5,6, \ldots, \theta_{1}^{\prime}$, have 3 tangents containing N_{1}^{\prime}. Counting the tangents of K through N_{1}^{\prime}, we obtain at least

$$
\begin{equation*}
1+\left(\theta_{1}^{\prime}-4\right)+\left(\theta_{2}^{\prime}-2\right)+2(q-3) \tag{44}
\end{equation*}
$$

tangents. As $\theta_{1}^{\prime}+\theta_{2}^{\prime} \geq q-6$, this number of tangents is at least $1+q-6-6+2 q-6=$ $3 q-17$. Hence

$$
\begin{equation*}
k \leq q^{2}+q+2-3 q+17=q^{2}-2 q+19 \tag{45}
\end{equation*}
$$

So

$$
\begin{equation*}
q^{2}+(1-\sqrt{5}) q+5<q^{2}-2 q+19 \tag{46}
\end{equation*}
$$

or

$$
\begin{equation*}
(3-\sqrt{5}) q<14 \tag{47}
\end{equation*}
$$

a contradiction for $q>16$.
If at least one of the arcs $\Pi_{1}^{\prime} \cap K, \Pi_{2}^{\prime} \cap K$ is a m-arc with $m>q-2$, then (44) becomes

$$
\begin{equation*}
1+\left(\theta_{1}^{\prime}-4\right)+\left(\theta_{2}^{\prime}-1\right)+(q-3)+(q-2) \tag{48}
\end{equation*}
$$

which is at least $3 q-15$. Hence $k \leq q^{2}-2 q+17$. For $q=16$ this gives $k \leq 241$. But for $q=16$ the inequality $k>q^{2}+(1-\sqrt{5}) q+5$ yields $k \geq 242$, a contradiction.
Finally we assume that $\Pi_{1}^{\prime} \cap K$ and $\Pi_{2}^{\prime} \cap K$ are $(q-2)$-arcs. Then at least $\theta_{1}^{\prime}-2$ of the arcs $\Pi_{i}^{\prime} \cap K$, with $i=5,6, \ldots, q+1$, are $(q-1)$-arcs, say $\Pi_{5}^{\prime} \cap K, \Pi_{6}^{\prime} \cap K, \ldots, \Pi_{\theta_{1}^{\prime}+2}^{\prime} \cap K$. So at least $\left(\theta_{1}^{\prime}-2\right) / 2$ of the $(q-1)$-arcs $\Pi_{i}^{\prime} \cap K$, with $i=5,6, \ldots, \theta_{1}^{\prime}+2$, have 3 tangents containing either N_{1}^{\prime} or N_{3}^{\prime}. First, assume that this is the case for N_{3}^{\prime}. If at least one of the arcs $\Pi_{3}^{\prime} \cap K, \Pi_{4}^{\prime} \cap K$ is a m-arc with $m>q-2$, then the number of tangents of K containing N_{3}^{\prime} is at least

$$
\begin{equation*}
1+\left(\theta_{1}^{\prime}-2\right)+\left(\theta_{2}^{\prime}-1\right)+(q-3)+(q-2) \tag{49}
\end{equation*}
$$

which is at least $3 q-13$. Hence $k \leq q^{2}-2 q+15$, and so $q^{2}+(1-\sqrt{5}) q+5<$ $q^{2}-2 q+15$, that is, $(3-\sqrt{5}) q<10$, a contradiction. Hence the arcs $\Pi_{3}^{\prime} \cap K$ and $\Pi_{4}^{\prime} \cap K$ are $(q-2)$-arcs. Then the number of tangents of K containing N_{3}^{\prime} is at least

$$
\begin{equation*}
1+\theta_{1}^{\prime}+\left(\theta_{2}^{\prime}-2\right)+2(q-3) \tag{50}
\end{equation*}
$$

which is at least $3 q-13$. This yields again a contradiction. Consequently at least $\left(\theta_{1}^{\prime}-2\right) / 2$ of the $(q-1)$-arcs $\Pi_{i}^{\prime} \cap K$, with $i=5,6, \ldots, \theta_{1}^{\prime}+2$, have 3 tangents containing N_{1}^{\prime}. But then in (44) $\theta_{1}^{\prime}-4$ may be replaced by $\theta_{1}^{\prime}-2$, yielding at least $3 q-15$ tangents of K containing N_{1}^{\prime}. Hence $k \leq q^{2}-2 q+17$, which is a final contradiction.

We conclude that each tangent l of K is contained in at least one plane intersecting K in at most four points.
(C) Assume, by way of contradiction, that there is a tangent l of K which is contained in at least two planes Π_{1}, Π_{2} intersecting K in a m-arc, with $m \leq 4$.

