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Abstract 

(I123)FP-CIT imaging is used for differential diagnosis of clinically uncertain Parkinsonian 

Syndromes. Conventional reporting relies on visual interpretation of images and analysis of 

semi-quantification results. However, this form of reporting is associated with variable 

diagnostic accuracy results. The first half of this thesis clarifies whether machine learning 

classification algorithms, used as computer aided diagnosis (CADx) tool, can offer improved 

performance. 

 

Candidate machine learning classification algorithms were developed and compared to a 

range of semi-quantitative methods, which showed the superiority of machine learning tools 

in terms of binary classification performance. The best of the machine learning algorithms, 

based on 5 principal components and a linear Support Vector Machine classifier, was then 

integrated into clinical software for a reporting exercise (pilot and main study). 

 

Results demonstrated that the CADx software had a consistently high standalone accuracy. 

In general, CADx caused reporters to give more consistent decisions and resulted in 

improved diagnostic accuracy when viewing images with unfamiliar appearances.  

 

However, although these results were undoubtedly impressive, it was also clear that a 

number of additional, significant hurdles remained, that needed to be overcome before 

widespread clinical adoption could be achieved.  

 

Consequently, the second half of this thesis focuses on addressing one particular aspect of 

the remaining translation gap for (I123)FP-CIT classification software, namely heterogeneity 

of the clinical environment. Introduction of new technology, such as machine learning, may 

require new metrics, which in this work were informed through novel methods (such as the 

use of innovative phantoms) and strategies, enabling sensitivity testing to be developed, 

applied and evaluated. 

 

The pathway to acceptance of novel and progressive technology in the clinic is a tortuous 

one, and this thesis emphasises the importance of many factors in addition to the core 

technology that need to be addressed if such tools are ever to achieve clinical adoption. 
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1 Introduction 

This work aims to assess the effectiveness of automated classification algorithms for 

assisted radiological reporting of clinical (I123)FP-CIT nuclear medicine scans. The major 

focus is on evaluation of algorithms in a clinical reporting context. The following sections set 

out the clinical and technical background to (I123)FP-CIT imaging and associated disease 

processes. An overview of current standard of care image analysis techniques (semi-

quantification) is necessarily provided, along with a summary of machine learning 

classification algorithms and their history of application in (123I)FP-CIT imaging. This is the 

basis for a series of investigations which seek to establish the performance of developed 

classification algorithms, as compared to semi-quantification, and for evaluating the impact 

of such software tools on human reporter performance. 

1.1 (123I)FP-CIT imaging 

(123I)FP-CIT (DaTSCAN) imaging is a Single Photon Emission Computed Tomography 

(SPECT) brain scan technique used for differential diagnosis of patients with clinically 

uncertain Parkinsonian Syndrome (PS). In a clinical context it is used to detect the loss of 

dopaminergic neuron terminals associated with idiopathic Parkinson‘s Disease (PD), Multiple 

System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP). It is also used to help 

distinguish between Dementia with Lewy Bodies (DLB) and other forms of dementia and to 

differentiate patients with presynaptic Parkinsonism from those with other forms of 

Parkinsonism (6). In a research context (123I)FP-CIT is increasingly used for monitoring 

progression of disease in patients suffering from PS. 

1.1.1 Parkinsonian Syndromes 

Parkinsonian Syndrome refers to a collection of movement disorders with similar clinical 

features but different pathologies. It includes, in addition to rarer causes of Parkinsonism: 

 

 Parkinson‘s Disease (PD) 

 Multiple System Atrophy (MSA) 

 Progressive Supranuclear Palsy (PSP) 

 Corticobasal degeneration (CBD) 

 Vascular Parkinsonism (VaP) 
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 Drug induced Parkinsonism (DIP) 

 

The most significant clinical symptom exhibited by all PS patients is bradykinesia, which is 

defined as ‗‗slowness of initiation of voluntary movement with progressive reduction in speed 

and amplitude of repetitive action‖ (7). PS is also typically associated with rest tremors, 

extrapyramidal rigidity and postural instability (8). 

 

The most common form of PS is PD, affecting approximately 1% of people over the age of 

65 (9). Diagnosis is predominately guided by clinical features. A number of guidelines have 

been published to assist with diagnosis, in particular the UK Parkinson‘s Disease Society 

Brain Bank Diagnostic Criteria (10). Other forms of Parkinsonism may display subtly different 

features, which can guide differential diagnosis. For example, MSA is often associated with 

early, progressive autonomic dysfunction whilst PSP patients will typically present with eye 

movement problems (8). 

 

However, differentiating between different forms of PS remains challenging. In addition, the 

progressive motor deficits typically displayed by PS patients are similar to those experienced 

by patients with essential tremor, which is a condition associated with involuntary limb or 

head movement. Other diseases such as multiple sclerosis and Huntington‘s disease may 

also present as movement disorders. 

 

In the UK and elsewhere patients presenting with motor deficits may be referred to experts in 

movement disorders or to clinicians with more general expertise, such as general 

neurologists. Given the subtle differences in the features of different PS sub-types it is 

perhaps unsurprising that clinical diagnosis of PD is often associated with disappointing low 

accuracy figures. A recent systematic review and meta-analysis by Rizzo and colleagues 

(11) identified 11 studies comparing clinical diagnosis of Parkinson‘s Disease with pathologic 

diagnosis post-mortem (the gold standard). Clinical diagnosis by ‗non-experts‘ (such as 

general neurologists) was associated with an accuracy of only 74% and a specificity of just 

49% as compared to neuropathology results (experts in movement disorders achieved a 

higher accuracy of approximately 80%).  

 

Similar accuracy results for general neurologists were found in a large Finnish study with 

1362 patients (12).  A study conducted in a specialised centre for movement disorders, 

where one might expect relatively high diagnostic accuracy, showed that 36% of patients 

were reclassified within a mean time window of 3.4 years following initial clinical diagnosis, 
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suggesting that clinical features may not be a reliable indicator of disease in the early stages 

(13). Indeed, it appears that there is a tendency to over diagnose PD in early disease stages 

(14). Similarly, studies have demonstrated that clinical diagnosis of DLB is associated with 

low sensitivity (15). Although the accuracy of diagnosis by clinical features alone is likely to 

increase over time as the disease progresses and symptoms evolve (13,16,17), these 

findings suggest that there is a need for other tests, particularly in the early stages of 

disease, which can highlight differences in disease pathology and increase diagnostic 

accuracy and certainty.  

 

Getting diagnosis correct early on can be extremely important for decisions on patient 

management. For example, patients with PD will typically be prescribed with Levodopa to 

reduce symptoms. However, the drug is associated with significant side effects such as 

nausea and vomiting. In patients with essential tremor Levodopa offers no benefit but may 

reduce quality of life. 

1.1.2 Dementia with Lewy Bodies 

DLB is a progressive brain disease associated with the presence of cortical Lewy bodies 

(abnormal aggregates of protein) inside nerve cells. DLB presents with similar symptoms to 

both Alzheimer‘s Disease (AD) and PD. There is still uncertainty in regards to prevalence, 

largely due to difficulties in diagnosing the condition. However, a recent systematic review 

has estimated that DLB accounts for approximately 1 in 25 dementia cases diagnosed in the 

community and 1 in 13 cases diagnosed in secondary care (18). DLB patients suffer from 

typical dementia symptoms, including attention deficits and substantial memory impairment. 

However, damage to cells in the substantia nigra can also give rise to movement deficits, 

similar to those seen in PS. 

 

Differential diagnosis between DLB and other forms of dementia is important as patient 

management is different for each disease. In particular, DLB patients often have severe 

sensitivity to neuroleptics, but these antipsychotic drugs are commonly prescribed for 

Alzheimer‘s patients to reduce disruptive behaviour.   

1.1.3 Tracer uptake and differential diagnosis 

The radioactive tracer (I123)FP-CIT targets just one protein involved in the nigrostriatal 

dopaminergic pathway, one of the four main dopamine pathways of the brain. In order to 

understand how imaging relates to disease it is necessary to appreciate the basic steps 
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involved in neurotransmission, whereby signals are passed from one neuron to the next. As 

shown by Figure 1-1 the neurotransmitter (dopamine) is held within vesicles in the pre-

synaptic neuron. Action potentials passing along this neuron cause vesicles to release their 

dopamine into the synaptic cleft. Some of the released dopamine binds to and activates the 

receptors of the post-synaptic neuron, causing an action potential to be generated and thus 

allowing the signal to be passed from one neuron to the next. Unbound dopamine is 

reabsorbed from the synapse back into the pre-synaptic neuron by Dopamine active 

transporters (DaT). 

 

 

Figure 1-1 Schematic of two dopaminergic neurons and their synapse. The neurotransmitter 
dopamine is released from vesicles into the synaptic cleft 
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It has been shown in-vitro that FP-CIT binds reversibly to DaT (19). Human brain slices 

recovered post-mortem from individuals without a Parkinsonian Syndrome, following FP-CIT 

administration, have shown high concentrations of the tracer within the putamen and 

caudate (19,20). This area of the brain, known as the striatum, contains a large number of 

nigrostriatal axon terminals. Thus, by radiolabelling FP-CIT with I123, and administering to 

the patient, it is possible to image DaT function in-vivo within the striatum.  

 

Some movement disorders cause dopaminergic neurons to die. The concentration of DaT in 

the striatum reduces as the number of healthy dopaminergic neurons decreases. Therefore, 

by examining the density of administered (123I)FP-CIT within the striatum, through SPECT 

imaging, an assessment can be made of the function of the pre-synaptic dopaminergic 

pathway and whether disease processes associated with certain conditions are present. 

Table 1-1 summarises which of the previously described disorders is associated with 

reduced DaT density, and which causes no significant change. For patients where 

differential diagnosis between these diseases is unclear, a positive or negative (123I)FP-CIT 

test can therefore help to identify the likely cause of a patient‘s symptoms.  

 

Disease Impact on pre-synaptic DaT density 

Idiopathic Parkinson‘s Disease Reduced (21) 

Multiple System Atrophy Reduced (21) 

Progressive Supranuclear Palsy Reduced (21) 

Essential Tremor Not affected (21,22) 

Alzheimer‘s Disease Not affected (21,23) 

Drug-Induced Parkinsonism Not affected (24) 

Vascular Parkinsonism Reduced or unaffected (25,26) 

Corticobasal Degeneration Reduced or unaffected (27) 

Dementia with Lewy Bodies Reduced in most cases (28–31) 

Table 1-1 Summary of the effects of different brain disorders on pre-synaptic DaT density, 

according to current research 

 

(123I)FP-CIT is just one of a range of radiopharmaceuticals that have been developed to 

enable imaging of both the pre- and post-synaptic dopaminergic pathway. However, this 

work focuses on clinical imaging. In the UK the majority of dopaminergic scans conducted in 
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the NHS are carried out with (123I)FP-CIT, and so all other radiopharmaceuticals are 

considered out of scope.  

1.1.4 Clinical SPECT imaging 

(123I)FP-CIT imaging is carried out using SPECT, where multiple planar projections are 

acquired from a gamma camera, which are then reconstructed into a 3D volume. 

Recommended clinical image acquisition parameters are set out in the ―information for the 

physician‖ leaflet supplied by the manufacturer of (123I)FP-CIT. In addition, both the 

European Association of Nuclear Medicine (EANM) and Society of Nuclear Medicine (SNM) 

have produced guidelines for this test (6,32).  

 

Typically, reporters will view reconstructed axial slices from the centre of the brain, 

encompassing the whole striatal area. In some cases a summed image will also be 

examined, created by adding together voxel intensities from consecutive slices. 

1.1.5 Accuracy and variability of unaided visual analysis 

In this study it is hypothesised that automated classification algorithms are a useful 

diagnostic aid, providing an objective, independent assessment of image appearances, 

which the clinician may use as part of his / her considerations in image reporting. Before 

developing tools for this purpose it is important to understand the performance of human 

observers alone in detecting abnormal tracer uptake patterns.  

 

A number of studies have considered the accuracy of (I123)FP-CIT imaging. However, these 

have been conducted in different settings with different groups of patients (at different stages 

of disease), using different gold standard methods with different acquisition and 

reconstruction parameters. Results must therefore be interpreted in light of any potential 

biases.  

 

Many modern studies consider the accuracy of (I123)FP-CIT imaging in conjunction with 

semi-quantificationa, and these are excluded from the following discussion in order to focus 

purely on the reporter‘s ability to visually interpret an image. In addition, the following 

                                                

a
 Semi-quantification: relative quantitative measures of uptake within a region of interest. See section 

1.2 
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discussion mainly focuses on larger scale studies. Results from studies with small or limited 

datasets are largely excluded. 

 

Although post-mortem pathological examination of the brain is generally considered the gold 

standard method for diagnosing parkinsonisms, this is not practical in many studies. Clinical 

diagnosis with long term follow-up (covering disease progression, results of other tests and 

assessment of response to treatment) is the most commonly used reference standard, 

despite the possible limitations this places on interpretation of results. One of the main 

limitations of clinical follow-up, particularly for retrospective studies is that the results of 

(I123)FP-CIT imaging itself may have a significant impact on the final diagnosis. 

 

Use of clinical diagnosis as a gold standard may appear counter-intuitive at first sight given 

that (I123)FP-CIT imaging was primarily introduced to clinic in order to overcome limitations 

associated with diagnosis by clinical features alone. However, (I123)FP-CIT imaging is 

mostly used in early stages of disease where clinical data is limited and uncertain. To 

emphasise the time-limited justification for carrying out a (I123)FP-CIT scan, de-La Fuente-

Fernandez measured the diagnostic accuracy of clinical diagnosis using SPECT data as the 

reference standard for 322 PS and non-PS patients (33). He showed that accuracy was 84% 

in the early stages of disease but 98% for patients with established clinical diagnosis (i.e. the 

two tests were identical in latter stages of disease). 

 

Table 1-2 summarises the main research articles focusing on measurement of the diagnostic 

performance of (I123)FP-CIT imaging (with interpretation through visual analysis only)



 

 

 

 

8
 

 

Summary of the evidence for diagnostic performance of (I123)FP-CIT imaging (visual image analysis only) 

 

Source Method Results 

O‘Brien et al. 

(21) 

Pooled analysis of three phase three and one 

phase four prospective clinical trials, covering 

928 participants. Visual interpretation was 

conducted by both on-site reporters and a panel 

of experts. Data was based on a gold standard 

diagnosis provided by clinical follow-up. 

In the differentiation of patients with a striatal dopaminergic deficit 

disorder (SDDD), such as a PS or DLB, from patients without a SDDD, 

overall sensitivity was 91.9% and specificity 83.6% when interpretation 

was performed locally. The expert panel achieved a sensitivity of 88.7% 

and specificity of 91.2%. Inter-reporter agreement was generally good 

between members of the expert panel (Cohen‘s kappa varied from 0.81 

to 1.00). However, greater variability was seen between the expert panel 

and local on-site reporters 

O‘Brien et al. 

(23) 

Visual analysis of 164 scans by 5 reporters 

(consensus reporting), as compared to clinical 

diagnosis 

Sensitivity of 78% and specificity 85% in classification of DLB vs. AD. 

Kappa values on inter-reporter agreement varied from 0.91 to 0.94  

Benamer et al. 

(34) 

Multi-centre study. 158 patient scans were read 

by local reporters and then by a central panel of 

5 experts. 

Local reporters achieved an accuracy of 98% in the binary diagnostic 

task of distinguishing between Parkinsonisms and ET / healthy 

volunteers, whilst the expert panel gave a correct interpretation in 95% of 

cases. 

Marshall et al. 

(14) 

Visual analysis of 99 SPECT images, as 

compared to clinical interpretation (via video 

recording) at 3 year follow up 

(I123)FP-CIT had a sensitivity of only 78% in diagnosing degenerative 

Parkinsonism from non-degenerative tremor, but 97% specificity. Here, 

Inter-reporter agreement on SPECT image interpretation was high 
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(kappa statistic varied from 0.94-0.97). 

 

Tolosa et al. 

(35) 

Follow-up study of 85 patients with clinically 

uncertain PS. SPECT findings were compared 

to clinical diagnosis established over 2 

subsequent years.  

(I123)FP-CIT findings agreed with a conclusive clinical diagnosis in 90% 

of cases 

Kemp et al. (36) Retrospective study of 80 patients, comparing 

visual analysis by a single observer against 

clinical diagnosis 12-24 months after SPECT 

imaging was completed.  

 

(I123)FP-CIT imaging findings were in agreement with clinical diagnosis 

in 95% of cases  

Thomas et al. 

(31) 

Retrospective study of 55 research patients. 

Diagnosis confirmed by autopsy. Accuracy of 

(I123)FP-CIT imaging determined through 

consensus reporting 

 

Accuracy of (I123)FP-CIT was 86% in differentiating DLB from 

Alzheimer‘s disease, which was greater than the accuracy measured 

from clinical diagnosis (79%)  

Table 1-2 Summary of research articles measuring the ability of (I123)FP-CIT scans, with interpretation by human reporters, to distinguish 

between patient groups. Studies are listed in descending order according to the number of patient datasets included in the analysis
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Most of the studies listed in Table 1-2 have relied upon data from large hospitals, with 

relatively high patient throughput. However, (I123)FP-CIT is a routine test that is often 

carried out in smaller institutions where the level of experience and expertise may be lower. 

A recent audit conducted by the British Nuclear Medicine Society (BNMS) provides some 

insight into the level of reporting performance on a wider scale in the NHS (37). It was shown 

that, for 86 different UK centres (each contributing 6 anonymised scans), independent 

reviewers agreed the original image report in 88% cases. In the remainder there were 

discordant findings, which suggests that visual analysis in the wider clinical community is 

perhaps more significant than that suggested by most research articles.  

 

Overall, it appears that visual interpretation of (I123)FP-CIT images is associated with 

variable but relatively high accuracy, sensitivity and specificity figures (in the region of 80-

90%) for differentiation of dopaminergic deficit disorders from those without such conditions. 

These relatively impressive performance figures are perhaps unsurprising given the size of 

impact that PS has on dopaminergic function. As shown in previous research on post-

mortem brains, early stage dopaminergic disease is associated with a 70-80% reduction of 

dopamine in the striatum (38). Given that patients are only referred for (I123)FP-CIT imaging 

when clinical features have become apparent, it can be inferred that the classification task 

for visual analysis is to distinguish between two very different functional states. 

 

The available data on inter-reporter agreement indicate that there are generally only small 

differences between performances of interpreting clinicians. However, importantly, there was 

a greater level of variability seen between reports by assigned ‗experts‘ and locally 

performed visual analysis. Although there are a number of differences in the studies 

examined that may have affected results and may limit applicability of findings (particularly in 

terms of the case mix, reconstruction method and reference standard used), there does 

appear to be some potential for improving diagnostic accuracy of (I123)FP-CIT tests and for 

reducing inter-reporter variability. It is this that provides justification for new techniques (for 

example, machine learning) as described in this thesis. 

1.1.6 Conclusion 

Parkinsonisms affect a relatively large proportion of the population and although clinical 

diagnosis remains the dominant diagnostic method, the approach is associated with 



 

 

11 

 

 

somewhat disappointing accuracy figures, particularly in the early stages of disease. 

(123I)FP-CIT is a SPECT imaging test that enables clinicians to evaluate function in the pre-

synaptic nigrostriatal dopaminergic pathway. Visual analysis of these images can help to 

distinguish between PS and other conditions such as essential tremor, with relatively high 

accuracy. 

 

Although (123I)FP-CIT imaging appears to be a useful diagnostic tool within the appropriate 

clinical context, there is some variability in reported accuracy figures and there is evidence of 

differences in performance between human reporters. Consequently, there may be scope for 

improving upon the accuracy of (123I)FP-CIT imaging with assistive software based on 

machine learning.  

 

A form of assistive software is already in use in many clinical departments for (123I)FP-CIT 

imaging, namely semi-quantification. This is recommended by EANM guidelines for routine 

image reporting (6) and is therefore a potential competitor to any machine learning tools 

developed during this work. The following section describes semi-quantification and 

considers its advantages and disadvantages to establish whether there is scope for machine 

learning to further increase clinical diagnostic performance. 

1.2 Semi-quantification 

Semi-quantification enables an objective assessment of an image to be performed, which is 

designed to help clinicians better and more consistently assess nigrostriatal dopaminergic 

function. Numerous commercial software solutions are available, including DaTQUANT (GE 

Healthcare) and BRASS (Hermes Medical). 

 

Semi-quantification involves measurement of tracer uptake within regions of interest, placed 

over organs that are key to differential diagnosis (i.e. the striatum or subsections of the 

striatum such as the putamen and caudate, see Figure 1-2 for a typical example). The 

average voxel intensity (and hence tracer uptake concentration) within these regions is 

usually compared to another region of the brain, with low uptake, which represents non-

specific uptake of the tracer. The ratio of the two values gives the specific to non-specific 

uptake ratio or striatal binding ratio (SBR). In this thesis SBR is calculated according to: 
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  Eq 1.1 

 

Where CS refers to the mean count level within a striatal region (or sub-region), which may 

be defined on a full 3D volume or summed 2D slices, and CB refers to the mean count level 

within a background region, such as the occipital lobe. In addition, other ratios are often 

calculated as part of semi-quantitative analysis, such as left to right asymmetry ratios and 

caudate to putamen ratios. The regions of interest used to define the boundaries of striatal 

uptake are often small and are often defined on a chosen template image. Each test image 

is then usually registered to the template in order that regions of interest can be applied 

automatically. Alternative methods have also been proposed. For example, the Southampton 

method (39) applies a wide region of interest around the individual striata, using manual 

placement. Background, non-specific uptake is estimated from the remainder of the brain.  

 

 

Figure 1-2 Example of the regions of interest used in the calculation of SBR. Caudate 

regions are shown in white, putamen regions in yellow and the region covering the occipital 

lobe in green 

 

Whichever particular method is used to define and place regions of interest, the calculated 

SBRs (and other ratios) are usually provided to the clinician alongside data on expected 
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values for ‗normal‘ (and possibly ‗abnormal‘) patients, where ‗normal‘ refers to either healthy 

controls or patients without dopaminergic deficit and ‗abnormal‘ covers any patients with pre-

synaptic dopaminergic deficit. This gives some context to the SBR figures.  

 

One of the major reasons why interpretation of (I123)FP-CIT images can be difficult through 

visual analysis alone, and why semi-quantification is recommended, is that normal striatal 

tracer uptake is known to decline naturally with increasing patient age (40). It is difficult for a 

human to visualise precisely how images appearances should change with patient age and 

so it can be challenging to appreciate how the tolerances on normal appearances should be 

adjusted for each patient. For this reason normal ranges reported with SBR results are often 

age-matched, for example only considering SBRs from reference patients that are within +/- 

5 years of the test patient. 

 

Another justification often presented for the use of semi-quantification software in clinic is 

that in a minority of cases nigrostriatal deficit can manifest as balanced loss of DaT 

throughout the striatum, as mentioned previously, maintaining comma-shaped striatal 

appearances on reconstructed images even at advanced stages of disease. In these cases 

reporters must examine the contrast between voxel intensities within striatal structures, as 

compared to non-specific uptake in the rest of the brain, in order to identify that disease is 

present. Appreciating the exact intensity threshold (and hence display colour) of background 

tissues that indicates abnormality can be difficult. The fact that striatal tissues maintain a 

classic normal shape could be sufficient to distract the reporter from making the correct 

interpretation. Semi-quantification is easily able to highlight these ‗balanced loss‘ cases as 

SBRs are simply a ratio of counts within striatal regions as compared to non-specific uptake 

regions. 

1.2.1 Impact on clinical performance 

A number of studies have previously sought to estimate the added value that semi-

quantification brings. This data gives a useful indication as to the level of performance gain 

that may be possible with image analysis tools, and may provide some justification for 

pursuit of more sophisticated machine learning solutions. 

 

Albert and colleagues (41) examined 62 historical patient datasets, where SPECT imaging 

had originally been reported as inconclusive. Reference diagnosis was established from 

clinical follow-up. Following re-reconstruction with different parameters each image was 
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reported visually by 2 reporters and then semi-quantification was performed using BRASS. 

Any study where SBR figures were less than 2 standard deviations from the mean of an age-

matched normal comparison set was considered abnormal. The accuracy of visual analysis 

alone was found to be 89%, in line with many of the studies highlighted in section 1.1.5. 

Accuracy from semi-quantification alone was 85%. Where semi-quantification and visual 

analysis were in concordance the accuracy was 94%, evidence that, if in agreement, semi-

quantification may add confidence to visual analysis.  

