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Abstract 

Background: The swim start requires an explosive muscular response of the lower body musculature to 

effectively initiate movement off the starting blocks. There are currently key gaps in the literature evaluating the 

relationships between, and the effects of dry-land resistance training, on swim start performance, as assessed by 

the time to 5, 10 or 15 m.  

Objective: The aims of this systematic review are to critically appraise the current literature on (1) the acute 

relationship between dry-land resistance training and swim start performance; (2) the acute and chronic effects of 

dry-land resistance training on swim start performance. 

Methods: An electronic search using AusportMed, Embase, Medline (Ovid), SPORTDiscus and Web of Science 

was performed. The methodological quality of the studies was evaluated using the Newcastle-Ottawa Quality 

Assessment (NOS) scale (cross-sectional studies) and the Physiotherapy Evidence Database (PEDro) scale 

(intervention studies). 

Results: Sixteen studies met the eligibility criteria, although the majority did not utilise the starting blocks or 

technique currently used in elite swimming. Swim start performance was near perfectly related (r > 0.90) to 

vertical bodyweight jumps and jump height. Post-activation potentiation and plyometrics were found to produce 

significant improvements in acute and chronic swim start performance, respectively. 

Conclusion: While there appears to be strong evidence supporting the use of plyometric exercises such as vertical 

jumps for monitoring and improving swim start performance, future studies need to replicate these findings using 

current starting blocks and techniques and compare the chronic effects of a variety of resistance training programs. 

Key Points 

 Performance in a range of lower body strength and power exercises are highly correlated to swim start

performance with correlations appearing greatest when utilising body weight vertical jumping exercises

 Post-activation potentiation can produce significant acute improvements in swim start performance

 Plyometrics as a form of dry-land training can produce significant chronic improvements in swim start

performance

This is a post-peer-review, pre-copyedit version of an article published in Sports medicine.  
The final authenticated version is available online at: http://dx.doi.org/10.1007/s40279-019-01174-x.
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1 Introduction 

A competitive swimming event can be divided into four components: the start, free swimming, turn (except for a 

50 m event) and finish [1]. The swim start is a separate skill compared to the free swim portion of a race, as 

swimmers initiate the movement on the starting block above the water for all strokes, except those competing in 

the backstroke event [2, 3]. Swim start is defined as the time from the starting signal to when the swimmer crosses 

the 15 m mark in a race [4], with 15 m being the maximum distance that a swimmer can travel underwater before 

their head is required to break the surface of the water in all strokes except for breaststroke [5]. Depending on the 

stroke and distances of the events, swim starts have been estimated to account for 0.8% to 26.1% of the overall 

race time, with the latter representing the percentage in a 50 m sprint front crawl (freestyle) event [6, 7].  

Three primary phases contribute towards the overall start time: the block phase, flight phase and underwater phase 

[6, 8]. A pictorial representation of the contribution of these phases, their biomechanical and anthropometric 

determinants is presented in Figure 1. The block phase requires a quick reaction to the starting signal and a large 

take-off velocity that is primarily horizontal in direction. The block phase is followed by the flight phase, which 

is the projectile motion phase in which the swimmer becomes airborne and finishes when they make contact with 

the water [8, 9]. The underwater phase comes next, in which swimmers attempt to maintain a streamlined position 

through undulatory (butterfly) leg kicks with their arms outstretched in front of the head to minimise velocity loss 

until their head resurfaces just before the 15 m mark [2]. The average velocity in the start phase has been shown 

to be more than twice the velocity of the subsequent free swim phase [10, 11]. As a result, it is imperative for 

swimmers to maximise their velocity off the starting blocks and to maintain as much of this velocity throughout 

the 15 m start phase and into the remainder of the race. Key parameters from each phase that have been previously 

investigated as potential correlates or predictors of starting performance include: time on the start block, the force 

the swimmer produces during the block phase, take-off velocity, angle of entry into the water, velocity at entry, 

time spent underwater and underwater velocity [6, 12, 13].  

 

Insert Fig. 1 about here 

 

Biomechanical research on swim start has been conducted to identify the most effective block start technique for 

performance. Such research has focused on comparing a number of alternative block start techniques in an attempt 

to improve start performance. Prior to 2008, two styles of on-block swim start techniques were most commonly 

This is a post-peer-review, pre-copyedit version of an article published in Sports medicine.  
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used: the grab, and the track start. The primary difference between these start techniques are the foot placement 

on the blocks. In the grab start, both feet are positioned parallel to the front of the starting block, with the toes 

curled over the front edge of the starting block [14]. In the track start, one foot is placed on the front of the starting 

block while the other foot is placed behind [15]. The OSB11 start block (OMEGA, Zurich, Switzerland), which 

was introduced in 2010, features an adjustable kick plate slanted at a fixed angle of 30° that can be moved to five 

different positions, each at a set distance of 35 mm [8]. A kick start technique was adopted by swimmers as a 

result of the addition of the adjustable kick plate, where the rear foot is elevated on the angled kick plate compared 

to the track start technique used previously [12]. The rationale for this design was that the additional kick plate 

may allow for an increased duration of effective force application (i.e. greater horizontal force component) on the 

blocks, which in turn increases horizontal impulse and the horizontal velocity at take-off [16]. 

The swim start requires an explosive muscular response, especially of the lower body musculature, with swimmers 

having to apply large forces rapidly on the start block to increase net impulse and maximise take-off velocity in 

the desired direction [17]. Dry-land resistance training is commonly implemented with swim training to increase 

lower body strength and power output. The greater the impulse (force multiplied by time of force application) 

produced on the start block, the greater the change in the momentum (mass multiplied by velocity) of the swimmer. 

Based on this relationship, the swimmer has two distinct challenges. First, is to maximise the resultant impulse 

while ensuring the time spent on the start block is not exceedingly long. Secondly, any increase in the force 

production capacity of the swimmer needs to be achieved with some minimisation of the hypertrophic response, 

as an increase in body mass will reduce the take-off velocity at a given impulse off the start block (Fig. 1). 

There are key gaps in the literature evaluating the relationship between dry-land resistance training and its effects 

on swim start performance. A recently published systematic review examined 14 studies on resistance training in 

swimming, but only addressed the effects on the free swim portion of a race [18]. Gaining a clearer understanding 

of which kinematic and/or kinetic outputs from a variety of dry-land resistance training exercises are most related 

to swim start performance, as well as what dry-land resistance training programs are most effective in improving 

swim start performance, may have major implications for high-performance swim programs. Thus, the aim of this 

systematic review was to critically appraise the current peer-reviewed literature on 1) the acute relationship 

between dry-land physical performance measures and swim start performance; 2) the acute effects of dry-land 

resistance training on swim start performance; and 3) the chronic effects of dry-land resistance training on swim 

start performance. 

