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SUMMARY

Anaesthesia is that part of the medical science profession which ensures that 

the patient’s body is insensitive to pain and possibly other stimuli during surgical 

operations. It includes muscle relaxation (paralysis) and unconsciousness, both 

conditions being crucial for the operating surgeon. Maintaining a steady level of 

muscle relaxation as well as an acceptable depth of anaesthesia (unconsciousness), 

while keeping the dosage of administered drugs which induce those effects at a 

minimum level, have successfully been achieved using automatic control.

Fixed gain controllers such as P, PI, and PID strategies can perform well 

when used in clinical therapy and under certain conditions but on the other hand 

can lead to poor performances because of the large variability between subjects. 

This is the reason which led to the consideration of adaptive control techniques 

which seemed to overcome such problems.

Two control strategies falling into the above scheme and including the two 

newly developed techniques, i.e Proportional-Integral-Plus (PIP) control algorithm, 

and Generalized Predictive Control algorithm (GPC), are considered under exten­

sive simulation studies using the muscle relaxation process associated with two 

drugs known as Pancuronium-Bromide and Atracurium. Both models exhibit
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severe non-linearities as well as time-varying dynamics and delays.

Only the strategy corresponding to the GPC algorithm is retained for imple­

mentation on a 380Z disk-based microcomputer system, while the muscle relaxa­

tion process corresponding to either drugs is simulated on a VIDAC 336 analogue 

computer. The sensitivity of the algorithm is investigated when patient-to-patient 

parameter variability is evoked. The study is seen to provide the necessary basis 

for future clinical implementation of the scheme.

Following the satisfactory results obtained under such a real-time environ­

ment, the self-adaptive GPC algorithm has been successfully applied in theatre to 

control Atracurium infusion on humans during surgery.

This success later motivated further research work in which simultaneous 

control of muscle relaxation and anaesthesia (unconsciousness) was achieved. A 

good multivariable model has been derived and controlled via the multivariable 

version of the SISO GPC algorithm. The results obtained are very encouraging.
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CHAPTER 1

INTRODUCTION

During a surgical operation, the operating surgeon is often involved in cutting 

large areas of a muscle. In some cases muscle movements can considerably hinder 

the surgeon’s activities so much that access to deeper structures often results in 

considerable tissue damage. In order to make the surgeon’s task easier and at the 

same time help avoid the pain that may result from such surgical manipulations, 

there is a need for muscle movement reduction, i.e muscle relaxation.

Muscle contraction is the result of a series of events which start with an 

impulse generated in the central nervous system and followed by a release of a 

chemical substance called Acetylcholine which produces a depolarization, a crucial 

phase in the above chain of events that eventually leads to muscle movement 

Breaking this chain of events that normally lead to muscle contraction is the driv­

ing force behind muscle relaxation, i.e paralysis. It is achieved by administering a 

number of muscle relaxant drugs. These muscle relaxant drugs fall into two main 

categories: depolarizing and non-depolarizing agents.

Depolarizing drugs produce a continuous depolarization, whereas the non­

depolarizing type of drugs compete with Acetylcholine for the receptor sites. For 

this reason they are better known as competitive agents. Pancuronium-Bromide 

and Atracurium included in the present study are non-depolarizing type of agents.

Whether a depolarizing or a non-depolarizing type, the administration of 

muscle relaxant drugs needs to be carried out efficiently, which also implies that 

maintaining acceptable levels of relaxation for the operating surgeon must also be 

a prime target. For this purpose, it is important to have at least some knowledge 

of the interaction of these drugs with the body. Pharmacology is used to interpret
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the metabolism of such drugs. Pharmacology comprises two main categories 

known as pharmacokinetics and pharmacodynamics. Pharmacokinetics study the 

relationship that exists between drug dose and drug concentration in the blood 

plasma as well as other parts of the body. Interpretation of this relationship was 

given a mathematical meaning when the concept of compartment models was 

introduced. With this concept the body is said to consist of several compartments 

each representing one part of the body that involves the drug metabolism.

Pharmacodynamics, however, are concerned with the drug concentration and 

the effect produced. One key postulate of this category is that there is a consider­

able delay separating the first administration of the muscle relaxant drug and the 

onset of relaxation; this is known as the "margin of safety" (Paton and Waud, 

1967; Waud and Waud, 1971), whereby no depression of twitch response can be 

detected until over 75% of the receptors are occluded, and once initiated, paralysis 

cannot increase indefinitely as the drug dosage increases.

For muscle relaxation, measurements are made via evoked electromyogram 

(EMG) responses (Epstein and Epstein, 1975) obtained from supramaximal stimu­

lation at the wrist. Resulting EMG signals at the hand are rectified and integrated 

giving a proportional measurement of the degree of relaxation.

In operating theatre, muscle relaxation monitoring is a prime responsibility 

(among others) of the anaesthetist It is he who administers muscle relaxant drugs. 

Based on his own experience and relying on a few indices relating to the patient’s 

medical history and body weight, he determines the right doses of the intravenous 

boluses to be given at different intervals. However, this strategy does not always 

lead to satisfactory results as obtained levels of relaxation are not steady. In major 

operations, such as eye and heart surgeries, this may lead to undesirable conse­

quences, while large doses of muscle relaxant drugs which are unnecessarily

#  Introduction #
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administered can lead to postoperative complications.

As a result, and over the last ten years, constructive steps have been taken to 

ensure that other more efficient ways of drug administration can be considered. 

That is how the idea of using automatic feedback control was first introduced by 

Cass et al. (1976) and Brown et al. (1980). Further research work later followed 

mainly that by Ritchie et al. (1985), Webster et al. (1987), and MacLeod et al. 

(1989). The general structure of the controllers used in these studies ranged from 

fixed proportional (P) controllers to proportional-integral (PI) and proportional- 

integral-derivative (PID) strategies. Significant improvements have been reported 

with the use of such protocols including obtaining a reasonably steady level of 

paralysis together with the reduction of the total dosage of administered muscle 

relaxant drugs. However, because of patient-to-patient physiological differences, 

the above fixed strategies were considered to be unsuitable for application as occa­

sional oscillations were recorded during clinical trials on humans (Webster et al., 

1987; MacLeod et al., 1989). Because it is practically impossible to proceed to the 

manual tuning of such controllers during an operation, the concept of adaptive 

control was considered to be an attractive candidate for application in this particu­

lar area of life sciences. An adaptive scheme consists of identifying the system 

dynamics given an adopted structure and updating the control law each time a 

control input is required from the process. This idea was first explored by Linkens 

et al. (1982) who devised an explicit algorithm in the form of pole-placement 

(Wellstead, 1980). The control strategy, experimented on dogs, was successful in 

reaching the targets previously mentioned. Pancuronium was used as the muscle 

relaxant drug. Further research work, also led by the same author considered the 

application of a self-adaptive PID algorithm (Denai et al., 1990) on humans using 

the drug Atracurium. Acceptable levels of relaxation were obtained with most of 

the patients included in the study.

# Introduction #
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Prior to any controller design study, a knowledge of the mathematical model 

associated with the process under consideration is required. In the case of muscle 

relaxation, the process may be modelled in terms of pharmacokinetics and phar­

macodynamics. To describe the pharmacokinetics of the drugs, a two-compartment 

model was found to be suitable for both drugs considered. To reflect the phar­

macodynamics, the "margin of safety" concept is usually described by a Hill equa­

tion (Whiting and Kelman, 1980; Weatherley et al., 1983) or a dead-space in 

series with a saturation element. A study of the pharmacodynamics of Atracurium 

by the previous authors postulated the existence of a third compartment known as 

the "effect compartment".

The research work leading to this thesis is mainly concerned with the design 

of more robust self-adaptive control strategies than the self-adaptive PID algorithm 

which, because of its inherent structure, cannot consider systems whose order is 

higher than 2, and whose performance because of these unmodelled dynamics 

often degrades. Two recently developed techniques were considered. The first one, 

falling into the category of explicit self-tuning algorithms, is based in part on the 

earlier continuous-time approach of Young and Willems (1972), and because its 

superficial similarity with the conventional digitized Proportional-Integral (PI) con­

troller, it is referred to as the Proportional-Integral-Plus (PIP) control algorithm. It 

is a new approach in the sense that, by defining a non-minimal state-space 

(NMSS) representation of the system, whose state-variables are defined only in 

terms of the present and past values of the output and past values of the input sig­

nals, it is possible to avoid the main problem of conventional state-variable feed­

back (SVF) law which requires measuring all the state-variables.

Automatic feedback control has always suffered from problems caused by 

dead-time, and this has been acknowledged by many researchers (Smith, 1957;

#  Introduction #
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Marshall, 1979; Gawthrop, 1977). Several schemes centered around the idea which 

was first introduced by Smith (1957, 1959) and known as the Smith predictor have 

since been proposed. Because of the particular importance of such control proto­

col, the combination of the PIP approach with the Smith predictor and called by 

the authors Extended Smith Predictor algorithm (ESP) (Chotai and Young, 1988) 

is investigated and compared with the algorithm that emerges as an inherent struc­

ture of the PIP control algorithm in the presence of a delay and named General­

ized Smith Predictor algorithm (GSP).

The second self-tuning technique studied is known as the Generalized Predic­

tive Control (GPC) algorithm (Clarke et al., 1987a, 1987b) and is a direct succes­

sor of the well known Generalized Minimum Variance (GMV) algorithm (Clarke 

and Gawthrop, 1975, 1979). It is a technique that combines the advantages of 

explicit algorithms such as the pole-placement algorithm (Wellstead, 1980) 

together with those of implicit algorithms (predictive approaches). Moreover, it is 

based on a CARIMA* model representation (Tuffs and Clarke, 1985) of the pro­

cess under consideration, a structure which is a refined version of the well known 

ARM A** model structure.

Both algorithms in question have been investigated under a wide range of 

conditions and using the non-linear models associated with the drugs Pancuronium 

and Atracurium. For the Pancuronium model, a second order linear model with 

time-delay was considered followed by a non-linearity represented by a Hill equa­

tion (Whiting and Kelman, 1980; Weatherley et al., 1983) or alternatively a dead- 

space in series with a saturation element. For the Atracurium model, a third order 

linear model with time-delay was found to be suitable. The same non-linearity as

♦Controlled Auto-Regressive Integrated Moving Average 
♦♦Auto-Regressive Moving Average
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above characterizes the pharmacodynamics of the drug.

Next, the study considered the implementation of the GPC algorithm on a 

Research Machines 380Z disk-based microcomputer system and its application to 

the above models. The muscle relaxant models were simulated on a VIDAC 336 

analogue computer. A sensitivity study of the algorithm was carried out to reflect 

the large patient-to-patient parameters variability.

Because of the encouraging results obtained under real-time conditions, the 

GPC algorithm was considered to be a likely candidate for a clinical evaluation. 

To this effect, clinical trials in operating theatre on humans were conducted in col­

laboration with the Department of Anaesthesia (Western Infirmary Hospital, Glas­

gow) and the Department of Anaesthesia and Anaesthesiology (Hallamshire Hospi­

tal, Sheffield) and after local Ethics Commitee approvals. The drug Atracurium 

which is a fast acting drug with a short onset was considered for continuous infu­

sion. The designed GPC control strategy succeeded in maintaining a remarkably 

good steady level of paralysis with all of the 10 patients considered for operation, 

while the total dosage of Atracurium was kept to a minimum.

Besides muscle relaxation management, depth of anaesthesia (unconscious­

ness) represents another responsibility for anaesthetists in operating theatres. The 

successful results obtained with the single-input single-output (SISO) GPC algo­

rithm led to considering simultaneous control of muscle relaxation and anaesthesia 

using the multivariable format of the above control strategy. Because depth of 

anaesthesia is difficult to quantify accurately, blood pressure (considered to give 

good indication of the state of unconsciousness) was used as the second variable 

for the multivariable model. Hence, a non-linear multivariable anaesthetic model 

using both variables has been elicited via literature surveys and clinical experi­

ments conducted in hospital. The drug Atracurium was used to induce muscle

# Introduction #
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relaxation, whereas Isoflurane was used to induce unconsciousness.

Extensive simulation studies have been undertaken to verify the algorithm 

and provide guidelines for settings which will produce robust control conditions. 

Monte-Carlo simulations have also been undertaken to validate further the robust­

ness of this control strategy which includes various ’jacketting’ constraints in addi­

tion to the GPC algorithm commonly described.

Because the obtained non-linear multivariable model included one unique 

cross-interaction from one of the other loops, a different strategy in which two sin­

gle GPC loops were considered and feedforward being added to one of the loops 

for the interaction, this was found to provide various advantages including:

• Better transient responses.

•  Reduction of the interactions.

• Considerable reduction of the computer burden.

The hence obtained scheme was named Generalized Predictive Control with 

Feedforward (GPCF) in opposition to the simple multivariable GPC version.

The thesis is organized into 9 chapters which can be summarized as:

Chapter 2

The background relative to the mechanism of neuromuscular transmission is 

reviewed. Different aspects of muscle relaxant drugs pharmacology are given 

together with the problems encountered in the standard method of muscle relaxant 

drugs management. The need for automatic feedback control is therefore 

emphasized.

# Introduction #
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Chapter 3

In this chapter, details of the modelling study relative to the two muscle 

relaxant drugs Pancuronium-Bromide and Atracurium are first reviewed, then the 

problems associated with classic control method through simulations with fixed PI 

and PID controllers are outlined. The need for adaptive control strategies is rein­

forced with an introductory section dedicated to two well known protocols pertain­

ing to this concept.

Chapter 4

The self-adaptive Proportional-Integral-Plus (PIP) control algorithm is 

presented together with its application to the muscle relaxation process. Its exten­

sion to handle unknown and varying time-delay is also reviewed under the 

Extended Smith Predictor (ESP) and Generalized Smith Predictor (GSP) schemes.

Chapter 5

This chapter is dedicated to the development of the second self-tuning control 

technique known as the Generalized Predictive Control algorithm (GPC) which is 

presented in its basic form as well as its extended versions to include model fol­

lowing and observer polynomials. The different versions are then applied to the 

muscle relaxation process associated with both drugs in a series of simulations to 

determine the best controller parameters settings.

Chanter 6

The performance of the self-adaptive GPC algorithm is evaluated under real­

time simulations environment using an analogue computer.

# Introduction #
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Chapter 7

The implementation of the self-adaptive GPC algorithm in operating theatre 

during surgery on humans via Atracurium infusion is considered. Different aspects 

of the modified algorithm for such application are reviewed together with a gen­

eral description of the hardware involved. The results obtained are presented, 

analysed, and discussed.

Chapter 8

A multivariable model combining muscle relaxation via Atracurium infusion 

and depth of anaesthesia via Isoflurane inhalation is identified. Simultaneous con­

trol of muscle relaxation as well as depth of anaesthesia (unconsciousness) is con­

sidered by using the multivariable version of the GPC algorithm. Simulation stu­

dies using nominal parameter values as well as Monte-Carlo method for parameter 

selection are performed. Further simulations using single-input single-output GPC 

with feedforward are also undertaken and a comparison is made between the two 

different strategies.

Chapter 9

The major conclusions of this study and recommendations for further 

research work are given.
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CHAPTER 2

PHYSIOLOGICAL BACKGROUND PERTAINING 
TO THE MUSCLE RELAXATION PROCESS

2.1 INTRODUCTION

In order to help the surgeon perform an operation while minimizing the risks 

of tissue damage, there is a need for the muscle to be relaxed (paralysed). This is 

achieved by administering a number of drugs which induce muscle relaxation. To 

better understand this process, it was found useful to begin with the mechanism of 

neuromuscular transmission as the next section endeavours to show.

2.2 THE NEUROMUSCULAR TRANSMISSION

In the chain of events that starts with the stimulation of a motor nerve and 

ends with the contraction of a muscle, the most vulnerable link is the synapse 

between the nerve and the muscle- the neuromuscular junction. The motor nerve is 

separated from the muscle by the synaptic cleft. This cleft is in fact a sub-division 

of the extracellular fluid (ECF) from which it is separated by the Schwann cell 

membrane. The neurotransmitter Acetylcholine (Ach) is responsible for transmit­

ting motor nerve activity across this junction. Early work by Birks et al. (1960) 

elucidated the fundamental anatomy of the neuromuscular junction, and modem 

techniques have allowed refinements of details relative to this structure. As shown 

in figure (2.1), the motor nerve ends at that part of the muscle membrane known 

as the motor end plate. In this area, the membrane is folded into longitudinal 

gutters; the ridges of each gutter conceal orifices to secondary clefts. Around these 

orifices, a high concentration of a chemical substance known as Cholinesterase
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Figure 2.1. A schematic representation of the neuromuscular junction
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(AchE) was proved to be present. The end plate membrane potential is a reflection 

of the uneven distribution of ions across the surface membrane. In its resting 

state, this membrane is far more permeable to Potassium ions (K+) than those of 

Sodium (Na+) (ratio of 100). As a result, (K+) ions pass out of the cell along their 

concentration gradient until the accumulation of positively charged ions on the 

outside of the membrane causes an opposing force to further migrations of Potas­

sium ions (K+). The inside of the membrane has a negative potential, whereas the 

outside has a positive electrical charge. The membrane is said to be polarized. 

The transmembrane potential reaches a value of -70 mV to -90 mV. The arrival of 

an impulse at the nerve terminals causes the release of the chemical substance 

Acetylcholine (Ach) (Dale and Feldberg, 1934) which causes the opening of the 

Sodium pores by reacting with specialized receptors on the post-synaptic mem­

brane. This causes depolarization of the post synaptic membrane by increasing its 

permeability to (Na+) ions relative to (K+) ions. The end plate potential is 

reversed giving rise to an action potential propagation and subsequent muscle con­

traction. These events are quickly terminated as a result of interactions between 

Ach and AchE present in the orifices of the secondary clefts. The chain of events 

that normally lead to a muscle contraction are summarized in the schematic 

diagram of figure (2.2).

2.3 MUSCLE RELAXANT DRUGS AND THEIR MECHANISM  

OF ACTION

As seen in the previous section, the synaptic gap is the site which witnesses 

the unusual activity leading to a muscle contraction. Therefore, the process of neu­

romuscular transmission can only be blocked if relaxant drugs gain access to the 

synaptic cleft and break the chain of events described in the diagram of figure

# Physiological Background #
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(2.2). Depending on their mechanism of action, muscle relaxant agents fall into 

two categories: the depolarizing and non-depolarizing drugs.

2.3.1 The Depolarizing Type of Muscle Relaxants

The depolarizing drugs such as Suxamethonium and Decamethonium are 

believed to act by producing a continuous depolarization of the post-synaptic 

membrane, rendering it unresponsive to Acetylcholine (Bums and Paton, 1951). At 

their first application a voluntary muscle contracts, but unlike Acetylcholine, these 

agents are not destroyed by Cholinesterase and the depolarization is maintained.

2.3.2 The Non-Depolarizing Type of Muscle Relaxants

The non-depolarizing agents such as d-Tubocurarine, Pancuronium, and Atra- 

curium compete with Acetylcholine for the cholinoreceptors. As a result, when 

Acetylcholine reacts with these drugs, it fails to cause sufficient Sodium pores to 

open to allow threshold depolarization to take place. This threshold is referred to 

as the "margin of safety" of neuromuscular transmission. Before expanding further 

on this concept, it is worth noting that it has been demonstrated that a prolonged 

administration of a depolarizing block changes to a competitive one and because 

of this phenomenon, non-depolarizing agents are preferred. Furthermore, these 

non-depolarizing agents do not induce muscle pain following their administration.

2.3.3 The Margin of Safety of Neuromuscular Transmission

The concept of margin of safety of neuromuscular transmission was intro­

duced by Paton and Waud (1967) who demonstrated that unless more than 75% of 

the receptors were occupied, it was not possible to detect a reduction in the 

indirectly elicited twitch response. Figure (2.3) illustrates this concept.
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2.4 PHARMACOLOGY OF MUSCLE RELAXANTS

Pharmacology is that part of science that studies the relation between the 

administration of the drug and the pharmacological effect it produces. It falls into 

2 categories: pharmacokinetics and pharmacodynamics. Pharmacokinetics concern 

the absorption, distribution, metabolism and excretion of the drugs, whereas phar­

macodynamics describe the relationship between drug concentrations in the plasma 

and their therapeutic effect.

2.4.1 Pharmacokinetics

Drug kinetics have been considered by many authors (Stanski et al., 1979; 

Hull et al., 1980; Whiting and Kelman, 1980; and Weatherley et al., 1983). In 

these formulations the body is seen as a set of compartments from which the drug 

is distributed and excreted. A model that has been widely used is the one- 

compartment model (Gibaldi and Perrier, 1975; and Rowland, 1978). In this model 

the drug is introduced into a large single compartment. The concentration of the 

drug in this compartment is assumed to be equal to the plasma concentration of 

the drug. The drug is excreted from this compartment. The overall configuration is 

modelled by one exponential rate of decay of drug concentration in the blood 

expressed by the following differential equation:

d xx 

~
= -  kio x t(t) + ux(t) (2.1)

where,

u1(t) represents the drug input

k10 is the transfer rate constant from the compartment to the environment 

xj(t) is the total amount of drug in the body at time Y
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The overall configuration is shown in figure (2.4).

However, the model that allows one to better understand the early phases of drug 

distribution and plasma levels after intravenous injection is the two-compartment 

model. It is considered to be more realistic than the previous one (Rowland, 1978; 

Shanks et al., 1980). The model, illustrated in figure (2.5), includes a small central 

compartment equivalent to the plasma volume and perfused tissues (heart, lungs, 

liver, kidney, and endocrine glands) and a larger peripheral compartment 

corresponding to the rest of the body (muscle, skin, and fat). When a drug is 

injected into the central compartment, the drug concentration falls in a biphasic 

fashion: the first phase represents drug transfer from one compartment to another, 

whereas the second, which is slower, represents drug elimination from the body 

once a state of pseudo-equilibrium between the compartments has been achieved. 

All characteristics of drug transfer are assumed to be first order processes in which 

the rate of drug exit from a given space is proportional to the concentration of the 

drug in that space. The plasma concentration of drug versus time is given by the 

following biexponential equation:

C(t) = A e - a t  + B e “ Pt (2.2)

where A, and B are complex functions of the inter-compartmental rate constants

ky.

In the above equation A e “ ° 1 characterizes the distribution phase, whereas 

B e ” P1 relates to the elimination phase.

Finally, a three-compartment model has been proposed by several authors: Gibaldi 

et al. (1972) who studied d-Tubocurarine in man, and Brown and Godfrey (1978) 

who considered the Bilirubin drug. In this representation, shown in figure (2.6), 

the central compartment (1) corresponds to the plasma, whereas compartments (2)
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and (3) represent other sites unaccounted for. They are often interpreted as being 

the extracellular and intracellular compartments of poorly perfused tissues.

The plasma concentration versus time in this case is given by the following sum 

of three decaying exponentials:

C(t) = A e -<xt + B e - P t + D e " 8t (2.3)

where A, B, and D are complex functions of the inter-compartmental rate con­

stants kjj.

2.4.2 Pharmacodynamics

The fact that the drug effect cannot increase indefinitely as the amount of 

drug in the body increases is embodied in the Hill equation of the form:

B = ----- ^ -----  (2.4)
t , C(50)a

C“

where Emax is the maximum effect possible, C the concentration in the plasma, 

C(50) is the drug concentration which produces 50% of the maximum effect Emax 

, and a  is a real positive constant power that governs the speed at which the 

response reaches its maximum as the concentration of drug in the plasma 

increases. Figure (2.7) shows the shape of the curves corresponding to the previ­

ous equation as a  varies and for a given C(50). Notice that all these curves have 

non-linear forms which characterize sigmoidicity of the concentration response 

relationship. It is however worth noting that Ham et al. (1979) modelled a com­

plete pharmacological response using a three-compartment model together with 

equation (2.4) modified into the logistic function of equation (2.5) (Waud, 1972):
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1
l  + e - x' 
= C(50)a 

C“

(2.5)

where Yh represents the drug effect.

Concentration levels of drug in the plasma are equivalent to those at the site 

of action only once the pseudo-equilibrium state has been reached. The time fol­

lowing the drug injection and the reaching of this state may depend on two fac­

tors:

• The mechanism of drug disposition

• The state of the subject receiving the drug

Consequently, it was necessary to assess the drug effect at the site of action before 

the state of equilibrium has been reached, and this in order to obtain a more accu­

rate description of the overall modelling concept. Researchers in this particular 

field mainly Sheiner et al. (1979) and Whiting and Kelman (1980) observed 

(through logarithmic plots) that the plasma concentration of drug versus time and 

effect versus time characteristics were not in phase, leading therefore to the 

existence of another compartment- the effect compartment- linked to the phar­

macokinetics model by a first order process with a constant k1E (arbitrarily small 

compared to the smallest rate constant of the kinetics model), in such a way that it 

does not affect the parameters of the original model (Whiting and Kelman, 1980). 

Figure (2.8) illustrates such a configuration.
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2.5 MANAGEMENT OF NEUROMUSCULAR BLOCKADE

2.5.1 Evaluation of Neuromuscular Blockade

Effective administration of muscle relaxant drugs requires monitoring of the 

effect they produce. A straighforward method for evaluating the degree of neu­

romuscular blockade is identical to that used by anaesthetists and which consists 

of observing the muscle tone, and movements of the eyes. For a more precise 

evaluation, other more accurate methods using nerve stimulators are needed. They 

involve supramaximal* electrical stimulation and the result displayed and printed. 

One of the popular method to assess the degree of neuromuscular blockade and 

which emerged in the mid seventies, rests in electromyography (Epstein and 

Epstein, 1975). The resulting compound action potential often called evoked elec­

tromyograph (EMG) signal, which is the mechanical force produced during the 

contraction of a muscle, can be measured for that purpose. The single twitch EMG 

response at the hand is rectified, integrated, and amplified, giving a proportional 

measurement of the degree of relaxation (i.e, induced paralysis).

Among the other commonly used types of stimulations is the train of four stimula­

tion (TOF). It is performed by means of four supramaximal stimuli delivered at 

time intervals of 0.5 second over a period of 2 seconds (Ali et al., 1971). The 

TOF stimuli is repeated over 10 to 12 seconds. The amplitude of the fourth 

response gives the TOF ratio when expressed as a percentage of the first. Further 

details of this type of stimulation are given in chapter 7. Other types of stimula­

tion include the single twitch and tetanic stimuli (succession of stimuli at very 

rapid rate).

* Stimulation whose intensity is bigger than that needed to evoke the maximal response

# Physiological Background #
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2.5.2 Administration of Muscle Relaxant Drugs 

and Reversal of Neuromuscular Blockade

Muscle relaxant drugs are conventionally administered by anaesthetists who, 

based on their own experience, determine the adequate dose in order to achieve a 

predefined degree of paralysis. However, anaesthetists fail sometimes to maintain a 

steady level of relaxation resulting often in a large consumption of drug by the 

patient. The residual effects of relaxants are antagonised at the end of the opera­

tion using drugs such as Neostigmine and Edrophonium. Thus, overdosing of 

relaxant drugs can be counteracted, but complications may arise postoperatively if 

large amounts of reversing drugs are used. Early attempts at closed-loop control of 

muscle relaxation (Brown et al., 1980; Asbury et al., 1980; and Linkens et al., 

1981, 1982) have shown great improvements including a reasonably steady level 

of relaxation and reduction of total relaxant dosage. The next chapter is dedicated 

to the review of the control techniques used in achieving that.

# Physiological Background #
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CHAPTER 3

CLOSED-LOOP CONTROL OF MUSCLE 
RELAXATION DRUG ADMINISTRATION

3.1 INTRODUCTION

Closed-loop control has found many applications in every day life and 

emerged as a serious contender for all forms of control. However, in biomedicine, 

because it is such a highly sensitive area and because of all the risks involved, the 

research community were often reluctant in conducting experiments that could 

involve such a scheme. It is only in the late seventies that the gap existing 

between feedback control and continuous infusion of chemical substances neces­

sary for regulating physiological variables (blood pressure, muscle relaxation) was 

bridged when research work conducted by pioneers in this field such as Sheppard 

et al., (1979); Asbury et al.; (1980); Brown et al., (1980); Linkens et al., (1981); 

and Zhang and Cameron (1989), proved through clinical experiments on humans 

as well as on animals that this form of control is safe and effective and in some 

cases better that manual control.

While the need for feedback control was emphasized in chapter 2 together 

with all the problems associated with conventional methods of administering mus­

cle relaxant drugs, it is worth noting that the so-called three-term controller or PID 

algorithm was at the forefront of the commonly type of controllers used.

Brown et al. (1980) used a simple proportional control algorithm to regulate the 

muscle relaxation level around a 10% EMG set-point using infusions of Pancu­

ronium. Although the authors reported offsets of 6% (due to the absence of 

integral action), the results were considered satisfactory.
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In their trials on humans, Wait et al. (1987) reported a successful regulation 

around a reference set-point just by using an on-off relay controller to adjust the 

delivery of Atracurium, while Ebert et al. (1986) reported the use of a PID algo­

rithm to achieve a level of 10% EMG by means of Vecuronium administration. 

Better performance was achieved. Finally, similar results were also reported by 

Webster et al. (1987) and MacLeod et al. (1989) who used a PID and PI algorithm 

respectively to control the infusion of Atracurium on humans. Again here, a com­

parative study performed by the last author demonstrated that simple feedback 

control was more superior than manual control performed by the anaesthetist.

When using the three-term controller of PID algorithm, the output is given by 

the following equation:

where e is the error signal given a reference output signal, Kp is a proportional 

gain constant, Kj the integral term constant, and KD the derivative term constant.

Settings of the parameters Kp, Kj, and KD are usually obtained using the Ziegler 

Nichols methods (Ziegler and Nichols, 1942) in an off-line study involving open- 

loop step responses. Although positive remarks were made by the previous authors 

who used these PID controllers, problems ranging from oscillations to offsets were 

also acknowledged (Brown et al., 1980; MacLeod et al., 1989) due to the consid­

erable differences between individual subjects (Linkens at al., 1982), and the fact 

that the above parameter settings needed adjustments. Consequently, prior to any 

clinical evaluation, a computer simulation of the closed-loop infusion control sys­

tem, with the patient replaced by a mathematical model is a safer, faster and alto­

gether more convenient method, enabling one to assess any subsequent problems 

and to obtain a deeper insight into this complex mechanism which is the human

(3.1)
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body. This is the subject of the next section which is concerned with the 

mathematical modelling of muscle relaxant dynamics, i.e: Pancuronium-Bromide 

and Atracurium using the concepts of pharmacokinetics and pharmacodynamics 

introduced in chapter 2.

3.2 THE MATHEMATICAL MODELS ASSOCIATED WITH 

MUSCLE RELAXATION PROCESSES

Referring to the study conducted in chapter 2, the process of muscle relaxa­

tion requires a model which comprises a linear part describing the pharmacokinet­

ics and a non-linear part which concerns the pharmacodynamics of the drug. 

While the pharmacokinetics may be different from one type of muscle relaxant to 

another depending on how many compartments are associated with the drug, the 

pharmacodynamics are all modelled by the Hill equation or by a dead-space in 

series with a saturation element to account for the ’margin of safety’ of the neu­

romuscular transmission (Paton and Waud, 1967). The section below considers 

two types of non-depolarizing drugs- Pancuronium-Bromide, and Atracurium, 

both having been the subject of much published research work (Linkens et al., 

1982; Whiting and Kelman, 1980).

3.2.1 Identification of Pancuronium Dynamics in Dogs

In a study performed by Linkens at al. (1982), open-loop as well as closed- 

loop experiments on dogs were conducted to identify Pancuronium-Bromide 

dynamics. To avoid saturation problems and to enable sufficiently long sequences 

to be used under steady-state conditions, PRBS signals, through a peristaltic pump 

rather than bolus injections, were used as perturbations. The pump was considered 

as having nearly linear characteristics, with a small offset so that the motor drive
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was operating over the linear region. Analysis of the data was performed using a 

generalized least-squares package (SPAID) (Billings and Sterling, 1975). Under 

both modes (open-loop and closed-loop), the linearized model indicated a two­

time-constant system corresponding to a two-compartment model without the third 

effect compartment (see chapter 2), and with an estimated time-delay accounting 

for the transport of blood via the circulation system. Equation (3.2) describes such 

kinetics:

Gi(s) =
Kj e “ x 8

(1 + Tj s) (1 + T2 s)
(3.2)

Within the six trials conducted, each of the identified parameters, i.e Klf x, Tlt and 

T2 showed large patient-to-patient variability, this being a well known 

phenomenon in the life sciences, where parameter variations of 4:1 are endemic 

(Slate, 1980; and Linkens et al., 1981). However, the nominal values for the above 

parameters were:

Ki = 3.5 
x = 1 minute 
Tj = 2 minutes

T2 = 20 minutes

Finally, to complete the overall Wiener structure of the model, the dynamic effect 

of the drug was modelled by a dead-zone and a saturation element. Both of these 

reflect the ’margin of safety’ concept as well as the fact that the drug effect cannot 

increase indefinitely as the amount of drug in the body increases respectively. 

Both characteristics could alternatively be embodied within the context of a Hill 

equation (2.4).
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3.2.2 Pharmacology and Dose Response Relationship 

of Atracurium Administered I.V

•  Pharmacokinetics

It has been shown that after a bolus-dose, the plasma concentration of Atra­

curium declines rapidly in two exponential phases corresponding to distribution 

and elimination (Ward et al., 1983). Therefore, the conventional two-compartment 

model is retained by adding an elimination path from the peripheral compartment 

obeying the so called "Hofmann elimination" (Ward et al., 1983; Weatherley et 

al., 1983). Figure (3.1) is a schematic diagram showing the different model com­

ponents.

If Xj is the drug concentration at time "t" and x; its rate of change then:

*i = —(kio + k12) xi + k21 x2 + u 

x2 = k12 Xj -  (k20 + k21) x2

Using Laplace transforms, equation (3.3) can be rewritten as:

s X j  = -(kjo + k12) Xj +  k21 X2 + U 

s X2 = kj2 Xj — (k20 +  k2j) X2

X ,=L-'(x,)
X2 =  L-‘(X2)

Hence,

Xj s + k20 +  k2i

U (s + k10 + k12) (s +  k20 +  k21) -  k12k21

Experimental studies by Weatherley et al. (1983) gave the following mean values 

for the Pharmacokinetics parameters:

(3.3)

(3.4)
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kj2 +  k10 = 0.26 min.-1 

k2i +  k2o = 0.094 min.-1 

ki2 x  2̂1 = 0.015 min.-2

Substituting in equation (3.5) leads to:

X i _  9.9442 (1.0+10.6382 s) 6)
U (1.0+3.0778 s) (1.0+34.3642 s) ( '

Equation (3.6) describes the pharmacokinetics of the muscle relaxation sys­

tem relating to the drug Atracurium.

• Pharmacodynamics

Simultaneous identification of pharmacokinetics and pharmacodynamics of 

d-Tubocurarine (Sheiner el al., 1979) led to the findings that the dynamics of the 

drug effect do not coincide with those of the plasma concentration. Similarly, in 

order to characterize temporal aspects of Atracurium drug effect, a third compart­

ment known as the "effect compartment" (see chapter 2) is introduced. It is con­

nected to the central compartment by a first order rate constant kjE, whereas the 

rate constant k ^  characterizes the drug dissipation from the effect compartment, 

as shown in figure (3.2).

In this latter compartment, the drug concentration-change is governed by the equa­

tion:

Xe -  kiE Xj -  kE0 xE

Using Laplace transforms yields:

s + kEo

(3.7)

(3.8)

Once again the Hill equation may be used to relate the effect to a specific concen-
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tration.

Xg(50)“

+ X §

where XE is the drug concentration and XE(50) is the drug 

effect.

(3.9)

concentration at a 50%

The same experimental work as above gave the following parameters:

kE0 = 0.208 min.-1 
Xe(50) = 0.404 m l'V g  

a  = 2.98 
k1E = lO^min.-1

Finally, combining equations (3.8) and (3.6) and normalizing the overall open-loop 

gain at 1.0 leads to:

XE Kt (1+T4 s) e ~ t s

U (1+Tj s) (1+T2 s) (1+T3 s) ' }

Where,

Kl = 1
x = 1 min.

Ti = 4.81 min.

T2 = 34.36 min.

t 3 = 3.08 min.

t4 = 10.64 min.
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3.3 CLASSIC CONTROL OF MUSCLE RELAXATION SYSTEM

3.3.1 A Simulation Study with PI and PIP Controllers

The overall muscle relaxation control system, shown in figure (3.3), was 

simulated using a fourth order Runge-Kutta integration method, with a step length 

of 0.1 and a sampling interval time of one minute chosen according to Shannon’s 

theorem (Isermann, 1981). The general discrete-time form of a PID controller 

corresponding to the continuous form of equation (3.1) is given by the following 

expression:

u(t) = Kp e(t) +  e(t) + KD (1 -  z*1) e(t) (3.11)
1 -  z~ L

where Kp, Kj, KD are the proportional, integral, and derivative constant terms 

respectively, z-1 the backward shift operator in the form of z_1 = e ~ *h, h being 

the sampling time.

Using the same denominator everywhere in equation (3.11) yields:

u(t) = u (t-l) + Kp (e(t) -  e (t-l)) + Kj e(t) (3.12)

+ Kd (e(t) -  2 e (t- l)  + e(t-2))

Developing and rearranging leads to the following expression:

u(t) = u (t-l) + Po e(t) + Pi e(t—1) + p2 e(t-2) (3.13)

where,

Po = Kp +  KI + Kd 

Pi = - K p - 2 K d 

p2 = Kd

In order to obtain the best possible settings for the above parameters and for both 

systems considered, a hill-climbing optimisation routine provided by a package
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called PSI (Van Den Bosch, 1979) and available in the Department of Automatic 

Control and Systems Engineering was used. This routine minimizes a cost function 

which includes the integral of squared errors. In the case of a PID controller, the 

optimisation routine provided the following parameters for the Pancuronium 

mathematical model (the second order linear kinetics included the nominal model 

parameters, whereas the non-linearity was represented by a dead-zone of 50% in 

series with a saturation element of 100%):

p0 = 3.82 Pi = -6 .39 p2 = 2.62

Figure (3.4) shows the output response under such conditions and with 80% set- 

point command. Because of the derivative action the transient was fast, and 

despite the overshoot and the undershoot, the set-point tracking properties were 

good. In the case of a PI the optimisation routine produced the following parame­

ters for the same model:

p0 = 0.787 Pi = -0.755 p2 = 0.00

Figure (3.5) shows the output response under the same conditions as above, which 

because the derivative action was removed, produced a slower transient with rela­

tively massive overshoot and undershoot. However, in noisy environments, PI con­

trollers perform better than PID ones due to the derivative action which despite 

anticipating the trend of error signal amplifies high frequency components, and 

hence PI networks are often preferred to PID controlllers in the industry. Figures

(3.6) and (3.7) show the performance of the PID and PI controllers respectively 

when the non-linearity is represented by a Hill equation with a  = 6.0 and 

C(50) = 0.75 (details of the derivation of these values are given in chapter 4).

Next, the system associated with a third order non-linear Atracurium model 

was considered under the same conditions as before but using the Hill equation to 

describe the pharmacodynamics of the drug. The optimization routine in the case
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of a PI produced the following parameters:

Po = 0.84 Pj = —0.800 P2 ~  0.00

Figure (3.8) shows the corresponding output response which demonstrated a rather 

slow transient due to the slow dominant time-constant of 34 minutes.

3.3.2 Sensitivity Studies

As pointed out earlier, because of large variability in patient-to-patient model 

parameters, investigations into the sensitivity of these fixed controllers were neces­

sary.

First, the model relating to Pancuronium was considered. With the gain and time- 

constants kept the same as above, the time-delay was changed to x = 2 minutes. 

The system output, shown in figure (3.9), demonstrated dying oscillations of the 

control signal and consequently of the output due to the fact that the parameters of 

the PID controller needed retuning to cater for such a change. Similar results can 

also be observed on figure (3.10) when considering the Atracurium model with 

the following parameters:
*

K1 = l 

X =  1 m in .

Tx = 1 min.

T2 = 2 min.

T3 = 10 min.

T4 = 30 min.

Clearly, the previous simulation results showed that a fixed controller is not suit­

able for adequately regulating muscle relaxation around a predefined reference 

level due to the large inter-patient variability for which there is no information
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prior to an operation. This fact, which was also backed by other researchers in the 

field of biomedicine (Sheppard et al., 1979; Slate, 1980; Linkens et al., 1982) only 

strengthens the case for a scheme which combines on-line process dynamics esti­

mation together with control. This scheme would be able to account for non- 

linearities, large time-delays (possibly changing), changing dynamics, and possible 

disturbances. Adaptive control seems to answer such expectations. The section 

below looks at the history of such concepts by reviewing the different techniques 

that were developed throughout the last decade and that have shaped, since, the 

skeleton of this attractive technique.

3.4 INTRODUCTION TO ADAPTIVE FEEDBACK CONTROL

For many years, adaptive control has been considered an important part of 

control engineering, where its contribution can be seen with over 2000 papers 

abstracted by the IEE INSPEC service during the last decade alone. Mainly con­

cerned with feedback systems, the term "adaptive" means that the controller fulfils 

two tasks at the same time which could be summarized as:

1. controlling the process.

2. Adapting itself to that process and its disturbances in order to achieve satis­

factory control.

