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Abstract 

 

In this work, we report the direct correlation of photoinduced carrier dynamics and electronic structure of 
CuInS2 (CIS) nanoparticles (NPs) using the combination of multiple spectroscopic techniques including steady-
state X-ray absorption spectroscopy (XAS), optical transient absorption (OTA), and X-ray transient (XTA) 
absorption spectroscopy. XAS results show that CIS NPs contain a large amount of surface Cu atoms with ≪four-
coordination, which is more severe in CIS NPs with shorter nucleation times, indicating the presence of more Cu 
defect states in CIS NPs with smaller size particles. Using the combination of OTA and XTA spectroscopy, we 
show that electrons are trapped at states with mainly In or S nature while holes are trapped in sites 
characteristic of Cu. While there is no direct correlation of ultrafast trapping dynamics with NP nucleation time, 
charge recombination is significantly inhibited in CIS NPs with larger particles. These results suggest the key roles 
that Cu defect sites play in carrier dynamics and imply the possibility to control the carrier dynamics by 
controlling the surface structure at the Cu site in CIS NPs. 

Introduction 
Colloidal semiconductor nanocrystals are under intense investigation due to their wide range of applications 
including solar cells, light-emitting diodes, catalysis, and bioimaging.(1-3) However, most early works have 
focused on using semiconductors based on toxic elements such as Cd and Pb,(4-7) which largely limits their 
practical applications. As a result, recent efforts have been geared toward low toxicity multinary nanocrystals 
such as copper indium sulfide (CIS). These nanocrystals possess tunable band structure and optical properties, 
which have led to their use in optoelectronics and biological applications.(1, 4) They have high extinction 
coefficient, emission quantum yield, and appropriate band gaps, which have rendered these nanocrystals 
desirable as light-harvesting and charge separation materials in photovoltaics and photocatalysis.(8-13) 

As the functions of CIS in these applications are mainly dictated by their light-absorbing and emission behaviors, 
it is essential to develop a deep understanding of the excited state dynamics of CIS. Indeed, there are a handful 
of recent reports that have explored the excited state properties of CIS or CIS-based nanocrystals using time-
resolved spectroscopic techniques.(14-17) For example, a few studies have reported the origins of the extremely 
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long radiative lifetimes and large Stokes shift of CIS vs CdSe nanocrystals, which was attributed to the presence 
of Cu-related intragap emission center.(18-21) Other studies based on transient absorption spectroscopy have 
explained the multiple-component carrier cooling and recombination dynamics, which was assigned to the 
transition involving the band gap, sub-band gap, or surface trap states.(17, 19, 22-24) While these studies 
provide valuable information on the excited state properties of CIS nanocrystals, few efforts have been made to 
explore the correlation of these optical properties with their electronic structure, yet they are essential to fully 
understand the photophysical properties of CIS as a whole. 

In this work, we report the direct correlation of carrier dynamics with electronic structure of CIS nanoparticles 
(NPs) using the combination of synchrotron-based X-ray absorption (XAS) and X-ray transient absorption (XTA) 
spectroscopies and optical transient absorption (OTA) spectroscopy. We found that CIS NPs contain large 
amount of surface Cu atoms without tetrahedral coordination, which likely serve as hole-trapping sites during 
the photoinduced trapping process. The surface structure of Cu site in CIS NPs can be controlled by the 
nucleation time during synthesis, where tetrahedral structure of Cu center is more developed in CIS NPs with 
longer nucleation time, which leads to longer electron–hole recombination time, suggesting the possibility to 
control the carrier dynamics by controlling the surface structure of CIS NPs. This study provides important 
insight into the correlation of carrier dynamics with surface structure of CIS NPs, which will facilitate rational 
design of CIS NPs toward their application in photovoltaic and light-emitting devices. 

Experimental Methods 
Materials 
Copper(I) iodide (CuI, 98%), indium(III) acetate (In(OOCCH3)3, 99.99% metals basis), 1-dodecanethiol (DDT, 98%), 
acetone (HPLC grade, 99.5+%), n-hexane (spectrophotometric grade, 95+%), and toluene (anhydrous, 99.8%) 
were purchased from Alfa Aesar (Tewksbury, MA). 

