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Abstract: 

The mathematical problem for electrical impedance tomography (EIT) is a highly nonlinear ill-posed inverse 
problem requiring carefully designed reconstruction procedures to ensure reliable image generation. D-bar 
methods are based on a rigorous mathematical analysis and provide robust direct reconstructions by using 
a low-pass filtering of the associated nonlinear Fourier data. Similarly to low-pass filtering of linear Fourier 
data, only using low frequencies in the image recovery process results in blurred images lacking sharp 
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features, such as clear organ boundaries. Convolutional neural networks provide a powerful framework for 
post-processing such convolved direct reconstructions. In this paper, we demonstrate that these CNN 
techniques lead to sharp and reliable reconstructions even for the highly nonlinear inverse problem of EIT. 
The network is trained on data sets of simulated examples and then applied to experimental data without 
the need to perform an additional transfer training. Results for absolute EIT images are presented using 
experimental EIT data from the ACT4 and KIT4 EIT systems. 

SECTION I. Introduction 
Electrical Impedance Tomography (EIT) images traditionally display the tissue-dependent conductivity 
distribution of a patient in the plane of the attached measurement electrodes allowing, e.g., visualization of 
heart and lung function as well as injuries [1]–[2][3][4][5][6]. The resulting images are of high-contrast and data 
acquisition is done by harmless electrical measurements without the need for contrast agents or ionizing 
radiation. However, the image recovery process of forming the EIT image from the current/voltage 
measurement data is a severely ill-posed nonlinear inverse problem, and thus requires a noise-robust 
regularization strategy for stability. The ‘D-bar method’, the only proven regularization strategy for the full 
nonlinear problem [7], provides real-time noise-robust image recovery by using a low-pass filter of the 
associated nonlinear Fourier data. Unfortunately, this results in images that suffer a loss of sharp features often 
important in medical imaging applications. In this work, we propose combining D-bar with Deep Learning, 
specifically with a Convolutional Neural Network, to ‘learn’ and undo the image blurring resulting in real-time 
sharp EIT images. 

EIT reconstructions are typically computed with iterative algorithms that are based on minimizing a penalty 
functional, such as [8] and [9]. These methods perform very well in reconstruction quality due to a flexibility of 
incorporating prior knowledge, but require careful modeling of the boundary shape in the repeated simulation 
of the forward problem. Possibilities to overcome the boundary sensitivity are proposed in [10] and [11], but 
tend to be computationally demanding. On the other hand, direct (non-iterative) reconstruction algorithms do 
not need the repeated simulation of the forward operator. One such method is known as the D-bar algorithm 
which is based on a nonlinear Fourier transformation of the measured surface current/voltage data. The method 
employs a low-pass filtering of this transformed data as a regularization strategy to stabilize the image 
reconstruction process against noise in the measured data. Consequently, this filtering results in reconstructed 
images that suffer from a significant loss of sharpness. It has been shown that the direct D-bar method is robust 
to incorrect or incomplete knowledge of electrode locations as well as errors in boundary shape, see for 
instance [12] and the discussion in Section II-B. Iterative methods on the other hand are either very sensitive to 
the correct forward model or are based on sophisticated modelling to cope with uncertainties in the model, 
such as unknown electrode locations, boundary shape, or contact impedances [10], [11], [13]. 

Recent advances in the larger field of image reconstruction have demonstrated the power of Deep Learning and 
Neural Networks for improving low quality or corrupted images. In particular, combining fast direct 
reconstruction procedures with deep neural networks can provide high quality images with low latency, leading 
to prospective real-time imaging in many applications. Convolutional Neural Networks (CNN) are especially 
suitable for post-processing initial reconstructions that come from algorithms based on, or related to, Fourier 
transforms, as suggested in [14]. Such initial reconstructions typically suffer from a loss of spatial resolution, due 
to some sort of low-pass filtering, as well as additional undersampling artefacts. Training a CNN to remove these 
artefacts to improve the information content of the reconstructed image has been studied for several linear 
inverse problems in medical imaging, including CT [14], [15], MRI [16], and PAT [17], [18]. Although the EIT 
problem is nonlinear in nature, the low-pass filtered images from the low-passed D-bar method naturally fit into 
this setting. 



In this study we formulate a real-time capable reconstruction algorithm that produces high quality sharp 
absolute EIT images by combining the D-bar algorithm with subsequent processing by a CNN. For this task we 
utilize an established CNN architecture, known as U-net, adjusted to cope with the typical image structures of D-
bar EIT reconstructions. We train the network on simulated training data and directly apply the trained network 
to experimental data with no training on experimental data itself. This successful transition to experimental data 
underlines the robustness of the D-bar algorithm and is especially important as the need for good training data 
is often the bottleneck for the success of such network-based approaches for other imaging 
modalities, [14], [18], [19]. 

This paper is organized as follows. Section II presents a brief review of the mathematical problem of EIT and the 
D-bar solution method. The deep learning CNN for D-bar, coined ‘Deep D-bar’ is introduced in Section III. The 
experimental setup as well as simulation of training data are described in Section IV and results presented 
in Section V. A discussion of the results is given in Section VI and conclusions drawn in Section VII. The reader is 
encouraged to view the manuscript on a computer screen as details in the image contrast may be masked in 
printed versions. 