Assume that $l \cap K=\{P\}$ and that $\Pi_{1} \cup \Pi_{2}$ contains $2 q+\delta$ tangents of K through P. We have $-5 \leq \delta \leq 1$.
(C.1) Here we will show that $2 q+\delta$ is the total number of tangents of K containing P; as a corollary it will follow that $k \in\left\{q^{2}-q+1, q^{2}-q+2, q^{2}-q+3\right\}$. Assume, by way of contradiction, that there is a tangent l^{\prime} of K containing P with $l^{\prime} \not \subset \Pi_{1} \cup \Pi_{2}$. If $\left|l l^{\prime} \cap K\right| \leq 4$, then the number of tangents of K containing P is at least $2 q+\delta+q-3=3 q+\delta-3 \geq 3 q-8$, so $k \leq q^{2}+q+2-3 q+8=q^{2}-2 q+10$. Hence

$$
\begin{equation*}
q^{2}+(1-\sqrt{5}) q+5<q^{2}-2 q+10 \tag{51}
\end{equation*}
$$

or $(3-\sqrt{5}) q<5$, a contradiction. Now we consider all planes containing l^{\prime}. By (B) at least one of these planes intersects K in a m-arc, with $m \leq 4$. If at least two planes containing l^{\prime} intersect K in at most 4 points, then P is contained in at least
$2 q-5+2(q-5)+1=4 q-14$ tangents of K. Hence $k \leq q^{2}+q+2-4 q+14=$ $q^{2}-3 q+16$, so

$$
\begin{equation*}
q^{2}+(1-\sqrt{5}) q+5<q^{2}-3 q+16 \tag{52}
\end{equation*}
$$

that is, $(4-\sqrt{5}) q<11$, clearly a contradiction. Consequently exactly one plane Π^{\prime} containing l^{\prime} intersects K in at most 4 points. Now we count the points of K in the planes containing l^{\prime}. Let
θ_{1} be the number of planes, distinct from $l l^{\prime}$ and Π^{\prime}, containing l^{\prime}, containing a tangent of K in Π_{1} and containing a tangent of K in Π_{2},
θ_{2} be the number of planes containing l^{\prime}, distinct from Π^{\prime}, containing a tangent of K in Π_{1} and containing no tangent of K in Π_{2},
θ_{3} be the number of planes containing l^{\prime}, distinct from Π^{\prime}, containing a tangent of K in Π_{2} and containing no tangent of K in Π_{1}, θ_{4} be the number of planes, distinct from Π^{\prime}, containing l^{\prime} and containing no tangent of K in Π_{1} or Π_{2}.
Then

$$
\begin{equation*}
k \leq 1+(q-1)+\theta_{1}(q-2)+\theta_{2}(q-1)+\theta_{3}(q-1)+\theta_{4} q+3 \tag{53}
\end{equation*}
$$

with

$$
\begin{equation*}
\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}=q-1 \text { and } \theta_{2}+\theta_{3}+2 \theta_{4} \leq 6 \tag{54}
\end{equation*}
$$

So

$$
\begin{equation*}
k \leq q+3+\left(q-1-\theta_{2}-\theta_{3}-\theta_{4}\right)(q-2)+\theta_{2}(q-1)+\theta_{3}(q-1)+\theta_{4} q \tag{55}
\end{equation*}
$$

that is,

$$
\begin{equation*}
k \leq q^{2}-2 q+5+\left(\theta_{2}+\theta_{3}+2 \theta_{4}\right) \tag{56}
\end{equation*}
$$

hence

$$
\begin{equation*}
k \leq q^{2}-2 q+5+6=q^{2}-2 q+11 \tag{57}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
q^{2}+(1-\sqrt{5}) q+5<q^{2}-2 q+11 \tag{58}
\end{equation*}
$$