 

Along similar lines, Ueda and colleagues (42) and Suarez-pinera and colleagues (43) 

examined retrospective clinical data to compare the performance of semi-quantitative 

software with that of visual analysis alone, and then examined results from the two 

approaches combined. Ueda found that visual analysis had a higher sensitivity but equal 

specificity to semi-quantification, and that a combined approach (where results agreed) gave 

an even higher sensitivity (96.7%) than either in isolation (42). Suarez-pinera found no 

significant difference between semi-quantification and visual analysis, and found no added 

performance benefit from combining the two approaches (43). However, the dataset used in 

this case was small (32 cases), limiting the chances of measuring significant differences 

between approaches. In both of these studies, the optimum cut-off for the semi-quantification 

classification was defined from the same data to which it was applied to measure 

classification performance. Therefore, performance figures are likely to represent an 

overestimate. 

 

Focusing on studies where reporters were exposed to semi-quantitative output there is again 

a collection of relatively small scale investigations in the literature. The largest such study 

included 304 cases from previous clinical trials, using clinical diagnosis as the reference 

standard. Each case was read by 5 reporters with limited clinical experience, first using 

visual analysis alone and then repeated with semi-quantification results available (44). It was 

found that sensitivity was almost identical between the two approaches and that the 

introduction of semi-quantification increased mean specificity slightly (87.9% vs 89.9%). 

Interestingly, the mean confidence score of the reporters increased significantly when the 

semi-quantification results were available as compared to when performing visual analysis 

alone, apparently an advantage of semi-quantification may be in decreasing diagnostic 

uncertainty. 

 

Two other studies of semi-quantification performance were carried out based on similar 

assumptions. Soderlund and colleagues (45) and Pencharz and colleagues (46)  examined 
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the variability in reporting both with and without the assistance of semi-quantification 

software. Soderlund, using a dataset of 54 historical cases, found that mean inter-reporter 

variability was kappa = 0.8 for visual analysis alone. This is similar to the variability results 

found in 1.1.5. When reporters were given access to SBR results kappa increased to 0.86. 

When both SBR results and caudate-to-putamen ratios were provided to reporters the 

variability between them reduced further (kappa = 0.95) (45). Pencharz, using 109 historical 

patient cases, found that there was no difference in accuracy between visual analysis and 

visual + semi-quantification combined. However, they also found that the mean number of 

cases per reporter that were reported as equivocal reduced from 10.6 to 3.6 after 

introduction of semi-quantification results (46). 

 

These results, taken together, confirm that semi-quantification offers some benefit in clinical 

practice (its usefulness in clinical trials is not considered). There is no compelling evidence 

of a significant increase in sensitivity or specificity as a result of introducing semi-

quantification to the reporting process. However, it does appear that when semi-

quantification and visual analysis agree, the diagnostic accuracy of the combined results is 

likely to be very high. When used by image reporters, semi-quantification seems to increase 

confidence in image reports and there is evidence that inter-observer variability reduces as a 

result. These findings may partly explain why semi-quantification continues to be in routine 

clinical use, particularly in Europe. Conversely, the relatively modest gains achievable with 

semi-quantification may explain why SNM guidelines suggest that semi-quantification is not 

an absolute necessity (32). 

 

Semi-quantification is an imperfect tool for assisted image reporting. Firstly, due to the small, 

tight regions of interest that are often used, results usually rely on accurate registration of the 

test image to a template. Small errors in registration can cause big differences in the 

quantities measured. Secondly, semi-quantification results are usually provided to clinicians 

in the form of multiple SBR results (and possibly other ratio figures), each with an associated 

normal range or suggested normal / abnormal cut-off value. The clinician must interpret each 

of the SBR scores in light of normal ranges to come to an overall decision on patient 

diagnosis. Therefore, there is still a significant amount of interpretation required by the 

reporter after image analysis. Thirdly, semi-quantification is a relatively crude classification 

tool. It takes no account of the shape of striatal uptake or the distribution of voxel values, or 

any other image features which could be affected by disease processes. Finally, it is well 

known that semi-quantification is highly sensitive to differences in gamma camera 

equipment, scanning protocols and reconstruction methods (47–50). This is likely to be more 
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pronounced than the effects on visual analysis (as humans are less likely to be distracted by 

a slight difference in noise, for example). This dictates that individual hospitals may need to 

define their own normal ranges for SBR figures.  

 

For these reasons there are benefits to be obtained from improved (I123)FP-CIT reporting 

software. Machine learning algorithms may be able to overcome some or all of the limitations 

associated with conventional semi-quantification methods and, given the industrious activity 

in this area, it is hypothesised that established machine learning technology is already 

sufficiently mature to offer improved performance in clinic. This work focuses on selection, 

implementation and evaluation of machine learning software to establish whether such 

systems offer effective diagnostic support to reporters. To this end, the following sections 

give an overview of machine learning algorithms along with a summary of the techniques 

applied to (I123)FP-CIT SPECT imaging in the recent literature, before setting out the aims 

of this work. Although the focus of much of the following section is on machine learning, 

there is no aspiration to develop a completely new algorithm, the main goal is to critically 

evaluate existing techniques in a clinical reporting scenario. 

1.3 Machine Learning 

Machine learning is a wide, rapidly evolving field. It is increasingly used in a variety of 

practical applications, from controlling driverless cars to computer game development. In 

research, machine learning is often applied to large datasets in order to identify complex 

patterns, which can then be used to inform future decisions. In this thesis machine learning 

is used as a tool for developing a whole-image automated classification system, to perform a 

reporting task in a similar manner to a radiologist. Specifically, the goal is to implement and 

evaluate a system, which when presented with a previously unseen image, is able to classify 

it as belonging to one of two patient groups (dopaminergic deficit and non-dopaminergic 

deficit groups). The intention is not to replace the radiologist but to provide an independent 

check of the likely differential diagnosis associated with an image. This independent reading 

will be presented to the clinician with the aim of improving his/her reporting performance. 

Software performing this task is often referred to as Computer Aided Diagnosis (CADx) 

software. This is very similar to but distinct from Computer Aided Detection (CADe) software, 

which identifies the locations of possible abnormalities within an image to a clinician. 

 

Given that the focus of the thesis is not on development of a new machine learning algorithm 

per se, the following section provides only a high level introduction to machine learning 
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theory. It is not intended to provide an in depth technical review of all aspects of machine 

learning technology. This introductory section is followed by details of specific recent 

examples in the literature related to (I123)FP-CIT imaging, which have previously produced 

promising results. In chapters 2 and 3 a selection of these tools will be adapted and critically 

evaluated to identify a candidate algorithm for use in a reporting exercise. These later 

sections offer a focused insight into the chosen machine learning theory. 

1.3.1 Overview 

Fundamentally there are two main types of machine learning algorithm, supervised and 

unsupervised. Supervised algorithms use databases of labelled training data in order to 

define a mapping from the features of the training data to their pre-defined label. Thus, the 

chosen algorithm learns to associate a particular grouping of training data with a particular 

set of feature values. This is the form of machine learning most often applied in medical 

imaging and is typically used for regression and classification problems. For example, based 

on historical data, a supervised algorithm could be trained to predict organ size given a 

particular age value. Alternatively, machine learning could be used to create a model that 

learns to differentiate between tumours and healthy tissue based on the pixel intensity 

values. The general concept of supervised learning is depicted in Figure 1-3. 

 

 

Figure 1-3 Supervised learning concept represented as a workflow 
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Conversely, unsupervised learning is applied to data where no pre-defined label (or ‗ground 

truth‘ is available). The goal here is to model the underlying structure of the data. Typical 

applications include clustering, where the algorithm tries to find inherent groupings in the 

training set. Another potential application is in dimensionality reduction, where the goal is to 

find a more compact representation of the same data.  

 

In this work only supervised algorithms are considered, in line with the majority of medical 

imaging research. As previously mentioned, the task is to classify (I123)FP-CIT images as 

belonging to one of two different patient groups. In classical machine learning theory the way 

to approach this problem would be to first define the likely image features that would offer 

the best chance of accurate classification. This may simply be the raw voxel intensity values, 

or could be derived features obtained from analysis of the shape of segmented structures, 

for example. Often, a large number of image features are first presented to the classifier and 

those features contributing little to the overall performance are removed. In recent years 

however, ‗hand-crafting‘ features in this way has become less popular, largely due to the 

recent dominance of deep learning algorithms, such as convolutional neural networks 

(CNNs) in image analysis research (51). With CNNs a hierarchy of features is derived by the 

neural network itself as part of the overall training process, the advantage being that the 

classification algorithm finds the best features for the task and particular set of data it is 

presented with. 

 

In the following section some of the techniques previously applied to (I123)FP-CIT 

classification will be highlighted, to give an indication of the tools that are currently available 

for use in CADx systems. A subset of these techniques will be adopted in this thesis for 

initial evaluation. Clinical tests of CADx software, in a simulated reporting scenario, will be 

based on the best performing algorithm from these initial results. 

1.3.2 Automated classification for (I123)FP-CIT: a summary 

Automated classification tools for (I123)FP-CIT imaging, based on machine learning 

methods, have been investigated by numerous authors. Details on the techniques applied in 

the available literature since 2010, to distinguish between patients with and without pre-

synaptic dopaminergic deficit, are summarised in Table 1-3. Also included are details of the 

image features extracted, reported performance metrics, details of the data upon which the 

performance figures were derived and information related to the chosen cross-validation 
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technique. The table includes algorithms where training data is based on SPECT images 

only, multimodality inputs are excluded.  
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Summary of automated classification research for (I123)FP-CIT imaging since 2010 (articles ordered according to accuracy) 

Authors Image features (if applicable) Classifier Validation data + method Results 

Augimeri, Cherubini, 

Cascini et al., 2016 (52)  

Mean ellipsoid uptake, dysmorphic 

index (ellipsoid orientation) 

Support Vector 

Machine (SVM) 

43 local images (12 normal, 31 

Parkinson‘s Disease (PD)), no 

cross validation mentioned 

Up to 100% accuracy, 

specificity and sensitivity 

Bhalchandra, Prashanth, 

Roy et al., 2015 (53) 

Analysis of 42nd slice only. Striatal 

binding ratios in both caudates and 

putamena, radial features and 

gradient features. Features are 

tested for statistical significance 

(wilcoxon rank) before use in the 

classifier 

SVM and SVM 

with Radial Basis 

Function (RBF) 

kernel, Linear 

Discriminant 

Analysis (LDA) 

350 images from Parkinson‘s 

Progression Markers Initiative 

(PPMI) database (187 healthy 

controls (HC), 163 PD). 5 fold 

cross-validation (CV), repeated 

100 times 

Linear SVM. Maximum of: 

Accuracy = 99.4% 

RBF kernel. Maximum of: 

Accuracy = 99.4% 

LDA. Maximum of: 

Accuracy = 99.4% 

Choi, Ha, Im et al., 2017 

(54)  

All voxels within the image CNN – PD net 701 images from the PPMI 

database (431 PD, 193 HC, 77 

scans without evidence of 

dopaminergic deficit (SWEDD)). 

 

82 local images (72 PD, 10 non-

parkinsonian) 

Maximum of: 

Accuracy = 98.8% 

Sensitivity  = 98.6% 

Specificity = 100.0% 

Oliveira, Faria, Costa et 

al., 2017 (55) 

Binding ratios in the putamen, 

caudate and striatum, striatal 

volume and length in both brain 

SVM, k-nearest 

neighbour (k-NN), 

logistic regression 

652 images from the PPMI 

database (209 HC, 443 PD). 

Leave-one-out CV 

Maximum of: 

Accuracy = 97.9% 

Sensitivity  = 98.0% 
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hemispheres Specificity = 97.6% 

Oliveira, Castelo-Branco, 

2015 (56) 

Image voxels within striatal region 

of interest 

SVM 654 images from PPMI 

database (209 HC, 445 PD). 

Leave-one-out CV 

Maximum of: 

Accuracy = 97.9% 

Sensitivity = 97.8% 

Specificity = 98.1% 

Prashanth, Dutta Roy, 

Mandal et al., 2017 (57) 

16 shape and 14 surface fitting 

features of selected slices, 

following thresholding. Striatal 

binding ratios of both caudates and 

putamena and asymmetry indices 

were also considered. Features are 

tested for statistical significance 

(wilcoxon rank) before use in the 

classifier 

SVM with RBF 

kernel, boosted 

trees, random 

forests, naive 

bayes 

715 images from PPMI 

database (208 HC, 427 PD, 80 

SWEDD). 10 fold CV, repeated 

100 times. Hyperparameters for 

SVM chosen through 10 fold CV 

SVM: 

Accuracy = 97.3 ± 0.1% 

Sensitivity = 97.4 ± 0.1% 

Specificity = 97.2 ± 0.2% 

Boosted trees: 

Accuracy = 96.8 ± 0.2% 

Sensitivity = 97.1 ± 0.3% 

Specificity = 96.3 ± 0.4% 

Random forests: 

Accuracy = 96.9 ± 0.2% 

Sensitivity = 97.2 ± 0.2% 

Specificity = 96.5 ± 0.3% 

Naive Bayes: 

Accuracy = 96.9 ± 0.1% 

Sensitivity = 96.4 ± 0.1% 

Specificity = 96.5 ± 0.2% 

Tagare, DeLorenzo, Voxel intensities within a region of Logistic lasso 658 images from PPMI Maximum of: 
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Chelikani et al., 2017 (58) interest database (210 HC, 448 PD). 3 

fold CV for performance 

assessment. Parameters 

chosen through 10 fold CV 

(nested within outer 3 fold CV). 

Accuracy = 96.5 ± 1.3% 

 

Palumbo, Fravolini, 

Buresta et al., 2014 (59) 

Striatal binding ratios for both 

caudates and putamena (and a 

subset of these 4 features), patient 

age 

SVM with RBF 

kernel 

90 local images from patients 

with ‗mild‘ symptoms (34 non-

PD, 56 PD). Leave-one-out and 

5 fold CV 

Maximum of: 

Accuracy = 96.4% 

Prashanth, Dutta Roy, 

Mandal et al., 2014 (60) 

Striatal binding ratio for both 

caudates and putamena 

SVM, linear and 

with RBF kernel. 

493 images from PPMI 

database (181 HC, 369 early 

PD), 10 fold CV, no repeats 

RBF kernel:  

Accuracy = 96.1%, 

Sensitivity = 96.6%, 

Specificity = 95.0% 

Linear SVM: 

Accuracy = 92.3%, 

Sensitivity = 95.3%, 

Specificity = 84.0% 

Martinez-Murcia, Gorriz, 

Ramirez et al., 2013 (61)  

12 Haralick texture features within 

a brain region of interest 

SVM ‗Whole‘ PPMI database. Leave-

one-out CV 

Maximum of: 

Accuracy = 95.9%, 

Sensitivity = 97.3%, 

Specificity = 94.9% 

Zhang, Kagen, 2016 (62) Voxel intensities from a single axial Single layer 1513 images from PPMI Maximum of: 
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slice, repeated for 3 different slices Neural network database (baseline and follow-

up, 1171 PD, 211 HC, 131 

SWEDD). 1189 images for 

training, 108 for validation, 216 

for testing. 10 fold CV 

Accuracy = 95.6 ± 1.5% 

Sensitivity = 97.4 ± 4.3% 

Specificity = 93.1 ± 3.6% 

 

Rojas, Gorriz, Ramirez et 

al., 2013 (63) 

 

Voxel intensities, independent 

component analysis (ICA) & 

principal component analysis 

(PCA) decomposition of voxel data 

(after applying empirical mode 

decomposition) within regions of 

interest 

SVM 80 local images (39 non-pre-

synaptic dopaminergic deficit 

(non-PDD), 41 PDD). Leave-

one-out CV 

Raw voxels: 

Accuracy = 87.5%, 

Sensitivity = 90.2%, 

Specificity = 84.6% 

ICA features. Maximum of: 

Accuracy = 91.2%, 

Sensitivity = 91.8%, 

Specificity = 92.9% 

PCA features. Maximum 

of: 

Accuracy = 95.0%, 

Sensitivity = 95.1%, 

Specificity = 94.9% 

Martinez-Murcia, Gorriz, 

Ramirez et al., 2018 (64) 

Downsampled voxel intensities CNNs – modified 

versions of 

ALEXNET and 

LENET5 

642 images from PPMI 

database (194 HC, 448 PD). 10 

fold stratified CV 

LENET5. Maximum of: 

Accuracy = 94.9 ± 2.5% 

Sensitivity = 94.0 ± 4.6% 

Specificity = 96.9 ± 5.1% 
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ALEXNET. Maximum of: 

Accuracy = 94.1 ± 4.5% 

Sensitivity = 96.7 ± 2.9% 

Specificity = 96.9 ± 7.2% 

Towey, Bain, Nijran, 2011 

(65) 

PCA decomposition of voxels 

within striatal region of interest 

Naïve-Bayes, 

Group prototype 

116 local images (37 non-PDD, 

79 PDD). Leave-one-out CV 

Naïve-Bayes: 

Accuracy = 94.8%, 

Sensitivity = 93.7%, 

Specificity = 97.3% 

Group prototype: 

Accuracy = 94.0%, 

Sensitivity = 93.7%, 

Specificity = 94.6% 

Segovia, Gorriz, Alvarez, 

2012 (66) 

Partial least squares 

decomposition of voxels within 

striatal regions 

SVM applied to 

hemispheres 

separately. RBF 

kernel 

189 local images (94 non-PDD, 

95 PDD). Leave-one-out CV 

Features varied from 1 to 

20. Maximum of: Accuracy 

= 94.7%, Sensitivity = 

93.2%, Specificity = 93.6% 

Martinez-Murcia, Gorriz, 

Ramirez et al., 2014 (67) 

ICA decomposition of selected 

voxels 

SVM, linear and 

with RBF kernel 

208 local images (100 non-PDD, 

108 PDD), 289 images from 

PPMI database (114 normal, 

175 PD). 30 fold CV 

RBF kernel. Maximum of: 

Accuracy = 94.7% 

Sensitivity = 98.1% 

Specificity = 92.0% 

Linear SVM. Maximum of: 

Accuracy = 92.8% 
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Sensitivity = 98.2% 

Specificity = 93.0% 

Kim, Wit, Thurston, 2018 

(68) 

Image voxel intensities in a single 

axial slice 

CNN – Inception 

v3 network 

108 local images for training, 45 

for hold out testing 

Maximum of: 

Accuracy = 84.4% 

Sensitivity = 96.3% 

Specificity = 66.7% 

Illan, Gorriz, Ramirez et 

al., 2012 (69) 

Image voxel intensities & image 

voxels within striatal region of 

interest 

Nearest mean, 

linear SVM 

208 local images (108 non-PDD, 

108 PDD). 30 random 

permutations CV, with 1/3 data 

held out for testing  

SVM. Maximum of: 

Sensitivity = 89.0%, 

Specificity = 93.2% 

Nearest mean. Maximum 

of: 

Sensitivity = 90.7%, 

Specificity = 84.0% 

k-NN. Maximum of: 

Sensitivity = 88.6%, 

Specificity = 86.9% 

Palumbo, Fravolini, Nuvoli 

et al., 2010 (70) 

 

Striatal binding ratios for caudates 

and putamena on 3 slices 

Probablistic 

Neural network 

(PNN), 

Classification tree 

(CT) 

216 local images (89 non-PDD, 

127 PD). Two fold CV, repeated 

1000 times 

PNN: 

For patients with essential 

tremor mean probability of 

correct classification = 

96.6 ± 2.6% 

CT: 
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For patients with Essential 

tremor mean probability of 

correct classification = 

93.5 ± 3.4% 

 

Table 1-3 Summary of machine learning algorithms applied to (I123)FP-CIT image classification in the literature since 2010, including reported 

performance figures. Articles are listed in order of accuracy. Where accuracy values are not available these are grouped towards the bottom of 

the table. Table is adapted from (1)
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A number of trends are immediately apparent from examination of Table 1-3. Firstly, the 

reported performance figures are universally high. Most accuracy values are greater than 

90%, with some authors reporting almost perfect performance. This contrasts with accuracy 

figures previously summarised for visual image analysis (see section 1.1.5), and for semi-

quantification (see section 1.2.1), which were typically in the 80-90% range. These results 

clearly show that established machine learning algorithms are a promising technology for 

creating CADx software. As in previous discussions however, these figures should be 

treated with a degree of caution. Not only is performance likely to be strongly related to the 

particular case mix in the database but the method of cross validation can also have a 

significant impact on results (71–73).  

 

The Parkinson‘s Progression Markers Initiative (PPMI) database of SPECT data (www.ppmi-

info.org/data) is cited by most authors as a source of validation data. This is perhaps 

unsurprising as the data is freely available to researchers, without the need to apply for 

ethical approval or to go through other lengthy governance processes. As patients were 

recruited prospectively, following a battery of other tests and screening stages, the 

diagnostic coding is likely to be relatively reliable. The other advantage of using the PPMI 

data is that it allows greater comparability between research studies. However, this research 

database is unlikely to reflect the patient cohorts seen in clinical nuclear medicine. The 

patient groups included are healthy controls, Parkinson‘s Disease and scans without 

evidence of dopaminergic deficit (SWEDD). In clinic, a range of atypical Parkinsonisms are 

seen, as well as DLB and other diseases which do not affect nigrostriatal pathways. 

Furthermore, patients were only included in the PD group if their SPECT scan showed DaT 

deficit (74), which may have excluded any patients for which signs of disease were subtle. 

The strict controls on imaging protocols, camera calibration steps and image reconstruction 

(75,76) also do not reflect clinical reality. 

 

The range of classifiers used by researchers is wide, although support vector machines 

(SVM), either in conventional linear form, or with a radial basis function (RBF) kernel, appear 

to dominate. This is likely to be because SVM was considered as a ‗state-of-the-art‘ 

algorithm up until relatively recently and had been successful in numerous classification 

problems. The image features extracted and used as input to the classifiers are varied. 

However, in most cases relatively simple features are chosen (such as raw voxel intensities 

and SBRs). This suggests that complex pre-processing is not required to achieve good 

classification performance. In general the most recent articles gave the highest accuracy 

figures, with some exceptions. This may be because authors have built upon the findings of 
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previous research work and sought to address limitations that were previously identified. The 

two-class classification paradigm dominates recent research, where the classifier is trained 

to separate out two different groups of data. Alternatively, the problem could be considered 

as a one-class system, where the classifier is trained to find the boundaries of one class 

within feature space, without explicit reference data from other diagnostic classes. 

 

Overall, analysis of previous literature on automated binary classification of (I123)FP-CIT 

images confirms that existing machine learning algorithms are associated with high 

accuracy, which is generally in excess of accuracy figures reported for human observers 

alone, and human observers assisted by semi-quantification software. However, given the 

differences in patient datasets, acquisition protocols and analysis methods direct comparison 

between these different approaches to diagnosis is associated with significant uncertainty.  

 

To date there has not been a direct, comprehensive comparison between semi-quantification 

methods and machine learning in terms of accuracy or any other performance metrics. 

Towey (65) did provide a comparison between two automated classifiers and a limited 

number of commercial semi-quantification tools. However, the dataset used was relatively 

small and there was a fundamental bias in the findings in that results for the semi-

quantification approaches were reported from the training data rather than from an 

independent test set. Furthermore, no machine learning algorithm has yet been tested in the 

clinic under realistic reporting conditions (e.g. in support of a human reporter).  

 

If CADx systems based on machine learning algorithms are to be used to benefit patient 

care these gaps in knowledge need to be filled, which is the main focus of this work. 

1.4 Discussion and objectives 

The introductory sections have laid out the clinical and technical background to Parkinsonian 

Syndromes and (I123)FP-CIT SPECT imaging. It was shown that image results can help to 

differentiate between patients with nigrostriatal dopaminergic deficit and those without, which 

is particularly useful in the early stages of disease. It is apparent that visual analysis of 

SPECT images is associated with relatively high but variable accuracy, sensitivity and 

specificity and that there is evidence of some discrepancies between reporters in some 

studies. In recent years the use of semi-quantification software as a diagnostic aid has 

become routine in clinical practice. There are numerous different ways of conducting semi-

quantification analysis and there are several commercial products available. The evidence 
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for clinical impact of semi-quantification is relatively limited, with no significant increase in 

reporting accuracy seen. However, results from the literature do suggest that greater 

concordance between reporters and increased confidence in diagnosis is possible when 

these tools are adopted in the clinic.  

 

There is evidence that machine learning algorithms are already sufficiently mature to offer 

high accuracy in the binary classification of (I123)FP-CIT images. One of the main 

advantages of such tools over semi-quantification is that the entire image can be distilled 

into a single classification metric, rather than a series of SBR figures and normal ranges, 

which, in an assisted reporting context, greatly simplifies the decision-making process for the 

reporting clinician and may lead to increased diagnostic performance. However, no direct 

comparison has yet been conducted against semi-quantification approaches and no tests 

have yet been conducted to assess the likely impact of existing machine learning algorithms 

on clinical reporting in a CADx scenario. 

 

Consequently, the main research question for this thesis is: 

 

How effective is a CADx tool, based on established machine learning algorithms, for 

assisted (I123)FP-CIT image reporting? 