SECTION II. Electrical Impedance Tomography and the D-Bar Reconstruction 
Method 
Electrical impedance tomography is a nonlinear inverse problem in which we aim to determine the interior 
conductivity from current-to-voltage measurements at the boundary. The problem can be formulated as a 
generalized Laplace equation 

�∇ ⋅ 𝜎𝜎∇𝑢𝑢 = 0 in Ω,
𝜎𝜎 ∂𝜈𝜈  𝑢𝑢 = 𝜑𝜑 on ∂Ω, (1) 

modeling the electrical potential u inside the domain Ω ⊂ ℝ𝑛𝑛 for a given conductivity 𝜎𝜎 , with the Neumann 
boundary condition describing the boundary voltage occurring from the applied mean-free current 𝜑𝜑 . The 
measurement data consists of pairs of current and voltage measurements and is modeled by the current-to-
voltage map ℛ𝜎𝜎  defined by 

ℛ𝜎𝜎𝜑𝜑 ≔ 𝑢𝑢|∂Ω. 
This measurement operator is also known as the Neumann-to-Dirichlet (ND) map, and knowledge of it allows 
one to predict the resulting voltage for any injected current pattern for 𝑛𝑛 = 2,3 . In practice, an approximation 
to the ND map is formed by applying a basis of current patterns and tracking the responses of the voltages. The 
D-bar algorithm we use below requires the corresponding Dirichlet-to-Neumann (DN) map, which can be 
obtained as the inverse of the ND map, Λ𝜎𝜎 = (ℛ𝜎𝜎)−1 , for full (vs. partial) boundary data. In this work we 
consider the 𝑛𝑛 = 2 case as the D-bar reconstruction framework is further developed in 2D. However, we expect 
a natural extension to 3D [20]. 

A. Real-Time Reconstructions Using an Approximate D-Bar Method 
By the D-bar method, we refer to the regularized D-bar method [7] based on the theoretical proof given in [21]. 
The approach uses a nonlinear Fourier transform, called a scattering transform, tailor-made for the EIT problem 
which is applied to the measured current/voltage data in the form of the DN map Λ𝜎𝜎  . That scattering data is 

then used as input data into a partial differential equation, a ∂k or ‘D-bar’ equation, giving the method its name. 

Note that the derivative operators ∂zz and ∂z are defined as ∂z = 1
2

(∂𝑧𝑧1 − 𝑖𝑖 ∂𝑧𝑧2) and ∂z = 1
2

(∂𝑧𝑧1 + 𝑖𝑖 ∂𝑧𝑧2), 



where 𝑧𝑧 = 𝑧𝑧1 + 𝑖𝑖𝑧𝑧2 ∈ ℂ. The conductivity σ is then recovered directly from the solution to the D-bar 
equation. 

The D-bar approach [21] is to transform the physical conductivity equation ∇ ⋅ 𝜎𝜎∇𝑢𝑢 = 0 into a nonphysical 
Schrödinger equation, solve that problem instead using the D-bar methods popularized by Beals and 

Coifman [22], and then transform back to the physical setting. The change of variables 𝑢𝑢
~

= 𝜎𝜎1/2𝑢𝑢 and 𝑞𝑞(𝑧𝑧) =

𝜎𝜎−
1
2(𝑧𝑧)Δ𝜎𝜎

1
2(𝑧𝑧) produces the desired Schrödinger equation [−Δ + 𝑞𝑞(𝑧𝑧)]𝑢𝑢

~
(𝑧𝑧) = 0, where 𝑧𝑧 ∈ 𝛺𝛺 . Provided 

that 𝜎𝜎(𝑧𝑧) is constant in a neighborhood of the boundary, without loss of generality 𝜎𝜎 = 1 near 𝜕𝜕𝛺𝛺 , the 
conductivity can be extended from 𝛺𝛺 to the entire plane by setting 𝜎𝜎(𝑧𝑧) ≡ 1 for 𝑧𝑧 ∈ ℂ ∖ Ω . Note that this 
gives the potential 𝑞𝑞(𝑧𝑧) compact support in 𝛺𝛺 . We make use of special solutions 𝜓𝜓(𝑧𝑧, 𝑘𝑘) to the Schrödinger 
equation 

[−Δ + 𝑞𝑞(𝑧𝑧)]𝜓𝜓(𝑧𝑧, 𝑘𝑘) = 0, 𝑧𝑧 ∈ ℂ, 𝑘𝑘 ∈ ℂ ∖ {0}, (2) 

called Complex Geometrical Optics (CGO) solutions, that have a specific asymptotic behavior for 
large |𝑧𝑧| or |𝑘𝑘| , 𝜓𝜓(𝑧𝑧, 𝑘𝑘) ∼ 𝑒𝑒𝑖𝑖𝑖𝑖𝑧𝑧. Note that we associate ℝ2 with ℂ via the mapping 𝑧𝑧 = (𝑧𝑧1, 𝑧𝑧2) ↦ 𝑧𝑧1 +
𝑖𝑖𝑧𝑧2 and thus 𝑘𝑘𝑧𝑧 = (𝑘𝑘1 + 𝑖𝑖𝑘𝑘2)(𝑧𝑧1 + 𝑖𝑖𝑧𝑧2) denotes complex multiplication. The CGO solutions 𝜇𝜇(𝑧𝑧, 𝑘𝑘) =
𝑒𝑒−𝑖𝑖𝑖𝑖𝑧𝑧𝜓𝜓(𝑧𝑧, 𝑘𝑘) ∼ 1 solve a D-bar equation in the nonphysical scattering variable 𝑘𝑘 

∂k 𝜇𝜇(𝑧𝑧,𝑘𝑘) = 1
4𝜋𝜋𝑖𝑖

𝐭𝐭 (𝑘𝑘)𝑒𝑒(𝑧𝑧,−𝑘𝑘)𝜇𝜇(𝑧𝑧,𝑘𝑘), (3) 

where 𝑒𝑒(𝑧𝑧,𝑘𝑘): = exp {𝑖𝑖(𝑘𝑘𝑧𝑧 + 𝑘𝑘𝑧𝑧)} and 𝑡𝑡(𝑘𝑘) is the nonlinear scattering data defined by 

𝐭𝐭 (𝑘𝑘): = ∫ 𝑒𝑒(𝑧𝑧,𝑘𝑘)𝑞𝑞(𝑧𝑧)𝜇𝜇(𝑧𝑧, 𝑘𝑘)𝑑𝑑𝑧𝑧ℂ . (4) 

Note that this scattering data t can be thought of as nonlinear Fourier data by the following observation. 
Replacing the CGO solutions 𝜇𝜇(𝑧𝑧, 𝑘𝑘) in (4) with the asymptotic behavior 1 yields 