or $(3-\sqrt{5}) q<6$, a contradiction.
It follows that $2 q+\delta$ is the total number of tangents of K containing P and so $k=q^{2}+q+2-2 q-\delta=q^{2}-q+2-\delta$. As $k \leq q^{2}-q+3$ by Theorem 2.1, we have $-1 \leq \delta \leq 1$.
(C.2) Some further properties of K. Let $l^{\prime \prime}$ be any tangent of K not containing P and let $K \cap l^{\prime \prime}=\left\{P^{\prime}\right\}$. By (B) $l^{\prime \prime}$ is contained in a plane $\Pi^{\prime \prime}$ with $\left|\Pi^{\prime \prime} \cap K\right| \leq 4$. There is a tangent n of K at P^{\prime} not contained in $\Pi^{\prime \prime}$. The tangent n is contained in a plane ρ with $|\rho \cap K| \leq 4$. Let $2 q+\delta^{\prime}$ be the number of tangents of K at P^{\prime} in $\rho \cup \Pi^{\prime \prime}$. Then $\delta^{\prime} \leq \delta$ and if $\rho \cap \Pi^{\prime \prime}$ is a tangent, then by the foregoing section we have $\delta^{\prime}=\delta$. Assume, by way of contradiction, that $\rho \cap \Pi^{\prime \prime}$ is not a tangent of K and that $\delta^{\prime}<\delta$. Then there is a tangent n^{\prime} of K at P^{\prime} not contained in $\rho \cup \Pi^{\prime \prime}$. The tangent n^{\prime} is contained in a plane ρ^{\prime} with $\left|\rho^{\prime} \cap K\right| \leq 4$. If $\rho \cap \rho^{\prime}$ is a tangent of K, then the $2 q+\delta$ tangents of K at P^{\prime} are contained in $\rho \cup \rho^{\prime}$, a contradiction. So $\rho \cap \rho^{\prime}$ is not a tangent; similarly $\rho^{\prime} \cap \Pi^{\prime \prime}$ is not a tangent. Hence the number of tangents of K at P^{\prime} is at least $3(q-2)$, so $2 q+\delta \geq 3 q-6$, hence $\delta \geq q-6$, a contradiction. We conclude that $\delta^{\prime}=\delta$ and that all tangents of K at P^{\prime} are contained in $\rho \cup \Pi^{\prime \prime}$.

Hence, given any point $Q \in K$ there are two planes α_{1} and α_{2} containing all tangents of K at Q; also $\left|\alpha_{1} \cap K\right| \leq 4$ and $\left|\alpha_{2} \cap K\right| \leq 4$. These planes are uniquely defined by Q, and so is $\alpha_{1} \cap \alpha_{2}$. By Section (A) the line $\alpha_{1} \cap \alpha_{2}$ is a tangent of K at Q. Let $\widetilde{\Pi}$ be any plane containing Q, with $\widetilde{\Pi} \notin\left\{\alpha_{1}, \alpha_{2}\right\}$. Then $\widetilde{\Pi} \cap K$ contains at most two tangents at Q, so $|\widetilde{\Pi} \cap K| \geq q$. It follows that K contains no ($q-2$)-arcs and no ($q-1$)-arcs.
Notice that $\left|\alpha_{1} \cap K\right|+\left|\alpha_{2} \cap K\right|+\delta=3$ and remind that $-1 \leq \delta \leq 1$.
Let $\widetilde{\Pi}$ be a plane containing Q, with $\widetilde{\Pi} \notin\left\{\alpha_{1}, \alpha_{2}\right\}$. The arc $\widetilde{\Pi} \cap K$ contains always at least one tangent of K at Q, except when $\delta=-1, k=q^{2}-q+3,\left|\alpha_{1} \cap K\right|=$ $\left|\alpha_{2} \cap K\right|=2$. So if $k \in\left\{q^{2}-q+1, q^{2}-q+2\right\}$ and if $k=q^{2}-q+3$ with $\left|\alpha_{1} \cap K\right|=\left|\alpha_{2} \cap K\right|+2=3$ or $\left|\alpha_{2} \cap K\right|=\left|\alpha_{1} \cap K\right|+2=3$, then $\widetilde{\Pi} \cap K$ is not a $(q+2)$-arc. If $\left|\alpha_{1} \cap K\right|=\left|\alpha_{2} \cap K\right|=2, k=q^{2}-q+3$, then there is excactly one plane $\widetilde{\Pi}$ containing Q for which $\widetilde{\Pi} \cap K$ is a $(q+2)$-arc.
(C.3) $k=q^{2}-q+1$

Then $\overline{\delta=1}$ and $\left|\Pi_{1} \cap K\right|=\left|\Pi_{2} \cap K\right|=1$. Let $U_{1}, U_{2} \in K$, with $U_{1} \neq U_{2}$, and let ξ_{1}, ξ_{2} be the planes containing U_{1} intersecting K in at most 4 points. If $U_{2} \in \xi_{1} \cup \xi_{2}$, then $\delta \leq 0$, a contradiction. Hence $U_{2} \notin \xi_{1} \cup \xi_{2}$. Consequently any plane containing the line $U_{1} U_{2}$ has more than 4 points in common with K.