 

Effectiveness will be measured in terms of independent classification accuracy and in terms 

of the impact upon human reporter accuracy, sensitivity, specificity and inter-reporter 

reliability. Studies will be conducted utilising realistic clinical data where possible and 

considering standard-of-care competing technologies (semi-quantification). 

 

In order to meet this research question a number of key objectives are proposed. These are 

summarised below. Figure 1-4 demonstrates how these objectives fit within the overall thesis 

workflow. 

 

Objectives: 

 

1) Select and implement machine learning classification tools. A limited number of 

promising machine learning algorithms will be selected and implemented in software 

for further evaluation 

2) Collect a database of (I123)FP-CIT images. Data will be extracted from the 

archives at Sheffield Teaching Hospitals NHS Foundation Trust following ethical 
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approval. All patient identifiable information will be removed. Gold standard diagnosis 

will be established from patient records. This ―local‖ database will be supplemented 

by data from the PPMI repository. All images will be pre-processed to enable further 

analysis  

3) Compare the performance of machine learning algorithms with semi-

quantification. A comprehensive range of semi-quantification methods will be 

selected and implemented. Cross validation will be carried out on the Sheffield data 

and the PPMI database to quantify the standalone effectiveness of machine learning-

based classification algorithms as compared to semi-quantification methods. This will 

provide an indication as to whether machine learning offers added benefits over 

existing assistive reporting technology, and will help to identify a single algorithm for 

use in the reporting exercise 

4) Develop software for testing of human reporters. Software will be created to 

enable measurement of human observer performance in reporting (I123)FP-CIT 

images. The software will mimic the interface used clinically for reporting patient 

data.  

5) Assess the impact of an automated classification tool, implemented as a CADx 

system, on reporting. After selecting the best performing machine learning 

algorithm from cross-validation results, studies will be conducted to assess the 

magnitude of impact of a CADx system on reporter performance, both quantitatively 

and qualitatively. This will be carried out via an initial, smaller-scale pilot study, 

followed by a larger scale clinical evaluation. 
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Figure 1-4 Thesis workflow 

 

In line with objectives 1 and 2, the next chapter in this thesis focuses on implementing 

algorithms and gathering data, laying the groundwork for chapter 3, where the standalone 

performance of machine learning algorithms and semi-quantification methods is compared. 

Chapter 4 then addresses objectives 4 and 5 through a reporting exercise, using a selected 

machine learning tool implemented as a CADx system. 
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2 Algorithms and data 

2.1 Machine learning algorithms 

Objectives addressed by this section (in black, bold): 

 

1) Select and implement machine learning classification tools 

2) Collect a database of (I123)FP-CIT images 

3) Compare the performance of machine learning algorithms with semi-quantification 

4) Develop software for testing of human reporters 

5) Assess the impact of an automated classification tool, implemented as a CADx 

system, on reporting 

Table 2-1 Objectives addressed in section 2.1 

 

This section focuses on identifying machine learning approaches from the literature that are 

likely to give the highest classification performance, and implementing them in software in 

preparation for a direct comparison with semi-quantification methods and a reporting study. 

As shown previously, classical machine learning algorithms require selection of both image 

features and a classifier. 

 

From Table 1-3 it is clear that SVMs (with and without RBF kernel) are the most prevalent 

classifiers from recent research and are associated with the highest classification scores. 

These classifiers were therefore chosen for implementation and evaluation. Further 

theoretical justification for selecting SVMs is provided in the following background sections. 

 

A number of different image features have been used as inputs to SVMs in previous work 

and there is no observable trend highlighting the particular suitability of one feature over 

another. This is largely due to the fact that most previous studies have involved selection 

and comparison of relatively few different feature types.  

 

Therefore, the features extracted for this thesis had to be selected according to different 

criteria. Features are chosen with the aim of reducing the image pre-processing required, 

maximising the potential for automation and minimising algorithm complexity. This will 

reduce the risk of unforeseen errors occurring in the reporting exercise and will reduce the 
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potential for increased uncertainties in pre-processing. If, for example, a more complex 

derived feature related to shape were chosen, image segmentation may be required, which 

is an imperfect process that can itself be affected by issues such as image noise.  

 

From the list of previously used features the following were chosen for initial evaluation: 

image voxels in the reconstructed image, SBRs and principal components of image voxels. 

These features have the added advantage that they have been investigated by multiple 

authors using different approaches and have all been associated with promising results. It 

was decided that features would not be combined but would be considered separately, as is 

largely the case in the recent literature. 

 

Diagnostic input features from other modalities were not included, as development of a 

CADx tool that does not rely on results of other tests being available, is likely to be more 

amenable to clinical translation. However, due to the known age dependency of tracer 

uptake, patient age was used as an added input to the classification algorithm in all cases. 

This ensured that the classifier modelled the relationship between age and other features.   

 

A summary of the different features and classifiers chosen for implementation and evaluation 

is shown in Figure 2-1. 

 

 

Figure 2-1 Summary of the feature – classifier combinations selected for implementation and 
evaluation 
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The following two sub-sections give a brief technical summary of Principal Component 

Analysis and Support Vector Machines respectively, two of the main methodologies chosen 

to form automated classification tools. The goal here is not to provide an exhaustive critique 

or in-depth mathematical analysis but to give enough information that the major advantages 

(and disadvantages) of the selected technologies used in this work can be demonstrated. 

These background sections are followed by details of the implemented machine learning 

pipelines. 

2.1.1 Technical background – Principal Component Analysis 

PCA is primarily used for dimensionality reduction, enabling representation of data with very 

large numbers of variables by a much smaller number of common components. One of the 

main benefits of PCA is that it can dramatically reduce computational time for classifier 

training. It is a technique that was established in the early 1900s and has been applied to 

numerous varied applications in the intervening years (77). 

 

PCA takes a set of observations (i.e. images) and projects them to a new subspace whose 

axes are orthonormal (78). PCA attempts to maximise the variance of the data along each 

projected axis. Thus, the majority of the variance in the original dataset can be described by 

the first few axes or principal components of the new space, thereby achieving a significant 

reduction in the number of dimensions required to adequately reconstruct the data. The 

magnitude of the linear components (which when combined reconstruct the object) uniquely 

characterises the object in PCA space. A simple example of PCA is demonstrated 

graphically in Figure 2-2. Here, PCA is applied to a set of two dimensional points. The first 

principal component (PC1) is placed along the line of highest variance. As can be seen, if 

the data points were to be described only by their position along PC1 they would be 

relatively well represented in the space, with little residual error. Thus, the same data can be 

well characterised using half the number of original variables. Given that PCA does not 

consider the labels of a particular class of data it is an unsupervised technique. 
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Figure 2-2 Example of PCA applied to a two dimensional dataset 

 

In mathematical terms PCA is a linear transformation of the form: 

 

      Eq 2.1 

  

Where   is the input sample matrix (whose rows represent variables and columns represent 

observations),   is the projection matrix and   is the transformed output. In image 

processing research the input matrix is often composed of separate vectors, each of which is 

a collection of pixel values from separate training images that have been concatenated into a 

1 dimensional form.  

 

The variance-covariance matrix of   defines the extent to which each of the variables within 

  are linearly associated with each other (i.e. covariance), and also the spread along each 

axis (i.e. variance). Variances occupy the diagonal matrix positions and co-variances occupy 

all other off-diagonal positions. For a sample of data taken from a larger population, 

covariance and variance can be calculated according to: 

 

 
   (   )   

(    ̅)(    ̅)

   
 

 

   
 (   ̅)  (   ̅)   Eq 2.2 
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Where   ,    represent individual values associated with two different variables within the 

sample,  ,  are vectors of all values associated with the two variables, and  ̅,  ̅ represent 

the variable means. The number of data points in the sample is defined by  . From the 

above it can be shown that the covariance of data with itself, i.e.    (   ) or    (   ), 

reduces to a statistic which is simply the variance of that data. It also follows that    (   ) = 

   (   ). 

 

If Y is a two dimensional system containing 4 samples, i.e.   (
        

      
 
    

    
), the 

variance-covariance matrix,   , can be written as: 
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Eq 2.3 

 

 

Where    ( ) and    ( ) are the variances of the two variables. If all the variables are 

mean centred (i.e. mean = 0) then the variance-covariance matrix simplifies to: 

 

 
   

 

   
(
      

      )  
 

   
    Eq 2.4 

  

In most practical applications, such as in medical image processing, the matrices   and   

are likely to contain many more than 2 variables and 4 samples. Substituting the output 

matrix   in Eq 2.4 for the input matrix   (from Eq 2.1), and expanding for an unspecified 

number of variables, the following relationship is obtained: 
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   Eq 2.5 
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where each xi is a vector containing all the values or observations for one particular input 

variable (i.e. each row of X). PCA attempts to maximise the variance of the data along each 

projected axis (and consequently to minimise the co-variance between axes). The role of the 

projection matrix   is therefore to ensure that the co-variances of the transformed matrix   

are as close to zero as possible and the variances as large as possible. In effect PCA 

attempts to diagonalise CY. One method for achieving matrix diagonalization is to perform 

eigen-decomposition, which for the square, symmetric matrix XXT is defined as: 

 

         

         
Eq 2.6 

 

Where E is an orthonormal matrix containing the eigenvectors of XXT and D is a diagonal 

matrix containing the (real) eigenvalues. See Figure 2-3 for an illustrative example of this 

eigen-decomposition concept. 

 

 

Figure 2-3 Illustration of the eigen-decomposition concept as applied to the variance-

covariance matrix XXT 

 

If the rows of the projection matrix P are chosen to equal the eigenvectors (columns of E), 

such that     , then the equation for the variance-covariance matrix becomes: 

 

 
   

 

   
  (    )  

 

   
  Eq 2.7 
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Thus, the variance-covariance matrix of the output has been reduced to a diagonal matrix (of 

eigenvalues), which was the original goal of PCA. The principal components are the rows of 

P and are equal to the eigenvectors of XXT. There are as many principal components (with 

non-zero eigenvalues) as there are observations in the training data. In image processing 

research this is likely to be far fewer than the number of variables (i.e. number of voxels). 

The principal components are usually stated in order of reducing variance such that the first 

component describes the largest amount of variance in the data.  

 

In image processing and classification it is common to only use a small selection of derived 

principal components, often by choosing those which together represent a certain 

percentage of the overall variance in the data (77). This is because lower components with 

lower variance are often more likely to be made up of noise. In SPECT, where image noise 

is significant in comparison to other modalities, using only the first few principal components 

can help to remove the confounding effects of noise from algorithm training processes (78), 

which may help to improve the accuracy and robustness of the trained machine learning 

tool. 

 

The above eigen-decomposition is a common method for deriving principal components. 

However, other techniques are available. Singular value decomposition (SVD) is a 

computationally efficient method for deriving components that has been used in many 

applications (77). SVD theory states that the matrix X can be decomposed as follows: 

 

        Eq 2.8 

 

Where U and V are orthonormal matrices and ∑ is a diagonal matrix containing the singular 

values of X.  

 

If the variance-covariance matrix, XXT, is expanded according to the SVD definition, the 

following equation is obtained: 

 

      (    )(    )
 

       Eq 2.9 

   

Comparison of Eq 2.9 with the eigen-decomposition in Eq 2.6 demonstrates that the (non-

zero) singular values of XXT are equivalent to the square roots of the (non-zero) eigenvalues 

of XXT. It is also apparent that U is a matrix containing the eigenvectors of XXT. Thus, by 
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calculating the singular value decomposition of X it is possible to derive the principal 

components (and eigenvalues).  

 

In the following chapters SVD is used to compute principal components from training data. 

Test data are projected on to these components by matrix multiplication. For example, a test 

image, f (in vector form), can be projected on to the basis represented by U through the 

following equation:       , where c is a vector of coefficients describing the position of the 

image in the principal component (PC) subspace. The distribution of test image coefficients 

is used as an input to SVM classification in the following investigations. Unless otherwise 

stated it is always assumed that training and test data are mean centred (i.e. a mean image 

is subtracted from each case). 

 

PCA is a linear technique and as such its ability to represent systems where the underlying 

interactions between variables (or features) are non-linear is limited. Thus, more recently 

kernel PCA was introduced, whereby PCA is applied in a modified space dictated by a 

kernel function (79). Conventional PCA as a precursor to classification is also limited by its 

unsupervised nature. Choosing components according to the largest variance is not 

necessarily the best method for choosing a basis on to which to apply a classifier. However, 

due to its simplicity and wide-ranging, successful application in previous tasks (including for 

the task at hand) only conventional, linear PCA is applied as a dimensionality reduction 

method in this work.  

2.1.2 Technical background – Support Vector Machines 

A conventional SVM classifier is a supervised learning approach which attempts to draw a 

discrimination boundary between two classes of data. The boundary is created in such a 

way as to maximise the width of the margin between the samples in each class (a maximum-

margin approach). SVM has been successfully used in numerous diverse applications. For 

example, recent reviews provide an insight into its contribution to the fields of computational 

biology, remote sensing, bioinformatics and hydrology (80–83). It is perhaps unsurprising 

therefore, that SVM has become a popular choice for classification of (I123)FP-CIT images 

(see section 1.3.2). 

  

SVM is a type of linear classifier. This group of functions can be described as follows: 

 

  ( )        Eq 2.10 
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Where w represents a vector of weightings, x represents the (multidimensional) inputs, b is a 

bias term and f(x) is the algorithm output or the ‗decision‘ of the classifier. The goal of the 

classifier is to learn the model parameters (i.e. w and b) that are most appropriate for 

separating groups in the space defined by the inputs. SVM achieves this by focusing on the 

samples that are closest to the opposite class, on the edge of each group. These are the 

‗support vectors‘, as represented graphically in Figure 2-4.  

 

 

Figure 2-4 Graphical representation of classical SVM theory, where the goal is to define a 

maximal separating margin between class one (blue stars) and class 2 (red circles) 

 

In SVM         defines the separating plane between classes (  ). Since  (     )  

  defines the same plane there is a free normalisation parameter, c, which can be selected. 

SVM normalises the linear equation such that there are 2 separate equations for the support 

vectors of each class: 

 

                      (  ) Eq 2.11 
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                         (  ) Eq 2.12 

 

Here, y indicates the binary class label. For linearly separable data any samples which are 

not support vectors will give  ( ) values of less than -1 or greater than 1, depending on 

class membership (see Figure 2-4). Noting that for any two arbitrary points along H0, a1 and 

a2: 

 

   (     )      Eq 2.13 

 

It is clear that the vector w is always normal to the surface of H0 (and to H1 and H2, which 

share the same gradient). The separation between the support vector planes    and    is 

the margin between the classes, which SVM attempts to maximise. The width of this margin 

can be calculated by recalling that the perpendicular distance (d) between a point (p0,q0) and 

a line (kx1 + lx2 + m = 0) is: 

 

 
  

|         |

√     
 Eq 2.14 

 

Therefore, taking an arbitrary point on H0, the perpendicular distance to H1, can be 

calculated from: 

 

 
  

|    |

√  
    

 
 

 

‖ ‖
 

Eq 2.15 

 

Where w1 and w2 are the individual components of the vector w and ‖ ‖ is the magnitude or 

norm of w. The total separation between H1 and H2  is double this length. The goal of SVM is 

therefore to maximise 
 

‖ ‖
. Inverting this expression, the objective function of SVM becomes 

the minimisation of ‖ ‖.  

 

This optimisation problem is subject to the following constraints, derived from Eq 2.11 and 

Eq 2.12: 

 

   ( 
     )                    Eq 2.16 
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Unfortunately, real world classification problems often involve data that are not linearly 

separable as shown in the simple example in Figure 2-4. However, SVM classifiers can still 

be useful in these circumstances if the objective function is modified to include additional 

terms. By introducing a slack variable (ε) to the constrained optimisation problem (see Eq 

2.17) samples are permitted to lie beyond the support vector margin of their particular class 

(see Figure 2-5).  

 

 

Figure 2-5 Graphical representations of soft-margin SVM, where complete linear separation 

between classes is not possible 

 

 
   
     

 
 

 
‖ ‖   ∑  

 

 

 

 

Eq 2.17 

 Subject to:    ( 
     )                                

 

The regularisation parameter C determines the relative contribution of the slack variable to 

the optimisation and balances the need for a large margin with that of maintaining the 
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constraints. In effect, the penalty for each margin violation is equal to   . A small value for C 

allows the constraints to be easily ignored such that many data points can violate the margin 

between classes, with outliers exerting less influence on the decision boundary. A large 

value for C ensures that the optimisation considers the constraints as more of a hard limit 

such that the optimal solution is likely to be a smaller margin hyperplane, which minimises 

the number of samples violating the margin. 

  

SVM with slack variables is the ‗soft margin‘ version of SVM (84), and is the approach used 

in this thesis as it provides a more robust approach to classification.  

 

One further alteration can be applied to this problem formulation to widen its potential scope 

of application. Input data may not be linearly separable in the input space and classification 

performance may be poor, even with the addition of slack variables. However, if data can be 

mapped to a higher dimensional space then linear separation may become feasible. This 

idea is highlighted in the simple example shown in Figure 2-6. In the left image two variables 

are displayed, taken from two different populations (described by either blue circles or red 

crosses). In this case linear discrimination will be ineffective. On the right is the same data 

but with the addition of a z-axis which is the sum of squares of the original variables. This 

graph shows a clear separation between the groups, with linear separation possible in the z-

axis. 

 

  

Figure 2-6 Illustration of the how mapping to a higher dimensional space can enable linear 

separation 

Mapping all points to a higher dimensional space before performing the classifier 

optimisation can be very computationally expensive. Therefore, researchers often employ 
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the ‗kernel trick‘ such that this mapping does not need to be performed directly. This involves 

taking the Lagrangian of the optimisation problem (Eq 2.17), examining the dual formulation 

and recognising that a kernel (similarity function) can be used in place of an inner product of 

data points that have been transformed to a higher dimensional space. The mathematics of 

these operations are not reproduced here as such steps are relatively unimportant in terms 

of demonstrating the broad concepts behind SVMs. 

 

There are a number of different kernels that can be used when training SVMs. Their main 

benefit is that the derived separating plane between classes, when projected onto the 

original data axes, can be non-linear. This greatly extends the scope of application of SVMs 

and is likely to be one of the main reasons why they have been so popular in the literature.  

 

One of the most commonly used kernels is the Gaussian kernel or Radial Basis Function 

(RBF) kernel (see Eq 2.18), the use of which is equivalent to implicitly applying the SVM in 

an infinitely large dimensional space. 

 

 
 (     )      ( 

‖     ‖
 

   
) Eq 2.18 

 

Where σ is a hyperparameter which controls the width of the Gaussian function. Smaller 

values of σ tend to make the SVM decision boundary (in the input feature space) more 

flexible with greater curvature, which means that the algorithm can be trained on highly non-

linear data but at the increasing risk of overfitting (i.e. high variance, lower bias). Larger 

values of σ lead to a smoother decision boundary with reduced curvature, which is less 

prone to overfitting (i.e. low variance, higher bias).  

 

The main disadvantage of introducing kernels into SVM algorithms is that there are 

additional hyperparameters that need to be selected, which if not chosen carefully could 

produce a classification function that is too highly tuned to training data (with subsequent 

lower performance on independent test data). It is not clear from the literature whether linear 

or non-linear forms of SVM are likely to be the most successful for (I123)FP-CIT 

classification, and so both approaches are implemented. 
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2.1.3 Algorithm pipelines 

For this work the well-established libSVM package (version 3.18, 

https://www.csie.ntu.edu.tw/~cjlin/libsvm/) (85) was adopted for training and implementing 

the SVM algorithms, utilised from within Matlab scripts. Prior to training each SVM algorithm 

all variables were normalised by subtracting the mean value and dividing by the standard 

deviation (available from training data). This was performed such that all variables are 

treated with equal weight during training. 

 

When using principal components as input features to SVM, images were first examined to 

establish which side of the brain had the lowest uptake within the striatum. This was 

achieved through examination of SBR figures (see 2.2.5 for details on how these were 

extracted from the data). The images were mirrored about the central axis, if necessary, in 

order to ensure that the striatum of lowest tracer uptake was always on the left side. This 

approach, as implemented by Towey (65), was performed in order that the effects of 

unilateral disease are not ameliorated in the projection on to principal component axes. The 

image reorientation process was also conducted when raw voxel intensities were used as 

features, in order that abnormal data had more similar appearances and would be clustered 

closer together in the classification space.  

 

When using image voxels or principal components as algorithm inputs, only the central 

portion of the image was of interest, containing the striata. The majority of the remaining 

brain, the skull and image background were not diagnostically significant. Thus, a loose 

region of interest was applied to all images. Voxel intensities outside of this region were 

masked out. Three different sized masks were investigated for each set of features and for 

each SVM model as it was unclear a-priori what size / volume would give the best 

performance. Different mask sizes were achieved by dilating the original mask different 

numbers of times. Dilating the mask once was equivalent to expanding the boundary of the 

mask by one voxel in all directions. Three different numbers of mask dilations were 

considered: 0, 2 and 4. As previously stated, patient age was also used as a separate input 

to the SVM classifiers, to force the algorithm to model the effects of this confounding variable 

on the classification result. 

 

An overall summary of the different machine learning algorithms that were implemented 

(including different input features) is shown in Figure 2-7.  

 

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Figure 2-7 Summary of the different machine learning algorithms that were implemented 

(adapted from (1)) 

In total, considering all the different input features and both linear and non-linear SVM 

classifiers, there were 47 distinct machine learning approaches that were implemented in 

software. These are summarised in Table 2-2. 

 

Machine 

learning 

algorithm 

Input 

feature 

No. of 

PCs 

Dilate 

(times) 

SVM 

Kernel 

ML 1, 2, 3 PCs 1 0, 2, 4 Linear 

ML 4, 5, 6 PCs 2 0, 2, 4 Linear 

ML 7, 8, 9 PCs 3 0, 2, 4 Linear 

ML 10, 11, 12 PCs 5 0, 2, 4 Linear 

ML 13, 14, 15 PCs 10 0, 2, 4 Linear 

ML 16, 17, 18 PCs 15 0, 2, 4 Linear 

ML 19, 20, 21 PCs 20 0, 2, 4 Linear 

ML 22, 23, 24 PCs 1 0, 2, 4 RBF 

ML 25, 26, 27 PCs 2 0, 2, 4 RBF 

ML 28, 29, 30 PCs 3 0, 2, 4 RBF 
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ML 31, 32, 33 PCs 5 0, 2, 4 RBF 

ML 34, 35, 36 PCs 10 0, 2, 4 RBF 

ML 37, 38, 39 PCs 15 0, 2, 4 RBF 

ML 40, 41, 42 PCs 20 0, 2, 4 RBF 

ML 43, 44, 45 Pixels - 0, 2, 4 Linear 

ML 46 SBR - - Linear 

ML 47 SBR - - RBF 

Table 2-2 List of the distinct machine learning algorithms developed and implemented in 

Matlab software. For each algorithm patient age was used as an additional input feature to 

the classifier (adapted from (1)) 

2.2 Patient data 

Objectives addressed by this section (in black, bold): 

 

1) Select and implement machine learning classification tools 

2) Collect a database of (I123)FP-CIT images 

3) Compare the performance of machine learning algorithms with semi-quantification 

4) Develop software for testing of human reporters 

5) Assess the impact of an automated classification tool, implemented as a CADx 

system, on reporting 

Table 2-3 Objectives addressed in section 2.2 

Two types of patient data were collected and used throughout this work, clinically-acquired 

retrospective data and prospective research data acquired from a clinical trial (the PPMI 

database). The former is key for ensuring that findings from all the investigations in this 

study are relevant to the clinic. The latter is likely to be associated with fewer confounding 

variables, as all data were acquired according to a tight research protocol, which will add 

certainty to any trends identified in clinical data. Furthermore, inclusion of the PPMI data 

enables results to be compared with those of other authors, giving context to the methods 

employed here. 

 

The following sub-sections provide more details on the characteristics of these two datasets, 

and the additional image processing that was carried out in preparation for performance 
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tests of machine learning algorithms and semi-quantification methods. Many of the details of 

these datasets are also discussed in a peer-reviewed publication (1). 

2.2.1 Clinical images and reference classification (“local data”) 

Approval was sought and granted by City and East Research Ethics Committee 

(15/LO/0736) to extract all (I123)FP-CIT images from the archives at Sheffield Teaching 

Hospital NHS Foundation Trust (acquired up until June 2015). All these images were 

acquired under standard conditions (see Table 2-4), other than the stopping conditions 

which were set a constant 30s per projection, rather than acquiring according to counts. Four 

scanners were used to acquire the data, namely three GE Infinia cameras and one GE 

Millenium scanner (all manufactured by GE Healthcare). No specific inter-scanner calibration 

was conducted so it is likely that there may be small systematic differences in semi-

quantification results between systems. Reconstruction was conducted on the same system 

in all cases with the same settings: GE Xeleris v2.1 with 2 iterations, 10 subsets and 

Butterworth post-filter (order 10 cut-off 0.7). 