This is a post-peer-review, pre-copyedit version of an article published in Sports medicine.  
The final authenticated version is available online at: http://dx.doi.org/10.1007/s40279-019-01174-x.
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2 Methods 

2.1 Search strategy 

This systematic review followed the guidelines provided in the Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses (PRISMA) statement [19]. A comprehensive search of five electronic databases (AusportMed, 

Embase, Medline (Ovid), SPORTDiscus and Web of Science) was conducted in 02 August 2018. The University 

Faculty librarian assisted in the development of the search strategy. A combination of the following search terms 

were used: “swimming”, “start”, “strength”, “power” and “resistance training”. A comprehensive database search 

strategy is provided in the Electronic Supplementary Material Appendix S1. 

2.2 Selection Criteria 

After removal of duplicate studies, all study titles and abstracts were screened by two independent reviewers. 

Eligible articles were retrieved in full-text and evaluated for eligibility by the same two reviewers using the 

following criteria: (1) articles published in peer-reviewed journals, (2) journal articles with outcome measures 

related to the swim start. Exclusion criteria were: (1) studies that were not written in English, (2) studies that were 

not available in full text, (3) not an original research study, (4) a conference abstract or presentation, (5) not 

swimming athletes (e.g. water polo, diving, triathlon), (6) study did not measure the swim start, (7) exercises not 

performed on land (8) swim start not performed on the starting block (i.e. backstroke start). Reference lists of 

these articles were also scanned for potentially relevant articles that were not identified in the initial database 

search. 

2.3 Quality assessment and data extraction 

The quality of studies included in the review was evaluated by two independent reviewers, with differences 

resolved by consensus or through a third reviewer if required.  

For the cross-sectional studies, the quality of studies was assessed using a modification of the Newcastle-Ottawa 

Quality Assessment scale (NOS) for cohort studies [20]. This scale has been utilised in systematic reviews of 

athletes [21-23] and has been recommended by the Cochrane Handbook for Systematic Reviews of Interventions 

for assessing methodological quality or risk of bias in non-randomised studies [24]. As follow-up for cross-

sectional studies in our review was not required (item 8 on the NOS scale), we omitted that criterion in the third 

category and had a maximum score of 4, 2 and 2 allocated for each respective category for a total possible score 

of 8. The threshold used to qualitatively assess the correlations in the cross-sectional studies was based on Hopkins 

This is a post-peer-review, pre-copyedit version of an article published in Sports medicine.  
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[25] using the following criteria: < 0.1, trivial; 0.1-0.3, small; 0.3-0.5, moderate; 0.5-0.7, large; 0.7-0.9 very large, > 

0.9, nearly perfect.  

For intervention studies, the Physiotherapy Evidence Database (PEDro) scale [26] was applied to assess the 

methodological quality of the literature. The PEDro scale is an 11-item scale that rates randomised controlled 

trials from 0 to 10, with 1 point given if the study satisfies the criteria and 0 points if not. Studies scoring 9-10 on 

the PEDro scale are considered methodologically excellent, 6-8 are considered good quality, 4-5 are considered 

fair and those studies scoring < 4 are considered methodologically poor.  

 

3 Results 

3.1 Study characteristics and methodology 

A total of 3369 articles were retrieved from database searches. Of the 65 studies retained for full-text screening, 

sixteen studies were identified for review. Out of the sixteen studies, eight were cross-sectional studies and eight 

were intervention studies. Of the intervention studies, four examined acute and four examined chronic outcomes. 

The results of the search process are illustrated in a flowchart shown in Fig. 2.  

 

Insert Fig. 2 about here 

 

3.2 Cross-sectional studies 

Results from the NOS are shown in Table 1, with each study having a score between 4 and 8 of a possible 8. Table 

2 summarises the number of participants, sex, age, anthropometric characteristics, dry-land and swim start tests 

performed and primary kinematic/kinetic swim start outcomes in each cross-sectional study. Out of the eight 

studies, four studies reported using the front crawl technique [4, 27-29], while the other studies did not report the 

swimming stroke used in the study. 

 

Insert Table 1 and Table 2 about here 

This is a post-peer-review, pre-copyedit version of an article published in Sports medicine.  
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Among the kinematic or kinetic outputs derived from the lower body strength/power tests, it appears that jump 

height and the take-off velocity obtained in the bodyweight (BW) CMJ and SJ had the greatest correlation with 

time to 5 m [28] and time to 15 m [29] out of all eight studies (Table 3). Pupišová & Pupiš [30] included both 

grab and track starts and reported a moderate (r = 0.59) and large correlation (r = 0.78) of the vertical take-off 

velocity in the vertical jump to swim start time to 7 m and 9 m respectively. It was unclear in the methodology of 

the study if any arm swing or countermovement was performed during the vertical jump.  

 

Insert Table 3 about here 

 

Several studies have also examined the relationship between loaded vertical jumps and swim start performance. 

Peak bar velocities and jump heights from loaded SJ at four loads (25%, 50%, 75% and 100% BW) had large to 

very large correlation with start times to 5 m, 10 m and 15 m for international female [27] and male swimmers 

[31]. As for lower body maximal and submaximal strength assessments, a very large relationship existed for the 

two studies that included the back squat to aspects of swim start performance [4, 29] (Table 3).  

3.3 Intervention Studies 

PEDro scores for the eight intervention studies ranged from 4 to 6 out of a maximum 11 (Table 4). Table 5 

provides an overview of the acute training interventions, which includes trunk activation exercises [32] and post-

activation potentiation (PAP) [33-35], while Table 6 provides an overview of the chronic training interventions, 

which includes plyometric training [17, 36, 37] and lower body resistance training exercises [38]. Out of the eight 

intervention studies identified, only one study [36] utilised a controlled trial design with an intervention and 

control group; the remaining seven studies utilised an uncontrolled pre- and post-test design (Table 5 and 6). The 

two main statistical methods used in the included intervention studies were a repeated measures ANOVA and 

paired T-test. 

 

Insert Table 4, Table 5 and Table 6 about here 

 

This is a post-peer-review, pre-copyedit version of an article published in Sports medicine.  
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Seven of the eight studies demonstrated that the participants showed within-group improvements in a number of 

kinematic and kinetic characteristics of swim start performance (Table 5 and 6, respectively). Iizuka et al. [32] 

observed a 2.3% improvement in swim time to 5 m and a 5.6% improvement in the average velocity from 0-5 m 

as a result of an acute trunk exercises that sought to activate deep trunk muscles such as the transverse abdominis 

and the internal obliques on swim start performance in 9 elite level swimmers (Table 5). All three studies that 

investigated the acute effects of PAP on swim start performance [33-35] demonstrated significant improvements 

in swim start performance (Table 5).  