Now we count the points of K in planes containing the line $U_{1} U_{2}$. Let θ_{1} be the number of planes containing $U_{1} U_{2}$ intersecting K in a q-arc, and let θ_{2} be the number of planes containing $U_{1} U_{2}$ intersecting K in a $(q+1)$-arc. Then

$$
\begin{equation*}
\theta_{1}(q-2)+\theta_{2}(q-1)+2=q^{2}-q+1, \text { with } \theta_{1}+\theta_{2}=q+1 \tag{59}
\end{equation*}
$$

So

$$
\begin{equation*}
\theta_{1}(q-2)+\left(q+1-\theta_{1}\right)(q-1)+2=q^{2}-q+1 \tag{60}
\end{equation*}
$$

that is $\theta_{1}=q$ and $\theta_{2}=1$.
Now we count the number of $(q+1)$-arcs on K, and obtain

$$
\begin{equation*}
\frac{\left(q^{2}-q+1\right)\left(q^{2}-q\right)}{(q+1) q} \tag{61}
\end{equation*}
$$

So $q+1 \mid\left(q^{2}-q+1\right)(q-1)$, so $q+1 \mid 6$, a contradiction.
(C.4) $k=q^{2}-q+2$

Then $\overline{\delta=0 \text { and }\left\{\mid \Pi_{1}\right.} \cap K\left|,\left|\Pi_{2} \cap K\right|\right\}=\{1,2\}$. Let Q be any point of K and let l_{Q} be the tangent of K which is the intersection of the two planes α_{1} and α_{2} containing the $2 q$ tangents of K at Q. Let $\left(\alpha_{1} \cup \alpha_{2}\right) \cap K=\left\{Q, Q^{\prime}\right\}$. Starting with Q^{\prime} and $l_{Q^{\prime}}$, we find the same pair $\left\{Q^{\prime}, Q\right\}$. It follows that K is partitioned into pairs of type $\left\{Q, Q^{\prime}\right\}$. Let \mathcal{L} be the set of these $\left(q^{2}-q+2\right) / 2$ pairs.

Let $\left\{Q, Q^{\prime}\right\} \in \mathcal{L}$, let α_{1} and α_{2} be the planes containing the $2 q$ tangents of K at Q, and assume that $Q^{\prime} \in \alpha_{1}$. Then $\alpha_{1}=l_{Q} l_{Q^{\prime}}$. Let Π be a plane containing $Q Q^{\prime}$, distinct from α_{1}. As Π contains a tangent of K at Q, we have $|\Pi \cap K| \leq q+1$. Counting the points of K in the planes containing $Q Q^{\prime}$, we obtain $|\Pi \cap K|=q+1$. By an easy counting we see that the planes containing l_{Q}, but distinct from α_{1} and α_{2}, intersect K in $(q+1)$-arcs. This way there arise $q-1(q+1)$-arcs $K_{1}, K_{2}, \ldots, K_{q-1}$, having kernels $N_{1}, N_{2}, \ldots, N_{q-1}$ on $l_{Q} \backslash\{Q\}$. Assume, by way of contradiction, that
$N_{i}=N_{j}, i \neq j$ and $i, j \in\{1,2, \ldots, q-1\}$. Then N_{i} is on at least $2 q+1$ tangents of K, hence $k \leq q^{2}-q+1$, a contradiction. Let $l_{Q} \backslash\left\{N_{1}, N_{2}, \ldots, N_{q-1}\right\}=N_{Q}$.
Assume, by way of contradiction, that $l_{Q} \cap l_{Q^{\prime}} \neq N_{Q}$. Let $l_{Q} \cap l_{Q^{\prime}}=N_{i}, i \in$ $\{1,2, \ldots, q-1\}$, and let $R \in K_{i} \backslash\{Q\}$. Then $l_{Q^{\prime}} R \cap K$ is a $(q+1)$-arc with kernel N_{i}. Hence N_{i} is on at least $q^{2}+2$ tangents, a contradiction. Consequently $l_{Q} \cap l_{Q^{\prime}}=N_{Q}$; similarly, $l_{Q} \cap l_{Q^{\prime}}=N_{Q^{\prime}}$.

Assume, by way of contradiction, that $l_{Q} \cap l_{S} \neq \emptyset$, with $Q \neq S$ and $\{Q, S\} \notin \mathcal{L}$. Let $\left\{Q, Q^{\prime}\right\}$ and $\left\{S, S^{\prime}\right\}$ be elements of \mathcal{L}. Now we count the number of tangents of K containing $l_{Q} \cap l_{S}=M$. The arc $l_{Q} l_{S} \cap K$ is a $(q+1)$-arc with kernel M, so $l_{Q} l_{S}$ contains $q+1$ tangents of K through M; the $\operatorname{arc} l_{Q} S^{\prime} \cap K$ is a $(q+1)$-arc, and as the line $M S^{\prime}$ of the plane $l_{S} S^{\prime}$ is a tangent of K, the point M is the kernel of $l_{Q} S^{\prime} \cap K$, so $l_{Q} S^{\prime}$ contains $q+1$ tangents of K through M; similarly the plane $l_{S} Q^{\prime}$ contains $q+1$ tangents of K through M. Hence M is contained in more than $2 q$ tangents of K, clearly a contradiction. It follows that if $l_{Q} \cap l_{S} \neq \emptyset$, with $Q \neq S$, then $\{Q, S\} \in \mathcal{L}$.