 

Parameter Value 

Administered activity 167-185 MBq 

Injection-to-scan delay 3-6 hours 

Acquisition time 30 minutes 

Acquisition pixel size 3.68 mm 

Number of projections 60 per head (over 180o) 

Energy window 159 keV ± 10% 

Acquisition matrix size 128 x 128 

Table 2-4 Summary of clinical data acquisition parameters 

 

Cases where image quality was very poor, as highlighted by the image report, were 

excluded from the database. In addition, cases where significant previous vascular disease 

had been highlighted in the image report were excluded. This ensured that the pattern of 

dopaminergic function was unaffected by infarcts at or near the striatum. 

 

Once extracted, each image required a ‗gold-standard‘ diagnostic classification. It was 

intended that this information would be derived from examination of clinical notes over an 

extended period of time following SPECT imaging by expert neurologists. This would bring 
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the study in to line with other literature examining the accuracy of (I123)FP-CIT imaging. 

However, due to resource constraints, only a subset of the available images could be 

classified in this way (subset A). As an additional, alternative method (and consistent with 

subset B), the image reports for each patient were examined. The overall conclusion of the 

reporting radiologists was used to provide a 3 level classification, using a scoring system 

from 1-5 to reflect the level of confidence that the radiologists had in their findings. The 

scoring system was as follows: 

 

 1 = definitely abnormal appearances 

 2 = more likely abnormal than normal 

 3 = equivocal 

 4 = more likely normal than abnormal 

 5 = definitely normal appearances 

 

At Sheffield (I123)FP-CIT images are all reported by two radiologists together, with 

additional contribution from a trained Clinical Scientist. In recent years semi-quantification 

results have also been provided to the reporting team, although very few patients in the 

cohort were reported with this additional information. Reporting radiologists have access to 

the patient‘s previous imaging results and relevant clinical information (such as presenting 

symptoms). This comprehensive approach to reporting should ensure that results are 

reflective of the best performance achievable from visual image analysis. Patients for whom 

only an image report was available for generating the reference diagnosis are considered to 

be part of subset B. 

 

Results 

 

In total 389 images were extracted from the archives. There were 55 cases where clinical 

follow-up by 2 neurologists had established a diagnosis with high confidence (subset A). The 

mean time of follow-up post SPECT imaging was 31 months, with a minimum of 15 months 

and maximum 51 months. There were 34 male and 21 female patients in this subset. At the 

time of scanning their mean age was 66 years (SD = 11 years) with a maximum of 80 and 

minimum 29 years. The patient characteristics of subset A are highlighted in Table 2-5. 
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Subset A 

 

Diagnosis Classification group Number of 

patients 

Parkinson‘s 

Disease 

Patients with pre-

synaptic dopaminergic 

deficit (abnormal 

appearances) 

29 

Dementia with Lewy 

Bodies 

4 

Drug induced 

Parkinsonism 

Patients without pre-

synaptic dopaminergic 

deficit (normal 

appearances) 

5 

Hydrocephalus 1 

Multiple Sclerosis 1 

Essential tremor 10 

Dystonia 3 

Alzheimer‘s 

Disease 

2 

Table 2-5 Diagnostic categories and patient numbers for the 55 patients where diagnosis 

could be confirmed through long term follow-up, with high confidence (subset A) 

 

The other 306 images were classified into ‗normal appearances‘, ‗abnormal appearances‘ 

and ‗equivocal‘ groups using the image report only (subset B). Of these, the majority were 

reported with high confidence. As shown by Table 2-6, only one patient had an equivocal 

report, dictating that the classification was essentially binary. For this larger subset the mean 

age was 69 years (SD = 13 years), with a maximum of 92 years and minimum of 18 years. 

There were 194 males and 112 females. 
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Subset B 

 

Score Classification group Number of 

patients 

1 Patients with pre-synaptic 

dopaminergic deficit (abnormal 

appearances) 

174 

2 17 

3 equivocal 1 

4 Patients without pre-synaptic 

dopaminergic deficit (normal 

appearances) 

29 

5 84 

Table 2-6 Patient numbers and classification grouping for patients with no clinical diagnosis 

(subset B) 

 

To assess the likely discrepancy between the two methods of classification, the clinical 

diagnosis of the 55 patients in subset A was compared to their image reporting scores in 

terms of accuracy. For the 31 patients with a reporting score of 1, there was 1 discrepancy 

with clinical follow-up results. For the 2 patients with a score of 2 there was also 1 

discrepancy. For patients with a score of 4 or 5 there was complete agreement with the 

clinical follow-up results. Thus, if patients with scores of 1 and 2 are lumped together into an 

abnormal group, and those with scores of 4 and 5 lumped together into a normal group, the 

overall error in binary classification is only 3.6% between conventional image reporting and 

clinical follow-up. The specificity is 100% and sensitivity 94%. This suggests that the current 

clinical reporting system is relatively cautious, keeping the false negative rate low at the 

expense of slightly reduced sensitivity. However, overall, results provide a level of 

reassurance as to the reliability of radiologists‘ reports. Moreover, this level of error is 

smaller than that seen in the previous literature review on the accuracy of visual analysis 

(where error was generally 10-20%, see section 1.1.5). This may be due to the influence of 

other imaging data and clinical feature information that was available to radiologists, but 

which is generally excluded from previous studies on (I123)FP-CIT accuracy. It could also be 

because this particular cohort of patients was relatively easy to classify. Whatever the 

underlying causes, these results provide evidence that for the larger patient group (subset 

B), the impact of non-gold standard classification is likely to be relatively small.  
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Discussion 

 

Given the two-tiered nature of the clinical data acquired from Sheffield, careful consideration 

was given to how each subset should be used. Subset A, with the more dependable 

diagnostic information, was kept aside for the most critical investigations in this study, where 

reliability of results was of highest importance. For this thesis, these investigations were 

considered to be the examinations of impact on radiologist performance, as evidence of 

impact in a real reporting scenario is likely to be key to judging the overall success of 

machine learning algorithms.  

 

It was decided that subset B (without the singular equivocal case) would be used for cross-

validation investigations, where the goal was to compare the standalone performance of 

semi-quantification and machine learning algorithms. It would also be used for algorithm 

training in later clinical studies. The justification for this was that algorithms trained to 

achieve the level of performance of an expert reporting team are still likely to be clinically 

useful. Furthermore, comparisons of cross validation metrics are unlikely to be significantly 

biased by a slightly increased level of uncertainty in the reference classification. The relative 

performance of each algorithm is key here, not the overall level of performance. 

 

A possible solution for reducing discrepancies between subsets A and B would be to exclude 

all data from subset B with a score of 2, 3 or 4, only keeping data that was either definitely 

normal or definitely abnormal. However, this would bias the trained algorithms and cross-

validation results towards a situation that did not reflect clinical reality, where images are 

sometimes difficult to classify. This approach was therefore rejected. 

 

SBR values were calculated for each patient in each subset following further image pre-

processing, which is summarised in later sections. 

2.2.2 Research data – PPMI database 

The PPMI dataset is a large online repository of diagnostic data from patients with PD and 

healthy controls, funded by the Michael J Fox foundation for Parkinson‘s Research. Different 

forms of Parkinsonism are explicitly excluded from the study, in contrast to the Sheffield 

data. As discussed previously, data were acquired prospectively from recruited patients. The 

full study protocol can be downloaded from the website (http://www.ppmi-info.org/). In 

summary, a battery of tests was applied to each recruit in order to assign them to a particular 

http://www.ppmi-info.org/
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diagnostic group. This methodology could dictate that the reference diagnosis is associated 

with reduced uncertainty as compared to the Sheffield data, particularly in comparison to the 

patients in subset B. For (I123)FP-CIT imaging specifically, the scanning protocol was 

largely similar to that used in Sheffield (see Table 2-7), other than imaging time which was 

set to a narrower window of 4 ± 0.5 hours post injection. In addition, Co57 markers were 

attached to each patient‘s head to enable correct orientation in subsequent processing. 

Specific scan parameters related to the collimators used and acquisition mode were set for 

each site and each scanner following initial assessment of phantom scans (75).  

 

Parameter PPMI database 

Administered activity 111-185 MBq 

Injection-to-scan delay 3.5-4.5 hours 

Acquisition time 30-45 minutes 

Acquisition pixel size Variable (scanner dependent) 

Number of projections 120 per head (over 360o) 

Energy window 159 keV ± 10% and 122 keV ± 10% 

Acquisition matrix size 128 x 128 

Table 2-7 Summary of PPMI data acquisition parameters 

 

Reconstruction was performed by a core lab, using Hermes HOSEM software (Hermes 

Medical), with 8 iterations, 8 subsets and a 6 mm Gaussian post-filter. This is quite different 

to the parameters used clinically for reconstruction at Sheffield. Furthermore, the 

reconstructed data available to download from the PPMI website is already non-linearly 

registered to a template (although the exact methodology is not clear). Images are also 

supplied with attenuation correction (through Chang‘s method (86)) applied.  

 

Following reconstruction, the PPMI core lab calculated SBR values for all the SPECT 

datasets. These were derived using PMOD software (PMOD Technologies LLC), by taking 

the 8 axial slices with greatest striatal uptake and summing together to create a compressed 

2D slice, to which regions of interest were applied (76). 
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Results 

 

All screening SPECT images from the PPMI repository were downloaded. This included 

images from 209 healthy controls and 448 PD patients i.e. 32% of the data was from 

patients with normal image appearances. These proportions were similar to that of subset A 

(40% normal appearances) and subset B (37% normal appearances). The mean age of the 

PPMI dataset was 61 years (SD of 10 years), which is similar but slightly lower than that 

seen in the Sheffield data. For comparison, the mean age of the healthy controls alone was 

also 61 years. Maximum and minimum ages for the combined PPMI dataset were 85 years 

and 31 years respectively. Thus, the age range covered is similarly wide to that of the 

Sheffield data. There were 232 females and 425 males in the PPMI database. In addition to 

the imaging data, SBR values calculated by the core lab were also downloaded from the 

PPMI website.  

 

Discussion 

 

There are a number of differences between the local and PPMI data that could impact on 

results. Firstly, the higher number of expectation maximisation equivalent iterations used for 

the PPMI data is likely to produce images with higher noise but greater contrast, which may 

improve contrast between striatum and background, particularly for borderline classification 

cases (47). This could possibly make the binary classification task simpler for machine 

learning / semi-quantification software.  

 

The use of non-linear registration for PPMI data may have caused some warping of striatal 

shape, which may impact upon semi-quantification and machine learning algorithms. The 

attenuation correction applied can help to reduce inter-patient differences in striatal 

appearances from variations in head geometry between subjects. This was not applied to 

the Sheffield data and so, again, this may cause the PPMI data to be incrementally easier to 

classify through a machine learning tool.  

 

There are other key differences between the PPMI dataset and the Sheffield dataset that 

should be kept in mind in the following investigations. Firstly, each site involved in the PPMI 

study was required to scan a phantom prior to each patient. This provided calibration data, 

which were applied to reconstructed patient images in order to remove systematic inter-site 

and inter-scanner differences. This procedure was not performed for the Sheffield data (and 

is not mandatory according to clinical guidelines), which suggests that the PPMI data may be 
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associated with reduced systematic error between acquisition equipment. Furthermore, as 

highlighted previously, patients were only included in the PD group if visual analysis of their 

SPECT data showed reduced nigrostriatal dopaminergic function. By explicitly excluding 

patients with PD symptoms but normal SPECT appearances, the dataset is likely to be 

biased towards more favourable classification accuracies when image analysis techniques 

are applied. 

 

Overall, the differences between local data and the PPMI database favour increased 

classification performance for the PPMI data. The different databases are therefore kept 

separate in the following investigations.  

 

The local image data and PPMI data required pre-processing, to different extents, before 

SVM algorithm training. SBR figures also needed to be extracted from local data. The 

developed methods for carrying out these steps are described briefly in the following three 

sub-sections. In each of these sections theoretical details are only discussed briefly. The 

reader is reminded that the focus of this work is on the implementation and evaluation of 

existing technology, not on development of fundamentally new classification concepts.  

2.2.3 Image pre-processing: spatial normalisation (local data only) 

Registration or spatial normalisation is crucial for maximising performance for the chosen 

machine learning approach. Each voxel in each image is effectively considered to be at the 

same geometric location in the patient‘s body, for all of the features considered. Significant 

variability in patient positioning can therefore cause a significant shift in where each 

particular input variable lies in the feature space, leading the SVM algorithm to define a 

separating hyperplane between classes in an inappropriate position.  

 

The PPMI images were downloaded having already been registered to a template by the trial 

core lab team and so required no further spatial normalisation. In contrast, the images 

extracted from the local hospital archives were orientated in the original patient positions on 

the scanner bed.  

 

Application of a fully non-rigid registration to local data would be likely to provide a mapping 

that gave the closest fit between each image and a template, thereby minimising geometric 

differences. Indeed, the PPMI data were all processed using a non-rigid translation step by 

the co-ordinating core lab. However, it was decided that registration of local data should be 
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restricted to an affine transformation (which only permits rotation, scaling, translation and 

shearing in all dimensions). Such rigid registration ensures that the shape of the striata 

cannot be significantly warped after registration. A non-rigid registration that was poorly 

constrained could cause an apparently abnormal image, with ‗full stop‘ striatal appearances, 

to be stretched into the shape of a comma if the template image was a normal dataset 

(which is often the case).  

 

Image registration is itself a wide and established scientific field with a variety of approaches 

described in the literature (87), many of which share the same basic concepts as machine 

learning (i.e. most methods are based on minimisation of an objective function). For this 

study a reliable, proven technology was required to perform image registration. Finding a 

technique that is likely to work consistently across a range of patient studies is of utmost 

importance for a tool designed for clinical use and so this was the major consideration. 

Searching out the best performing algorithm for the relatively limited datasets considered in 

this work was a secondary consideration. The Sheffield Image Registration Toolkit (ShIRT 

(88)) is an established technology that has previously shown good results in the registration 

of nuclear medicine data (89,90). It is based on minimisation of the squared differences 

between intensity values in pixels in corresponding positions on two images, which is a 

commonly used cost function in many registration algorithms.  Importantly, ShIRT has been 

used successfully in numerous clinical applications within Sheffield Teaching Hospitals for 

over 10 years. It was therefore an ideal candidate for the registration task in this study. 

 

ShIRT, as with many other registration tools, requires parameters to be set by the user. In 

addition, it is common to apply registration in stages, to iteratively bring images into 

alignment. In order to evaluate the success of different parameter choices and different 

combinations of processing stages, suitable metrics are required. In the following 

investigation a combination of qualitative and quantitative assessments were used, visual 

scoring and Dice Similarity Coefficients (DSCs) (91,92). These are two of the most 

commonly applied strategies for optimising registration procedures. Although each is 

associated with well-known limitations (subjectivity in the case of visual scoring and 

sensitivity to segmentation inaccuracies in the case of DSC), they are simple to implement 

and in combination should enable the development of a well optimised registration approach. 
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Method 

 

Spatial normalisation first required the creation of a suitable template image to provide a 

fixed target geometry. This was created from non-linear registration (again using ShIRT) of 

10 patient cases without dopaminergic deficit to a single dataset, followed by averaging of all 

voxels in all images. The combined template was then manually re-aligned, to ensure that 

the long axis of the head was along the middle of the image and that there was no right to 

left rotation. Finally, the left half of the template brain was reflected about the centreline to 

produce a template image with identical striatal structures on each side. This procedure is 

summarised by the flowchart in Figure 2-8. 

 

 

 

Figure 2-8 Flow diagram depicting the process for creating a registration template 

 

The goal of registration was to automatically bring the striata in each local patient image into 

alignment with that of the template. Registration accuracy in the caudate and putamen was 

therefore of most interest. Relative alignment of other brain tissues was considered to be 

relatively unimportant. This prioritisation is reflected in the evaluation procedure. After each 

iterative registration step, where a different combination of registration parameters and 

processing procedures were tried out, each registered image was overlaid on the 
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corresponding template, one at a time. Visual analysis focused on the discrepancy in striatal 

boundary between each database image and the template. DSC was calculated for images 

from the non-PDD class through a simple segmentation process, whereby volumes of 

interest for the test image and template were defined via the application of a threshold at 

20% of the maximum voxel intensity value in the image. The volumetric overlap of these 

segmentations was then calculated to give a DSC figure (see Figure 2-9 for a formal 

definition of DSC). DSC values for images from patients with PDD were not calculated as the 

striatal shapes in these images were expected to be very different to that of the template and 

thus DSC would be low whether an appropriate registration was achieved or not. For these 

images only qualitative analysis was used. 

 

 

Figure 2-9 Dice similarity coefficient definition 

 

Since the goal was to develop a tool that was robust to a range of image appearances, there 

was more of an emphasis on finding a technique that registered striata well in all images, 

rather than one that worked exceptionally well with just a few images. The optimal image 

registration procedure that was derived is summarised in Figure 2-10. In line with many other 

medical registration processes, the first stage involves a coarse registration of the test image 

to the template. This was followed by finer registration stages considering the left and right 

sides of the brain separately. In each registration step a loose registration mask was defined 

over the striatal region in the template image, such that registration focused on achieving 

spatial concordance in the striatal area. The DSC scores for the non-PDD images following 

this fully automated technique are shown in Table 2-8.  
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Figure 2-10 Flow diagram of the optimal registration procedure 

Results 

 

The similarity coefficients for datasets B and A were generally very similar and high (see 

Table 2-8), although the minimum reported value was lower for subset B than subset A 

 

Dice Similarity 

Coefficient 

Local data (subset 

A) 

Local data (subset 

B) 

Max 0.89 0.90 

Median 0.84 0.84 

Min 0.77 0.70 

Table 2-8 DSC results for data with a non-PDD classification, following registration 

optimisation 

Discussion 

 

The DSC results indicate that the registration method was similarly successful for both 

subset A and subset B, with a similar spread of values in each case. This implies that the 

method is likely to be successful for a wide variety of patient images. Given that registration 
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was constrained to an affine transformation, concordance between the striata of test images 

and the templates was unlikely to be complete. Furthermore, the simple thresholding method 

used for quantitative evaluation is likely to have been an imperfect method for striatal 

segmentation. Thus, the fact that DSC results fell as low as 0.70 was perhaps unsurprising. 

On visual inspection, after applying the optimum registration technique, there were no 

datasets where registration errors between test images and the template were felt to be 

significant. 

2.2.4 Image pre-processing: intensity normalisation (both PPMI and local data) 

Voxel intensities within a SPECT image can vary depending on a variety of patient and 

technical factors, including time between tracer administration and imaging, biological 

clearance rate, image acquisition time and camera sensitivity. Thus, some form of voxel 

intensity normalisation is usually required to reduce this confounding inter-subject variability 

before training a classifier, particularly when the voxels themselves are used as features. In 

this study, an approach was adopted that has previously been cited by many other 

researchers, namely normalisation of all image counts to the occipital lobe. In most patients 

this area of the brain is a region of relatively uniform, non-specific uptake. Dividing all voxel 

intensities in the image by the mean intensity within the occipital lobe is, in effect, a very 

similar calculation procedure to that required for calculating SBRs, where the mean counts in 

striatal regions are divided by a mean non-specific uptake value. This procedure causes 

voxel intensities to become a measure of contrast, which is independent of many of the 

patient and technical factors previously cited. 

 

The mean uptake in the occipital lobe was defined for each image in the PPMI and Sheffield 

datasets by applying a database-specific volume of interest. For the local data this volume 

was manually defined on the template image and transferred to each test image after the 

first coarse registration stage (see Figure 2-10). Normalisation was then applied. For the 

PPMI data the volume was manually defined on a single case and then propagated to all 

other (pre-registered) images in the dataset. 

 

There are a number of additional pre-processing options that could be considered before 

semi-quantification or machine learning is applied. For instance, additional image smoothing 

could be applied to reduce noise. The reconstruction parameters could be altered in order to 

change the contrast between the striata and background. However, in this study the default 

reconstruction parameters and image filtering steps of each database were left unaltered. No 
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optimisation of these factors was carried out as each set of data had already been optimised 

to some extent. For instance, the processing applied to the Sheffield data was designed to 

enable the best visual classification performance in the clinic. Given that more distinct image 

appearances for each classification group are also likely to give a greater contrast in 

extracted image features, it was likely that the existing image processing steps were already 

suitable for achieving good classification performance.  

 

If clinical performance of machine learning algorithms was found to be insufficient using the 

default reconstruction and filtering parameters then these would be re-evaluated as part of a 

whole processing pipeline re-assessment. 

2.2.5 Extracting SBRs from local data 

In order to compute the performance of the different semi-quantification approaches, and to 

provide SBR values for input to SVM algorithms, a method for extracting SBR figures from 

the local clinical images was required (PPMI data is downloaded with SBR figures already 

available). Having already registered the images to the same spatial location, a single series 

of regions needed to be defined on the registration template image, which could then be 

applied to all patients. 

 

The boundaries of the tissues of interest were defined by adapting the template from an 

established commercial semi-quantification tool (MIM Neuro analysis v6.6, MIM software). 

The regions of interest defined for the MIM Neuro analysis template were warped to the 

space of the registration template used in this study, using non-linear registration (again 

implemented with ShIRT). Using these transformed regions, SBRs were calculated for every 

local clinical image by finding the ratio of uptake within caudate and putamenal regions as 

compared to the occipital lobe according to Eq 1.1 in chapter 1. 

2.2.6 Conclusion 

This chapter has demonstrated production of training and test datasets and methods for 

extracting SBR figures. These are used in the following chapters, first for comparing the 

performance of semi-quantification and machine learning tools, and then for evaluating the 

impact of CADx on reporter performance. 
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3 Comparison of semi-quantification and machine 

learning 

Objectives addressed by this section (in black, bold): 

 

1) Select and implement machine learning classification tools 

2) Collect a database of (I123)FP-CIT images 

3) Compare the performance of machine learning algorithms with semi-

quantification 

4) Develop software for testing of human reporters 

5) Assess the impact of an automated classification tool, implemented as a CADx 

system, on reporting 

Table 3-1 Objectives addressed in section 3 

 

This chapter compares the standalone performance of established machine learning 

algorithms and a range of semi-quantification methods. A comprehensive, fair comparison 

between semi-quantification and machine learning, using the same data and validation 

methods for both approaches, has not yet been conducted in the literature. However, this is 

a vital step in understanding whether machine learning tools are effective classifiers for 

(I123)FP-CIT and whether they are likely to offer benefits above and beyond existing clinical 

tools. Furthermore, by conducting a wide comparison exercise, it will be possible to identify 

the most promising machine learning tool for use in the subsequent CADx reporting 

investigation.  

 

A summary of this chapter was written for publication in a peer reviewed journal (1). Many of 

the methods, results and discussion are reported in this document. 

3.1 Semi-quantification 

In order that the potential diagnostic performance of semi-quantification is fairly represented, 

a range of semi-quantification methods needed to be defined. One approach would have 

been to use all the available commercial software for (I123)FP-CIT imaging. However, 

obtaining access to all examples of such (expensive) software was impractical. Furthermore, 

by only relying on the tools that are currently commercially available, the range of calculation 
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methods is likely to be limited. In this work a number of methods were defined within a single 

software analysis platform (Matlab), covering the majority of approaches cited by both 

commercial tools and those discussed in the literature. These are described below 

3.1.1 Selected methods 

One of the main differences between semi-quantification approaches described in the 

literature is the number and type of SBRs and uptake ratios that are output by the software. 

As described previously, multiple quantities and associated normal ranges may be displayed 

to the clinician. If just one of these quantities falls outside its associated normal range a 

clinician may classify the whole image as abnormal. Furthermore, the greater the number of 

quantitative figures displayed, the greater the chances that one of these will fall outside its 

normal range by chance (i.e. the greater the chances of type I statistical error). Therefore, in 

this investigation, only SBRs from the putamen and caudate were extracted, to avoid overly 

pessimistic performance results. These were used for classification in two different ways, 

considering the putamen only and the caudate and putamen together. 

 

Semi-quantitative methods also differ in how they are compared to normal ranges and how 

they take account of the known correlation between age and SBR. One common approach is 

to establish the mean from healthy patients within a 10 year age window of the test sample, 

for each SBR result. The suggested cut-off may be established, for example, from a value 

that is a number of standard deviations from the healthy control mean (typically between 1 

and 2 standard deviations). A similar alternative would be to establish a cut-off from the 

minimum of age matched controls. A third approach would be to perform a linear regression 

(of SBR value against age) on available training data from normal patients. The predicted 

SBR for the test sample can then be derived from the fitted line and a cut-off set according a 

number of standard errors on the regression coefficients. All three of these methods are 

implemented in the following investigation. 