Therefore, adaptive control can be described as being a generalization of classical 

linear feedback control, in the sense that in classical control the coefficients of the 

law are time-invariant and probably obtained during an off-line study, whereas 

adaptive control theory produces a controller which tunes itself as process parame­

ters vary. The associated algorithms are called "self-tuning algorithms". The 

approach was first proposed by Kalman (1958) who made an attempt to implement
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the algorithm on a computer. A block diagram of the self-tuning control system is 

shown in figure (3.11). At each sampling instant the parameters in an assumed 

dynamic model are estimated recursively from input-output data and the controller 

settings are then updated. The control design simply accepts current estimates and 

ignores their uncertainties by evoking the principle of certainty equivalence 

(Astrom and Wittenmark, 1989) which simply states that the self-tuning properties 

should still hold if the true parameter estimates are replaced by their estimated 

ones. The principle represents, in fact, the corner-stone of the theory as it facili­

tated the solving of many practical problems, especially those of a non-linear 

nature.

Self-tuning controllers can, however, be based on several techniques which 

although different in structure use the same philosophy, i.e regulating around a 

certain point, be it a SISO or a MIMO situation. Space prohibits mentioning all of 

them, but Pole-Placement (Wellstead, 1980), General Minimum Variance (GMV) 

(Clarke and Gawthrop, 1975, 1977; Gawthrop, 1979) and Generalized Predictive 

Control (GPC) (Clarke et al., 1987a, 1987b) are among the best known algorithms. 

They mainly fall into two categories: explicit and implicit algorithms. The first 

category, as schematically represented in figure (3.12), implies that the regulator 

parameters are updated indirectly via estimation of the process parameters, 

whereas in the second category, the control design stage is omitted by producing 

directly the coefficients of the required control law as figure (3.13) illustrates.
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Figure 3.13. Structure of an implicit self-tuner
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3.4.1 The Explicit Self-Adaptive Control Approach:

"The Pole-Placement Algorithm'

Before being involved in the different mathematical steps that normally lead 

to the formulation of the final control law, it is worth reviewing some of the basic 

results in process model theory.

•  Process Model

Whether the time-delay is an integer multiple, or a fraction of the sampling 

time, the SISO model describing the continuous process dynamics in a discrete 

form is given by the structure known as the ARMAX model structure:

y(t) = - 2 ^ -  u(t -  k) + C(0 (3.14)
A(z-1) A(z_1)

where A(z-1), B(z-1), and C(z-1) are polynomials in the backward shift operator 

z-1 of the form:

A(z_1) = 1 + a2 z-1 + a2 z-2 + • • • + an z-n 

B(z_1) = b0 + bj z-1 + h i z-2 + • • • +  bm z~m 

C(z_1) = 1 +  c t z-1 + c2 z-2 + • • • + cp z-p

y(t) is the process output, u(t) is the control signal delayed by k samples, and £(t) 

is a sequence of random variables all having a variance cr2 and a mean of zero. It 

is also assumed that all roots of the C(z_1) lie inside the unit circle in the z-plane.

• Control Objectives

The general pole-placement algorithm for stochastic regulation or servo­

tracking is derived by the following steps (Wellstead, 1980):

Assume incremental control (for zero steady-state error) such that a digital integra­

tor is lumped with the system, thus,
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B(z-1)
A(z~‘)

A u(t -  k) + C(z-‘)
A (z-')

« 0

Propose the control law given by:

A u(t) = G(z-1)
yr(0 -  y(t)
1 + Ffz"1)

(3.15)

(3.16)

where,

yr(t) is the command signal

G(z-1) = 1 + gj z*1 + g2 z-2 + • • • + gng z-"8

F(z_1) = f0 + fj z*1 + f2 z-2 + • • • +  fnf z_nf

Combining the control law of equation (3.16) and equation (3.15) yields:

[(1 + F) A + z—k B G] y(t) = z-k B G yr(t) +  C (1 + F) £(t) (3.17)

where the operator z-1 has been dropped for simplicity’s sake.

Equation (3.17) can be rewritten as:

Ni(z_1)
y(t) =

N2(z-1)
yr(0 + C(0

D(z~l) D(z-1)

D(z_1) = (1 + F) A + z~k B G 

Njiz’ 1) = z_k B G 

N2(z-1) = C (1 + F)

(3.18)

Now, D(z-1) is the closed-loop characteristic polynomial of the servo system, thus, 

if  it is wished to specify desired closed-loop poles positions corresponding to the 

roots of the polynomial T(z-1) such that:

T(z-1) = 1 + ti z_1 + t2 z-2 + • • • +  tm z-nt

then, for good closed-loop regulation properties, the following identity is solved:

A (1 +  F) +  z‘k B G = CT (3.19)

For this identity to have a unique solution, the order of the regulators must be set
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to the following quantities:

ng = na -  1 
nf = nb + k -  1

and the number of the assigned poles such that:

nt £  na + nb + k -  nc

However, i f  the stochastic disturbance is negligible, the control law identity (3.19) 

becomes:

A (1 + F) +  z“k B G = T

leading to the following closed-loop transfer function:

y(t) _  -k B G 
yr(t) t

(3.20)

(3.21)

Further guidelines on the choice o f the tailoring polynomial T(z-1) are widely 

available in the literature (Wellstead, 1980). It is worth noting that equation (3.21) 

includes the zeros of the open-loop system, and because zeros cannot be shifted by 

feedback, it is usually suggested to cancel them. However, the polynomial B(z_1) 

is very likely to be non-minimum phase, leading therefore to unstable control 

resulting from this cancellation attempt.

3.4.2 The Implicit Self-Adaptive Control Approach: 

'Optimal Regulation and Control'

In the original self-tuning regulator of Astrom and Wittenmark (1973), the 

feedback was designed to minimize the variance of the output variable y. Thus, 

the control objective was to minimize the quadratic cost function of the form:

Ji (3.22)
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For quality control problems, this expression is a logical choice: by reducing the 

output variance, the set-point can be moved closer to a limiting constraint (Astrom 

and Wittenmark, 1980b; Clarke, 1985a). However, the above algorithm had two 

basic limitations: it does not include set-point following, and it does not penalize 

excessive control efforts. In order to account for both deficiencies, Clarke and 

Gawthrop (1975, 1979) proposed the following generalized cost function:

J2 = E [(P y(t) -  R w(t))2 + (Q u(t))2] (3.23)

where w(t) is the set-point, u(t) the control signal, and P, Q, and R polynomials in 

the backward shift z-1. The derived control law minimizing this cost function is 

shown to be of the form:

F y(t) + G u(t) + H w(t) = 0 (3.24)

F, G, and H are polynomials in the backward shift z-1 related to the system and 

noise polynomials A, B, and C, as well as the polynomials P, Q, and R. Figure 

(3.14) shows the structure of this self-tuning optimal controller (STC). Further 

developments by Gawthrop (1977) extended the STC to include rational transfer 

functions for P, Q, and R as opposed to simple polynomials. For instance, taking 

the following expressions for these polynomials

P(z' 1) =  T T 7 1 7 ; Q(z_1) = 0; R(z-1) = 1 M ( z )

brings out Landau’s concept of model-following adaptive control (Landau, 1974). 

Finally, to alleviate excesive control signals, generated because o f Q(z_1) = 0, 

Clarke and Gawthrop (1979) assigned a value X to this polynomial and called the 

algorithm detuned generalized minimum variance (GMV).
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3.4.3 Parameter Estimation Methods 

•  The_Recursive Least-Squares Algorithm

In adaptive control on-line sequential updating of the model parameters is 

necessary to ensure good regulation properties. Consequently, recursive estimation 

algorithms are better suited for this purpose. The recursive least-squares algorithm 

(RLS) widely described in the literature (Ljung and Söderström, 1983) falls into 

this category, and its formulation is reviewed below.

If the noise model polynomial in equation (3.14) is dropped for simplicity’s sake, 

the same equation could be rewritten as:

y(t) = >̂T(t) 0 (t) + e(t) (3.25)

where,

0 T(t) = [ -  y(t -  1), -  y(t -  2),..., -  y(t -  na), u(t - k  -  1) ,.. . ,  u(t -  k -  nb -  1) ]

0(0  = | l̂> ®2> n̂a, ^1* ^2» •••»

and e(t) is an error assumed independent of the input-output sequence.

The parameter estimation problem, whose formulation involves a least-squares 

method, is to find the estimates 0 (t) by minimizing the following cost function:

J = E  [y(0 -  *T(0 0(0 ]2 (3.26)

where N  is the number of data points, and y(t) is the measured value of the out­

put.

The equations for recursive least-squares computation of the unknown parameters 

are given by the following set of expressions (Clarke, 1985a; Ljung and Söder­

ström, 1983; Billings, 1985):
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0(t) = 0 ( t -  1) + K(t)e(t)

K(t) = P(t ~  1) 0 (t)
1 + 0 T(t) P(t -  1) <D(t) 

P(t)= [ l -K (t)cD T( t ) ] p ( t - l )  

e(t) = y(t) -  0 T(t) 0 (t -  1)

(3.27)

P is called the covariance matrix of the estimation error, e(t) the prediction error, I 

the identity matrix, and K(t) the Kalman (feedback) filter gain.

The parameter estimates obtained using equation (3.27) are unbiased if the noise 

term e(t) has zero mean (white noise). In this case the polynomial C(z-1) in equa- 

tion (3.14) is equal to unity and 0  represents, therefore, the minimum variance 

estimate. In environments where signals to noise ratios are low, however, other 

algorithms, such as the instrumental variable (Young, 1970), extended least- 

squares (Garke, 1985a) could also be implemented. Ljung and Söderström (1983) 

give a full review of widely available algorithms.

One characteristic of equation (3.27), though, is that to start the algorithm, it is 

necessary to initialize P and 0 .  Large initial value of P means that the user 

expresses little confidence in 0 (0), while small values mean that ¿ (0) is good and 

therefore, no big fluctuations around this value are anticipated. Further characteris­

tics of the same equation include the fact that || K || and || P || tend to zero as more 

data are processed making, thus, the corrections to 0  smaller, meaning that the 

parameters have converged. While this parameter convergence is directly linked to 

the speed of process dynamics variations, the estimator sometimes loses sensi­

tivity, especially in closed-loop environments. Therefore, and in order to maintain 

its sensitivity, the algorithm has been modified to include an exponential weighting 

factor, called ’the forgetting factor’, in the cost function as expressed by the fol­

lowing equation:
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Jm [©(t)] = ' ¿ ‘p,_ i [y(i) -  ®T(0 ô ]2 (3.28)

where,

0 < p  £  1

leading, hence, to the following modified algorithm

0(t) = 0 (t -  1) + K(t) e(t) 

K(t) = -------
p + d»T(t) P(t -  1) d>(t)

P(t) =  7  [i -  K(t) d>T(t)] P(t -  1) 

e(t) = y(t) -  Ox(t) 0 (t -  1)

(3.29)

The effect of the exponential factor p is to prevent the elements of P from becom­

ing too small. A small value of p implies fast forgetting of past data, whereas a 

value close to unity implies a slow forgetting of these data. Suffice to say here 

that the choice of this factor should allow a trade-off between the ability to track 

parameter variations and noise sensitivity.

•  Operating Problems of Parameter Estimation Algorithms

When implemented in real-life environments, estimation algorithms, regard­

less o f their type, may operate unsatisfactorily. Indeed, Anderson (1985) showed 

that ’bursting’ or ’blow-up’ phenomena can result from noise or unmodelled 

dynamics in the absence of persistent excitation. This particular problem is related 

to the covariance matrix P(t) in equation (3.29), whose elements become large as 

time increases, causing the estimator to become overly sensitive to parameter 

changes and noise. As a result, large fluctuations and drifting in parameter esti­

mates occur. Furthermore, Astrom and Wittenmark (1989) showed that large 

values of P lead usually to numerical problems.
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There are a number of approaches to deal with such problems which include 

covariance resetting, use of perturbation signals, and variable forgetting factor. The 

following sections discuss each of these remedies.

1. Covariance Resetting

The method, first proposed by Young (1969), consists of adding a positive 

definite matrix D to P(t -  1) at a specific period of time. This addition of D 

prevents || P || from becoming too small. The magnitude of the elements of D 

depends upon the expected rate of variations of the parameters. How often this 

resetting operation occurs during one particular run could for instance be related to 

the value of the trace of P(t), i.e, whenever this value falls below a certain thres­

hold, D must be added.

2. Perturbation Signal

The assumption that the system under consideration is persistently excited has 

always been at the forefront of most convergence results established with adaptive 

control theory. However, as Anderson and Johnson (1982) pointed out, there is no 

guarantee of persistent excitability of the feedback signal, leading therefore to a 

non-uniqueness of the parameter estimates. One possibility which ensures that the 

process is adequately excited is to superimpose a perturbation in the form of a 

sine wave, or a pseudo-random binary sequence signal (PRBS) for instance. Vogel 

(1982) suggested that the chosen period and amplitude for the PRBS signal should 

comply with guidelines involving process dynamics. The same author postulated 

that the PRBS period should be longer than the duration of the process impulse 

response, while the amplitude is related to the trace of the P(t) matrix in a linear 

relationship.
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3. Variable Forgetting Factor

If the forgetting factor is constant and wrongly selected, old information is 

continually forgotten especially if the process is not excited enough to obtain new 

dynamic information. As equation (3.29) may suggest, this leads to the covariance 

matrix P growing exponentially causing ’blow-up’. In order to encourage tuning-in 

and later inhibit any excessive sensitivity of the RLS algorithm to new incoming 

data, another solution which consists of adjusting the forgetting factor periodically 

could be used. The strategy is known as the variable forgetting factor approach 

(Fortescue et al„ 1981; Ydstie et al., 1985).

Fortescue et al. (1981), for instance, proposed an algorithm in which the forgetting 

factor p is a function of the prediction error e(t) such that:

p ( o = 4 -

where e(t) is the prediction error and I q is a parameter expressed as Zq = o2 N0, 

where a 2 is the anticipated measurement noise which acts on the process, and N0 

is a constant governing the speed of adaptation. Implemented according to equa­

tion (3.30), the forgetting factor decreases whenever a change in process dynamics 

occurs and approaches to unity under steady-state regulations. However, the choice 

of Zq also has to follow a trade-off policy since small values assigned to this 

parameter leads to a quick adaptation, but if these values are too small ’blow-up’ 

could occur. Although improvements with such procedures have been reported 

(Fortescue et al., 1981), authors such as (Goodwin et al., 1983) found that the 

method deos not always lead to satisfactory results.

Another simplified algorithm was also proposed by Wellstead and Sanoff 

(1981) in which the variable forgetting factor expression is given by:

[l -  (1 -  ¥ T(t) K(t)) e2(t)] (3.30)
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P(t) = Pi(t) X p2(t) (3.31)

where,

Pi = PP +  ( l  - p p )  (1 - e  T)
0 .0  £  pp 1.0

x  = desired memory o f estimation
(3.32)

and,

P2<0 = 1.0 -  ■■} )
X s(t)

(3.33)

This method has been particularly found easily implementable with another ver­

sion of the RLS algorithm and better known as the UDU factorization method 

(Bierman, 1976, 1977). This algorithm, which fulfils the same task as the RLS, 

consists of decomposing P into a multiplication of triangular and diagonal 

matrices. This modification has in fact a double role to play! first, it ensures that 

the matrix P is always positive definite, and second it reduces the computational 

burden and allows variable forgetting factor procedures to be easily and efficiently 

implemented.

To conclude, it should be stated that based upon a study of the background 

relative to the physiology o f the human body, mathematical models associated 

with two well known muscle relaxant drugs were obtained. The results showed 

large patient-to-patient parameter variability. The study allowed one to realize 

feedback control of the physiological variable which is muscle relaxation. The 

closed-loop control was achieved using fixed PID controllers whose parameters 

were tuned in an off-line study involving available optimization routines. It has 

been shown that the fixed controller can perform well under certain conditions, but 

if  the model parameters vary, the performance was seen to degrade considerably.
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It was then concluded, that such form of control was not suitable and that a stra­

tegy which combines on-line estimation of the model parameters as well as control 

had to be considered if good quality control was the prime target. Adaptive control 

represented an attractive candidate. The overall scheme would use a fixed PI con­

troller during the phase corresponding to the margin of safety period, then switch 

on to the self-adaptive mode assuming that the estimates have converged to rea­

sonable values. An introduction into the technique was reviewed together with 

parameter estimation methods. The scheme should be able to cope with non- 

linearities, large delays and variable dynamics. The next chapter is mainly dedi­

cated to the application of an explicit type approach which is an extension to the 

well known PI controller and known as the Proportional-Integral-Plus (PIP) algo­

rithm.

SHEFFIELD

LIEF'F;Y
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CHAPTER 4

POLE-PLACEMENT PROPORTIONAL-INTEfiRAT.-PT.ITS 
APPLIED TO THE MUSCLE RELAXATION SYSTEM

4.1 INTRODUCTION

The next sections will endeavour to present the main theoretical results of a 

new method of state-variable feedback pole-assignment control for discrete-time 

systems. The method depends upon the specification of a non-minimal state-space 

(NMSS) representation o f the system under consideration in which the state vector 

is composed only of the present and past input-output variables, together with an 

"integral o f error" state which ensures type-1 servomechanism performance.

It is perhaps worth noting that this new formulation is considered to be a direct 

development of the multivariable continuous-time servomechanism design pro­

cedures for continuous-time systems suggested by Young and Willems (1972).

4.2 A REVIEW OF STATE-SPACE FORMULATION

State-space (state-variable) representation and controller design suffered a 

rather long set-back because of their computational burden. However, the advent 

o f digital processors with their remarkable power and speed made this alternative 

method and many others even more attractive by restoring their valuable contribu­

tion. As a result of this, state-space methods have reemerged to form a direct mul­

tivariable approach to linear control synthesis and design. These types of 

representations have always been linked to the multivariable character of systems 

which makes them rather complicated. In the following we will only present them 

in a single-input single-output (SISO) manner in the hope to get easily to grips

# Pole-Placement PIP #



#  Chapter 4: # - 43 -

with the theory. The state-space representation of a continuous-time system is 

defined by a set of ’first order’ differential equations called the state equations. 

These equations describe the dynamic behaviour of any system linearized around 

an operating point at any time ’t \  i.e:

xt = F xt + Gut

yt =  H x t C4-1)

xt is the vector of state-variables.

yt is the system output.

F is a transition matrix continuous and bounded.

G is the input matrix continuous and bounded.

H a continuous and bounded matrix.

Complex SISO or multivariable systems rarely satisfy the assumption that the 

system state-vector is available for feedback control purposes, necessitates either a 

radical review of the state-space method itself at the loss of its most favourable 

properties, or the reconstruction of the missing state-variables as first proposed by 

Kalman (1958). Figure (4.1) illustrates such a scheme in open-loop. However, in 

closed-loop considerations if the control strategy is of the type:

u(t) = K x(t) (4.2)

where K is a gain matrix, then the observer can be regarded as forming part of a 

linear feedback compensation scheme used to generate some sort of approximation 

Fx(t) (O’Reilly, 1983). Figure (4.2) depicts such a configuration.

Consider physical systems whose dynamic behaviour can be modelled by 

discrete-time linear vector equations, i.e:

xk = ® xk-l + r  Uk_!
yk = H xk (4.3)
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Here all the variables are defined exactly in the same manner as previously in sys­

tem equations (4.1). Taking the z-transform of system (4.3) leads to:

X(z) = Oz’ 1 X(z) + T z' 1 U(z)
Y(z) =  H X(z) (4-4)

Factorizing and rearranging gives:

[ z I -  <i> ] X(z) = r  U(z)
Y(z) = H X(z) (4-5)

The open-loop transfer function could be obtained as:

Y(z)
U(z)

= H [ zl -  <D r 1 r

It is worth noting at this stage that the system poles are defined by the eigenvalues 

of the matrix <I>. Similarly to the continuous case, we can define the feedback of a 

linear combination of all the states, i.e:

xi

x 2
u = - K x  = - [ k j k 2 ...] (4.6)

From this, the closed-loop characteristic equation is of the form:

d e t [ z I - < I >  + rK] = 0 (4.7)

Although this approach o f the control problem is somewhat different from the so- 

called ’classical design methods’, its aim is practically identical. Indeed, the stra­

tegy consists of selecting the elements kj , k2 , . . .  , so that the roots of the 

characteristic equation (4.7) lie at chosen locations in the complex z-plane. The 

approach is known as the ’State-Variable Feedback Pole-Placement approach 

(SVF).

At the time when significant results by many researchers in this field had been
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reached namely by Popov (1964), Young and Willems (1972), and Kuo (1980), 

the method became more and more appealing to control engineers, especially 

when it has been shown that through the state-variable feedback control law, the 

closed-loop system characteristic polynomial poles can be arbitrarily assigned to 

selected positions in the z-plane providing that the system equations (4.3) are con­

trollable. However, in this representation it is assumed that all the states are avail­

able to adequately realize a proper feedback, which in general is not the case, 

since not all the state-variables are always accessible for measurement. This obvi­

ous drawback of SVF system design has almost certainly restricted its practical 

use and discouraged many from showing enthusiastic interest in this area. To obvi­

ate this requirement, Kalman (1960, 1961) proposed an optimal state estimator fol­

lowed later by many other contributions (Luenberger, 1966). However, these 

methods can only be used if the systems under investigation are observable. Early 

work by Young and Willems (1972) suggested a methodology in which attention 

should be focused on the non-minimal character of the state-space formulation, i.e 

selecting state-variables to which primary emphasis should be given. One could 

possibly argue about the basis on which this selection may be made. The answer 

is simple: It should be linked to our ability to directly measure these carefully 

chosen states. For instance, in a digital system, these states could be the present 

and past values of the output variable, and the past values of the input These vari­

ables can be considered as non-minimal state-variables which are used for SVF 

control. Therefore, the representation of systems in which the state vector is only 

composed of selected present and past inputs and outputs is named Non-Minimal 

State-Space representation (NMSS). It is worth noting that the use of these sam­

pled data signals is not only proper to this particular strategy, but they are also 

used in several self-tuning control algorithms (Astrom and Wittenmark, 1980a). 

However, in this case it provides a special and valuable insight into the nature of
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the resulting control design system (Young et al., 1987). Moreover, to add to the 

features that most recent algorithms have, an integral of error state is introduced 

which allows for an inherent type-1 servomechanism performance. The next sec­

tion will describe the NMSS discrete-time model for the single-input single-output 

case and the associated SVF control system.
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4.3 NON-M INIM AL STATE—SPACE FO R M

Consider the following general discrete-time transfer function represented by 

the following nth order SISO system.

BÇz-1)
A(z-1)

uk

Where A(z *) and B(z *) are polynomials of the form:

A(z_1) = 1 + z_1 + a2 z~2 + . . .  +  a„ z-"

B(z-1) = bi z~l + b2 z~2 +  . . .  +  bm z~m

(4.8)

z-1 is the backward-shift operator.

The transfer function - (z~ )  may be marginally stable, unstable
A(z_1)

non-minimum phase characteristics.

or possesses

Replacing the polynomials A(z~l) and B(z_1) by their respective expressions in 

equation (4.8) gives:

yk —  at yk-1 -  a2 yk-2 -  • • • -  a„ yk_n + bj uk_! + b2 uk_2 +  . . .  + bm uk_m

The NMSS system can be represented by the following discrete-time state equa­

tion:

*k = F xk-i + g Uk-i + d ydk

yk = h xk (4.9)
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Where the state transition matrix F, input vector g, and output vector h are defined 

by the following expressions:

-  al “  a2 . . . ^n-l b2 b3 . . bm-l bm 0
1 0 . . . 0 0 0 0 . . 0 0 0
0 1 . . . 0 0 0 0 . . . 0 0 0
• • • • « • • • •

• • • • • • • • •
. . • . - • • • •
0 0 . . . 1 0 0 0 . . 0 0 0
0 0 . . . 0 0 0 0 . . 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
• • • • • • • • •
• • • • • • • • •

. « . . . . . . •
0 0 0 0 0 0 1 0 0
al

[bi 0

a2

. . .  0

^n-l

1 0  0 .

a„ -  b 2 

0 - b

-  b3 

,1

-  bm-l m 1

h = [l 0 . . .  0 0 0 0 . . .  0 o ]  

dT = [o 0 . . . 0 0 0 0 . . . 0 1 ]

The state vector x is defined as:

xT= j” xk xk_! . . . uk_! . . . uk_m+1 zk j 
Where zk is the ’integral of error’ state defined by:

zk = zk-l + ydk “  xk (4.10)

ydk being the reference signal (command input to the servomechanism). The fami­

liar integral action is automatically introduced by feedback of this state-variable. 

The non-minimal character of the state-space model described by equation (4.9) is
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clearly justified by the simple fact that the state has been extended from its dimen­

sion n (degree of polynomial A(z-1)) to be able to accomodate in addition to the n 

sampled output data xk, xk_l t . . . .  xk_n+1, the m-1 past sampled values of input 

uk, uk_ i , . . . .  uk_m+1 together with the integral of error state zk.

Having shown the non-minimal feature of the new state-space formulation, the 

next section endeavours to consider the use of such representation as a basis for 

state-variable feedback (SVF) and the possibility of it retaining the property of 

assigning the poles of the closed system to a specific location in the z-plane.

4.4 THE PROPORTIONAL-INTEGRAL-PLUS CONTROL SYSTEM

From equation (4.9) for the definition of the vector h the following equations 

can be written:

xk = yk

*uk = - V T xk (4.11)

y  ”  t i()> 1̂» •» •» •* n̂— 1» Sl> ?2> •» •* •> Sin— 1» kI 1

Hence,

uk f0 Xk -  . . . -  fn_i xk-n+i “  Si uk-l “ • • • ”■ Sm-1 uk-m+l ~  kI zk 

But from equation (4.10) it follows that:

zk — _i (Ydk — *k)1 -  z 1

Substituting in equation (4.11) leads to:

uk = -  f0 xk -  • • • -  fn- l  xk-n+l -  . . .  -  gm- l  Uk_m+1 -   ----i— - (ydk -  xk)

Developing and rearranging yields:

fuk = uk-i “  kl (ykd -  xk) -  f0 A xk -  . . .  -  gm_j A uk_m+I

1a  = 1-z- 1 (4.12)
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Equation (4.12) could alternatively be described in block diagram terms and 

figures (4.3) and (4.4) illustrate such representations which clearly show that the 

system includes a proportional action P, an integrator I, and two discrete time- 

filters G and F. Because of the presence of these latter components, this NMSS 

control system is considered as a direct extension of the classical PI controller 

reviewed in chapter 3. Consequently, it has been given the name of Proportional 

Integral-Plus control system or PIP. In order to develop the PIP control algo­

rithm, first consider the block diagram model illustrated in figure (4.4) and find the 

expression of the closed-loop transfer function.

Hence, it follows that;

o ' 1 F ( y a t _ y k ) _ ) 'l‘ ] ' x | n y  <4-I3>

where,

F(z-1) = f0 + f1z-1 + . . .  + fn_! z_n+1

G(z-1) = 1 + gj z’ 1 + . . .  + gm_1 z_rn+1 (4.14)

I = ki

Using equation (4.8) and rearranging leads to:

N(z-1)

yt D(z-‘) ydk 

|N(z-1) = kj B(z_1)

p iz * 1) = (1 -  z '1)! Giz’ 1) A(z-1) + F(z-1)

(4.15)

System-equations (4.15) represent the closed-loop transfer function for the NMSS 

system. It is worth noting at this stage that both numerator and denominator pos­

sess an identical term, i,e: kx B(z_1). As we will see later, this is an important 

result which may have a direct consequence on the stability requirement of the

algorithm.
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* •P Proportional term 
F * Feedback filter 
G Forward-path filter

I Integral term

Figure 4.3. The PIP servo-mechanism control system



F Proportional and feedback fdter 

G Forward-path fdter 

I Integral term

Figure 4.4. Another representation of the PIP servo-mechanism 

control system
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If we ever wish to specify the desired closed-loop poles corresponding to the roots 

of:

d(z_1) = 1 + di Z'1 +  d2 z~2 + . . .  + djH+H+g z -  m+n+5 (4.16)

with S being the assumed value of time-delay, we only have to equate the polyno­

mials D(z_1) and d(z-1) and identify term by term the coefficients of power z_i, 

result of which is a set of (n+m) linear simultaneous equations of the general 

matrix form of:

2  • V = p (4.17)

Where X is a matrix of dimension (n+m). (n+m), V the SVF control gain intro­

duced in equation (4.11) and P a vector o f the form:

p t =  [p , P i . . .  pm„  ]

with

*
Pi = d, -  (ai -  ai_i)

■ 3q = 1
ai = 0 f o r i ^ n +1

dj being the coefficients of the desired characteristic polynomial d(z_1) in equation 

(4.16).

By using equations (4.15), (4.16), and by equating the two polynomials D(z-1) and 

d(z-1), we obtain the following X matrix

r =  [r , : I g : Ï , ]

While the general forms of If, Xg, and 1^ can be found in Young et al. (1987), 

section 4.5 below shows the form of I  for a particular system order.
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Having justified the NMSS form and derived the PIP control algorithm, the ques­

tion of controllability of this representation is a problem of great interest. Indeed 

Wang’s theorem (1988) states that:

Given a single-input single-output discrete-time system of equation (4.8), the non- 

minimal state representation of equation (4.9) is completely controllable if and 

only if:

a) The polynomials A(z-1) and B(z-1) are coprime.
i=m

b )  £ t> i* 0  
i=i

Clearly condition a) relative to the coprimeness of the two polynomials means that 

there should not be pole-zero cancellations between their respective roots which 

would make the matrix X singular and therefore non-invertible. Whereas, condition 

b) is equivalent to the requirement that the numerator of the closed-loop transfer 

function described by equation (4.15) should not admit z=l as a root. If it is the 

case, then the pole introduced by the integral action at z=l would be cancelled 

out, making the system non-controllable.

4.5 A SIMPLE EXAMPLE OF APPLICATION

As an example, consider the pharmacokinetics of the muscle relaxation sys­

tem associated with the Pancuronium-Bromide drug described in chapter 3. The 

linear dynamics correspond to a one minute sampling time, and the time-delay is 

omitted here for simplicity reasons.

B(z_1) 0.04 + 0.03 z~
— —r- uk = ---------------- :--------------- uk.
A(z-1) 1 -  1.55 z"1 + 0.57 z"2

Using equations (4.16) and (4.17) and assigning a relatively fast pole of 2 minutes 

the following expressions for respectively X, V, and (5 are therefore obtained.:
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bi 0 1 bi

& i cr bi a i - 1 b2
—b 2 b2 -  bi a2 “ a! 0

0 -b 2 -a 2 0

Replacing the a’s and b’s by their values leads to:

■

0.04 0 1 0.04
-0.01 0.04 -2 .55  0.03 
-0 .03  -0.01 2.12 0 
0 -0.03 -0 .57 0

VT = [fo fi El k i]

PT = [Po Pi P2 Pj]

Again replacing the a’s and the d’s by their respective values it follows that:

|3T= [l.95 -2.12 0.57 O.o]

Hence, the following system of 4 simultaneous equations written in matrix form is 

obtained:

o (0
-

___
__
__
__
_

j

fo 1.95
b2 -  bj bj a2 — 1 b2 h - 2.12
— b2 b2 — bi a2 — aj 0 Si 0.57

0 -b 2 -  a2 0 1̂ 0 . 0

• .

Using a stable algorithm for matrix inversion (Jordan’s algorithm) the following 

solution for this system in the form of a control law is obtained:

uk = uk-i “  25-83 • Ayk + . Ayk_! -  0.58 . Auk_! +  2 .19 .  (ykd -  yk)

Figure (4.5) illustrates the corresponding behaviour of the fixed gain PIP for a 

changing command signal of 80% then 70% at regular intervals of 50 iterations
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each. The response is fast and well damped despite the position of these assigned 

closed-loop pole which implies fast transient performance. However this harsh 

choice should carefully be reviewed when using the algorithm in a self-tuning 

mode since great attention should be focused on the magnitude of the input signal 

fluctuations the algorithm is able to sustain in these conditions before maintenance 

of stability becomes impossible. This remark is particularly useful for the next 

study as the dynamics we will focus on vary from one subject to another and we 

will undoubtedly have to settle for a trade-off eventually.

The next section considers the application of the previously developed algorithm 

to the muscle relaxation system associated with both model drugs identified in the 

previous chapter.

4.6 ON-LINE PIP CONTROL OF MUSCLE RELAXATION SYSTEM

The relaxant dynamics identified in the previous chapter have shown a large 

variability from one subject to another. These variations, added to other 

phenomena such as time-delays, noise, non-linearities, make the design of a fixed 

gain controller for muscle relaxation system extremely difficult. As demonstrated 

in the previous chapters parameters of such controllers need to be adjusted in 

order to avoid degradation in the closed-loop performance when model parameters 

were varied, especially the dead-time. Although a significant reduction in the 

system’s sensitivity particularly to changes in the dead-time has been claimed 

(Smith, 1959), inaccurate modelling of the system under consideration appears as 

a mismatch term between the actual process and its model in the Smith predictor 

leading consequently to a poor performance (Marshall, 1979).

Having said that, the development of a scheme which would combine the 

identification of the parameters of the process, and the use of these parameters to
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calculate the control signal according to an a priori established law would seem to 

adequately counteract the problems previously faced. Therefore, the application of 

the previously developed PIP algorithm in a self-tuning manner rather than in a 

fixed gain one seems to be justified and its performance is assessed via the two 

models associated with Pancuronium-Bromide and Atracurium drugs already 

identified.

4.6.1 Self-Tuning Adaptive PIP Control of Muscle Relaxation 

System Associated with Pancuronium-Bromide

The overall non-linear muscle relaxant model describing Pancuronium- 

Bromide dynamics presented in section 3.2 is first considered here. The phar­

macokinetics are given by a two-time-constant transfer function with a one unit 

time-delay, i.e:

° l(s) (1 +  20 s) (1 + 2 s) (4'18)
whereas the pharmacodynamics are modelled by a dead space o f 50% together

with a saturation element of 100%.

Whenever the controller operates in the non-linear region, parameter-estimation is 

frozen and control is maintained with the previously used fixed PI controller and 

the self-tuner takes over as soon as the non-linear region is passed. The block 

diagram in figure (4.6) shows the overall control system.

The gains for the fixed PI controller have been reduced to shape smoothly the 

transient response using the following optimized values obtained via the PSI pack­

age program (Van Den Bosch, 1979):

K„ = 0.4

Kj = 0.02
At this stage it is perhaps worth noting that the overall system was simulated in a
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Figure 4.6. Block diagram of the self-adaptive PIP 

control system for muscle relaxation
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continuous form using a fourth order Runge-Kutta integration method with a 

fixed-step of 0.1. The sampling interval was chosen according to Shannon’s 

theorem (stating that the sampling frequency should be at least twice the largest 

frequency included in the dynamics), in our case a 1 minute sampling time was 

adopted throughout all of this study.

As pointed out earlier, because the system exhibits relatively large dead-zones, the 

previously optimized PI provides initial control for 20 samples then the self-tuner 

takes over. Parameter estimation, using full-valued data or positional data for the 

measurement vector, takes the form of a UDU factorization algorithm (Bierman, 

1976, 1977), which is a modified version of the well known RLS algorithm. 

Because the estimated model between u and y does not reflect in any way the pro­

cess dynamics during the dead-zone period (Clarke, 1985a), the estimation routine 

is only triggered when the output reaches 10% of the output value. Parameter esti­

mates are initially set at 0.0 unless otherwise specified, the covariance matrix is 

made equal to 104.I, I being the identity matrix, and a value of 0.995 for the for­

getting factor is adopted throughout.

Simulation Results

77 and implemented 

i.e:

. ( bt z-1 + b2 z-2 )
Gi(z-‘) = , ‘ 2 z->

1 + a! z 1 + a2 z 1

With n = 2 and m = 3, the PIP algorithm, coded in Fortran 

on a SUN workstation, solves the system of equations (4.17),

2 .  V = p
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where L i s a ( 5 x 5 )  matrix of the following form:

0 0 1 0 0 
bi 0 ai “  1 1 b!
bj bj bj a2 — Hj 3| — 1 b2

_ b2 b2 — bj -  a2 a2 ~  ai 0
0 - b 2 0  - a 2 0

Note that because of the assumed time-delay of 1 sample, the matrix is one 

dimension larger than the one established in section 4.5.

VT = [fo fl gl g2 k ,]

If a second order closed-loop characteristics equation is assigned,

i.e: 1 + di z 1 + d2 z-2 then,

PT =  [Pl P2 p3 0 o ]

where:

Pi = di -  (a! -  ao)

P2 = d2 -  (a2 ~  a^ 

p3 = a2

If on the other hand a first order closed-loop characteristic equation is preferred, 

then,

Pi = di -  (ai -  ao)

P2 = ai -  a2

P3 ~  a2

Figure (4.7) shows the response of the muscle relaxation process for a changing
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set-point o f 80% then 70%. Two relatively slow poles of 11 and 6 minutes were 

assigned leading to a polynomial of the following expression:

d(z— = 1 -  1.76 z“1 + 0.77 z"2

The first phase which is considered to be a tuning-phase, resulted in an overshoot 

less than 3%, but once the parameter estimates converged to sensible values. The 

response improved and the control was smooth with good set-point tracking pro­

perties. The variations o f the corresponding parameter estimates are shown in 

figure (4.8). They converged to the following values:

aj = -  1.3376 a2 = 0.3914 bj = -  0.0465 b2 = 0.2058

equivalent to a continuous-time transfer function having a gain and time-constants 

of:

Gain = 2.96 Tj = 1.19 minutes T2 = 10.04 minutes

This was obtained by using the inverse z-transform (Power and Simpson, 1978). 

Notice that the model reflects the dynamics of a non-minimum phase system.

Decreasing the values of the time-constants associated with the closed-loop 

characteristic equation would speed-up the system response as shown in figures 

(4.9) and (4.10). These correspond respectively to a pair of faster poles o f 5 

minutes and 3 minutes, and 8 minutes and 5 minutes. The responses were good 

but for both cases the undershoot during the tuning-in phase increased respectively 

to 4% and 3%. The parameter estimates this time converged respectively to values 

of:

= -  1.4066 % = 0.4562 = -  0.0315 b2 =  0.1167

Gain = 1 .7 2  Tt = 1.47 minutes f 2 = 9.42 minutes 

and
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aj = -  1.3556 a2 = 0.4082 b1 = - 0.0264 b2 = 0.1840

Gain = 2.99 =  1.25 minutes T2 = 9.91 minutes

Hitherto all the responses obtained demonstrated some overshoot or undershoot 

during the tuning-in phase. While both features are commonly considered accept­

able, in the case of muscle relaxation they are undesirable: during the overshoot 

phase the output could reach saturation, and during the undershoot period the 

patient, not being totally relaxed, may create problems for the surgeon currently 

undergoing the operation. Both phenomena may be explained by two major fac­

tors:

1) The sudden transition between two different modes of control, i.e 

The PI controller then the adaptive PIP.

2) The assignment of a second order closed-loop characteristic polyno­

mial which normally induces overshoot.

An alternative strategy was then considered in which one unique pole is assigned 

rather than two, allowing the response to follow first order system charateristics. 

This behaviour is shown in figure (4.11) where a slow pole o f 11 minutes was 

chosen. The overshoot was removed altogether although the transition between the 

fixed control and the adaptive PIP was still energetic. At the end of the run the 

parameter estimates converged to:

Sj = -  1.4047 a2 = 0.4550 bj = 0.0722 b2 = 0.0786

Gain = 2.99 Ti = 1.47 minutes f 2 = 9.30 minutes

A faster assigned pole of 5 minutes produced a more rapid response as shown in 

figure (4.12), and the control was also fast to track the set-point changes occurring 

at regular intervals. Figure (4.13) displays the variations o f the controller- 

parameters f0, fi, gi, g2> and kz. Particular attention should be drawn to the last
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parameter kj which ensures an offset-free response. The plot shows how constant 

this parameter is along the three phases corresponding to the changing command 

signal, indicating therefore good control. The associated parameter estimates con­

verged to values of:

a1 = - 1.4513 S2 = 0.4979 bt -  0.0705 b2 = 0.0689 
equivalent to a gain and time-constants of:

Gain = 2.99 ^  = 1.70 minutes f 2 = 9.01 minutes

The objectives of a self-tuning regulator are to minimize with respect to sys­

tem noise and disturbances, the variance of the systems error from the set-point. 

Some of the desired features may include:

a) Fast step-responses

b) Small overshoots

c) Good disturbance rejection

d) Absence o f energetic control excursions

e) A small tuning-in transient

As pointed out earlier, because it is believed that all these desirable features are 

interdependent, in some cases it could be practically impossible to realize all of 

them simultaneously, and instead one would settle for the best trade-off obtainable 

in these circumstances.

Experiments conducted during the last decade have clearly indicated that adequate 

initial conditions especially for the parameter estimates may speed up the conver­

gence of the self-tuning controller (Zanker and Wellstead, 1979). In light of these 

considerations, another run was conducted in which initial parameter estimates of 

the following values were considered:

0 i =  [-1.55 0.57 0.04 0.03]

#  Pole-Placement PIP #



# Chapter 4: # - 60 -

A smaller covariance matrix of 102.I was considered together with a forgetting 

factor value of 0.995, expressing therefore bigger confidence in these parameters. 

