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Disturbance and clonal reproduction determine liana distribution
and maintain liana diversity in a tropical forest
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Abstract. Negative density dependence (NDD) and habitat specialization have received
strong empirical support as mechanisms that explain tree species diversity maintenance and
distribution in tropical forests. In contrast, disturbance appears to play only a minor role.
Previous studies have rarely examined the relative strengths of these diversity maintenance
mechanisms concurrently, and few studies have included plant groups other than trees. Here
we used a large, spatially explicit data set from Barro Colorado Island, Panama (BCI) to test
whether liana and tree species distribution patterns are most consistent with NDD, habitat
specialization, or disturbance. We found compelling evidence that trees responded to habitat
specialization and NDD; however, only disturbance explained the distribution of the majority
of liana species and maintained liana diversity. Lianas appear to respond to disturbance with
high vegetative (clonal) reproduction, and liana species’ ability to produce clonal stems
following disturbance results in a clumped spatial distribution. Thus, clonal reproduction
following disturbance explains local liana spatial distribution and diversity maintenance on
BCI, whereas negative density dependence and habitat specialization, two prominent
mechanisms contributing to tree species diversity and distribution, do not.

Key words: density dependence; disturbance; habitat specialization; point pattern analysis; spatial
pattern; species coexistence.

INTRODUCTION

The maintenance of species diversity and the mech-

anisms that control species’ distributions are fundamen-

tal questions in ecology. While many mechanisms have

been proposed to explain plant diversity maintenance

and distribution, negative density dependence (Janzen

1970, Connell 1971) and niche assembly driven by

habitat specialization (Grubb 1977, Tilman 1982) have

received the most empirical support. For example,

negative density dependence has been shown to operate

in both temperate grasslands and forests (Schnitzer et al.

2011, Johnson et al. 2012), as well as in diverse tropical

forests, where negative density-dependent effects have

been found for many tree species (Comita et al. 2010,

Mangan et al. 2010).

Niche assembly and differentiation through topo-

graphic and edaphic habitat specialization, where plant

diversity and distribution is driven by strong habitat

preferences, has also been proposed to explain high plant

diversity and species distributions in various ecosystems

(e.g., Tilman 1982, Clark et al. 1999). In tropical forests,

habitat specialization has been reported to explain the

distribution and diversity maintenance for many tree

species. For example, John et al. (2007) examined the

distribution and diversity of trees in three different

neotropical forests and demonstrated that up to 51% of

tree species had strong associations with particular soil

nutrients. Bagchi et al. (2011) reported that habitat

characteristics were responsible for the clumped spatial

pattern of 84% of the species in four tropical forests in

Ecuador, Malaysia, Panama, Sri Lanka. At Yasunı́

National Park, Ecuador, up to 90% of the seedlings of

tree species were significantly associated with a specific

habitat type (Metz 2012). In lowland tropical forest in

Borneo, 85% of tree species were associated with a

particular habitat (Potts et al. 2002).

Disturbance has a rich theoretical history as a

community diversity maintenance mechanism in tropical

forests (reviewed by Brokaw and Busing 2000); however,

it has received little empirical support as a mechanism to

explain tree species diversity maintenance and distribu-

tion (Hubbell et al. 1999, Schnitzer and Carson 2001).

For instance, in a comprehensive test using more than

1200 treefall gaps in a Panamanian forest, tree diversity

was equal in disturbed forest areas compared to

undisturbed areas, suggesting that disturbance did not

maintain tree diversity (Hubbell et al. 1999). Schnitzer

and Carson (2001) also found that overall tree species

diversity in Panama was not maintained by treefall gaps,

except for high-light-demanding species, which consti-

tute a small proportion of the total number of tree

species (Schnitzer and Carson 2001, 2010).

Rarely are multiple mechanisms to explain the

maintenance of diversity and distribution of tropical
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plant species tested simultaneously with the same data

set, thus limiting our ability to determine the relative

strength of these mechanisms. Furthermore, almost no

studies on the maintenance of tropical plant species

diversity and distribution have examined species other

than trees, thus limiting our ability to conclude that

these mechanisms are relevant to plant growth forms

beyond trees. For example, liana (woody vine) density

and species diversity have been found to be higher in

treefall gaps than in non-gap areas, thus supporting the

hypothesis that disturbance maintains liana diversity

and controls liana distribution in tropical forests

(Schnitzer and Carson 2001, Dalling et al. 2012).