Synthesis of CIS NCs 
Following the published procedure,(18) CuI (382 mg, 2 mmol), In(OOCCH3)3 (580 mg, 2 mmol), and DDT (10 mL) 
were mixed in a three-neck flask, degassed under vacuum for 5 min, and then purged with N2 for 10 min. The 
flask was heated to 120 °C for 10 min to dissolve the reagents and then to 200 °C for nucleation of the NPs. At 
the desired time point (15, 30, or 60 min), the flask was placed in a water bath to stop the growth of the NPs. 
The cooled samples were transferred to a centrifuge tube with ∼20 mL of acetone and centrifuged to isolate the 
sample after decanting the supernatant. The CIS NPs were then redispersed in toluene for further 
experimentation. 

Characterization 
Steady-state UV–visible absorption spectra were taken using an HP Agilent 8453 spectrophotometer. Steady-
state emission spectra were measured using a Photon Technology International QuantaMaster 40 
spectrofluorometer. All samples were degassed prior to emission measurement with N2 gas. A Rigaku MiniFlex II 
diffractometer with Cu Kα radiation was used to collect X-ray diffraction (XRD) patterns. The samples were 
prepared by allowing CuInS2/toluene solutions to dry in air on a frosted glass sample plate. 

Steady-State X-ray Absorption Spectroscopy (XAS) 
XAS measurements were performed at the beamline 12BM at the Advanced Photon Source, Argonne National 
Laboratory. The XAS spectra were collected at room temperature by fluorescence mode using a 13-element 
germanium solid-state detector. One ion chamber is placed before the sample and used as the incident X-ray 
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flux reference signal. There are two ion chambers (second and third chambers) after the sample. The copper foil 
is placed between the second and third ion chambers and used for energy calibration and collecting copper 
metal spectrum. 

Small-Angle X-ray Scattering (SAXS) 
The size and distribution of CIS NPs were determined by SAXS which was measured at beamline 12ID-B at the 
Advanced Photon Source, Argonne National Laboratory. The wavelength, λ, of X-ray radiation was set as 0.886 
Å. Scattered X-ray intensities were measured using a Pilatus 2 M detector. The sample-to-detector distance was 
set such that the detecting range of momentum transfer q (=4π sin θ/λ, where 2θ is the scattering angle) was 
0.006–0.90 Å–1. A flow cell that is made of a cylindrical quartz capillary with a diameter of 1.5 mm and a wall of 
10 μm was used for SAXS measurements. To obtain good signal-to-noise ratio, 20 scattering images were 
collected for each sample or solvent. The 2-D scattering images were converted to 1-D SAXS (I(q) vs q) curves 
through azimuthally averaging after solid angle correction and then normalizing with the intensity of the 
transmitted X-ray beam flux, using a software package developed for the beamline. After subtraction of the 
solvent background, the SAXS profiles were fit using Irena package(25) with the assumption of spherical particle 
shape and log-normal size distribution. 

Time-Resolved Optical Absorption Spectroscopy (OTA) 
The femtosecond OTA setup is based on a regenerative amplified Ti-sapphire laser system (Solstice, 800 nm, 
<100 fs fwhm, 3.5 mJ/pulse, 1 kHz repetition rate). The tunable pump (235–1100 nm), chopped at 500 Hz, is 
generated in TOPAS (Light Conversion) from 75% of the split output from the Ti-sapphire laser. The tunable UV–
visible probe pulses are generated from the other 25% of the Ti-sapphire output through white light generation 
in a sapphire (430–750 nm) window on a translation stage. The femtosecond OTA measurements were 
performed in a Helios ultrafast spectrometer (Ultrafast Systems LLC). The energy of pump pulse used for the 
measurements was 28 μJ/cm2. The sample was placed in a cuvette with a path length of 2 mm, which was 
continuously stirred during measurements to avoid sample degradation. 