The same closed-loop pole as in figure (4.12) was assigned. Figure (4.14) shows 

an improved response o f the muscle relaxation process which is well damped and 

fast. The control signal was also quick to reject the disturbance in terms of set- 

point changes. Eventually the parameter estimates converged to the following 

values:

0 f = [-1.4970 0.5406 0.0694 O.O6O9]

equivalent to the following continuous parameters:

Gain = 2.99 Tf = 2.01 minutes T2 = 8.47 minutes 

Another run was conducted under the same conditions but with a constant set-

point, leading to the performance shown in figure (4.15). The parameter estimates

converged to values of:

Of = [ -  1.4360 0.4836 0.0807 0.0674]

equivalent to:

Gain = 3.11 Tf = 1.61 minutes T2 = 9.16 minutes

The pharmacodynamics describing the relationship that exists between drug 

concentration and the resulting response could also be modelled in a context o f a 

Hill equation (Whiting and Kelman, 1980; Weatherley et al., 1983) o f the follow­

ing form:

fkiii
C“

C“ + C(50)a
(4.19)

where,

a  = Constant
C(50) = drug concentration at 50% effect

#  Pole-Placement PIP #



No
rm

al
is

ed
 I

/P
 a

nd
 0

/P

1.0

Figure 4.14. Same conditions as in figure (4.12) 

but with non-zero initial parame­

ter estimates



No
rm

al
is

ed
 I

/P
 a

nd
 0

/P

1.0

Figure 4.15. Same conditions as in figure (4.14) 

but with constant command signal



# Chapter 4: #
- 61 -

Figure (4.16) illustrates the analogy between the Hill equation curve together with 

the dead-zone in series with a saturation element representation.

Comparing this with the non-linearity represented by the dead-zone and saturation, 

an approximate analogy between the two situations may well be drawn. Indeed, a 

dead-zone of DZ and a saturation element of SAT may be defined as:

SL being the associated slope value.

Taking the derivative of equation (4.19) with respect to C, gives the expression of 

the slope at some point in the characteristic, i.e:

dfHiii _ a  C“ ~ 1 ( C“ + C(50)a ) -  a  C " - 1 C“ 
dC ( C° + C(50)a )2

Developing and rearranging leads to:

dfHiii = a  C“ ~ 1 C(50)a 
dC ( C a + C(50)a )2

Substituting C by C(50) leads to::

dfHiii a
dC  “  4 C(50) (4’21)

Using equation (4.20) at C(50) yields:

Assuming that the slopes are identical at the concentration C(50) and using equa 

tion (4.21) leads to:

a  = 4 SL C(50)

if  C ^ DZ 
if  DZ ^ C ^ SAT (4.20)

E (C(50)) + SL . DZ

#  Pole-Placement PIP #
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Therefore, for a dead-zone of 50% and a saturation element of 100% it follows 

that:
*

SL = 2.0 
* C(50) = 0.75 

a  = 6

The non-linear muscle relaxant model of section 3.2 is again simulated under the 

same conditions of section 4.6.1 except that the pharmacodynamics are represented 

by a Hill equation with power a  = 6.0 and C(50) = 0.75, values previously 

derived. The initial conditions are identical to those of figure (4.12), unless other­

wise specified. The relatively fast response of figure (4.17) was to be expected due 

to the high value of a . The transition between the control modes, i.e the PI con­

troller and the self-tuning controller PIP, was energetic although after the estimates 

converged to some steady values the response tracked better the set-point, as a 

result of which the parameter estimates assumed the following final values:

= -  1.6057 a2 = 0.6348 bx = 0.0470 b2 = 0.0374

equivalent to a gain and time-constants of:

Gain = 2.90 Tj = 2.85 minutes T2 = 9.66 minutes

It is interesting to note that because of the type of non-linearity, the parameter 

estimates in this case did not assume a non-minimum phase system. Clearly the 

representation of the pharmacodynamics in the context of a Hill equation 

represents a more realistic image of the system’s dynamics.

So far not much emphasis has been put on the values of the parameter estimates 

and their equivalent continuous gain and time-constants, and this is completely

# Pole-Placement PIP #
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Figure 4.17. Same conditions as in figure (4.12) 

but with non-linearity represented by 

Hill equation (<x=6.0 ; C^q=0.75)
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understandable since the corner-stone property of self-tuning controllers embodied 

in the principle of "certainty equivalence" (Astrom and Wittenmark, 1989) states 

that if  those parameters are to be replaced by their estimates, self-tuning properties 

are normally conserved providing of course that the process is excited enough to 

give the best possible knowledge to the controller. It is known that non-linearities 

such as saturation and dead-zones are among the major problems that face the 

estimator. Consequently, the gain and time-constants of the system cannot be 

accurately estimated. On the other hand, it has been shown (Young, 1987) that 

prefiltering of the input and output data can produce optimal parameter estimates 

and can be especially useful when the signals are perturbed. Several digital filters 

have been widely reported in literature (Isermann, 1981; Young, 1984). One com­

mon practice before using the estimation algorithm is to remove any possible d.c. 

level which can result in a bias on the parameter estimates. One alternative to 

mean-removal is differencing, equivalent to the use of the operator A = l - z “1. 

This is proved by the equations below:

If:

7 i = yi +  d

y2 = y2 +  d

d represents the d.c.level

Then,

yi - Ji = yi - Yi

One obvious consequence of this operation which is equivalent to the use of a 

high-pass digital filter, is the amplification of the high frequency components 

present in the data. To counteract this, another filter, this time with low-pass 

characteristics, is cascaded to the previous one making the overall operation 

equivalent to a band-pass digital filter amplifying the desirable frequencies and

# Pole-Placement PIP #
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attenuating the undesirable ones. The discrete-time transfer function of the filter is 

of the form:

where,

A = 1 -  z-1 and T(z-1) = 1 + tj z-1 +  t2 z~2 + . .  . +  t* z_t

tj, t2, .... tj represent the characteristics of the filter. For a chosen first order poly- 

nomial Tj = - e  *' , where Ts is the sampling time and fs is the filter cut-off 

frequency.

The frequency fs should be chosen such that its value encompasses the bandwidth 

of the system under investigation. It is important to note that this filter plays an 

important role in providing good estimates for the controller, and it (the filter) is a 

result of a new model-representation, different from the one described by equation 

(4.8) and named CARIMA model (Tuffs and Clarke, 1985) obtained as it will be 

seen in the next chapter by modelling differently the noise term which in the case 

of the PIP algorithm has been ignored for purposes of convenience .

For the system so far considered, a T(z-1) polynomial of T(z-1) = 1 -  0.95 z~l 

was chosen corresponding to a time-constant of 20 minutes (predominant time- 

constant of the previous model), leading to an overall digital band-pass filter of the 

form:

Gp(z-1)
1 - z -1

1 -  0.95 z*1

h = sampling time
(4.23)

Figure (4.18) illustrates the resulting control system.

Using filtered data for the measurement vector, a run was undertaken with a fixed

#  Pole-Placement PIP #



Figure 4.18. The overall control system including 

the band-pass filter
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command signal of 80%, a covariance matrix of P = 105.!, and a forgetting-factor 

of p = 0.995. The initial parameter estimates were all set to 0.0. The estimation 

was started when the output reached 15% and the fixed PI was allowed to run for 

20 samples before the adaptive PIP took over. The result shown in figure (4.19) 

demonstrates a good response well damped with no overshoot or undershoot. 

However, in contrast to the previous runs, the parameter estimates whose varia­

tions are shown in figure (4.20) look particularly interesting not so much for their 

stability during the run, but for their final values which were:

ax = -  1.5529 S2 = 0.5719 b1 = 0.0739 b2 = 0.0632 

Equivalent to:

Gain = 7.21 Tj = 1.96 minutes t 2 = 20.52 minutes

Clearly, as it has always been argued, filtering is often necessary, even if the sig­

nals are clean (Shook et al., 1991; Boucher et al., 1988), and this is equivalent to 

carefully choosing the right filter parameters in order to ensure that relevant infor­

mation about the system is not lost.

4.6.2 Self-Tuning Adaptive PIP Control o f Muscle Relaxation 

System Associated with Atracurium

When associated with the second order Pancuronium-Bromide drug model, 

the PIP algorithm (either a fixed or self-adaptive form) proved effective and flexi­

ble. The following will assess its performance further, this time associated with 

the more complicated model of Atracurium, the fast acting drug introduced in sec­

tion 3.3. Its corresponding model is of a third order linear component followed by 

the non-linearity of a Hill equation type described earlier.

The pharmacokinetics are represented by the following third order transfer func-
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Figure 4.19. Same conditions as in figure (4.12)

but with filtered data for the estima­

tor ; T(z'*)= (1-z"1) ( ( 1-0 .95Z-1)) '1
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sponding to figure (4.19)
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tion with time-delay:

Q  (s\  _  ____________ yx t  ay s ______________
2 (1 + 3.08 s) (1 + 4.81 s) (1 +  34.36 s)

(1 +  10.64 s) e~g
(4.24)

The pharmacodynamics are modelled by the Hill equation (4.19) with the power a  

and the concentration at 50% (C(50)) having the following parameters:

Due to the low value of the open-loop gain, the parameters of the fixed PI con­

troller were modified in order to achieve an acceptable response during the period 

where the estimator is gathering reasonable data, giving the following parameters:

The overall continuous system was simulated following the same steps as in the 

previous study as regards to the integration method as well as the step-length. A 

sampling interval of 1 minute was also used throughout all of this study. Condi­

tions of jacketing and initial conditions for the estimation routine were similar to 

those adopted in the previous section.

Simulation Results

A third order linear discrete-time model with an assumed dead-time of 1 

sample was considered throughout giving the following transfer function:

„  , - k bi Z_1 + b2 z' 2 + b3 z"3

a  = 2.98 
C(50) = 0.404

Kp = 0.80

Kt = 0.04

G i b '1) =
1 + aj z~l + a2 z-2 + a3 z~3

z

#  Pole-Placement PIP #
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With the values n = 3 and m = 4, the PIP algorithm this time solves the following 

system of equations:

X . V = ß

where,

0 0 0
bi 0 0
b a - b j bi 0
b3 - b 2 b2 - b j  bt
- b 3 b3 ~  b2 b2 — bi

0 — b3 b3 -  b2
0 0 ~  b3

1 0 0 0
ai ~  1 1 0 bi
a2 -  a i ai “  1 1 b2
a3 - a 2 a2 “ a! -  1 b3
“  a3 a3 -  a2 a2 “  a! 0

0 ~  a3 a3 -  a2 0
0 0 - a 3 0

V is such that:

VT = [ f0, fi, f2, gi, g2, g3, kj ]

Because of the size of the system to be solved, a more stable algorithm based on 

singular value decomposition algorithm for a matrix was used.

The first experiment whose response is shown in figure (4.21) considered a com­

mand signal of 80% then 70%. One unique pole of 30 minutes, close to the rise 

time of the system, was assigned for the closed-loop leading to a polynomial of 

the form:

d(z-1) = 1-0.96 z_1

As expected, the response was rather slow and smooth, and the control was slug­

gish. Figure (4.22) shows the variations of the parameter estimates which con­

verged to:

h  = ~  1.0544 a2 = -  0.2656 S3 = 0.3437 

bi = 0.0978 b2 = 0.0199 b3 = 0.0659
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Figure 4.21. Closed-loop response of Atracurium 

model under self-adaptive PIP control 

with one assigned closed-loop pole of 

30 min.
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equivalent to the following positions in the z plane:

zeros: ( -  0.1017 ± 0.8145 i) 
poles: 0.9563 ; 0.6505 ; -  0.5525

In the hope of increasing the control activity, another run was performed in which 

a faster pole of 15 minutes was assigned this time leading to the response of 

figure (4.23) which shows how the speed of the transient was improved without 

deteriorating the control signal. The parameter estimates converged to the follow­

ing set of values.

aj = -  1.1053 a2 = -  0.2449 a3 = 0.3699

bi = 0.0089 b2 = 0.0168 b3 = 0.0011

equivalent to the following positions in the z plane:

zeros: -  1.8187 ; 0.0679 
poles: 0.9577 ; 0.6996 ; -  0.5521

Given the conditions for stability of the algorithm presented in section 4.4, it is 

stated that there should be no pole-zero cancellations in the transfer function

B('z and no conditions were imposed as to whether the transfer function 
A(z-1)

estimated was stable, unstable, or exhibited non-minimum phase characteristics, 

clearly this explains why the self-tuning properties were maintained despite the 

poor position of one of the zeros.

In practice, if  the excitation is poor, adding to the fact that the polynomials are of 

high orders, the estimated parameters could well suggest the unfortunate situation 

of a near pole/zero cancellation making the system uncontrollable. This situation 

could in fact be avoided by using powerful algorithms for matrix inversion or sim­

ply reducing the order of the model considered (Young et al., 1987). Hence, an 

underparameterized second order model with a unit time-delay was assumed and
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Figure 4.23. Same conditions as in figure (4.21) 

but with one assigned closed-loop 

pole of 15 min.
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the same conditions as above were considered both for the estimation and the 

self-tuner. A 15 minute pole was assigned for the closed-loop characteristic equa­

tion. Figure (4.24) shows the response obtained which, compared with the previ­

ous one, seems to be smoother on the take-over phase from the fixed PI controller. 

The final parameter estimates have converged to the following values:

aj = -  1.2687 S2 = 0.2959 bx = -0 .014 b2 = 0.02

equivalent to a continuous-time transfer function having a gain and time-constants 

of:

Gain = 0.22 Ti = 0.85 minute T2 = 24.94 minutes

Finally, a last run was conducted in which the parameter estimates were initialised 

to:

0i = [ -1.51 0.54 0.02 0.01 ]

The covariance matrix was set to P = 102.I and the forgetting factor to p = 0.995. 

Figure (4.25) representing the response obtained shows a well damped transient. 

The control signal however was highly activated when the adaptive PIP took over 

from the PI reflecting a high frequency component probably due to the initializa­

tion of the estimates, which this time converged to the following values:

a! = -1 .5571  a2 = 0.5734 bx = 0.0108 b2 = 0.0097

equivalent to a continuous-time transfer function having a gain and time-constants 

of:

Gain = 1.2577 Tj = 1.94 minutes f 2 = 24.18 minutes

The time-constants values indicate the presence o f a predominant one, while the 

gain is close to the system’s open loop gain of 1.0.
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Figure 4.24. Same conditions as in figure (4.23) 

but assuming a second order discrete­

time model
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Figure 4.25. Same conditions as in figure (4.24) 

but with non-zero initial parameter 

estimates
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4.7 SENSITIVITY OF THE PIP DESIGN TO THE PRFSPM rp  

OF TIM E-DELAY

In the previous section emphasis has been placed on the requirement that one 

should have an idea about the frequency-range under which the procees should 

operate in order to successfully filter the data for the estimator (i.e, not to cut-off 

any frequency relevant to the system). Also, one of the uncertainties that could be 

difficult to some currently designed self-tuning controllers is the knowledge of 

time-delay or dead-time. Hitherto, the self-adaptive PIP has been applied under the 

presumption that this precise value was known. Consequently, the parameter esti­

mates were updated at each sample with this full knowledge and the performances 

were all acceptable, however, in most cases this value is unknown or subject to 

variations. For this reason and in order to assess further the robustness of the 

adaptive PIP controller, a series of experiments was performed in which the value 

of dead-time in the model was taken to be different from the one in the system. 

The experiment consisted of assuming a time-delay of 1 sample for the system 

associated with the drug Atracurium while the model included a changing time- 

delay between 1 to 2 samples every 100 minutes. A pair of relatively fast poles of 

5 and 3 minutes was assigned for the closed-loop charateristic equation. Notice 

that the control signal in figure (4.26) was only active 40 samples after the set- 

point change took place due to the fact that the estimates did not have knowledge 

o f the delay change until this time. At sample 300 where the delay went back to 1 

sample the control tried to recover its steady level but it was slow due to the slow 

assigned pole. The parameter estimates finally assumed the following values:

aj =  -1.0682 a2 = -0.2239 a3 = 0.3159 

= 0.0128 b2 = 0.0079 b3 = 0.0099
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Figure 4.26. Closed-loop control performance of

the self-adaptive PIP with Atracurium 

model under unknown and variable 

time delay. Two poles assigned;

5 min. and 3 min.
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equivalent to the following positions in the z plane:

zeros: (-0.3086 ±  0.8235 i) 
poles: 0.9574 ; 0.6324 ; -  0.5217

The same conditions were assumed for another run in which the Pancuronium- 

Bromide drug model was considered. Time-delay changes of 2 then 4 samples 

were made at iteration 70, and back to 2 samples again at iteration 140. Two poles 

of 5 and 3 minutes were assigned for that purpose. Figure (4.27) shows how the 

controller after being excited was aware of the change in time-delay, resulting in 

oscillations in the response. The parameter estimates suggesting a non-minimum 

phase system converged to the following values:

6 f = [-1.4706 0.5089 0.0308 O.O8I9] 

equivalent to:

Gain = 2.94 Tj = 1.71 minutes T2 = 11.06 minutes

If on the other hand a slower characteristic equation in the image of 2 poles of 8 

and 5 minutes is assigned, the response is that of figure (4.28) which could be 

described as relatively slow. The control signal on the other hand remains smooth 

despite the big changes in time-delay.

4.8 PIP DESIGN WITH DEAD-TIM E COMPENSATION

Time-delay problems are common phenomena with processes such as chemi­

cal, biological, or just industrial. This can be due to different factors such as meas­

urement or control, and their difficulty resides in the dead-time between taking the 

control action and the direct effect of that action being seen at the output Stimula­

tion recordings of the EMG and control signals (Linkens et al., 1982) confirm the 

presence of such dead-time namely in Pancuronium induced muscle relaxation in
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dogs. Space prohibits a full Nyquist-stability analysis widely available in the 

literature (Marshall, 1979), but it is worthwhile noting that stability problems aris­

ing from this delay are due to the excessive phase-lag. Conventional closed-loop 

compensations in the form of a phase-lead network would appear attractive as far 

as stability is concerned, but it is known that the maximum phase-lead readily 

available from this network cannot exceed 70 degrees. Therefore, for systems pos­

sessing effective phase lags greater than this value such idea would certainly be 

ineffective unless several of them are used in cascade, an undesirable solution 

since the overall network would act as a "noise-amplifier".

As time-delays inevitably form an integral part of a system, researchers sensed the 

need for alternative solutions. First, it was Smith (1957, 1959) who proposed a 

principle which bears his name and known as the Smith predictor principle 

which was to revolutionize the way in dealing with such situations. Several other 

ideas based on a classical or adaptive approach followed. For instance, Kurz and 

Goedecke (1981) proposed an interesting adaptive approach in which the value of 

time-delay could be estimated at regular sampling intervals: a model G* of the 

process under consideration is assumed and a model G of the same process is 

estimated. Successive tests in a total of 4 are run to fit G* with G. Good adaptive 

control is shown to be possible at the expense of course of an extra computational 

burden. However, good fitting cannot be guaranteed unless a reasonable excitation 

is present all the time the algorithm is run. Space prohibits investigating such 

approach, instead, the next section endeavours to review the idea of a Smith pred­

ictor together with the idea of the B(z-1) expansion method.
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Figure 4.27. Closed-loop control performance of 

the self-adaptive PIP with Pancuroni­

um model under unknown and variable 

time delay. Two poles assigned;

5 min. and 3 min.
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Figure 4.28. Same conditions as in figure (4.27)

but with two assigned closed-loop 

poles of 8 min. and 5 min.
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dogs. Space prohibits a full Nyquist-stability analysis widely available in the 

literature (Marshall, 1979), but it is worthwhile noting that stability problems aris­

ing from this delay are due to the excessive phase-lag. Conventional closed-loop 

compensations in the form of a phase-lead network would appear attractive as far 

as stability is concerned, but it is known that the maximum phase-lead readily 

available from this network cannot exceed 70 degrees. Therefore, for systems pos­

sessing effective phase lags greater than this value such idea would certainly be 

ineffective unless several of them are used in cascade, an undesirable solution 

since the overall network would act as a "noise-amplifier".

As time-delays inevitably form an integral part of a system, researchers sensed the 

need for alternative solutions. First, it was Smith (1957, 1959) who proposed a 

priciple which bears his name and known as the Smith predictor principle which 

was to revolutionize the way in dealing with such situations. Several other ideas 

based on a classical or adaptive approach followed. For instance, Kurz and 

Goedecke (1981) proposed an interesting adaptive approach in which the value of 

time-delay could be estimated at regular sampling intervals: a model G* of the 

process under consideration is assumed and a model G of the same process is 

estimated. Successive tests in a total of 4 are run to fit G* with G. Good adaptive 

control is shown to be possible at the expense of course of an extra computational 

burden. However, good fitting cannot be guaranteed unless a reasonable excitation 

is present all the time the algorithm is run. Space prohibits investigating such 

approach, instead, the next section endeavours to review the idea of a Smith pred­

ictor together with the idea of the B(z-1) expansion method.
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4.8.1 The Classical Smith Predictor Scheme

Before being involved in any mathematical formulations, the following sum­

marizes the idea of Smith’s principle;

Suppose that a controller C has been designed for a delay free system represented 

by its transfer function G whose response is shown in figure (4.29).

As has been mentioned earlier, and since the time-delay is part of a system and 

cannot be removed, Smith’s principle simply states that the response illustrated in 

figure (4.30) is ideally the response that should be obtained using a controller C* 

for the same system but incorporating the time-delay. The response in figure 

(4.30) is that of figure (4.29) but delayed with x. Consequently, it is interesting to 

note that all specifications for the system performance need only to be formulated 

considering the associated delay free system.

Now, consider the closed-loop transfer function associated with figure (4.29)

TFj = C G  
1 + C G (4.25)

whereas for figure (4.30):

= _ C M 3 _ e ^ _

1 + C* G e " ST (4.26)

Smith’s principle is equivalent to: 

TF2 = TFj e -ST

i.e:

C* G e ~ ST _  C G  
1 + C* G e " ST 1 + C G  C

Hence,

# Pole-Placement PIP #



Figure 4.29. Output response of a delay-free system

Figure 4.30. Output response of a delayed system
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C* = ________ C________
1 + C G (1 -  e “ sx)

(4.27)

The overall Smith’s scheme could ideally be represented as in figure (4.31). How­

ever, this is an unrealistic representation since the model considered does not 

always coincide exactly with the true process. Instead, the representation o f the 

scheme in figure (4.32) is adopted leading to an overall transfer function TF2 of 

the form:

TF2 = ___________ C G e T____________

1 + C G  + C ( G e - ST- G 0 e " STo)
(4.28)

The term (G eT -  G0 eT°) is often called the mismatch-term.

The degree of the acceptable mismatch depends mainly on the magnitude of the 

controller considered and a full study of how this affects the stability properties of 

a system is of great interest and is reviewed in Marshall (1979). Nevertheless, in 

order to demonstrate this idea, the non-linear muscle relaxant model was simulated 

in the context of a Smith predictor and according to figure (4.33). The controller 

being considered in this case is the PID network derived in chapter 3 and whose 

parameters p0 = 3.82, pj = -6.39, p2 = 2.62 were optimized using the PSI pack­

age program (Van Den Bosch, 1979).

Simulation Results

First the scheme was tried under matched conditions. Figure (4.34) shows the 

performance of the PID controller when the muscle relaxant model associated with 

Pancuronium-Bromide was considered, and figure (4.35) the corresponding perfor­

mance when the same system associated with Atracurium was used, both models 

using the nominal values previously specified. Even if the delay was increased to a 

higher value of 3 samples, the scheme under matched conditions still showed a
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Figure 4.31. Block diagram of a Smith predictor



Figure 4.32. Block diagram of a Smith predictor : 

mismatch conditions



Figure 4.33. Muscle relaxation control system including 

a Smith predictor
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Figure 4.34. Closed-loop response of Pancuroni­

um model under Smith predictor cont­

rol (matched conditions)
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Figure 4.35. Closed-loop response of Atracurium 

model under Smith predictor control 

(matched conditions)



#  Chapter 4: # - 75 -

very good performance with both models as shown in figure (4.36) for Pancu­

ronium and figure (4.37) for Atracurium. In order to assess the performance of the 

scheme under mismatch conditions, the system associated with Pancuronium was 

simulated with a time-delay of 4 samples, whereas the model assumed a delay of 

1 sample only. Figure (4.38) shows how the performance deteriorated due to the 

phase-lag induced by this large dead-time. The performance was even worse when 

a mismatch in the dynamics was considered. Indeed, as figure (4.39) demonstrates, 

oscillations were produced when the system associated with Pancuronium was 

simulated with Kj = 3.5 Tj = 1.0 min. T2 = 10.0 min. while the model assumed 

nominal values of Kj = 3.5 Tj = 2.0 min. T2 = 20.0 min.. The performance also 

degraded when the system associated with Atracurium was considered. In this case 

the corresponding system was simulated with:

Kj = 1.0

Tj = 1 min.

T2 = 2 min.

T3 = 10 min.

T4 = 30 min.

whereas the model assumed nominal values of :

K j = 1.0 

Tt = 4.81 min.

T2 = 3.08 min.

T3 = 34.36 min.

T4 = 10.64 min.

The response of figure (4.40) shows the consequence of a wrong dynamics

assumption.

The series of experiments conducted above demonstrated how the Smith predictor 

scheme could be robust in counteracting the effects of time-delay when a correct

# Pole-Placement PIP #



No
rm

al
is

ed
 I

/P
 a

nd
 0

/P

Figure 4.36. Same conditions as in figure (4.34)

but with t=3 min.
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Figure 4.37. Same conditions as in figure (4.35)

but with t=3 min.
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Figure 4.38. Closed-loop response of Pancuroni­

um model under Smith predictor con­

trol (mismatch conditions; xm=l min. 

t s=4 min.)
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Figure 4.39. Closed-loop response of Pancuroni­

um model under Smith predictor con­

trol (mismatch conditions; T2=10 min. 

T j= l min.)
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Figure 4.40. Closed-loop response of Atracurium 

model under Smith predictor con­

trol (mismatch conditions; T j= l min. 

T2=2 min. ; T3=10 min. T4=30 min.)
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model of the process is assumed. However the same technique could prove to 

have undesirable consequences when the magnitude of the error between the sys­

tem dynamics and the dynamics assumed in the model is somewhat large. This, as 

already seen is reflected in the mismatch term which should be kept as near as 

possible to zero. Practically, this is not always possible as current identification 

tools guarantee only an approximate model rather than an accurate one.

With the advance witnessed in self-tuning and adaptive technique, the need for 

adapting the previous scheme was quickly sensed. This is the subject of the next 

section which looks at the digital version of the Smith predictor.

4.8.2 The Extended Smith Predictor (ESP')

Originally, the Smith predictor was developed for continuous-time control. 

However, the idea can be extended to include discrete-time control (Marshall, 

1974) as illustrated by figure (4.41). In this figure, C is the controller designed in 

delay free conditions, 8' is the minimum assumed model time-delay (used in the
A  A

forthcoming equations), B and A are the estimated polynomials in the backward 

shift z-1. At this stage it is worth noting that the model parameters are estimated 

assuming the time-delay 8', and it is the same parameters that are used to calculate 

the delayed as well as the free version of the output.

If the controller C is represented by the PIP algorithm, the diagram would be one 

of figure (4.42), where I, G, and F are as defined in section (4.4), i.e:

- 1 integral of error term.

- F proportional and feedback filter.

- G forward path filter.

Because of the inclusion of the PIP design method, the resulting control scheme 

might be termed as: Extended Smith Predictor or ESP (Chotai and Young,

#  Pole-Placement PIP #



Figure 4.41. Block diagram of the Smith predictor 

in a digital form



Figure 4.42. Block diagram of the extended Smith predictor (ESP) 

control system
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1988).

From the last figure the corresponding closed-loop transfer function must be 

derived. For this purpose, assume that the process is linearized around an operat­

ing point by a discrete model of the usual form:

f t  -  B y 1)
Uk A(z_1) (4.29)

where B(z-1) and A(z-1) are the polynomials in the backward shift o f the usual 

form:

B(z_1) = b! z_I + b2 z~2 + • • • + bm z_m 

A(z_1) = 1 + a! z-1 + a2 z~2 + • • • + a„ z_n

Using the latter figure it follows that:

1 R
Uk =  1 [ ° k ~  C(yk -  ydelay) ~  YfreJ ] ~  F  y  Uk ] (4.30)

A

where:

A
B

Yfree “  j  uk
A

_  B z~5/
y  delay ^  u k

n Z~Syk = B —  uk
A  A

B and A and 8 represent the estimated model parameters 

Substituting and rearranging leads to:

B z“5

yk = uk
G + 1 [ B z“8 B z t l l T B , r B

----------------- r---- J +  I -r* + F -T-
A A A A

(4.31)

Hence, the specification of system performance can be obtained in familiar delay 

free PIP design terms. Consequently, the set of simultaneous equations o f the form
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L . V = P to be solved in this case reduces to a smaller size than the one that 

would be obtained if the delay was presumed to be known as it will be seen in the 

next section. If the parameters B, A, and 8 are modelled exactly then the 

mismatch term mentioned in section 4.8.1 and represented here by the term:

B z~5 B z~8/ .
1 A A J

would be nil in equation (4.31) reducing it therefore to the following expression:

yic = uk

B z~8 
A

G + I-t- +F  A
_B
A

(4.32)

Clearly, it is important to acknowledge that this mismatch-term is typical of many 

time-delay control systems (Marshall, 1979). However, because the predictor is 

being used in a self-tuning context, the model parameters are updated at every 

sampling interval. Therefore, the parameters of the control-law governed by equa­

tion (4.31) are adjusted accordingly, making the overall loop less sensitive to the 

magnitude of this mismatch-term. It is concluded that the Smith predictor com­

bined with self-tuning is in the long-term less sensitive to changes that may occur 

in the system compared to the classical version (Gawthrop, 1977).

Simulation Results

In order to verify some of the above assertions, a series of experiments was 

undertaken under such a scheme.

Throughout the following, a command signal o f 80% then 70% was used. For 

estimating the model parameters, a UDU factorisation of the RLS routine was 

used with initial covariance matrix and forgetting factor set respectively at:

P = 104.I and p = 0.995 for Pancuronium model

P = 103.I and p = 0.995 for Atracurium model

#  Pole-Placement PIP #
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The initial parameter estimates were all set to 0.0 unless otherwise specified. To 

allow the self-tuner to gather reasonable data, a fixed controller in a form of a PI 

was used for the first 20 samples with the following parameters:

Kp = 0.4 Kj = 0.02 for Pancuronium drug model

Kp =  0.8 Kr =  0.04 for Atracurium drug model

The non-linear muscle relaxation system associated with Pancuronium-Bromide 

model or the Atracurium one was simulated in a continuous form using a fourth 

order Runge-Kutta method with fixed-step length of 0.1 and a sampling interval of 

1 minute.

The first experiment considered the second order Pancuronium model with the 

nominal values presented in section 3.2 with a unit time-delay. The estimated 

model structure also assumed this exact value. A relatively fast pole of 5 minutes 

corresponding to a polynomial of

d(z-1) = 1 - 0 .8  z"1

was assigned to the closed-loop characteristic equation. As shown in figure (4.43), 

the performance was good. During the first 50 samples the controller was still 

estimating the parameters, and after the first set-point change they converged to 

sensible values which allowed the self-tuner to track the set-point better. At the 

end o f the run, these parameter estimates converged to:

% = ~  1-4746 a2 = 0.5193 bi = 0.0660 b2 = 0.0676

equivalent to a gain and time-constants of:

Gain = 2.99 f x = 1.84 minutes T2 = 8.86 minutes 

The same run was repeated, this time with some initial values for the parameter

estimates which assumed a gain and time-constants of:

# Pole-Placement PIP #
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Figure 4.43. Closed-loop response of Pancuroni­

um model under ESP control



Gain = 2.5 
% =  2.0 
T2 = 20.0

The resulting response shown in figure (4.44) produced an improvement since the

parameters were better conditioned in this particular case. They indeed converged 

to:

= -1.4268 a2 = 0.4749 b| = 0.0741 b2 = 0.0724 
equivalent to a gain and time-constants of:

Gain =  3.04 f x = 1.57 minutes T2 = 9.28 minutes 

When associated with the third order Atracurium drug-model, the controller pro­

duced the response of figure (4.45). The control signal was smooth despite the fast 

pole assigned (5 minutes), and the parameter estimates gave the following final 

values:

§! = -  1.1239 a2 = -  0.2279 a3 = 0.3705

&i = 0.0106 b2 = 0.0129 b3 = -  0.0004 

equivalent to the following positions in the z plane:

zeros: -  1.2472 ; 0.0303 
poles: 0.9582 ; 0.7201 ; -  0.5445

For the next series of experiments a delay of 1 minute was assumed in the model 

while the one in the system was set at 2 minutes for the Pancuronium and Atracu­

rium models. A pair o f 2 poles o f 5 and 3 minutes was assigned to the closed-loop 

characteristic equation. Figures (4.46) and (4.47) respectively for Pancuronium- 

Bromide and Atracurium demonstrate some overshoot amounting to 4%  as well as 

some undershoot due to the phase-lag introduced by the delay wrongly asumed in 

the respective models. The control signal in figure (4.47) did not deteriorate 

because the design specification was in delay free terms reducing therefore the I
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Figure 4.44. Same conditions as in figure (4.43) 

but with non-zero initial parameter 
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Figure 4.46. Closed-loop response of Pancuroni­

um model under ESP control (mism- 

match conditions ; x =2 min.)
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Figure 4.47. Closed-loop response of Atracurium 

model under ESP control (mismatch 

conditions; i s=2 min.)
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matrix being inverted to a dimension of (3x3) rather than (4x4).

Clearly, the results presented above showed that the ESP scheme performs better 

than the classical Smith predictor either under matched or mismatch conditions. In 

fact, the 6 experiments previously performed could be considered as representing a 

mismatch case since the system parameters were never exactly identified due to 

the harsh non-linearities exhibited in both systems. The next section looks at 

another form of dead-time compensation which consists of enhancing the value of 

time-delay in the B(z-1) polynomial and expecting its appropriate coefficients to 

tend to zero.

4.8.3 The BfaT1) Polynomial Expansion Method

This method consists of expanding the polynomial B(z_1) in equation (4.8) by 

as many coefficients as necessary to accomodate any possible increases or varia­

tions in the value of time-delay. Depending upon this value and providing there is 

sufficient excitation acting on the system, the appropriate coefficients of the same 

polynomial remain significant while the others would eventually tend to zero or 

assume a very small or negative value. This approach combined with the PIP con­

trol algorithm is considered to be more general than ESP, and for this reason it 

has been named Generalized Smith Predictor control (GSP) (Chotai and Young, 

1988).

In order to understand the polynomial expansion method, consider the second 

order system describing the Pancuronium drug dynamics. For a delay free system 

the polynomial B(z-1) would be written as:

B(z-1) = bj z-1 + b2 z~2

If a minimum time-delay of 1 minute is assumed but knowing that this value is

#  Pole-Placement PIP #



subject to variations of a maximum of 4 minutes, then the BCz"1) polynomial 

should be expanded by a number of coefficients Nc such that:

Nc -  Maximum expected delay — Minimum delay assumed 

In our case Nc =  3

Hence, the structure of the B(z-1) becomes:

Bexp(z-1) = z~l (bj Z'1 + b2 z“2 + b3 z"3 + b4 z"4 + b5 z-5) 

or:

Bexp(z-1) = (b2 z"2 + b2 z~3 + b3 z-4 + b4 z~5 + b5 z"6)

If for instance the system’s time-delay is 2 samples, then the Bexp(z_1) would 

ideally have the following form:

Bexp(z-1) = z_1 (b2 z-2 +  b3 z~3)

where the coefficients b1? b4, b5 are all nil.

If on the other hand, the time-delay is equal to the maximum value of 4 samples, 

then the Bexp(z_1) polynomial becomes:

Bexp(z-1) = z '1 (b4 Z'5 + b5 z~6)

where this time, the coefficients blt b2, b3 are equal to zero.

Simulation Results

In order to demonstrate the above idea, one experiment for each of the two 

systems so far considered was carried out, in which the BCz”1) polynomial in 

equation (4.8) was expanded according to the maximum value o f the expected 

time-delay in the system.

The system describing the Pancuronium-Bromide drug dynamics was considered

# Chapter 4: #
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first The gain and time-constants are those corresponding to the nominal values. 

The delay in the system was made to vary from a value of 2 minutes to that of 4 

minutes every 70 iteration-intervals. A one minute sample-delay was assumed in 

the second order linear model and the numerator Biz’ 1) polynomial was expanded 

by Nc coefficients, Nc = 3, taking therefore, the number of estimated parameters 

to: n +  m = 2 +  5 = 7.

Hence, the following model transfer function is adopted:

Yk _  z"1 (bt z-1 + b2 z~2 + b3 z~3 + b4 z-4 + b5 z~5)

uk 1 + aj z-1 + a2 z~2

Initial conditions include a covariance matrix of P = 103.I and parameter estimates 

set at 6i = [ -1 .55  0.57 0.04 0.03 0.0 0.0 0.0 ]. Because of the large number 

o f parameters involved in the estimation part, and to ensure that correct parameter­

ization is achieved, a forgetting factor of p = 0.95 was adopted throughout. Fig­

ure (4.48) shows the performance of the controller when a pair of poles of 5 and 3 

minutes was assigned to the closed-loop characteristic equation. Despite the heavy 

burden o f having to estimate such a considerable number of parameters (whose 

time-variations are shown in figure (4.49)) as well as to invert a matrix of dimen­

sion (8x8), the overall strategy coped rather well following the two severe changes 

made in the delay respectively at iterations 70 and 140. The slight fluctuations in 

the control signal that appeared during the run were due to the variations in the 

coefficients o f the B(z_1) reflecting the actual system’s time-delay. Table (4.1) 

illustrates the variations for these coefficients at the end o f each phase.
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Parameter Estimates Convergence

Parameter estimates
Time-delay value(Min.) from...to...

2 (0 to 70) 4 (71 to 140) 2 (141 to 300)
A

at -1.6377 -1.5937 -1.7386
A

a2 0.46639 0.6239 0.7632
A

bi -0.0135 -0.0139 -0.00597
A

b2 0.0707* -0.0042 0.0724*
A

b3 0.0476* -0.0156 0.0446*

b4 -0.0099 0.0739* -0.0185
A

bs -0.0132 0.0396* -0.0161

Table 4.1. Model parameter estimates for figure (4.48)

The second experiment considered the muscle relaxation system associated with 

Atracurium. The delay in the system was varied from 1 to 2 minutes every 100 

minutes. A one minute delay was assumed in the model. The B(z-1) polynomial 

was expanded by one coefficient leaving the following transfer function to be 

estimated:

__ z"1 (bt z~l + b2 z~2 + b3 z~3 + b4 z"4) 

yk 1 + a! z '1 + a2 z '2 + a3 z~3

Figure (4.50) shows the resulting response when the same combination of poles as 

before was adopted for the characteristic equation. The response was good despite 

the harsh conditions o f the run namely a changing delay simultaneously with a 

changing operating point. At the end of the run, the parameter estimates converged 

to:

* Significant values
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= -  1.7708 a2 = + 0.8474 a3 = -  0.0654

bj = 0.0054 b2 = 0.0090 b3 = -  0.0017 b4 = 0.0013

equivalent to the following positions in the z plane:

Zeros: -  1.8992 ; (0.1163 ± 0.3365 i) 
poles: 0.9558 ; 0.7200 ; -  0.0950

The same technique was used in conjunction with the extended Smith predictor 

scheme previously reviewed in section 4.8.2. By so doing the whole concept con­

tradicts Smith’s principle but improvement over the basic case was proven to be 

possible.

Hence, assuming the same conditions as in figures (4.48) and (4.50) respectively, 

two experiments combining the ESP and GSP schemes at the same time were 

undertaken leading to the responses in figures (4.51) and (4.52) where it can be 

seen that the performances have greatly improved compared to figures (4.46) and 

(4.47) where the degree of the B(z-1) polynomial was kept at its minimum value 

(i.e: degree 3 for Pancuronium-Bromide, and 4 for Atracurium).

Other techniques based around the same idea have since followed. For instance to 

improve the stability and speed o f the response o f the closed-loop system, Chien 

et al. (1984) proposed an algorithm by which the delay-free process model was 

redefined as being:

Bexp(l)
^delay-free A (z~ l)  (4 -3 3 )

where:

m
Bexp( l)  = £ b i

i=l
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One implication of this formulation is that no delay term will appear in the 

closed-loop characteristic equation implicitly or explicitly, leading therefore to a 

larger stability zone. A slight improvement has been shown to be possible.

Clearly, the above technique demonstrated an improvement of performance of the 

controller at the cost of an increase in the number of estimated model-parameters. 

Very often it is necessary to take precautionary measures which would eventually 

ensure the obtaining of reasonable parameter estimates such as covariance-matrix 

resetting and variable forgetting factor. As these methods could be very effective 

in certain cases, they may well prove ineffective in a heavily noisy environment as 

far as the identification side is concerned. In the case of muscle relaxation system, 

the disturbances could be due to diathermy problems (severe electrical interfer­

ence), and to movements of the patient’s arm or parts of his (or her) body where 

the EMG signal is being picked-up.

In order to assess the robustness of the GSP algorithm under such conditions, an 

experiment was carried out in which an output disturbance with a 4% amplitude 

was introduced at iterations 50 and 70 respectively for Pancuronium and Atracu- 

rium and lasting 3 minutes. Initial conditions were similar to those adopted for 

figures (4.48) and (4.50). The upper traces o f figures (4.53) and (4.54) show the 

output response for each system under such conditions. The control signals were 

energetic indeed in trying to reject the disturbance. Very often such behaviour is 

not always welcomed, a smooth reaction to load disturbances is rather prefeired 

especially when actuators are part of the system. One way to counteract this is to 

assign slower poles to the closed-loop characteristic equation at the cost of a 

slower recovery from this disturbance.