However, the disturbance hypothesis has rarely been

compared simultaneously with alternative explanations

for the maintenance of liana diversity, and no study to

date has simultaneously compared the relative roles of

density dependence, habitat specialization (niche assem-

bly), and disturbance, three processes with the potential

to strongly influence woody plant species distribution

and maintain woody plant species diversity.

Here, we tested the relative roles of density depen-

dence, edaphic/topographic habitat specialization, and

disturbance in controlling the local distribution and

diversity maintenance of liana and tree species in a

Panamanian tropical forest. We used a comprehensive

and spatially explicit data set of nearly 67 500 rooted

liana stems collected across a 50-ha area on Barro

Colorado Island, Panama (Schnitzer et al. 2008, 2012),

where there is strong empirical support for both negative

density dependence and edaphic habitat specialization to

explain tree species distributions and diversity mainte-

nance (Harms et al. 2001, John et al. 2007, Comita et al.

2010, Mangan et al. 2010).

Lianas are exceptionally abundant and diverse in

lowland tropical forests, and they play a key role in

many aspects of forest dynamics (Schnitzer and Bongers

2002, 2011). For example, lianas on Barro Colorado

Island (BCI) constitute 35% of the woody species and

25% of the rooted woody stems (Schnitzer et al. 2012),

and lianas compete intensely with trees on BCI (Ingwell

et al. 2010) and in other tropical forests (e.g., Grauel and

Putz 2004, Toledo-Aceves and Swaine 2008, Schnitzer

and Carson 2010). Liana stems and species were recently

found to be distributed nonrandomly in the 50-ha BCI

plot (Dalling et al. 2012, Schnitzer et al. 2012), a pattern

that could be consistent with edaphic/topographic

habitat specialization, negative density dependence, or

disturbance from treefall gaps. If the mechanisms that

maintain tree diversity and control tree distribution are

to be accepted as general to vascular plants, then we

would expect that they also apply to lianas. Further-

more, liana abundance and biomass are increasing in

neotropical forests relative to trees (reviewed by

Schnitzer and Bongers 2011), with huge implications

for a change in tropical forest dynamics and functioning

(e.g., Phillips et al. 2002). Thus, determining the

mechanisms responsible for liana distribution and

diversity is central to understanding the causes and

consequences of these ongoing large-scale changes in
neotropical forests.

METHODS

Study site and liana census

We conducted this study in the 50-ha forest dynamics

plot on Barro Colorado Island, Panama (BCI). Mean
annual rainfall on BCI is ;2600 mm, with a dry season

from December until May (Leigh 1999). The BCI 50-ha
forest dynamics plot was established in 1980, when

.230 000 trees �1 cm in diameter were tagged, mapped,
measured, and identified (Condit 1998). In 2007, we

tagged, mapped, measured, and identified a total of
67 497 rooted liana stems (�1 cm diameter) comprising

162 species in the BCI 50-ha plot (Schnitzer et al. 2012),
using methods described by Gerwing et al. (2006) and

Schnitzer et al. (2008). We included all independently
rooted stems, which we call ‘‘genets,’’ as well as clonal

stems (ramets that were still attached to another stem in
the census) if they had their own root system and thus

would likely survive on their own when separated from
the mother stem (Schnitzer et al. 2012). Stems attached
to another stem in the census without a distinct root

system were considered branches of the original stem
and were not classified as clones. In total, .20 000 (30%)

of the 67 497 rooted stems were clones that had their
own root system but were still attached to another

individual in the study (Schnitzer et al. 2012). We
identified lianas to species using a combination of stem,

leaf, and flower characteristics, and we were able to
identify 98.4% of the individuals to species (Schnitzer et

al. 2012). For additional information on the liana census
methods and the abundance, diversity, species compo-

sition, and distribution of lianas in the BCI 50-ha plot,
see Schnitzer et al. (2008, 2012). A more detailed

description of BCI and the 50-ha plot can be found in
Condit (1998) and Leigh (1999).