 

Another difference between semi-quantification approaches relates to the nature of the 

training data used to define the cut off in SBR values between the normal and abnormal 

class. So far it has been assumed that only data from healthy (or non-Parkinsonian) patients 

is used for learning the value of such cut-offs. However, this ‗one class‘ approach is 

fundamentally limited since, without knowledge of where the abnormal group lies in the 

classification space, it is less likely that an optimum cut-off will be found. Therefore, in this 

investigation a two class semi-quantification approach is also tested, whereby analysis of the 
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ROC curve derived from SBR values of normal and abnormal training data is used to find the 

cut-off which achieves the highest accuracy in binary separation of the two classes. This is 

then applied to the test sample. 

 

All of these different approaches to semi-quantification were implemented for direct 

comparison with the previously described machine learning algorithms. Table 3-2 

summarises the key characteristics of all the different semi-quantification methods utilised in 

this work.  

 

Semi-quantification 

method 

Comparison data SBRs considered SBR cut-offs 

defined by 

SQ 1 Age-matched 

normals 

Left and right 

putamen  

Mean – 2SD 

SQ 2 Age-matched 

normals 

Left and right 

putamen and 

caudate 

Mean – 2SD 

SQ 3 Age-matched 

normals 

Left and right 

putamen only 

Mean – 1.5SD 

SQ 4 Age-matched 

normals 

Left and right 

putamen and 

caudate 

Mean – 1.5SD 

SQ 5 Age-matched 

normals 

Left and right 

putamen  

Mean – 1SD 

SQ 6 Age-matched 

normals 

Left and right 

putamen and 

caudate 

Mean – 1SD 

SQ 7 Age-matched 

normals 

Left and right 

putamen  

Minimum 

SQ 8 Age-matched 

normals 

Left and right 

putamen and 

caudate 

Minimum 

SQ 9 All normals Left and right 

putamen  

Linear regression -

2SE 

SQ 10 All normals Left and right 

putamen and 

Linear regression -

2SE 
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caudate 

SQ 11 All normals Left and right 

putamen  

Linear regression -

1.5SE 

SQ 12 All normals Left and right 

putamen and 

caudate 

Linear regression -

1.5SE 

SQ 13 All normals Left and right 

putamen  

Linear regression -

1SE 

SQ 14 All normals Left and right 

putamen and 

caudate 

Linear regression -

1SE 

SQ 15 All normals and 

abnormals 

Lowest putamen Optimal point on 

ROC curve 

SQ 16 All normals and 

abnormals 

Lowest putamen and 

lowest caudate 

Optimal point on 

ROC curve 

SQ 17 Age matched 

normals and 

abnormals 

Lowest putamen Optimal point on 

ROC curve 

SQ 18 Age matched 

normals and 

abnormals 

Lowest putamen and 

lowest caudate 

Optimal point on 

ROC curve 

Table 3-2 Summary of the semi-quantification methods implemented for classification 

performance comparison (adapted from (1)) 

3.2 Cross-validation 

Fair comparison between the standalone performance of machine learning algorithms and 

semi-quantification methods is vital for assessing whether machine learning offers any 

potential benefit over existing clinical decision support technology. However, unfortunately, 

there are many examples in the literature of poor evaluation methodology being applied to 

image classification or regression algorithms, dictating that results are unreliable (93,94). 

This work is different in that clinical translation is seen as the ideal end goal, and evaluation 

techniques are deliberately adopted to ensure, as far as possible, that results reflect likely 

clinical performance.   
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In the following investigations it is assumed that the optimal form of an SVM algorithm 

(including optimal choice of hyperparameters such as the C value) is unknown a-priori, and 

needs to be derived as part of the training process. In these circumstances data used for 

training, choosing hyper-parameters and estimating performance should be fully 

independent to avoid over-optimistic bias.  

 

For the following investigation a repeated 10-fold cross-validation methodology was 

selected, with nesting and class stratification where appropriate. This approach has the 

advantage of providing estimates of uncertainty in performance results and should help to 

ensure a reasonable balance between bias and variance in the model (71–73,95,96). The 

model selection phase for each machine learning algorithm (within the nested loops) was 

performed using a grid search methodology, whereby each possible combination of 

parameters was exhaustively searched to find those which gave the highest mean F1 score 

in cross-validation. The F1 score is a commonly used metric for selecting classification 

algorithms and is defined as: 

 

 
    

   

         
 

Eq 3.1 

 

Where TP refers to the number of true positives, FN the number of false negatives and FP 

the number of false positives. This form of parameter searching is more computationally 

expensive than alternative approaches, such as a random parameter search (where 

parameter combinations are randomly selected) (97). However, grid search is 

straightforward to implement and guarantees that all parameter values deemed to be viable 

options are selected and tested.  

 

In addition, tests were also carried out to generate evidence of the relative bias-variance 

trade-off in the trained machine learning models through the creation of learning curves. 

Such evidence is usually not reported in the machine learning literature, but providing this 

information is considered as important for understanding whether an algorithm will 

generalise well to the clinic (92). Learning curves are produced by training the algorithms 

with increasing numbers of training data and classification performance is compared 

between that achieved with the training data and that measured from an independent test 

set. For an algorithm with optimal bias and variance characteristics it is expected that the 

performance figures for both training and test data would reach a similarly high value. For an 

algorithm with high bias (i.e. a model that under fits the data) performance figures for training 
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and test data are expected to be well matched but low. Finally, for an algorithm suffering 

from over-fitting (i.e. high variance) there will be a gap in performance figures, with training 

data performance being higher than that of the test data. 

3.2.1 Method 

All machine learning algorithms and semi-quantification methods were evaluated according 

to the same stratified, 10-fold cross-validation procedure, repeated 10 times. However, 

nesting and grid search were only necessary for the machine learning algorithms. The 

overall process for comparing semi-quantification and machine learning algorithms is 

summarised in Figure 3-1. For the semi-quantification tools it was necessary to use normal 

limits as a hard cut-off in that any SBR result that fell below the specified normal limit would 

be classified as a positive test.  
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Figure 3-1 Summary of the semi-quantification / machine-learning comparison methodology 

(adapted from (1)) 

The parameter values available in the grid search are shown in Table 3-3. This range of 

values was set after preliminary work, using a wider array of possible C and gamma values, 

examining which figures are typically chosen for each of the models considered.  

 

 Hyperparameters searched 

Algorithm C values Gamma values 

Voxel intensities 

input to linear SVM  

2^(-3,-2,-

1,0,1,2,3,4,5,6,7,8) 

 

PCs input to linear 

SVM 

2^(-3,-2,-

1,0,1,2,3,4,5,6,7,8) 

 

PCs input to SVM 

with RBF kernel 

2^(-3,-2,-

1,0,1,2,3,4,5,6,7,8) 

2^(-8,-7,-6,-5,-4,-

3,-2,-1,0,1,2,3) 

SBRs input to linear 

SVM 

2^(-3,-2,-

1,0,1,2,3,4,5,6,7,8) 

 

SBRs input to SVM 

with RBF kernel 

2^(-3,-2,-

1,0,1,2,3,4,5,6,7,8) 

2^(-8,-7,-6,-5,-4,-

3,-2,-1,0,1,2,3) 

Table 3-3 Parameters selected during exhaustive grid search 

 

Cross validation was completed for both the largest local database (subset B) and the full 

PPMI database, in both cases using Matlab scripts. Results were summarised using a 

number of different performance metrics including diagnostic accuracy, sensitivity and 

specificity, and their respective standard deviations. 

 

Learning curves were generated for three different machine learning algorithms, each 

making use of one of the three different types of image feature: one utilising principal 

components as features (ML 10), one using raw voxel intensities (ML 43) and one utilising 

SBRs (ML 46). In each case the algorithms were trained with incrementally larger 

proportions of the local training dataset (subset B), with 50 cases set aside for testing only 

(containing 18 non-PDD and 32 PDD patients). After selection of hyperparameters in a 

cross-validation procedure, classification accuracy was measured once for the training data, 

and once for the 50 independent test cases.  
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3.2.2 Results 

Table 3-4 and Table 3-5 show performance metrics for the machine learning algorithms 

using local data and PPMI data, respectively.  

Table 3-6 and Table 3-7 show equivalent metrics for all the semi-quantitative methods. 

These results show that varying the size of the image mask had little effect on results. 

Accuracy results for all semi-quantification methods and machine learning algorithms (using 

the smallest mask size) are summarised graphically in Figure 3-2 and Figure 3-3, illustrating 

slightly improved performance with machine learning compared to semi-quantification for 

both local and PPMI datasets. 

 

Algorithm Feature 

No. 

PCs 

Dilate 

(times) Kernel 

Mean 

accuracy SD 

Mean 

Sensitivity SD 

Mean 

Specificity SD 

ML 1 PCs 1 0 Linear 0.86 0.06 0.90 0.06 0.79 0.13 

ML 2 PCs 1 2 Linear 0.85 0.06 0.90 0.07 0.78 0.11 

ML 3 PCs 1 4 Linear 0.85 0.06 0.90 0.07 0.78 0.14 

ML 4 PCs 2 0 Linear 0.89 0.06 0.91 0.06 0.85 0.11 

ML 5 PCs 2 2 Linear 0.89 0.05 0.92 0.06 0.84 0.10 

ML 6 PCs 2 4 Linear 0.90 0.06 0.93 0.06 0.85 0.10 

ML 7 PCs 3 0 Linear 0.91 0.05 0.93 0.05 0.88 0.10 

ML 8 PCs 3 2 Linear 0.91 0.05 0.93 0.06 0.88 0.09 

ML 9 PCs 3 4 Linear 0.91 0.05 0.93 0.06 0.87 0.09 

ML 10 PCs 5 0 Linear 0.92 0.05 0.94 0.06 0.88 0.10 

ML 11 PCs 5 2 Linear 0.91 0.05 0.93 0.05 0.87 0.11 

ML 12 PCs 5 4 Linear 0.91 0.05 0.93 0.06 0.88 0.09 

ML 13 PCs 10 0 Linear 0.91 0.05 0.93 0.06 0.86 0.10 

ML 14 PCs 10 2 Linear 0.90 0.06 0.93 0.06 0.85 0.11 

ML 15 PCs 10 4 Linear 0.91 0.05 0.94 0.05 0.87 0.10 

ML 16 PCs 15 0 Linear 0.89 0.05 0.92 0.06 0.83 0.11 

ML 17 PCs 15 2 Linear 0.89 0.06 0.92 0.06 0.83 0.11 

ML 18 PCs 15 4 Linear 0.89 0.05 0.93 0.06 0.83 0.11 

ML 19 PCs 20 0 Linear 0.89 0.05 0.92 0.07 0.83 0.12 

ML 20 PCs 20 2 Linear 0.89 0.05 0.92 0.06 0.83 0.10 

ML 21 PCs 20 4 Linear 0.89 0.05 0.93 0.05 0.84 0.10 
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ML 22 PCs 1 0 RBF 0.86 0.06 0.91 0.07 0.78 0.12 

ML 23 PCs 1 2 RBF 0.85 0.07 0.90 0.07 0.76 0.13 

ML 24 PCs 1 4 RBF 0.85 0.07 0.90 0.07 0.76 0.12 

ML 25 PCs 2 0 RBF 0.91 0.05 0.91 0.06 0.90 0.10 

ML 26 PCs 2 2 RBF 0.89 0.05 0.91 0.06 0.86 0.11 

ML 27 PCs 2 4 RBF 0.90 0.05 0.92 0.06 0.88 0.09 

ML 28 PCs 3 0 RBF 0.91 0.05 0.91 0.07 0.89 0.09 

ML 29 PCs 3 2 RBF 0.91 0.05 0.92 0.06 0.90 0.08 

ML 30 PCs 3 4 RBF 0.91 0.05 0.92 0.06 0.89 0.09 

ML 31 PCs 5 0 RBF 0.91 0.06 0.92 0.06 0.89 0.10 

ML 32 PCs 5 2 RBF 0.91 0.05 0.92 0.06 0.89 0.09 

ML 33 PCs 5 4 RBF 0.91 0.04 0.92 0.05 0.89 0.10 

ML 34 PCs 10 0 RBF 0.90 0.05 0.91 0.07 0.88 0.09 

ML 35 PCs 10 2 RBF 0.91 0.05 0.92 0.06 0.89 0.10 

ML 36 PCs 10 4 RBF 0.91 0.05 0.92 0.06 0.89 0.09 

ML 37 PCs 15 0 RBF 0.89 0.05 0.91 0.07 0.87 0.10 

ML 38 PCs 15 2 RBF 0.90 0.05 0.91 0.06 0.87 0.10 

ML 39 PCs 15 4 RBF 0.90 0.05 0.92 0.07 0.88 0.10 

ML 40 PCs 20 0 RBF 0.90 0.05 0.90 0.07 0.89 0.10 

ML 41 PCs 20 2 RBF 0.90 0.06 0.91 0.07 0.89 0.10 

ML 42 PCs 20 4 RBF 0.90 0.05 0.91 0.07 0.90 0.09 

ML 43 Pixels 

 

0 Linear 0.88 0.05 0.91 0.06 0.84 0.11 

ML 44 Pixels 

 

2 Linear 0.89 0.05 0.92 0.05 0.84 0.12 

ML 45 Pixels 

 

4 Linear 0.89 0.06 0.92 0.07 0.84 0.12 

ML 46 SBR 

  

Linear 0.89 0.05 0.92 0.06 0.82 0.10 

ML 47 SBR 

  

RBF 0.89 0.06 0.91 0.07 0.85 0.10 

Table 3-4 Machine learning cross validation results for the local database (subset B, adapted 

from (1)) 

 

 

Algorithm Feature 

No. 

PCs 

Dilate 

(times) Kernel 

Mean 

accuracy SD 

Mean 

Sensitivity SD 

Mean 

Specificity SD 



 

 

71 

 

 

ML 1 PCs 1 0 Linear 0.87 0.03 0.92 0.04 0.75 0.08 

ML 2 PCs 1 2 Linear 0.86 0.04 0.92 0.04 0.75 0.10 

ML 3 PCs 1 4 Linear 0.86 0.04 0.92 0.04 0.74 0.10 

ML 4 PCs 2 0 Linear 0.96 0.02 0.97 0.03 0.93 0.05 

ML 5 PCs 2 2 Linear 0.94 0.03 0.95 0.03 0.90 0.07 

ML 6 PCs 2 4 Linear 0.93 0.03 0.95 0.03 0.89 0.07 

ML 7 PCs 3 0 Linear 0.97 0.02 0.98 0.02 0.96 0.04 

ML 8 PCs 3 2 Linear 0.97 0.02 0.98 0.02 0.96 0.04 

ML 9 PCs 3 4 Linear 0.96 0.03 0.97 0.03 0.93 0.06 

ML 10 PCs 5 0 Linear 0.97 0.02 0.98 0.02 0.96 0.05 

ML 11 PCs 5 2 Linear 0.97 0.02 0.98 0.02 0.96 0.05 

ML 12 PCs 5 4 Linear 0.97 0.02 0.98 0.02 0.96 0.04 

ML 13 PCs 10 0 Linear 0.97 0.02 0.98 0.02 0.96 0.04 

ML 14 PCs 10 2 Linear 0.97 0.02 0.98 0.02 0.96 0.04 

ML 15 PCs 10 4 Linear 0.97 0.02 0.98 0.02 0.96 0.04 

ML 16 PCs 15 0 Linear 0.97 0.02 0.97 0.02 0.95 0.04 

ML 17 PCs 15 2 Linear 0.97 0.02 0.98 0.02 0.95 0.04 

ML 18 PCs 15 4 Linear 0.97 0.02 0.98 0.02 0.96 0.04 

ML 19 PCs 20 0 Linear 0.97 0.02 0.98 0.02 0.96 0.05 

ML 20 PCs 20 2 Linear 0.97 0.02 0.98 0.02 0.95 0.05 

ML 21 PCs 20 4 Linear 0.97 0.02 0.97 0.02 0.96 0.04 

ML 22 PCs 1 0 RBF 0.87 0.04 0.91 0.04 0.79 0.09 

ML 23 PCs 1 2 RBF 0.86 0.04 0.91 0.04 0.76 0.08 

ML 24 PCs 1 4 RBF 0.86 0.04 0.91 0.04 0.75 0.10 

ML 25 PCs 2 0 RBF 0.95 0.02 0.96 0.03 0.94 0.06 

ML 26 PCs 2 2 RBF 0.94 0.03 0.94 0.04 0.93 0.06 

ML 27 PCs 2 4 RBF 0.93 0.03 0.94 0.03 0.91 0.06 

ML 28 PCs 3 0 RBF 0.97 0.02 0.98 0.02 0.97 0.04 

ML 29 PCs 3 2 RBF 0.97 0.02 0.97 0.02 0.97 0.04 

ML 30 PCs 3 4 RBF 0.96 0.03 0.97 0.03 0.95 0.04 

ML 31 PCs 5 0 RBF 0.97 0.02 0.97 0.02 0.97 0.03 

ML 32 PCs 5 2 RBF 0.97 0.02 0.97 0.03 0.97 0.03 
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ML 33 PCs 5 4 RBF 0.97 0.02 0.97 0.02 0.97 0.04 

ML 34 PCs 10 0 RBF 0.97 0.02 0.97 0.02 0.97 0.04 

ML 35 PCs 10 2 RBF 0.97 0.02 0.97 0.02 0.97 0.04 

ML 36 PCs 10 4 RBF 0.97 0.02 0.97 0.02 0.97 0.03 

ML 37 PCs 15 0 RBF 0.97 0.02 0.97 0.02 0.97 0.04 

ML 38 PCs 15 2 RBF 0.97 0.02 0.97 0.02 0.97 0.04 

ML 39 PCs 15 4 RBF 0.97 0.02 0.97 0.03 0.97 0.04 

ML 40 PCs 20 0 RBF 0.97 0.02 0.97 0.02 0.97 0.04 

ML 41 PCs 20 2 RBF 0.97 0.02 0.97 0.03 0.97 0.04 

ML 42 PCs 20 4 RBF 0.97 0.02 0.97 0.02 0.97 0.04 

ML 43 Pixels 

 

0 Linear 0.95 0.02 0.97 0.03 0.92 0.06 

ML 44 Pixels 

 

2 Linear 0.95 0.02 0.97 0.03 0.92 0.06 

ML 45 Pixels 

 

4 Linear 0.96 0.02 0.97 0.03 0.93 0.06 

ML 46 SBR 

  

Linear 0.95 0.03 0.97 0.03 0.91 0.06 

ML 47 SBR 

  

RBF 0.95 0.02 0.96 0.03 0.93 0.06 

Table 3-5 Machine learning cross-validation results for the PPMI database (adapted from 

(1))



 

 

 

 

7
3
 

Summary of semi-quantification performance results for the local database 

Method 

number Cut-offs defined by SBRs Accuracy SD Sensitivity SD Specificity SD 

SQ 1 mean -2SD L+R putamen 0.79 0.08 0.68 0.12 0.97 0.05 

SQ 2 mean -2SD L+R putamen, L+R caudate 0.78 0.08 0.68 0.11 0.96 0.06 

SQ 3 mean -1.5SD L+R putamen 0.85 0.06 0.82 0.09 0.90 0.10 

SQ 4 mean -1.5SD L+R putamen, L+R caudate 0.85 0.06 0.83 0.08 0.88 0.11 

SQ 5 mean -1SD L+R putamen 0.86 0.06 0.91 0.06 0.77 0.12 

SQ 6 mean -1SD L+R putamen, L+R caudate 0.86 0.05 0.92 0.06 0.75 0.13 

SQ 7 min L+R putamen 0.83 0.06 0.78 0.08 0.92 0.08 

SQ 8 min L+R putamen, L+R caudate 0.84 0.07 0.81 0.09 0.89 0.10 

SQ 9 regress -2SE L+R putamen 0.82 0.07 0.72 0.11 0.99 0.03 

SQ 10 regress -2SE L+R putamen, L+R caudate 0.82 0.06 0.72 0.10 0.98 0.04 

SQ 11 regress -1.5SE L+R putamen 0.86 0.06 0.82 0.09 0.93 0.09 

SQ 12 regress -1.5SE L+R putamen, L+R caudate 0.86 0.06 0.83 0.08 0.91 0.10 

SQ 13 regress -1SE L+R putamen 0.87 0.06 0.92 0.06 0.78 0.12 

SQ 14 regress -1SE L+R putamen, L+R caudate 0.87 0.06 0.93 0.06 0.77 0.12 

SQ 15 ROC age matched lowest putamen 0.87 0.05 0.89 0.06 0.83 0.11 

SQ 16 ROC age matched lowest putamen, lowest caudate 0.83 0.07 0.92 0.07 0.67 0.16 

SQ 17 ROC lowest putamen 0.86 0.06 0.86 0.08 0.86 0.13 
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Table 3-6 Semi-quantification cross-validation results for the local database (adapted from (1)) 

 

Summary of semi-quantification performance results for the PPMI database 

Method 

number Method SBRs Accuracy SD Sensitivity SD Specificity SD 

SQ 1 mean -2SD L+R putamen 0.93 0.03 0.92 0.04 0.97 0.04 

SQ 2 mean -2SD L+R putamen, L+R caudate 0.93 0.03 0.92 0.04 0.96 0.04 

SQ 3 mean -1.5SD L+R putamen 0.94 0.03 0.95 0.03 0.92 0.06 

SQ 4 mean -1.5SD L+R putamen, L+R caudate 0.94 0.03 0.95 0.03 0.90 0.07 

SQ 5 mean -1SD L+R putamen 0.92 0.03 0.98 0.02 0.78 0.09 

SQ 6 mean -1SD L+R putamen, L+R caudate 0.89 0.04 0.98 0.02 0.71 0.11 

SQ 7 min L+R putamen 0.90 0.04 0.87 0.05 0.96 0.04 

SQ 8 min L+R putamen, L+R caudate 0.90 0.03 0.88 0.05 0.94 0.05 

SQ 9 regress -2SE L+R putamen 0.93 0.03 0.91 0.04 0.97 0.04 

SQ 10 regress -2SE L+R putamen, L+R caudate 0.93 0.03 0.91 0.04 0.97 0.04 

SQ 11 regress -1.5SE L+R putamen 0.94 0.03 0.95 0.03 0.92 0.05 

SQ 12 regress -1.5SE L+R putamen, L+R caudate 0.94 0.03 0.95 0.03 0.90 0.07 

SQ 13 regress -1SE L+R putamen 0.92 0.03 0.98 0.02 0.80 0.08 

SQ 14 regress -1SE L+R putamen, L+R caudate 0.89 0.04 0.98 0.02 0.71 0.11 

SQ 18 ROC lowest putamen, lowest caudate 0.84 0.06 0.90 0.07 0.74 0.14 
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SQ 15 ROC age matched lowest putamen 0.94 0.03 0.96 0.03 0.91 0.07 

SQ 16 ROC age matched lowest putamen, lowest caudate 0.89 0.03 0.97 0.03 0.73 0.09 

SQ 17 ROC lowest putamen 0.95 0.03 0.96 0.03 0.92 0.06 

SQ 18 ROC lowest putamen, lowest caudate 0.89 0.03 0.97 0.03 0.71 0.10 

Table 3-7 Semi-quantification cross-validation results for the PPMI database (adapted from (1)) 

 

Figure 3-2 Accuracy results for all semi-quantification and machine learning methods (with 0 additional dilation) applied to local data. Semi-

quantification results are grouped to the left of the graph (circular markers) and machine learning algorithms to the right (square markers). 

Whiskers represent one standard deviation. Taken from (1) 
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Figure 3-3 Accuracy results for all semi-quantification and machine learning methods (with 0 additional dilation) applied to PPMI data. Semi-

quantification results are grouped to the left of the graph (circular markers) and machine learning algorithms to the right (square markers). 

Whiskers represent one standard deviation. Taken from (1)
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Learning curve results from algorithms ML 10, ML 43 and ML 46 are shown in Figure 3-4, 

illustrating mismatched train-test performance figures for voxel intensity features, as 

compared to algorithms taking PCs and SBRs as input features, where train-test 

performance figures are more consistent with each other. 

 

Figure 3-4 Learning curves for linear SVM algorithms using 5 PCs (top left), voxel intensities 

(top right) and SBRs (bottom) as input features (and no additional mask dilation, ML 10, 43 

and 46) 

3.2.3 Discussion 

This investigation provided a detailed study of the differences in performance that might be 

expected when using machine learning algorithms for classification rather than semi-

quantitative methods. Two contrasting databases of images were used, of different sizes, 

demonstrating how performance can change depending on the characteristics of the 

available data 
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Semi-quantification 

 

For the semi-quantitative methods, performance was superior for the PPMI data as 

compared to local data, with higher mean values generated for the PPMI data and lower 

variance. This was as expected and highlights the differences in performing measurements 

on a research database, where screening procedures and imaging investigations are tightly 

controlled, in contrast to real clinical data where the reference diagnosis is less certain, the 

patient group more diverse and where inter-camera calibration is not routinely conducted. 

The measured performance of semi-quantitative methods for the local data was similar to 

that found by other researchers utilising a mixed clinical database, with established and 

commercial software tools (48). This provides added confidence that the methods developed 

in this study had similar discriminatory power to that of existing software that is used in clinic. 