The second experiment considered the muscle relaxation system comtpted with a 

sequence o f white noise. In order to ensure that the latter is white, its

#  Pole-Placement PIP #
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corresponding values at different values of time must be uncorrelated. In practice, 

it is rather difficult to generate such sequences but it is beyond the scope of this 

study to expand on the subject. However, a particularly attractive approximation to 

white or pseudo-random noise lies with the sequence normally known as PRBS 

(Pseudo-Random Binary Sequence). The technique is not complicated and more­

over its associated amplitude and periodicity can easily be monitored. Many 

classes of such pseudo-noise sequences do exist and for the following the qua­

dratic residue code or Legendre sequence was chosen. It corresponds to the fol­

lowing value o f N  (total number of bits in the sequence).

N  = 4 “ - 1 (4.34)

where N is a Mersenne prime (Golomb, 1964), and a  is  an integer. In this way 

two levels o f sequence xj may be constructed by putting:

i+ ampl. if i is a quadratic modulo N 
-  ampl. otherwise

this is equivalent to finding those values of i for which:

i = t 2 - m N  (4.35)

where m is an integer such that:

m N + l i ^ ( m + l ) N + l  ^  3^

Those values o f i that satisfy these equations for 2 £  t £  ~  +  1 gjve ^

locations in the sequence o f one state in the binary digit. The state of the zeroth 

position may be chosen at will to make the average value of the sequence equal to

either plus or minus
N

For the following experiments a value of 19 was chosen for N  satisfying therefore 

equation (4.34) above. The amplitude o f the PRBS was taken to be ampl. = 1%

# Pole-Placement PIP #



Hence, the resulting sequence would be o f the form:

-  ampl. + ampl. -  ampl. -  ampl. + ampl. + ampl.
+ ampl. + ampl. -  ampl. + ampl. -  ampl. + ampl.
*- ampl. — ampl. — ampl. — ampl. + ampl. + ampl. — ampl.

The whole sequence which was added to system’s output was repeated as many 

times as the experiment required it. The conditions under which the muscle relaxa­

tion system was simulated are similar to those of figures (4.48) and (4.50). The 

value of the initial covariance matrix was taken to be P = 102.I, and the forgetting 

factor equal to 0.995. The initial parameter estimates were all taken to be 0.0. The 

results shown in figures (4.55) and (4.56) demonstrate how the adaptive controller 

coped well despite the persisting excitation of the PRBS signal, and the changing

value o f the time-delay. As a consequence, the parameter estimates obtained were 

poor and converged repectively to:

ai = -0.4345 a2 = -0.4346 b1 = 0.1399 b2 = -0.1518  

b3 = 0.1478 b4 = 0.0395 b5 = 0.2228

for Pancuronium-Bromide, and

a j = - 0.2716 a2 = - 0.3515 a3 = -  0.2963

bj = -  0.048 b2 = 0.0393 b3 = -  0.0366 b4 = 0.0466

for Atracurium.

To conclude this chapter, it is worth mentioning that the foregoing results show 

clearly that the PIP scheme performed well under extensive simulation studies. 

Arising from the new concept of NMSS, it is simple to formulate. Moreover, 

because it is considered as an extension to the well known PI controller already 

applied to the muscle relaxation system, it represents an attractive candidate for a 

future clinical application. Results also showed little sensitivity of the algorithm to 

time-delay changes as the approach allowed for inclusion o f the digital Smith
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predictor ESP idea together with the technique of overparameterization under the 

GSP scheme. The GSP algorithm performed better than the ESP algorithm, but 

both schemes have demonstrated superiority to the classical Smith’s approach, 

especially under heavy mismatch conditions.

The next chapter looks at another adaptive technique. Based on a predictive 

approach, it is specially aimed at solving the problems caused by the time-delay. 

Its associated algorithm is known as the Generalized Predictive Control algorithm 

(GPC). Its development and application to the muscle relaxation system will fol­

low next.
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CHAPTER 5

GENERALIZED PREDICTIVE CONTROL fOPCl 
OF MUSCLE RELAXANT ANAESTHESIA

5.1 INTRODUCTION

Designing controllers to overcome time-delays has always represented a seri­

ous challenge for engineers from almost all walks of life. Also the previous 

chapter proved that this challenge grows even bigger when the value of this time- 

delay is unknown or is prone to variations. PID controllers whose benefits are still 

so much praised within industry could prove ineffective in trying to overcome this 

problem. Indeed, despite their derivative action they are often unable to provide 

the right phase advance needed and consequently require retuning in order to 

encompass such variations, an operation which requires considerable trial and error 

efforts which could be tiresome and altogether time-consuming.

In cases with significant dead-times, the method of O.J.M Smith known as the 

Smith predictor has been shown to be very advantageous* indeed, but on the 

other hand its performance may deteriorate considerably in the presence of a large 

process mismatch, which has led industry to prefer the manually tuned classical 

PID networks which do not involve deriving realistic dynamic process models. 

This mismatch problem has always been one of the major topics for those who 

have been involved with time-delay systems (Marshall, 1979; Gawthrop, 1977) 

and the advent achieved in the computer technology in the 70’s allowed self­

tuning adaptive control, whose origin goes back to the 50’s (Gregory, 1959), to 

emerge as another alternative for such a problem.

* See section 4.8.1
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Early well known self-tuning adaptive algorithms included the minimum variance 

controller (MV) (Astrom and Wittenmark, 1973), the generalised minimum vari­

ance (GMV) with its refined version developed by Clarke and Gawthrop (1975, 

1979), and the pole-placement algorithm (Wellstead et al., 1978a, 1978b). Over 

the years these methods proved to be far superior to the classical PID controllers 

providing the model order as well as the corresponding dead-time value are care­

fully selected. Indeed, the MV controller showed high sensitivity to a wrongly 

assumed or variable value of time-delay, whereas the improved version of Clarke 

and Gawthrop (GMV) was somewhat more robust providing it is rightly detuned. 

Practical work also showed that the pole-placement approach is robust against this 

assumption (the delay-value is enhanced within the numerator polynomial o f the 

discrete-time transfer function), but overparameterization often leads to common 

factors in the estimated polynomials resulting in deterioration of the controller per­

formance.

Since the emergence of self-tuning adaptive techniques as a powerful tool for han­

dling complex design problems, it has always been the dream of plant engineers to 

be able to come up with an algorithm which would eventually assemble the 

advantages of the above cited approaches while rejecting their drawbacks. Long- 

range predictive control algorithms (LRPC) seem to some extent to satisfy such 

hopes. The principle of this approach will be clearer in the next sections. Suffice 

to say here that the late 70’s witnessed the development o f a number o f computer 

control algorithms which used long-range predictions of the process output. Early 

work involved the development of the model algorithmic control algorithm (MAC) 

(Richalet et al., 1978), in which the output of a linear time-invariant system at 

discrete time instants is described by means of a discrete impulse response. The 

algorithm then makes use of an approximation of this system’s impulse response
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by a finite number of terms, which reflects the so called prediction horizon.

Also during that period, the dynamic matrix control algorithm (DMC) (Cutler and 

Ramaker, 1980) enjoyed great popularity. Evolving from a technique that 

represents process-dynamics with a set of numerical coefficients together with a 

least-squares formulation, it promised to solve complex control problems, espe­

cially those associated with systems exhibiting large dead-times.

In contrast to the MAC and DMC approaches where the process is described by 

dynamic impulses or step responses, the extended prediction self-adaptive control 

algorithm (EPSAC) (De Keyser and Van Cauwenberghe, 1979a, 1979b, 1985) uses 

an ARMA** model representation of the process dynamics. The one-step ahead 

predictor is computed by means o f a prediction model whose parameters are 

estimated using a recursive (extended) least-squares method. The algorithm is also 

able to predict the process over a range which is usually taken greater than the 

maximum anticipated value of time-delay. The key assumption that all control 

increments beyond this prediction range are taken to be nil is one characteristic of 

this algorithm.

The extended adaptive control algorithm (EHAC) (Ydstie, 1984) uses almost the 

same parametric process model as in the EPSAC version. Its fundamental idea is 

to compute at each sampling instant a sequence of inputs that satisfy a criterion 

over the chosen prediction horizon which is the only design parameter in the 

method.

Reported applications within industry showed that Richalet’s algorithm (MAC) is 

unsuitable for non-minimum phase plants, but the DMC, EPSAC as well as EHAC

** Auto-Regressive Moving Average
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algorithms seem to be very effective. However, one criticism that was ack­

nowledged is that they in fact either have a unique or relatively few design param­

eters. For instance, the EPSAC approach uses the prediction horizon, a weighting 

sequence and a model reference polynomial to accomplish a full design study, 

while the EHAC algorithm requires only the choice of the prediction horizon 

parameter. Consequently, albeit simple to formulate, the above methods do suffer 

from a certain loss of design flexibility vital for robustness. More recent research 

has seen the development of an algorithm based on the same idea of long-range 

predictive control (LRPC) but tailored, first to retain advantages of the previously 

formulated algorithms, i.e easy to commision, and second to add more flexibility 

in its design, leaving therefore the user with a wider variety of parameters to 

arrive at the preset goal. It is known as the Generalized Predictive Control algo­

rithm (GPC) (Clarke et al., 1987a, 1987b) and is considered to be the most robust 

technique yet to exist. Based on an explicit formulation, it combines the advan­

tages o f the GMV approach as well as those of the pole-placement algorithm 

while rejecting their respective drawbacks. The next section looks at the 

mathematical background behind this new approach and outlines the different 

steps that finally lead to the formulation o f the general control law.

5.2 DEVELOPMENT OF THE BASIC SISO GPC ALGORITHM

5.2.1 The CARIMA Process Model Representation 

and O utpu t Prediction

It is known that the so called ARMAX/CARMA*** models, which linearize 

processes locally, have been used in many self-tuning control algorithms (Seborg

* * *  Controlled Auto-Regressive Moving Average
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et al., 1986). Following earlier work by Astrom and Wittenmark (1973), it was 

assumed that the disturbance is stationary with rational spectral density giving the 

following representation:

B ^ z-1)

A(z *)
u(t -  k) + CCz-1)

A(z_1) C(0 (5.1)

where A(z *), B^z-1), and C(z~l) are polynomials in the backward shift operator 

z~l o f the form:

A(z-1) = 1 +  aj z_1 + a2 z-2 +  • • • +  an z~n 

B^z-1) =  bj +  1>2 z~l +  b3 z-2 +  • • • + bm z~m+1 

C(z~l) =  1 +  q  z-1 +  c2 z‘2 + • • • +  cp z~P

y(t) ^  the process output, u(t) is the control signal delayed by k samples, and C(t) 

is a sequence of random variables all having a variance a 2 and a mean of zero. It 

is also assumed that all roots o f the Q z"1) lie inside the unit circle in the z-plane.

Although the above model formulation has provided good control basis for 

minimum variance (MV) regulators as well as pole-placement algorithms, it was 

on the other hand found to be sensitive to processes whose additive noise did not 

have zero-mean. To avoid offset, Clarke and Gawthrop (1979) extended the model 

o f equation (5.1) to include a constant d leading to a general representation of the 

form:

A(z"‘)
u(t -  k) +  - S i i  C(t) +  d 

A(z“x) (5.2)

When this term is constant this type of representation has proven quite effective, 

but difficulties may arise when it is varying. To alleviate this problem, an attempt 

could be made to estimate its value by extending the data measurement vector to 

include the ”1" albeit this idea is not always successful since the "1" in the data
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vector is not a persistent exciting signal (Tuffs and Clarke, 1985). Hence, in older 

to avoid this term and at the same time counteract its influence a model represen­

tation in which the zero-mean stochastic disturbance £(t) is assumed to be 

integrated before affecting the process was successfully used by Harris et al. 

(1980) and Belanger (1983). This latter paper considered its inclusion within the 

GMV design of Clarke and Gawthrop (1975), and Tuffs and Clarke (1985) did in 

fact use it as a basis for the same algorithm. Because of its integrating nature, this 

form of representation is better known as the CARIMA® model representation 

and takes the form of:

A(z*')
u(t -  k) + C(z-1) 

A(z_1) A
C(0

Here A is the differencing operator in the backward shift z~ l .

(5.3)

Appending the common factor A to the polynomials B^z-1) and A(z~J) in the 

above equation leads to:

A(z_1) A y(t) =  B^z"1) A u(t -  k) +  Cfc"1) £(t) (5 4)

equation (5.4) forms the basis of the model parameter estimation using a measure­

ment vector and a data vector of the form:

^  — t ~  ^  y(*— !)>•••» A u(t — k — 1),..., £(t — 1),..., £(t — p)] 
e(t) = A y(t) -  <DT 0 ( t - l )

At this stage it is worth noting that the formulation of equation (5.3) is important, 

since the offset problem is inherently solved due to the zero-mean nature o f the 

data leaving therefore the estimation o f the "d" term no longer necessary.

A s in the GMV case, to derive a "j" step ahead predictor o f y(t +  j) based on the

®  Controlled Auto-Regressive Integrated M oving Average
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model of equation (5.4), let us consider the following identity:

C(z_1) = E/z"1) A(z-1) A + z-J Fj(z_1) (5<5)

where EjCz"1), Fj(z-1) are polynomials in the backward shift z~l completely and 

uniquely defined given A(z_1) and the integer "j", and of the form:

Ej(z_1) = 60 + 6! z_1 + e2 z~2 + • • • + ej_!

Fj(z_1) = fjo + fji z’1 + fj2 z-2 + • • • + fjn Z“n

Equation (5.5) is better known as the Diophantine equation (Kucera, 1979).

Let C(z_1) = 1 with no loss of generality and enhance the values of k which are 

greater than 1 within the B^z-1) polynomial such that:

z-k B iiz’ 1) = z"1 B iz '1)

Model (5.4) and equation (5.5) respectively become:

A (z~ 2) A y(t) = B(z_1) A u (t-l) +  £(t)

1 =  Ej (z_1) A(z_1) A + z“j Fjiz'1)

Multiplying equation (5.6) by Ej z] leads to:

Ej (z '1) z> A(z-1) A y(t) = Ej(z_1) z> (B(z_1) A u (t-l) + £(t))

(5.6)

(5.7)

(5.8)

Developing and rearranging by noting that:

ZJ y(t) = y(t +  j) 

zj u(t) =  u(t +  j)

equation (5.8) becomes:

E/z-1) A y(t + j) =  Ej(z->) B(z->) A u(t +  j -  1) +  Ej(z- ' )  £(, +  j) (5 9) 

but from equation (5.7) it follows that,

Ej(z_1) A(z_1) A = 1 -  z“j Fj(z-1)

hence, equation (5.9) becomes:
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y(t+j) = Ej(z J) B(z_1) A u(t+j—1) + F /z '1) y(t) + E /z '1) £(t+j) (5.10)

Because Ej(z_1) is of degree j-1 only, the noise components are all in the future. If 

C(t) is an uncorrelated random sequence, the term Ej(z_1) £(t +  j) is moving aver­

age of order j-1. Therefore the optimal "j" step ahead predictor becomes:

y(t + j) = Gj(z_1) A u(t + j -  1) + Fj(z_1) y(t)

Gj(z-1) = Ej(z_1) B(z-1) <5*1 *)

This expression suggests that in contrast to Clarke and Gawthrop’s algorithm

which uses only one prediction of the form y(t + k) the GPC approach considers a

whole set o f predictions depending on how far the prediction horizon "j" is

extended. Also the same equation normally needs to be solved for each value of

"j" considered, but instead a recursive formula is imposed on the Diophantine

equation (5.7) leading to straightforward and less computational calculations in

equation (5.11) as the next section endeavours to show.
0

5.2.2 Recursion of the Diophantine Equation

As pointed out earlier, the aim is to establish a recursion between the ele­

ments of equation (5.7) for one horizon and the elements of the one immediately 

next to it, so that starting with a value of j = 1, the elements of the same equation 

could be found for j = 2 which themselves would serve to find the elements for 

j = 3 and so forth.

For that purpose recall the expression of the Diophantine equation (5.7)

1 =  E/z-*) A(z->) A + z-> F/z->) (5 7)

For notation purposes, it is assumed here that;

For the horizon "j", E = Ej(z_1), and F = Fj(z~!)

and for the next horizon "j+1”, R = Ej + ^ z '1), and S = Fj + ^z“1)
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For the horizon "j" and immediately the horizon next to it "j+1" it follows that: 

1 = E A + z"j F

where A = A A

Subtracting the two identities leads to:

0 =  (R -  E) A +  z'j (z—1 S -  F) (5.13)

Recall that the polynomial E is of degree "j-l", consequently polynomial R is of 

degree ”j ” and so is polynomial R -  E which could be split into two parts, i.e:

R -  E =  R +  rj z~J (5.14)

Substituting equation (5.14) into equation (5.13) gives:

A R + z~j (z-1 S -  F + A rj) = 0 (5 15^

Equation (5.15) is of the form:

a  A + z~j P = 0
where

a  = R
p = rj A + z_1 S -  F

and it is an equation system equivalent to:

l  = R A  + z ' j  + 1 S (5.12)

R = 0
*

r; A +• Jr: A + z"1 S -  F = 0 (5.16)

or:

R = 0
S = z (F -  rj A) (5.17)
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The polynomial A(z_1) has "1" as a leading element and so does A. Because the 

second expression of equation (5.17) has "z" as an external factor and if "f0" is the 

leading element of polynomial "F", then:

rj =  fo (5.18)

Let "i" be an index varying from 0  to the degree o f polynomial A(z-1) V . Based 

upon equation system (5.17), the components of higher powers of polynomial S 

can be obtained by the following recursion formula:

isi = + l “  + 1 rj
l0 £  i ^ n (5.19)

Taking into account equation (5.16), equation <5 .n ) becomes:

R -  E = ij z"i
f  S J V )

i.e,

R = E + ij z~J 

or

Ej+ i(z l)  = Ej(z-1) + rj z J 

and using equation (5.11) o f section (5.2.1) yields:

(5.20)

Gj + i(z *) — B(z R (5.21)

Finally, the solution of the Diophantine equation can be summarized by equations 

(5.18), (5.19) together with equations (5.20) and (5.21) as:

ij = fo
si = fi+l - a i + i rj
Ej + j = Ej(z-1) + ij z“l (5.22)

Gj+ 1 (z-1) =  B (z-1)E j + 1(z-1)

Equations (5.22) represent the procedure for implementing the GPC algorithm in a 

self-tuning manner. Because the four above expressions are based upon a recursive
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formula, the first iteration has to be initialised. Therefore f o r j = l  equation (5.7) 

becomes:

+  ( 5 2 3 )

Because A  has "1" as a leading element then:

EiCz"1) = 1

Substituting in equation (5.23) leads to:

Fi(z-1) = z (1 -  A(z-1))

Summarizing:

For j =  1
*

Eiiz"1) = 1

Ftiz"1) = z (1 -  A(z-1)) (5.24)

Having established a useful recursion which will enable one to easily and quickly 

calculate the parameters o f the Diophantine equation (5.7), the next section exam­

ines the main steps involved in the principle of long-range prediction and its 

correlation with the GPC control law which is later derived.

5.2.3 The, Long-Range Predictive Control Prmr.'pif 

and the GPC Control Law

It has always been the argument for predictive control that as the process- 

time-delay is ”k", the first output that can be influenced by the current control u(t) 

is y(t + k). For „purely stochastic regulation, if  an optimal ptediction of the direct 

effect ect +  «  is available at time the control u(<) can be optimally chosen to 

neutralise i t  Obviously, how effective this control is depends largely on the inter-
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val along which the prediction is realised. A logical choice would undoubtedly 

suggest it to be at least made equal to the expected value o f time-delay. In fact, 

the idea o f extending the prediction interval over a range which possibly goes far 

beyond this value o f dead-time is known as Long-Range Prediction (LRP) (De 

Keyset and Van Cauwenberghe, 1983) and whose strategy, which is also illus- 

trated in figure (5.1), could be summarized in the following 3 steps:

Steal
- A t  each present moment V  a forecast is made of the process output, over a 

long-range prediction interval which we call the horizon, by means of a 

mathematical model of the process dynamics, and is a function of the future con­

trol policy that is only to be applied at this moment "t"

S t e p !

- As a result of this forecast, several control actions will be proposed but only 

the strategy which drives the predicted output back to the predefined set-point in 

the best possible way* will be selected.

S tep  2

- The retained candidate is then applied to the process as the control action at 

the moment "t".

The three steps are then repeated at the next sample.

To be able to duplicate the whole strategy (also known as the Receding Horiron 

Approach) on a digital computer, the mathematical background behind the GPC 

control law which uses the same principle is considered next

* According to the criteria preset by the user him self
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Consider the following future set-point sequence, to(t +  j) j =  1, 2, • • • .

As is the case for most LRPC algorithms, a smooth rather than a sudden approach 

from the current output position y(t) to the set-point co(t) is preferred by filtering 

the present and future set-points using a first order lag model o f the form:

Wt) = y(t)

, T,w(z-‘) = 1 4- a  
1 -  a  z '1

= M ± i I
co(t) j = 1, 2,

[a  = -  e
I I
T.

“  1 Tg is the sampling time

(5.25)

As illustrated in figure (5.2), the objective o f the GPC controller is to drive the 

process output close to the set-point. GPC also computes the vector of controls 

using a cost function of the form:

J -  ^Gpc(e > ü )

where: Ü is a vector of increments of u, and e is the predicted future system- 

errors. J is a quadratic function o f the form: 

j = N, j = N2
JGPC -  2  e (t + j) +  X  hj A  u2(t + j  -  1) (5 26)

with:

Nj: The minimum costing horizon 

N2: The maximum costing horizon 

Xji The control weighting sequence

Consider equation (5.11) which models the future outputs. For different values of j 

ranging from 1 to N it follows that:

y(t + 1) = Grfz'1) A u(t) + Fj(z-1) y(t) + E^z"1) Ç(t +  1) 

y(t + 2) = G2(z~1) A u(t + 1) + F2(z~1) y(t) + E2(z~1) Ç(t + 2)

(5.27)
• • • .

y(t +  N) =  Gn(z- 1) A u(t +  N  -  1) +  fn(z->) y(t) + e n(z- 1) Ç(t + ^
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Because y(t +  j) includes signals that are in the present and past time and conse­

quently can be known, as well as signals in the future which are unknown, let its 

expression be split into those two categories. Hence, let f(t +  j) j = 1, 2, 3, • • • 

be that component of the signals which are known at time "t", such that:

GjCz"1) = gj0 + gji Z'1 + +gj8B z - j ~ 8B + 1 

8B = degree of polynomial B(z_1)

then f(t + j) would include all signals o f y(t +  j) minus its future unknown com­

ponents, i.e:

f(t +  1) = [G ^z'1) -  g10] A u(t) + FjCz'1) y(t)

f(t +  2) = z [G2(z_1) -  g2i z-1 -  g10] A u(t) + F2(z_1) y(t)

• • • •
(5.28)

f(t +  N) z [Gn(z !) -  • • - -  gN0] ^  U(t) +  pN 

Note  that,

gji =  & for i = 0, 1, 2,...< j  

i.e.

glO = S20 = * • '  = g N0 

&21 = g31 = * * * = gN]

Written in matrix form, system (5.27) becomes:

y = (3 u + f  (5.29)

where,

y = [ y(t +  l) , ?(t + 2)...... y(t + N) ]
u = [ u(t), u(t + 1),..., u(t + N -  1) ] 
f = [ f ( t + l ) , f ( t  +  2), . . . , f (t  +  N ) ]

and the matrix G which is associated with the present and future control
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increments is lower triangular of dimension NxN and of the form:

go 0 . . . 0

gl go . . . 0

S2 gl • • • ♦

S3 Si • • • »

• • • • 
. . . 0

* . . . . 0

Sn - 1 gN-2 . . .  go

At this stage the three steps generally formulated for the receding horizon philoso­

phy could be adapted to the GPC case and are in effect equivalent to the follow-

S k P -i

- At each sampling instant "t", the ftSfiJSSBODSfi of the process is computed 

based on known data [ y(t), y ( t - l ) , u ( t - l ) , . . . ]

Slfip.2
- The control increment vector u is computed using the optimizing routine o f  

equation (5.26) with given set-points.

gtep.3
- The first control signal u(t) is extracted and applied to the process and all 

sequences are shifted in preparation for the next sample to repeat the same pro­

cedure. Figure (5.3) in a form of a diagram illustrates such a prediction sequence.

Recall equation (5.26)

j = N2 j = N2
JGPC =  5 ^  e  0  +  j )  +  X  a  u2(t +  j  -  1) (5 26)

where,
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e ( t + j )  = ÿ(t + j ) - û > ( t + j )  

Cû(t + j) being the future set-points.

T herefore,

j = N2 j * N2
Jgpc= X  (y(t+j)-co(t + j))2+ X  M u 2(t + j - 1 )

j = Ni j = 1

The expectation o f such a cost function can be expressed as:

J, = E jgpcO>N)
or

J, =  E (ÿ -  o))T (y -  to) + X,j ÛT û

Using equation (5.29) for y it follows that:

Jt = E ■{(G ü + f -  co)T (G ü + f  -  co) + A,j üT ü

(5.30)

T he m inim ization o f  J { assum ing no con stra in ts on future controls requires:

ajj

9-u1
=  0

ani-T
[ (G ü + f)T (G ü + f) -  coT (G ü + f)

-  (G ü +  f)1 û) + co1 0) + ûT X û ] = 0

or,

- i r [ ( ü T GT + fT)(G*u + f ) - ( û T (Gîi + f)
a r
-  (ÜT G t  +  f T) to  +  a )1 co +  ü 1 X û  ] =  0

Developing the expressions inside the external brackets and rearranging leads to:

2 G T G u  +  2 G T f - 2 G T (0 +  2 U u  =  0

or,
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(Gt G + M ) u  + GT ( f - c o )  = 0

Finally,

u = (gt g + x rr‘ oT (u -  o (531)

Since only the f a t  increment is to be considered, the current control u(t) is given 

by:

“(0 = u(t-l) + FT (0) -  f) (532)

where,

gT is the first row of the matrix (GT G + X I)-1 GT.

As it stands, the algorithm would constitute a heavy computational burden if used 

in a self-adaptive manner due to the inversion of the matrix (GT G + X I) in equa­

tion (5.31), m addition to the difficulties that would emerge if  the same matrix is 

ill conditioned (singular), an envisaged possibility especially if  the value of the 

process dead-time is wrongly assumed.

Although the latter handicap could be avoided by choosing an appropriate value 

o f the weighting sequence X, a simpler and effective solution in which an assump­

tion is made about future controls has been proposed and represents the real power 

o f the GPC algorithm.

Indeed, the key question in long-range predictive control is what assumption to 

make about future control actions. In the DMC approach (Cutler and Ramaker, 

1980), movements of the manipulated variable (input variable) are considered for a 

number o f intervals of time into the future. How far into the future these move­

ments are allowed to be free is left to the user. GPC has also borrowed the same 

idea by assuming that after an interval NU (NU S N2 -  1) called the control hor- 

izon, projected control increments are assumed to be nil, i.e:
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A u(t +  j -  1) = 0 j £  NU + 1

This has the advantage of stabilizing non-minimum phase systems even if A, = 0, 

as well as reducing the computational burden since the matrix G above reduces to 

the matrix Gj of dimension NxNU instead of NxN, i.e:

So 0 . . . 0

Si So • • • 0

Si gi •

S3 S2 • • • •

0
• . * . 0

Sn - i S N- 2  • • • Sn - n u .

leading therefore to a general control law o f the form:

u = (GjT Gt + X  I)"1 G? (0) -  f) (5 33)

It is apparent from the above equation that the matrix to be inverted is only o f  

dimension (NUxNU), and if  NU = 1, the same operation reduces to the usual 

scalar inversion.

5.2.4 The GPC Algorithm and the Selprtin» 

o f its Tuning Parameters

Like all self-tuning algorithms GPC possesses parameters that should be 

tuned to allow one to satisfactorily reach a certain predefined point. These parame­

ters which constitute "tuning knobs" have been introduced when formulating equa­

tion (5.26), i.e: the minimum output horizon N b the maximum output horizon N2, 

the control weighting sequence X, and last but not least the control horizon NU. In 

the following, interpretations as well as general guidelines for the selection o f each 

o f the above parameters are given and further details can be found in Clarke and
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Mohtadi (1989).

a) The Minimum Output Horizon N t

The choice of this parameter is directly related to the process time-delay k. If 

its value is exactly known, N* should be set to this value, since the (k-1) rows of 

the matrix G1 will be equal to zero. However, if  this value is unknown or is sub­

ject to variations, N { should be set to 1 with no loss o f generality.

b) The Maximum Output Horizon N?

Theoretically, N2 should be chosen to exceed the degree o f polynomial 

B(z-1), that is, if  the delay is enhanced within the expression of this polynomial as 

seen in section 4.8.2 the prediction horizon (N2) should go beyond the maximum 

value of this time-delay which is anticipated. It was also found that for first order 

systems, N2 should be chosen such that it exceeds 5 B + 1 (Clarke and Mohtadi, 

1989), and for higher order processes N2 should be equal to 2 n -  1, n being the 

order of the plant integrator included (equal to max.(order A(z~*) + 1, order 

B(z-1))). However, larger values of N2 which correspond to the rise time of the 

process were also considered appropriate.

c) The Control Horizon NU

As mentioned before this factor determines the degree of freedom in future 

control increments. A value o f NU of 1 usually gives satisfactory results, while 

values greater than 1 lead to a more activated control.

d) The Control Weighting Sequence Xj

It is known that the GMV algorithm (Clarke and Gawthrop, 1975) stabilizes 

non-minimum phase systems only by a careful choice o f the parameter X, the
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weighting factor which is the same as for the LQG approach (Clarke et al., 1985c, 

1985d). In contrast to both approaches, GPC can fulfil the same task even if 

X = 0.0. However, the choice of this latter as a fine tuning parameter helps to 

improve the overall performance of the GPC algorithm which is robust with 

respect to this choice. In practice, X may vary over a wide range (10-  ̂ to 10^) 

(Lam, 1980) suggested a method in which it is stated that if  the gain of the pro­

cess under consideration depends on the B(z-»)* polynomial, any gain variation 

will reflect itself in B (l) and in order to keep the closed-loop poles in the same 

positions despite these variations, X should be rescaled by B(l )2 such that:

X = Xrel. (B (l)2)

0 £ Xfej. <; 1

5.3 EXAMPLES OF APPLICATION

Before being involved in any calculations, it is worth mentioning that the 

GPC law derivation can be performed in two ways:

a) The Diophantine method

b) The direct method

method a) is the method outlined previously and uses the Diophantine equation 

solution to calculate the matrix f  in equation (5.28), whereas method b) does not, 

and instead notes that f  is simply composed of signals that represent the response 

o f  the process assuming that future controls equal the previous control, and that 

the disturbance C(z-1) £(t +  j) is constant so that £(t +  j) =  o.

Computationally, method b) is more efficient than method a) since it involves half

* Estimated Polynomial
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the number of operations required for method a) . However, the Diophantine 

method has the advantage of expressing the controller in a transfer function form 

if  so desired, which can be useful since the closed-loop poles can be located easily 

as the next sections will show. For this reason method a) will be adopted 

throughout this study.

5.3.1 Example 1 (Non-Minimum Phase Plants

Consider the non-minimum phase system reported in Clarke et al. (1987a):

(1 +  z“1) y(t) = (b0 + bj z '1) u(t -  1)

where,

ai = -0.90
' bp = 1.0 

=  2.0

and assume the following settings for the GPC algorithm:

*
N1 = l 

 ̂N2 =  1, 2, 3 

N U =  1 
X =  0.0

a) Calculation of the E and F polynomials

j = l
|Ei = l

Fi = 1.9 -  0.9 z"1

E2 = 1 + 1.9 z"1 

F2 = 2.71 -  1.71 z"1
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j = 3
E3 = 1 +  1.9 z"1 -  1.71 z 1 

F3 = 3.439 -  2.439 z“1

b) Calculation of the G(z~l\  polynomial

j = l  G1(z-1) = 1 + 2 z- 1

j = 2  G2(z_1) = 1 + 3 . 9  z '1 +  3.8 z“2

j = 3 G3(z-1) = 1 + 3 . 9  z_1 +  6.51 z~2 +  5.42 z-3

c) Calculation of signals f  known at timo f

f(t +  1) =  2 A u(t -  1) +  1.9 y(t) -  0.9 y(t -  1) 
f(t +  2) =  3.8 A u(t -  1) + 2.71 y(t) -  1.71 y(t -  1) 
f(t +  3) = 5.42 A u(t -  1) + 3.439 y(t) -  2.439 y(t -  1)

d) Calculation_of the control sequpnce iiftt

Recall equation (5.33) in the previous sections:

u = (Gi G! +  X I)-1 GiT (o) -  f)

For j = 1, i.e the prediction horizon N2 = 1, it follows that,

■ co -  f(t +  1) 

go

Using the values o f g0 and f(t + 1) previously calculated leads to:

A u(t) =  co -  2 A u(t -  1) -  1.9 y(t) +  0.9 y(t -  1)

In order to locate the corresponding closed-loop poles, first consider the following 

exp ression  which is  the general form o f the control law associated with the GPC 

algorithm :

H(z_1) A u(t) =  co(t) -  M(z_1) y(t) (5 ^

where HCz'1) and M(z_1) are polynomials in the usual backward shift z“1.
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but,

A(z-1) y(t) = B(z-1) z~l u(t) 
or,

u(t) = A(z-1) 
B(z_1) z"1

y(0 (5.35)

Substituting equation (5.35) in equation (5.34) and rearranging leads to:

J lil ___________ gi2"1) z~*_________
to(t) H(z-1) A A(z-1) + Biz’ 1) z '1 M(z-1)

For the above case where N2 = 1, the closed-loop characteristic equation is 

equivalent to:

H(z_1) A A(z_1) + B(z_1) z-1 M(z-1) = 1 +  2 z '1

because the non-minimum phase zero of the plant is cancelled by this zero, the 

system becomes unstable.

Increasing N2 to 2 and following the same steps as previously yields:

A U(t) = l h T [ 4 9 ® " 16,82 A u(t “  " 12A69 y(0 + 7.569 y(t -  1)]
This time:

H(z-1) A A(z_1) + B(z-1) z_1 M(z-1) = 1 -  0.09 z*1 

which suggests a more stable system.

If n 2 is increased up to a value of 3, the control law then becomes:

A U(t) = 58 591 f 11,41 “  “  52,104 A u(t 34’857 yW + 23.447 y(t -  1)]
and,

H(z_1) A A(z_1) +  B(z_1) z_1 M(z-1) = 1 - 0 . 4 1 6  z-1 

suggesting also better stability properties. Figure (5.4) shows the resulting
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responses corresponding to the last two cases considered for a command signal of 

80% then 40% every 50 samples. Notice also how the control becomes more slug­

gish with the prediction horizon N2 increasing.

5.3.2 Exam ple, 2_(Muscle Relaxation Process Pharm acokinetic

As a second example, the linear pharmacokinetics of the muscle relaxation 

system associated with the drug Pancuronium-Bromide are considered here, i.e:

0.04 + 0.03 z~l
Yk 1 -  1.55 z"1 *  0.57 z~2 Uk_1

Following similar steps to those adopted in section 5.3.1 and setting the GPC 

parameters at:

Nj = 1

N2 = 1, 3, 6, 10 

NU = 1
x  = o

the following control laws for various N2 are obtained: 

a) N2 = 1

u =
1

[0.04 co -  0.0012 A u(t -  1) -  0.102 y(t)
0.0016

+  0.0848 y(t -  1) -  0.0228 y(t -  2)] 

b) N2 = 2

u =
1

[0.172 to -  0.0112 A u(t -  1) -  0.6804 y(t)
0.0190

+ 0.72 y(t -  1) -  0.0215 y(t -  2)] 

c) N2 = 6
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ü = j  [1.9948 0) -  0.4534 A u(t -  1) -  18.9798 y(t) 

+  25.5939 y(t -  1) -  8.6135 y(t -  2)]

d) N 2 =  10

û = ” 9^~5- [5.9571 to -  2.2615 A u(t -  1) -  86.0828 y(t)

+  123.0795 y(t -  1) -  42.9683 y(t -  2)1

Figure (5.5) shows the corresponding responses assuming the same conditions as 

in section 5.3.1. Notice also how the control activity decreases with increasing N2

5.4 GENERALIZED. PREDICTIVE CONTROL (CPC) APPi TFn

TO THE MUSCLE RELAXATION P R O r r ss

The previous chapter saw the application of a self-tuning technique based 

upon a pole-placement approach (PIP) on the muscle relaxation system associated 

with two drug models which had been duly identified. The performance of this 

algorithm which falls into the category of explicit self-tuners has been assessed. 

Similarly, this section is concerned with the application of the GPC algorithm 

also explicit but based on a totally different principle (LRPC), to the above 

models.

The algorithm, coded in Fortran 77 and implemented on a SUN workstation, uses 

the solution o f the Diophantine equation to establish the final control sequence 

u(t). A ll models were simulated in a continuous form using a fourth order Runge- 

Kutta integration method with a fixed step length o f 0.1. A sampling time of 1 

minute was adopted throughout the study. The simulation studies are also divided 

into two parts, the first part concerning the Pancuronium-Bromide model, while
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the second deals with the Atracurium drug model.

5.4.1 The Pancuronium-Bromide Model

The non-linear muscle relaxant model describing the Pancuronium-Bromide 

dynamics of section 3.2 is considered, i.e:

Gl(s) = (1 + 20 s) (1 +  2 s) (5>37)

The pharmacodynamics are modelled by the dead-space of 50% and a saturation 

of 100%. Conditions for jacketting of the algorithm are similar to those adopted in 

section 4.6.1. Initial control is provided by an optimized PI with the same parame­

ters as before.

Parameter estimation, triggered after the dead-zone has been traversed, also takes 

the form of a UDU algorithm (Bierman, 1976, 1977) this time using incremental 

data for the measurement vector, i.e:

d>T = [ -  A y(t), -  A y ( t - l ) , ..., A u(t-k-l),...]

Parameter estimates are all set to 0.0 unless otherwise specified, the covariance 

matrix is made equal to P = 104.I, and a value of p = 0.95 is adopted for the for­

getting factor. The control signal is clipped between maximum and minimum 

values of respectively 0.0 and 1.0. These limitations are also reflected back to the 

estimator by recomputing the actual control sequence which is asserted (Clarke, 

1985a).

Simulation Results

A  second order discrete-time model with an assumed delay o f 1 minute was 

considered throughout, implying therefore that the leading element of the matrix G 

is nil, but in the following the value o f the minimum output horizon Nj is taken to
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be 1 with no loss of generality.

The study is divided into different phases. Each phase is concerned with investi­

gating the effect of the tuning knobs introduced in the technique, i.e 

N 2, NU, and X. During phase 1 the control horizon NU was set to a constant value 

of 1, whereas X was set at 0.0. The process being of order 3 (see section 5.2.4.b) 

the maximum output horizon was first set at (2 x  3) -  1 = 5. Figure (5.6) shows 

the corresponding output response which demonstrated a slight overshoot 

evaluated at 3% during the first 50 samples. The control signal was quite active 

especially at every set-point change. Figure (5.7) shows the variations of the 

parameter estimates whose final values were:

^  = - 1 .5 1 7 3  a2 = 0.5457 bj = 0.0718 b2 = 0.0619

equivalent to a gain and time-constants of:

Gain =  4.70 T j =  1.87 minutes f 2 =  14.08 minutes

Increasing N2 to 8 made the response slower and the control signal less active as 

shown in figure (5.8). The parameter estimates settled to the following values:

Si =  -1 .4 2 7 4  a2 = 0.4554 b£ = 0.0742 b2 = 0.0732

equivalent to a gain and time-constants of:

Gain = 5.26 Tj = 1.37 minutes T2 = 18.02 minutes

For the third experiment N2 was increased to 10 and the response o f figure (5.9) 

was even slower than the previous one with a rather sluggish input signal. Parame­

ter estimates suggested a non-minimum phase characteristics converging to:

aj =  -  1.3857 a2 = 0.4135 bx = 0.0735 b2 = 0.0831

equivalent to a gain and time-constants of:
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Gain = 5.72 f j  = 1.20 minutes f 2 = 19.90 minutes

Initializing the estimates to some values of 6; = [ -1 ,38 , 0.41, 0.08, 0.07 ] and 

assuming the same combination for (N„ N2, NU, X) as before another run was 

conducted whose response is shown in figure (5.10). The performance was good, 

the overshoot was removed and the corresponding control signal was reasonably 

active. The associated parameter estimates settled to the following final values:

a! = -  1.3495 a2 = 0.3847 bl = 0.1059 b2 = 0.0919

equivalent to a gain and time-constants of:

Gain = 5.62 Tx = 1.12 minutes T2 = 16.28 minutes

The second phase of the study considered a varying control horizon NU while the 

maximum output horizon N2 was fixed at 10 and the weighting sequence X at 0.0. 

The run with NU =  2 produced the output response o f figure (5.11) whose perfor­

mance during the first 50 samples was poor due to the high activity o f the control 

signal. The estimates settled to the following values:

h  = ~  1-5405 a2 = 0.5689 bj = 0.0725 b2 = 0.0606

equivalent to a gain and time-constants of:

Gain = 4.67 f x = 2.05 minutes T2 = 13.03 minutes

Taking NU up to 4  induced an even more active input signal leading to a poorer 

output response as illustrated in figure (5.12). The activity of such control signals 

could be reduced considerably by adopting a value o f X different from zero. This 

is demonstrated in figures (5.13) and (5.14) where the previous cases were con­

sidered but using X -  1.