Analyses

To test the contributions of density dependence,
habitat specialization, and disturbance to explain liana
species distribution and diversity maintenance, we

analyzed whether and to what extent the spatial patterns
of density dependence, edaphic/topographic habitat

differentiation, and disturbance explained the distribu-
tion of liana saplings (10–11 mm diameter) for each

species. We restricted our sample to liana saplings
because they survived the vulnerable seedling stage, and

thus are likely to have already experienced the potential
causes of mortality from NDD, inhospitable conditions

due to poor edaphic/topographic habitat, or a lack of
disturbance. If one of the three diversity maintenance

mechanisms that we are testing is operating, we should
be able to detect its signature on the current distribution

pattern of liana saplings, rather than seedlings or larger
stems. Thus, our analyses differ from previous studies

on the factors that control liana distribution on the BCI
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50-ha plot (i.e., Schnitzer and Carson 2001, Dalling et

al. 2012).

To explicitly test whether the patterns of liana species

distribution and diversity were consistent with the

negative density-dependence hypothesis (NDD), we

examined the spatial relationship between liana saplings

in relation to conspecific large stems (.50 mm

diameter). If NDD maintains liana diversity and

controls species’ distributions, then small stems should

be overdispersed in relation to larger stems (Janzen

1970, Connell 1971). The use of spatially explicit

distribution data for saplings (10–11 mm diameter),

rather than seedlings, provides a powerful approach to

determine whether the negative density-dependent de-

crease in seedling growth and survival is sufficiently

strong to overcome dispersal limitation (c.f., Comita et

al. 2010). We selected 50 mm as the minimum size class

for adults because lianas .50 mm are nearly always in

the forest canopy and are likely reproductive adults

(Kurzel et al. 2006). To avoid spurious results from low

sample size, we focused our analyses on the 52 species

with a minimum of 65 individuals, of which at least 30

were saplings (including genets). We conducted the

analyses both including and excluding clonal stems. The

number and proportion of clonal stems for each species

are reported in the supplementary material and in

Schnitzer et al. (2012).

We compared our spatially explicit tests of NDD for

lianas with those of trees on BCI, which have been

shown to exhibit lower growth and survival of seedlings

in close proximity to conspecific adults (Comita et al.

2010, Mangan et al. 2010). We used tree distribution

data from the 2005 BCI tree census, excluding dead trees

and those of unknown diameter. We selected tree species

represented by .65 individuals, of which at least 30 were

saplings. We considered adult trees those .50 cm in

diameter, and sapling trees as individuals 10–15 mm in

diameter, which provides a robust sample size for

saplings. If both liana and tree saplings have repelled

(overdispersed) recruitment in relation to conspecific

adults, we accept the hypothesis that NDD is contrib-

uting to the maintenance of liana and tree diversity.

We assessed the spatial dependence between rooted

liana and tree saplings and large conspecifics for each

species through point-pattern analysis using the bivar-

iate Krs function (Dale 1999). The bivariate Krs function

is a symmetric version of the bivariate K12 (Lotwick and

Silverman 1982), derived from the univariate Ripley’s K

function (Ripley 1977). The Ripley’s K function

describes the second-order moment properties of the

distribution of the point layer as a function of the inter-

point distance, which allows for the detection of the

observed spatial pattern of the objective point layer at

different scales. The bivariate Krs function identifies the

spatial attraction or repulsion produced by the individ-

uals of one type over the individuals of another type at

different distances. Point pattern analysis has been

employed previously to compare the observed point

pattern distribution with a known distribution function

that reflects the null hypothesis, such as the Poisson

function for a random process (Illian et al. 2008). In our

current analysis, we used the Krs function to provide a

species-specific estimate of the spatial relationship of the

saplings centered around large (adult) conspecific stems

at different distances (Dale 1999).

We compared our empirically derived density-depen-

dent patterns against a null hypothesis of spatial

independence between saplings and adult conspecific

stems at different distances (d ) for species of both lianas

and trees. We calculated 999 simulations of the toroidal

shift null model (Goreaud and Pélissier 2003) to obtain a

boundary of acceptance of the null hypothesis of spatial

independence between saplings and adult stems. The

toroidal shift model creates a null model comparison by

maintaining the position of the points of one class

(either sapling or adult) unchanged and shifts all the

points of the other class by the same random vector

(Goreaud and Pélissier 2003, Ledo et al. 2011). We

compared the empirical K̂rs(d ) function (the spatial

relationship between saplings and large conspecific

adults) with the 95% quantiles of the upper and lower

interval values of the toroidal shift null model. If the

empirical K̂rs(d ) function is above the quantile bounds

generated by the toroidal shift null model, the two sets

of points show spatial attraction at the observed scale. If

the empirical K̂rs(d ) function is below the quantile

bounds generated by the toroidal shift null model, the

two sets of points are overdispersed at this scale. If the

empirical K̂rs(d ) function is within the quantile bounds

generated by the toroidal shift null model, the two sets

of points are spatially independent from each other and

the null hypothesis of spatial independence is accepted.