In the four chronic intervention studies, a number of significant improvements in swim start performance were 

observed in all three studies involving plyometric training (Table 6). All three studies demonstrated within group 

improvements in take-off velocity [17, 36, 37] and horizontal take-off velocity [17]. Likewise with swim start 

kinematic measures, Rejman et al. [37] and Bishop et al. [36] reported a quicker swim start time to 5 m and 5.5 m 

(-7.5% and -15.2% respectively) post plyometric training intervention (Table 6). In contrast, Garcia-Ramos et al. 

[38] observed decrements in 13 international level swimmers’ swim start performance (time to 10 m: +2.3%; time 

to 15 m: +3.9% respectively) after a three-week sea level training camp prior to an altitude training camp. 

Although the study’s primary aim was to quantify the effects of an altitude training camp on swimming start 

performance, the participants performed a sea level training camp for three weeks prior to the altitude training 

camp. To allow a more direct comparison of the study by Garcia-Ramos et al. [38] with the current literature, the 

data presented in this section relate to their sea level training camp.  

 

4 Discussion  

The main findings from the cross sectional studies included in this review are that swim start performance, as 

assessed by the time taken to reach predetermined set distances of 5, 10 and 15 m, was more highly related to (1) 

vertical SJ and CMJ than measures of maximal muscle strength, (2) body weight than loaded vertical jumps and 

(3) jump height than other jump kinetic or kinematic measures. The primary findings from the intervention studies 

included in this review were: (1) post-activation potentiation is an effective training strategy to acutely improve 

swim start performance, (2) plyometrics can significantly improve swim start performance in as little as six weeks.  

4.1 Relationship between dry land exercises and swim start performance 

A number of outputs from a variety of lower body exercises have been examined within the literature to determine 

their relationships to swim start performance. As the outputs of many of these lower body exercises exhibited 

This is a post-peer-review, pre-copyedit version of an article published in Sports medicine.  
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nearly perfect (r = > 0.9), very large (r = 0.7-0.9) or large (r = 0.5-0.7) correlations with swim start performance 

across a variety of levels of swimmer, the results of this systematic review confirmed the importance of lower 

body power and strength for optimising swim start performance. The strongest relationships with swim start 

performance were observed for bodyweight vertical jumping exercises (CMJ and SJ), which demonstrated nearly 

perfect correlations [28, 29]. Large to very large correlations were observed between the time required to complete 

distances of between 5-15 m and performance in loaded SJ at four different loads [27, 31]. Traditional strength 

exercises and measures of maximal muscle strength of the lower body also had a very large correlation with time 

to 15 m. These results suggest that a range of outputs from a variety of lower body dry-land resistance training 

exercises can be used to determine the lower body strength and power capacities of swimmers required for the 

swim start. This may reflect the requirement for high levels of force and power to be developed across the ankle, 

knee and hip joints and for these to be coordinated effectively with those of the upper body to maximise take-off 

velocity.  

The different swim start techniques used in the studies identified in this systematic review may have some 

implications in the comparison of the results between studies. For example, even though both Benjanuvatra et al. 

[28] and Garcia-Ramos et al. [27] included bodyweight CMJ and SJ in their studies, there is a discrepancy between 

the results obtained in both studies. Benjanuvatra et al. [28] reported a nearly perfect relationship between the 

take-off velocity of both bodyweight CMJ and SJ with time to 5 m, whereas Garcia-Ramos et al. [27] reported a 

moderate to large relationship between the take-off velocity in the bodyweight CMJ with time to 10 m and 5 m, 

and a large relationship between the take-off velocity of the bodyweight SJ and time to 5 m. These discrepancies 

may be explained by the swim start technique used in each study. Benjanuvatra et al. [28] utilised the grab start, 

while Garcia-Ramos et al. [27] utilised the track start, with the difference between these two start techniques being 

the foot placement on the blocks. Pupišová & Pupiš [30] who assessed swim start performance in both grab and 

track start conditions, reported a small correlation in the flight phase of the track start and a very large correlation 

in the flight phase of the grab start with the vertical jump. Unfortunately, no clear details were provided on whether 

this was a concentric only squat jump or a countermovement jump [30]. Furthermore, this study also had a very 

small sample size of seven swimmers and other important aspects of the methodology were somewhat unclear or 

did not reflect what is typically performed in the swim start. Notably, Pupišová & Pupiš [30] stated in their 

methodology that the swim start was performed without any underwater kicks and had swimmers glide to 7 m and 

9 m. This does not represent the typical action of a swimmer of the underwater phase in the swim start, where 

undulatory kicks are used to maintain as much entry velocity as possible [39].  

This is a post-peer-review, pre-copyedit version of an article published in Sports medicine.  
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4.2 Acute changes in swim start performance after dry-land resistance training intervention  

PAP can be described as a training method to improve muscle contractility, strength and speed in sporting 

performance by performing a small number of repetitions at maximal or near maximal effort, also referred to as 

conditioning activity (CA) [40], several minutes before an explosive activity [41, 42]. The use of PAP in the field 

of strength and conditioning has grown rapidly, with performance enhancement effects of PAP demonstrated in 

athletic movements such as jumping and sprinting [41]. The CA is able to potentiate the neuromuscular system, 

thereby allowing acute improvements in performance to be observed several minutes later as the acute fatigue 

from the CA diminishes [43]. Several mechanisms have been suggested for the acute PAP phenomenon, including 

greater recruitment of higher order motor units, increase in pennation angle and the phosphorylation of myosin 

regulatory light chains [44]. 

Four studies were identified that have examined the potential acute benefits of resistance training prior to 

swimming start performance, with three of these studies utilising a PAP approach [33-35]. Cuenca-Fernández et 

al. [35] demonstrated a positive PAP effect with respect to the time required to cover a distance of 5 m and 15 m. 

It was also observed that a greater reduction in these times to 5 m and 15 m was observed after the use of the split 

stance lunge on the flywheel inertial device at maximal voluntary contraction than the split stance lunge at 85% 

1RM on the Smith machine. These results are consistent with the later study by Cuenca-Fernández et al. [34], who 

included the arm strokes, with one PAP protocol consisting of one set of three lunge and three arm stroke 

repetitions on the Smith machine at 85% of 1RM , while the other protocol comprised one set of four repetitions 

of both the upper and lower limb on a flywheel inertial device at maximum voluntary contraction. Both PAP 

protocols [34] demonstrated a shorter time to 5 m in comparison to a standard warm-up, however, there was no 

difference in the time to 5 m between those two interventions. Conversely, Kilduff and colleagues [33], who 

assessed the acute effects of one set of three repetitions of heavy, 87% of 1RM back squat on start performance, 

did not observe any significant reduction in the only time they recorded, i.e. the time to 15 m, but reported 

significant improvements in peak horizontal and peak vertical forces post PAP intervention.  