Time-Resolved X-ray Absorption Spectroscopy (XTA) 
XTA was performed at beamline 11ID-D, Advanced Photon Source (APS), at Argonne National Laboratory. The 
sample was excited with 400 nm, 100 fs laser pulse that was generated from the second harmonic of Ti:sapphire 
regenerative amplified laser operating at 10 kHz repetition rate. The experiment was carried out under the 
hybrid-timing mode where an intense X-ray pulse was used as the probe pulse. This intense pulse (117 ps, 271.5 
kHz) contains 16% of the total average photon flux and was separated in time from other weak X-ray pulses. 
Two avalanche photodiodes (APD) were positioned at a 90° angle on both sides of the incident X-ray beam to 
collect the X-ray fluorescence signals from Cu–K edge absorption. The CIS/toluene solution was flowed through 
a stainless steel tube and formed a free jet (600 μm diameter) in the sample chamber. Custom-designed soller 
slit/Ni filter combination was placed at a specific distance between the sample and the detectors. The X-ray 
fluorescence photons from the synchronized X-ray pulse at 110 ps after the laser pulse excitation were used to 
build the laser-on spectrum. The fluorescence signals averaged over 20 bunches before laser pulse were used to 
construct the ground-state spectrum. 

Results and Discussion 
The bulk structure of CIS NPs synthesized under three different nucleation times was first characterized using X-
ray diffraction (XRD). As shown in Figure 1a, the XRD patterns of these NPs show three main peaks with 2θ 
values of 28.0°, 46.5°, and 54.9°, which are consistent with literature values and can be assigned to the (112), 
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(204)/(220), and (116)/(312) planes of tetragonal chalcopyrite structure of CIS, respectively.(22, 26-28)Figure 1b 
shows the UV–visible absorption and emission spectra (inset) of the CIS NPs synthesized under different 
nucleation times. These UV–visible spectra show broad absorption with the lack of a well-defined excitonic peak, 
which are commonly seen in CIS NPs and result from the inhomogeneity of the band gap states.(12, 21, 29) The 
presence of multiple donor and trap states within the band gap leads to the formation of a broad shoulder. 
Meanwhile, the shoulders of these spectra as well as their corresponding emission spectra (inset of Figure 1b) 
show red shift with increasing nucleation time, which can be attributed to the reduction of quantum 
confinement effects from the increase of particle dimensions.(23) The shape and size distributions of CIS NPs 
were evaluated by solution small-angle X-ray scattering (SAXS) measured at 12ID-B of the Advanced Photon 
Source at Argonne National Laboratory. As shown in Figure 1c and 1d, the scattering profiles of these samples 
could all be fit with spherical particle model(30) with mean radius of 9.8, 12.2, and 14.7 Å for 15, 30, and 60 min, 
respectively. The sizes of these CIS NPs are smaller than the Bohr exciton radius (3.8 nm) of bulk CIS,(31, 
32) indicating a strong quantum confinement effect, which explains the strong dependence of optical properties 
on sizes (Figure 1b). 

 

Figure 1. XRD patterns (a), UV–visible absorption spectra (b), and emission spectra (inset of b) of CIS NPs synthesized with 
nucleation time 15, 30, and 60 min. (c) SAXS data (symbols) and fit (solid lines) using spherical particle model whose size 
follows log-normal distribution. (d) Particle radius distribution yielded from the SAXS data fitted under spherical shape 
assumption. Comparison of XANES spectra (e) and Fourier-transformed EXAFS spectra (f) of CIS NPs synthesized with 
nucleation time 15, 30, and 60 min. The inset in (e) shows the comparison of their first-derivative spectra. 