The last phase of this simulation study is concerned with the varying time-delay in 

the process. Because the GPC approach is based on an explicit formulation, the
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uncertainty that may arise about the time-delay could be enhanced in the B(z_1) 

polynomial without the usual problem of overparameterization encountered with 

pole-placement approaches. Therefore, in order to investigate the robustness of the 

algorithm in such a situation, an experiment was conducted in which time-delay 

changes from 2 to 4 samples were made at iteration 70 and back to 2 samples at 

iteration 140. Conditions for the controller and the estimator are identical to those 

of figure (5.10) except that three more ’b’ coefficients were estimated to absorb 

any time-delay changes. The performance shown in figure (5.15) was good despite 

the severe delay changes. Parameter estimates, whose variations are shown in 

figure (5.16), settled to the values given in table (5.1). According to the time- 

delay, the appropriate "b" coefficients became negative or negligible quantities.

Parameter Estimates Convergence

Parameter estimates
Time-delay value(Min.) from...to...

2 (0 to 70) 4 (71 to 140) 2 (141 to 300)

ât -0.9753 -1.4867 -1.5506

â2 0.0253 0.5273 0.5714

6i -0.0120 -0.0069 -0.0000

b2 0.0536* -0.0022 0.0725*

0.1133* -0.0041 0.0609*

b4 0.0469 0.0677* 0.0010
A
b5 0.0960 0.0649* 0.0009

Table 5.1. Model parameter estimates for figure (5.15)

* Significant values
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The same conditions were simulated this time taking N2 to be 20 which is the 

value o f the model predominant time-constant. The result o f such experiment is 

shown in figure (5.17). The associated performance was good; less overshoot and 

less active control signal. Parameter estimates whose variations are shown in 

figure (5.18) settled to values according to table (5.2).

Parameter Estimates Convergence

Parameter estimates
Time-delay value(Min.) from...to...

2 (0 to 70) 4 (71 to 140) 2 (141 to 300)

h -0.9765 -1.3415 -1.5247

h 0.0.0271 0.3863 0.5451
A

bi -0.0118 -0.0204 - 0 . 0 0 0 0

A

b2 0.0496* -0.0009 0.0720*
A

b3 0.1106* -0.0022 0.0625*
A

b4 0.0600 0.0695* 0.0038
A

b5 0.0861 0.0887* 0.0026

Table 5.2. Model parameter estimates for figure (5.17)

* Significant values
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5.4.2 The Atracurium Model

For this model the pharmacokinetics are represented by the following third 

order transfer function o f the form:

G2(s) ----------------_jl +  10-64 s> e~* ________
(1 + 3.08 s) (1 + 4.81 s) (1 + 34.36 s) (5-38)

The pharmacodynamics are modelled by the Hill equation (4.18) with the follow­

ing parameters:

a  =  2.98 
C(50) =  0.404

Conditions for the estimation and jacketting are similar to those o f section 5.4.1 

unless otherwise specified.

Simulation-. Results

A third order discrete-time model with an assumed delay o f 1 minute was 

considered throughout.

The process order being 4  (integrator included) a value o f 7 was chosen for the 

maximum output horizon N2, while N „ NU, and X were chosen to be 1, 1, and 0  

respectively. With such controller-settings an experiment was conducted which 

produced the output response o f figure (5.19). The performance was good although 

the control signal being rather active gave rise to a 2  % overshoot. Parameter esti- 

m ates converged to the following values:

&l = “  1.8946 a2 = 1.1500 a3 =  -  0.2361 

bj = 0.0099 b2 = 0.0047 b3 = -  0.0029

equivalent to the following positions in the z plane:

zeros: 0.35 ; 0.83 
poles: 0.93 ; (0.48 ±  0.15 i)
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Increasing the value of N2 to 10 led to the performance o f figure (5.20) which saw 

the overshoot diminish and the control activity decrease. The parameter estimates 

whose variations are shown in figure (5.21) converged to:

Si =  -2 .1 4 9 9  a2 = 1.5107 a3 =  - 0.3490
bx = 0.0102 b2 = 0.0023 b3 = -  0.0054

equivalent to the following positions in the z plane:

zeros: -  0.85 ; 0.62
poles: 0.92 ; (0.61 ±  0.04 i)

The dominant time-constant in the model is 34 minutes, and so N2 was now set to 

a value of 35 closer to the previous time-constant value. The estimates were ini­

tialized to some values to help improve the transient. Figure (5.22) shows how the 

response was well damped with a minimum percentage of overshoot due to the 

reasonably active input signal. This latter could be seen increasing if  for instance 

NU was to be taken equal to 2 as figure (5.23) illustrates. The associated input 

signal saturated for approximately 15 samples before dropping to a reasonable 

level. In an industrial environment, this type o f excessive control could be detri­

mental to the actuators, and in the muscle relaxation system case, the pump which 

operates with a small motor starts driving at saturation levels and that would cer­

tainly hinder its normal operation.

To simulate a situation where the patient’s time-delay is subject to variations a 

final experiment was conducted in which the dead-time value was varied from I 

minute to 4 minutes evety 100 minute-samples. The controller was chosen with a 

combination of (1, 10, 1, 0) for (N„ N2, NU, X), and any time-delay variations 

were enhanced in the B(z*') polynomial by estimating 3 extra ’b' coefficients. As 

shown in figure (5.24), the performance was good despite the harsh conditions 

under which the run was conducted; during the first 100 samples the response was
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Figure 5.22. Closed-loop response of Atracurium

model under self-adaptive GPC algori­

thm with Nj=l ; N2=35 ; NU=1 and 

non-zero initial parameter estimates



Figure 5.23. Same conditions as in figure (5.20)

but with NU=2
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Figure 5.24. Closed-loop response of Atracurium

model with variable time-delay and under 

self- adaptive GPC algorithm with N j = l ; 

N2=10 ; NU=1 and overparameterized

B(z'^) polynomial
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w ell damped with a reasonably active control signal, and when the delay changed 

to the value of 4 minutes the input signal was active making therefore, the output 

track the set-point very rapidly. Table (5.3) summarizes the values towards which 

the parameter estimates, whose variations are shown in figure (5.25), converged 

during the three phases o f the run.

Parameter Estimates Convergence

Time-delay value(Min.) from...to...
Parameter estimates

1 (0 to 99) 4 (100 to 199) 1 (200 to 300)

ài -1.0502 -1.7449 -2.1166

h -0.2967 0.8820 1.7898

A

a3 0.3806 -0.1141 -0.6499
A

0.0090* 0 . 0 0 0 0 0.0091*

b2 0.0151* -0.0004 0.0025*
A

b3 0.0009* -0.0005 -0.0019*
A

b4 -0.0042 0.0009* 0.0038
A

b5 -0.0014 0.0074* 0.0019
A

b6 0.0002 -0.0011* 0 . 0 0 0 0

Table 5.3. Model parameter estimates for figure (5.24)

5.5 THE EXTENDED GPC ALGORITHM

The question o f how many tuning-parameters any particular self-tuning algo­

rithm possesses is o f great importance. Indeed, two main sources o f concern arise

* Significant values
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when designing any control strategy: prior specifications and requirements, as well 

as limitations associated with the system concerned. It is therefore important that 

the adopted control strategy includes design parameters that eventually relate to 

the above requirements and limitations. Hitherto, four tuning parameters were 

introduced in the basic GPC version studied in the previous sections., i.e N lt N2, 

NU, and X. GPC was shown to be effective with the use of such knobs. It is 

known that the early version of the GMV algorithm (Clarke and Gawthrop, 1975) 

which was found to be sensitive to the choice of dead-time and to the non­

minimum phase characteristics exhibited by a process was later refined to include 

user-chosen transfer functions P(z-1), Q(z-1), and the observer polynomial T(z_1). 

GPC being closely related to the same approach, has also considered the inclusion 

o f such polynomials within its basic version in the hope o f making the overall 

control design even more robust. The next sections w ill endeavour to consider the 

introduction o f such polynomials, namely the user chosen polynomial P fz'1) for 

specifying a desired closed-loop model, and the observer polynomial T iz '1) for 

tailoring the controlled response to load disturbances and unmodelled dynamics.

5.5.1 Inclusion o f the Model Reference Polynomial

Situations where excessively energetic control signals are required are often 

discouraged by control engineers who would rather prefer a smoother reaction to 

disturbances or set-point changes. As already seen in section 5.2.3, prefiltering the 

set-point using a first order lag is one way of achieving this, i.e:

o'(t) = L(z-1) ©(t)
L(z_1) represents the prefilter transfer function (5.39)

Because this approach does not involve modifications in the closed-loop 

behaviour, a method in which an auxiliary output 'P(t) is defined in the model as:
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>F(t) = P(z-!) y(t) (5.40)

seems to solve the problem. Indeed, because P(z-1) is included in the loop (that is 

the model is internal rather than being external) and as L(z-1) would have a phase 

lag, P(z_1) introduces a phase lead, a property which is very often favoured by 

engineers. The following w ill explore the mathematical background behind the use 

o f such a polynomial within the GPC approach:

Consider the auxiliary output 'P(t) such that:

iv ®  = P(z-‘) y(t)

|P(Z' 1) = Pd(z-)

with P (l) =  1 to ensure offset-free control.

This time the controller minimizes the following cost function:

all the variables having the same definitions as before. 

Recall the CARIMA model o f equation (5.4)

A iz '1) A y(t) = B jiz '1) A u(t -  k) + C(z_1) £(t)

where C(z-1) =  1 for simplicity reasons.

(5.41)

(5.42)

(5.4)

Consider the following Diophantine identity:

£n

Pd

■ Fi= E: A A + z-J - jL (5.43)

Following the same steps as in section 5.2, we obtain the following predictor:

, Fi(z_1)¥ ( t  + j/t) = Gj(z_1) A u(t + j -  1) + -J- —  y(t) + Ej C(t + j)

G f z ' 1) = Ej(z-1) B(z-1) (5,44)
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s-ft + 1) = G ,(z-') A u(t) +  i i .
Pd

T (t + 2) = G2(z~1) A u(t +  1) +

• • •
(5.45)

*

'¥(t + N) = Gn(z_1) A u ( t  + N  -  1) + y(t)  +  e n £(t + N)
rd

Let ff(t +  j) be that component o f *F(t +  j) composed o f signals which arc known

at time "t", i.e:

*

f f ( t + l )  = [G 1(z-1) 

ff(t +  2) = [ G2(z_1)

«
• »

• *

« •

ff(t +  N) = [G N(z-‘

»

Therefore, equation (5.44) could be expressed in matrix form as:

❖ (t) = G u + ff

where,

*  = [ * ( t +  1), 'FCt + 2),..., ¥ ( t  +  N) )T 
u = [ A  u(t), A u(t + 1),..., Au(t  +  N - 1 )  ]T 

f f  = [ ff(t +  1), ff(t +  2),..., ff(t +  N) ]T

The expectation o f the cost function in (5.42) could hence be written as

i -  g0 ] A u(t) + ~  y(t)
Pd

F2
1 -  So “  S2i z ] A u(t) + —  y(t)

Pd

’ ! (5.46)

Fm
) “  * • • ~  go ] A u(t) +  —  y(t)

y(t) + C(t + l)

-^■y(t) +  E2 ? ( t + 2 )  
‘ d
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Ji =  E [ OF -  to)T ( ¥  -  co) +  X ùT Ù ] 

i.e,

ü = (Gt G + X I)“1 Gt (co -  ff) 

or,

u(t) =  u(t -  1) +  gT (co -  ff)

where gT is the first row of the matrix (GT G +  X I)“1 GT.

(5.47)

(5.48)

At this stage it is worth noting that the Diophantine equation (5.43) could be

solved by following the same steps already outlined previously and by noting that 

for the first horizon:

E P"(0)1 Pa«»
Fj =  z [ Pniz”1) -  Ex A  ] 

where A  =  A A Pd(z-1)
(5.49)

Sim ulation Resulte

In order to demonstrate the effect of (P fz'h  ca^cv vz •'* cases from the previous section

and where the control activity was high were considered, i.e NU a  2. First, assum­

ing the same conditions as in figure (5.11) with an additional polynomial

P<Z~ ‘) =  C f P ~ '  a run was condllcted fte  Pancuronium-Bromide model. 

Figure (5.26) shows how the control activity was considerably reduced and the 

output response reasonably fast and well damped. The same conditions were main­

tained when the Atracurium model was considered, leading to the output response 

o f figure (5.27) and showing the input signal to be less active than the one o f 

figure (5.23). If the root o f P.(z*') is this time chosen to give a slower time-

constant, e.g: P (z-') = " f  Z . the performance o f figure (5.28) is even
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Figure 5.26. Closed-loop response of Pancuronium

model; extended GPC algorithm with mo­

del following polynomial P(z_1) ; N j = l ; 

N2=10 ; NU=2 and P(z_1)=3.33 (l-0.7z_1)



Figure 5.27. Closed-loop response of Atracurium 

model under the same conditions as 

those of figure (5.26)



Figure 5.28. Same conditions as in figure (5.27) 

but with P(z'*)=10 (l-0.9z- )̂
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better; the response is very well damped and the input signal activity is reduced to 

a minimum. Table (5.4) summarizes the different values of ISE (Integral of 

Squared Errors) and ITAE (Integral o f Time and Absolute Errors) criteria for 

cases when P(z-1) is used or not for both models. Clearly, the table below indi­

cates how the control activity is reduced at the expense of more sluggishness in 

the response.

Figure Number Time-Phases(Min.) from...to... ISE ITAE

5.12 0 to 150 9.48 158.40

5.26 0 to 150 9.53 198.98

5.23 0 to 300 9.23 342.36

5.27 0 to 300 9.26 354.40

5.28 0 to 300 9.49 568.75

Table 5.4. Table representing the ISE and ITAE 

criteria for varying P(z-1)

5.5.2 GPC and the Observer Polynomial T f?-1)

In the previous sections, a simplified process model has been adopted when 

deriving the GPC law such that the Q z '1) has been truncated to 1. In practice, 

because several disturbance and noise sources act on most processes, a formulation 

is  preferred in which the full expression of this polynomial seems to be as close to 

reality as possible, i.e,

y(t) =  S U(t- I,  + ^ C l ( , ) + " - + ^ ‘> (5.50)

This structure suggests that the measurement vector should include the data
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Ci(0...... if  Ci ’ • • • * Cp “ » t0 be estimated on-line. However, since most

processes are usually subject to different disturbances at different times, any 

attempt to estimate those terms would be fruitless (Clarke et al., 1987b). 

Alternatively, a polynomial TCz*1) = tl +  tl z"1 + • • .  +  t»t r *  can be used to 

represent a knowledge of the process noise, leading to a model o f the foim:

B(z-*)
A(z-1) A(z-1) A (5.51)

It is clear from the above expression that T ^’ 1) can only affect the disturbance 

rejection properties of the system unlike P^"1) which affects both. For this reason 

this polynomial is better known as the observer polynomial T(z-1). It acts as 

an observer for the prediction o f future (pseudo) outputs (Astrom and Wittenmark, 

1984). Another consequence resulting from the introduction of such a polynomial 

is that the predictions will not be optimal, but if  T(z_1) =  C(z-1), the model (5.4) 

w ill be valid and the variances o f the output will also be minimum (Astrom and 

Wittenmark, 1973).

Consider now the following Diophantine equation: 

T(z-1) =  Ej A A + z '1 Fj

where,

(5.52)

T(z-1) = tx +  tx z '1 +  • • • +  t„t z“"1

Operating in the usual manner, the following prediction equations are obtained: 

y(t +  j/t) =  Gj(z-1) A uf(t + j -  1) + Fj y f(t) £5

where f denotes a quantity filtered by — -—
T iz '1)

In order to express the above set o f equations in terms o f A u rather than A uf, 

consider the following identity:
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G /2' 1) =  G'pr') T(Z- ‘)  + z-J r /z -* )  (5 54)

where the coefficients o f polynomial O '/z '1)  are similar to those o f G (z-1) for 

which T(z-1) = 1.

G '/z-1) and r (z -1) are polynomials o f the form:

G j(z-1) = g'0 +  g'j z~l + • • • +  g'. _ x z  -  Ci - 1)

Hz*1) = Yo + ‘ • + yq z~*

Substituting equation (5.54) into equation (5.53) leads to:

y(t + j/t) = G'/z'1) A u(t + j -  I) + z~j r /z '1) A uf(t + j -  1)
+  Fj yf(0

or,

y ( t+  M  = Gy * '1) A u(t +  j -  1) + r / z ' 1) A Uf(t -  1) + Fj yf(t) (5.55)

In the above expression the signals which are known at time "t" could be 

extracted as being:

f(t + j) = Tj A uf(t -  1) + Fj yf(t)

and the expression of the control sequence is identical to that o f equation (5.32). 

It is  also worth noting that the coefficients of polynomials G'(z_1) and r(z_1) are 

obtained using a recursive formula outlined in appendix A.

In order to understand how the introduction o f such a polynomial affects the dis­

turbance properties o f a system, consider the following formulation:

Recall from section 5.3 the expression describing the general GPC control law, i.e:

H(z_1) A u(t) = G)(t) -  M(z-1) y(t) /« ? a\

or,

u(t) =
o)(t) -  M(z-1) y(t) 

H(z-1) A
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If the filter T(z-1) is used, equation (5.34) could be rewritten as:

M(z-1)

u(t) =
ro(1) -  y(1)

H(z-1) A 
TCz-1)

(5.56)

leading to the diagram of figure (5.29). If the disturbances, which are of high fre­

quency nature, occur, they affect the output, and the expression fed-back to the

M(z_1)
loop contains the filter - . The feedback gain is therefore attenuated provid-

T(z l)

ing that the same filter possesses low-pass frequency characteristics. Moreover, the 

use o f T(z_1) also has the advantage of low-pass filtering the data for the estima­

tor, considering that the A operator is normally equivalent to a high-pass filter, this 

leads to an overall filter having band-pass characteristics.

In practice there are no well supported rules for choosing the filter parameters. 

Clarice and Robinson (1991) conducted a study in which the notion o f stability 

bound was introduced, the bound having to be kept as high as possible to ensure 

robustness. Slow  observer roots were found to satisfy this requirement. However, 

if  these roots are too slow, loss of performance could be obtained in some cases 

due to the appearance o f unstable poles (zeros o f H(z-')). Another study earned 

out by Shook et al. (1991), also focussed on the same subject, proposed a method 

in  which the RLS estimator was replaced by an identification scheme called 

Long-Range Predictive identification (LRPI) and which uses the minimization o f  

som e cost function including the assumed linear model. Faster convergence o f the 

estimates was shown to be possible. Nevertheless, if  the RLS is still to be used, 

the research work hitherto conducted agreed on the following:

To ensure good robustness properties, choose T(z'>) such that its cut-off frequency 

coincides with the dominant time-constant o f A, i.e:
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T(z_1) =  (1 -  p z"1)" 

n = (degree o f A(z-1)) + 1

Sim ulation Results

In order to test the effect of the observer polynomial T(z-1) on the overall 

GPC performance, two tests were undertaken; introducton of a sudden disturbance 

during the run, and inclusion o f a noise sequence. As pointed out previously for 

the muscle relaxation system, these phenomena are commonly due to sudden 

patient’s movements or diathermy (severe electrical interference). To test the 

robustness of GPC under such circumstances, a series o f experiments was con­

ducted in which both models were considered. Assuming the same conditions as 

those o f figure (5.15) and introducing a disturbance o f 4% at iteration 70, a run 

was undertaken using a filter o f the form T(z‘ i) = l  -  0 .95 z '1 (corresponding to 

a time-constant o f Ts = 20 minutes). Figure (5.30) shows how the controller was 

quick to reject the disturbance without its performance deteriorating. In fact the 

control signal was better conditioned than the one in figure (5.15) despite the 

severe changes in time-delay. For Atracurium, similar conditions to those for 

figure (5.24) were considered except that a disturbance was introduced at the same 

iteration 70 as before. The filter considered was of the form T(z_1) = 1 -  0 97 z '1 

Figure (5.31) demonstrated a good performance o f the GPC algorithm despite the 

range between which the delay was varying. Finally, the conditions were repeated 

with the inclusion o f a PRBS sequence o f 1% amplitude. Figures (5.32) and (5 33) 

show the performances o f GPC for Pancuronium and Atracurium respectively 

which were both acceptable since the outputs were kept within a reasonable band. 

The parameter estimates were somewhat biased and converged respectively to-

aj =  -  0.2226 a2 = -  0.5413 = 0.6001 b2 = -  0.3299
b3 = 0.2377 b4 = -0.0400 b5 = 0.3360
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for Pancuronium-Bromide, 

and

= -  0.1083 a2 = -  0.4559 a3 = -  0.2606 

= 0.1623 b2 = 0.0280 b3 = -  0.0869 

b4 = 0.0425 b5 = 0.0389 b6 = 0.0109

for Atracurium.

5.6 GENERALIZED PREDICTIVE CONTROL WITH INPUT 

CONSTRAINTS

The standard GPC algorithm giving the best unconstrained control incre­

ment Au(t) necessary to calculate the control sequence u(t), is found by minimiz­

ing some cost function J (equation (5.30)). While it was possible to obtain perfor­

mances where the input signal did not reach the maximum and minimum limits 

imposed by the system, other parameter settings such as NU k 2, were found to 

cause the control signal to be highly active. Theoretical results, confirmed by 

simulation experiments of the previous sections, showed that the use of 

X and P(z-1) can reduce considerably this activity at the expense of modifying the 

overall closed-loop characteristics. Research work namely by Tsang and Clarke 

(1988) considered the inclusion of such constraints (saturation) directly within the 

cost fuction J before deriving the control increments. This was shown to lead to 

better performances.

The constraints could be of two types: rate constraints and amplitude constraints. 

The following sections look at each of them separately and derive the associated 

modified control algorithms.
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5.6.1 GPC. and the Soft Rate T.imi^

Because GPC calculations are based on increments rather than amplitudes, 

consider the following limitations:

(Xj £  A u(t + j -  1) £  Pj j = 1, 2,..., NU (5.57)

where oq and 0, represent the minimum and maximum limits considered constant

over the interval ’j \  and let A u*(t + j -  1) j = i , 2...... NU  ^  the solution

obtained using the unconstrained GPC algorithm.

When NU =  1, the best solution A u(t) is obtained by clipping A u*(t) between 

ctj, and pj. In this case, and as illustrated in figure (5.34) the "J = constant" con­

tours are described by a set of circles (for visual purposes) whose common centre 

represents the unconstrained minimum control increment A u(t)* and where the 

clipped minimum as well as the constrained one are the same, while figure (5.35) 

shows that for NU = 2 the J = constant" contours are represented by a set of 

ellipses showing combinations of inputs giving the same value for the cost func­

tion. The two minima are different in this case. In figure (5.35) ’u* represents the 

vector of components formed by A u(t), and A u(t+l).

For this latter case of NU = 2 consider the following inequality:

<xI < ; A u * ( t + j - l ) < ; p 1 j = 2, 3....... NU (558)

where * denotes that the quantities are the ones derived under the unconstrained 

algorithm.

If this condition is satisfied for all the control increments over the interval ’j \  then 

the best control increment is given by clipping A u*(t) between cq and fy. How­

ever, if  condition (5.58) is only verified for some of the increments, then the best
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control sequence is obtained by reoptimizing the cost function in equation (5.30) 

and taking into account NU. Hence, consider the case where the constrained 

optimum has one control just on the constraint boundary, i.e:

A u ( t + j - l )  = Oj (5.J9)

Consider the function:

L = (Gj u + f  — io)T (Gj u + f  — co) +  X i f  u rs
+ 2 fJj [A u(t + j -  1) -  otj]

where, Pj is the Lagrange multiplier, and aj the limit of the boundary. All other 

variables are as defined previously.

Deriving L with respect to uT leads to:

2 Gi (Gj u + f  -  co) +  2 X I u + 2 pj ej = 0
Because only the jth increment is assumed to violate the boundary, it follows that:

Therefore, the full expression of the new constrained optimum becomes:

or,

e; = [0, 0,..., 1,..., O f

ü = ü* -  (G  ̂Gj + X I)"1 Pj ej 

ü* = (Gi Gj +  X I)- * G j  (ca — f) (5.61)

where ü* represents the GPC unconstrained solution.

The Lagrange multiplier could be found by using equation (5.59), i.e:

dj =  A u(t + j -  1) = A u*(t + j -  1) -  hjj pj 

where hjj represents the jth term of the matrix (G f Gj +  X I)“1.

(5.62)
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Hence,

-  a: + A u*(t + j -  1)
^  = “ ---------£ ------------U0J

Summarizing, the constrained GPC solution is: 

u = u* + (GjT Gj +  X I)~Vj ej

_  -  a  + A u*(t + i -  1) (5.63)

Mj~  ‘ j

In the case o f the muscle relaxation system, the sequence u(t) is implemented 

rather than A u(t). Therefore, limits on Au(t) have to imposed taking into account 

those already existing on u(t) (Clarke, 1985a). The method is called "soft rate lim- 

iting".

5.6.2 GPC and Amplitude Limit«?

For the simple reason already mentioned in section 5.6.1, it is difficult to 

establish an expression for the constrained minimum using constraints on the 

amplitude rather than on the increment, unless the QP approach is involved (Law- 

son and Hanson, 1974) which on the other hand is computationally demanding. 

However, the simple case of NU = 2 is considered here.

Suppose that the condition a ,  £  u*(t +  1) fi fc  is violated, then the expression for 

the new control sequence taking into account the new constraints needs to be for- 

mulated.

Consider the following inequalities: 

a! £  u(t) < Pj

«2 ^ u(t +  1) £  p2 (5i64)

Subtracting u(t -  1) from both sides o f each inequality leads to:
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<*! -  u(t -  1) £  u(t) -  u(t -  1) £  pj -  u(t -  1)

(X2 -  u(t -  1) ^ u(t + 1) -  u(t -  1) £  (32 “ u(t ~ 1)

or,

a 'l  <, A u(t) <,

a '2 £  A u(t + 1) + A u(t) £  p'2 

a ' = a x -  u(t -  1)

P'l =  P i - u ( t - l )  

a'2 =  a 2 -  u(t -  1) 

p'2 = p 2 - u ( t - l )

Consider the following expression:

L = (Gi u + f  -  (o)T (Gi u +  f  -  to) + X uT u 

+ 2 Hj [A u(t) + A u(t + 1) -  &2*]

Minimization of L leads to :

u = u* -  (Gi Gx + X I)"1 (x e 

e = [1 1]T

Because = A u(t) + A u(t + 1), it follows that:

a /  = A u*(t) + A u*(t + 1) -  |x (©! + 02) 

q  being the sum of the ith rows of (G j  Gi + X I)'1

Therefore,

-  a /  + A u*(t) +  A u*(t +  1)
|a = ------------------------------------------

Gj + a 2

Hence, the final constrained solution when NU = 2 could be summarized as: 

A u(t) = A u*(t) -  ^  +* [ -  a /  + A u*(t) +  Au*(t + 1)]

(5.65)

(5.66)

(5.67)

(5.68)

(5.69)
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Simulation Results

In order to test the robustness of the revised GPC algorithm, a series of 5 

experiments was undertaken in which the same controller settings as in figure

(5.23) were considered, i.e (1, 10, 2, 0) for (Nlt N2, NU, X). Only the Atracurium 

model was used here. Figure (5.36) to figure (5.39) show the performances of the 

constrained GPC with "soft rate limits". Limits on the control increments of 

± 0.20, ±  0.15, ±  0.10, ±  0.05 were imposed respectively. Clearly, the control 

activity has considerably decreased for the three last cases without modifying the 

overall closed-loop characteristic. Table (5.5) summarizes the number of times the 

condition for constraints (a 2 £  Au*(t + 1) £  Pj) was violated. Notice that the 

smaller these boundaries became the more times the condition was violated, and 

therefore the less active the control signal was. This is understandable, since the 

cost function is more often reoptimized to include the constraints. Finally, the 

GPC with amplitude constraints produced exactly the same output as that of figure

(5.23) since the condition £  u*(t +  1) £  pj was never violated.

Fig.Nbr. Constr.Type Rate (Ampl.) Limits Viol. Freq.

5.36 Soft Rate Limits ± 0 .2 0 36

5.37 Soft Rate Limits ± 0 .15 42

5.38 Soft Rate Limits ± 0 .10 47

5.39 Soft Rate Limits ± 0 .0 5 69

Same as 5.23 Amplitude Limits pIoÖ

0

Table S S  Table representing the frequency o f condition violation 

versus the rate (ampl.) limits
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Figure 5.36. Closed-loop response of Atracurium 

model under GPC algorithm with input 

constraints; soft rate limiting method

with rate limits of + 0.20 ; N j = l ; ^ = 1 0 ;  

NU=2



F ig u re  5.37. S am e co n d itio n s  as in  fig u re  (5 .36 )

b u t w ith  ra te  lim its  o f  +  0 .15



F ig u re  5 .38. S am e co n d itio n s  as in  fig u re  (5 .36 )

b u t w ith  ra te  lim its  o f  +  0 .1 0



F ig u re  5 .39. S am e co n d itio n s as in  fig u re  (5 .36)

b u t w ith  ra te  lim its  o f  +  0 .05
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In conclusion to this chapter, it can be stated that the application of a self­

tuning adaptive control technique known as GPC and based on a long-range 

predictive approach (LRPC) to the muscle relaxation system associated with two 

drug models (Pancuronium-Bromide and Atracurium) proved very effective 

indeed. The algorithm was reviewed in its basic form as well as in its extended 

version. The performance of the former algorithm, which includes four tuning 

knobs, i.e: N lt N2, NU, K  under harsh simulation conditions was good. The later 

inclusion of the model following polynomial P(z_1) and the observer polynomial 

T(z-1) added more robustness and flexibility to the algorithm. Experimental 

results, supported by performance criteria, showed that P(z_1) affected the distur­

bance rejection of the system as well as the set-point response, whereas the T(z-1) 

affected only its disturbance rejection. Also experiments carried out under cor­

rupted noise measurements and sudden disturbances, showed that the use of this 

polynomial prevented the manipulated variable from highly active or unstable 

modes.

Because high values of the control horizon NU induced unnecessarily active sig­

nals often well beyond saturation limits, it was argued that the cost function whose 

minimization provided the GPC solution, had to include such constraints in order 

to extract the best possible control sequence. Smoother input signals without 

modification o f the set-point response were proved possible.

The next chapter considers the implementation of the same algorithm, whose 

robustness has been demonstrated, under real-time conditions using an analogue 

computer.

# Generalized Predictive Control #



#  Chapter 6: it - 139 -

CHAPTER 6

MICROCOMPUTER IMPLEMENTATION AND 
PERFORMANCE EVALUATION OF THE GPC 

CONTROLLER: A SIMULATION STUDY  
FOR PANCURONIUM AND ATRACIJRIIIM

6.1 INTRODUCTION

The previous chapters 4 and 5 have described mainly the application of 

different control strategies to different drug models in simulated environments that 

were as close as possible to real conditions. The modelling study included the 

existing knowledge of the Pancuronium and Atracurium kinetics resulting from 

PRBS identification studies and bolus injections respectively, and pharmaco­

dynamic characteristics such as the Hill equation (Whiting and Kelman, 1980; 

Weatherley et al., 1983) or a dead-space and a saturation element. The later 

incorporation in the simulated model of a noise model, sudden disturbances and 

varying time-delay made the whole system realistic.

The simulation results obtained were very encouraging. To further demonstrate the 

robustness of the control strategies, it was judged necessary to assess their perfor­

mances under real-time conditions. Previous research studies by Menad (1984) and 

Denai et al. (1990) who undertook a similar task using different self-tuning algo­

rithms (pole-placement and self-tuning PID respectively) demonstrated this to be 

very useful prior to any trials in theatre.

The real-time simulation study which will follow in the next sections concerns 

only the GPC control strategy, and it has been made possible by combining a 

Research Machines 380Z disk-based microcomputer system and a VIDAC 336
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analogue computer. Interface between the two devices is made via 10 bits analo­

gue to digital-digital to analogue (AD/DA) hardware converters.

The system that forms the 380Z disk-based microcomputer uses the Fortran 80 as 

a high level language. Several other routines are available for use with the system 

to perform well defined functions. Among these routines, the interrupt routines 

could be cited as forming an important part of the overall system, since it is these 

which allow one to set-up the real-time clock from the background processing 

unit. The frequency of the interrupts on all the channels (AD/DA) was chosen to 

be 1Hz corresponding to a 1 second sampling time which represents 60 times fas­

ter real-time performance.

The VIDAC 336 analogue computer is an important instrument that spans between 

symbolism and the physical problem. Operational amplifiers, together with poten­

tiometers, diodes, and resistors constitute the main equipment used to solve many 

complex problems by patching their corresponding equations on a ’patch board’. 

The machine operates within a range of ±  10 volts and the limit voltage used is 

referred to as the machine unit (1 M.U=10 volts). This voltage reference is avail­

able both in positive and negative forms and constitutes the basis for any scaling 

of the variables which are normally generated in the background program segment 

Section 6.2 below will be concerned with the representation of the Pancuronium 

dynamics on the analogue computer and the application of the GPC algorithm in a 

series o f simulations, whereas section 6.3 will consider the Atracurium model.
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6.2 CONTROL OF PANCURONIUM ADMINISTRATION ITSINC, OPT

6.2.1 Model Representation on the VIDAC

In order to obtain a model representation relative to Pancuronium on the 

analogue computer recall first the transfer function describing the kinetics of the

drug, i.e:

X(s) _  Ki________
U(s) (1 + Tj s) (1 + T2 s)

or,

X(s) _  ro 
U(s) q0 + qi s + s2

(6.1)

(6.2)

Decomposing and rearranging leads to the following:

_ - ± ( _ X )  = - q i X - q 0 X + r0 Udt
(6.3)

For this equation to be adequately patched on the VIDAC computer it is particu­

larly important to normalize the outputs X and X with respect to the range within 

which the machine is operating, i.e 1 M.U., by taking into account the respective 

maximum values X m and X m o f  X  and X  respectively. This consideration is even 

more useful in the Atracurium case, as it will be shown later, where the previous 

quantities greatly exceed the 1 M.U. range. Thus, the above equations could be 

rewritten as:

_d_
dt

d_
dt

+ «•0
U

Xm
(6.4)
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Open-loop studies showed that the maximum values at the outputs of the first and 

second integrator were:

Xm = Xm= 1 .0

Thus, using the nominal values for Pancuronium kinetics as specified in chapter 2, 

it follows that:

_d_
dt

X
1.0

= 0.5500
*

_ x _

1.0

_d_ _X_ 
dt [1 .0

+ 0.0875

1.0000 *1
1.0

+ 0.0250
_X_
1.0

(6.5)

Or, if  amplifiers are used, the above system becomes:

_d_
dt

■ ■ 
• • ■

X
!.0

= 0.0550 (10) X
! . °

+ 0.0250 (1) I

sl
*

+ 0.0875 (1) U
1.0

_d_ X = 1,0000 (1) _  J l
dt 1.0 “  1.0

(6.6)

Figure (6.1) shows the analogue representation of the non-linear model which does 

not include the delay element which it was not possible to represent adequately. A 

Pade approximation such as:

1 -  0.5 s x 
1 + 0.5 s x (6.7)

could have been made and realized practically if enough summers were available,

but this was not the case. Instead it was decided to include it digitally in the con­

trol program. However, the non-linear part is represented by a dead-space in series

with a saturation element.

# Microcomputer Implementation ofG P C  #



Dead-space 
& slope

Figure 6.1. VIDAC representation of the non-linear 

Pancuronium model.



#  Chapter 6: #
- 143 -

Settings for the potentiometers were:

PAj = 0.0875 
PA2 = 0.055

PA3 = 0.025
PB| =  0.2867 (Dead-space)

PB2 = 0.3916 (Slope)

PB3 =  PB4 =  0.9980 (Saturation)

6-2.2 Implementation and Application of »ho r xv>r 

Algorithm Using the 3XQZ Marhinp

Because the original GPC algorithm was coded in Fortran 77, it had to be 

rewritten in Fortran 80 and altered to include the 380Z interrupt routines, as well 

as the scaling formulae corresponding to the AD/DA converters emerging from a 

calibration operation. Figure (6.2) illustrates the flowchart of the overall control 

sequence. At this stage it is worth noting that the background processing time 

should not exceed the time period between interrupts, which in this case is 1 

second. Figure (6.3) is a picture taken of the overall real-time system including 

the VIDAC 336-analogue computer bearing the patch board, and the 380Z 

machine set-up in the biomedical laboratory located within the Department of 

Automatic Control and Systems Engineering. A real-time oscilloscope using a 

multi-channel facility, was also included in the overall set-up to monitor the 

input-output as well as the potentiometer values, especially those involving the 

pharmacodynamics o f the model.

The non-linear muscle relaxant model describing the Pancuronium-Bromide 

dynamics having been patched on the VIDAC, a series o f  trials was carried out A  

combination of <1, 10, 1, 0) for (N „ N2, NU, X) was chosen as part o f the GPC
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Figure 6.2. Flowchart describing the control sequence 
on the 380 Z disk-based microcomputer
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settings. Initial control is provided by an optimized PI whose parameters are ident­

ical to those used in the previous chapter and for the same drug. Parameter estima­

tion also in the form of a UDU algorithm used the same initial conditions as 

before. In order to eliminate any drift in the estimates, a low-pass first order filter 

o f the form T(z_1) = 1 - 0 . 8  z*1 is used. Because this filter is also included in the 

control derivation, it will reduce the overall feedback gain, leading therefore to a 

more stable input signal.

Because incremental data are normally fed to the measurement vector, the addition 

of this filter characteristics leads to an overall band-pass filter often favoured by 

engineers and which is of the form:

Gp(z-1) = 1 - z -1 
1 -  0.8 z ' 1 (6.8)

Sim ulation  .Results

A second order discrete-time model was considered throughout. To account 

for the digital delay incorporated in the external program segment and any other 

forms o f delay due to the hardware itself, the degree of the polynomial B(z_1) was 

extended to 4 leading to a transfer function of the form:

. bi z"1 +  b2 z~2 +  b3 z~3 +  b4 z-4
Gi(z *)  ---------- ---------- IT--------- 3 ---------

1 + al z  1 + a2 z 2 (6.9)

The closed-loop system response to a set-point command change o f  80% then 

70% every 100 seconds is shown in figure (6.4). The output response is good, 

although an undershoot of approximately 4% was produced during the first phase. 

The speed o f the transient response was relatively high due to the system’s gain 

which was high. Hus high gain-value was caused by the non-linearity which is 

represented by a small dead-space not quite equivalent to 50% due to the
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limitations of the hardware. Parameter estimates whose variations ate shown in 

figure (6.5) have converged to the following values:

h  =  -1.4849 a2 = 0.5243 

bj = 0.0172 b2 = -0.0389  

$3 =  0.1360 $4 = 0.1034

equivalent to a gain and time-constants of:

Gain = 5.52 f x = 1.83 seconds f 2 = 10.19 seconds

It is worth noting that the /b' estimates suggest that the overall time-delay might 

be higher than 1 since only the values of the estimates b3 and b4 are significant.

A  second experiment was performed in which the time-constant T2 of the continu­

ous system was increased from 20 seconds to 40 seconds. Another GPC run pro­

duced the output response of figure (6.6) which was free from overshoot and 

undershoot due to the slow dominant time-constant. The input signal was slightly 

noisy because of the filter cut-off frequency (0.2Hz) which allowed some other 

high frequency components to be included in the overall spectrum. The parameter 

estimates variations are shown in figure (6.7). They finally converged to the fol­

lowing values:

§! =  -1.5453 %2 =  0.5653

$! =  0.0079 $2 = -0.0173

$3 =  0.0630 b4 = 0.0406

corresponding to a second order continuous model with a gain and time-constants 

of:

Gain =  4.71 t ,  =  1.92 seconds t 2 =  19.79 seconds

If a comparison is drawn belween these real-time simulations and the digital ones 

conducted in chapter 5, it can be seen that the results are similar despite the
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different conditions set for the estimation routine. Moreover, the estimated time- 

constants fell within an acceptable range although the value o f the dominant time- 

constant is only half the true value. As for the open-loop gain, its value in both 

cases was slightly higher than the one obtained in the digital case due as explained 

earlier to the non-linearity represented by a short dead-space. The overall perfor­

mances were good despite the inaccuracy in the transfer of data through the 

AD/DA converters.