Within the PAP literature, the kinematic and kinetic similarity between the CA and the subsequent movement has 

been reported to be an important factor, with studies in the sprint literature indicating greater PAP effects when 

movement patterns of the CA are followed by a biomechanically similar explosive activity [45, 46]. Thus, the 

utilisation of a split stance rather than traditional squat may further increase this PAP effect due to the PAP 

protocols being more biomechanically similar to the foot position and direction/timing of force application in the 

kick start technique on the OSB11 start block. The significant improvements in time to 5 m [34, 35] and 15 m [35] 

This is a post-peer-review, pre-copyedit version of an article published in Sports medicine.  
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and peak horizontal and peak vertical forces [33] observed post PAP intervention suggest some benefits of using 

PAP as a pre-race warm-up to enhance a swimmer’s swim start performance. However, the duration over which 

the potentiation effect lasts may be too short to be utilised as a component of pre-competition warm-ups in 

swimming competitions. A meta-analysis by Gouvêa et al. [40] of PAP on jumping performance has shown that 

an optimal PAP effect was found with a recovery period of 8 to 12 minutes after the preceding CA, with the PAP 

effect dissipating after a recovery period of 16 minutes or more. Specifically, Cuenca-Fernández et al. [34] utilised 

a rest period of 6 mins and Cuenca-Fernández et al. [35] and Kilduff et al. [33] utilised a rest period of 8 mins 

between the CA and the explosive activity i.e. swim start. During competitions, swimmers may have to wait in 

marshalling areas for a period of up to 20 minutes after they complete their warm-up until they compete in their 

specific events. This could pose some current challenges as to how a PAP stimulus may be used to enhance swim 

start performance as a pre-competition warm-up strategy, especially as the successful PAP interventions identified 

in the current review have utilised heavy resistance training devices that would not be available in the marshalling 

areas.  

In addition to using PAP to achieve short term performance enhancement, it has been suggested that PAP can be 

manipulated to enhance the training stimulus of explosive strength exercises to induce greater chronic training-

related adaptations than traditional resistance training exercises. The manipulation of PAP within a resistance 

training program is also known as complex training [47]. Complex training combines heavier resistance training 

exercise with a lighter load power-oriented exercise in an attempt to transfer gains in strength to power [47]. The 

rationale for this complex pairing of exercises was that the heavy resistance strength-oriented set would provide 

an enhanced neural drive, which would then carry over to the lifting of the lighter resistance explosive exercise, 

resulting in a greater power output in the explosive exercise than would occur without the prior heavy resistance 

set [48]. PAP may be a viable training method when incorporated into a swimmers’ regular dry-land resistance 

training program and possibly contribute to enhanced swim start performance after several months of training. 

However, due to the lack of any such chronic PAP studies involving swimmers, future studies are required to 

document whether significant chronic adaptations in physical capacities and swim start performance can be 

observed after a PAP training program. 

Trunk stability is an important component in swimming as it allows for an efficient transfer of forces between the 

trunk and the upper and lower extremities to propel the body through the water and off the start blocks [49]. 

Weston et al. [50] have demonstrated chronic improvements in swimmers’ core function and 50 m front crawl 

swim time with the implementation of a 12-week isolated trunk training program. Within the scope of this review, 

This is a post-peer-review, pre-copyedit version of an article published in Sports medicine.  
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Iizuka et al. [32] demonstrated significant acute improvements in swim start performance as a result of acute 

resistance training exercises for the trunk. The authors suggested that the trunk stabilisation exercises provided 

enhanced trunk stability which led to an immediate improvement in time to 5 m and average velocity over 5 m.  

4.3 Changes in swim start performance after dry-land resistance training intervention  

The combined use of dry-land resistance training and swim training is a common practice in competitive 

swimming [18, 51]. By overloading the muscles required for swimming with external resistances, a dry-land 

resistance training program aims to increase the strength and power production of muscles that play important 

roles in competitive swimming events [52, 53]. Dry-land resistance training modalities can include ballistic 

training such as Olympic style lifts e.g. cleans and their variations as well as plyometric activities, while non-

ballistic training includes the use of free weight, bodyweight and/or machine based exercises [18, 54]. Plyometric 

training refers to the performance of stretch-shortening cycle (SSC) movements involving a short duration, high 

velocity eccentric contraction followed by a rapid concentric contraction [55]. Athletes who can effectively use 

the SSC can produce significantly greater concentric force, velocity and power compared to what is possible in 

concentric only muscular contractions. The mechanisms contributing to this effect reflects specific neural 

adaptations of the SSC, the storage and utilisation of elastic strain energy, the stretch reflex and/or an increase in 

the active state of the muscle [56, 57]. Engaging in a plyometric training program that requires fast muscular 

contraction of the lower body has been demonstrated to significantly improve swim start performance in all three 

studies identified in this systematic review [17, 36, 37], with significant improvements in key swim start 

parameters, such as time to 5 m and 5.5 m, take-off velocity and horizontal forces and impulse observed. As the 

swim start is a predominantly concentric movement, these specific training adaptations from the plyometric 

training studies would appear to be a direct results of the swimmers’ ability to utilise the neural benefits of the 

SSC and rapidly develop concentric force rather than their ability to utilise the SSC as a result of improvements 

in the athletes’ eccentric strength capacity [55, 58]. In the study conducted by Rebutini et al. [17], the authors 

hypothesised that the long jumps performed in the training program would be effective in improving the kinetics 

of the swim starts because they required the production of horizontal forces at similar velocities to the actual swim 

start. Such a hypothesis was consistent with the results of these studies, with significant increases in swim start 

horizontal take-off velocity, peak horizontal forces and/or horizontal impulse observed by Rebutini et al. [17], and 

time to 5 m and take-off velocity by Rejman et al. [37].  

The available evidence on dry-land resistance training with free weights is limited. In this systematic review, we 

only found one study [38] that included resistance training exercises such as variations of the squat, deadlift, hip 
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thrust, leg flexion and extension exercises, although such exercises appear to be commonly used by competitive 

swimmers. Results indicated no significant difference in swim start performance after the three-week dry-land 

resistance training program that was performed prior to the altitude training camp. When comparing results of this 

study involving resistance training exercises [38] to the three studies involving plyometric training [17, 36, 42], it 

was apparent that the three weeks of traditional resistance training was of substantially shorter duration than six 

to nine weeks of plyometric training [17, 36, 37]. Furthermore, the swimmers were performing two swim sessions 

and one dry-land (some combination of resistance, cardiovascular and flexibility) session six days per week [38]. 

This three-week resistance training program involved a substantially greater weekly training load than the three 

plyometric studies. Due to these differences between the one traditional resistance training and three plyometric 

studies, it is difficult to determine on the basis of the current evidence whether plyometric, traditional resistance 

training or a combined approach may be most useful for improving swim start performance. Beyond the 

differences in training duration and weekly loads, it is also possible that the specificity principle may also underlie 

the potentially greater adaptations currently found for plyometric than traditional resistance training for improving 

swim start performance. Specifically, the more specific a training exercise is to a competitive movement, including 

the velocity, direction and time of force application, the greater the likely transfer of the training effect to 

performance [59, 60]. The studies by Rebutini et al. [17] and Rejman et al. [37] shared a key feature in their 

plyometric training programs, which is an emphasis on the horizontal direction in the plyometric exercises 

performed. Rebutini et al. [17] included long jumps in their plyometric training intervention and Rejman et al. 