We quantified the strength of density dependence as

the maximum (for a clumped, positive density-depen-

dent distribution) or minimum (for an overdispersed

negative density dependence) value reached by the

K̂rs(d ) empirical function, above the upper or below

the lower limit, respectively, of the band of acceptance of

the null hypothesis weighted by the distance interval

between the upper and lower curves of the band of

acceptance at that exact point. The distance of density

dependence is the largest distance value at which the

K̂rs(d ) empirical function is out of the band of

acceptance of the null hypothesis. We regressed linearly

the strength of density dependence (both positive and

negative) onto the abundance of each species. To

determine whether the production of clonal stems

predicted density-dependent patterns, we regressed

linearly the strength and distance of density dependence

onto the proportion of clonal stems of each species, both

including and excluding clonal stems.

To test the contributions of disturbance and edaphic/

topographic habitat specialization on liana distribution,

we focused our analyses on the spatial distribution of

rooted liana saplings in relation to disturbance rate and

habitat conditions. For habitat specialization, we used a
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set of topographical variables: elevation, slope, curva-

ture, and aspect per 20 3 20 m quadrats throughout the

plot. These are the same basic variables used by other

studies that reported compelling effects of habitat

characteristics on tree species’ distributions (Harms et

al. 2001, Bohlman et al. 2008, Bagchi et al. 2011, Brown

et al. 2013, Ledo et al. 2013). While there are other,

nonlinear combinations that can be used for habitat

variables (Bagchi et al. 2011), we used a linear

combination so that we would have a tractable number

of parameters, but still a complex enough set of variable

combinations to reflect distinct habitat conditions, as

demonstrated by previous studies (Harms et al. 2001,

Bohlman et al. 2008, Brown et al. 2013, Ledo et al.

2013). Because topography influences soil conditions

(Hook and Burke 2000, John et al. 2007), we considered

habitat specialization to be the combination of topo-

graphic and edaphic specialization.

We determined the degree of disturbance using the

tree mortality rate data from the six previous BCI 50-ha

plot tree censuses (1981–1983, 1985, 1990, 1995, 2000,

2005 [Condit 1998]). We quantified tree mortality rate

every five years in a 20 3 20 m grid in the BCI plot,

quantifying disturbance severity as the proportion of

dead trees and accounting for the time since tree

mortality. We refined our disturbance index by consid-

ering the presence of large trees (dbh �80 cm) in each 20

3 20 m quadrat as indicative of no recent high

disturbance. Hence, we calculated a disturbance index

for each 203 20 m quadrat as the sum of the severity of

disturbance (measured as a proportion of tree mortality

of the stems present in the previous census) in

subsequent censuses multiplied by the census number

(to weigh the more recent disturbances more heavily)

minus the number of large trees in 2005 (census 6). The

equation for the disturbance index is

DIST ¼
X6

i¼2

iðDi � Di�1Þ=Ni

 !
� B6;

where i represents each of the six BCI censuses, from i¼
1 (1981–1983) to i ¼ 6 (2005); D represents the number

of dead standing trees (considering all diameter classes);

N represents the number of standing live trees; and B

represents the number of large trees (dbh � 80 cm).

We determined the spatial distribution of rooted liana

saplings for each liana species by fitting an Inhomoge-

neous Poisson Process Model (IPPM) of point–liana

distribution using an independently estimated spatial

density function (Illian et al. 2008). For each species, we

fitted three different IPPM models, taking into consid-

eration three different covariates: (1) a pure spatial

model; (2) habitat distribution; and (3) degree of

disturbance. The IPPM requires estimating the param-

eter k(u), the intensity function of the point process at

location u, and the spatial locations. In the pure spatial

mode, ui depended on the Cartesian coordinates of the

plot surface. The habitat and disturbance models

depended on a linear combination of the value of a set

of spatial covariates at point ui. We defined k(u) as a

linear combination of either the topographical param-

eters or the disturbance parameters as covariates, kh (u)

¼ exp(h0 þ h1Z1(u1) þ . . . þ hnZn(un)), where Zi (ui ) was

the value of each covariate at spatial location ui from a

total of n covariates. We estimated the k parameters

using the Huang-Ogata approximate maximum likeli-

hood method (Huang and Ogata 1999) using 999

simulated realizations to parameter estimation. We used

the translate method for the edge correction (Baddeley

and Turner 2000), and calculated the quadrat count test

using a goodness-of-fit (GoF) v2 test (Baddeley 2010).