6.3 MICROCOMPUTER-CONTROLLED ANALOGUE COMPUTER

MODEL OF ATRACURIUM DYNAMICS

6.3.1 Simulation of Atracurium Model on the VIDAC 336

Similarly to section 6.2.1, consider the transfer function relative to the kinet­

ics o f the drugs, i.e:

° 2(s> (1 + Ti s) ( i + t 2 S) (x + t3 S)
Kj ( 1 + T 4 s)

(6.10)

or,

XE(s) r0 + rx s

U(s) q0 + qi s + q2 s2 +  s3 (6.11)

This equation may be decomposed as:

XE(s) __ XE(s) X(s) 
U(s) =  X(s) * U(s) (6.12)

where:

(6.13)

and,
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m . = _______ _ -
U(s) q0 +  qi s +  q2 s2 +  s3 

after developing and rearranging it follows that:

[i ]=<toX + q1 X+q0 X -U

and,

(6.14)

(6.15)

Xg = Tq X + rj X
(6.16)

Similarly, introducing the quantities Xm, Xm, and X„ respectively for X, X, and 

X, equations (6.15) and (6.16) become:

An open-loop step response study suggested that:

= 2.0 Xm = 20.0 Xm = 500.0

Consequently, after combining these values together with those o f rj and qj of 

chapter 3 and substituting them in equations (6.17) and (6.18), it follows that:

_d_
dt

= [0.562] (1) 

+ [0.49] (1)

2.0 + [0.8309] (1)

500.0

X
20.0

-  [0.5] (1) U
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and,

d r.  X
dt 200

d
[  xdt I 500.0

= [0.10] (1)

= [0.04] (1)

2.0

f--iL[ 20.0

(6.19)

XE =  [0.9835] (! )  [ ^ ]  +  [0.4185] (1) [ ^ ]  

Introducing amplifiers within equations (6.19) leads to:

X  I .................. _X_
2.0L _ J

d_
dt 2.0 = [0.562] (1) + [0.08309] (10) X

20.0

+ [0.049] (10)
500.0 -  [0.5] (1) U

d X
dt 200

d [_  - x

dt I 500.0

■ (i ■

= [0.10] (1) X
2.0

■

= [0.04] (1) X
~  20.0

(6.20)

(6.21)

Figure (6.8) shows the corresponding VIDAC representation of the model. The 

same remark as in section 6.2.1 about the time-delay applies here, and the non­

linearity is still represented by a dead-space and a saturation element.

A detailed list of the potentiometers includes the following values:

PAj = 0.562 PA4 = 0.04 

PA2 =  0.100 PA5 =  0.049 

PA3 = 0.580 PA6 = 0.98
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and,

PB! = 0.500 PB5 = 0.08309

PBj = 0.3916 (Slope) PB6 = 0.9980 (Saturation)
PB3 = 0.2867 (Dead-space)

6.3.2 Control o f Atracurium Administration Using CPC

For this third order non-linear model, the GPC algorithm used the same 

parameter settings as those o f section 6.2.2. The fixed PI, allowed to provide ini­

tial control, included similar parameters to those used in chapter 4 for the same 

drug. The UDU estimation routine is started when the output reached a 10% 

value. If initial estimates are taken to be zero, the diagonal matrix is set to 104.!, I 

being the identity matrix, and consequently, the PI is allowed to run for 20 sam­

ples, whereas if the estimates are set to non-zero values, the diagonal matrix is set 

to 102.I and therefore the self-adaptive GPC takes over from the PI at the 15th 

sample.

Simulation Results

If a full order model is considered here, the 380Z machine which uses a slow 

microprocessor chip known as the Z80 would fail to keep its processing tíme 

below the time period between interrupts as required, due to the heavy burden 

imposed by the estimation routine and the control sequence. Therefore, the idea of 

undeiparameterizing the model to a lower otder (2 for instance) was adopted 

throughout all the simulations. This can safely be done knowing that the use o f the 

previous T(z-‘) polynomial would compensate for any unmodelled dynamics. The  

strocture o f  the estimated transfer faction is similar to that o f  equation (6.9), i.e;

G2(z->)
b j Z~‘ +  t>2 Z~2 +  i>3 Z-3  +  b4 z-4

1 +  aj z-1 +  a2 z-2 (6.22)
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Figure (6.9) shows the performance of the GPC controller for a changing set-point 

of 80% then 70% every 100 seconds interval. The output demonstrated an 

overshoot of 3%, then tended to approach the set-point smoothly to avoid 

undershoot during the first phase. This is typical of GPC when used with the 

observer polynomial T(z-1), although if  a slower root was chosen for this polyno­

mial, the slight undershoot during the second and the third phase would have 

undoubtedly been eliminated. As for the control signal, it kept a steady level 

despite the repeated disturbances that have been noticed on the oscilloscope from 

the other electronic and electrical components that were part of different rigs 

currently used in the laboratory. Parameter estimates, initially taken to be zero, did 

not seem to be affected by these disturbances as their variations are shown in 

figure (6.10). Here again, the estimates and b2 had a very small positive quan­

tity and a negative small quantity respectively, whereas the values of the estimates 

b3 and b4 were significant, suggesting a time-delay o f 2 seconds. At the end o f the 

run these estimates converged to the following values:

aj = -1.4044 a2 = 0.4346 

bj = 0.0043 b2 = -0.0076  

b3 = 0.0318 b4 = 0.0289

corresponding to an estimated gain and time-constants of:

Gain = 1.90 f x = 1.29 seconds f 2 =  17.36 seconds

Using the same model-parameters, another run was conducted in which the esti­

mates were initialized to initial values equivalent to a second order continuous­

time system with a gain and time-constants of:

0j = [Gain = 2.0, Tj = 1.27 Seconds, T2 = 18.0 Seconds]

The result of this experiment is that of figure (6.11) where no significant change
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could be observed except that the output, after having overshot once, overshot a 

second time due to the fact that at that precise m om ent the value o f the potentiom­

eter fixing the value o f the slope in the non-linearity part and monitored via the 

real time oscilloscope, showed a significant drift from its initial position. But, on 

the whole, the performance was similar to the previous one, although parameter 

estimates whose variations are shown in figure (6.12) were steadier and converged 

to the following:

h  =  -1.3997 a2 =  0.4306 

bj = 0.0023 b2 = -0.0058  

b3 = 0.0325 64 = 0.0296

corresponding to the following estimated gain and time-constants:

Gain — 1.89 Tj = 1,27 seconds T2 =* 17.08 seconds 

values which are close to the previous ones.

6 3.3 Sensitivity of the. Self-Adaptive GPC to Patient v ariahi.,fy

The aim of this section is to assess the robustness o f the self-adaptive GPC 

when model parameters vary. Indeed, it has been shown previously that the 

parameters of the drug models vary from one subject to another, which originally 

led to the argument that a self-adaptive scheme would be more adequate in this 

case rather than a fixed one. It is believed that this variability may be due to the 

interaction between the drug concentration and the organs and tissues to which it 

is distributed. For instance, patients with too much fat would normally require 

large amounts o f Atracurium than those with less fat, in order to reach the same 

degree o f muscle relaxation. The concept of sensitivity was later introduced to 

describe patients who are highly, average, and less sensitive to the drug. Using the 

mathematically derived model o f equation (6.10), this could be interpreted as
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patients having high, average, and low gain respectively. To illustrate this idea, a 

series o f simulations was undertaken, in which patient parameters were varied 

using equation (3.10) and according to table (6.1). At this stage, it is worth noting 

that only one parameter was allowed to vary at a time.

Sensitivity Study

Figure number
Atracurium Model parameters

Ki Tj (Sec.) T2 (Sec.) T3 (Sec.) T4 (Sec.)

6.13 2.00* 3.08 4.81 34.36 10.64

6.14 1.00 4.00* 4.81 34.36 10.64

6.15 1.00 3.08 3.0* 34.36 10.64

6.16 1.00 3.08 4.81 20.00* 10.64

6.17 1.00 3.08 4.81 34.36 15.00*

Table 6.1. A tracurium  model param eter variation 

reflecting patient variability.

For this series of simulations and throughout, parameter estimates were all initial­

ized at zero. Figure (6.13) shows the performance o f the GPC controller when the 

open-loop gain was increased to 2 .0  (high sensitivity patient). Because the parame­

ters o f the fixed PI controller were kept exactly the same (previously optimized 

fo r K j =  1), the output response demonstrated an overshoot o f almost 29% and a  

12% undershoot. The adaptive GPC responded quickly to this by making the out­

put track the set-point better. The control signal was reasonably active and was 

quick to reject the disturbance, here in the form o f a set-point change, leading to a

* M odel parameter subject to variation
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response almost free from undershoot and overshoot during the second and third 

phase. Parameter estimates converged to the following values:

= -1.3648 a2 = 0.4051 

bi = 0.0028 b2 = -0.0077 

b3 = 0.0357 b4 = 0.1104

corresponding to the following continuous values:

Gain = 3.88 Tx = 1.20 seconds T2 = 13.48 seconds

Figures (6.14), (6.15), and (6.17) also show the performance of the GPC controller 

when the model parameters T t , T2, and T4 took values of 4, 3, and 15 seconds 

respectively. Little change could be observed in the corresponding performances 

which were characterized by an overshoot of approximately 3 % during the first 

phases, whereas during the first and third phases, GPC was quick to reject the dis­

turbances caused by the set-point changes and allow the outputs to track the set- 

point better. Parameter estimates for the three cases converged to the following 

values:

(i)

&j= -1.4880 S2 = 0.5131

bi = 0.0049 62 = -0.0050

63 = 0.0249 64 = 0.031

equivalent to a gain and time-constants of:

Gain = 2.22 Ti = 1.64 seconds T 2 = 17.71 seconds

for figure (6.14)

(ii)

&i = -1.3040 a2 = 0.3406

bi = 0.0008 b2 = -0.0056 

63 = 0.0385 64 = 0.0360
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equivalent to a gain and time-constants of: 

Gain = 1.90

for figure (6.15)

(iii)

Sj =  -1.3610  

$! = 0.0011 

b3 = 0.0401

Tj = 0.99 second

à2 = 0.4030 

b2 =  -0.0014  

b4 = 0.0395

f 2 = 16.95 seconds

equivalent to a gain and time-constants of:

Gain = 1.89 Tj = 1.20 seconds T2 = 12.94 seconds

for figure (6.17)

The experiment whose result is shown in figure (6.16) was undertaken by assign­

ing a smaller value to the dominant time-constant, i.e T3 =  20 seconds. The 

response, as expected, was fast. The response tried to reach the set-point quickly 

during the fixed PI phase, and because a different controller mode was switched 

on (i.e, GPC), the response demonstrated an undershoot first, then, due to the 

T(z-1) filter, the approach to the set-point became smoother. The control signal 

was good and reasonably active. At the end of the run the estimates converged to 

the following values:

kl = -1.4056 a2 = 0.4629 

= 0.0002 $2 = -0.0004

$3 = 0.0539 b4 = 0.0545

equivalent to a gain and time-constants of:

Gain = 1.90 f j  = 1.56 seconds f 2 = 7.75 seconds

To summarize the previous 5 performances, table (6.2) outlines the corresponding
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ISE and ITAE criteria defined in the previous chapter.

Figure Number ISE ITAE

6.13 5.38 352.51

6.14 8.59 368.34

6.15 7.44 334.31

6.16 5.69 314.41

6.17 6.65 341.12

Table 6.2. ISE and ITAE criteria for varying 

Atracurium m odel param eters

A  quick analysis o f the table confirms what was already said about the cases 

corresponding to figures (6.13) to (6.17). Indeed, cases for which the non­

dominant time-constants varied, i.e figures (6.14), (6.15), and (6.17), produced 

ITAE and ISE values which were quite comparable. However, the lowest ITAE 

value was recorded for the case o f figure (6.16) which used a faster dominant 

time-constant <T3 = 20 seconds). As time increased, the error was minimized 

meaning a reward rather than a penalty for minimizing the error. A s for the smal­

lest ISE, surprising as it may seem looking at the shapes o f the different 

responses, it was achieved for the case of figure (6.13) which used a gain of 2.00. 

The 20% overshoot followed by a 12% undershoot would indeed have suggested 

otherwise. But, because the transient response was fast, it soon tracked the set- 

point leaving the ISE value smaller.

A s pointed out earlier, the patient population can be divided into 3 categories: 

highly sensitive, average sensitive, and less sensitive patients, corresponding 

respectively to a high, average, and low gain. This gain could also vary for one
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patient and on-line. Hence, the self-adaptive GPC should not exhibit any unstable 

mode as a result o f this. The estimator should signal to the GPC so that it would 

tune in accordingly. To test the robustness o f the algorithm under such conditions, 

a run was conducted in which the open-loop gain was made to vary using the 

potentiometers PA3 and PA6 in figure (6.8) from 1.00 to 0.90 (sudden change) at 

iteration 70, from 0.90 to 0.80 (sudden change) at iteration 150, from 0.80 to 0.90 

(sudden change) at iteration 210, and finally back to 1.00 at iteration 260 (sudden 

change). Figure (6.18) shows how the GPC with the help o f the observer polyno­

mial T(z-1) rejected the 4 disturbances quickly without deteriorating its perfor­

mance despite the harsh changes made. The variations of the parameter estimates 

illustrated in figure (6.19) showed little drift in the dynamics, whereas the b esti­

mates changed accordingly, i.e a decrease in their value whenever the gain 

decreased, and an increase whenever the gain increased. Table (6.3) summarizes 

the values o f the parameter estimates at the end o f each phase, as well as the gain 

and time-constants of the corresponding continuous-time system.
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Parameter Estimates Convergence

Parameter estimates
Time phase (ffom ...to...) (Seconds)

(0-70) (70-150) (150-260) (260-300)

âi -1.3208 -1.2925 -1.4371 -1.4824

â2 0.3613 0.3346 0.4677 0.5105
A

bi - 0 . 0 0 0 1 -0.0051 -0.0263 -0.0181
A

b2 0.0023 0.0126 0.0371 0.0283
A

b3 0.0295 0.0236 0.0195 0.0262
A

b4 0.0359 0.0394 0.0221 0.0131

Gain 1.75 1.67 1.71 1.76

Tj (Sec.) 1.05 0.97 1.4347 1.64

T2 (Sec.) 14.63 14.74 15.90 15.72

Table 6.3. Model param eter estimates for an  on-line 

varying gain

Notice that this time the 2 seconds time-delay is not clearly demonstrated by the b 

estimates during the phases corresponding to the iterations between 150-260 (sec.) 

and 260-300 (se c .).

The conditions under which the GPC algorithm was investigated were closely  

related to reality, as far as the uncertainty of the model parameters were con­

cerned, which themselves reflect patient parameters variability. The controller 

proved very robust in making the output track the set-point command efficiently 

despite non-linearities, and offsets induced by the hardware available. These later 

conditions emphasized the realistic character o f the simulations. Corresponding
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control signals were reasonably active, due to the observer polynomial T(z_1), 

which undoubtedly attenuated the high frequency components originating from the 

hardware, and later amplified by the A operator. As a result o f this, parameter esti­

mates were good and were characterized only by a slight drift or none at all in 

some cases. Further simulations combining bolus dose administration and closed- 

loop infusions of Atracurium were scheduled as part o f this real-time study, but 

because o f serious hardware problems, related mainly to the AD/DA converters, 

they were impossible to conduct Finally, it should be said that these real-time 

simulations were very useful in assessing the robustness of the algorithm over a 

wide range o f subjects parameters before its implementation and evaluation in 

operating theatre. The next chapter is concerned with the implementation and 

application o f this control strategy in operating theatre.
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CHAPTER 7

SELF-ADAPTIVE GENERALIZED PREDIPTTVF. 
CONTROL (GPC) OF ATRAC! JR IT IM 
INDUCED MUSCLE R E L A X A T IO N  

IN OPERATING THEATRE

7.1 INTRODUCTION

The previously successful implementation and application of the GPC control 

algorithm in simulations as well as in real-time experiments motivated the work 

reported in this chapter which is concerned with the clinical evaluation of the 

same control strategy (GPC), using the fast acting drug Atracurium. The experi­

ments to be presented have been undertaken during the period spreading between 

November 1990 to July 1991, in collaboration with the Department of 

Anaesthesia, Western Infirmary Hospital, Glasgow, and the Department of 

Anaesthesia and Anaesthesiology, Hallamshire Hospital, Sheffield, and with the 

respective Ethics Commitee approvals.

A new configuration for the closed-loop control scheme had to be considered for 

that purpose, suggesting therefore, that a number of modifications and additions 

for both the exisiting hardware and the original developed software had to be 

included, details o f which will be reviewed in the next section. Moreover, to pro­

vide a closer insight into the anaesthesia technique, a brief description of the clini­

cal preparation o f the patients just before surgery w ill also be given. Finally, 

results o f the conducted clinical trials will be presented, analysed and discussed.
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7.2 M ODIFICA TIO N , OF THE MUSCLE RELAXATION r n x j p ny 

SYSTEM  PRIOR TO CLINICAL EVALUATION

The muscle relaxation control system used in operating theatre and illustrated 

in figure (7.1), consists of the following components:

•  A 380Z-D Research Machines disk-based microcomputer system (similar to 

the one used in the previous study and reported in chapter 6, except that its 

density has been doubled allowing for more RAM memory space), and which 

includes the control algorithm.

•  A Relaxograph system for measuring the degree of muscle relaxation 

(paralysis).

•  A digital pump driving a disposable syringe containing a solution o f Atracu- 

rium.

Before describing the overall control loop, the following sections will endeavour 

to describe each of the previous components.

7.2.1 The Relaxograph M easurement System

The Datex Relaxograph™ neuromuscular transmission (NMT) monitor is 

designed for monitoring neuromuscular blockade by electrically stimulating a peri­

pheral nerve and displaying the resulting EMG (electromyograph) response. It 

employs the Train-of-Four principle (TOF) and features an automatic search for 

supramaximal stimulation current level. Five electrodes are needed for monitoring 

NMT with the Relaxograph. Two are for electrically stimulating a peripheral nerve 

(over the ulnar nerve), while two others are for measuring the resulting response 

from the corresponding muscle (hypothenar muscle). The fifth electrode serves for 

grounding the apparatus, and is placed above the wrist. NMT monitoring is
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usually begun after the induction of sleep to prevent voluntary muscle contrac­

tions. Calibration, which consists of a search for 100% reference response, is ini­

tiated after sleep is induced, but before administration o f muscle relaxant drugs. 

The Train-of-Four (TOF) stimulation is delivered by the Relaxograph every 20 

seconds. Stimuli of the corresponding sequence are given at a rate of 2 pulses per 

second. The device displays Tl% and TR% values given by the following formu­

lae:

T1 =

TR =

first twitch 
control 

last twitch 
first twitch

X 100% 

x  100% = TOF ratio

In this case T1 represents the value of the EMG level.

The information output from the device comes in the form of a 41 character string 

in ASCII code. It includes the following data:

•  The actual time (in hours and minutes).

•  The marker number (signal generated by the user to point to a particular 

event during the operation).

•  The values of the four twitches (T l, T2, T3, and T4).

•  The reference EMG values (100% control).

•  The error codes.

To provide the access to this information, which is available in the buffer every 20 

second interval, the NMT machine includes a built-in 9-pin serial input-output 

connector for any microcomputer interface. And finally, the Relaxograph monitor 

contains also a built-in two speed printer. The slow speed mode (used throughout 

the study) will allow only the T l and T4 values to be printed. High frequency dis­

turbances, such as diathermy, are usually displayed as broken or dotted lines.
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7.2.2 The Pum p-Svringe Unit

Two different types of digital syringe pumps were used during the trials con­

ducted in the previously mentioned hospitals. For the Glasgow trials, a VICKERS 

Treonic digital syringe pump was made available. Originally set for conventional 

use (speed o f the pump set by means of three thumbwheels operated manually), it 

was modified to allow the BCD signals which control the rate multipliers to be 

provided by the computer. This BCD signal transmits to the rate multipliers which 

control the pump’s timing circuitry to produce pulses that drive a stepper motor at 

a speed which is proportional to the signal generated by the controller segm ent A 

sim ple mechanism included in the hardware transforms the rotating movements of 

the motor into linear ones. 50/60 ml disposable syringes can be used with the dev­

ice. The syringe barrel is fixed to the pump body with a barrel holder, while the 

plunger is attached to the pump carriage. The linear movements are directly 

transmitted to the pump carriage which pushes the plunger into the barrel, causing 

the Atracurium solution to be expelled through an administration line. As for the 

experiments conducted in Sheffield, a CRITIKON SYRINGE-MINDER 90 syringe 

pump was provided. No modifications were necessary in the hardware, since an 

RS232 input was already available. The principle o f functioning is the same, 

except that this pump allows only integer signals to be input in, i.e 1 to 999 

corresponding to 0.1 to 99.9 ml.hr-1, whereas the former pump demanded signals 

between 0.1 to 99.9 cooresponding to 0.1 to 99.9 ml.hr-1.

7.2.3 The C ontrol A lgorithm  and the Sam pling PprinH

Because the Relaxograph delivers signals only at precise intervals o f 20 

seconds, a change in the existing program had to be made to accomodate the use 

o f a one minute sampling interval which was found to give adequate results both
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in simulations and in real-time experiments. This was done by using a 3 point 

non-recursive averaging filter of the form:

GafCz' 1), l i= 2  •r u  _  ±  T  -i
3 I XJ i = 0 (7.1)

where:

z-1 = e ~ 8 h 
h = 20 seconds (7.2)

Expanding equation (7.1) leads to the following expression: 

g af(z_1) =
_ 1 + z~* + z 2

(7.3)

By noting that:

1 -  z~3 = (1 + z_1 + z~2) (1 -  z-1) 

equation (7.3) could then be replaced by the following expression:

Substituting equation (7.2) into equation (7.5), yields:

1 _  p -  60 s

F(S) = 3 ( , - e ~ ^ )

Substituting s = j co in equation (7.6) leads to the following expression:

1 — g ~ 0̂ j o)
F(jco) =

3 (1 - e " 20^

(7.4)

(7.5)

(7.6)

(7.7)

In order to extract the equation that governs the magnitude plot o f equation (7.7), 

it is necessary to transform it as follows:

1 - e - 60j (o ___ 1 -  (cos 60 co -  ) sin 60 m ^
3 (1 -  e ~ 20 j ®) 3 (1 -  (cos 20 co -  j sin 20 co )) (7-8)

Isolating real and imaginary part for this equation, yields:
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F(j CD) =
(1 -  cos 60 co ) + j sin 60 co 

3 ((1 -  cos 20 co ) + j sin 20 © ) (7.9)

After manipulating this equation, the mathematical expression o f the magnitude 

plot is given by:

IF(j to) I = _1_ / 1 -  cos 60 to
3 V 1 -  cos 20 to (7.10)

or, if  expressed in decibels, it becomes

IF(j co) I = 2 0 1 -  cos 60 0) 
1 -  cos 20 co (7.11)

Hence, equation (7.11) represents the equation governing the magnitude-plot o f the 

above filter.

The log-magnitude plot response of the filter is shown in figure (7.2), where the 

characteristic shows a frequency o f 0.008 Hz at -3 dB.

When closed-loop control is initiated, a PI controller is used to provide initial con­

trol allowing the parameter estimation routine to gather reasonable data. The PI 

parameters were obtained using Ziegler-Nichols techniques (Ziegler and Nichols, 

1942) applied to open-loop step responses in an off-line study. The dose of Atra- 

curium is expressed in ml.hr*1 and is obtained using the following known formula:

Output o f Atrac. (ml.hr*1) = Kp e + Ki ( £ e  + P) (7.12)

where,

Kp = kpWt
Kj = lq Wt

kp = 0.02 Kg.*1 , k; = 0.0021 Kg.*1 

Wt represents the actual patient's weight

e is the difference between the actual Tl% and the target Tl%  

A t this stage it is worth noting that when a bolus dose is preloaded to induce mus-
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cle relaxation, the PI controller is initialized with some integral value P, so as to 

shorten the stabilization period when closed-loop control mode is entered. Nominal 

values between 150 and 333 were used throughout

7.2.4 The Overall Control Program

The control program whose flowchart o f figure (7.3) illustrates the different 

steps, is  implemented on the 380Z-D microcomputer system. The link between the 

machine, the Relaxograph device as well as the syringe pump drive unit is via the 

serial and parallel input-output ports. Once the run command is entered, the pro­

gram reads first the default data values relative to the control segment settings 

from off-line stored files. The user then enters the information concerning the 

patient such as, initials, age, and importantly the weight. To allow communication 

between the microcomputer and the Relaxograph, the 380Z-D library provides the 

routine INITSI which initializes the serial port SIO-4 and sets the baud transfer 

rate to 300 baud. The program then checks the Relaxograph buffers for any 

relevant information using the functions ISIKTL(4) and ISIKIN(4) which are both 

included in the subroutine Relax called by the main program segment. The infor­

mation in a form of a 41 character string is decoded by the same subroutine which 

also separates the relevant numerical quantities mainly the time, mark, T l, and T4. 

In case o f high frequency disturbances (diathermy for instance), the character 

string is stripped o f its 41 characters. To counteract this, the subroutine was writ­

ten so as to check that this string is complete. For convenience purposes, Tl%  

which indicates the value of the EMG level is scaled in the program so as to 

reflect the paralysis level (values between 0.0 and 1.0) using the following 

transformation formula:

Paralysis =
100 -  EMG% 

100 (7.13)
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Once three data values have been gathered, the 3 point non-recursive averaging 

filter is  applied to smooth these data. The single value of the output obtained is 

then used by the control program (fixed PI or self-adaptive GPC) to generate the 

input signal clipped between minimum and maximum values of 0.001 and 0.999 

respectively. The input value is  then scaled by a factor depending on the type of 

syringe pump which is made available and sent to the subroutine Pump which 

interfaces the 380Z-D machine to the syringe pump device. For the VICKERS 

pump, this subroutine initializes the PIO channel and separates the pump speed 

into a three digit number o f decades, units, and decimals, then sends the final 

result to the PIO board. However, if  the Critickon syringe pump is the one to be 

used, the same subroutine initializes the second available serial port and sets the 

baud-rate at 9600. The 16 bits rate-data is sent as two bit numbers into two 

addresses. The first address is HI byte, whereas the second address is LO byte. 

The link between the 380Z-D machine and the pump is in this case realized via an 

RS232 connector.

7 .3  CLINICAL PREPARATION OF THE PATIENTS 

BEFORE SURGERY

The patients upon which this study was based were all selected knowing that 

they did not suffer from any known sensitivity to anaesthetic drugs or myoneural 

disorders, or have not been taking drugs known to affect neuromuscular transmis­

sion. They all underwent abdominal or orthoepedic surgery which normally 

requires muscle relaxation.

Approximately 60 minutes before surgeiy, they were all premedicated with 

Temazepam by mouth. Anaesthesia was induced with Methohexitane 1 mg.Kg.“1. 

The trachea was intubated when T1 reached a 15% to a 10% value. The lungs
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were inflated with 30% oxygen, 70% nitrous oxide and 1% Enflurane. During sur­

gery, Enflurane anaesthesia was supplemented with boluses of Fentanyl lpg.K g.-1. 

W hile the patient was still in the anaesthetic room, the Relaxograph electrodes 

were adequately placed on the patient’s arm, then the calibration proceeded. Once 

transferred to the theatre, the patient, already connected to the control system, was 

intravenously given an initial bolus dose of Atracurium of 0.15 to 0.25 mg.Kg.-1. 

Atracurium concentration varied from 500 fig.m P1 to 1 mg.ml“1.

The automatically controlled infusion was started when T1 (induced by the initial 

bolus) reached a level judged adequate by the anaesthetist (usually 10% to 15% of 

the 100% baseline* value). Muscle relaxation level was monitored until the sur­

geon ordered cessation of relaxation. The control was then switched off immedi­

ately and residual blockade was reversed using antagonist agents such as Neostig­

mine 2.5 mg. and Atropine 0.8 mg. Figure (7.4) is a picture taken in hospital 

showing the patient connected to the overall muscle relaxation control system 

ready to undergo surgery.

7 .4  RESULTS AND DISCUSSIONS

After local Ethics Commitee approvals, 10 patients (8 females, 2 males) were 

selected as being suitable for the experiments. Information relative to the patients 

are presented in table (7.1). Atracurium concentrations used were all lm g.m T1 

unless otherwise specified.

*A  100% EMG corresponds to 0% paralysis, 
whereas 0% EMG is equivalent to maximum paralysis.
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Patients’ Identification Cards

Patients’

initials Sex Age (Yr) Weight (Kg.) Type of surgery
Figure

number

EXC* F 68 50 Orthoepedic 7.5, 7.6

MGM* F 33 60 Cholecystectomy 7.7, 7.8

TXC* F 21 68 Cholecystectomy 7.9, 7.10

AXM* F 69 50 truncal Vagatomy 7.11, 7.12

MMG* F 65 58 Cholecystectomy 7.13, 7.14

MUU* F 37 60 Cholecystectomy 7.15, 7.16

SMC* F 17 56 Cholecystectomy 7.17, 7.18

JOD* M 32 69 - 7.19, 7.20

ANM** M 46 73 Truncal Vagatomy 7.21, 7.22

MCB** F 41 71 Cholecystectomy 7.23, 7.24

Table 7.1. Table summarizing the patients’ personal details 

including the type of surgery they underwent 

(-): not communicated by the anaesthetist

All ten trials were conducted using a sampling time interval of 1 minute. Conse­

quently, the previous 3 point non-recursive averaging filter was included in all 

experiments. Control and estimation were performed every one minute, while 

EMG readings were obtained every 20 seconds. Parameter estimation was based 

on the UDU factorization algorithm and was triggered at the same time as the 

closed-loop control with a covariance matrix and forgetting factor values of

* W estern Infirmary Hospital, Glasgow
** Hallamshire Hospital, Sheffield
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p  = 102.I and p = 0.995 respectively. A 20% reference EMG level (Tl%) was 

required by the operating surgeon in all trials except for the last case correspond­

ing to patient MCB, where a 15% EMG reference level was targeted. Results 

corresponding to each patient were divided into two parts: the first part consists of 

two traces; the upper trace representing the recorded EMG level (Tl%) in a form 

o f segments, whereas the lower trace shows the variations of the infusion rate of 

Atracurium in ml.hr-1. The time axis is labelled in samples of 20 seconds, and it 

is worth noting that the infusion rate is constant over three samples of 20 seconds 

each. As for the second part of the results, it includes the parameter estimates 

variations plotted every one minute interval.

Patient EXC

A combination of (1, 10, 1, 4) was chosen for (Nlf N2, NU, X) as part of the 

GPC settings. A first order observer polynomial T(z-1) =1 -  0.85 z-1 was also 

included to compensate for any unmodelled dynamics. The parameter estimation 

routine, using incremental filtered data, assumed an underparameterized second 

order model with a minimum time-delay of 1 minute. Parameter estimates were 

initialized at 0.0 except estimate bt which was taken to be 1.0. The EMG record­

ing of figure (7.5) shows how this patient was resistant to the initial bolus dose of 

Atracurium of 7 mg. administered at mark (2). It took the anaesthetist five other 

bolus doses of 2 mg. each respectively at mark (3), mark (4), mark (5), mark 

(7), and mark (9) to bring the EMG down to 19%, level which was still above the 

value o f 15% which was suggested by the anaesthetist as being the safety margin 

normally allowing for the time-delay between the time of the infusion and the 

time at which its corresponding effect takes place. Closed-loop control was then
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started at mark (10) with the optimized PI allowed to run for 10 minutes within 

which an overshoot of 8% was produced. When the self-adaptive GPC took over 

at mark (10) on the trace, it tried to overcome this overshoot, but was rather slow 

to do so, despite the relatively fast time-constant of the filter, and produced the 

input signal which is represented by the lower trace of the same figure. The EMG 

undershot 5% below the target and started recovering at the end of the run. The 

overall performance, however, was acceptable and the controller did not exhibit 

any unstable mode despite diathermy problems appearing several times namely at 

mark (10), and mark (10). Parameter estimates variations illustrated in figure

(7.6) showed little drift, and the estimates finally converged to the following 

values:

aj = -  0.6552 S2 = 0.0732 

bx =  0.3556 bj =  -  0.0930

These correspond to an estimated gain and time-constants of:

Gain = 0.63 TCj = 0.51 minute TC2 = 1.49 minutes

Patient MGM

For this experiment, the GPC protocol assumed a combination of (1, 30, 1, 0) 

for (N lt N2, NU, X) and a second order observer polynomial of 

T(z *) = 0  -  0.70 z ‘)2. The idea was to use a faster root to quickly reject any dis­

turbance and also to double the roll-off for enhancing robustness (Clarke and 

Robinson, 1991; Shook et al, 1991). Similar conditions to the previous case were 

adopted for the estimation routine. Mark (1) on the upper trace o f figure (7.7) is  

when a bolus dose o f Atracurium of 10 mg. was given to the patient leading to a
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fast decrease in the EMG level to approximately 4%, and hence no further drug 

was administered until mark (1) where the loop was closed with the fixed PI pro­

viding initial control for 10 minutes. Mark (1) is when the self-adaptive GPC took 

over. During that period, the EMG level was remarkably steady until mark (2) 

where the controller was switched off and the blockade reversed with Neostig­

mine. The infusion rate for the whole run was smooth in spite of diathermy prob­

lems which occurred mainly at mark (2) and mark (2). Parameter estimates were 

steady as figure (7.8) shows and finally converged to the following values:

§! = -  1.3742 â2 = 0.4880 

t>! =  0.5073 b2 = -  0.4078

Corresponding to the following pole/zero positions in the z-plane:

zero: 0.8039
poles: (0.6871 ±0.1261 i)

Patient TXC

For this experiment whose results are shown in figure (7.9), the Atracurium 

drug concentration was halved to 500 pg.m r1. Conditions for the controller were 

similar to those of the previous case. However, a third older model with a 

minimum time-delay of 1 minute was assumed this time. Mark (1) and mark (2) 

on the upper trace o f the same figure represent the times at which the anaesthetist 

administered bolus doses o f respectively 7.5 mg. and 2.5 mg. in order to bring the 

EMC level down to approximately 15%. At mark (3), the closed-loop control 

mode was entered with the fixed PI allowed to run for 30 minutes, after which the 

self-adaptve GPC took over at mark (4). Both control modes succeeded in keep­

ing a remarkably steady level o f paralysis with hardly any fluctuations at all, but
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looking at the infusion rate plot, the period corresponding to the GPC protocol 

was steadier. Finally at mark (5) the controller was switched off and the blockade 

reversed at mark (6). Notice the return to a 100% baseline suggesting that no 

unnecessary drug has been administered and therefore little drift in the relaxation 

level has been recorded. Figure (7.10) illustrates the variations of the parameter 

estimates which were steadier during the course of this trial. They finally con­

verged to the following values:

âi = -  1.1926 â2 = 0.3059 â3 = 0.0745 

Si =0.8109 b2 = -  0.1358 b3 = -  0.0740

Corresponding to the following pole/zero positions in the z-plane:

zeros: 0.3972 ; -  0.2297
poles: (0.6702 ±  0.2342 i) ; -  0.1478

Patient AXM

During this particular experiment, the subject, a young female, demonstrated 

unusual resistance to the muscle relaxant drug. Indeed, as the EMG recoiding in 

figure (7.11) shows, the patient was insensitive to the first bolus dose o f respec­

tively 9 mg. intravenously administered at mark (2). Another 2  mg., then 3 mg. 

were given at mark (3) and mark (4) respectively. At this stage, the anaesthetist 

decided to enter automatic control of the infusion at mark (5) with the fixed PI 

allowed to run only for 5 minutes. The infusion rate of Atracurium at SOOpg.mT1 

began at approximately 60 ml.hr-1 then started increasing gradually to reach 80 

ml.hr-1, and that did not cause the EMG to drop below the 50% line. However, 

when the GPC took over at mark (5), with a combination of (1, 10, 1, 0) for 

(Ni* n 2’ ^  ^  and T(z !) = i 1 ”  0-95 z-1)2, it was quick to drive the EMG level
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to the target in spite of the noise level estimated at ±  3%  persistently acting on the 

output. The controller behaved rather well by rejecting these disturbances and pro­

duced a control signal, illustrated on the lower trace o f the same figure, which was 

reasonably active. Undoubtedly, the use of a slower root in the T(z-1) polynomial 

made the controller more robust. The parameter estimation routine, which in this 

case assumed a second order model with a one minute time-delay, used filtered 

incremental data for the measurement vector. The variations of the parameter esti­

mates are shown in figure (7.12). They, on the other hand, finally converged to the 

following values:

ftj = -  1.7674 &2 = 0.7717

b! = 0.0471 b2 = -0.0386

equivalent to a continuous second order system of the following gain and time- 

constants:

Gain = 1.97 TC i = 4.19 minutes TC2 = 48.88 minutes

Before describing the remaining six clinical trials, it is worth noting that 

throughout the following, full valued data (positional data) rather than incremental 

data were used in the measurement vector for estimation purposes. Although this 

constitutes a violation of the GPC approach based on a CARIMA model, it was 

found to give satisfactory performances as the following results will demonstrate. 

Parameter estimation assumed a second order model with a minimum time-delay 

of 1 minute unless otherwise specified, and initial conditions included a covariance 

matrix and a forgetting factor of respectively P = 102.I, and p = 0.995. Parameter 

estimates were initialized so as to reflect a continuous second order system with 

the following gain and time-constants (taken from one of the experiments con­

ducted in hospital previously (Denai et al., 1990)):

0j = [ l .l5 , 0.34', 16.13']
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Patient MMG

Mark (1) of figure (7.13) is when a bolus of 6 mg. was administered to the 

patient, and mark (2) when another bolus dose of 2 mg. was added which brought 

the EMG down to a level of approximately 15%. Closed-loop control was started 

at mark (3) with the PI operating for 10 minutes, after which the self-adaptve 

GPC took over at mark (3). The control was switched off at mark (4), where at 

the same time Neostigmine was given to reverse the blockade. During the first 

phase (PI) the EMG response demonstrated an overshoot of almost 5% due to the 

PI parameters which probably needed readjustments, but when the GPC was 

switched on with a combination of (1, 20, 1, 5) for (Nh N2, NU, X), the output 

tracked the set-point better and with minimum fluctuations. The control was 

surprizingly good and reasonably active despite the absence of the filter T(z-1). 

Here the use of a non-zero weighting sequence X was adopted to introduce fine 

control tuning. Parameter estimates whose variations are shown in figure (7.14) 

converged to the following values:

t i  = -  1.0165 a2 = 0.0258 

bj = 0.0292 b2 = 0.0003

equivalent to a continuous second order system of the following gain and time- 

constants:

Gain = 3.17 TCj = 0.27 minute TC^ = 104.23 minutes

patient MUU

In this experiment the control horizon was increased to 2 and all other 

parameters were similar to the ones assumed previously. Mark (1) on the upper

# Clinical Evaluation o f GPC  #



F ig u re  7 .1 3 . R eco rd ed  E M G  and p u m p  in fu s io n -ra te  d u rin g  surgery,

P a t ie n t  M M G



Es
ti

ma
te

 
Es
ti
ma
te

F ig u re  7 .14 . S ystem  p aram ete r e s tim a tes  c o rre sp o ­

n d in g  to  fig u re  (7 .13)



# Chapter 7: # - 175 -

trace o f figure (7.15) represents the time at which the anaesthetist administered a 

bolus dose of Atracurium of 10 mg. which completely wiped out the patient’s 

EMG tracing as it began to appear again 2 minutes later. At mark (2) automatic 

control started and mark (3) is when the self-adaptive GPC was triggered. As 

shown, GPC was quick to overcome the 7% overshoot induced by the PI and 

maintained a relatively steady level o f paralysis despite the presence of diathermy 

occurring several times mainly at mark (4), mark (5), and mark (5). The use of a 

control weighting sequence X *  0.0 counteracted the effect of a control horizon 

N U  £ 2 which normally makes the control signal highly activated. Finally at mark 

(6), blockade was reversed with Neostigmine leading to a 100% baseline. Varia­

tions of the parameter estimates during the run are shown in figure (7.16). They 

converged to the following values:

ax = -1.0004 l 2 = 0.0437

$! = 0.1149 b2 = 0.0604

equivalent to a continuous second order system of the following gain and time- 

constants:

Gain = 4.05 TCt = 0.32 minute TC2 = 21.53 minutes 

Suggesting a relatively high sensitivity patient with fast time-constants.

Patient SMC

The experiment conducted with this subject is quite interesting in that it 

allowed one to test the robustness of the algorithm when the drug concentration 

varied on-line. Figure (7.17) shows the corresponding EMG recording as well as 

the infusion rate variations. Mark (1) represents the time at which a 12 mg. bolus
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Figure 7.17. Recorded EMG and pump infusion-rate during surgery.

Patient SMC
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dose o f muscle relaxation drug was intravenously administered and mark (2) is 

when automatic control (PI) was initiated using a solution of the same drug 

diluted at 500 (ig.ml-1. Mark (2) shows when the self-adaptive GPC took over (5 

minutes later) with a combination of (1, 30, 1, 5) for (Nlf N2, NU, X). The Atra- 

curium concentration was doubled to 1 mg.rnl“1 at mark (3). The controller was 

later switched off at mark (5), and the blockade reversed at mark (6). The 22% 

overshoot induced by the PI was quickly accounted for by the GPC by generating 

abrupt control actions, which because of the low concentration reached a mean 

level o f 40 ml.hr-1. Control activity which was high during the first 100 samples 

decreasing slightly between samples 100 and 200, as a result of which the EMG 

level was kept steady with 2% fluctuations around the 20% target. When the 

change in Atracurium concentration was brought into effect at mark (3), and 

because o f the delay (definitely more than the minimum delay of 1 minute which 

was assumed in the model), the EMG level still assumed a 20% values for a few 

samples then dropped 5% below the target, while the pump tried to overcome this 

by driving sometimes at 0.1 ml.hr-1 (minimum speed) and other times at 20 

ml.hr-1. Figure (7.18) shows how the parameter estimates were affected by this 

change. As illustrated in the same figure, they did not settle at all, and this may be 

due to the wrong assumption of time-delay and the absence of the filter T(z-1) to 

compensate for the unmodelled dynamics. In fact, at the end of the run, the esti­

mates final values suggested a non-minimum phase system as the following values 

demonstrate:

= -  0.9655 a2 = -  0.0316 

b! = -  0.0072 b2 = 0.0195

Corresponding to the following pole/zero positions in the z-plane:

zero: 2.7083
poles: 0.9972 0.0317
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The estimated patient’s open loop gain assumed the following values at the end 

of each of the two phases corresponding to the different concentrations:

Gain = 2.15 for concentration 500 (X.g.ml-1
a  «

Gain = 4.24 for concentration 1 mg.mT1 

results which reflect the levels at which the pump was driving before and after the 

concentration change.