[37] modified the starting position of the plyometric exercises to better simulate the swimming start and to 

emphasise a greater horizontal direction of take-off. The improvements in swim start performance observed with 

all three plyometric studies [17, 36, 37] appear to be indicative of the potential for different forms of plyometric 

training to elicit significant improvements in swimming start performance with as little as six to nine weeks of 

training.  

4.4 Methodological considerations 

4.4.1 Measurement of the swim start 

Of the eight cross-sectional and eight intervention studies included in this systematic review, only four studies 

[31, 32, 35, 38] utilised the kick start technique and the OSB11 start block that is currently used in competitive 

swimming. Even though the track start utilised in four [27, 30, 37, 61] out of the 16 studies included in this 

systematic review may have some similarities to the kick start technique currently used in competitive swimming, 
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Honda et al. [16] have identified that the additional kick plate on the OSB11 start block is capable of significantly 

improving both time to 5 m and 7.5 m, with a further 0.04s improvement obtained in the kick start compared to 

the track start technique at both distances. This is attributed to an increase in horizontal force production that is 

able to be produced by the rear leg on the kick plate of the OSB11 starting block, which ultimately increases 

horizontal take-off velocity [16].  

The eight cross-sectional studies included in the review exhibited some degree of inconsistency with the 

measurement of the swim start performance kinematic measures, such as the time to set distances of 5, 10 and/ or 

15 m. The majority of the studies [4, 27, 28, 31] measured swim start time when the head crossed the specified 

distances in their study. Two studies [61, 62] measured swim start time when the fingertips crossed 10 m, with 

the two other studies [29, 30] not specifying how the start time to 15 m was measured. For the intervention studies, 

four intervention studies [17, 34, 35, 38] measured the time to set distances when the head crossed the specified 

distance, while Iizuka et al. [32] measured the time to 5 m when the fingertips crossing 5 m. Despite reporting the 

same measure of the time to distances of 5 m and 5.5 m, there appears to be a discrepancy in the values reported 

between the training intervention study by Rejman et al. [37] and Bishop et al. [36]. This is due to the difference 

in how the swim start was quantified in both studies. Rejman et al. [37] quantified time to 5 m from the time from 

the final shift of centre of mass from the edge of the starting block to a distance of 5 m, whereas Bishop et al. [36] 

recorded time to 5.5 m using the time from starting stimulus to the point in time at which the head made contact 

with the water surface. 

There also appear to be some differences in the nature of the swim task performed across these studies. Within 

this review, the majority of the studies tested the swimmers under competition rules [4, 17, 27-29, 33-36, 61, 62]. 

In contrast, some studies included a dive and glide test [30, 37] while Garcia-Ramos [31] had swimmers perform 

undulatory kicks till 15 m. Therefore, it is possible that variety of swim start methodologies performed may have 

significant implication in the comparison of results between studies.  

4.4.2 Strength diagnostics 

Tests of muscular strength and/or power qualities are commonly performed to assess training-induced changes 

and the efficacy of a strength and conditioning program in many athletic populations [63]. For sports requiring 

high to very high levels of muscular strength, maximal and submaximal strength assessments or isometric 

assessments such as the isometric mid-thigh pull are commonly used [63]. For dynamic performance qualities, 
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vertical lower body jumping exercises are common measurement tools of athletic lower body force and power 

ability [64].  

The majority of the cross-sectional [4, 27-31, 62] and one intervention study [38] identified in this systematic 

review utilised dynamic lower body exercises such as the CMJ and SJ as a measurement of lower body power. 

Only two of eight cross-sectional studies [4, 29] and four of eight intervention studies [17, 33-35] included any 

maximal strength assessments. The relative lack of maximal strength assessments compared to explosive total 

body jumping exercises in this systematic review may reflect the task demands of the swim start whereby high 

levels of lower body power rather than maximal muscle strength are required to enhance swim start performance.  

4.4.3 Study population 

The magnitude of difference in strength characteristics and response to a resistance training program can be 

affected by sex, age and training status [65]. Majority of the studies reviewed generally consisted of a small sample 

size and a potentially greater bias towards male compared to female participants. Only two of the cross-sectional 

studies had all female swimmers and the four studies that had a mix of females and males had an uneven split of 

both sexes, with a greater number of male participants compared to females. In addition, the majority of studies 

did not provide any clear description of the resistance training experience or the baseline levels of lower body 

muscular strength of their participants. Specifically, only two [4, 29] out of the eight cross-sectional and three 

acute intervention studies [33-35] included any details regarding the baseline strength level of the swimmers. As 

such, it is difficult to determine how sex, age and training status may influence the relationship and/or training 

response between dry-land jump performance to swim start performance. 

4.4.4 Study design 

With respect to the intervention studies, one factor for potential bias could be the research design and statistical 

analyses used in the studies. Only one [36] out of the eight intervention studies identified utilised a controlled trial 

design with an intervention and control group, with the remainder of the studies using a within group pre-post test 

statistical comparison using ANOVA or paired T-tests.  

The lack of control groups and the use of a within group statistical analysis approach in the intervention studies 

make it difficult to determine whether the improvements in swim start performance were a result of the dry-land 

resistance training intervention, or whether they were related to the overall swim training program. One possible 
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reason for the lack of randomised controlled trials may reflect the relatively limited sample size of high 

performance swimming squads. 

 

5 Conclusion 

Within the limits of the review, the current literature indicates that a range of lower body strength and power 

measures are highly correlated with swim start performance, with these correlations appear greatest when utilising 

body weight vertical jumping exercises. These findings would suggest that assessing vertical jump performance 

would be a better diagnostic tool to assess lower body power capabilities than traditional strength assessments for 

swim start performance. Significant acute and chronic swim start performance benefits can be obtained using a 

PAP training protocol and lower body plyometric exercises that are primarily horizontal in direction, respectively. 

Despite the relative homogeneity of participants in the studies included in this review, the results across 

intervention studies suggest that significant improvements in swim start performance can be obtained from both 

a PAP training protocol and plyometric exercises independent of skill level. 

Due to the relative lack of research with the currently used OSB11 starting block and kick start technique, future 

cross-sectional and intervention studies should utilise the current start block and start technique to confirm that 

the findings highlighted in this review applies to current practices in competitive swimming. Given that swimmers 

simultaneously integrate swim training and dry-land resistance training within a periodised program to develop 

muscular strength and power capabilities [18, 54], additional research should also compare the potential benefits 

of different dry-land resistance training approaches to provide a better understanding of the development of 

strength and conditioning programs more conducive to improving swim start performance. 
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Fig. 1 Deterministic model of the swim start 
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Fig. 2 Flowchart illustrating the search process according to the PRISMA guidelines 

 

This is a post-peer-review, pre-copyedit version of an article published in Sports medicine.  
The final authenticated version is available online at: http://dx.doi.org/10.1007/s40279-019-01174-x.