 

In addition to the bulk structure, the effect of the nucleation time on the local structure was examined using X-
ray absorption spectroscopy (XAS). Figure 1e shows the normalized X-ray absorption near-edge structure 
(XANES) spectra of CIS NPs at Cu K-edge. All three spectra show a peak at 8.986 keV and a broad transition from 
8.99 to 9.01 keV. These features have been previously observed in chalcopyrite NPs and can be assigned to 1s–
4pz and 1s–4pxy transitions of Cu1+, respectively.(33, 34) The Cu1+ oxidation state was further supported by the 
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absence of the pre-edge feature at ∼8.98 keV (inset of Figure 1e), which represents the quadrupole 1s–3d 
transition of Cu center and is only allowed if there is Cu2+ with 3d9 configuration.(33) Meanwhile, the edge 
energy shows negligible shift among these samples (inset of Figure 1e), suggesting that the oxidation state of 
Cu1+ retains regardless of nucleation time. However, notable differences were observed in the peak 
corresponding to 1s–4pz transition, where the peak becomes sharper in the spectra of the NPs with longer 
nucleation time. It has been shown that the sharp nature of 1s–4pz transition is an indication of tetrahedrally 
coordinated Cu, while a smoother feature is characteristic of triangular coordination.(34, 35) These results 
suggest that the tetrahedral structure of Cu1+ is more developed in the 60 min sample than in samples with 
shorter nucleation times. 

Additional difference was observed among these samples in their extended X-ray absorption fine structure 
(EXAFS) spectra in R-space, where the intensity of the peak representing Cu–S shows slight increase with 
increasing nucleation time (Figure 1f). It has been shown that the increase of peak intensity is associated with 
either the increasing coordination number or the decrease of disorder around the metal center.(36) To gain 
more insight into these two possibilities, we quantitatively analyzed the local structure of these NPs through 
fitting EXAFS data using IFEFF modeling. Figure 2 shows the best fits to the EXAFS spectra in both R- and k-space 
for all three samples. The resulting fitting parameters are listed in Table 1. While the Cu–S bond distance shows 
negligible change among three samples, notable increase of coordination number of Cu and slight increase of 
Debye–Waller factor were observed with nucleation time, suggesting that the enhanced peak intensity in NPs 
with nucleation time (Figure 1e) is primarily due to the increase of average coordination number at Cu center. 
This is consistent with the XANES results, where the CIS NPs with longer nucleation time contain more four-
coordinated tetrahedral Cu centers than those with shorter nucleation time. Furthermore, it is noted that the 
average coordination number of Cu center in all samples is ∼2, which is only half of the expected coordination 
number in a tetrahedrally coordinated Cu center. This has been observed previously in similar semiconductor 
nanoparticles and can be attributed to the presence of a large number of vacancy defects at surface Cu centers, 
which do not possess tetrahedron.(37, 38) These results together suggest that a larger portion of surface Cu 
atoms with nontetrahedral coordination is present in smaller CIS NPs synthesized under shorter nucleation 
times, which leads to the less developed tetrahedral Cu center and smaller average coordination number at Cu 
center uncovered by XAS. The presence of a large percentage of surface Cu atoms in CIS NPs also well explains 
the observed poorly defined excitonic peak and broad shoulder in UV–visible spectra, large Stokes shift, as well 
as the presence of multiple trap states within CIS band gap. 
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Figure 2. XAFS spectra (open dot) and the best fit (solid line) of CIS NPs in R-space and k-space with nucleation times 15 min 
(a, b), 30 min (c, d), and 60 min (e, f), respectively. 

 

Table 1. XAFS Fitting Parameters for CIS NPs 

  15 min   30 min   60 min   
vecto
r 

N R (Å) σ2 (10–

3 Å2) 
N R (Å) σ2 (Å2) N R (Å) σ2 (Å2) 

Cu–S 2.05 ± 0.
18 

2.27 ± 0.
02 

6.7 ± 1.4 2.24 ± 0.
33 

2.28 ± 0.
02 

7.4 ± 2.
3 

2.36 ± 0.
21 

2.28 ± 0.
02 

8.0 ± 1.
4 

 