We accepted as significant the models that had a P

value .0.01 in the GoF quadrat count test, suggesting

that the model deviated significantly from the null. We

selected the most explanatory and parsimonious model

on the basis of the Akaike Information Criterion (AIC),

which measured the quality of a model and is commonly

used to compare nested models (Burnham and Ander-

son 2004). The AIC is calculated as: AIC¼ 2k – 2ln(L),

where k is the number of parameters included in the

model and L is the likelihood function for the estimated

model. The spatial covariate, either habitat specializa-

tion or disturbance, that produced the most accurate

IPPM model (the model with the lower AIC among the

existing models) was accepted as the predominant

process controlling liana distribution within the forest.

If the pure spatial model was the most accurate model,

then neither disturbance nor edaphic/topographic hab-

itat specialization satisfactorily explains liana diversity

and distribution. To test the effect of disturbance acting

simultaneously with density dependence, we included

density dependence in the spatial modeling just de-

scribed. We added the density of largest stems (.50 mm

diameter) of each species as linear covariates in the

density estimation function k(u) of liana sapling

distribution in the disturbance IPPMs.

We tested whether liana species’ response to distur-

bance was enhanced by clonal stem production, by

comparing the production of clones in high- and low-

disturbance areas using an F test. We classified the

high- and low-disturbance areas as the ones with the

highest and lowest one-quarter disturbance index values,

respectively. We tested whether disturbance maintained

liana species diversity by comparing liana richness in

high- and low-disturbance areas while correcting for

differences in stem density among areas using rarefac-

tion (Gotelli and Colwell 2001). The rarefaction

function we used is based on Hurlbert’s (1971)

formulation, and the standard errors on Heck et al.

(1975). For these two analyses, we did not restrict our

sampling to saplings, but we included all liana individ-

uals of the 52 species.

All computations were done in R (R Development

Core Team 2011). We used the ppm function for the

model fitting and Kcross and envelope functions for the

bivariate analysis, from the spatstat 1.25-3 package
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(Baddeley and Turner 2005). For the rarefaction

analysis we used the specaccum and rarefy functions of

the vegan package (Oksanen et al. 2011).

RESULTS

Liana species exhibited strong density-dependent

patterns, with 42 of the 52 species (81%) showing a

pattern consistent with density dependence at small

spatial distances (Fig. 1a). Contrary to our expectation

that an overdispersed (negative density-dependent) pat-

tern would be prevalent in lianas, the K̂rs(d ) analyses

indicated that liana saplings were nonrandomly clumped

around larger conspecific stems, a pattern consistent with

positive density dependence. Specifically, 63% of liana

species exhibited a pattern of saplings clumped around

large conspecific stems, whereas only 19% had an

overdispersed (negative density-dependent) pattern. The

remaining 18% of liana species had no significant spatial

pattern with respect to the location of saplings in relation

to adults (Fig. 1a). Excluding clonal stems decreased the

number of liana species exhibiting a clumped distribution

to 46% and increased the number of species exhibiting an

overdispersed distribution to 46%, with 8% not showing

any density-dependent pattern. In contrast, saplings of

most tree species were overdispersed in relation to adults,

and only 20% of tree saplings were clumped around

adults (Fig. 1a), consistent with previous studies docu-

menting negative density dependence in trees at this same

site (e.g., Comita et al. 2010, Mangan et al. 2010), and

confirming the reliability of our test of density depen-

dence using spatially explicit data.

Saplings of most liana species were positively associ-

ated with adults at very small distances (,1 m) and up

to 20 m, following a J-shaped distribution (Fig. 1b).

There was a strong positive relationship between the

strength of the positive density-dependent (clumped)

pattern and the capacity of a liana species to reproduce

clonally (Fig. 2a). That is, the species with the highest

percentage of clonal stems demonstrated the strongest

positive density dependence, a pattern that was present

both when excluding and including clonal stems in the

analyses (Fig. 2b).

Disturbance was the most important correlate of liana

distribution in the BCI 50-ha plot, explaining the

distribution of ;50% of the liana species (Figs. 3 and

4). The majority of liana species (54%) produced

significantly more clones in high-disturbance areas than

in low-disturbance areas (P , 0.05). Thus, clonal

reproduction appears to enhance the ability of lianas

to colonize nearby disturbed areas. In contrast to

disturbance, habitat specialization was not a strong

cause of liana species distribution, explaining the spatial

pattern of only a small percentage of liana species (Figs.