𝐭𝐭exp(𝑘𝑘) = �𝑒𝑒(𝑧𝑧,𝑘𝑘)𝑞𝑞(𝑧𝑧)(1)𝑑𝑑𝑧𝑧 = 𝑞𝑞�
  
(−2𝑘𝑘1, 2𝑘𝑘2)

ℂ
, 

and thus the ‘Born’ approximation 𝐭𝐭exp is essentially a shifted Fourier transform of the potential 𝑞𝑞 . A 
connection to the measurement data Λ𝜎𝜎  can be established via Alessandrini’s identity [23] 

𝐭𝐭exp (𝑘𝑘) = �𝑒𝑒(𝑧𝑧,𝑘𝑘)𝑞𝑞(𝑧𝑧)𝑑𝑑𝑧𝑧
ℂ

= � 𝑒𝑒𝑖𝑖𝑖𝑖𝑧𝑧(Λ𝜎𝜎 − Λ1)𝑒𝑒𝑖𝑖𝑖𝑖𝑧𝑧𝑑𝑑𝑧𝑧
∂Ω

. 

In this work we use this ‘Born’ approximation texp to the scattering data, first presented in [24], as it allows the 
D-bar method to solve the EIT problem fast enough to be considered ‘real-time’ [25] and is robust against noisy 
data. The main steps in the algorithm are outlined below: 

Current/Voltage Data
(Λ𝜎𝜎 ,Λ1) ⟶

1 Scattering Data
𝐭𝐭exp (𝑘𝑘) ⟶

2 Conductivity
𝜎𝜎(𝑧𝑧)  

1. For each 𝑘𝑘 ∈ ℂ ∖ {0}, evaluate the approximate scattering data 
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𝐭𝐭exp (𝑘𝑘) = �∫  ∂Ω 𝑒𝑒𝑖𝑖𝑖𝑖𝑧𝑧(Λ𝜎𝜎 − Λ1)𝑒𝑒𝑖𝑖𝑖𝑖𝑧𝑧𝑑𝑑𝑑𝑑(𝑧𝑧), 0 < |𝑘𝑘| ≤ 𝑅𝑅
0 |𝑘𝑘| > 𝑅𝑅.

 (5) 

 

2. For each 𝑧𝑧 ∈ Ω, solve the D-bar equation (3) using the integral equation 

𝝁𝝁exp (𝑧𝑧, 𝜅𝜅)

= 1 + 1
4𝜋𝜋2

� 𝐭𝐭exp (𝑖𝑖)𝑒𝑒(𝑧𝑧,−𝑖𝑖)
(𝜅𝜅−𝑖𝑖)𝑖𝑖

𝝁𝝁exp (𝑧𝑧,𝑘𝑘)𝑑𝑑𝜅𝜅1𝑑𝑑𝜅𝜅2
ℂ

, (6) 

and recover the approximate conductivity 

𝜎𝜎exp (𝑧𝑧) = [𝝁𝝁exp (𝑧𝑧, 0)]2. (7) 

 

B. Robustness of D-Bar Methods for EIT 
Recent studies [12], [26] suggest that D-bar based reconstruction methods for 2D EIT are robust to incorrect 
electrode locations and boundary shape. This robustness holds for absolute, as well as time-difference, imaging 
with both images behaving similarly to incorrect boundary shape and electrode locations. This may be due to 
the fact that incorrect domain modeling leads to EIT data from a DN map that is only possible for an anisotropic 
conductivity, even when the true conductivity is isotropic. While the anisotropic conductivity cannot be 

recovered uniquely, one can recover a unique isotropization, �𝑑𝑑𝑒𝑒𝑡𝑡(𝜎𝜎), of the matrix-valued anisotropic 
conductivity, interpreted as a deformation of the true anisotropic conductivity by isothermal coordinates. 
In [27] and [28], it is proved that the equations in the D-bar reconstruction methods are identical for anisotropic 
and isotropic EIT data, helping to explain why D-bar methods have still produced quality images even on 
anisotropic conductivities and imprecisely known boundary shapes. Here we focus on absolute images. 

SECTION III. Deep D-Bar 
The aim of this study is to formulate a real-time reconstruction algorithm for electrical impedance tomography 
that produces sharp and robust absolute EIT images. To achieve this we combine the D-bar algorithm, described 
in Section II-A, with a convolutional neural network (CNN). This idea relies on a network architecture known as 
U-Net [29], originally developed for image segmentation. It has been shown for several linear inverse 
problems [14]–[15][16][17][18] that this particular network structure can be modified to successfully remove 
artefacts in medical image reconstructions. The basic recipe is to use a fast and simple reconstruction algorithm 
to obtain corrupted images and then train the network to remove those artefacts. A related study for electrical 
impedance tomography is [30], where the authors used artificial neural networks (ANNs) to post-process initial 
reconstructions from one step of a linear Gauss-Newton algorithm for 3D time-difference EIT imaging. Our 
approach is fundamentally different as it recovers absolute EIT images. 

The network architecture we have chosen relies on the established U-Net [29], which consists of a multilevel 
decomposition and several skip connections to avoid singularities in the training procedure, see Figure 1 for an 
illustration of our specific architecture. The original purpose of U-Net was image segmentation. This is very 
similar to our application, where the main goal is to identify organ boundaries and deconvolve the 
reconstruction, hence the output of our network is a sharpened image. Therefore, we believe that the U-Net 
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architecture is a suitable choice for the purpose of EIT imaging, since the multilevel structure can deal efficiently 
with the non-linearity and sharpening over large image areas. Additionally, as discussed in [31], pooling layers 
leads to translational invariance, which is important to reduce locational bias in the reconstruction process and 
detect injuries not present in the training set. As a modification to the original architecture we needed to 
increase the convolutional filter size to 5 × 5 (compared to 3 × 3 ), presumably to deal with the nonlinearity of 
the reconstructions and enforce consistency of the reconstructions. We would like to note, that in contrast to 
the studies in [14]–[15][16][17][18], where the authors learn a residual update to the initial reconstruction, we 
train the network to produce a single sharpened version of the input. 