Let $\{Q, S\} \notin \mathcal{L}$, with Q and S distinct points of K. Then $l_{Q} \cap l_{S}=\emptyset$. Now we count the points of K in the planes containing the line $Q S$. Let θ_{1} be the number of planes which contain $Q S$ and intersect K in a q-arc, and let θ_{2} be the number of planes which contain $Q S$ and intersect K in a $(q+1)$-arc. Hence

$$
\begin{equation*}
\theta_{1}(q-2)+\theta_{2}(q-1)+2=q^{2}-q+2, \text { with } \theta_{1}+\theta_{2}=q+1 \tag{62}
\end{equation*}
$$

So $\theta_{1}=q-1$ and $\theta_{2}=2$. The 2 planes containing $Q S$ and intersecting K in a $(q+1)$-arc are the planes $l_{Q} S$ and $l_{S} Q$.
Let $\{Q, S\} \in \mathcal{L}$ and let $l_{Q} \cap l_{S}=N$. Then N is kernel of no one of the $q-1$ $(q+1)$-arcs defined by planes containing the tangent l_{Q} and of no one of the $q-1$ $(q+1)$-arcs defined by planes containing the tangent l_{S}. So for any line $n \notin\left\{l_{Q}, l_{S}\right\}$ containing N we have $|n \cap K| \in\{0,2\}$. Let $n \cap K=\left\{U, U^{\prime}\right\}$.

First, assume that $\left\{U, U^{\prime}\right\} \notin \mathcal{L}$. Then $\left|l_{U} U^{\prime} \cap K\right|=\left|l_{U^{\prime}} U \cap K\right|=q+1$. As $\left|l_{Q} U \cap K\right|=\left|l_{S} U \cap K\right|=q+1$, the planes $l_{Q} U$ and $l_{S} U$ are the two planes containing $U U^{\prime}$ and intersecting K in a $(q+1)$-arc. Hence $\left\{l_{Q} U, l_{S} U\right\}=\left\{l_{U} U^{\prime}, l_{U^{\prime}} U\right\}$. So we may assume that $l_{Q} U=l_{U} U^{\prime}$ and $l_{S} U=l_{U^{\prime}} U$. Consequently $l_{Q} \cap l_{U} \neq \emptyset$ and $l_{S} \cap l_{U^{\prime}} \neq \emptyset$, that is, $\{Q, U\} \in \mathcal{L}$ and $\left\{S, U^{\prime}\right\} \in \mathcal{L}$. Hence $\left|l_{Q} l_{U} \cap K\right|=\left|l_{S} l_{U^{\prime}} \cap K\right|=2$, clearly a contradiction as $Q, U, U^{\prime} \in l_{Q} l_{U}$.
It follows that $\left\{U, U^{\prime}\right\} \in \mathcal{L}$. So for any pair $\left\{T, T^{\prime}\right\} \in \mathcal{L}$, with $\left\{T, T^{\prime}\right\} \neq\{Q, S\}$, we have $N \in T T^{\prime}$. Let $n^{\prime}, n^{\prime \prime}$ be distinct lines containing N with $n^{\prime} \neq n \neq n^{\prime \prime}$ and $n^{\prime}, n^{\prime \prime} \notin\left\{l_{Q}, l_{S}\right\}$. Assume also that $n^{\prime} \cap K=\left\{V, V^{\prime}\right\}$ and $n^{\prime \prime} \cap K=\left\{W, W^{\prime}\right\}$. Then $\left\{V, V^{\prime}\right\} \in \mathcal{L}$ and $\left\{W, W^{\prime}\right\} \in \mathcal{L}$. By the foregoing the lines $V V^{\prime}, W W^{\prime}, Q S$ contain N, clearly a contradiction.
(C.5) $k=q^{2}-q+3$

Let P be any point of K and let l_{P} be the tangent of K which is the intersection of the two planes Π_{1}, Π_{2} containing the $2 q-1$ tangents of K at P. Two cases are considered.
(C.5.1) $\Pi_{1} \cap K=\left\{P, P^{\prime}, P^{\prime \prime}\right\}, \Pi_{2} \cap K=\{P\}$