3 and 4). The addition of density dependence to the

disturbance model increased the explanatory power,

while at the same time, it further decreased the

explanatory power of the habitat specialization and

pure spatial models (Fig. 3; Appendix). The distribution

of 75% (79% including clonal stems) of the liana species

in the BCI plot was explained by a combination of both

disturbance and positive density dependence (Fig. 3).

The inclusion of clonal stems increased the role of

habitat in explaining liana species distribution. Howev-

er, even with clonal stems, habitat had only limited

explanatory power compared to disturbance or the pure

spatial model representing an unknown mechanism (Fig.

3; Appendix).

Liana density and diversity (after controlling for

density using rarefaction) were significantly higher in the

areas with the highest disturbance than in low-distur-

bance areas (F test density, P , 0.0001; F test rarefied

diversity, P , 0.005; Fig. 5). The finding that

disturbance contributes to the maintenance of liana

density and species diversity was the same when we

included rooted clonal stems in the analysis.

FIG. 1. (a) The percentage of lianas including clonal stems (dark gray) and trees (light gray) with clumped distribution (positive
density dependence, PDD), overdispersed distribution (negative density dependence, NDD), and no spatial dependence (no DD).
(b) Proportion of the distribution of distances of liana saplings to the nearest conspecific adult for species with positive density
dependence. The dark gray bars represent all rooted lianas, including clonal stems, whereas the light gray bars exclude clonal stems
and thus represent only the main genets.
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DISCUSSION

Nearly all tests of the maintenance of diversity and the

mechanisms that control tropical plant species distribu-

tions used trees as the representative plant group, and

thus it was previously unknown whether these mecha-

nisms are generalizable beyond trees. Lianas constitute

;25% of the rooted woody stems and species in many

tropical forests (Schnitzer and Bongers 2002), and on the

BCI 50-ha plot, lianas constitute 25% of the rooted woody

stems and 35% of the woody species (for individuals �1
cm diameter [Schnitzer et al. 2012]). Therefore, determin-

ing whether the mechanisms responsible for tree diversity

maintenance and distribution also apply to lianas is

essential for a general understanding of the maintenance

of plant species diversity in tropical forests.

Comparing multiple putative mechanisms for the

maintenance and distribution of liana species diversity

revealed that disturbance strongly influenced the major-

ity of liana species in this forest. The positive spatial

association between saplings and large conspecific stems

at short distances further explained the distribution of

lianas species, and combined, these two mechanisms

explained the distribution of .75% of the 52 liana

species examined. By contrast, patterns consistent with

negative density dependence and habitation specializa-

tion, the two major putative mechanisms to explain tree

distribution on the BCI plot (John et al. 2007, Comita et

al. 2010, Mangan et al. 2010, Feeley et al. 2011),

explained only a small proportion of liana species

distribution. Consequently, our findings indicate that

the mechanisms that maintain liana diversity and

control liana distribution differ markedly from those

of trees, and thus previous studies of the maintenance of

species diversity that focused on trees cannot necessarily

be extended to the broader plant community.

FIG. 2. The linear correlation between the percentage of clonality on the x-axis and strength of density dependence of the
species on the y-axis. The percentage of clonality per species is from Schnitzer et al. (2012). Panel (a) excludes clonal stems; panel (b)
includes clonal stems. The negative y-axis values (below the axis numbers) correspond to negative density dependence. The values
shown in the upper left corners of the graphs are the R2 linear correlation adjusted value for each analysis.

FIG. 3. Data from fitted Inhomogeneous Poisson Process Models (IPPM) showing (a) the percentage of liana species that
exhibit a pure spatial (unexplained) pattern, habitat specificity, or are associated with disturbance. (b) Similar IPPMs, but density
dependence (DD) was included as an additional explanatory variable in the disturbance model. The dark gray bars represent all
rooted lianas, including clonal stems; the light gray bars exclude clonal stems and thus represent only the main genets.
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Our findings that disturbance largely maintained liana

species diversity and controlled liana distribution on

BCI are consistent with smaller-scale studies from the

same area. For example, Schnitzer and Carson (2001)

compared liana and tree density and diversity in gap and

non-gap sites on BCI and found that disturbance

maintained liana diversity but not tree diversity. One

theoretical explanation for disturbance as a stable

diversity-maintaining mechanism is that plant species,

in this case lianas, partition the unique combination of

resources that are available following a disturbance (e.g.,

Brokaw and Busing 2000). This niche-based explanation

would allow liana species to coexist stably over time.