 
Fig. 1. Deep D-bar network structure. The input is given by the D-bar reconstruction 𝜎𝜎exp with a resolution of 64×64 and the 
output is denoted by 𝜎𝜎

~
. The numbers on top of the blue bars denote the channels for each layer. The resolution for each 

multilevel decomposition is shown in gray on the left. Each convolutional layer is equipped with a Rectified Linear Unit as 
nonlinearity, given by 𝖱𝖱𝖱𝖱𝖱𝖱𝖱𝖱(𝗑𝗑) = 𝗆𝗆𝗆𝗆𝗑𝗑(𝟢𝟢, 𝗑𝗑). 

A. Training of the Network 
Given the true conductivity 𝜎𝜎 , we simulate measurement data, as will be described in Section IV-A, and 
reconstruct the approximate conductivity 𝜎𝜎exp with the D-bar method outlined in II-A. Since the reconstruction 
step (6) in the D-bar algorithm can be done for any 𝑧𝑧 ∈ ℝ2 we reconstruct 𝜎𝜎exp on the square [−1,1]2 to 
obtain a square image as input to the network. The resolution is chosen to be 64 × 64 . The ground truth σ is 
similarly extended to [−1,1]2 by extending the background conductivity. 

Having obtained the training set {𝜎𝜎𝑖𝑖 ,𝜎𝜎𝑖𝑖
exp}𝑖𝑖, we train the Deep D-bar network, denoted by 𝒟𝒟𝜃𝜃, for the set of 

network parameters 𝜃𝜃 , i.e. the convolutional filters and biases in each convolutional layer. Given the output of 

the network 𝜎𝜎
~

= 𝒟𝒟𝜃𝜃(𝜎𝜎exp) we seek to minimize the ℓ2 -error of network output to phantom, given by the 
loss 

loss(𝜎𝜎
~

) ≔ ‖𝜎𝜎
~
− 𝜎𝜎‖22. 

The network is implemented with the Python library Tensor-Flow and the optimization is performed for 1,000 
epochs in batches of 16, with TensorFlow’s implementation of the Adam algorithm and an initial learning rate 
of 10−4. The training procedure takes only 4 hours on a single Titan XP GPU with 12GB memory. As we will 
discuss in the following section, we do not need to perform a transfer training to apply the trained Deep D-bar 
network to experimental data, the training on simulated data proved to be sufficient. 

SECTION IV. Experimental Setup and Computational Notes 
We will demonstrate the new Deep D-bar method using experimental data from two different EIT machines: 
ACT4 [32], [33] from Rensselaer Polytechnic Institute (RPI) as well as KIT4 [34] from the University of Eastern 
Finland (UEF). 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/42/8478012/8352045/hamil1-2828303-large.gif
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The ACT4 data uses agar (4%) based targets with added graphite (10%) to simulate a heart, two lungs, an aorta, 
and a spine. All images are shown in DICOM orientation, meaning that the right lung corresponds to the viewer’s 
left, as if we are looking up through the patient’s feet. Injuries were simulated in the right (DICOM) lung away 
from the heart by removing a portion of the lung and (1) replacing the missing portion with a piece of 
agar/graphite with the same conductivity as the heart to simulate an injury such as a pleural effusion, (2) placing 
three plastic tubes in the missing region to simulate an area of very low conductivity such as a pneumothorax, 
and (3) replacing the missing portion with three metal tubes. The experiments are shown in Figure 2. The 
approximate conductivities of the targets are displayed in Table I. The admittivity spectrum of the agar/graphite 
targets were measured on test-cells with Impedimed’s SFB-7 bioimpedance meter1. Note that the ACT4 system 
applies voltages and measures currents rather than vice-versa. In these experiments, trigonometric voltage 
patterns of maximum amplitude 0.5V (and frequency 3.3kHz) were applied on a circular tank (radius 15cm), with 
32 electrodes (width 2.5cm), filled with saline (0.3 S/m) to a height of 2.25cm. 

TABLE I Conductivity Values for ACT4 Targets at 3.3kHz 

 
 TABLE I Conductivity Values for ACT4 Targets at 3.3kHz 

 MEASURED VALUES SIMULATED VALUES 
 

(S/m) Ranges (S/m) 
   

HEART/AORTA 0.67781 (0.5, 0.8] 
LUNGS/SPINE 0.0567 14 (0.01, 0.2] 
SALINE BACKGROUND 0.3 [0.29, 0.3 I l 

INJURY I: AGAR/GRAPHITE 0.67781 [0 .0 1, 1.5] 
INJURY 2: PLA STIC TUBES 0 [0.01, 1.5] 
INJURY 3: COPPER TUBES infi ni te [0.01, 1.5] 
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Fig. 2. Experimental Setups for test phantoms taken on the ACT4 system from RPI. Agar/graphite targets were used to 
simulate a chest phantom with a heart, two lungs, aorta, and spine. The first image shows the healthy phantom. Three 
injuries are explored: ‘Injury 1’, replaced the cut portion of the right lung with agar/graphite of the same conductivity as the 
heart target to simulate a potential pleural effusion, ‘Injury 2’, replaced the cut portion of the right lung replaced with three 
plastic tubes, and ‘Injury 3’, replaced the cut portion with three copper tubes. 
 
The KIT4 data was taken on a circular tank of radius 14cm with 16 electrodes of width 2.5cm and tap water with 
conductivity 0.03 S/m filled to a height of 7cm. Conductive (metal) and resistive (plastic) targets were placed in 
the tank, as shown in Figure 3, and adjacent current patterns with amplitude 2mA were applied at 1kHz. We 
remark that while this data may not satisfy safety standards for human imaging, it is included for illustrative 
purposes and potential industrial applications. 

 
Fig. 3. Experimental Setups with conductive and resistive targets on the KIT4 EIT system from UEF. The white objects are 
made of solid plastic and are resistive. The hollow circular objects are conductive metal rings. 
 