To reveal the effect of surface defects on the photophysical properties of CIS NPs, we examined its carrier 
dynamics using femtosecond transient optical absorption (fs-OTA) spectroscopy. Figure 3 shows the fs-OTA 
spectra of these samples following 480 nm excitation. All spectra (Figure 3a–c) were featured by a prominent 
ground-state bleach (GSB) band, which shifts to longer wavelength with nucleation time (Figure 3d), consistent 
with their UV–visible absorption spectra (Figure 1b). Meanwhile, broad absorption bands were observed on 
both sides of the GSB for each sample. Similar absorption features have been observed previously and can be 
assigned to the photoinduced electron signals as these features are quenched upon the addition of an electron 
acceptor, i.e., methyl viologen hydrate.(39) 
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Figure 3. Femtosecond OTA spectra of CIS NPs with 15 min (a), 30 min (b), and 60 min (c) nucleation time following 480 nm 
excitation. (d) The comparison of 1 ps TA spectra of CIS NPs at different nucleation times. The insets show the late time 
spectra. 

 

To further analyze the carrier dynamics of CIS NPs, we compared the kinetic traces of GSB and photoinduced 
electron signals among the samples with different nucleation times. As shown in Figure 4a–c, the kinetic traces 
of electron absorption dynamics are strongly dependent on probe wavelengths, characteristic of carrier-trapping 
process,(33, 40, 41) indicating that electron-trapping process occurs in each sample. The kinetic traces at 
different probe wavelength for each sample can be adequately fit by a four-exponential function, including an 
ultrafast rising/decay time constant followed by three decay components. We attributed the ultrafast 
subpicosecond component for all samples to electron-trapping process, which remains relatively similar among 
the three samples as shown in Table 2. We attributed the three decay components to electron–hole 
recombination which was fixed during the fitting process according to the rationale that the late time decay 
kinetics at different wavelengths remain similar. While there is no clear dependence of electron-trapping time 
on sample nucleation time, notable difference was observed in the GSB recovery kinetics. As shown in Figure 4d, 
the GSB recovery (inverted) slows down with nucleation time, suggesting a slower electron–hole recombination 
process. Due to the presence of ≫5 ns time constant which is beyond the fs-OTA time window, we are not able 
to quantitatively determine the charge recombination time. Instead, half-recovery time (τ1/2), when the 
amplitude of GSB recovers to its half, was used to evaluate the charge recombination time. The estimated 
τ1/2 was 15.2, 169.9, and 5033 ps for 15, 30, and 60 min sample, respectively, indicating the elongated electron–
hole recombination time in CIS NPs synthesized using longer nucleation time. 
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Figure 4. Comparison of OTA kinetic traces of CIS NPs at various probe wavelengths for samples with 15 min (a), 30 min (b), 
and 60 min (c) nucleation time following 480 nm excitation. (d) The comparison of ground-state bleach recovery kinetics 
(inverted) for 15, 30, and 60 min samples. These kinetic traces are normalized at 5 ns for better comparison. 

 

Table 2. Fitting Parameters for TA Kinetics of CIS NPs (rRising Component in a Multiexponential Function) 