1 

Table 1 Quality of the reviewed studies according to the Newcastle Ottawa Scale (NOS) for cohort studies 

Reference NOS score  
Selection Comparability Outcome Total score  

(out of 8)  
Item 

1 
Item 

2 
Item 

3 
Item 

4 
Item 5a Item 

6 
Item 

7 
Item 

8 

 

Benjanuvatra et al. [28] 1 1 1 1 2 0   
  
  
  

N/A  
  
  
  

1 7 
Beretic et al. [61] 1 1 1 1 2 0 1 7 
Garcia-Ramos et al. [27] 1 1 1 1 2 1 1 8 
Pupišová & Pupiš [30] 1 1 0 0 1 0 1 4 
Garcia-Ramos et al. [31] 1 1 1 0 2 1 1 7 
Đurović et al. [62] 1 1 1 1 2 0 1 7 
Keiner et al. [29] 1 1 1 0 1 0 1 5 
West et al. [4] 1 1 1 0 2 0 1 6 
Mean 

 
6 

Notes: 0 = no; 1 = yes; Item 1: representativeness of the exposed cohort; Item 2: selection of the non-exposed cohort; Item 3: 
ascertainment of exposure; Item 4: demonstration that outcome of interest was not present at start of study; Item 5: comparability 
of cohorts on the basis of the design or analysis; Item 6: assessment of outcome; Item 7: was follow-up long enough for outcomes 
to occur; Item 8: adequacy of follow up of cohorts; N/A = not applicable 
aMaximum of 2 points can be given to item 5 
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Table 2 Summary of participant background and methodology used in the included cross-sectional studies 

Reference Participants Age (years) Dry-land exercises tested Swim start test Measured swim start key 
 Sex Anthropometrics   performance variables (units) 
  (mean ± SD)    
Grab start           
Benjanuvatra et al. [28] 9 elite and 7 recreational level swimmers Elite: 19 ± 1.3 yrs CMJ: 6 x vertical CMJ, 6 x horizontal 1 x maximal effort swim to 25 m T5 m, T10 m (s)  

(F) 1.67 ± 0.06 m CMJ 
 

TOV (m/s)   
65.5 ± 10.4 kg SJ: 6 x vertical SJ, 6 x horizontal SJ 

 
Reaction time (s)   

Recreational: 22 ± 3.1 yrs 
  

Movement time (s) 
  1.69 ± 0.07 m   Total time spent on blocks (s)   

57.5 ± 5.9 kg 
  

hIMP, vIMP (N/kg) 
      
Track start 

     

Beretic et al. [61] 27 international level swimmers 21.1 ± 4.3 yrs 2 x 5s leg extension MVIC at 1000 Hz Best of 3 x swim starts to 10 m T10 m (s) 
 (M) 1.89 ± 10.3 m    
  81.6 ± 8.4 kg          
Garcia-Ramos et al. [27] 20 international level swimmers  15.3 ± 1.6 yrs 3 x CMJ 1 x swim start to distance slightly 

further than 15 m under competition 
rules 

T5 m, T10 m, T15 m (s) 
 (F) 1.67 ± 0.06 m 3 x SJ  
  57.2 ± 7.4 kg 2 x loaded SJ 25, 50, 75, 100% BW 

each on Smith machine 
   

 
 

  
 2 x progressive and 2 x explosive leg 

extension and flexion MVIC 

 
     

      
Kick start 

     

Garcia-Ramos et al. [31]a 15 national and international level 
swimmers 
(M) 

17.1 ± 0.8 yrs 2 x unloaded SJ with 0.5kg bar 
Loaded SJ at 25, 50, 75, 100% BW on 
Smith machine 

1 x swim start, using only undulatory 
kicks to distance slightly further than 
15 m 

T5 m, T10 m, T15 m (s)  
1.81 ± 0.07 m 

 
 

74.1 ± 8.0 kg 
 

      
Đurović et al. [62] 27 national level swimmers 20.1 ± 3.4 yrs 5 x SJ Best of 2 x swim starts to 10 m T10 m (s)  

(M) 1.82 ± 0.06 m 
  

  
73.5 ± 7.3 kg 

  
      
Keiner et al. [29] 21 regional level swimmers 17.5 ± 2.0 yrs SJ 1 x maximal effort swim to 25 m 

under competition rules 
T15 m (s)  

(12 M, 9 F) 1.77 ± 0.10 m CMJ 
 

  
69.5 ± 11.4 kg 1RM back squat 

 
   

1RM deadlift 
 

   
 

  

West et al. [4] 11 international level swimmers 21.3 ± 1.7 yrs 3 x CMJ 2 x swim start to distance slightly 
further than 15 m under competition 
rules 

T15 m (s)  
(M) 1.80 ± 0.10 m 3RM back squat hSPF (N), vSPF (N)   

78.1 ± 11.2 kg 
  

      

1RM = one repetition maximum; 3RM = three repetition maximum; BW = bodyweight; CMJ = countermovement jump; F = females; hIMP = horizontal impulse; hSPF = starting peak horizontal forces; M = 
males; MVIC = maximum voluntary isometric contraction; SJ = squat jump; T5 m = Time to 5 metres; T10 m = Time to 10 metres; T15 m = Time to 15 metres; TOV = take-off velocity; vIMP = vertical impulse; 
vSPF = starting peak vertical forces; vTOV = vertical take-off velocity; aOnly sea level data were included 
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Table 3 Summary of the results indicating the relationship between dry-land exercises and swim start performance 

Reference Correlated dry-land exercises Correlated dry-land key  Dry-land exercise correlation to swim start performance measures 
  performance variables (units) T5m T10m T15m sPFh sPFv 
Grab start        
Benjanuvatra et al. [28] VCMJ VCMJ-JH (cm) r = -0.96** 

  
  

T5m: (recreational only) 
 

VCMJ-TOV (m/s) r = -0.95** 
  

  
T15m: (elite only) VSJ VSJ-JH (cm) r = -0.92** 

  
    

VSJ-TOV (m/s) r = -0.91** 
  

   
HCMJ HCMJ-TOV (m/s) r = -0.86* 

  
   

HSJ HSJ-TOV (m/s) r = -0.86* 
  

    
HSJ-JD (cm) 

  
r = -0.72*   

        
Track start        
Beretic et al. [61] Leg extension MVIC Frel (N/kg) 

 
r = -0.73*** 

 
    

Fmax (N) 
 

r = - 0.56* 
 

        
  