A. Simulation of 2D EIT Data 
The boundary conditions of (1) assume a continuum model for the boundary measurements, completely 
ignoring the discrete positioning of the electrodes. When simulating the training data, we use a modified version 
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of the continuum model, called the continuum electrode model introduced in [35], which was developed to 
simulate realistic electrode data in a continuum setting. In essence, the continuum current/voltage traces are 
optimally projected onto subsets of the boundary corresponding to the electrode locations. The training could 
be done with a more complicated electrode model, such as the Complete Electrode Model (CEM) [36], however 
our simplified continuum electrode model proved sufficient for this proof of concept study. 

We aim to represent the ND map as matrix approximation 𝐑𝐑𝜎𝜎  with respect to an orthonormal basis on the 
boundary. Let 𝐿𝐿 be an even number of electrodes, then the basis functions are chosen for 𝑛𝑛 ∈
�− 𝐿𝐿

2
, …− 1,1, … , 𝐿𝐿

2
� as 

𝜑𝜑𝑛𝑛(𝜃𝜃) = {

1
√𝜋𝜋

sin(𝑛𝑛𝜃𝜃) if 𝑛𝑛 < 0,

1
√𝜋𝜋

cos(𝑛𝑛𝜃𝜃) if 𝑛𝑛 > 0.
 

The ACT4 system uses 𝐿𝐿 = 32 electrodes and the KIT4 system uses 𝐿𝐿 = 16 . The measured voltages are then 
projected to a continuum trace 𝑔𝑔𝑛𝑛 , see [35], [37], and we obtain the ND matrix 𝐑𝐑𝜎𝜎  by evaluating inner 
products in 𝐿𝐿2(∂Ω) as follows 

(𝐑𝐑𝜎𝜎)𝑛𝑛,ℓ = (𝑔𝑔𝑛𝑛 ,𝜑𝜑ℓ) = ∫∂Ω 𝑔𝑔𝑛𝑛(𝑠𝑠)𝜑𝜑ℓ(𝑠𝑠)𝑑𝑑𝑠𝑠. (8) 

The matrix approximation of the DN map, 𝐋𝐋𝜎𝜎 , is then formed by inverting the ND matrix, i.e. 𝐋𝐋𝜎𝜎 = (𝐑𝐑𝜎𝜎)−1. If 
the maximal radius r of the domain is not 1, the DN matrix can be scaled by r to correspond to the data that 
would be obtained if the radius were 1. Similarly, if 𝜎𝜎 = 𝜎𝜎0 ≠ 1 near ∂Ω , the DN matrix is scaled by 1

𝜎𝜎0
 to 

produce the DN matrix that would correspond to 𝜎𝜎 = 1 near the boundary. If an estimate for σ0 is not 
available, the best constant conductivity approximation to the data can be formed as described in [24]. The 
scaling is undone at the end of the D-bar algorithm by multiplying the conductivity by 𝜎𝜎0 . The matrix 
approximation 𝐋𝐋1 to the DN map Λ1 , required to evaluate the scattering data via (5), is simulated using the 
constant conductivity 𝜎𝜎 = 1 . 

B. Simulation of Training Data 
Training data for the neural network was created using solely simulated data: one group for the ACT4 data and 
another group for the KIT4 data. 

The ACT4 training data was created as follows. Using the ‘Healthy’ image, shown in Figure 2 (top left), 
approximate organ boundaries were extracted by clicking around the targets in the image for the heart, aorta, 
left lung, right lung, and spine (Fig. 4, top right). Random numbers were generated to decide whether each 
individual target was included, heart (95%), aorta (95%), left lung (90%), right lung (90%), spine (100%). If a given 
target was included, white Gaussian noise (25db) was added to the approximate boundary points of the target 
using the awgn command in MATLAB to create ‘noisy’ boundary locations. Figure 4 (bottom) shows the effect of 
the white noise on the boundary locations. Noise was added to each target/organ independently. Conductivities 
were assigned for each included target by generating a random number from a uniform distribution in the 
ranges shown in Table I, last column. Elementary injuries were simulated by generating a horizontal dividing line 
in the lung and assigning randomly generated values in each of the two portions of the divided lung from the 
uniform distribution of values in [0.01, 1.5], see Fig. 4 bottom right. Each lung had an independent chance of 
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such an injury (30%). More complex injuries could be simulated but are outside the scope of this study. A total of 
4,096 simulations were performed for the ACT4 training. 

 
Fig. 4. Depiction of the simulation of the training data for the ACT4 experiments of Figure 2. The first image shows the 
healthy phantom from which the ‘true boundary’ (black dots) and ‘approximate boundary’ (red stars) were extracted, 
shown in the second image. The third and fourth images display sample simulated phantoms using in the training data with 
and without injuries with the true boundaries overlaid in black dots. 

 
After each conductivity phantom was constructed, the mathematical forward problem (1) was solved to recover 
the corresponding theoretical boundary voltages and currents using a FEM mesh with 65,536 triangular 
elements using the continuum electrode model described in Section IV-A. Relative white noise with variance 
of 10−4 was added to the measured voltages. The resulting simulated voltages/currents were used to solve 
the inverse problem using the D-bar method described in Section II-A with a low-pass filtering radius of 𝑅𝑅 =
4.5 in the scattering domain using the procedure outlined in [38] and uniformly spaced 64 × 64𝑘𝑘 and 𝑧𝑧 -grids 
on [−4.5,4.5]2 with stepsize ℎ𝑖𝑖 = 0.3234, and [−1,1]2 with stepsize ℎ𝑧𝑧 = 0.0317, respectively. A non-
uniform cutoff threshold was enforced on the scattering data for frequencies such that 𝐭𝐭exp (𝑘𝑘) = 0 if 
either |ℜ(𝐭𝐭exp (𝑘𝑘)| or |ℑ(𝐭𝐭exp (𝑘𝑘)| exceeds 24. Then, the 4,096 pairs of data in the form of ‘Truth’ and ‘Low-
pass D-bar Reconstruction’ were used to train the convolutional neural network described in Section III. 