Patient JOD

After bolus doses of 8 mg. then 3 mg. administered at mark (1) and mark

(2) respectively on the upper trace of figure (7.19), the loop was closed at Mark

(3) where the EMG level reached approximately 28%. The PI was allowed to run 

for 5 minutes and produced therefore an overshoot o f 12%. When the GPC took 

over at mark (3) assuming the same controller parameters as before, it was quick 

to reduce the overshoot by making the EMG track efficiently the 20% target. The 

control signal whose variations are shown on the lower trace of the same figure 

was good and reasonably active. Parameter estimates started to converge as soon 

as the GPC was in operation as figure (7.20) illustrates. At the end of the run they 

converged to the following values:

a! = -  0.9623 a2 = -  0.0120 

b2 *= 0.0320 b2 = 0.0451

Corresponding to the following pole/zero positions in the z-plane:

zero: — 1.4094 
poles: 0 . 9 7 4 6 0 . 0 1 2 3

It is worth noting that these values suggested a non-minimum phase system.
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Finally, mark (4) is when the blockade was reversed.

Patient ANM

This experiment was the longest in this series of trials. The subject, a young 

male, underwent a 3 hour surgery requiring muscle relaxation. Mark (1) on the 

trace o f figure (7.21) is the time at which Suxamethonium was administered before 

the trachea was intubated. A return to a 100% EMG level was achieved at mark

(4) when a large bolus dose of muscle relaxant drug of 24 mg. was given 

intravenously, and this wiped out completely the EMG tracing, which only started 

to reappear again 12 minutes later. At mark (5) the automatic control mode was 

entered with the PI providing initial control for 30 minutes until mark (6) when 

the GPC took over with the same controller and estimation parameters as before, 

except that instead of assuming a minimum delay of 1 minute, the B(z_1) polyno­

mial structure was extended by one coefficient to absorb this value . Initial condi­

tions for the estimates were taken to be:

= -0.9927  

a2 = 0.0496

bi = 0.0
b2 = 0.0471 

b3 = 0.0183

these were chosen to reflect the same gain, time-constants, and time-delay as in 

the previous case.

At mark (7) the control had to be switched off due to a lack of disk-space. Later 

at that stage (mark (8) and mark (9)), the anaesthetist had to resume manual con-
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trol with bolus doses of 10 mg. each. Mark (10) is when the blockade was 

reversed with Neostigmine. As shown by the same figure, the PI induced an 8% 

overshoot followed by a 10% undershoot of the EMG level, but was quickly elim­

inated as soon as the GPC took over. The EMG level was quite steady, fluctuating 

between 17% and 20% leading to a highly activated control signal as the lower 

trace of the same figure illustrates, and this despite the relatively large value of the 

output horizon and the non-zero control weighting sequence. Parameter estimates 

whose variations are shown in figure (7.22) did suggest indeed a value of time- 

delay greater or equal than 1 minute, since assumed an insignificant value. 

These parameter estimates converged to the following final values:

= -1.0149 a2 = 0.0284 

b! = 0.0048 b2 = 0.0228 b3 = 0.0353

equivalent to a continuous second order system of the following gain and time- 

constants:

Gain = 4.66 TCj = 0.28 minute TC2 = 71.44 minutes

Again these values suggest a high sensitivity patient with a slow dominant time 

-constant.

Patient MCB

In contrast to all 9 previous trials, a reference EMG level of 15% was tar­

geted this time, moving therefore the operating point closer to the non-linear 

region. After a bolus dose given at mark (1) of figure (7.23), automatic control 

was switched on at mark (2) with the PI providing initial control for only 5 

minutes, after which self-tuning control under the same conditions as before was 

initiated to counteract the overshoot induced previously. A remarkably steady
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EMG level of approximately 15% was achieved together with a well behaved con­

trol signal, until mark (4) where the controller was switched off only to reverse 

the blockade at mark (5). Parameter estimates varied according to the plot showed 

in figure (7.24) and finally converged to the following values:

§! = -  0.9852 a2 = 0.0153 

bi = 0.0418 b2 = 0.0695

equivalent to a continuous second order system of the following gain and time- 

constants:

Gain = 3.70 T Q  = 0.24 minute TC2 = 32.20 minutes 

Analysis of the data

In order to analyse the data, three indices were used: The mean value, the 

standard deviation (SD), and the root mean square deviation (RMSD). These last 

two indices are also commonly used to give an indication about the spread of a set 

of values around the mean value as well as the target respectively. They are both 

defined by the following two formulae:

where Xi, X , and N are the current measurement, the mean value, and the total 

number of points considered respectively.

here X t is as defined previously and TRGT is the reference target.

Note that the effect o f squaring the deviations before adding them is to emphasize

(7.14)

and,

(7.15)
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those quantities which differ most from the mean value or the reference target. 

Table (7.2) summarizes these values for each of the 10 patients studied.

Patients’ initials Total points Mean T1 (%) SD (%) RMSD (%)

EXC* 197 17.50 4.13 4.83

MGM* 58 19.92 1.36 1.37

TXC* 134 19.43 2.56 2.63

AXM* 123 18.49 3.51 3.82

MMG* 97 21.85 1.76 2.56

MUU* 94 21.59 3.57 3.91

SMC* 387 20.14 6.89 6.89

JOD* 99 20.29 1.02 1.07

ANM* 318 18.42 3.31 3.67

MCB** 66 16.91 2.64 3.26

Table 7.2. Sum m ary of each patien t’s da ta  

(*): 20%  T1 target 

(**): 15% T1 target

The mean value of Tl% for each patient was calculated for those trials where 

closed-loop infusion has been started when Tl% returned to 15% after administra­

tion of the intial bolus dose of Atracurium (Patients TXCf MUU, ANM, and 

MCB). For those experiments where closed-loop control was initiated earlier, the 

mean was evaluated from the moment Tl% crossed the target point for the first 

time. As shown in table (7.2), the mean values of Tl% suggest that the degree of 

neuromuscular blockade obtained with the 10 patients was very satisfactory. Max­

imum overshoots were recorded with patients SMC (22%). ANM (8%), EXC 

(7%), and MUU (8%). The cause is directly linked to the wrong time at which the
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closed-loop mode was entered. Indeed, with patient SMC, automatic control was 

operational when T1 reached 19% after recovery from the bolus, and the 

preloaded PI dose (P) was not large enough to shorten the stabilization period. 

This is probably the biggest problem facing such a controller because it is not 

always possible to switch to automatic control at T1 = 15% as experiments with 

patients EXC, MGM, MMG, JOD, and AXM have demonstrated. These patients 

have shown remarkable resistance to the drug, that even large bolus doses did not 

induce the expected drop in the EMG baseline. One solution to this problem of 

initial overshoot is of course to switch to the self-adaptive GPC a lot sooner as 

was the case for the experiment with patients JOD, and MCB which both pro­

duced a mean Tl% level close to the target, i.e 20.29 (SD 1.02)% and 16.91 (SD 

2.64)% respectively. Perhaps more justice would have been done to the self- 

adaptive GPC, as far as table (7.2) is concerned, if its corresponding values were 

evaluated only during the period GPC was operating, since all bigger overshoots 

were induced by the PI controller. Obviously, the initiation of the self-tuning GPC 

at an earlier stage is prone to some danger due to the fact that the estimator would 

not have gathered enough information about the patient to ensure adequate control, 

which may therefore produce a poor performance, especially if the wrong filter is 

used in case of incremental data being used in the measurement vector. The use of 

positional data in this case would be more advantageous. This has been demon­

strated in the experiment with patient MCB where despite the use of an operating 

point close to the non-linear region (15% T1 target), the controller behaved sensi­

bly by producing a good response and a reasonably active control. The same table 

also shows that the RMSD as well as the SD values were relatively low for all 

patients except those of patient SMC which reached a value of 

SD = RMSD — i  6.89, but again, these values correspond to the case where the 

concentration was doubled halfway through the run, meaning that the pump should
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start driving at approximately half speed and waiting for the effect of the previous 

higher infusions to wear off. For patient EXC, the RMSD and SD values were 

outside the 4% range (4.83% and 4.13% respectively ) due to the wrong choice of 

the filter T(z-1) order, although otherwise the performance was good.

As for the infusion rate variations for the 10 patients, an analysis in which the 

mean Atracurium drug consumption per minute and per kilogram body weight was 

evaluated in each case, given the corresponding muscle relaxant drug concentra­

tion. Table (7.3) summarizes such evaluation.

Patients’ initials Total points Mean dose (|Xg.Kg.- 1.min._1) SD (%)

EXC* 197 6.65 2.35

MGM* 58 2.65 0.07

TXC** 134 1.57 0.28

AXM** 123 6.81 2.78

MMG* 97 6.77 1.64

MUU* 94 5.27 2.39

SMC*** 387 5.38 4.43

JOD* 99 6.34 1.75

ANM* 318 4.03 2.98

MCB* 66 5.30 1.81

Table 7J .  Sum m ary of each patien t’s d ru g  consum ption dose 

(* ) : 1 m g.m T1 concentration 

(**): 500 ng.ml-1 concentration 

(***): Both concentrations used

As shown in the same table, the highest dose o f muscle relaxant drug was
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recorded with patient AXM (6.89 pg.Kg.^.min'1) who had a relatively low gain 

(1.97) adding to the fact that the closed-loop control mode was switched on at a 

very early stage. The lowest drug dose was that for patients TXC and MGM, 

where the GPC algorithm used the filter polynomial T(z_1) which, as already seen, 

reduces the overall feedback gain leading to smoother control actions. The mean 

dose consumed by SMC was surprizingly low at 5.38 pg.Kg._1.min_1. Despite the 

severe concentration change made during the trial, the algorithm performed well 

by administering the right amount of muscle relaxant drug. With this latter trial 

full valued data were used for the estimator and no filter was included to compen­

sate for any unmodelled dynamics and reduce high frequency components. A sum­

mary of the nine patients’ (n = 9) results is given in table (7.4) where the mean, 

and SD indices are displayed for the age, weight, duration of automatic control, 

mean drug dose consumption, the mean, RMSD, and the SD. The last experiment 

was excluded since the 15% target was different from the other trials.

Parameter Mean SD Range

Age (Yr) 43.11 18.89 17-69

Weight (Kg.) 60.44 7.69 50-73

Automatic Control Duration (Min.) 62.33 33.04 30-130

Dose Oig.Kg._1.min._1) 5.05 1.80 1.57-6.81

Mean of T1 (%) 19.74 1.37 17.50-21.85

RMSD of T1 (%) 3.41 1.69 1.07-6.89

SD of T1 (%) 3.12 1.68 1.02-6.89

Table 7.4. Sum m ary of patients* d a ta  (n = 9)

The value of 3.12% for the mean of standard deviation of T1 indicates that, gen
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erally, a steady level of blockade was obtained. Moreover, the fact that this value 

was so close to the value of the mean o f the root-mean square deviation of T1 

(3.41%) implies that the degree o f neuromuscular blockade was close to the target. 

The mean value o f Mean of Tl% of 19.74% reinforces the argument that the indi­

vidual Tl% values were also close to the target. At this stage it is too soon to 

draw any conclusions about any existing correlation between the patient’s reaction 

to the initial bolus and the overall control performance, as further experiments 

with a larger number of patients should be conducted. Suffice to say that from the 

three control modes currently used (manual, fixed controller, self-adaptive), the 

self-adaptive scheme proved more robust and efficient. Indeed, the experiment 

conducted with patient ANM, which clearly highlights the three phases, showed 

that during the manual control the anaesthetist administered a total dose of 9.13 

pg.Kg._1.min_1. , whereas during the automatic control only 4.03 pg.Kg.'^min' 1 

were given to the patient The mean dose of muscle relaxant drug of 5.05 

fig.Kg. Kmin l , however, was far lower than the one obtained by the anaesthetist 

when using bolus doses, and most o f all lower than the range recommended by the 

Atracurium manufacturers.

In conclusion, it could be said that the application of the self-adaptive GPC 

algorithm to control muscle relaxation was successful in achieving the two preset 

goals, i.e: in maintaining a steady level of paralysis with minimum deviation from 

the target, and reducing the total muscle relaxant dosage. The overall control sys­

tem proved very easy to manage as most of these experiments were earned out 

single-handed by an anasthetist (AJ. Asbuiy). The GPC algorithm on the other 

hand, with its tuning knobs, allows more flexibility in the design.

Different aspects of the algorithm were exploited, although it was hoped to con­

duct more experiments. The one aspect that is probably the highlight o f this 

chapter is the parameter estimation side. An approach in which full valued data for
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the estimator rather than incremental ones were used was experimented and 

proved to give satisfactory results. Although the aspect of eliminating the offset 

from the data would be absent, the estimates provided were consistent and haidly 

biased, a problem which would have certainly occurred with incremental data and 

a wrong filter choice.

Summarizing the best settings for all GPC knobs would lead to a combination of 

(1, 20, 1, 5) for (Nj, N2, NU, X) if full valued data are used for the measurement 

vector, and a combination of (1, 10, 1, 0) for ( % %  NU, X) together with a 

second order filter with slow roots of the form T(z_1) = (1-0.95 z“1)2 if  filtered 

incremental data are to be fed to the estimator.

Finally, these encouraging results have provided the basis for another study 

in which simultaneous control of muscle relaxation and anaesthesia (unconscious­

ness) was considered. This is the subject of the next chapter which envisages such 

a scheme.
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CHAPTER 8

IDENTIFICATION AND CONTROL OF NON-LINEAR 
MULTIVARIABLE ANAESTHETIC MODEL

8.1 INTRODUCTION

Various SISO self-adaptive techniques have been successfully applied to 

muscle relaxant anaesthesia in simulations and clinical trials as the previous 

chapters have clearly demonstrated. SISO generalized predictive control (GPC) is 

among these techniques. This chapter describes the extension of the previous work 

to the multivariable case involving simultaneous control of unconsciousness as 

well as muscle relaxation. The multivariable model has been elicited via a combi­

nation of literature surveys and clinical experiments conducted in hospital. The 

multivariable version of GPC in its basic form as well as its different extensions 

to include model following and observer polynomials is outlined. The strategy was 

then applied to the previous model assuming nominal parameter values. Further 

experiments in which the model parameters were chosen according to a Monte- 

Carlo method were also conducted. The robustness of the control strategy is inves­

tigated and the results presented and discussed.

8.2 IDENTIFICATION OF THE NON-LINEAR  

MULTIVARIABLE ANAESTHETIC MODF.I.

A number of on-line drug infusion systems in medicine have been developed 

in recent years, a survey of such schemes being given in (Linkens and 

Hacisalihzade, 1990). On-line control of neuromuscular blockade (muscle relaxa­

tion) and depth of anaesthesia (unconsciousness) have been investigated by many
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researchers (Robb et al.t 1988) and (Schwilden et al., 1987, 1989). Both of these 

areas are prime responsibilities for anaesthetists in operating theatre. As already 

seen, for muscle relaxation, measurements are made via evoked EMG responses 

obtained from supramaximal stimulation at the wrist Resulting EMG signals at the 

hand are rectified and integrated giving a proportional measurement of the degree 

of relaxation (i.e induced paralysis). The drug used throughout this study is similar 

to the one previously considered, i.e Atracurium which is a modem fast acting 

agent suitable for continuous infusion via a motor driven syringe pump.

In contrast depth of anaesthesia is more difficult to quantify accurately. Thus, one 

approach has been to merge a number of clinical signs and on-line data to produce 

an expert system advisor for the anaesthetist. This system called RESAC, has been 

developed and validated in a recent series of clinical trials (Linkens et al., 1990). 

In spite of the multi-sensor nature of the above approach, it appears that during 

the majority of operating periods when no unusual emergency conditions occur, a 

good indication of unconsciousness can be obtained from a single on-line moni­

tored variable. Thus, the use of arterial blood pressure, monitored via an inflatable 

cuff using a Dinamap instrument, has been investigated for feedback control with 

simple PI strategies by Robb et al. (1988). In this case the control actuation is via 

a stepper motor driving the dial on a gas vaporiser. This concept forms the basis 

for the modelling and control aspects of unconsciousness in the following work. In 

particular, the drug Isoflurane has been used in these studies, it being commonly 

used in modem surgery.

The necessary transfer function components for the model used in these studies 

have been obtained in various ways. The two drugs considered in the model for 

human beings are Atracurium (for producing muscle relaxation) and Isoflurane (for 

inducing unconsciousness). The individual pathways are described in the following
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sections.

8.2.1 The A tracurium  M athem atical Model

• Pharmacokinetics

The study conducted and reported in chapter 3 allowed one to obtain the fol­

lowing equation:

. 2 i  -  9.94 (1 +  10.64 s)
U 2 "  (1 +  3.08 s) (1 +  34.36 s)

Equation (8.1) describes the pharmacokinetics o f the muscle relaxation system 

relating to the Atracurium drug.

• Pharmacodynamics

Similarly, to characterize the drug effect the Hill equation is used to relate to 

a specific concentration giving the following expression:

Ee ff-
t (0.404)2-98 

Xh2*

(8.2)

Finally, the overall transfer function describing the Atracurium mathematical 

model is given by the following equation:

XE
g »<s> = u 7

where,

K1 e " T,8( l + T 4 s) 

(1+ T !  s) (1 + T2 s) ( 1 + T 3 s) (8.3)
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Kl = 1.0
xt = 1 min.

Ti =  4.81 min.

T2 = 34.36 min.

T3 = 3.08 min.

T4 = 10.64 min.

8.2.2 The Isoflurane Unconsciousness Model

Anaesthesia or unconsciousness is defined as being the state in which the 

body is insensitive to pain or other stimuli. There is no direct method of measur­

ing depth of anaesthesia. Previous research work namely by Schwilden et al. 

(1987, 1989) and Savege et al. (1978) used quantitative EEG (electroencephalo­

gram) analysis in human to give an indication of the anaesthetic state in humans. 

However, the inteipretation of the tracings is a difficult and subjective task. The 

information proved unreliable even when interpreted by experienced staff, since 

the characteristic patterns are often disturbed by factors such as anoxia, surgical 

stimulations, and anaesthetic agents used (Breckenridge and Aitkenhead, 1983). 

Consequently, anaesthetists had to resort to the merger of several clinical signs 

such as blood pressure, respiration, etc... to obtain the closest possible indication 

of how lightly anaesthetised the patient is. Indeed, in a study conducted by Asbury 

(1990), anaesthetists were asked to give a personal rank for the relative importance 

of 10 clinical signs. These signs were ranked on a scale of 1 to 10 based on the 

mean of these personal ranks assigned to each one o f them. Table (8.1) illustrates 

the result of such survey:
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Clinical sign Mean of raw ranks Order of mean rank

Movement and response to surgery 7.4 1

Respiration rate 5.8 2

Heart rate 5.3 3

Low muscle tone 5.0 4

Lacrimation 4.9 5

Arterial pressure 4.84 6

Sweating 4.77 7

Pupil position 4.6 8

Pupil diameter 3.4 9

Capillary refill 2.5 10

Table 8.1. Anaesthetists’ classification o f the 10 clinical 

signs by order of importance

From these 10 clinical signs investigated, blood pressure has been used as one 

variable to give indication of depth of anaesthesia. Gray and Asbury (1986) 

describe a system that controls systolic arterial pressure (SAP). The algorithm, a 

simple PI controller, achieved a quality of control ranging from good to fairly 

poor, and in most operations the patient recovered fairly quickly. It has been con­

cluded then from this study, that when no emergency conditions occur, blood pres­

sure could be used to provide good indication o f  the patient's anaesthetic state. In 

fact, recent published work by Schils and coworkers (1987) used mean arterial 

pressure and a measure o f EEG frequency to control Halothane anaesthesia in an 

on-off control strategy which was found to be less sensitive to parameter 

mismatches. It has also been argued that the lowest blood pressure that occurs nor­

mally during sleep is 15% to 20% less than the average pressure whilst awake.

#  Multivariable CPC fo r  Anaesthesia #



# Chapter 8: # - 192-

Elderly and hypotensive persons kept the margin at 10%. Consequently, mean 

arterial pressure (MAP) is used as the second variable for the multivariable model 

considered throughout this study.

Off-line identification techniques such as maximum likelihood or instrumental 

variables methods should ideally be used to obtain an adequate and parsimonious 

discrete-time transfer function model of a locally linearized controllable system in 

adaptive control applications. Indeed, it is widely known from the literature that 

system identification has been possible in some biomedical applications, such as 

PRBS excitation of muscle relaxant drug response (Linkens et al., 1982). How­

ever, it is not always possible to apply these methods during clinical environ­

ments, partly because of ethical considerations and also because of limitations in 

time. Anaesthetic drugs normally have stable and slow acting responses, conse­

quently, step and bolus responses are the most common identification procedures 

used by clinicians even though the signal to noise ratios are often very low. In 

light of the above considerations, a study was conducted by Millard et al. (1988b, 

1988a), in which step response trials of each patient’s response to Isoflurane were 

carrried out before and after self-tuning control of blood pressure during surgery 

implementations. This was considered essential for safety reasons, because the 

authors used the early version of Clarke and Gawthrop’s algorithm (1975) to con­

trol mean arterial blood pressure, and which was found to be sensitive to wrong 

time-delay assumption. In a tranquil anaesthetised state, step responses to changes 

in inspired concentration of Isoflurane from a vaporiser were performed. The 

patient’s blood pressure response showed a transport delay. This pure dead-time is 

likely to vary slightly due to the breathing cycle of about 6 seconds. In fact, in the 

55 patients studied, including 12 others in similar experiments conducted by the 

same author (Millard et al., 1986), dead-times in the range 16-30 seconds have
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been observed. If the changes in inhaled Isoflurane concentration are small (0-5%), 

then the responses could be approximated to linear characteristics. However, if the 

changes do not fall within this range, the responses are in general non-linear and 

time-varying.

Thus, a first order linear model with dead-time has been adopted, having a time- 

constant of 1-2 minutes. The magnitude of this time-constant is long enough to 

absorb some inaccuracy of dead-time estimate due to breathing variations. On the 

other hand, in order to estimate the steady-state gain, it is assumed that a rela­

tively sensitive patient needs 2% Isoflurane for a 30 mmHg reduction of the mean 

arterial pressure (Millard et al., 1988b). Therefore, the model describing variation 

of blood pressure to small changes in inhaled Isoflurane concentration can be writ­

ten as:

where,

G22(s) -
A MAP 

U2
K2 e " T2S 

( 1 +  T5 s)

t2 = 25 seconds.

T5 = 2 min.

K2 = -  15mmHg/%

(8.4)

8.2.3 Interactive Component Model

.  'Afracurium to Mean Arterial Pressure" interaction

This interaction has been investigated in human beings and there seems to be 

small (clinically insignificant) changes in blood pressure. Most of these changes as 

a result o f Atracurium occur because this latter has a slight ability to release His­

tamine. This is a very transient chemical in the blood lasting for no more than a
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minute and it does not appear in every patient (Asbury, 1990) .

•  Tsoflurane to Muscle Relaxation" Interaction

In order to identify this type o f interaction which is small but significant, an 

experiment was performed by Asbury (1990), in which a patient, a man o f 47 

without a kidney but having a renal transplant, had to be anaesthetised. The fol­

lowing gives a description of the procedure adopted.

With the patient set-up and control readings of the Dinamap as well as of the 

Relaxograph taken, the patient was given a dose of Atracurium of 10 mg. which 

completely wiped out his E.M.G tracing (figure (8.1)) which began to reappear at 

20 minutes later. The infusion of Atracurium of 5 mg/hr was then commenced. 

This took up to some 50 minutes by which time a steady level had been achieved 

and this corresponding place on the trace is 1A on figure (8.2) where a step- 

change in Isoflurane concentration from 0-1% was introduced. At 2A on the trace 

of figure (8.3), the Isoflurane was switched off. Now at this stage the experiment 

had already taken 1 hour 35 minutes, at which time a new equilibrium was 

achieved. The Isoflurane was again switched on at 3A on the trace of figure (8.4), 

another 1% step-on. Once the changes were observed, the Isoflurane was finally 

switched off at 4A on the trace of figure (8.5). At 5A on the trace of the same 

figure the effect of Atracurium was reversed using a dose of Neostigmine and 

Glycopyrrolate with a satisfactory return to 100% baseline, suggesting that there 

has been very little drift.

In order to analyse this whole tracing, it is perhaps more interesting to divide the 

experiment into two main parts:

• The on-phases part (Marks 1A and 3A)
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• The off-phases part (Marks 2A and 4A)

The point in proceeding in such manner will become clearer in the forth­

coming sections.

a~> The _on-phases part

From figure (8.2) where the E.M.G signal versus time is represented, it can 

be seen that after 1% of Isoflurane change has been introduced, the E.M.G signal 

started to decline following a time-delay sequence of about 40 seconds. Moreover, 

if  the Isoflurane change is kept within a relatively small range (as in this very 

case), the shape of the transient clearly suggests a second order linear model with 

a pure time-delay of the form:

C*ion(s)
Kpn e - Ts

(1 + Tlon S) (1 + T ^n  S)
(8.5)

Using the identification methods described in (Graupe, 1976), an attempt was 

made to evaluate the parameters in the above equation. It is however worth noting 

that for convenience the signal (100 -  E.M.G) which is the paralysis was plotted. 

In order to evaluate the first time-constant Tlon, it is assumed that for large t’s the 

curve referred to by x(t) on the same figure is approximated by

___t__

x(t) =  x „ -  x(t) = coefficient! e 1,00 = a(t) 

where Tlon represents the dominant time-constant

Drawing the tangent at this curve referred to by a(t) gives:

Tlon s  6 segments = 120 seconds = 2 minutes 

If the curve given by the following equation is drawn, i.e:

__t_

|3(t) = x(t) -  a(t) = coefficient2 e Tj0°
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where is the smallest time-constant, then drawing the tangent at the same 

curve leads to:

Tjon -  4 segments = 80 seconds =  1.33 minutes

The final value-theorem allows one to evaluate the steady-state gain, i.e: 

x„. = 15%

Therefore,

K = 15%/% or K -  0.15 (normalised I/P and O/P)

Hence, the identified second order model for this phase can be summarized by the 

following transfer function:

G lon(s> =
0.15 e~°~67*

(1 +  2  s) (1 +  1.33 s) (8.6)

Following the same procedure as previously for the trace starting at 3A 

figure (8.4) the following transfer function was obtained:
on

°2on(s) =
0.33 e~

(1 +  2.67 s) (1 +  s)

Taking the mean values for the two transfer functions yields:

(8.7)

Gon(s) =
Q 2 4  e -0  84s

(1 +  2.33 s) (1 +  1.17 s)

b) T h e o ff-p h a ses  parf

(8.8)

The point in analysing these parts of the transient where the Isoflurane was 

switched off after a certain equilibrium has been reached, is mainly to establish 

the symmetry of a possible linear model reinforcing hence its validity, and 

perhaps justifying the assumption o f it (the model) being linear for small changes
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of input.

In light of these considerations, the same procedure of section a) above was con­

ducted using figures (8.3) and (8.5), leading to the following results:

G ioffi«) =
0.31 e~°~67s 

(1 + 3.33 s) (1 +  s) (8.9)

G;2off(s) =
0.28 e~U3s

(1 +  3.33 s) (1 +  1.67 s) (8.10)

Taking the mean values for the two transfer functions (8.9) and (8.10) yields:

GoaC«) ~
0.29 e-8

(1 + 3.33 s) (1 + 1.33 s) (8. 1 1 )

A quick analysis of the two transfer functions above obtained could indeed 

suggest that the model is more or less symmetrical considering the fact that the 

study has been performed entirely by eye.

Hence, if  an overall model describing the effect that Isoflurane has on muscle 

relaxation had to be drawn, mean values should be taken between the two models, 

thus giving:

K4 e -T3*

° 12(S) *" (1 + T6 s) (1 + T7 s) (8<12)

where,

K4 = 0.27%/% 

t3 = 1 minute 

T6 = 1.25 minutes 

T7 = 2.83 minutes

Equation (8.12) represents the linear transfer function which describes the 

effect of the inhaled agent Tsoflurane’ on muscle relaxation during surgery.
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g.2.4 The Overall Multivariable Anaesthetic Model

In light of the above identification studies, the overall linear multivariable 

system combining muscle relaxation together with anaesthesia (in terms of mean 

arterial blood pressure measurements), whose components are also illustrated in 

figure (8.6), can be summarized by the following equation:

Paralysis 
A MAP

Gll(s) G12(s) 

0 G22(s)

■
1

1
Ui

U2
(8.13)

where,

G „(s) = 

G 12(s) = 

G ^ s)  =

1.0 e ~ 8 (1 + 10.64 s)
(1 + 3.08 s) (1 +  4.81 s) (1 + 34.36 s) 

0.27 e ~ 8
(1 + 2.83 s) (1 +  1.25 s)

-  15.0 e -°-428
(1 +  2 s)

(8.14)

Finally, the overall non-linear multivariable system combining all the effects is 

obtained by including the non-linearity described in section 8.2.1 which involves 

the Atracurium drug only, since the other drug-effects are considered to reflect 

linear characteristics within a range already specified in sections 8.2.2 and 8.2.3.

8.3 DEVELOPMENT OF THE MULTIVARIAB1F 

OPC  CONTROLLER

8.3.1 The Basic Algorithm

Consider the m-input m-output linear discrete-time system:

A(z_1) y(t) = z~kij B |(z-1) u (t-l) + —(-z~^ (g 15)

where,
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A(z-1) = I + At z-1 + A2 z-2 + • • • + An z-n 

BiCz-1) = B0 + B! z 1 + B2 z-2 + • • • + Bm z~m 

CCz"1) = Co + Cj Z"1 + C2 z"2 + • • •  +CpZ“P 

y(t) = yi(t),y2(t),...,ym(t)

u(t) = u1(t),u2(t),...,um(t)

and A = l - z _1

y(t), u(t) are vectors o f ’m’ measurable outputs a n d ’m’ measurable inputs respec­

tively. kjj is the integral time-delay of the ijth element of B^z-1) and Ç(t) denotes 

a vector o f ’m’ uncorrelated sequences o f random variables with zero mean and 

covariance cr.

In order to derive a j-step ahead predictor of y(t + j )  based on equation (8.15), 

assume that C(z-1) = I with no loss of generality and consider the following 

Diophantine equation:

I = Ej A(z-1) A + z-j Fj(z-1) (8.16)

where Ej and Fj are matrix polynomials defined given the matrix polynomial 

A(z_l) and the prediction interval j. Following the same procedure as in the SISO 

case of chapter 5, it can be shown that the predictor becomes:

y(t +  j) = Gj Au(t  +  j - l )  +  Fj(z_1) y(t)

Gj = Ej(z-1) B(z_1) (8-17^

Equation (8.17) can be rewritten as:

’y(t+l) = G1 Au(t) + Fj Y(t) 

y(t+2) = G2 A u(t+l) +  F2 y(t)

« • • •
(8.18)

ly(t+N) = Gn A u(t+N -l) + Fn y(t)
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Consider a cost function o f the form:

»
Jgpc = E [(Ql + Q2)] 

n2
Q1 = X I  y(t+j) “  ®(t+j) ]T [ y(t+j) -  co(t+j) ] (8.19)

j=N,

N2
Q2 = X t  A u(t+j-l)T A(j) A u(t+j-l) ]

»

N i represents the minimum costing horizon 

N 2 the maximum costing horizon 

co the future set-points usually presumed known 

A(j) the control weighting sequence (diagonal matrix)

Since only the first increment is considered, the solution for the minimization of 

the previous cost can be summarized as:

u = (Gt G +A I)'1 GT (co -  f)

f  denoting signals in equation (8.18) which are known at time ’t \  

or,

A u(t) = (Im , 0, 0 , .  . . ,  0) (Gt G + A I)'1 Gt (co -  0

where,

Ho 0 . . .  0

Hi Ho

h 2 Hi

h 3 h 2
•

•

•

N2-1

•

HN2-2 . . . Hq

(8.20)

H o •••> Hn2 _ i being submatrices of dimension mxm, m being the number of chan­
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nels within the matrix G which itself is of dimension (mxN2).(mxN2) (Clarke et

al., 1987a).

As in the SISO case the GPC approach uses the powerful assumption that after a 

certain horizon NU, all control increments are equal to zero, and that reduces con­

siderably the computational burden as the matrix G becomes:

‘ H q 0  . . . 0

H i H o  . . .

h 2 H i  • . .

h 3 H 2 . . .

H n 2-1 H N2-2 • • • H n 2-NU,

The above development undermines the fact that the output costing horizons 

N2m and the control costing horizons NUm could be different for the m different 

channels. If however the user judges the need to choose them to be different, 

some modifications have to be made to the algorithm, thus adding more flexibility 

and robustness to the design, especially if the process dealt with reflects a large 

difference in the dynamics from one channel to another. If the "m" channels have 

different output costing horizons N 2(Chl), N 2(C h2),..., then every channel would 

have its rows in the G matrix equal to zero values from its own horizon+1 to the 

greatest horizon. If however, the "m" channels have different control horizons, 

NU(Chl), NU(Ch2), . . . ,  , then all the columns in the matrix G corresponding to 

the associated control increments would be made equal to zero and taken out from

the matrix to avoid singularity.

Finally for fine tuning, A, the control weighting sequence, can be used to reduce 

control activity and improve robustness. A suitable form for A is:
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A = X 2  Gt .G

where X can take values between 0.0 and 1.0. If a value of 1.0 is used for 

instance, then the term (GT.G + A )'1 would have j -  as an external coefficient 

halving therefore the control activity.

8.3.2 Inclusion of  the M odel-Following Polynomial Pf?-1)

For this purpose let us consider the auxiliary output 'F(t) such that:

¥ (t) = PCz'1) y(t)

P(z-1) = PN(z‘ l) (Poiz-1))-1 (8-21)

The controller minimizes therefore the following cost function which is in fact the 

expectation subject to data available at t im e’t’.

^  j=N2 j=Nj
J(Ni»N2) =  PP(t+j) -  co(t+j)]2 +  A(j) (A u(t+j-l))2 (8 22)

j=N, j=i

In this case the following Diophantine equation is considered:

PN(Z_‘> (PdW )'1 = Ej A(z->) A + i ' i  Fj (PD(z-‘))-> j= l,2,... (8.23)

It can be shown that this reduces to the foUowing system of two equations:
*

'PO+j) = G /z -1) A u(t+j—1) -f FjCz“1) (PD(z-1))-1 y(t)

G /z'1) = Ej(z-1) BCz'1) (8.24)

Following the same procedure as in the previous section the operation o f minimi­

zation results in the projected control increment vector of the form:

, u = (GT G + A I)'1 GT (a) -  fO 
u(t) = u (t-l)  + gT ( c o - ff)  (8.25)

where ff  denotes signals in equation (8.24) known at time t, and gT is the ’m’
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rows o f the matrix (GT G + A I)-1 GT.

Finally, it is worth noting at this stage that, as in the SISO case, and in process 

control P(z_1) could be interpreted as being a model-reference polynomial which 

could penalize the overshoot, or reject a disturbance. It is particularly helpful 

when the value o f NU is greater than 1 which causes the control signal to be 

highly active. The use of P(z-1) affects both the set-point response as well as the 

disturbance rejection properties o f the process under consideration.

8.3.3 Inclusion of the Observer Polynomial T(z~1->

Following the same procedure adopted in the previous sections, consider the 

following Diophantine equation:

T(z-1) = Ej A A + z"j Fj (8.26)

T(z-1) defined as a polynomial in the backward shift z '1 o f degree "s" and of the 

form:

T(z_1) = I +  Ti z '1 + Tj z 2 + • • • + Tg z~*

The resulting prediction-equations can be summarized as follows:

y(t+j) = *1 Gj Au(t+j-l) +  Fj y(t) ] +  T 1 Ej x(t+j) 

Gj = EjB (8.27)

For the controller to be optimal, the residual T 1 Ej x(t+j) must be orthogonal to 

data at time V , suggesting that T. Ej, and x(t+j) are uncorrelated which is not 

always the case, leading therefore, to sub-optimal predictions. However, the choice 

o f T as diagonal and with identical elements in each row implies commutativity of 

the product o f matrices in equation (8.27) reducing considerably the computational 

burden. The following set of prediction equations is finally obtained:
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y(t+j) = Gj Auf(t+j~l) + Fj yf(t)

yf(t) = T-1 y(t) (8.28)
uf(t) = 'T 1 u(t)

Because the minimization of the cost function is in terms of Au and not Auf, the 

following equation is considered:

Gj = G'j T + z"j Ij (8.29)

where the coefficients of G j are equivalent to those of Gj when T(z-1) = I. Conse­

quently, equation (8.28) could be rewritten as:

y(t+j) = G'j Au(t+j-l) + z"j T A uf(t+j—1) + Fj yf(t) (8.30)

The minimization procedure follows the same steps as in the previous sections. It 

is however worth noting that in contrast to the use of P(z_1), T(z_1) affects only 

the disturbance rejection properties of the system considered and offers the advan­

tage of the data being filtered for the estimator eliminating hence any high fre­

quency components.

Finally, in order to achieve more robustness, P(z~l) and T(z-1) could be com­

bined to be used simultaneously (Clarke and Robinson, 1991). In this case, the 

Diophantine equation to be considered and the prediction equations obtained will 

be of the form:

TP = Ej A A + z-j Fj PD_1

vF = Gj A uf(t) + Fj PD- 1 yf(t) (8‘31)

It is worth noting that the solution of the Diophantine equation follows the same 

steps outlined previously (see chapter 5).

Note on the Process Model Representation

Modelling of multivariable system dynamics is usually expressed in tenus of
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a set of ordinary differential equations which can be translated into the state-space

form as:

t(t) = A x(t) + B uz(t-Tjj) 

(t) = C x(t) +D uz(t) (8.32)

Where x(t), uz(t), and y(t) are (nxl), (rxl) and (m xl) vectors representing the 

state, the input and the output variables respectively. A, B, C and D are matrices 

characterizing the system dynamics, and Tjj the pure time-delay for the ijth ele­

ment of B.

The Laplace transforms of the above system is given by:
*

, s X(s) -  x(0) = A X(s) + c * *  B UZ(s)
Y(s) = C X(s) + D UZ(s) (833)

(8.34)

Assuming zero initial conditions and rearranging to solve for X(s) yields:

Y(s) = G(s) UZ(s)

G(s) = C [S In -  A]"1 B e ' ^  +  D

The continuous-time state-space equations of system (8.33) have an

equivalent time-representation which is generally given by:

x[(t+l)h] = 0  x(ht) + A uz[(t-kjj)h] 

ly(ht) = H x(ht) + L uz(ht) (8.35)

Where h is the sampling time and t is the time index t =  0, 1, 2, • • *. The 

matrices d> and A can be evaluated using discrete integration o f the continuous­

time equations expressed in system (8.33) or using Laplace transforms. Using the 

z operator on system equations (8.35) and dropping h for simplicity’s sake leads

to:

, x(t) = [z I„ -  uz(t) 

y(t) = H x(t) + L uz(t) (8*36)
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Substituting one equation into another in the above system results in the following 

equation:

*

y(t) = G(z-1) uz(t)

G(z-1) = H [z I ^ ] ' 1 A z~k« + L (8'37)

Equation (8.37) is the sampled-data system equivalent to the Laplace transforms 

relation equation (8.34). Thefore the polynomial transfer function matrix 

G(z-1) can be derived directly from G(s).

F o r each elem ent G(s), the corresponding function o f z is given by:

Gij(z-1) = z j
( l-e ~ sh) Gii(s)

}
(8.38)

l - e -sh
W here--------- is the the transfer function of the zero-order hold which is the mosts

commonly used as data extrapolator. The polynomial transfer function matrix can 

be written as:

Gni.
Ghir

G(r>) =

• •
(8.39)

Reducing these polynomial fractions into their common denominator row by row 

leads to the following:

G n i/z '1) = Gnjj x  f lG d ^ z " 1) for i=l,...,m
k=l

m
G'd^z*1) = nOdikCz-i) for k=l,..„m  

k=l
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Using these equations, the transfer function matrix G(z_1) can be written in terms 

of Gn(z-1) and Gd(z_1) as:

Gn(z_1) =

G 'nn • • G  njr

G nmi • • G'n.mr

and Gd(z_1)

1
0 0 0G'dn

0 1
G'd22

• ♦

• • • •

0 0 0 1
GTL™“mm

Consider now partitioning the input vector uz(t) into (m xl) vector u(t), and (m xl) 

vector £(t) o f random variables, such that:

Gn(z_1) =  [z“klj B(z-1) C(z-1)]
|u(t)
m )

and A(z-1) = Gd(z-1)

Therefore system equations (8.37) can be written as:

A(z_1) y(t) = z 'k* B(z-1) u(t) + C(z_1) ^(t) 

or including the A operator, equation (8.40) becomes:

(8.40)

A(z_1) A y(t) = z~k,j B(z-1) A u(t) +  Ciz"1) ^(t) (8.41)

A(z_1) and C(z_1) are diagonal matrices as it has been established. Details on the 

estimation routine are given in the appendix B.