 

Clinically, multiple SBRs and other derived ratios may be provided by semi-quantitative 

software to guide diagnosis. Typically, SBRs from the whole striatum as well as individual 

caudates and putamena on the left and right side are given. In addition, the caudate to 

putamen ratio and the right to left ratio may also be displayed. If all these individual SBRs 

and their associated normal limits are treated as individual tests, the final semi-quantification 

classification is likely to be overly sensitive (increasing the risk of type I error) and may give 

a pessimistic view on current standard of care approaches. Therefore, in this study only 

SBRs from individual putamena (with or without caudate results) were considered and so it 

is more likely that results reflect the best achievable from semi-quantification rather than 

typical performance.  

 

However, the way in which semi-quantification was evaluated is not completely reflective of 

its clinical function. The normal limits for each set of SBR results were used as hard cut-offs 

in that any value falling outside the boundary would lead to an overall abnormal image 

classification. In reality, semi-quantification is unlikely to be used in such a rigid manner. 

Semi-quantification results require some interpretation by clinicians and figures are usually 

treated as a whole, in light of other clinical information. It is therefore possible that a single 

SBR result which just falls outside the normal limits would be interpreted as an overall 

normal result, despite the classification being abnormal according to the rules of this study. 

Given this limitation, it should be kept in mind that measures of standalone performance do 

not reveal all of the advantages and disadvantages of a particular assistive reporting 

platform.  
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Semi-quantitative methods gave a relatively narrow range of accuracy scores across all the 

methods tested, with a wide range of sensitivities and specificities. It is interesting to note 

that two of the methods which treat classification as a two class problem, generating cut-offs 

from both normal and abnormal putamenal SBRs (i.e. methods SQ 15 and SQ 17), produced 

some of the highest accuracy figures, with lower variance and well balanced sensitivity and 

specificity values. This is perhaps unsurprising as all other semi-quantitative methods (which 

are more reflective of commercially available tools) define cut-offs from the normal 

population only, with no knowledge of the distribution or likely crossover of abnormal data.  

 

In general, the addition of caudate data to semi-quantitative calculations caused a slight 

increase in sensitivity and slight reduction in specificity with little effect on accuracy, other 

than for methods based on ROC curve calculations, which saw a drop in performance. This 

suggests that the vast majority of diagnostically useful information can be gleaned from 

consideration of putamen uptake only. Again, this is unsurprising as image appearances 

often show more marked reduction in putamen uptake than in the caudate (34). 

 

It should be noted that the Southampton semi-quantification method (39) was not 

investigated in this study. Recent research (48) suggests that the sensitivity of this approach 

is very low when calibration is not performed between different camera systems and is also 

significantly reduced when correction (including scatter correction) is not performed. 

Camera-specific calibration data was not available for the local database of images and 

scatter data were not accessible for the PPMI dataset and so the method was excluded.  

 

Furthermore, only one method of image registration and SBR calculation was used in this 

investigation. Commercial semi-quantification solutions use different registration algorithms. 

Some software also performs quantification in two dimensions, by summing consecutive 

slices, utilising different regions of interest. Other image corrections that are also sometimes 

implemented (such as partial volume correction) were not considered in this investigation. 

Thus, results presented here cannot be representative of all semi-quantification techniques. 

However, it is unlikely that investigation of a wider range of methods would have led to 

significantly different performance as the same fundamental limitations apply to all semi-

quantification techniques. 
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Machine Learning 

 

The machine learning algorithms produced performance metrics which generally exceeded 

that of the semi-quantitative methods on the same data. Other than algorithms based on just 

one principal component (ML1 - ML3), the machine learning algorithms all gave accuracies 

as high as or higher than any of the semi-quantitative methods. Accuracy, sensitivity and 

specificity were generally high and well balanced for each machine learning tool, with small 

standard deviation values, providing evidence that these approaches are accurate and have 

low variability. The smaller standard deviation results as compared to semi-quantification is 

particularly important from a clinical perspective as this suggests that machine learning tools 

will be more robust when used more widely on new datasets. 

 

Machine learning performance metrics for the PPMI data matched the best performing 

algorithms produced by other authors (see Table 1-3), with results that are comparable with 

current state-of-the-art. This provides some justification for the particular model selection 

(and grid search) processes used in this study. As with the semi-quantitative results, 

performance for the PPMI database was substantially higher than for the local data, 

reinforcing the assertion that classification of the PPMI dataset is an easier task than that 

seen in clinical reality. 

 

For both databases, algorithms using principal components as features gave the highest 

accuracies (as high as 0.97 for the PPMI database), though the addition of larger numbers of 

principal components and the use of a non-linear RBF kernel appeared to have little 

additional impact on results. Greater dilation of the image mask, incorporating a greater 

proportion of the brain, also appeared to have a minimal impact on results in most cases. 

The fact that high accuracies were achieved with just 2 principal components (only slightly 

lower than that measured for 20 components), shows that separation between groups can 

be achieved with very limited numbers of variables. The lack of significant improvement in 

classification accuracy using greater than 2 principal components was also reported by 

Towey (65). 2 PCs accounted for over 80% of the total variance in the training data when 

applied to the local database, demonstrating that (I123)FP-CIT images have few modes of 

variation, even for this relatively diverse set of patients. Results for one principal component 

were the lowest of all machine learning algorithms and the contrast in performance as 

compared to the other algorithms was particularly striking for the PPMI data. This 

demonstrates that the second principal component contains significant diagnostic 
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information and that there is a lower limit on the degree of algorithm simplification that can 

be applied without adversely impacting upon classification performance.  

 

Features based on raw voxel intensities gave slightly lower performance values in general, 

for example achieving an accuracy of 0.88 on the local database (algorithm ML43). 

Furthermore, there is evidence to suggest that such algorithms were associated with higher 

variance than the other types of algorithm investigated. The learning curve depicted in 

Figure 3-4 shows that for algorithm ML 43, accuracy on training data was consistently at 

100% across the available training data subgroups. This is a strong indicator that the 

algorithm is fitting a model to the available data, rather than the underlying trend. 

Comparison to performance on the independent test data shows a variable but consistent 

gap in results across all different numbers of training data, which again suggests that the 

extent to which the algorithm will generalise to other data samples is sub-optimal. This may 

be because the algorithm was performing classification largely based on individual voxel 

values that separate out test data well, but which may not be in a spatial location that 

correlates with the presence of disease. It is likely that the training and test performance 

curves would move closer together if many more training images were available. However, 

collecting much larger numbers of datasets is not feasible in this study. 

 

Conversely, learning curve results for the algorithms based on 5 principal components (ML 

10) and SBRs (ML 46) showed training and test performance figures that were more closely 

matched, at a relatively high level, even for the smallest number of training images. This 

suggests that both variance and bias were relatively low and that many fewer training 

samples than the 306 available could be used to create machine learning tools of high 

accuracy. Importantly, results indicate that algorithms based on principal components or 

SBRs are more likely to give more consistent performance when applied to new test data, 

than algorithms based on raw voxel intensities. 

 

Despite the favourable learning curve results, machine learning algorithms based on SBRs 

produced mean performance figures from the main cross-validation comparison that were 

slightly lower than that of PC-based algorithms. In this case reduced performance is likely to 

be a consequence of the limitations of using features based on ratios of mean intensity 

values inside regions of interest. In particular, SBRs do not contain information on the shape 

of striatal uptake patterns and they are reliant on accurate fitting of small regions of interest 

to the anatomical striatal outline. This reflects limitations that generally apply to semi-

quantification methods.  
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Although in general the machine learning algorithms appeared to perform better than the 

semi-quantification tools, the level of absolute performance improvement as compared to the 

best performing semi-quantification techniques was relatively small in this study. It is difficult 

to determine whether differences were statistically significant due to the non-independence 

of training and test data in each fold. However, examination of the standard deviation on 

performance results (see Figure 3-2 and Figure 3-3) suggests that there is some crossover 

in accuracy of the machine learning and semi-quantitative methods, particularly for the local 

data. Although utilising different techniques and a different evaluation methodology, Towey 

also reported accuracy results from machine learning algorithms that were similar or better 

than that of selected (commercial) semi-quantification tools (65). This small gain in 

performance from machine learning tools should be kept in mind in the following 

investigations of impact on reporting. 

 

Given that standalone semi-quantification accuracy is up to approximately 87% for clinical 

data (and 95% for research data), the margin available for performance gains from new 

machine learning algorithms is real but narrow. Even with the introduction of more advanced 

machine learning tools (such as convolutional neural networks) there cannot be a substantial 

gain in accuracy over the classical algorithms presented here, which suggests that 

developing more advanced software is of limited value. Therefore, the following sections will 

continue to use the machine learning algorithms defined in this chapter. 

 

Comparisons of standalone accuracy are not, by themselves, an adequate test of clinical 

utility. As previously suggested, clinical investigations demonstrating the impact of such 

assistive reporting tools on clinical decision making are required to fully understand any 

potential benefits. One particular aspect not covered by the current study is that machine 

learning algorithms simplify the information that is shown to the clinician. Rather than having 

to examine and interpret multiple SBR results and other ratio data, along with their normal 

ranges, clinicians are presented with a single number representing the overall likelihood of 

abnormality. This less ambiguous software output may be a better, more effective way of 

influencing clinicians‘ decisions. 

 

Overall, this investigation showed that there is a small gain in absolute standalone 

classification performance (and a corresponding reduction in variability) that can be gained 

from using effective machine learning algorithms rather than the best performing semi-

quantification methods. The superiority of machine learning algorithms is more substantial if 
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only ‗one class‘ semi-quantification methods are considered (which is the form of semi-

quantification that is frequently used in commercial, clinical tools). Furthermore, in this 

investigation only a subset of possible striatal uptake ratios were included in performance 

metric calculations. Typically, a greater range of semi-quantitative values is presented to 

reporting radiologists in clinic. If greater numbers of ratios were included in the analysis, 

classification performance for semi-quantitative methods would have been lower, providing 

more compelling evidence of the benefits of machine-learning algorithms.  

3.2.4 Conclusion 

This study has compared a range of semi-quantification approaches with different machine 

learning tools (based on SVMs) in order to evidence whether classical machine learning 

techniques are a superior means of classifying (I123)FP-CIT data into normal and abnormal 

groups. A research and local clinical database were used for repeated 10-fold cross-

validation. 

 

Results showed that classification performance was lower for the local database than the 

research database for both semi-quantitative and machine learning algorithms. 

However, for both databases, the majority of the machine learning methods generated high 

mean accuracies with low variability, and well balanced sensitivity and specificity. Results 

compared favourably with that of semi-quantification methods and are comparable with 

accuracies cited for clinician performance. 

 

Learning curve results indicate that algorithms taking raw voxel intensities as inputs were 

associated with high variance. In contrast, algorithms based on 5 principal components or 

SBRs were well balanced with low bias and variance.  

 

The increase in accuracy offered by machine learning algorithms as compared to the best 

performing semi-quantification methods was relatively small. However, the performance gap 

is likely to be an underestimate of that which might be seen in clinic with commercial, clinical 

semi-quantification packages. Furthermore, machine learning algorithms offer other benefits, 

such as the generation of just a single output, rather than multiple outputs, each of which 

must be interpreted by clinicians. Thus, the evidence suggests that machine learning 

algorithms may provide more effective and better assistance to reporters than established 

clinical reporting aids. 
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Further evidence is now required to establish whether machine learning can enhance 

reporter performance, since it is envisaged that the human reporter will continue to make the 

final diagnostic decision for (I123)FP-CIT tests.  

  



 

 

85 

 

 

4 Impact on reporting performance – pilot and main 

studies 

Objectives addressed by this section (in black, bold): 

 

1) Select and implement machine learning classification tools 

2) Collect a database of (I123)FP-CIT images 

3) Compare the performance of machine learning algorithms with semi-quantification 

4) Develop software for testing of human reporters 

5) Assess the impact of an automated classification tool, implemented as a CADx 

system, on reporting 

Table 4-1 Objectives addressed in section 4 

 

This chapter builds on the promising performance results of the previous chapter by 

measuring the impact of machine learning algorithms on reporter performance. Such tests 

are necessary for quantifying the effectiveness of CADx. However, performing clinical trials 

of medical devices is a costly and time consuming process. In order to minimise the risk that 

data are biased or uninformative a number of factors need to be considered, which in this 

case includes: the numbers of patient datasets to use, the number (and experience level) of 

radiologists to recruit, study design, the form of CADx output to adopt and the form of its 

display on the screen. In the absence of previous studies covering this specific topic, 

particular care should be taken when considering how the reporting investigation should be 

performed.  

 

In this work a pilot investigation was undertaken on a subset of the available data. Results 

from the pilot study were used to inform a subsequent larger reporting study and the 

following sections describe preparations for the pilot and main study, in particular the 

derivation of optimal machine learning algorithm parameters and development of reporting 

software. Following this, a summary of the testing methodologies is described, with results 

and a discussion.  

 

Of the available machine learning models that were trained and evaluated in previous 

sections, those based on principal components had been found to perform best in terms of 

mean classification metrics. These algorithms also appeared to have well balanced bias and 
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variance properties, in contrast to learning curve analysis of features based on raw voxel 

intensities, which showed signs of increased variance. Although there was much overlap 

between performance figures, the highest classification score was achieved by an algorithm 

based on 5 principal components, with a linear SVM model and no additional mask dilation 

(see section 2.1.3, algorithm ML10). Therefore, this was the algorithm chosen in the pilot 

and main study. 

 

Sections of the following method, results and discussion, particularly in relation to the main 

study, were published in a peer-reviewed journal article (2). 

4.1 Derivation of optimal SVM hyperparameter 

Although the previous chapter provided an estimate of machine learning algorithm 

performance on independent data, using different models, it is not yet known what the 

optimal hyperparameter is for the available training data, i.e. which C value should be 

chosen for the SVM classifier. Previously, optimal hyperparameters were estimated from 

within nested cross validation loops using approximately 81% of the data for training in each 

pass and 9% for validation. This information was then passed to the outer loop to estimate 

performance on the final 10% of the data. However, when the goal of cross-validation is 

simply to find optimal parameters, the outer cross validation loops are not required. Thus, 

optimal hyperparameters can be chosen using more of the available data, in a standard 10-

fold cross validation procedure i.e. using 90% of the data for training in each loop and 10% 

for testing. Utilising an incrementally greater proportion of the data to find the best 

hyperparameters may help to create an improved classification tool.  

 

For the pilot study, the optimal value of the C hyperparameter was selected by running a 10 

fold cross-validation procedure repeated 10 times. Within each set of cross validations the C 

parameter was changed according to a sparse grid search, as before (see section 3.2.1). 

The highest mean F1-score was used as the selection criteria. With this approach the 

optimal C value was found to be 2-2 or 0.25. The final classification algorithm was then 

derived by training on all the available training data from subset B, using this C value. This 

algorithm formed the basis for the CADx tool. 
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4.2 Software development 

Measuring reporting performance using realistic software (i.e. as foreseen for the clinical 

situation) is a key consideration. Significant deviations from the setup used clinically 

introduce additional uncertainty to results. Therefore, for these reporting studies the current 

standard clinical image viewer, Jview, was adapted to show CADx results to clinicians 

alongside image data in a standard format. Jview is a platform based on java software. 

Additional software was written to augment the functionality already available, rather than re-

writing the clinical software code. 

 

Data for the study were stored within a remote MySQL database, other than the image data 

itself which was held within a separate, remote filestore. An applet was written in Java to 

automatically manage the display of data to radiologists and to send results to the database. 

A schematic depicting each piece of software used and how they linked to each other is 

displayed in Figure 4-1. This particular model has the advantage that all data and the 

software classes are kept on a remote server, which can be accessed by several 

workstations at once. Any updates to the software code or data are therefore immediately 

passed on to local users. Each workstation only requires java to be installed. The remote 

servers and workstations depicted in Figure 4-1 are all within the Sheffield Teaching 

Hospitals IT network. No external hardware was used for this study. 

 

 

Figure 4-1 Schematic depicting the different elements of the data capture and display 

software used for the reporting study. Blue arrows represent data flows 
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It was hypothesised that the most helpful form of CADx output would be a probability value. 

This would give the radiologist an idea of the relative certainty of the machine learning tool, 

in addition to a decision on the binary classification. However, the output from a standard 

SVM function is a number which simply dictates on which side of the separating plane the 

test case lies. Values greater than zero are classified as a particular class and values less 

than zero classified as the alternative class. These are not probabilities. An SVM score 

needs to be viewed in the context of the typical values that would be expected for examples 

of either class in order to give the clinician an indication of relative confidence. Thus, a 

common step often applied to raw SVM scores is to convert them to probability values using 

techniques such as Platt scaling (98), whereby a logistic regression model is fitted to the 

available data. libSVM‘s inbuilt function for converting SVM scores to probabilities was 

adopted for this purpose [https://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf], which utilises 

cross-validation to fit the available data to the logistic function.  

 

The probability of belonging to the abnormal class was calculated for all the patient cases 

and added to the MySQL database. These values were displayed to the left of the user‘s 

computer screen at an appropriate point during the study. At all other times the CADx output 

was hidden. Given that the trained algorithms were binary, for cases where P >= 0.5, the 

corresponding probability of belonging to the normal class was 1-P (i.e. less than 0.5). For 

these patients the CADx output value was displayed in red font. For patients where P < 0.5, 

the corresponding probability of belonging to the normal class was greater than 0.5 and a 

blue font was used in the display. Thus, in this scheme red font is associated with an 

abnormal diagnosis. 

 

In the standard clinical protocol (I123)FP-CIT images are viewed following rigid registration 

to a template (to remove asymmetric appearances associated with head tilt). Four 

reconstructed slices are typically displayed to the reporter, from within the centre of the 

brain. A summed image, derived from axial slices throughout the central brain is also 

available. The java applet written for the study enforced this display format for every case. 

Additionally, a series of buttons were located in the left-hand pane to allow the user to move 

between cases and provide a classification decision. These were provided below the box 

which was used for display of the CADx output. Figure 4-2 provides an example of the 

software display that the reporters saw, in this case with the CADx result being visible. 
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Figure 4-2 Example of the Jview software display provided to reporters (The CADx 

probability output is visible in the top left corner this case. The number below refers to the 

patient age on the day of the scan)  

4.3 Pilot study 

The pilot study had three main aims: 

 

 Quantify the influence of CADx on reporting accuracy and reliability 

 Obtain qualitative feedback on the current CADx design 

 Document the effects of CADx on reporting behaviours 

 

In order to gain an estimate of inter-reporter reliability multiple reporters were required.  

Due to limitations in the number of available staff with necessary expertise, the pilot study 

focused on 7 junior radiologists (specialist registrars) who had significant experience of 

reporting images, but not of reporting (I123)FP-CIT scans specifically. 
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4.3.1 Method 

The methodology adopted for the pilot study and the full clinical study are largely dictated, 

where possible, by the recommendations set out by Eadie and colleagues (99) following a 

review and critique of existing literature on the impact of assistive reporting software (100). 

This aims to make the results as relevant to clinical practice as possible, within the particular 

constraints of the study, and that the metrics measured are of clinical relevance.  

 

The overall approach involved reporters examining images three times and giving a 

diagnostic confidence score in each case on a scale from 1 to 5. A score of 1 was equivalent 

to having high confidence that the image showed abnormal dopaminergic function and a 

score of 5 was equivalent to having high confidence that the image was normal. Scores of 2 

and 4 were assigned to images where reporters were less confident in their overall 

assessment, but still favoured one of the binary choices and a score of 3 was used for any 

equivocal cases.  

 

An overview of the pilot study methodology is shown in Figure 4-3. A chronological 

description of the main steps involved is summarised below: 

 

1) Training. An introductory lecture was delivered on tracer uptake processes, image 

acquisition and indications to provide context to the reporting exercise. A series of 10 

images (separate to those of subset A) were shown to the group to demonstrate 

typical normal and abnormal appearances. Following this a further 10 datasets were 

displayed and the group was encouraged to give their opinions on classification, in 

order that training could be reinforced and checked. Finally, the radiologists were 

given an overview of the functionality of Jview along with a clear, concise summary of 

the information that would subsequently be displayed to them. A brief introduction to 

the concept of CADx was given, which included an explanation of the probabilistic 

output of the machine learning tool used in the study. It was explained to the 

radiologists that the algorithm had been trained to accurately distinguish between 

normal and abnormal (I123)FP-CIT scans and that initial tests on other data had 

suggested a binary accuracy of approximately 90%. The worksheets used as a guide 

to the pilot study are shown in the appendix (see Appendix 1). 

2) Read 1. Reporters scored all 30 images, shown in a random order, through visual 

assessment. 

3) 1 hour break (to reduce recall bias) 
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4) Read 2 and 3. Reporters examined the images again, shown in a different random 

order (read 2). However, immediately after giving a diagnostic score from visual 

analysis the same image was presented alongside a probability value from the 

machine learning tool. The reporters then gave a score for a third time (read 3). 

Thus, comparison between the first and second visual reads provided an insight into 

intra-reporter reliability. Comparison of the second and third reads gave an indication 

of the impact of CADx (i.e. whether the reporter chooses to change his / her decision 

when supported by CADx software). 

5) Questionnaire. Each reporter was given a questionnaire to fill in. Questions were 

designed to assess the influence of CADx software on clinician decision making. In 

addition, the questions solicited information on possible differences in the way that 

the CADx system could be designed or used. The questionnaire included a mix of 

open and closed questions with both restricted response categories (to allow for 

more straightforward analysis) and the opportunity for general comment. Where 

possible, questions were posed in a neutral manner in order not to overly influence 

the response. 

 

 

Figure 4-3 Overview of pilot study methodology 

 

All radiologists were in the same room during the study and all used separate workstations, 

although these computers were not optimised for clinical reporting. An advisor was available 
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throughout the study to provide technical support if required. In this pilot investigation patient 

age was not revealed to the radiologists and the patients‘ clinical history was not available. 

 

The standalone performance of the machine learning algorithm was also measured for the 

30 cases. This was done to confirm that the assisted reporting tool, trained on cases where 

only the radiology report was available for ground truth classification, was sufficiently 

accurate when exposed to independent data with a clinical gold standard diagnosis. 

 

The performance metrics selected for the pilot study were in line with those normally used in 

clinical investigations, namely sensitivity, specificity and diagnostic accuracy. These metrics 

were calculated by compressing the submitted confidence scores into 3 classification 

categories: with disease, without disease and equivocal.  

 

In addition, intra-class correlation coefficient (ICC) was used for evaluating intra and inter-

reporter reliability. Values of ICC can range from 0 to 1 where 1 represents perfect reliability 

with no measurement variability and zero is representative of no reliability. ICC is calculated 

from the ratio of variance between subjects (patients) as compared to the total variance 

(which includes between-subjects variance and error variance). In this study, the two-way 

random model was implemented for measuring inter-reporter reliability, with single measures 

(i.e. ICC(2,1)), and the one-way random model with single measures (i.e. ICC(1,1)) 

implemented for assessing intra-reporter reliability. These particular forms of ICC were 

selected based on the guides by Rankin (101) and Koo (102). 

4.3.2 Results 

Quantitative 

 

The results presented below summarise the data transferred to the MySQL database during 

the pilot study. Unfortunately, a technical fault invalidated results from two of the radiologists 

on their final read. Therefore, the tables and figures below are not quite complete. Table 4-2 

presents an overview of the quantitative results captured in the database whilst Table 4-3 

provides a comparison between mean performance figures for read 2 and read 3 (for those 

radiologists with a complete set of results). Figure 4-4, Figure 4-5 and Figure 4-6 display the 

summary data in graphical form.  
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  Radiologist 

Metric 1 2 3 4 5 6 7 

Sensitivity read 1 0.75 1.00 0.94 1.00 1.00 1.00 0.94 

Sensitivity read 2 1.00 1.00 1.00 1.00 1.00 0.94 0.81 

Sensitivity read 3 1.00   0.88 1.00 1.00   0.88 

Specificity read 1 0.71 0.71 0.86 0.86 0.86 0.64 0.93 

Specificity read 2 0.79 0.79 0.93 0.86 0.86 0.79 0.93 

Specificity read 3 0.93   0.93 0.86 0.93   0.93 

Accuracy read 1 0.73 0.87 0.90 0.93 0.93 0.83 0.93 

Accuracy read 2 0.90 0.90 0.97 0.93 0.93 0.87 0.87 

Accuracy read 3 0.97   0.90 0.93 0.97   0.90 

Table 4-2 Summary of quantitative results for the pilot study 

 

 

Mean 

95% CI 

(lower) 

95% CI 

(upper) 

Sensitivity read 2 0.96 0.80 1.13 

Sensitivity read 3 0.95 0.82 1.08 

Specificity read 2 0.87 0.75 0.99 

Specificity read 3 0.91 0.85 0.98 

Accuracy read 2 0.92 0.85 0.99 

Accuracy read 3 0.93 0.87 1.00 

Table 4-3 Mean performance figures for read 2 as compared to read 3 (for radiologists 

1,3,4,5 and 7) 
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Figure 4-4 Diagnostic accuracy figures for the 3 image reads, as compared to standalone 

CADx performance 

 

 

 

Figure 4-5 Sensitivity figures for the 3 image reads, as compared to standalone CADx 

performance 
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Figure 4-6 Specificity figures for the 3 image reads, as compared to standalone CADx 

performance 

 

Examining the impact of CADx on a scan by scan basis, comparing read 2 and 3, there was 

a change in classification score in approximately 15% of cases taken across all radiologists 

where data was complete. Table 4-4 and Figure 4-7 summarise the intra- and inter-reporter 

reliability results, respectively 

 

 Intra-reporter reliability 

Radiologist ICC 

95% CI 

(lower) 

95% CI 

(upper) 

1 0.65 0.39 0.82 

2 0.82 0.71 0.93 

3 0.93 0.87 0.97 

4 0.91 0.83 0.96 

5 1.00 0.99 1.00 

6 0.72 0.49 0.86 

7 0.84 0.70 0.92 

Table 4-4 Intra-reporter reliability (ICC) results for all radiologists 
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Figure 4-7 Inter-reporter reliability (ICC) results for each of 3 image reads (for radiologists 

1,3,4,5 and 7). Whiskers represent 95% confidence intervals 

 

Qualitative 

 

The questionnaire revealed that 3 of the radiologists had used quantitative diagnostic tools 

before and so the idea of assisted reporting was not an entirely new concept to all the 

participants. However, as expected, none of the radiologists stated that they had previously 

reported (I123)FP-CIT images. 