Then K contains no plane $(q+2)$-arcs containing P. Let l be a tangent of K at P, with l in Π_{1} and $l \neq l_{P}$. We count the points of K in planes containing l. Let θ_{1} be
the number of planes containing l and intersecting K in a $(q+1)$-arc, and let θ_{2} be the number of planes containing l and intersecting K in a q-arc. Then

$$
\begin{equation*}
\theta_{1} q+\theta_{2}(q-1)+3=q^{2}-q+3, \text { with } \theta_{1}+\theta_{2}=q \tag{63}
\end{equation*}
$$

Hence $\theta_{1}=0$ and $\theta_{2}=q$. Let $\widetilde{\Pi}_{1}, \widetilde{\Pi}_{2}, \ldots, \widetilde{\Pi}_{q}$ be the planes containing l and intersecting K in a q-arc, let $\widetilde{\Pi}_{i} \cap K=K_{i}$, let C_{i} be the $(q+2)$-arc extending K_{i} and let $C_{i} \cap l=\left\{P, N_{i}\right\}$, with $i=1,2, \ldots, q$. Assume that for some $i \in\{1,2, \ldots, q\}$ we have $N_{i} \notin P^{\prime} P^{\prime \prime}$. The number of tangents of K containing N_{i} is at least

$$
\begin{equation*}
q+(q-1)+2=2 q+1 \tag{64}
\end{equation*}
$$

a contradiction. Hence $N_{1}=N_{2}=\cdots=N_{q}=l \cap P^{\prime} P^{\prime \prime}$. Then the number of tangents of K containing N_{1} is at least

$$
\begin{equation*}
q(q-1)+1=q^{2}-q+1 \tag{65}
\end{equation*}
$$

again a contradiction.
(C.5.2) $\Pi_{1} \cap K=\left\{P, P^{\prime}\right\}, \Pi_{2} \cap K=\left\{P, P^{\prime \prime}\right\}$

By (C.5.1), for each point $Q \in K$ the two planes α_{1}, α_{2} through Q intersecting K in at most four points, intersect K in exactly two points. If $\alpha_{1} \cap K=\left\{Q, Q^{\prime}\right\}$ and $\alpha_{2} \cap K=\left\{Q, Q^{\prime \prime}\right\}$, then the plane $Q Q^{\prime} Q^{\prime \prime}$ is the only plane on Q intersecting K in a $(q+2)$-arc. Hence the $(q+2)$-arcs on K partition K. So

$$
\begin{equation*}
q+2 \mid q^{2}-q+3, \text { so } q+2 \mid q-7, \text { so } q+2 \mid 9 \tag{66}
\end{equation*}
$$

a contradiction.
Now the theorem is proved.

4. Corollaries

We are grateful to T. Szőnyi for bringing reference [12] to our attention which, in combination with Theorem 1.6, gives the following considerable improvement of the bound in Theorem 1.6; see also Remark 4.4.

Theorem 4.1.

$$
\begin{equation*}
m_{2}^{\prime}(3, q)<q^{2}-2 q+3 \sqrt{q}+2, q \text { even, } q \geq 2048 \tag{67}
\end{equation*}
$$

Proof. In [12] it is proved that there does not exist a complete k-cap in $\mathbf{P G}(3, q)$, q even, $q \geq 64$, for which

$$
\begin{equation*}
k \in\left[q^{2}-(a-1) q+a \sqrt{q}+2-a+\frac{a(a-1)}{2}, q^{2}-(a-2) q-a^{2} \sqrt{q}\right] \tag{68}
\end{equation*}
$$

where a is an integer which satisfies

$$
\begin{equation*}
2 \leq a \leq \frac{-2 \sqrt{q}+3+\sqrt{16 q \sqrt{q}+12 q-44 \sqrt{q}-7}}{4 \sqrt{q}+2} \tag{69}
\end{equation*}
$$

Putting $a=3$, the desired result immediately follows from Theorem 1.6.

Theorem 4.2. (i) $m_{2}(4,4)=41$,
(ii) $m_{2}(4,8) \leq 479$,
(iii) $m_{2}(4, q)<q^{3}-q^{2}+2 \sqrt{5} q-8$, q even, $q>8$.