Training data for the KIT4 experiments was simulated in a similar manner. In this case, one to three circular 
inclusions were simulated, with varying radii drawn from the uniform distribution on [0.2, 0.4], with center in [0, 
0.6], and an angle in [0, 2π ]. Inclusions were not allowed to overlap and each inclusion had an equal probability 
of being ‘conductive’ or ‘resistive’, and values were assigned from the Uniform distributions [0.05,0.12] and 
[0.005,0.015] in S/m, respectively. The conductivity of the background was drawn from [0.027, 0.033] S/m. The 
conductivity ranges for the inclusions were determined from initial higher-pass (larger filtering radius in the 
scattering domain) D-bar reconstructions of the KIT4 current/voltage data. While we note that the infinite 
(metal) conductors should have much higher conductivities, this range was observed in the initial testing and 
proved sufficient for classifying objects as conductors/resistors in our study. Note that such infinite 
conductors/resistors violate the theory of D-bar which requires inclusions to have non-negative conductivities 
bounded away from zero and infinity. Nevertheless, the method provides useful conductor/resistor information. 
The same k and z grids were used in the D-bar reconstructions of the KIT4 example as in the ACT4 example. 
However, we reduced the non-uniform cutoff threshold of the scattering data from 24 to 8 to reduce oscillatory 
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artefacts that can result from noise in the scattering data for higher frequencies. Figure 5 shows sample 
phantoms used in the training data for the KIT4 example. A total of 4,096 simulations were performed and pairs 
of ‘Truth’ vs. ‘Low-pass D-bar Reconstruction’ used to train the network. 

 
Fig. 5. Depiction of the simulation of the training data for the KIT4 experiments of Figure 3. The images shown are sample 
simulations of inclusions present in the training data. Zero to three, non-overlapping, circular inclusions were allowed in 
each simulation. 

C. Computational Notes for D-Bar Reconstructions From Experimental EIT Data 
The D-bar reconstructions from the experimental ACT4 and KIT4 data were computed in the same manner as 
the simulated data case described above in Section IV-B with the exception of the formation of the DN 
matrices 𝐋𝐋𝜎𝜎 and 𝐋𝐋1, which now come from discrete vs. continuous measurements. For convenience, for both 
the ACT4 and KIT4 data, we synthesized the current/voltage measurements that would have occurred if 
orthonormal trigonometric current patterns had been applied, by using a change of basis. Define 𝑡𝑡ℓ𝑚𝑚 to be the 
value of the m -th normalized trigonometric current pattern on the ℓ -th electrode, following Isaacson et 
al. [24], 

𝑡𝑡(ℓ,𝑚𝑚) = 𝑡𝑡ℓ𝑚𝑚

: =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧�2

𝐿𝐿 cos (𝑚𝑚𝜃𝜃ℓ), 𝑚𝑚 = 1, … ,
𝐿𝐿
2 − 1

�1
𝐿𝐿 cos (𝑚𝑚𝜃𝜃ℓ), 𝑚𝑚 =

𝐿𝐿
2

�2
𝐿𝐿 sin ((𝑚𝑚− 𝐿𝐿/2)𝜃𝜃ℓ), 𝑚𝑚 =

𝐿𝐿
2 + 1, … , 𝐿𝐿 − 1

 

for ℓ = 1, … , 𝐿𝐿 . This ensures that the matrix of current patterns are orthonormal allowing the solution method 
of DeAngelo and Mueller [39]. Alternative methods such as Gram-Schmidt based approaches could also be used 
to produce a matrix of orthonormal currents. The corresponding voltages are formed using a change of basis 
matrix relating the physical currents and the normalized trig currents. As ACT4 applies voltages and measures 
currents, we must enforce orthonormality of the currents. Similarly, the KIT4 data used adjacent current 
patterns which are not orthogonal and must be converted. 

Using the approach introduced in [24], the (𝑚𝑚,𝑛𝑛) entry of the ND matrix 𝐑𝐑𝜎𝜎  was formed as the discrete inner 
product 

𝐑𝐑𝜎𝜎(𝑚𝑚,𝑛𝑛) = � 𝜙𝜙ℓ
𝑚𝑚𝑣𝑣ℓ

𝑛𝑛

|𝑒𝑒ℓ|
, 1 ≤ 𝑚𝑚,𝑛𝑛 ≤ 𝐿𝐿 − 1

1 ≤ ℓ ≤ 𝐿𝐿
𝐿𝐿

ℓ=1
 (9) 
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where 𝜙𝜙𝑚𝑚 denotes the 𝑚𝑚 -th normalized current pattern, 𝑣𝑣𝑛𝑛 the voltage resulting from applying the 𝑚𝑚 -th 
current pattern (normalized such that the voltages sum to zero and are scaled by the ℓ2 norms of the applied 
current patterns), and |𝑒𝑒ℓ| denotes the area of the ℓ -th electrode. This formula holds for a system 
with 𝐿𝐿 electrodes where 𝐿𝐿 − 1 linearly independent current patterns have been applied. 

The discrete DN matrix 𝐋𝐋𝜎𝜎 was then formed by 𝐋𝐋𝜎𝜎 = (𝐑𝐑𝜎𝜎)−1 and scaled by 𝑟𝑟
𝜎𝜎0

 as described above. As the 

scattering data 𝐭𝐭exp (5) requires the difference in DN matrices (𝐋𝐋𝜎𝜎 − 𝐋𝐋1), the discrete DN matrices L1 must be 
formed for both the ACT4 and KIT4 system with 𝐿𝐿 = 32 and 𝐿𝐿 = 16 electrodes, respectively. To this end, the 
conductivity equation in (1) was solved, using 𝜎𝜎 = 1 , with boundary conditions given by the Complete 
Electrode Model [36] on a FEM mesh with triangular elements (ACT4: 4,149; KIT4: 3,493) simulating injected 
trigonometric current patterns of amplitude 1mA and non-optimized constant contact impedances of 
0.00024 Ω⋅ mm. 