 

The following results summarise the responses given on the distributed questionnaire in 

relation to the CADx software tool. Each question is first stated and the proportion of the 

radiologists giving different answers is then shown. Any additional written comments which 

are of interest are also stated 

 

Question 1: In general, how would you rate the impact of the CAD algorithm on your 

reporting decisions? 

Responses: 0/7, - no impact, 3/7 – small impact, 3/7 – moderate impact, 1/7 - substantial 

impact 

Comments: 

―Gave more confidence if computer agreed with what I thought, disappointing when I wasn't 

sure and computer wasn't either‖ 

―Would help identify borderline cases that need more scrutiny‖ 

―Helped to re-look and decide‖ 
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―Good impact when CAD agreed with my opinion. Prompted me to view the image again‖ 

―Made up my mind when I thought abnormal but unsure‖ 

 

Question 2: To what extent did you trust the CAD algorithm results? 

Responses: 0/7 – not at all, 0/7 – a little, 4/7 – moderately, 3/7 – a lot 

Comments: 

―I was more trusting when it agreed with me when I was confident‖ 

―Still new to CAD therefore would need to 'trust' and prove it is accurate‖ 

―If the CAD algorithm was in line with my thought then more likely to trust it‖ 

 

Question 3: Would you prefer a binary CAD output as opposed to a probability value? 

Responses: 0/7 – yes, 5/7 – no, 2/7 – not sure 

 

Question 4: Would it benefit you if the CAD system also provided information on the location 

of image abnormalities? 

Responses: 0/7 – no, 0/7 – yes (small benefit), 0/7 – yes (moderate benefit), 6/7 – yes 

(substantial benefit), 1/7 – not sure 

Comments: 

―Depends on accuracy and would it be able to identify several areas or 'globally' abnormal?‖ 

―This will help to concentrate on that abnormal area and decide‖ 

―It would help to highlight areas to review‖ 

 

Question 5: To what extent would the CAD system be a useful training tool to improve 

DaTSCAN reporting performance for inexperienced clinicians?  

Responses: 0/7 – no benefit, 0/7 – small benefit, 1/7 – moderate benefit, 5/7 – substantial 

benefit, 1/7 – not sure 

4.3.3 Discussion 

This pilot study represents the first test of machine learning classification tools for assisted 

(I123)FP-CIT reporting. There are no directly comparable studies in the literature and so 

findings must be largely considered on their own merit. Results are discussed below with 

respect to quantitative findings first, followed by qualitative analysis. 
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Quantitative  

 

The quantitative data produced by the study indicates the potential value of the designed 

CADx system. One of the main findings from the data was that the performance of individual 

radiologists was variable both in terms of consistency in decision making and metrics of 

overall performance. For example, radiologist 1 had highly variable sensitivity and accuracy 

scores between read 1 and 2 (see Figure 4-4 and Figure 4-5) despite there being no change 

in reading conditions (with only a one hour break between reads). Their intra-reporter 

reliability score (ICC) was also low. Conversely, radiologist 5 had very consistent 

performance scores across the 3 image reads and had a perfect ICC score.  

 

However, examination of Table 4-2 shows that for 6 of the 7 radiologists individual accuracy 

results were in the range 0.83-0.97 when reading images without CADx assistance (i.e. 

reads 1 and 2). This is in line with visual accuracy results previously reported by other 

authors, with more experienced radiologists (see section 1.1.5). This suggests that relatively 

accurate reporting of (I123)FP-CIT images, at least in terms of binary classification, can be 

achieved with little training. It also suggests that for the majority of radiologists recruited in 

this study there is no compelling evidence that performance is different to that of the more 

experienced radiologist population.   

 

Despite the variability seen at the individual radiologist level, taken together the results show 

that there was a small change in overall accuracy between reads 2 and 3 (see Table 4-3), 

indicating that the overall impact of CADx in terms of a change in binary diagnosis was low. 

Interestingly, however, the combined data showed a larger increase in mean specificity (with 

a slight decrease in sensitivity). This is consistent with the CADx tool causing radiologists to 

change their overall image classification on a few occasions (i.e. moving between scores of 

1-2, 3 and 4-5) but that the overall error rate only improved slightly as a result. Thus, the 

main influence of the machine learning algorithm output on binary decision making appears 

to be that it encouraged the radiologists to be slightly more cautious in reporting images as 

abnormal. 

 

The most significant influence of CADx can be seen from the inter-reporter reliability results 

(see Figure 4-7). Taken across 5 radiologists there is a substantial difference in the ICC 

value from reads 1 and 2 as compared to read 3 (0.84 and 0.86 vs 0.95). Taking into 

account the 95% confidence intervals on the ICC scores, there is no overlap between the 

two different reporting scenarios, suggesting that this difference is significant. This implies 
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that although CADx did not cause a significant shift in overall binary classification accuracy, 

it may have had a greater effect in ‗pushing‘ radiologists towards a common image score.  

 

The standalone performance results of the machine learning algorithm were reassuringly 

high (higher than many of the reporters) and demonstrate that the tool was suitable for use 

as an assistant to radiologists. The results also show, in a relatively limited sample, that an 

algorithm trained with data that has an inferior ground truth diagnosis (visual analysis only) 

can achieve high diagnostic accuracy. This identifies that the selected machine learning 

model has the potential to be a clinically useful CADx tool. 

 

In this study the delay between reads 1 and 2 was short and it is likely that recall bias would 

not have been completely eliminated. Furthermore, reading multiple images of the same 

type in a short space of time is not necessarily reflective of clinical workloads. In Sheffield, 

for example, there are typically only 2 new (I123)FP-CIT cases per week to report. These 

factors are likely to increase uncertainty in pilot study results. 

 

The stark differences in performance between individual radiologists are difficult to account 

for. It may have been that some of the radiologists didn‘t fully understand the reporting task, 

hadn‘t fully appreciated the differences between normal and abnormal appearances or were 

unsure how to use the software (at first). As suggested by Eadie, training processes used to 

familiarise reporters with CADx software (100) can be vitally important. It is possible that the 

training provided was inadequate, and so results may have included learning curve effects, 

where the radiologist becomes more confident in using the software over time. A longer 

training period may have helped to reduce these issues.  

 

Qualitative 

 

The radiologist-CAD relationship is complex and cannot be fully reported in terms of 

diagnostic performance figures alone. Qualitative evaluation of the psychological aspects of 

computer assisted reporting can provide a much richer dataset, giving insights into software 

design steps that may improve overall performance. However, such investigations are rarely 

carried out (99). Thus, although relatively basic, the questionnaires provided to participating 

radiologists in the pilot study offer a useful, complimentary and novel insight into how CADx 

affects decision making for (I123)FP-CIT. 
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The responses to question 1 show that CADx mostly had a small or moderate impact on 

decision making processes. This is reflected in classification scores that were changed for 

15% of patient cases. It should be emphasised however, that the junior radiologists tested in 

this study may be more open to influence by CADx software than more experienced 

radiologists. 

 

An important consideration was the extent to which the accuracy of the machine learning 

algorithm was revealed. By disclosing that the standalone accuracy of the system was 

approximately 90%, i.e. at the level of a human expert, it is possible that participants may 

have been more trusting of the algorithm than if no performance data had been provided.  

 

The comments received in relation to question 1 indicate that the tool was of most use and 

had the biggest impact when its output reflected the original opinion of the radiologist. 

Generally, if the radiologist and CADx classified the image in the same way, the radiologist 

was more confident in his/her diagnosis. In addition, comments also suggested that the 

algorithm output caused some of the radiologists to look again at the image, to scrutinise 

appearances in light of objective findings from the CADx. This is reassuring as it reflects the 

intended purpose of the CADx system.  

 

However, one of the comments suggested that the machine learning algorithm was of less 

help in difficult cases, where the probability was also on the borderline between the two 

classes. Here, the CADx system appears to have a similar ability to that of the radiologists, 

providing more equivocal results when image appearances were difficult to classify. 

Although this may limit the usefulness of CADx (a high-probability, independent check may 

be more helpful in equivocal cases), it is perhaps unsurprising. If a human struggles to 

visually classify an image then it is likely that extracted features, based on the same data, 

will also not provide a clear classification in all cases.  

 

The responses to question two reveal that in general the CADx software was trusted by the 

radiologists, which is vital if such a system is to achieve clinical acceptance. Interestingly, 

the submitted comments reveal that trust was intrinsically linked to the radiologists‘ 

experiences. If the tool agreed with their initial image read then trust increased. This might 

indicate that an assisted reporting tool should largely agree with reporters in order for it to be 

accepted in clinic. However, this potentially creates a problem. If a CAD tool always agrees 

with a radiologists‘ first impressions then its usefulness as a means of increasing 

performance is decreased. There needs to be some discrepancy in a minority of cases in 
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order to influence reporters to move away from an incorrect diagnosis. Conversely, if the 

disagreements between a radiologist and the CADx tool are too frequent, even if the 

radiologist is wrong, then trust in the tool may be decreased and the reporter may simply 

ignore it. 

 

The responses to question 3 justify the choice of a probability value as an output from the 

classifier, as opposed to a binary discrimination. However, question 4 reveals that the 

current system design is less than perfect. The current classification approach takes the 

whole image as an input and so is unable to provide local information on the possible sites of 

any abnormalities. This is a potential disadvantage as compared to semi-quantification, 

which localises uptake quantities to striatal sub-regions (in some cases). The desire for a 

localisation mechanism also implies that reporters may benefit from gaining a better 

understanding as to which aspects of an image‘s appearance caused the CADx system to 

classify a patient in one way or another. However, it should again be emphasised that the 

radiologists recruited for the study were relatively inexperienced. For consultant radiologists, 

localisation information (and further details on why a classification decision was made) may 

be less of an asset. 

 

Responses to the final question suggest that radiologists found the CADx tool to be a 

potentially useful training aid. Given that the standalone accuracy of the classification tool 

was high this is perhaps unsurprising. Allowing a reporter to analyse an image, form their 

own opinion, then compare to an independent ‗expert‘, the overall experience is similar to 

that of being trained by a more experienced colleague. The major advantage of this form of 

training is that once setup, the costs of the software would be negligible. Utilising the 

machine learning tool in this way deviates from the original intended purpose for which it was 

developed, but this added application could offer another route for demonstrating 

effectiveness in the clinic. 

4.3.4 Conclusion 

The pilot study provided a useful insight into the effects of a machine learning algorithm on 

radiologist performance, when utilised as a CADx system. Although the radiologists recruited 

had no previous experience of reporting (I123)FP-CIT images their unaided reporting 

accuracy (following training) was in most cases at a similar level to that typically reported for 

more experienced reporters. For the limited set of 30 images used in the study there was a 

small change in overall performance, in terms of accuracy, after the introduction of the 
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machine learning algorithm to the reporting process. However, there was a substantial 

improvement in inter-reporter reliability. The standalone accuracy of the algorithm was found 

to be high, justifying its use as a CADx tool.  

 

The results of the questionnaire demonstrate that the tool was well trusted and had a 

small/moderate impact on reporting decisions. The questionnaire also revealed that a 

probabilistic CADx output was preferred to a binary one but that localisation information 

would have made the assistive reporting tool more useful. The received opinions suggest 

that the machine learning tool may have an important role to play in future training of 

inexperienced radiologists, which could offer a new route to clinical acceptance. 

4.3.5 Implications 

Although limited, the pilot study was a useful precursor to a larger scale clinical evaluation. 

Results justify inclusion of a much larger number of clinical cases to measure a significant 

change in reporting accuracy after introduction of CADx, assuming that such a difference 

exists. Biasing the test patients in the main study towards more difficult cases may help to 

further expose the performance benefits available from CADx, particularly for more 

experienced radiologists, for whom reporting opinions are unlikely to change if visual 

analysis shows classical normal or abnormal appearances. 

 

The effect on inter-reporter reliability and reporting confidence of the CADx system were 

encouraging, but results for more experienced radiologists may be less dramatic (i.e. they 

may trust their own judgement more and be less swayed by algorithm output). This again 

dictates that a larger number of cases should be included in a clinical trial to measure what 

may be a relatively small effect. It is difficult to predict the minimum number of cases 

required and so utilising as much of the available data as possible is likely to be the best way 

of ensuring that clinical impact is measured adequately.  

 

The pilot study results also suggest that a localisation mechanism would be a useful 

addition. However, this would require a complete algorithm redesign. It was not the intended 

focus of this work to design a completely new tool and so this option was rejected for the 

larger trial. In general, the results from the questionnaire were insightful and added useful 

contextual information on the influence of CADx. The larger, main study described below will 

include an expanded list of questions for discussion, to explore these issues more deeply. 
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4.4 Main study – assessment of experienced reporters 

The aim of the main clinical evaluation study was to generate in-depth, reliable evidence of 

the impact of a CADx tool in a clinical reporting scenario with experienced reporters, from a 

qualitative and quantitative perspective. This data adds to the evidence gathered so far on 

the effectiveness of CADx for (I123)FP-CIT reporting. 

4.4.1 Introduction 

The data from the local hospital that was available for clinical studies was limited. All of 

subset B had already been used for training the machine learning algorithm, and so could 

not be used for clinical testing. Subset A contains only 55 cases in total, which is unlikely to 

be sufficient for measuring the impact on reporting decisions with high confidence. 

Therefore, for the main clinical study the PPMI data was used in addition to the local data. 

As previously discussed the PPMI data is not necessarily a good representation of the 

images seen in clinic in the UK. However, this added data does enable a more 

comprehensive assessment of the possible benefits of CADx for (I123)FP-CIT reporting. In 

addition, the inclusion of PPMI data enables assessment of reporter performance with 

unfamiliar images (reflective of the situation when radiologists move to a new hospital, for 

example). 

 

Given the very different acquisition conditions and processing parameters associated with 

the PPMI data, a separate classification algorithm was trained. Utilising the algorithm trained 

on local data, for classification of PPMI data, is likely to have led to reduced performance, 

giving a false impression of the potential for CADx.  

 

The pilot study showed high performance figures for many of the junior radiologists when 

reporting local data unaided and there were relatively few cases where the CADx caused a 

change of opinion. Given that the PPMI data is associated with strict inclusion and exclusion 

criteria (for example PD patients without abnormal SPECT appearances are excluded) it is 

likely that unaided visual reporting performance and confidence may be even higher for this 

cohort, and the potential for CADx to influence reporters‘ decisions even lower. Thus, test 

data were skewed towards more difficult cases in order that the number of cases where 

reporters‘ visual impression was uncertain was maximised, increasing the potential for CADx 

system to influence diagnostic performance 
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To achieve this, the PPMI set was split in half, maintaining the same proportion of normal 

and abnormals in each sub-group. The first half, containing 328 images, was used for 

algorithm training. For the second half of the data SBR figures were examined to find the 40 

healthy controls with the lowest putaminal uptake ratios and the 60 PD cases with the 

highest uptake ratios. This collection of 100 images, skewed towards more equivocal data 

(according to semi-quantification results), was used in the clinical evaluation. The remaining 

data, which was neither used for algorithm training nor for testing with radiologists, was 

excluded. 

 

Method 

 

Two radiologists and one clinical scientist were recruited for the study. All three had at least 

5 years of experience of reporting on (I123)FP-CIT image appearances as part of a routine 

clinical service. By including reporters from two different specialisms it was possible to gain a 

wider perspective on potential differences in opinion as to the value of CADx in a clinical 

scenario. The study procedure was similar to that adopted for the pilot study, with three 

separate reads conducted for each image, two without CADx support and one with. 

Measurements of standalone performance on the test data were also conducted. However, 

there was no reporter training phase other than a brief demonstration of the software. 

Furthermore, the time gap between the first and second read was much longer in order to 

reduce uncertainties associated with recall bias (a minimum of 4 months). In contrast to the 

pilot study, each reporter worked through the test cases at their convenience, on their own 

(using standard clinical reporting hardware). The main differences between pilot and main 

studies are summarised in Table 4-5. 

 

Calculation of performance metrics and inter/intra reporter variability was the same as for the 

pilot study, considering the PPMI and local data separately. The qualitative aspects of the 

study were expanded, with additional questions added to the questionnaire. In contrast to 

the pilot study where time was very limited, the volunteers were individually guided through 

the questionnaire after the 3 image reads had been completed. This enabled a greater 

exploration of any salient points that were raised. Due to the reporters‘ previous experience 

of standard reporting using semi-quantification, there was also scope to explore the 

perceived benefits (or disadvantages) of using CADx instead through specific questions.  
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 Pilot study Main study 

Time delay between reads 

1 and 2 

1 hour 4 months+ 

Total images reported 30 155 

Number of reporters 7 3 

Experience level of 

reporters 

None 5 years+ 

Reporting environment Single room, shared 

with all reporters, 

standard PCs 

Separate, standard 

clinical workstation for 

each reporter 

Reporting conditions Time pressured, all 

cases for all 3 reads 

completed within one 

joint lab session 

Reporters worked 

through cases at their 

convenience 

Table 4-5 Summary of the differences in methodology between pilot and main CADx studies 

4.4.2 Results  

Quantitative 

 

A different naming system is used in the following results to distinguish between each 

reporter (referred to as Rad1, Rad2 and CS1). This was done partly to emphasise the 

differences as compared to data measured from junior radiologists in the pilot study, and 

partly because the reporters now represented a mixed group, containing two radiologists and 

one clinical scientist. The delay between reads 1 and 2 ranged from 137 days to 356 days 

across the two datasets and 3 reporters, well in excess of 4 months. 

 

Figure 4-8, Figure 4-9 and Figure 4-10 summarise performance metrics for each reporter for 

each for the 3 reads, with local data and PPMI data. These graphs also display the 

standalone performance of the CADx system, where appropriate. 
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 Figure 4-8 Diagnostic accuracy figures for the 3 image reads, for PPMI data (left) and local 

data (right). Standalone CADx performance is also shown, for comparison. Adapted from (2) 

 

Figure 4-9 Sensitivity figures for the 3 image reads, for PPMI data (left) and local data (right). 

Standalone CADx performance is also shown, for comparison. Adapted from (2) 

  

Figure 4-10 Specificity figures for the 3 image reads, for PPMI data (left) and local data 

(right). Standalone CADx performance is also shown, for comparison, Adapted from (2) 
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As a result of being exposed to the CAD software output the reporting score was changed in 

approximately 13% of cases for the local data, and in approximately 17% of cases for the 

PPMI data (similar to the 15% change rate seen in the pilot study). Intra and inter reporter 

reliability results are shown in Table 4-6 and Figure 4-11. Due to apparent differences in the 

ways that the radiologists and the clinical scientist responded to the CADx, separate inter-

reporter reliability figures are displayed from all three reporters together and considering just 

the radiologists alone. 

 

 Intra-reporter reliability 

 PPMI Local 

Reporter ICC 

95% CI 

(lower) 

95% CI 

(upper) ICC 

95% CI 

(lower) 

95% CI 

(upper) 

Rad1 0.87 0.82 0.91 0.89 0.82 0.93 

Rad2 0.95 0.92 0.96 0.93 0.88 0.96 

CS1 0.91 0.87 0.94 0.88 0.80 0.93 

Table 4-6 Intra-reporter reliability (ICC) results for all reporters, for PPMI data and local data. 

Adapted from (2) 

 

 

Figure 4-11 Inter-reporter reliability (ICC) results for each of the 3 image reads for PPMI data 

and local data. The graph on the left is derived from radiologist data only (Rad1 and Rad2), 

the graph on the right is from all reporters. Whiskers represent 95% confidence intervals. 

Adapted from (2) 
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Qualitative 

 

As previously, the following results summarise responses received to specific questions. In 

addition, any salient comments that reporters made are highlighted. Given the differences 

shown in reporting trends between the radiologists and clinical scientist, the responses and 

comments are assigned to the particular reporter. 

 

Question 1: In general, how well did your reporting decisions correlate with the CAD output? 

 

 Responses 

Reporter 
Not at 

all 
A little Moderately A lot Comment 

Rad1    ✓  

Rad2    ✓ 
―Only one or two cases 

where I disagreed‖ 

CS1    ✓  

Total 0 0 0 3  

Table 4-7 Reporter responses to question 1 

 

Question 2: In general, how would you rate the impact of the CAD algorithm on your 

reporting decisions? 

 

 Responses 

Reporter 
No 

impact 

Small 

impact 

Moderate 

impact 

Substantial 

impact 
Comment 

Rad1  ✓   

―Depends on the case. I liked the 

fact that in most cases it 

confirmed my opinion as we only 

single read these scans. It 

generally added confidence‖ 

Rad2   ✓  

―On the few occasions where my 

opinion differed significantly from 

the CAD, it had a substantial 

impact‖ 
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CS1  ✓    

Total 0 2 1 0  

Table 4-8 Report responses to question 2 

 

Question 3: To what extent did you trust the CAD algorithm results? 

 

 Responses 

Reporter 
Not 

at all 
A little Moderately A lot Comment 

Rad1    ✓ 

―My performance changed depended on 

the preceding cases [if several CAD 

scores agreed with my opinion in a row I 

grew more confident and trusting in the 

algorithm then gave CAD more weight]‖ 

Rad2    ✓ 
―Trust increased as I gained more 

experience‖ 

CS1   ✓  
―After my experiences so far I‘d give it 7 

out of 10 in terms of how much I trust it‖ 

Total 0 0 1 2  

Table 4-9 Reporter responses to question 3 

 

Question 4: Would you prefer a binary CAD output as opposed to a probability value? 

 

 Responses 

Reporter Yes No Other 
Not 

sure 
Comment 

Rad1   ✓  

―I would like to see both. I was swayed 

by the colour of the probability value as 

well as the actual number‖ 

Rad2  ✓   ―Very much liked the scale‖ 

CS1  ✓    

Total 0 2 1 0  

Table 4-10 Reporter responses to question 4 
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Question 5: As compared to semi-quantification, how does CAD compare in terms of what it 

offers you as a reporting assistant? 

 

 Responses 

Reporter Comment 

Rad1 
―I prefer CAD to semi-quantification. Semi-quantification presents too many 

numbers and can be confusing‖ 

Rad2 “Bit of extra information. Difficult to know exactly how they differ‖ 

CS1 
―It would be nice to know why an image was classified as abnormal (which semi-

quantification gives you)‖ 

Table 4-11 Reporter responses to question 5 

 

Question 6: Would you prefer to have CAD for assistive DaTSCAN reporting or semi-

quantification? Or Both? 

 

 Responses 

Reporter CAD 
Semi- 

quantification 
Both 

Not 

sure 
Comment 

Rad1   ✓  
―CAD as a first line then semi-

quantification if I needed it‖ 

Rad2   ✓   

CS1   ✓  
―I wouldn‘t want anything too 

complex though‖ 

Total 0 0 3 0  

Table 4-12 Reporter responses to question 6 

 

Question 7: Would it benefit you if the CAD system also provided information on how it 

came to its decision (e.g. reduced putamen uptake, high background uptake etc.) 

 

 Responses 

Reporter No 
Yes 

(small 

Yes 

(moderate 

Yes 

(substantial 
Comment 
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benefit) benefit) benefit) 

Rad1  ✓   
―I had a good idea why the 

algorithm decided what it did‖ 

Rad2  ✓   
―I could usually see why it 

thought what it did‖ 

CS1   ✓  

―It needs to give some 

understanding of how it 

reached its decision (if 

possible)‖ 

Total 0 2 1 0  

Table 4-13 Reporter responses to question 7 

 

Question 8: To what extent would the CAD system be a useful training tool to improve 

DaTSCAN reporting performance for inexperienced clinicians?  