Proof. For $q=4$, see [5]. Assume, by way of contradiction, that K is a k cap of $\mathbf{P G}(4,8)$ with $k>479$, or a k-cap of $\mathbf{P G}(4, q), q$ even and $q>8$, with $k>q^{3}-q^{2}+2 \sqrt{5} q-8$. At each of its points the cap K has $t=q^{3}+q^{2}+q+2-k$ tangents. Hence we assume that $t<107$ for $q=8$ and $t<2 q^{2}+(1-2 \sqrt{5}) q+10$ for $q>8$. We obtain a contradiction in several stages.
I K contains no plane q-arc
Similar to the reasoning in Section I in the proof of Theorem 6.27 in [9].
II There exists no solid δ such that $q^{2}+1>|\delta \cap K|>q^{2}+(1-\sqrt{5}) q+5$
Suppose δ exists. Let $\delta \cap K=K^{\prime}$. Then K^{\prime} can be completed to an ovoid O of δ, by Theorem 3.1. Let $N \in O \backslash K^{\prime}$ and let $N^{\prime} \in K^{\prime}$. Consider the $q+1$ planes of δ through $N N^{\prime}$. Since each of these planes meets O in a $(q+1)$-arc, each plane meets K^{\prime} in at most a q-arc. By I, there is no q-arc on K; so each plane meets K^{\prime} in at most a $(q-1)$-arc.

Assume, by way of contradiction, that none of these intersections is a $(q-1)$-arc. Therefore a count of the points on K^{\prime} gives

$$
\begin{equation*}
\left|K^{\prime}\right| \leq(q+1)(q-3)+1 \tag{70}
\end{equation*}
$$

whence

$$
\begin{equation*}
q^{2}+(1-\sqrt{5}) q+5<q^{2}-2 q-2 \tag{71}
\end{equation*}
$$

so

$$
\begin{equation*}
(3-\sqrt{5}) q+7<0 \tag{72}
\end{equation*}
$$

a contradiction.
So we may assume that for one of the planes δ through $N N^{\prime}$, say Π, we have $\left|\Pi \cap K^{\prime}\right|=q-1$. Now we consider all solids of $\mathbf{P G}(4, q)$ containing the plane Π. Let θ be the number of solids Π^{\prime} for which $\left|\Pi^{\prime} \cap K\right|>q^{2}+(1-\sqrt{5}) q+5$, so $q+1-\theta$ is the number of solids $\Pi^{\prime \prime}$ for which $\left|\Pi^{\prime \prime} \cap K\right|<q^{2}+(1-\sqrt{5}) q+5$. We have $\theta \geq 1$.
First, assume $\theta \geq 2$. So there are at least two solids $\Pi_{1}^{\prime}, \Pi_{2}^{\prime}$ containing Π such that $\left|\Pi_{i}^{\prime} \cap K\right|>q^{2}+(1-\sqrt{5}) q+5$, with $i=1,2$. By Theorem $3.1 \Pi_{i}^{\prime} \cap K$ can be completed to an ovoid O_{i} of $\Pi_{i}^{\prime}, i=1,2$. So $O_{i} \cap \Pi$ is a $(q+1)-\operatorname{arc}\left(\Pi \cap K^{\prime}\right) \cup\left\{N_{i}^{\prime}, N_{i}^{\prime \prime}\right\}, i=1,2$. Since $\Pi \cap K^{\prime}$ can be contained in no more than three $(q+1)$-arcs, contained in a common $(q+2)$-arc, we have $\left|\left\{N_{1}^{\prime}, N_{1}^{\prime \prime}\right\} \cap\left\{N_{2}^{\prime}, N_{2}^{\prime \prime}\right\}\right| \geq 1$. Assume $N_{1}^{\prime}=N_{2}^{\prime}$. So the number of tangents of K containing N_{1}^{\prime} is at least

$$
\begin{equation*}
2\left(q^{2}+(1-\sqrt{5}) q+5-q+1\right)+q-1 \tag{73}
\end{equation*}
$$

so

$$
\begin{equation*}
2 q^{2}+(1-2 \sqrt{5}) q+11 \tag{74}
\end{equation*}
$$

a contradiction.
Finally, assume that $\theta=1$. Counting the points of K in the $q+1$ solids, we obtain

$$
\begin{equation*}
k<q\left(q^{2}+(1-\sqrt{5}) q+5-q+1\right)+\left(q^{2}-1\right) \tag{75}
\end{equation*}
$$

that is,

$$
\begin{equation*}
k<q^{3}+(1-\sqrt{5}) q^{2}+6 q-1 \tag{76}
\end{equation*}
$$

Hence, for $q>8$,

$$
\begin{equation*}
q^{3}-q^{2}+2 \sqrt{5} q-8<q^{3}+(1-\sqrt{5}) q^{2}+6 q-1 \tag{77}
\end{equation*}
$$

$$
\begin{equation*}
0<(2-\sqrt{5}) q^{2}+(6-2 \sqrt{5}) q+7, \tag{78}
\end{equation*}
$$

a contradiction. For $q=8$, there arises $479<479$, a contradiction.
III For a point N not in K, there do not exist planes Π_{1} and Π_{2} such that $\Pi_{1} \cap \Pi_{2}=N$ and such that $\Pi_{i} \cap K$ is a $(q+1)$-arc with nucleus N for $i=1,2$ Similar to the reasoning in Section III in the proof of Theorem 6.27 in [9].