nucleation time, 
min 

probe, 
nm 

τ1, ps A1, 
% 

τ2, ps A2, 
% 

τ3, ps A3, 
% 

τ4, 
ns 

A4, 
% 

15 500 1.09 ± 0.13 30.5 13.9 ± 3.
7 

29.1 1040 ± 2
7 

27.4 ≫5 13 
 

620 r0.23 ± 0.0
1 

100 
 

2.0 
 

93.5 
 

4.5 
 

650 r0.23 ± 0.0
1 

100 
 

1.9 
 

95.2 
 

2.9 
 

700 r0.29 ± 0.0
1 

100 
 

6.1 
 

88.1 
 

5.8 
 

720 r0.32 ± 0.0
1 

100 
 

7.9 
 

87.5 
 

4.9 

30 525 4.58 ± 0.17 33 135 ± 4.5 17.8 1190 ± 4
3 

23.9 ≫5 25.4 
 

650 r0.27 ± 0.0
1 

100 
 

5.0 
 

73.3 
 

16.7 
 

680 r0.25 ± 0.0
1 

100 
 

7.9 
 

75.5 
 

16.6 
 

700 r0.35 ± 0.0
1 

100 
 

10.8 
 

70.7 
 

18.5 
 

720 r0.31 ± 0.0
1 

100 
 

13.2 
 

67.8 
 

19.0 

60 560 5.79 ± 0.19 16.1 237 ± 7.8 14.1 1990 ± 7
6 

22.2 ≫5 47.4 
 

700 0.35 ± 0.01 19.6 
 

7.37 
 

50 
 

22.9  
720 r0.14 ± 0.0

1 
100 

 
15.1 

 
47.1 

 
37.8 



 
740 r0.38 ± 0.0

1 
100 

 
14.7 

 
54.8 

 
30.5 

 

In addition to the carrier dynamics, the nature of trap states was investigated by probing the oxidation state 
change at Cu center using time-resolved X-ray absorption spectroscopy (XTA). Figure 5 shows the XANES 
spectrum of CIS NPs with 60 min nucleation time at Cu K-edge without laser excitation (laser-off spectrum). This 
spectrum resembles the XANES spectrum in Figure 1e, representing the steady-state XANES spectrum of CIS 
NPs. Also shown in Figure 5a is the tranisent XANES signal, presented as the difference XANES spectrum 
obtained by subtracting the steady-state XANES spectrum from the XANES spectrum with laser excitation at 110 
ps (laser-on spectrum). A prominent negative feature at 8.983 keV in the difference spectrum indicates that the 
Cu transition edge shifts to higher energy, suggesting the oxidation at Cu center following 
photoexcitation.(42) This assignment was further confirmed by the small positive feature at 8.98 keV which 
corresponds to quadrupole 1s–3d transition. Because 1s–3d transition is forbidden in Cu1+ with 
3d(10) configuration but is possible in Cu2+ center, the appearance of this transition indicates the oxidation of Cu 
center. Because the full-width at half-maximum (fwhm) of X-ray probe is ∼117 ps and electron-trapping process 
occurs on a subpicosecond time scale revealed by fs-OTA, the XTA spectrum collected at 110 ps after laser 
excitation represents the spectrum when electron-trapping process has completed. As a result, the observed 
oxidation at Cu center indicates that the electrons are removed from Cu site and trapped at the surrounding 
sites, such as In or S sites (Figure 5b), implying that holes are located at sites characteristic of Cu. We are unsure 
whether the holes at Cu center are located in valence band or trap states. However, due to the presence of large 
amount of surface Cu atoms with defects, as indicated by XAS, we believe that trapped holes play a major role in 
the oxidation of Cu center, though holes at valence band cannot be excluded. 

 

Figure 5. (a) XANES spectrum (black plot) and difference XANES spectrum (red plot) of CIS NPs with 60 min nucleation time 
at Cu K-edge. The difference XANES spectrum was obtained after subtracting the XANES spectrum without laser excitation 
from the XANES spectrum collected at 110 ps after laser excitation. (b) Scheme illustration of carrier dynamics in CIS NPs 
following photoexcitation. 

Conclusions 
In summary, we have examined the correlation of the photoinduced carrier dynamics in CIS NPs with their 
electronic structure using the combination of multiple spectroscopic techniques. Using steady-state and time-
resolved XAS spectroscopy, we show that CIS NPs contain a large portion of surface Cu atoms that do not have 
tetrahedral structure, which serve as hole-trapping sites. The structure of surface Cu atoms in CIS NPs can be 
controlled by nucleation time during synthesis, where the tetrahedral structure at Cu center is more developed 
in NPs with longer nucleation time (larger size), resulting in longer electron–hole recombination time. These 
results indicate the possibility to inhibit carrier recombination through controlling the electronic structure of 
surface Cu atoms, providing important insight in fundamental understanding of carrier dynamics in CIS NPs and 
facilitating their potential application in photovoltaics and light-emitting devices. 
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