Garcia-Ramos et al. [27] BW-CMJ CMJ-TOV (m/s) r = -0.62** r = -0.49* 
 

   
BW-CMJ CMJ- PPrel (W/kg) r= -0.61** r= -0.55* 

 
   

BW-SJ SJ-TOV (m/s) r= -0.56* 
  

   
BW-SJ SJ-PPrel (W/kg) r= -0.57** 

  
   

L-SJ at 25, 50, 75, 100% BW BV (m/s) BV at 50% BW r = -0.72** BV at 75% BW r= -0.59** BV at 75%BW r= -0.68**      
BV at 25%BW r = -0.66** BV at 25% BW r = -0.57** BV at 100%BW r= -0.64**      
BV at 75%BW r= -0.63** BV at 50% BW r = -0.57** BV at 25%BW r = -0.63**      
BV at 100%BW r= -0.57* BV at 100% BW r= -0.50* BV at 50%BW r = -0.63**         

    
PPrel (W/kg) PPrel at 50%BW r = -0.63** PPrel at 25%BW r = -0.55* PPrel at 75% BW r= -0.64**      

PPrel at 25%BW r = -0.62** PPrel at 75%BW r= -0.54* PPrel at 100%BW r= -0.64**      
PPrel at 75%BW r= -0.57** PPrel at 50%BW r = -0.51* PPrel at 25%BW r = -0.57**      
PPrel at 100%BW r= -0.54* PPrel at 100%BW r= -0.47* PPrel at 50%BW r = -0.54*       

      
PP (W) 

 
PP at 25%BW r = -0.49* PP at 25% BW r = -0.49*   

Kick start 
     

  
Garcia-Ramos et al. [31]a UL-SJ with 0.5 kg bar JH (cm) UL-JH r = -0.55* UL-JH r = -0.77** JH at 75% BW r= -0.72**    

L-SJ at 25, 50, 75, 100% BW 
 

JH at 50% BW r = -0.53* JH at 75% BW r= -0.73** JH at 100% BW r= -0.70**      
JH at 25% BW r = -0.52* JH at 25% BW r = -0.68** UL-JH r = -0.67**       

JH at 100% BW r= -0.68** JH at 25% BW r = -0.58*       
JH at 50% BW r = -0.65** 

 
  

        
Start technique not stated        
Đurović et al. [62] BW-SJ PP (W) 

 
r = -0.39* 

 
    

Pavg (W) 
 

r = -0.43* 
 

    
Fmax (N) 

 
r = -0.42* 

 
    

PPrel (W/kg) 
 

r = -0.55* 
 

    
PPavgrel (W/kg) 

 
r = -0.59* 

 
    

Frel (N/kg) 
 

r = -0.64** 
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Keiner et al. [29] BW-SJ JH (cm) 
  

r = -0.94*    
BW-CMJ JH (cm) 

  
r = -0.92*    

1RM back squat 1RM back squat (kg) 
  

r = -0.76*    
1RM deadlift 1RM deadlift (kg) 

  
r = -0.68*         

  
West et al. [4] BW-CMJ PP (W) 

  
r = -0.85** r = 0.87**    

JH (cm) 
  

r = -0.69* r = 0.73* r = 0.78**   
PPrel (W/kg) 

  
r = -0.66* r = 0.78** r = 0.79**  

3RM back squat Estimated 1RM back squat (kg) 
  

r = -0.74** r = 0.71* r = 0.62* 
  

 
          

1RM = one repetition maximum; 3RM = three repetition maximum; BV = bar velocity; BW = bodyweight; CMJ = countermovement jump; Fmax = leg extensor maximum voluntary force; Frel = leg extensor relative 
maximum voluntary force; JD = jump distance; HCMJ = horizontal countermovement jump; HSJ = horizontal squat jump; JH = jump height; L = loaded; MVIC = maximum voluntary isometric contraction; Pavg = 
average power; PPavgrel = average relative power; PP = peak power; PPrel = relative peak power; SJ = squat jump; sPFh = starting peak horizontal forces; sPFv = starting peak vertical forces; TOV = take-off velocity; 
UL = unloaded; VCMJ = vertical countermovement jump; VSJ = vertical squat jump; p < 0.05*; p < 0.01**; p < 0.001*** 
aOnly sea level data were included; values for each study are listed from highest to lowest correlation 
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Table 4 Quality of the included intervention studies as assessed on the Physiotherapy evidence database (PEDro) scale 

Reference PEDro scores 
Item 

1 
Item 

2 
Item 

3 
Item 

4 
Item 

5 
Item 

6 
Item 

7 
Item 

8 
Item 

9 
Item 
10 

Item 
11 

Total 
score 

(out of 11) 
Acute interventions 
Iizuka et al. 
[32] 

0 0 0 0 0 0 0 1 1 1 1 4 

Cuenca-
Fernandez 
et al. [35] 

1 1 0 0 0 0 0 1 1 1 0 5 

Cuenca-
Fernandez 
et al. [34] 

1 1 0 0 0 0 0 1 1 1 1 6 

Kilduff et 
al. [33] 

1 1 0 0 0 0 0 1 1 1 0 5 

Chronic interventions 
Bishop et 
al. [36] 

1 1 0 0 0 0 0 1 1 1 0 5 

Garcia-
Ramos et 
al. [38] 

0 0 0 0 0 0 0 1 1 1 1 4 

Rebutini et 
al. [17] 

1 0 0 0 0 0 0 1 1 1 0 4 

Rejman et 
al. [37] 

1 0 0 0 0 0 0 1 1 1 0 4 

Mean            5 
Notes: 0 = item not satisfied; 1 = item is satisfied; Item 1 = eligibility criteria were specified; Item 2: subjects were randomly allocated 
to groups; Item 3: allocation was concealed; Item 4: the groups were similar at baseline regarding the most important prognostic 
indicators; Item 5: there was blinding of all subjects; Item 6: there was blinding of all therapists who administered the therapy; Item 7: 
there was blinding of all assessors who measured at least one key outcome; Item 8: measures of at least one key outcome were obtained 
from more than 85% of the subjects initially allocated to groups; Item 9: all subjects for whom outcome measures were available received 
the treatment or control condition as allocated or, where this was not the case, data for at least one key outcome was analysed by “intention 
to treat”; Item 10: the results of between-group statistical comparisons are reported for at least one key outcome; Item 11: the study 
provides both point measures and measures of variability for at least one key outcome 
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Table 5 Summary of participant background, methodology and results of acute dry-land training intervention programs on swim start performance 

 

Reference Participants  
Sex 

Dry-land training 
intervention protocol 

Start 
technique 

Swim test Swim start key 
performance measures 
(units) 