The scattering data 𝐭𝐭exp (5) was evaluated as a simple Simpson’s rule approximation, following [39], 

𝐭𝐭exp (𝑘𝑘) ≈ {
2𝜋𝜋
𝐿𝐿

[𝑒𝑒𝑖𝑖𝑖𝑖𝐳𝐳]𝑇𝑇𝜙𝜙[𝐋𝐋𝜎𝜎 − 𝐋𝐋1]𝐞𝐞𝜓𝜓(𝑘𝑘) 0 < |𝑘𝑘| ≤ 𝑅𝑅

0 |𝑘𝑘| > 𝑅𝑅
 

where 𝐳𝐳 is the vector of the positions of the centers of the electrodes, 𝑇𝑇 denotes the traditional matrix 
transpose, and 

𝑒𝑒ℓ
𝜓𝜓(𝑘𝑘) ≔�𝑎𝑎𝑗𝑗(𝑘𝑘)𝜙𝜙ℓ

𝑗𝑗 ≈ 𝑒𝑒𝑖𝑖𝑖𝑖𝑧𝑧ℓ
𝐿𝐿

ℓ

 

is the expansion of the asymptotic behavior 𝜓𝜓 ∼ 𝑒𝑒𝑖𝑖𝑖𝑖𝑧𝑧  at the center of the ℓ-th electrode, 𝑧𝑧ℓ , in the basis of 
normalized applied current patterns 𝜙𝜙 . Then, the d-bar equation (6) can be solved using Fast Fourier 
Transforms using Vainikko’s method [40]. The interested reader is referred to [38] for further details. 

SECTION V. Results 
We now demonstrate the effect of the Deep D-bar method on simulated, as well as experimental, data for 
absolute EIT imaging. 

A. Reconstructions From Simulated Data 
We begin with purely simulated data for the ACT4 and KIT4 examples. For the ACT4 setting, we consider three 
scenarios, as shown in Figure 6: one consistent with the training data but not used in the training (top), and two 
examples violating the training data - one with three horizontally divided regions in the left lung (middle) and 
the final with a vertical division in the left lung (bottom). Note that the ‘Low-pass D-bar’ and ‘Deep D-bar’ 
images are shown on the same scale for visual comparison. The complete ‘input’ and ‘output’ of the CNN are on 
the unit square [−1,1]2. Reconstructions here are clipped to the disc for visualization purposes only. 
Next, Figure 7 shows the results of the new algorithm on simulated data for the KIT4 example. Three scenarios 
consistent with the training data, but not used in the training, are presented. 
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Fig. 6. Results for simulated test data from the ACT4 geometry. The phantom in the first row conforms with the training 
data and the phantoms in the second and third row s include pathologies not supported by the training data. The initial D-
bar image is compared to the Deep D-bar image. The D-bar images, on the full square are used as the ‘input’ images for the 
CNN. Images are displayed here on the circular geometry of the tank, for presentation only. Each row is plotted on its own 
scale. 

 
Fig. 7. Results for simulated test data from the KIT4 geometry. All phantom are drawn from the same distribution as the 
training data. The initial D-bar image is compared to the Deep D-bar image. The D-bar images, on the full square are used as 
the ‘input’ images for the CNN. Images are displayed here on the circular geometry of the tank, for presentation only. Each 
row is plotted on its own scale. 
 

Structural Similarity Indices (SSIMs) computed for the simulated ACT4 and KIT4 examples are shown in Figures 
8 and 9, respectively. Additionally, we evaluated the minimized ℓ2 -loss by computing the mean relative error 
for a test set of 16 samples drawn from the same distribution as the training data. The For the ACT4 simulations 
we improved from 28.05% to 9.92% and for the KIT4 test data from 16.82% to 9.12% relative ℓ2 -error. 
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Fig. 8. SSIM measurements are compared for the D-bar method and the new ‘Deep D-bar’ method for the ACT4 
reconstructions for the simulated data shown in Figure 6. 
 

 
Fig. 9. SSIM measurements are compared for the D-bar method and the new ‘Deep D-bar’ method for the KIT4 
reconstructions for the simulated data shown in Figure 7. 
 

B. Reconstructions From Experimental Data 
Next, we proceed to reconstructions from experimental data. Figure 10 depicts the results of the Deep D-
bar approach on four experiments with ACT4 data: HEALTHY and INJURIES 1-3 as shown in Figure 2. The black 
dots represent the approximate boundaries of the ‘healthy’ organs, extracted from the photograph. SSIMs 
(Figure 11) were computed for the experimental reconstructions with the exception of INJURY 3, which has the 
infinite conductors (copper tubes). The SSIM comparisons used approximate ‘truth’ images formed by assigning 
the measured conductivity values (Table I) in the respective regions. 
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Fig. 10. ACT4 Results for the various test scenarios: Healthy, Injuries 1–3 corresponding to conductive agar, plastic tubes, 
and conductive copper tubes, respectively. The initial D-bar image is compared to the Deep D-bar image. The D-bar images, 
on the full square are used as the ‘input’ images for the CNN. Images are displayed here on the circular geometry of the 
tank, for presentation only. Each row is plotted on its own scale. 
 

 
Fig. 11. SSIM measurements are compared for the D-bar method and the new ‘Deep D-bar’ method for the ACT4 
experimental data reconstructions shown in Figure 10. Note that meaningful SSIMs could not be computed for ‘Injury 3’ 
due to the copper inclusions which have infinite conductivity. 
 
Lastly, Figure 12 shows results of the method on the four KIT4 scenarios shown in Figure 3. The overlaid black 
dots depict the approximate ‘true’ locations of the targets as extracted from their corresponding photographs. 
No SSIMs were computed here since the objects are infinite conductors and resistors. For a comparison to an 
iterative method with a total variation prior [9], performed on the same KIT4 data, we refer the reader to the 
documentation [34]. 
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Fig. 12. KIT4 Results for the various phantoms with conductive and/or resistive targets, as shown in the first column. The 
initial D-bar image is compared to the Deep D-bar image. The D-bar images, on the full square are used as the ‘input’ 
images for the CNN. Images are displayed here on the circular geometry of the tank, for presentation only. Each row is 
plotted on its own scale. 
 