Finally, as pointed out earlier this representation is typical of many industrial 

processes, although additional interactions between different outputs could in fact 

be a possibility.
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8.4 SIM ULATION RESULTS

8.4.1 Simulation Studies Using Nominal Parameter Values

Different stages of the work involved the simulation of the model described 

in section 8.2. using fourth order Runge-Kutta method with a fixed step integration 

interval of 0.1 and a sampling interval of 1 minute. Command signals o f 80% then 

70% for relaxation, and 110 mmHg then 120 mmHg for blood pressure were 

assumed throughout. Initial conditions were 0% relaxation and 140 mmHg mean 

arterial pressure. During the first 25 samples, initial control was provided by the 

self-tuner itself but with fixed parameter estimates obtained from the nominal 

linear model. The input signal was clipped between 0  and 1.0 for Atracurium drug 

input, and between 0% and 5% for the Isoflurane input. For parameter estimation 

a UDU factorization method (Bierman, 1977) was used on incremental data, with 

an initial covariance matrix and forgetting factor given by:

P = 1 0 2.I , p = 0.995

A discrete multivariable model of 5 diagonal A ’s and 6 B ’s was estimated with an 

assumed time-delay of 1 sample. The experiments were conducted in 6 phases. 

Phase 1 to 4 reflect the basic algorithm, in contrast to phase 5 and 6 which are 

concerned with the extended algorithm using respectively the model following 

P(z_1) and the observer polynomial T(z_1).

Phase 1

Effect of The O utpu t Horizon N2

Fig.Nbr Ni n 2 NU

8.7 1 1 0 1
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Phase 2

Effect o f The Control Horizon NU

Fig.Nbr Ni n 2 NU

8.8 1 10 2

Phase 3

Effect o f Different Horizons N2&NU

Fig.Nbr Ni N2(Chl) N2(Ch2) NU(Chl) NU(Ch2)

8.9 1 10 20 1 2

Phase 4

Effect o f The Control Weighting X

Fig.Nbr Ni n 2 NU X

8.10 1 10 2 1

Phase 5

Effect of The Model-Foliowing Polynomial P(z~J)

Fig.Nbr Ni n 2 NU P2(z -‘)

8.11 1 10 2 1.0-0.9Z“1
0.1

1.0-0.9z_i
0.1

* Mul"',ariable CPC for Anaesthesia »



d/0'i3H

<uA __________t
-P-*---------

— i

M u s c l e  Relaxation

50 IÏÏO 150 200 250
TIME(min)

1.0 A t r a c u r i u m  D rug Input

0.8

VOo
i

l
l

ib-----0.4
L

k —
f

0.2
»

— ,----- H----- *i------>------r
50 100 150 200 250

TIME(min)

50 100 150 200 250
TIME(min)

Isoflurane D rug Input

Q>tn<n
£  310}U
2L

50 100 150 200
TIME(min)

250

Figure 8.8. Closed-loop responses of the multivaria­

ble anaesthetic model under basic GPC 
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Phase 6

Effect of The Polynomials T(z-1) and P(z_1)

Fig.Nbr Ni n 2 NU T(z-1) P iz'1)

8.12.a 1 10 2 1.0 -  0.9z_l 1.0 -  0.9z"1 
0.1

8.12.b 1 10 1 1.0 -  0.9z’ 1 1.0 -  0.5z"1 
0.5

Figure (8.7) shows a result from phase 1 where the controller parameter settings 

were (1, 10, 1, 0) for (Nj, N2, NU, A.). This result gave fast responses with a 5% 

overshoot in the relaxation response but a well damped arterial pressure. Phase 2 

was concerned with the control horizon parameter NU which is considered to 

represent the corner-stone of the GPC algorithm (Clarke et al., 1987a). In this 

experiment, its value was taken to be 2 and therefore, produced the response of 

figure (8.8) where the transients in both channels were very fast. However, the 

response in the relaxation channel oscillated for a period o f 6 iterations before 

tracking finally the set-point efficiently. This was to be expected, since a value of 

NU £  2 always causes high control activity. Notice also the magnitude of the 

interactions due to the blood pressure changes. Phase 3 shows how the controller- 

parameter settings can be chosen to be different between the two channels: 

N j =  1, N2(Chl) = 10, N2(Ch2) = 20, NU(Chl) =  1, NU(Ch2) = 2. This result 

shown in figure (8.9) also gave fast responses with an overshoot in the relaxation 

response, as well as a well damped arterial pressure. Figure (8.10) shows how the 

high control activity induced by a large control horizon NU can be reduced by the 

use of a non-zero control weighting sequence X ( X -  1.0). Another alternative also 

is the use o f extended GPC algorithm with the important model following polyno­

mial P(z_1). Based on the particular dynamics as well as the sampling period, a
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Figure 8.12.b. Effect of gain-change disturbances with 

observer polynomial T(z'*)=l-0.9z"^, 

and model following polynomial P(z"*). 

P1=P2=2 (1-0.5Z'1) ; N j= l ; N2=10 ;

N U =1
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value of Tc — 9.49 minutes (identical for both channels) was selected for assign­

ment of the P matrix. Figure (8.11) shows how this can be used to reduce the pre­

vious overshoot in relaxation as well as minimizing the interaction, at the cost of 

overdamping the arterial pressure. Finally, phase 6 considered the inclusion o f the 

observer polynomial T(z_1) together with the previous polynomial P(z-1) in older 

to enhance further the robustness o f the whole control strategy (Clarke and Robin­

son, 1991). Figures (8.12.a) and (8.12.b) show how the effect of disturbances can 

be reduced but at the same time affecting the overall closed-loop responses with 

the use of the P(z-1) polynomial. In this result gain changes were made during the 

run, being 5% at time 90 minutes in the relaxation dynamics, and 17% at time 150 

minutes in the arterial pressure model.

From these figures it can be seen that the basic algorithm produced severe control 

actions for Atracurium during the initial transient, but this was reduced 

significantly by introducing the model following and observer polynomials. 

Through these simulation studies, experience had been gained in the selection of 

the crucial design parameters for GPC. Like many biomedical systems, however, 

anaesthetic models show very large inter-patient variability for which there is no 

information prior to an operation. The next section describes the use o f this 

experience gained from the nominal model in the case of randomised model inves­

tigations.

8.4.2 Simulation Studies via M onte-Carlo Parameter 

Selection Method

Clearly, the application of the GPC algorithm to this particular multivariable 

non-linear anaesthetic model demonstrated that many design-parameters could be 

selected and this selection is very important in a safety-critical situation such as an
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operating theatre. The previous chapter has particularly reflected this idea since 

patient parameters were ranging from low to high gains, and from slow to fast 

time-constants. Therefore, in order to validate further the robustness of these con­

trol strategies, Monte-Carlo simulations were chosen to undergo such tests. Equa­

tion (8.42) describes the anaesthetic model with parameters which are known to 

vary from patient-to-patient:

Paralysis 
A MAP

where,

Gn (s) G 12(s) 

0 G22(s)
' p i '  

U2 (8.42)

G „(s) =
Kt e _ * (1 + T4 s) 

(1+Ti s) (1 + T2 s) (1 + T3 s)

K4 e-s
Gn(s) = ----------------------------

12 ( 1 + T 6 s ) ( l  + T7 s)

G^is) —
K2 e " s 

G + T3 s)

The non-linearity is still represented by the Hill equation (8.2) described in section

8.2.1 using the same parameters, although these also could have been randomised.

The Monte-Carlo simulations consisted of choosing the model parameters in a ran­

dom manner using the following formula:

Monte-Carlo parameter = Min. + RANDOM x  (Max. -  Min.)

where (0 ^ RANDOM £ 1), and RANDOM is obtained from a random number 

generator. The minimum and maximum values for each parameter were chosen to 

reflect probable pharmacological ranges known to exist In this way many combi­

nations could be produced. Table (8.2) shows a sample o f 10 cases which were 

studied but for simplicity only 3 of these will be selected on which to base the 

discussions. All time-constants are expressed in minutes.
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Monte-Carlo Simulation Method

Case
Anaesthetic model parameters

Ti t 2 t 3 t 4 Ki t 5 k 2 t 6 t 7 k 4

1 2.54 4.17 27.88 14.89 2.01 1.57 -17.26 2.79 1.19 0.24

2 2.45 4.28 16.44 7.3 1.69 1.54 -17.7 3.01 1.33 0.27

3 2.35 5.95 27.88 10.88 2.16 1.15 -14.61 3.06 1.26 0.24

4* 1.18 5.1 31.26 10.31 1.34 1.14 -15.94 2.99 1.26 0.24

5* 1.36 3.84 32.0 7.31 2.46 1.2 -10.48 2.42 1.25 0.27

6 1.55 2.58 32.74 13.31 2.08 1.26 -15.02 2.85 1.24 0.25

7* 1.73 5.32 33.48 10.31 1.71 1.31 -19.55 3.28 1.22 0.27

8 1.91 4.06 34.22 7.31 1.33 1.37 -14.09 2.71 1.21 0.25

9 2.09 2.8 34.96 13.3 2.45 1.43 -18.63 3.14 1.2 0.27

10 2.27 5.54 15.7 10.3 2.07 1.49 -13.16 2.57 1.18 0.25

Table 8.2. Selected model parameters using Monte-Carlo method

Cases 4, 5, and 7 were selected for the application of the algorithm. These cases 

were chosen to indicate the best, worst and medium performance conditions for 

the algorithm. The same conditions as described above remained unchanged except 

that the control signal for channel 1 during the first 10 samples (where the param­

eter estimates are fixed) was clipped between 0.0 and 0.5, whereas for channel 2 

the corresponding control signal was clipped between 0.0 and 2.5 allowing the 

self-adaptive GPC to take over under better conditions.

Figure (8.13) shows the performance of the extended version of GPC with model

* Cases to be considered for analysis and discussions
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following polynomial P(z-1) assuming the model-parameters of case 4 and a com­

bination of (1, 10, 2, 0) for (Nj, N2, NU, X.). A relatively fast time-constant of 

1.44 minutes was chosen for the polynomial. The response in both channels was 

fast and well-damped with the overshoot as well as the interactions reduced to a 

low level in channel 1 which exhibits severe non-linearities.

Case 5 represented a severe test for the chosen GPC configuration. It corresponds 

to a high gain paralysis model, and a low gain blood pressure model. Figure (8.14) 

shows a good performance for blood pressure, a heavy initial overshoot in 

paralysis and subsequent saturation of drug signals and correspondingly large 

interaction from the blood pressure channel. Finally, case 7 represented a medium 

condition with inferior blood pressure response to that of figure (8.13), but similar 

paralysis behaviour as shown in figure (8.15).

To complement the visual indications of control performance from figures (8.7)-

(8.15), an objective measure of error performance over the simulation runs was 

made using ISE (Integral of Squared Errors) and ITAE (Integral of Time and 

Absolute Error) criteria. Table (8.3) gives such values for the above figures. The 

unit of time for the ITAE criterion was minutes. The criteria were evaluated for 

the 100 minute stretches for each set-point change.

In general all ITAE values were greater than the ISE values, because of the time 

scale involved. Similarly, all of the blood pressure ITAE and ISE values were 

greater than the paralysis, simply because of the non-normalised values for blood 

pressure. Approximate normalisation of blood pressure ISE could be obtained via 

division by 10,000 and ITAE via division by 100. This would give relatively 

lower figures for blood pressure than paralysis. This reflects clearly the better 

dynamic performance for the simpler and linear dynamic of that channel. Case 4
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Figure number Time-phases(Min.) Paralysis Blood-1Pressure
ISE ITAE ISE ITAE

0 to 99 3.27 64 2186 144
8.7 100 to 200 0.08 167 242 4536

201 to 300 0.07 298 243 9132
0 to 99 2.48 24 1800 31

8.8 100 to 200 0.05 87 200 2819
201 to 300 0.06 198 200 5650

0 to 99 2.78 61 1800 32
8.9 100 to 200 0.09 197 200 2821

201 to 300 0.09 364 200 5654
0 to 99 3.92 49 3144 349

8.10 100 to 200 0.08 153 349 6774
201 to 300 0.08 291 349 13561

0 to 99 5.17 74 5096 2315
8.11 100 to 200 0.07 176 567 14491

201 to 300 0.06 272 559 24951
8.12.a 0-300 5.89 1420 5395 14592
8.12.b 0-300 3.81 193 2288 1902

0 to 99 3.75 41 2126 163
8.13 100 to 200 0.05 119 233 4389

201 to 300 0.05 192 227 8102
0 to 99 2.98 58 2706 581

8.14 100 to 200 0.41 689 256 4971
201 to 300 0.14 486 227 8100

0 to 99 3.84 43 1979 138
8.15 100 to 200 0.08 153 216 4017

201 to 300 0.05 203 226 7993

Table 8.3. Table representing the ISE and ITAE criteria  
for different GPC runs
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which the GPC found easy to control produced the lowest values of ISE for 

paralysis as well as for blood pressure during the last 200 iterations. Lowest ITAE 

values were also recorded in this case for paralysis. However, GPC found case 5 

difficult to manage, which is not surprising because of the extreme nature of the 

parameters. The algorithm provided reasonable control except for the second tran­

sient in paralysis, where movement towards the set-point only occurred after the 

interactive disturbance from the blood pressure set-point change. The third case 

selected as moderate performance (visually determined) indicated somewhat com­

parable ISE and ITAE with case 4.

8.4.3 Execution-Time Considerations

An execution-time evaluation for the GPC algorithm was conducted for 7 of 

the previously carried out experiments. The multivariable GPC was run on a SUN 

4 computer. The study produced table (8.4) where the corresponding execution- 

times in seconds for each type of algorithm are shown for a standard simulation 

run o f 5 hours. The study suggests that the algorithm did rather well considering a 

real-time sampling of 1 minute. Indeed, it took on average 0.38 second for the 

GPC to finish one iteration of calculations. It is however worth noting that the 

choice of controller parameters is crucial not only for the final performance but 

also for the computation burden. For instance, large N2, NU induce large matrix 

calculations.

However, given the nature of the model which includes only one significant 

interaction path, the scheme which consists of using two single loop controllers 

and incorporating feedforward in one of the loops for the interaction seems to be 

interesting and the general idea is explored in the next section.
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Sneed Performances Relative to GPC: 5 Hour Simulation Run
Fi sure number Tvt»e of algorithm Execution-time (seconds)

8.9 Basic Multivariable 
Algorithm;
N2(ch.l) = 10 ; N2(ch.2) = 20 ; 
NU(ch.l) = 1 : NU(ch.2) = 2

124.76

8.11 Extended Multivari­
able Algorithm with 
model-following 

Polynomial P(z_1) ; 
= 1 ; N2 = 10 ;

NU = 2 ;P , = P2 =

116.30

8.12.a Extended Multivari­
able Algorithm with 
observer polynomial 
T(z-1) ; and model­
following Polyno­
mial P(z_1) ;
N! = 1 ; N2 = 10 ;
NU = 2 ; T, = T2 = 1 -  0.9 z"1;

pi -  p2 -  n i

120.45

8.12.b Extended Multivari­
able Algorithm with 
observer polynomial 
T(z-1) ; and model­
following Polyno­
mial P(z_1) ;
Nj = 1; N 2 = 10 ;
NU = 1 ; T, = T2 = 1 -  0.9 z"1; 

p _  1 - 0 .5  z-1 
1 Pz n *

100.00

8.13;8.14;8.15 Extended Multivari­
able Algorithm with 
model-following 
Polynomial P(z_1) ;
Nj = 1 ; N2 = 10 ;

1 -  0 5 z-1
NU = 1 ; Pi = P2 = —— — —

99.42

T able  8.4. Table representing the  speed o f  execution fo r different settings of 
the m ultivariable GPC algorithm  seuings oi
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8.5 M U L T IV A R IA B L E  G PC  A L G O R IT H M  U SIN G  F E E D F O R W A R D

Many processes have some disturbances which are measurable. With interact­

ing processes the disturbances in one loop may be controlled variables of other 

loops. These measurable disturbances added to the model structure in a feedfor­

ward manner could be a ’white noise’ affecting the output as much as £(t) does. 

The more accurate the model of the process is the better predictive model 

becomes and hence, the more reduced the variance of the measured output is. In 

this event, the controlled behaviour is improved. As many feedforward terms as 

required can be included; by using variables from other loops the interaction 

between loops can be reduced (Astrom and Wittenwark, 1989).

8.5.1 Development of the SISO  GPC 

Algorithm with Feedforw ard

The main idea of this controller is as follows: an m-input and m-output 

MIMO system can be represented by m SISO loops with interactions within the 

MIMO system considered as measurable disturbances to each of the SISO loops. 

In order to develop the multivariable GPC algorithm with feedforward, it is 

necessary to formulate first the algorithm relative to the SISO GPC algorithm but 

including feedforward.

Consider the CARIMA model structure of equation (5.4) including feedfor­

ward and with C(z_1) = 1 without any loss of generality.

A(z_1) A y(t) = B^z-1) A u(t -  k) +  D^z"1) A v(t -  kv) +  £(t) (8.42)

where, A(z-1), Bj(z *), and D^z-1) are the usual polynomials in the backward 

shift operator z '1, i.e,
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A(z-1) = 1 + aj z-1 + a2 z 2 + • • • + an z-n 

Bj(z-1) = bj + b2 z_1 + b3 z-2 + • • • + bm z~m+1 

D ^z-1) = do +  dj z 1 + d2 z '2 + • • • + dy z"v

and y(t) is the measurable output, u(t) the input delayed by k samples, and v(t) is 

the measurable disturbance delayed by kv samples.

To simplify the derivations, if the dead-times ’k’ and ’kv’ are enhanced within the 

polynomials B^z-1) and D^z-1) respectively such that:

D(z_1) A v(t -  1)= D^z"1) A v(t -  kv)

Biz"1) A u(t -  1)= B^z"1) A u(t -  k)

then, following the same procedure as in section 5.2 it can easily be shown that 

the prediction equations will be of the following form (the operator z-1 has been 

dropped for simplicity’s sake):

y(t+j/t) = Ej B A u(t+j-l) + Ej D A v(t+j-l) + Fj y(t) (8.43)

or,

y(t+j/t) = Gj A u(t+j-l) +  Sj A v(t+j-l) + Fj y(t)

Gj = Ej B (8.44)
Sj = Ej D

where,

A v(t+j-l) = 0 for 2

If T  is a vector composed of signals which are known at time Y  and ’co’ the 

set-points command vector, the control sequence will be o f the following form:

A u(t) = (G^ Gt + X I) 1 G J  (o) -  f) (8.45)

All variables bear the same definitions as the ones given in section 5.2 except T  

whose components are of the following form:
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= [f(t+l), f(t+2)...... f(t+N) ]

with:

f(t +  1) =  [Gj(z *) -  g10] A u(t) +  F^z-1) y(t) +  A v(t)

f(t +  2) =  z [G2(z_1) -  g2i z_1 -  g10] A u(t) +  F2(z_1) y(t) +  S2 A v(t +  1)

(8.46)

f(t +  N) = zN~ 1 [Gn(z l) -  • • • -  gN0] A u(t) + Fn y(t) + SN A v(t + N - l )

8.5.2 Development of the Multivariable GPC 

Algorithm with Feedforward f'GPCF’)

Now, the same technique can be modified to be applied to multivariable sys­

tems. Thus, consider the dual-input dual-output system of the form:

Ai(z *) y^t) = B i(z l) u ^ t-kn) + D^z-1) u2(t-k12) 

A2(z_1) y2(t) = B2(z_1) u2(t-k22) + D2(z-1) uj(t-k21) (8.47)

In the above, it assumed that ^  is the input which is most strongly correlated with 

y lt and u2 is the other input which is the most strongly correlated with y2. In prac­

tice, it is equivalent to say that ut is the signal that influences yj with the least 

time-delay in channel 1. The same situation applies in channel 2.

Summarizing leads to the following double inequality:

kn £  k12

k22 ^ k21 (8.48)

Conditions (8.48) are indeed satisfied in the case of the previously derived 

anaesthetic model (8.13). Therefore, from equations (8.44) and (8.47), the expre- 

sions for calculating ulf u2 are thus given by the following equations:

A Ui(t) = (Gj  Gj + Xj I) 1 Gj  (coj -  fj) (8.49)
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A u2(t) = (G2t G2 + X2 I) 1 GJ (0)2 -  f2) (8.50)

where Gj is the same matrix as the matrix G defined in section 5.2.3 but for the 

ith channel, C0j is the ith set-point command, and f| is the vector for the ith chan­

nel composed of signals known at tim e’t’ as described in equation (8.46).

The values of the control signals are then obtained as the solutions to the 

simultaneous equations (8.49) and (8.50). For reference purposes, this multivari­

able self-tuning controller will be referred to throughout as the MIMO generalized 

predictive controller incorporating feedforward (GPCF). It is however, worth not­

ing that in the case of the multivariable anaesthetic model which only includes one 

interaction loop, the vector f2 in equation (8.50) reduces only to:

f2(t + 1) = F21 y2(t) +  (g21 -  g0) A u2(t)

(8.5 i)

• • •

and when implemented, the scheme would consist of calculating the second con­

trol sequence u2 first from equation (8.50), then substituting its present and past 

values in equation (8.49) to obtain the value of uj.

8.6 SIMULATION RESULTS WITH GPCF

The simulation study with GPCF involved the same conditions for the con­

tinuous simulated model and jacketting procedure as in section 8.4.1. For parame­

ter estimation, the UDU factorization method (Bierman, 1977) was used on incre­

mental data with an initial covariance matrix and forgetting factor given by:

P = 102.I , p = 0.995

A third order model with a minimum time-delay of 1 minute and with two 

coefficients for the feedforward was considered for the first channel, whereas for
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the second channel, a first model also with a 1 minute time-delay was considered.

The first experiment considered the same conditions as in figure (8.11) of phase 5. 

The result o f the run, shown in figure (8.16), gave responses with slightly better 

transients and with the interaction in channel 1 slightly reduced adding to the fact 

that the control activity was lower than that of figure (8.11).

For the second experiment, conditions of phase 6 were considered this time. Fig­

ure (8.17.a) shows that the transients in both channels are fast and better damped 

than the ones in figure (8.12.a). Notice also that the interaction from channel 2 due 

to the disturbance has been considerably reduced with a minimum control activity. 

Similar results could be observed in figure (8.17.b) when campared with figure 

(8.12.b).

Similarly to section 8.4.2, the visual indications of control performances are 

complemented by ISE and ITAE measurements. Table (8.5) summarizes such 

values for figures (8.16), (8.17.a), and (8.17.b). The table indicates in general 

lower values for channel 1 than those obtained for figures (8.11), (8.12.a), and 

(8.12.b) and summarized in table (8.3), and comparable ones for channel 2.

# Multivariable GPC fo r  Anaesthesia #



I/
p 

RE
F,
0/
P

Figure 8.16. Extended GPC algorithm using feedfor­

ward (GPCF) and with model following 

polynomial PCz'1). Nj=l  ; N2=10 ; NU=2

P1=P2=10 (1-0.9Z'1)



I/
P 

RE
F.
O/

P

Atracurium Drug Input

i A\y

50 100 150 200 250
TIME(min)

Figure 8.17.a. Same conditions as in figure (8.12.a) but 

using GPC algorithm with feedforward 

(GPCF)



I/
P 

RE
F.
O/
P

1.0

0.8

0.6

0.4

0.2

50 100 150 200 250
TIME(min)

A t r a c u r i u m  Drug Input

k IT 17

50 Ï00 150 200 250
TIME(min)

100 150 200
TIME(min)

250

Figure 8.17.b. Same conditions as in figure (8.12.b) but 

using GPC algorithm with feedforward 

(GPCF)



# Chapter 8: # - 223 -

Figure Number Time-Phases(Min.)
Paralysis Blood-Pressure

ISE ITAE ISE ITAE

0 to 99 5.16 76 5101 2326

8.16 100 to 200 0.07 179 566 14492

201 to 300 0.07 274 559 24953

8.17.a 0-300 4.83 187 5127 3771

817.b 0-300 3.13 83 2292 1947

Table 8.5. Table representing the 1SE and  ITA E criteria  

for different G PC F runs

Finally, an execution-time evaluation of the GPCF algorithm was conducted 

for the previous 3 experiments. Run on a SUN 4 computer, the study produced 

table (8.6) showing the different execution-times in seconds for a 5-hour simula­

tion run. As illustrated in the same table, the use of the GPCF algorithm reduced 

considerably the exectuion-time by almost a factor of 2 hence, making the GPCF 

scheme speedier despite the choice of a control horizon greater than 1 in some 

cases.

Speed Performances relative to GPC: 5 hour simulation run

Figure Number Type of Algorithm Execution-Time (seconds)

8.16 Same as in figure (8.11) 43

8.17.a Same as in figure (8.12.a) 44

8.17.b Same as in figure (8.12.b) 38

Table 8.6. Table representing the speed of execution for different 

settings of the m ultivariable G PC F algorithm
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A multivariable model combining muscle relaxation and anaesthesia has been 

identified. The Atracurium drug and the Isoflurane agent were considered in the 

study. The system dynamics are of moderate complexity. This model complexity 

consists of severe non-linearities as well as large patient-to-patient variability in 

model parameters. It is because of the inability of fixed controllers to cope with 

controlling such systems (Linkens et al., 1982; Slate, 1980), that the use o f adap­

tive control techniques was justified. The GPC algorithm which has been evaluated 

in the muscle relaxation SISO case both in simulations and clinical trials 

represented a very attractive candidate for the above task. The GPC extension to 

include the multivariable case was straightforward and the results show a good 

performance both in examples of figures (8.7)-(8.12) and in the Monte-Carlo runs 

of figures (8.13)-(8.15). Control of relaxation was obviously harder than uncons­

ciousness via blood pressure measurements. This was mainly due to the non-linear 

pharmacodynamics. Results also demonstrated that in order to obtain smoother 

control actions, the basic algorithm needed to be extended to include the model­

following polynomial P(z_1), the observer polynomial T(z-1) or both (figures 

(8.13)-(8.15)), especially if  disturbances occur or the control horizon NU is taken 

greater than 1. Because the use of P(z-1) affects both the disturbance rejection 

properties of the system as well as its overall closed-loop characteristics, it was 

possible to reach a trade-off relating stability and rise-time between the two chan­

nels as the ITAE and ISE evaluations have shown (figures (8.7)-(8.12)). Perhaps 

the use of the P(z-1) could have been avoided altogether, especially when NU £  2, 

if  the algorithm was modified to include the input constraints in the cost function 

(Tsang and Clarke, 1990) as already seen in section 5.6. Lagrange multipliers 

would have been used to extract the best possible input solution, though the 

method is known to have some limitations. However, recent work by Wilkinson 

and Tham (1990) showed that the use of a quadratic approach (QP) (Lawson and
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Hanson, 1974) would be more advantageous as far as data storage, execution-time, 

and quality of the solution are concerned. In fact, an evaluation of the execution­

time showed that the algorithm, the extended version with NU -  2 (figures (8.11), 

(8.12)) performed rather adequately taking into account the considerable calcula­

tions involved. However, the later inclusion of the control strategy which consists 

of using two single GPC loops together with the feedforward in one of the loops 

for the interaction proved to be more efficient as far as the control performances 

and the computer burdens were concerned, making it altogether a more attractive 

protocol.

In conclusion, it can be stated that the overall results obtained are very encourag­

ing and it is hoped that clinical trials under multivariable GPC and multivariable 

GPCF algorithms will be forthcoming.
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CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

During surgical operations which require muscle relaxation, the anaesthetist is 

faced with two important tasks; keeping a steady level of relaxation and at the 

same time administering the right amount of muscle relaxant so as to avoid over- 

paralysis at the end of the operation ensuring therefore, a quick and total recovery 

of the patient. Since the anaesthetist may not always fulfil such tasks, automatic 

feedback control emerges as a powerful tool which can assist in meeting the above 

objectives.

Fixed gain controllers in the form of P, PI, and PID networks which are simple to 

implement, have achieved good results in some cases, but in others they have 

failed to cope with non-linearities, large patient-to-patient variability in the dynam­

ics, as well as other unexpected changes that may occur during surgery such as 

modification of operating point, sudden disturbances, change in muscle relaxant 

concentration, but most importantly changes in the physiological state of the 

patient.

With the above situation, strategies based on adaptive control techniques have 

proved to be a very powerful asset capable of having a major impact. The con­

trollers adopted in this study were designed on the assumption of a second older 

linear discrete-time model representing a Pancuronium-Bromide continuous model 

whereas a third order linear discrete-time model was assumed for a Atracurium 

continuous model. Both continuous models exhibit severe non-linearities including 

dead-zone and saturation. The chosen control strategy consists of using a fixed
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controller (PI) for a few samples, enough to allow the estimator to converge 

towards reasonable estimates, then immediately switch on to the self-adaptive 

scheme after that

First, the self-tuning PIP control algorithm was selected primarily for its 

attractive features including its ability to cope with systems exhibiting non­

minimum phase characteristics. This is due to non-minimum phase zeros becoming 

unstable poles in closed-loop conditions and resulting from fractional time-delays 

(Wellstead and Zanker, 1979; Clarke, 1984). PIP can also produce good control in 

the case of unknown and variable time-delay. The PIP control algorithm is formu­

lated on the basis of a new definition of non-minimal state space definition which 

draws a parallel between the powerful structure of state-space models and the 

world of digital systems. The estimated model, based on an ARMA model struc­

ture, is considered linear around a chosen operating point although the muscle 

relaxation process is severely non-linear. The PIP scheme performed well even 

under such conditions. Its later extensions to handle unknown and variable time- 

delays using the Extended Smith Predictor (ESP) and Generalized Smith Predictor 

(GSP) schemes showed its robustness. The GSP algorithm was shown to be supe­

rior to ESP, confirming similar claims by its authors (Chotai and Young, 1988).

Although the principle o f certainty equivalence guarantees good self-tuning 

properties when the true process parameters are substituted by their estimated 

ones, sometimes, and particularly in muscle relaxation, a good set of these esti­

mates is very useful in providing a deep insight into the pharmacokinetics of the 

drug without resorting to the usual blood-sample analysis to find out the concen­

tration. The use of a pass-band filter of the form of — - —  where A = l - z _1
Tiz’ 1) ’

possesses high-pass properties and T(z-1) is a low-pass filter (suggested by 

Boucher et al. (1988)) allows one to obtain parameter estimates close to the true
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ones and which are better than those obtained when positional data is fed to the 

measurement vector.

The algorithm which includes the A operator in its assumed model structure 

is the GPC algorithm. Indeed, the approach uses a CARIMA model leading there­

fore to the elimination of the usual offset problem (Tuffs and Clarke, 1985) which 

may be met with the ARMA structure. Being based on an explicit process formu­

lation it can deal with variable dead-time, but as it is a predictive method it can 

also cope with overparameterization. The method can also cope with systems exhi­

biting non-minimum phase characteristics.

The control algorithm clearly involves more complicated calculations than the PIP 

approach which requires only the specification of the positions of the closed-loop 

poles to be assigned. While this could be seen as a drawback, it only adds to the 

flexibility of the approach by providing the user with a wide range of tuning fac­

tors enabling him to achieve the best possible result. This flexibility was later 

enhanced when the model following P(z-1) as well as the observer T(z_1) polyno­

mials were introduced. While P(z-1) affected both the output and the disturbance 

rejection properties of the muscle relaxation process, T(z-1) affected only its dis­

turbance rejection properties. Unlike the PIP approach, the overall filter — - —  as
T(z-1)

well as being included in the estimator, is involved in the control calculations thus 

reducing the overall feedback gain in case of high frequency noise components or 

sudden disturbances.

Among the 4 tuning factors involved in the GPC design procedure, the con­

trol horizon is considered to be of great importance. Indeed, simulation results 

showed that a value of NU=1 always led to reasonably good control, whereas 

values greater than 1 induced relatively high control activity. This phenomenon
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can be explained by the fact that the solution of the minimization procedure of the 

cost function involved moves further away from the optimal one. In order to 

obtain the best possible solution, i.e as near as possible to the optimal one, while 

retaining the advantages of high control horizon values, i.e fast set-point tracking 

abilities, modification of the original algorithm to include the input constraints in 

the cost function, either by means of rate limits or amplitude limits, showed reduc­

tion of the control activity without modifying the process output behaviour.

Because of the several advantages specific to this algorithm, GPC was 

selected for simulations under real-time conditions. The previous simulation study 

was helpful in providing guidelines relating to the selection of the design knobs, 

particularly that the output horizon should be taken close to the rise time of the 

process and the control horizon up to a value of 2. The respective values of 10 

and 1 were confirmed to be sufficiently adequate. This study proved also very use­

ful in the sense that the observer polynomial T(z_1) enhanced the robustness of the 

control strategy over a wide range of process dynamics and compensated for the 

unmodelled dynamics because of the underparameterized discrete-time model 

assumed in the case of Atracurium.

The self-adaptive GPC algorithm was later evaluated in theatre during a 

series of trials on humans. The muscle relaxant Atracurium was chosen for con­

tinuous infusion, because of its relatively short duration of action and its non- 

cumulative properties. To allow the surgeon to proceed with the operation as soon 

as the patient is transferred to the operating theatre, preliminary muscle relaxation 

is induced by administering a bolus dose, the size of which is determined from the 

experience of the anaesthetist As a result automatic control beginning initially 

with a fixed optimized PI, has to start only when the level of T1 is judged 

appropriate (ideally 15%). At this particular point two major points have to be

# Conclusions and Recommendations #



#  Chapter 9: # - 230 -

taken into consideration; first avoiding the non-linearity region, and second induc­

ing as little overshoot of the EMG level as possible before the self-tuner takes 

over. This latter precaution is particularly important, because the fixed PI was only 

optimized for an average population model. For this reason the initial preloaded 

bolus dose was considered to represent a serious challenge in itself for the control 

protocol, since it does not allow proper estimation of the system dynamics, 

discouraging therefore the self-adpative GPC from being switched on earlier.

In practice, it is widely agreed (Tham, 1989) that the use of the observer 

polynomial T(z_1) to counteract the effect of A which possesses high-pass proper­

ties is no longer a choice but a necessity, and because of its inclusion in the con­

trol calculations, the wrong choice of this filter characteristics would undoubtedly 

lead to poor performances. In the case of the muscle relaxation process associated 

with Atracurium, the choice of a second order filter to double the roll-off was 

found to be adequate in all cases. The overall performances obtained were remark­

ably good. Moreover, when enough excitation is provided, good control is 

achieved and reasonable parameter estimates are obtained (e.g. patient AXM). On 

the other hand, the exercise of choosing the filter characteristics was shown to be 

avoidable, by feeding positional data to the estimator. This was found to lead to 

good set-point tracking properties, although the control signals may not be as good 

as when filtered incremental data is used, due perhaps to the inherent structure of 

the GPC which requires differenced data rather than positional data. This could be 

seen as a violation of the GPC principle ( a similar situation was observed when 

the digital Smith predictor was proposed (Gawthrop, 1977; Marshall, 1979) in 

opposition to Smith’s principle which was designed in continuous systems). It did, 

however, lead to satisfactory results and allowed the GPC algorithm to take over 

as early as 5 minutes after automatic control was initiated. A resemblance could 

be found between this idea and the one proposed by McIntosh et al. (1989) who
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used different filter characteristics for the controller and the estimator. Perhaps the 

scheme proposed by Shook et al. (1991) and which consists of replacing the RLS 

estimator by a scheme called long-range predictive identification (LRPI) would be 

more appropriate since at every iteration the estimates are optimized over the same 

horizon range as the control sequence itself. However, as the statistical study con­

ducted in chapter 7 has demonstrated, the main aims of the study have been 

achieved. Nevertheless the previous points could be explored in the hope of 

improving the scheme even further .

The present research work has also included another interesting area in 

modem anaesthesia which is unconsciousness. Because no direct measurement is 

available for such a variable, mean arterial blood pressure was chosen as an 

inferential variable to give an accurate indication of how deep the patient is 

anaesthetised, when no emergency conditions such as blood loss, which causes a 

sharp fall in blood pressure level, occur. A non-linear multivariable model com­

bining the effect of Atracurium on muscle relaxation and the effect of inhaled 

Isoflurane on mean arterial pressure was derived and successfully controlled using 

the mutlivariable GPC algorithm in a series of extensive simulations including 

Monte-Carlo model parameters selection for robustness studies. Further simulation 

studies considering the GPC algorithm with feedforward (GPCF) showed its 

superiority to the previous multivariable GPC algorithm in reducing the interac­

tions as well as reducing the computer burden. In light of these considerations, the 

scheme represents a likely candidate for future clinical trials which will hopefully 

be undertaken.

Further investigations in the SISO case could involve the application of the 

PIP algorithm in theatre and the application of the GPC algorithm with other 

drugs such as Vecuronium (Khelfa, 1990) whose model which has been modelled
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by a class of non-linear systems known as NARMAX* models (Billings and 

Leontaritis, 1982). Research work in the Department of Automatic Control and 

Systems Engineering by Sales (1988) led to the development of a non-linear GMV 

algorithm applied to this class of models. Since GPC uses a cost function of simi­

lar structure to GMV, it would be interesting to develop a non-linear version of 

the GPC algorithm using the same philosophy.

As for the multivariable case, the use of multivariable GPC with input con­

straints and involving the quadratic programming approach (QP) as described by 

Lawson and Hanson (1974) could also be pursued (Wilkinson and Tham, 1990). 

This would be particularly appropriate especially if  other variables are involved in 

the multivariable model, particularly the path concerning the indication of depth of 

anaesthesia. The heart-rate variable is one possibility, and this coupled with mean 

arterial pressure measurements would make the indication of depth of anaesthesia 

more reliable. To improve this reliability even further, the idea of an intelligent 

measurement which would filter out any unreliable indication about the state of 

unconsciousness seems to be very interesting. In fact the possibility of a super­

visory layer above GPC, to provide overall jacketting is not new since Zhang and 

Cameron (1989) suggested a strategy based on the same philosphy and applied the 

scheme to the area of ventilation treatment for new bom babies.

As a conclusion to this research work, it should be said that adaptive control has 

proved successful in this veiy challenging area of life sciences (i.e medicine) and 

its contribution to this area has not gone unnoticed. However, for it to be used 

routinely in theatre, there is a need to evaluate it even further and provide 

anaesthetists with proper training; this having the advantage of boosting the 

confidence of the medical staff towards this theoiy which, it is deeply felt, has so

*Non-Linear Auto-Regressive Moving Average
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much to offer.
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APPENDIX A

Solution of the Diophantine Equation- The Extended Version

Consider the following expressions extended respectively to the horizons "j" 

and "j+1", and where the operator z '1 has been dropped for simplicity:

Gj = Ej B = (e0 + e! z~l + e2 z-2 +  • • • +  z“^ 1) B

Gj+i = Ej+i B = (e0 + e! z"1 + e2 z-2 + • • • +  ej_j z-^ 1 + ej z'j) B

, G'j = g'l + g* 2 Z'1 + * * * + g j Z-J+1 

° V i  = g'l +  g'a z'1 + * • • + g'j z_j+1 +  g'^  z-j
(A2)

Tj = Yj° + Yj1 z_1 + • • • + Yj‘ z-1 

r j+i =  Yj+i +  Yj+i z_1 +  • • • +  y ^ i z_i
(A3)

Where i = max(5B,6T).

Now, recall equation (5.54) from section 5.5.2 and labelled here (A4).

Gj = T G' + z-J Tj (A4)

For the next horizon ’j+1’ it follows that:

Gj+i = T G' + rw (A5)

Subtracting (A4) from (A5) yields:

z-j ej B = z-j T g'j+j +  z-j (z-1 Tj+j -  Tj) (A6)
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After simplifying z j in equation (A6) it follows that:

»

ej (b„ + t>! z~l + ...) = Ob + t, z -1 + ...) g ^ ,  +  z -1 -  Tj

z '1 Ij+i -  Tj = z‘ l (y -̂i + y£ i z '1 + ...) -  (Yj° + Yj1 z '1 + ...) (A7)
»

Identifying the two sides of the above equations using the powers of 0, -1, -2,... of 

z leads to:

Power zero of z:

ej b0 = to g'j+i -  Y?

Leading to the following expression of g'jf l :

g V i = ‘o1 (ej ho +  if )  (A8)

And,

power -1 of z ej bj = g'j+j + Yjii -  Yj1

power -% .af % ej b2 = t2 g'j+i + Yjii -  Yj2

« • « • •
• • • • •

« • • * •

The common expression for the y  coefficients is given by the following:

Yfr1 = ej b, -  t, g'j+1 + Yj‘

i = max (5B, 8T) (A9>

Finally, summarizing the solution o f equation (A4), yields:

# Appendix #



#  Appendix: # - 248 -

g 'j+ i = t o 1 (ej b o +  Yj°)

Yj+i =  ej  b¡ -  tj +  Yj* (A IO )

i =  max (SB, ST)
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APPENDTX B

Recursive-Least-Squares Algorithm- The Multivariable case

A discrete-time model equation may be rewritten in the following way:

yt‘ = xt,T 6t + et‘ i= l, 2 ...... p (B 1)

Where,

ytl is the ith component of the output vector yt 

Etl is the ith component of the residual vector et 

xt‘ is the data vector 

0/ is the associated parameter vector

From the standard recursive least-squares algorithm of chapter 3, the parameters 

are found using the following algorithm assuming that the Aj matrices are diago­

nal:

= 9t‘ + Yt Pt+i xt+1 [y't+1 -  xT 0'] (B2)

where,

xt‘ = [yt- i . yt-2 • • • • . yU . u i i t̂-nb . ut-l, • • • , U^nbl1

Since the measurement vectors are different for every channel, the gain y , and the 

covariance matrix pt need to be updated p times in addition to the updating of the
A

parameters 6 j .
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