Results 

 Age (years)  
Anthropometrics (mean ± SD) Kinematics Kinetics 

Trunk activation exercises         
Iizuka et al. [32] 9 elite level swimmers  

(M) 
Three trunk stabilisation 
exercises 

Kick start 1 x swim start to 5 m   Pre Post  
T5m (s)  0.83 ± 0.04 0.81 ± 0.04*  

20.2 ± 1.0 yrs 
  

V5m (m/s)  4.61 ± 0.46 4.87 ± 0.35*   
1.74 ± 0.04 m; 68.9 ± 4.1 kg 

  
        

         
Post-activation potentiation 

   
     

Cuenca-Fernandez et al. 
[35]a 

14 recreational swimmers  
(10 M, 4 F) 

LWU: 1 x 3 each leg @ 
85% 1RM 
YWU: 1 x 4 each leg @ 
MVC 

Kick start 1 x maximal effort 
swim start to 15 m 
under competition 
rules 

  SWU LWU YWU 
T5m (s)  1.75 ± 0.05 1.71 ± 0.05* 1.65 ± 0.04* 

 17 to 23 yrs 
 

T15m (s)  7.54 ± 0.23 7.40 ± 0.21 7.36 ± 0.22*  
1.76 ± 0.09 m; 69 ± 11.4 kg 

 
     

          
Cuenca-Fernandez et al. 
[34]b 

17 national level swimmers  
(M) 

RMWU: 1 x 3 each arm + 1 
x 3 each leg @ 85% 1RM 
EWU: 1 x 4 each arm +  
1 x 4 each leg @ MVC 

Unspecified 1 x maximal effort 50 
m race under 
competition rules 

  SWU RMWU EWU 
T5m (s)  1.57 ± 0.11 1.52 ± 0.13* 1.52 ± 0.13*  

18.4 ± 1.4 yrs 
 

V5m (m/s)  3.12 ± 0.28 3.27 ± 0.29* 3.28 ± 0.27*  
1.81 ± 0.02 m; 73.7 ± 9.0 kg 

 
V10m (m/s)  1.79 ± 0.17 1.83 ± 0.15* 1.84 ± 0.16* 

          
Kilduff et al. [33]a 9 international level sprint 

swimmers  
Barbell back squat 
1 x 3 @ 87% 1RM 

Unspecified 1 x swim start to 15 m 
under 50 m FS race 
conditions 

  Pre Post  
sPFv (N) 1462 ± 280 1518 ± 311* 

 (7 M, 2 F)    sPFh (N) 770 ± 228 814 ± 263*   
22 ± 2 yrs 

  
      

1.79 ± 0.14 m; 77.9 ± 11.2 kg 
  

     
          
1RM = one repetition maximum; EWU = arm stroke and split stance lunge on flywheel inertial device; F = females; FS = freestyle; LWU = split stance lunge on Smith machine; M = males; MVC = maximum 
voluntary contraction; RMWU = arm stroke and split stance lunge on Smith machine; sPFh = starting peak horizontal forces; sPFv = starting peak vertical forces; SWU = standard warm-up; T5m = time to 5 
metres; T15m = time to 15 metres; V5m = average velocity at 5m; V10m = average velocity from 5m to 10m; YWU = YoYo split stance lunge on flywheel inertial device; p < 0.05* 
a8 minutes’ rest in between post-activation potentiation stimulus and swim start; b6 minutes’ rest in between post-activation potentiation stimulus and swim start 
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Table 6 Summary of participant background, methodology and results of chronic dry-land training intervention programs on swim start performance 

Reference Participant  Dry-land training  Start  Swim test Swim start key  Results 
 Sex Intervention protocol technique  performance measures   
 Age (years) Intervention duration   (units)  
 Anthropometrics (mean ± SD)    Kinematics Kinetics   
Plyometric exercises         
Bishop et al. [36] 22 adolescent swimmers   2 x 60 minutes/ week 

consisting of skips, hops 
and jumps for lower 
body  
8 weeks 

Preferred technique 1 x swim start to 
5.5 m 

  Pre Post 
 (not stated)  T5.5m (s)  Control: 3.94 ± 0.39 Control: 3.82 ± 0.38 
 PT: 13.1 ± 1.4 yrs; control: 12.6 ± 1.9 yrs     PT: 3.88 ± 0.48 PT: 3.29 ± 0.47 
 PT: 1.63 ± 0.12 m; control: 1.58 ± 0.12 m      PT vs control***  

PT: 50.6 ± 12.3 kg; control: 43.3 ± 11.6 kg 
  

TOV(m/s)  Control: 1.17 ± 0.10 Control: 1.10 ± 0.16  
  

  
  PT: 1.29 ± 0.18 PT: 1.48 ± 0.15 

        PT vs control*** 
         
Rebutini et al. [17] 10 national level swimmers 2x/ week long jump 

training consisting of 
maximal horizontal and 
maximal long jumps 
9 weeks 

Preferred technique Best of 2 x 
maximal effort 
swim starts to  
15 m under 
competition rules 

  Pre Post  
(7 M, 3 F) 

 
 sPFh (N) 837 ± 153 847.33 ± 164.23*  

M: 22 ± 1.4 yrs; F: 21.3 ± 7.6 yrs 
 

 IMP (N/s) 221.9 ± 61.6 242.5 ± 60.9* 
 M: 1.78 ± 0.06 m; 69.8 ± 4.8 kg  TOV (m/s)  1.93 ± 0.18 2.13 ± 0.28* 
 F: 1.70 ± 0.05 m; 59.9 ± 2.9 kg  hTOV (m/s)  1.84 ± 0.19 2.14 ± 0.21*  

 
   

    
Rejman et al. [37] 9 national level swimmers  2 x 60 minutes/ week 

consisting of skips, 
bounds, hops and jumps 
6 weeks 

Track start Best of 3 x swim 
start to 5 m 

  Pre Post 
 (M)  T5m (s)  1.87 1.73***  

21.9 ± 3.4 yrs 
 

TOV (m/s)  1.88 2.14** 
 1.79 ± 0.001 m; 75.1 ± 6.6 kg       
         
Resistance training 

    
    

Garcia-Ramos et al. [38]a 13 international level swimmers Variations of the squat, 
deadlift, hip thrust, leg 
flexion and extension 
exercises 
3 weeks 

Kick start Best of 2 x swim 
starts to distance 
slightly further 
than 15 m 

  Pre Post 
 (5 M, 8 F)  T10m (s)  4.37 ± 0.42 4.47 ± 0.39*  

18.1 ± 3.4 yrs 
 

T15m (s)  7.26 ± 0.51 7.54 ± 0.61*  
1.72 ± 0.08 m; 62.6 ± 8.5 kg 

 
    

        
F = females; hTOV = horizontal take-off velocity; IMP = impulse; M = males; PT = plyometric training; sPFh = starting peak horizontal forces; T5m = time to 5 metres; T5.5m = time to 5.5 metres; T10m = time to 
10 metres; T15m = time to 15 metres; TOV = take-off velocity; p < 0.05*; p < 0.01**; p < 0.001*** 
aOnly sea level data was included 
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