SECTION VI. Discussion 
The reconstructions shown in Figures 6, 7, 10, and 12 demonstrate that Deep D-bar provides superior 
reconstructions giving both visual and quantitative improvements. In particular, the SSIMs (Figs. 8, 9, and 11) 
show significant SSIM increases for the Deep D-bar vs. Low-pass D-bar. Note that for the SSIM computation for 
ACT4 Injury 2 (plastic tubes), the ‘truth’ image was unrealistically set to zero in the lower portion of the right 
lung, even though the tubes do not entirely fill that region. 

We remind the reader that no experimental (truth, reconstruction) pairs were used in training the network and 
no adaptation to the experimental system was necessary, apart from the number of electrodes in the system. 
The training was done purely with simulated data. In most applications, either a transfer training [18] or training 
with a golden standard from the same system must be performed. This demonstrates the robustness of our 
approach. Additionally, we expect further improvements in the ACT4 reconstructions if more complicated 
injuries are included in the training and remind the reader that the Low-pass D-bar and Deep D-
bar reconstructions are shown on the same scale, which does mask the true dynamic range of the individual 
images. 

We review additional simplifications used in our process: 1) we used the continuum electrode model for the 
boundary conditions in the training data, 2) the FEM solver used to form 𝐋𝐋1 for the ACT4 and KIT4 experimental 
data examples was not finely tuned to either EIT device (which is required for iterative minimization-based 
methods), and 3) the D-bar solver was not optimized for the respective ACT4/KIT4 data. Rather it was used 
merely to provide the low-pass reconstructions used as inputs in the CNN. These simplifications were used to 
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demonstrate the robustness of the approach to both noise in the data and tolerance to modeling errors at 
multiple stages of the reconstruction process. 

Initial experiments performed with the original U-Net architecture, i.e. convolutional filters of size 3 × 3 , did 
not perform satisfactorily leading us to increase the filter size in this study to 5 × 5 . This of course leads to an 
increase in parameters from 8.6 ⋅ 106 to 2.4 ⋅ 107 resulting in longer training times. No batch normalization 
was needed in our training processes and training times were only 4 hours per network, due to the rather small 
image size. 

The evaluation of the CNN is highly efficient on a GPU and took on average 7.65ms for a single sample, hence we 
expect Deep D-bar to be real-time capable. This can be done by combining the D-bar reconstruction, as outlined 
in [25], with the application of the CNN in a unified framework to reduce overhead due to data transmission. 

A. Generalization 
An important aspect for medical imaging is the robustness and consistency of reconstructions. The successful 
transition to experimental data suggests that the proposed Deep D-bar method is robust enough for 
translational imaging. Furthermore, Figures 6 and 10 (ACT4) illustrate that the network can handle 
reconstructions of phantoms that do not conform with the training data. However, while we were able to 
localize the inclusions in Figure 12 (Phantom 2.2, KIT4), the sharp angular boundaries of the triangular target 
were not recovered when using only circular inclusion training data. Our initial testing suggests that this can be 
improved upon by including significant training on triangular inclusions. Challenges recovering triangular shapes 
have also been observed in [41]. In terms of image quality, our Deep D-bar approach is comparable to results 
from (slower) iterative methods on similar data from the KIT4 system, see [9], [34], [41]. Additionally, as the 
ACT4 injuries we simulated were elementary (only using a horizontal dividing line rather than the true diagonal 
cut and incomplete regional replacements), we expect that the reconstructions may improve further if more 
complex injuries were introduced. For human targets, a larger database of training data could be employed and 
built from an anatomical atlas or collection of CT/MR scans both including and not including 
abnormalities/injuries. 

Crucial for the success of the post-processing network is consistency in the input reconstructions. In order to 
improve flexibility of the network, one can train the network on reconstructions from scattering data with 
varying cut-off radii. This allows the user to decide on the quality of the measured data at hand and adjust the 
cut-off radii as needed for the input reconstruction to the network. First tests have shown that this procedure 
indeed improves consistency and stability of the reconstructions as illustrated in Figure 13, where we have 
trained the ACT4 network with varying cut-off radii 𝑅𝑅 ∈ [4,5] . While the SSIMs remained consistent, the 
localization and recovered conductivity of the injury did improve with new variable radii network. 

 
Fig. 13. Comparison of results for the ACT4 ‘Injury 1’ (conductive agar in a lung) dataset from two different CNNs. The ‘old’ 
network denotes the network trained used a fixed cutoff radius for the scattering data (R=4.5 ) whereas the ‘new’ network 
was trained with varying cut-off radii (randomized from the interval [4, 5]). The result from the original, fixed 
radius R=4.5 network, is compared to results using R=4 and R=4.5 for the input image in the new network. The SSIMs 
remained consistent: 0.6405, 0.6397, and 0.6459, from left to right. 
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While we chose, in this study, to match D-bar and CNNs due to the robustness of D-bar for absolute and time-
difference imaging and the convolved nature of the D-bar reconstructions, alternative reconstruction methods 
for the input images could also be used. 

SECTION VII. Conclusions 
The D-bar method for 2D EIT provides reliable reconstructions of the conductivity but suffers from a blurring due 
to a low-pass filtering of the scattering data. Sharp improvements in absolute EIT image quality can be achieved 
by coupling the D-bar reconstruction method with a convolutional neural network. We demonstrated that a 
CNN can effectively learn the deblurring using only simulated data and still transition to experimental data 
without including any experimental data in the training itself. As the training can be done offline ahead of time, 
and the D-bar method provides real-time conductivity reconstructions [25], the post-processing step by the 
trained CNN adds minimal time to the overall image recovery process, due to the highly efficient evaluation on a 
GPU. While this work is shown in 2D, we expect the approach to extend to 3D once the D-bar computational 
framework has been further developed. 
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