IV The tangents through any point Q off K lie in a solid
Similar to the reasoning in Section IV in the proof of Theorem 6.27 in [9].
V The final contradiction is obtained by counting the tangents of K
Similar to the reasoning in Section V in the proof of Theorem 6.27 in [9].

Theorem 4.3. For q even, $q>2, n \geq 5$,
(i) $m_{2}(n, 4) \leq \frac{118}{3} \cdot 4^{n-4}+\frac{5}{3}$
(ii) $m_{2}(n, 8) \leq 478.8^{n-4}-2\left(8^{n-5}+\cdots+8+1\right)+1$,
(iii) $m_{2}(n, q)<q^{n-1}-q^{n-2}+2 \sqrt{5} q^{n-3}-9 q^{n-4}-2\left(q^{n-5}+\cdots+q+1\right)+1$, for $q>8$.

Proof This follows directly from Theorem 1.1, Theorem 4.2 and Theorem 6.14(ii) in [9].

Remark 4.4. The bound in Theorem 4.1 leads to considerable improvements of Theorem 4.2 and Theorem 4.3. We just mention these bounds, but the proofs are the theme of a subsequent paper.

For q even, $q \geq 2048$,

$$
\begin{equation*}
m_{2}(4, q)<q^{3}-2 q^{2}+3 q \sqrt{q}+8 q-9 \sqrt{q}-6 \tag{79}
\end{equation*}
$$

For q even, $q \geq 2048, n \geq 5$,
$m_{2}(n, q)<q^{n-1}-2 q^{n-2}+3 q^{n-3} \sqrt{q}+8 q^{n-3}-9 q^{n-4} \sqrt{q}-7 q^{n-4}-2\left(q^{n-5}+\cdots+q+1\right)+1$.

5. REMARK

The bound in the MAIN THEOREM is better than the bound of Chao, see [3]. In 2014 Cao and Ou , see [2], published the bound $k<q^{2}-2 q+8$ (q even and $q \geq 128$), which is better than ours. I did not follow some reasoning in their proof, so I sent two mails to one of the authors explaining why I think Section 1.3 of the proof is not correct. Unfortunately I never received an answer.

REFERENCES

[1] R. C. Bose, Mathematicial theory of the symmetrical factorial design, Sankhyā 8 (1947), 107 166.
[2] J. M. Cao and L. Ou, Caps in PG (n, q) with q even and $n \geq 3$, Discrete Math. 326 (2014), 61-65.
[3] J. M. Chao, On the size of a cap in $\mathbf{P G}(n, q)$ with q even and $n \geq 3$, Geom. Dedicata 74 (1999), 91-94.
[4] A. A. Davydov and L. M. Tombak, Quasiperfect linear binary codes with distance 4 and complete caps in projective geometry, Problems Inform. Transmission 25 (1990), 265-275.
[5] Y. Edel and J. Bierbrauer, 41 is the largest size of a cap in PG(4, 4), Des. Codes Cryptogr. 16 (1999), 151-160.
[6] J. W. P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford University Press, Oxford, 1985, x + 316 pp.
[7] J. W. P. Hirschfeld, Projective Geometries over Finite Fields, Second Edition, Oxford University Press, Oxford, 1998, xiv + 555 pp.
[8] J. W. P. Hirschfeld and J. A. Thas, Linear independence in finite spaces, Geom. Dedicata 23 (1987), 15-31.
[9] J. W. P. Hirschfeld and J. A. Thas, General Galois Geometries, Second Edition, Springer, London, 2016, xvi +409 pp.
[10] B. Qvist, Some remarks concerning curves of the second degree in a finite plane, Ann. Acad. Sci. Fenn. Ser. A 134 (1952), 27 pp.
[11] B. Segre, Introduction to Galois geometries, Atti Accad. Naz. Lincei Mem. 8 (1987), 133-236 (edited by J. W. P. Hirschfeld).
[12] L. Storme and T. Szőnyi, Caps in PG $(n, q), q$ even, $n \geq 3$, Geom. Dedicata 45 (1993), 163-169.
[13] J. A. Thas, Complete arcs and algebraic curves in PG(2, q), J. Algebra 106 (1987), 451-464.

Ghent University, Department of Mathematics, Krijgslaan 281, S22, B-9000 Ghent, Belgium
E-mail address: jat@cage.ugent.be