However, the weak effect of edaphic/topographic

habitat specialization found in this study (apart from

disturbed habitat) in contrast to trees (e.g., John et al.

2007) does not support a niche-based explanation (see

also Dalling et al. 2012). It is possible that higher liana

species diversity is maintained in gaps because different

liana species specialize on different levels of light or soil

moisture and thus partition these resources (Schnitzer

and Carson 2001); however, there is no direct evidence

for this hypothesis.

An alternative explanation is that disturbance main-

tains liana species diversity by providing a regeneration

niche (Grubb 1977), which increases recruitment and

regeneration and keeps liana density high. The potential

for disturbance to increase liana regeneration may act to

equalize the number of offspring among liana species.

This equalizing explanation (sensu Chesson 2000) could

maintain liana diversity by increasing the density of

disturbance-adapted species and allowing many liana

individuals to persist until the next disturbance, thus

reducing the probability that the local population of any

given species goes extinct. If increased recruitment and

regeneration in gaps equalizes the reproductive output

FIG. 4. (a) Spatial map of all rooted liana stems (�1 cm diameter) superimposed on the spatial pattern of disturbance. Lighter-
colored quadrats represent high disturbance; darker (red) quadrats represent lower disturbance (ranging from 4 to�4). (b) Spatial
map of all rooted liana stems ( �1 cm diameter) superimposed on the spatial pattern of habitat differences per 203 20 m quadrat.
The different colors represent different habitat types, as a combination of the topographic variables. For both panels, the black
circles represent the genet stems and the gray circles represent the clonal stems.
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among species (including clonal stem production), then

liana species diversity could theoretically be maintained

for exceptionally long periods of time (Chesson 2000,

Hubbell 2001). The regeneration niche explanation

could also be a stabilizing explanation if liana species

differ in their ability to respond to disturbance, and

these differences are linked to varying liana regeneration

strategies.

A regeneration niche explanation may be particularly

appropriate for the liana growth form, which is suited to

colonize gaps as adults (Putz 1984, Schnitzer et al. 2012,

Yorke et al. 2013) and produce copious clonal stems that

can capitalize on the high-resource habitat following

disturbance. Indeed, the stem anatomy of most liana

species allows them to survive falling from the canopy,

often with their host tree (Rowe and Speck 1996),

whereupon these fallen lianas produce many clonal

stems (Putz 1984). The positive correlation between the

response of liana species to disturbance and the ability

of species to produce clonal stems (Fig. 2) supports the

hypothesis that liana species respond to disturbance by

clonal reproduction, which explains the clumped,

positive density-dependent distribution for most liana

species within forests, as well as contributing to the

maintenance of liana species diversity.

The clumped, positive density-dependent pattern in

lianas was not driven by habitat association, and it was

far more spatially concentrated than the aggregation of

tree saplings around adult species. Clumping of liana

saplings around conspecific adults peaked at exceedingly

short distances (,1 m), and decreased with distance in a

J-shaped pattern (Fig. 1b). In contrast, the location of

tree saplings around adult trees had a humped

distribution with a maximum of 10–20 m (Terborgh et

al. 2002, Wiegand et al. 2007), which may be the result

of the interaction between dispersal limitation and

negative density dependence. The majority of seeds fall

very close to the parent tree, with far fewer seeds

reaching .20 m away from the parent (dispersal

limitation). However, the inability of most tree seedlings

to regenerate successfully near their parents (or other

conspecifics) due to species-specific enemies (e.g., Comi-

ta et al. 2010, Mangan et al. 2010) results in few saplings

surviving directly underneath a conspecific tree, but

much higher survival of seedlings and saplings located

10–20 m away, which arrived in relatively high numbers

but escaped damage from enemies. Thus, the contrasting

dispersal patterns between lianas and trees demonstrate

that lianas do not respond strongly to negative density

dependence, whereas trees do.

Negative density dependence may fail to maintain

liana species diversity because a significant proportion of

regeneration is through clonal reproduction. Negative

density dependence (Janzen-Connell) theory assumes

that the parent plants can host disease or enemies

without dying because parent plants are strong enough

to resist the effects of their natural enemies (e.g., Janzen

1970). In contrast, tree seedlings do not have the size and

reserves to resist the effects of these natural enemies, and

those growing near the parent plant eventually succumb.

In the BCI 50-ha plot, .30% of the 67 497 rooted lianas

�1 cm were clones (Schnitzer et al. 2012). Clonal stems

differ from seedlings in that clonal stems can be supplied

with resources from the parent until they are well

established, likely allowing them to resist species-specific

enemies. Thus, small-stemmed lianas can reach a size

refuge from such natural enemies as soil-borne patho-

gens or vertebrate or invertebrate herbivores. Some liana

species, however, do not readily produce clonal stems

(Schnitzer et al. 2012), and these liana species appear to

have distributions more consistent with a negative

density-dependent pattern (Fig. 2).

Liana abundance, productivity, and biomass are

increasing relative to trees in neotropical forests, and

thus determining the mechanisms responsible for the

diversity and distribution of lianas will help determine

the most likely mechanisms causing liana increases.

Currently, 12 studies document liana increases in

neotropical forests (reviewed by Schnitzer and Bongers

2011). On BCI, the increase in lianas over the past 30

years is now indisputable, with four different metrics of

liana increase (productivity, flower production, the

proportion of trees infested by lianas, and the density

of lianas) all showing positive trends in favor of lianas

over trees (Wright et al. 2004, Ingwell et al. 2010,

Schnitzer et al. 2012). Our finding that disturbance

drives liana abundance and diversity within the BCI 50-

ha plot is consistent with the hypothesis that increasing

rates of disturbance explain the change in liana

abundance in neotropical forests (Schnitzer and Bongers

2011). Indeed, tree mortality has increased significantly

and tree growth has decreased significantly over the past

30 years on the BCI plot (Feeley et al. 2007), presumably

due to the effect of climate change (Feeley et al. 2011).

Greater tree mortality would increase the frequency of

FIG. 5. Rarefaction curves and standard errors in high-
disturbance areas (dark gray) and low-disturbance areas (light
gray). The solid line represents the rarefaction curve and the
lighter color around the curve represents the standard error.
This figure excludes clonal stems; however, we found nearly
identical patterns when we included clonal stems.
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disturbance, which would provide more favorable

habitat for liana regeneration and survival.

Another potential mechanism for increasing liana

abundance and biomass is decreasing rainfall and

increasing seasonality. Rainfall on BCI has decreased

from 1930 to 1990 (data averaged over a 10-year period;

Meteorology and Hydrology Branch, Panama Canal

Authority, Republic of Panama) and the tree commu-

nity has shifted toward more drought-adapted tree

species (Condit et al. 1995, Feeley et al. 2011). Lianas

are more abundant (in terms of total stem density) in

seasonal habitats (Schnitzer 2005, DeWalt et al. 2010),

as well as drier areas of the BCI 50-ha plot (Dalling et al.

2012), and thus stronger seasonal droughts would likely

benefit lianas, resulting in greater stem proliferation.

The observed ability of some liana species to consistently

tap into deeper sources of water than trees (Andrade et

al. 2005) may also explain the positive response of lianas

to the hot, dry environment immediately following

disturbance (i.e., treefall gaps [Schnitzer 2005]). Deeply

rooted lianas may be able to capitalize on the high light

but relatively arid environment of a treefall gap better

than more shallowly rooted trees. In addition, the

decrease in rainfall may also increase tree mortality,

which would increase liana abundance, and disturbance

and drought may be operating synergistically (Schnitzer

and Bongers 2011). Thus, the importance of disturbance

as a determinant of liana diversity and distribution,

coupled with decreasing rainfall and increasing distur-

bance on the BCI 50-ha plot, support the hypothesis

that the increase in lianas in this forest is driven by these

two putative mechanisms.
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SUPPLEMENTAL MATERIAL

Appendix

List of liana species found in the 50-ha plot on Barro Colorado Island (BCI). The list specifies the number of stems (N),
percentage of stems that are not clonal stems (% genets), and the Akaike information criteria (AIC) obtained in the Inhomogeneous
Poisson process spatial modeling when included as spatial covariates: (a) X,Y coordinates (Spatial); (b) habitat conditions
(Habitat); (c) grade of disturbance (Disturb); and (d) grade and disturbance along with distance to conspecific adults (DistþDD)
(Ecological Archives E095-192-A1).
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