 

 Responses 

Reporter 
No 

benefit 

Small 

benefit 

Moderate 

benefit 

Substantial 

benefit 

Not 

sure 
Comment 

Rad1  ✓     

Rad2  ✓     

CS1   ✓  

 ―Already have training 

sets for people to work 

through‖ 

Total 0 2 1 0   

Table 4-14 Reporter responses to question 8 

4.4.3 Discussion 

As for the pilot study, the discussion is presented in separate sections, considering the 

quantitative data first, followed by the collected qualitative data.   

 

Quantitative  
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In common with the pilot study, standalone diagnostic accuracy for both machine learning 

classification algorithms was in excess of 90%, which again shows that the chosen 

classification model performs at least as well as humans using visual analysis alone.  

 

Analysis of Figure 4-8, Figure 4-9 and Figure 4-10 indicates that there was relatively high 

variation in per-reporter performance metrics between the first and second reads in some 

cases, for both sets of data. This identifies the degree of intra-reporter variability when 

analysing images visually, even for experienced reporters. This is backed to some degree by 

intra-reporter reliability (ICC) figures, which although generally higher than those seen for 

junior radiologists, were less than 0.9 for Rad1 and CS1 for the local data. Rad2 appeared 

more consistent. These findings were unexpected and may be exacerbated by the relatively 

long time gap between image reads, such that reporters‘ impressions of what constitutes a 

normal or abnormal image may have drifted. The variability seen may be an exaggeration of 

what is normally expected in the local clinical service, where a group reporting scenario is 

used routinely, with semi-quantitative results and patient notes available. This may help to 

ameliorate the effects of individuals‘ changing visual impression. Nonetheless, results do 

provide a reminder that human perception and understanding of medical images is not a 

constant. This again adds weight to arguments on the need for assistive software (or 

algorithms which take diagnostic decisions independently). 

 

Comparing reads 2 and 3 (i.e. directly before and after the CADx was shown to the reporter) 

it does appear that there was some uplift in performance for the PPMI data, where every 

performance metric either stayed the same or increased for all reporters. Conversely, for the 

local data there was no clear change in performance as a result of the introduction of CADx. 

For the PPMI data it is interesting to note the contrasting results between the clinical 

scientist (CS1) and the two radiologists (Rad1 and Rad2). For both radiologists there was a 

substantial increase in accuracy after viewing the CADx results, with similar increases in 

specificity and sensitivity. However, for the clinical scientist there was no change in any of 

these figures. Indeed, analysis of the individual scan results indicates that CS1 only changed 

his / her diagnostic confidence score in 7% of cases for the PPMI data, as compared to 21% 

and 22% for Rad1 and Rad2 respectively. A similar but less marked trend was seen in the 

local data, where CS1 changed his score in 6% of cases as compared to 9% and 23% for 

Rad1 and Rad2. It appears that the radiologists relied more heavily on the CADx decision 

than the clinical scientist, particularly for the unfamiliar PPMI data.  
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The fact that the PPMI test data was skewed towards more borderline cases may have 

increased reliance on the CADx for the radiologists, which may have emphasised its benefits 

to a greater extent (as was intended). The performance gains seen for the radiologists in this 

half of the study are also likely to be related to the fact that the standalone performance of 

the CADx tool was generally higher than that of the volunteers during reads 1 and 2, i.e. by 

aligning their opinions more with the CADx tool, the radiologists‘ performance was pulled 

closer to that of the trained algorithm. This contrasts to trends seen with the local data where 

baseline reporter performance was generally higher, and standalone accuracy of the CADx 

tool was essentially the same as that of the reporters.  

 

The inter-reporter reliability results echo previous findings in that responses from different 

reporters became more consistent after exposure to the machine learning output. Figure 

4-11 demonstrates that for the radiologists at least, there was a noticeable increase in the 

intraclass correlation coefficient between reads 2 and 3. For the PPMI data the 95% 

confidence interval bounds suggest that this increase in reliability (and hence reduction in 

variability) was statistically significant. These trends are reinforced by percentage agreement 

figures: for the PPMI data the radiologists had complete agreement in confidence scores in 

77 and 74% of cases for reads 1 and 2, rising to 87% agreement after introduction of CADx. 

However, as for the performance figures related to accuracy, sensitivity and specificity, these 

trends are less clear when the clinical scientist was included in the analysis. The apparent 

differences in performance between the two staff groups are explored further in the following 

qualitative analysis section. 

 

Given the increased consistency between reporters during read 3 it is likely that the 

introduction of a CADx system would also have benefits in terms of reduced intra-reporter 

variability. However, estimation of such an effect would benefit from the reporting exercise 

with CADx assistance being repeated. 

 

The increase in accuracy for the radiologists, as a result of exposure to CADx output, when 

scoring unfamiliar (PPMI) data, is perhaps clearer than the mixed performance trends seen 

in the pilot study. This may be due to increased noise in the pilot study data due to variable 

understanding of the task presented, and the much increased time pressure of the pilot 

study setup. However, both the pilot study and main study showed an overall increase in 

inter-reporter reliability after introduction of the CADx (though there were differences in the 

magnitude of change). The proportion of cases where reporters / radiologists changed their 



 

 

114 

 

 

scores was also similar between the studies. Apparently the assistive reporting tool can be 

as influential on very experienced reporters as those who are beginners. 

 

It is difficult to directly compare these findings to those of wider studies evaluating the effects 

of semi-quantification on radiologists‘ performance, mainly due to differences in data used 

and methodology. However, the broad findings of this work – that CADx can improve 

accuracy if adopted by reporters with limited experience of the data, and that inter-reporter 

reliability may also improve as a result – are consistent with much of the previous work 

related to semi-quantification, where increased confidence and consistency were found to be 

the main benefits (see section 1.2.1).  

 

This study was conducted under more realistic conditions than the pilot investigation. As well 

as the much longer time gap between reads (to reduce recall bias), the reporters used the 

same workstations as they would normally view clinical images on. This focus on more 

realistic testing conditions contrasts with much of the machine learning literature, where 

clinical validation is often not performed or is insufficient (100,103–106). Thus, findings 

provide a useful addition to current knowledge on the clinical potential for CADx. 

 

However, there remains some limitations in the testing scenario, as listed below: 

 

 Patients‘ clinical history was not available to reporters as it would have been in clinic. 

If such information were available the impact size of CADx may have been reduced. 

 Although it was intended that patient age would be visible to reporters for all reads, it 

was only displayed to reporters on read 2 and 3. This may have caused additional 

intra-reporter variability.  

 The reference diagnoses of all the images studied was binary (i.e. either with or 

without disease). However, the 5 point confidence scale used by reporters 

associated a score of 3 with an equivocal classification, giving users a choice of 3 

different classifications. This mismatch dictated that accuracy, sensitivity and 

specificity were all negatively affected whenever a reporter submitted an equivocal 

confidence score. Although a score of 3 was selected in less than 3% of cases for 

the main study, diagnostic performance figures may have provided a more 

pessimistic outcome than might have been the case if only two classifications were 

available for users to select.  



 

 

115 

 

 

 Participating reporters understood that they were taking part in a research study and 

their decisions would not affect patient care. This may have caused them to be less 

cautious than would normally be the case (107).  

 Re-reporting of the same images with and without the assistance of an automated 

classification system is an artificial process necessary for clinical evaluation, but 

which can lead to changes in reporter performance (108).  

 

Although it is important to be aware of such uncertainties, these factors do not detract from 

the main, positive findings of the quantitative analysis, namely: standalone performance of 

the CADx tool was at least as high as that of experienced reporters, CADx improved 

performance of the reporters for the PPMI data and that CADx increased consistency 

between reporters across both datasets. 

 

Qualitative 

 

The qualitative findings indicate that the CADx tool generally agreed well with the reporters‘ 

classification decisions, with only a very limited number of disagreements. This reflects the 

quantitative findings which showed similar standalone performance between the CADx tool 

and reporters using visual analysis. Many of the responses to the questions are very similar 

to those recorded in the pilot study. For example, the CADx tool was generally felt to have a 

small impact on reporting decisions and was found to increase the confidence of reporters 

when both the reporter and the classification tool came to the same conclusion. 

Furthermore, as with the pilot study, the tool was generally well trusted (although the level of 

trust changed across the duration of the study) and in most cases the reporters preferred the 

probability output to a purely binary image score.  

 

These observations provide evidence that the more experienced, established reporters 

viewed CADx similarly to the junior radiologists. However, there were some notable 

differences. For example, Rad1 and Rad2 felt that having an idea of why the CADx tool 

came to a particular decision was relatively unimportant. This contrasts with the junior 

radiologists who felt that having a localisation mechanism to identify where in an image the 

likely abnormality was, would be useful. These findings are perhaps unsurprising given that 

more experienced reporters will more easily recognise patterns of normal and abnormal 

uptake, requiring less prompting from the computer. 

 



 

 

116 

 

 

The questions asked of the more experienced reporters also offered additional insight. Of 

particular interest was the contrast between semi-quantification and CADx. Interestingly, all 

three reporters felt that having access to both CADx and semi-quantification was preferable 

to having access to one or other. This implies that the functionality of each was felt to be 

different but complementary. Perhaps a greater impact on reporting performance would be 

measured by performing a clinical study using a combined software algorithm giving SBRs 

and overall probabilities. 

 

The qualitative results provide additional evidence that the approach and opinions of the two 

radiologists were close to each other, but differed with that of the clinical scientist. In general, 

the clinical scientist was less positive about the CADx tool, and more cautious about relying 

upon it. For example, CS1 gave a lower relative score for his / her level of trust in the CADx 

tool than the two radiologists. This is also reflected in the fact that CS1 selected the 

equivocal image score more times than Rad1 and Rad2 when using CADx. CS1 also felt it 

important that the CADx tool gave a reason for its classification decision, which contrasts 

with the radiologists who felt that they did not need this extra information. Indeed, Rad1 saw 

the very simple colour-coded CADx output as an advantage. Furthermore, the radiologists 

were generally positive about using the CADx tool as a training resource for inexperienced 

radiologists, whereas CS1 felt that existing data and methods were sufficient.  

 

These differences in how the CADx tool was appreciated could, at least in part, be attributed 

to differences in the professional background of the two staff groups. Clinical scientists are 

taught to understand the technology that is associated with their area of expertise. Indeed 

the local semi-quantification tool used clinically in Sheffield was originally developed and 

tested by clinical scientists. Without providing the volunteers with information on how the 

CADx tool worked, it was effectively presented as a ‗black box‘ with little scope for gaining 

intuition as to why certain classification decisions were reached. For radiologists there is 

much less focus on understanding imaging technology in their training and a greater 

emphasis on interpreting images using provided software. Thus, they may have been more 

at ease accepting the output from the CADx than the clinical scientist, who normally 

interprets images using technology which they understand in detail. Arguably, for centres 

where clinical scientists carry out reporting, more information on the technology behind the 

CADx tool may need to be provided in order to persuade them of its merits. Furthermore, it 

may help the case for adoption if the CADx tool could be adapted to provide some indication 

as to why a decision has been made.  
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The fact that radiologists were generally trusting of the CADx algorithm, and that their level 

of trust increased with experience of using the tool (in both this study and the pilot study), 

does perhaps present an added risk. There is a danger that individuals could come to rely 

more and more on the CADx to make the diagnostic decision for them, relying less on their 

own judgement. This is particularly relevant in the current healthcare environment where 

radiologists‘ workloads are becoming ever larger. It is feasible that in cases where the CADx 

tool made an incorrect classification, perhaps due to unusual image appearances not seen 

in training data, this could have undue influence on the final report, that might otherwise 

have given a different conclusion if the radiologist was working alone. Therefore, it is 

important that reporters are trained to understand that the technology is not always right. 

Striking a balance in reporters between scepticism (as displayed by the clinical scientist) and 

being open to influence is likely to be a challenge for this CADx application and for others. 

 

Although the questions asked during the main study expanded upon those presented during 

the pilot study, there are perhaps still additional questions that could have been posed to 

gain additional insight. For example, given the similar (or higher) performance of the CADx 

tool as compared to the reporters there is potentially a role for such automated classification 

systems in auditing the reports produced in the clinical department. This is likely to become 

increasingly important as imaging centres (and healthcare professionals) seek ongoing 

accreditation. Exploring opinions on this aspect of the CADx software may have yielded 

useful insights. 

4.4.4 Conclusion 

Overall there were many similarities between the pilot study and main study. Standalone 

accuracy of the automated classification tool was at a similarly high level in both cases, and 

exposure to its output caused a similar proportion of changes in reporting decisions. Both 

sets of reporters also had a similarly high level of trust in the algorithm. The unaided, visual 

diagnostic performance of all the experienced reporters was more variable over time than 

was expected, which suggests that CADx could potentially have a role to play in reducing 

intra-reporter variability as well as inter-reporter variability. 

 

Quantitative results demonstrated positive benefits of CADx in terms of increased accuracy 

for the two experienced radiologists, when viewing (unfamiliar) PPMI data. In addition, the 

introduction of CADx appeared to increase consistency between the two radiologists, for 

both the PPMI and local data. However, the clinical scientist was less affected by the CADx 
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tool, with less change in reporting performance between reads 2 and 3, for both sets of 

patient images. The more cautious approach of the clinical scientist is apparent in answers 

to the questionnaire, which suggested a lower level of trust than for the radiologists and a 

greater need to understand the mechanism behind the machine learning algorithm‘s output 

probability. Questionnaire results also indicated that clinical reporters would prefer to have 

access to both CADx and semi-quantification in clinic.  
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5 Dilemmas of clinical application 

The clinical studies described in the previous chapter provide valuable insight into (I123)FP-

CIT reporting and how a particular CADx tool may impact upon performance. These results, 

combined with previous tests, have addressed the original aims of this thesis.  

 

The original research question for this work was: How effective is a CADx tool, based on 

established machine learning algorithms, for assisted (I123)FP-CIT image reporting? 

Effectiveness was defined in terms of independent classification accuracy and in terms of 

the impact upon human reporter accuracy, sensitivity, specificity and inter-reporter reliability. 

Overall, CADx was found to be highly effective in that it increased consistency between 

reporters and increased their diagnostic performance (particularly when viewing unfamiliar 

data). Furthermore, the standalone accuracy of machine learning tools was found to be in 

excess of semi-quantification tools, which are the current standard for clinical assistive 

software in (I123)FP-CIT imaging.  

 

The work conducted so far represents a step change in comparison to previous research on 

machine learning for (I123)FP-CIT in that algorithms here have been considered in the 

clinical context. The direct comparison with competing clinical technologies (semi-

quantification) and testing with reporters as part of a CADx workflow are novel aspects not 

yet investigated by other researchers. Indeed, given the high standalone performance of the 

developed algorithms, a case could be made for using the classification tools independently 

in clinic, as part of a different reporting paradigm. For example, the classification tool could 

perhaps be used to screen out images with high chance of being normal from the reporting 

list. Alternatively, the tool could be used as a training device, allowing junior radiologists to 

compare or audit their reporting decisions against software which performs at a similar level 

to that of an experienced reporter. Such an approach could reduce the supervisory burden 

on consultant radiologists (who may be difficult to access for junior staff, particularly in small 

hospitals).    

 

However, although the results presented are undoubtedly persuasive, and add weight to the 

case for the routine adoption of machine learning tools for (I123)FP-CIT, the approach 

adopted so far has arguably been naïve. Firstly, clinical reporting has been considered as a 

single, isolated classification task involving binary classification of an image. In reality, 

reporting is a more complicated mental process, which takes into account multiple other 



 

 

120 

 

 

factors such as results from other tests and the patient‘s clinical history. Extrapolating 

findings to the clinic is therefore associated with a degree of uncertainty. Furthermore, there 

are many additional barriers that remain in the quest for widespread clinical adoption, both in 

relation to this application and for other machine learning classification software. Most 

starkly, these are: regulations, economics, heterogeneity of the clinical environment, data 

ownership and change management 

 

These are considered in the list below, (extracts of which are also presented in peer 

reviewed journal articles (4,5)): 

 

1) Regulations. In Europe, when software which is designed to have an impact on 

patient diagnosis or treatment is released, it is considered to be a medical device and 

the manufacturer must adhere to the Medical Device Directive (Medical Device 

Regulations from May 2020). Whatever the classification under the regulations, there 

are a minimum series of requirements that need to be met. Under the updated 

regulations, requirements related to risk management and quality management 

systems are prominent. Products need to be designed in such a way that patient or 

user safety is not compromised and that testing is carried out to ensure that the 

product performs as intended. This could require a substantial re-writing or 

repackaging of the original software code, as well as clinical trials. Importantly, 

ongoing surveillance is required in order to identify and fix any bugs associated with 

the software. Meeting the regulations requires significant financial resources and 

specialist knowledge not normally found in an academic environment. Costs are 

particularly big if the risk classification is high, which may be the case for (I123)FP-

CIT classification software developed in this work.  

2) Health economics. When deciding on whether to invest in particular medical 

products many healthcare systems around the world utilise economic analysis to 

inform their decision. In the UK for example, the National Institute for Health and 

Care Excellence (NICE, www.nice.org.uk) places strong emphasis on such data 

when generating guidance on medical technologies. Therefore, ensuring that 

developed products have a strong health economic case is important for promoting 

adoption. However, even for the most simplistic economic analysis methods, such as 

cost-consequence analysis, evidence is required to quantify resource implications of 

the technology, in addition to data on the likely clinical benefits. For CADx in 

particular, gathering convincing data on the implications for patient care, as 

compared to standard reporting, is likely to be complex and difficult. 
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3) Heterogeneity of the clinical environment. Machine learning tools cannot be 

implemented in isolation. Software needs to be integrated within hospital 

infrastructure such that it is easy to access and use. However, the available 

information technology resources and associated restrictions may vary considerably 

between hospitals. Furthermore, software outputs need to be adapted to the 

particular scanning equipment and imaging protocols used locally, such that 

associated differences in image appearance do not cause algorithm performance to 

be degraded (it is well known, for example, that SBRs can vary according to the 

gamma camera used (50)). Understanding and adapting to this heterogeneity is vital 

when considering software design. However, gathering such data is again resource 

intensive. Creating automated classification or CADx tools that are applicable to 

many different settings is difficult and, ultimately, it may not be possible to 

accommodate all the requirements of different hospital environments. 

4) Data ownership. Using retrospective patient data for machine learning research, as 

in the case of this thesis, requires appropriate governance approvals to be in place, 

particularly with regards to ethics. These requirements are well established, with 

systems such as the Integrated Research Application System (IRAS) providing 

guidance. However, if the developed algorithms presented in this work were 

ultimately used in a clinical software package that was sold for profit, issues around 

data ownership and ethics can arise (109). This is another hurdle to development 

and may dissuade commercial partners from assisting with the push towards clinical 

adoption.  

5) Change management. As highlighted by a recent Kings Fund report on adoption of 

innovation in the NHS, significant investment is usually needed to promote and 

support implementation of new technology. Simply generating evidence of impact, as 

in this thesis, is not enough to guarantee uptake (110). This conclusion is reflected in 

much of the literature on change management, which often highlights people‘s 

natural aversion to changing practice. For example, one of the most frequently cited 

models of change is that created by Kotter (111). This 8 stage model places 

emphasis on a guiding coalition leading and managing the change process (which in 

this case would be moving to reporting with CADx assistance, or automated 

computer screening of images). Without such a leadership team in place it is argued 

that (successful) changes do not happen. Therefore, if machine learning is to 

become a truly game-changing technology for (I123)FP-CIT imaging, and for the rest 

of radiology, support and leadership is likely to be needed from key professionals 

such as IT specialists, managers, radiographers as well as radiologists to ensure it is 
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properly integrated in clinic. Not only does this require protected time (and therefore 

increased financial support) but these individuals have to be persuaded of 

classification software‘s merits. Significant investment is therefore also required to 

promote the technology, to ensure that clinicians actively push the implementation. 

However, the perceived threat to radiologists‘ role from machine learning, which is 

often inflated by articles in the popular press, is likely to make it harder to persuade 

the clinical community of the need for change. 

 

Issues 1, 2, 3 and 5 would be relevant to any new diagnostic technology being introduced 

into the health service on a wide scale. However, given the additional reliance on large 

databases of realistic clinical data, acquired according to appropriate governance 

procedures (issue 4), translation barriers are perhaps even greater for machine learning 

technology.  

 

Although other authors have begun to recognise the enormity of the translation challenge, 

and have identified the inadequacy of validation and verification often performed in machine 

learning research (99,112,113), the translation issues described above are perhaps more 

wide ranging than has yet been identified in the literature. Barriers to translation are multi-

factorial, going beyond technical and clinical considerations, covering psychology, 

economics, law and management. This dictates that a multi-disciplinary approach is needed. 

Clearly, the resources required to push machine learning into the clinic are considerable. 

 

The scale of this translation challenge is demonstrated by the recently reported failure of 

IBM Watson for Oncology to achieve widespread clinical adoption (114), despite the use of 

advanced cutting-edge algorithms, and with backing from a major multi-national company. 

 

The machine learning literature for medical imaging is substantial and results appear to be 

impressive. For instance, machines have already been shown to outperform radiologists in 

specific disease recognition tasks, such as diagnosis of pneumonia from chest x-rays (115).  

Even for the relatively niche application of classification in (I123)FP-CIT imaging there are a 

large number of articles reporting high accuracy results (see section 1.3.2), and this thesis 

has shown that even basic machine learning tools are highly capable. Thus, algorithm 

technology appears to be ready for clinical usage. However, current clinical uptake for any 

radiological application remains vanishingly small. Plainly, therefore, the prevailing approach 

to machine learning research and development in radiology requires a radical overhaul if the 

technology is to fulfil its potential in the clinic.  
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Without tackling any of the listed issues for (I123)FP-CIT imaging, the work presented so far 

is unlikely to be sufficient for ensuring that developed classification tools are used clinically 

on a wide scale. As for the vast majority of previous machine learning research in radiology, 

algorithms would most likely remain in the research arena, or at best, be used only locally (in 

Sheffield). This would be an unsatisfactory and wasteful outcome, perpetuating the 

limitations and lack of foresight that are common in machine learning research. A much 

greater focus on addressing the barriers to translation is required, and it is on this basis that 

the remainder of the thesis proceeds. 

 

Given the enormity of the translation burden, and the limited remaining resources available 

in this research work, identifying a strategy for making meaningful progress is challenging. 

My approach is to consider which of the previously described translation issues needs to be 

addressed first in the pathway towards routine clinical usage, focusing solely on this area in 

the following chapters. Targeting one specific area in this way is likely to be more fruitful than 

dedicating small amounts of effort to each of the different translational hurdles. 

 

Arguably, heterogeneity of the clinical environment is the most pressing consideration for 

(I123)FP-CIT classification tools. In particular, if the classification tools cannot demonstrate 

adequate performance outside of the specific equipment and scanning protocols used at 

Sheffield Teaching Hospitals, it is unlikely that a convincing case can be made for further 

investment to develop clinical software, and to overcome regulatory, economic and 

management barriers. 

 

To address this issue, ideally multiple patients would be scanned according to a variety of 

different scanning conditions, using a variety of different camera equipment. Any changes in 

classifier performance associated with each combination of parameters in these sensitivity 

tests could then be measured and assessed. However, such an approach would be 

prohibitively expensive, logistically difficult and would require ethical approval. Repeatedly 

scanning realistic patient phantoms is a much more viable option, which is also being 

actively pursued in other CADx fields such as mammography (116). 

 

With this in mind, the following chapters have three main objectives, to appreciate the 

influence of heterogeneity in the clinical environment: 
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 Objective A:  Examine and develop phantom technology to provide a toolset that can 

be adapted to simulate a range of realistic (I123)FP-CIT image appearances.  

 Objective B: Use the toolset to demonstrate the influence of heterogeneity by: 

1) Analysing and prioritising the individual imaging parameters that may affect 

classification software performance.  

2) Performing sensitivity tests to measure the impact of different imaging 

parameters on developed classification tools 

 

In this way, the following work demonstrates how aspects of the translation gap, in relation to 

heterogeneity of the clinical environment, could be addressed for (I123)FP-CIT classification 

software. Unlike the investigations conducted in chapters 3 and 4, which were mostly 

specific to certain classification algorithms, and certain datasets, much of the following work 

is dedicated to creating generally applicable methodologies and phantom technology that 

may also be useful for other researchers. This is important because translation issues are 

universal to all classification / CADx systems and, given the resources required, meeting 

these challenges is much more achievable as part of a group endeavour.   
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6 Beyond reporter performance – new tools for a new 

diagnostic paradigm 

New objectives addressed by this section (in black, bold): 

 

A) Examine and develop phantom technology to provide a toolset that can be 

adapted to simulate a range of realistic (I123)FP-CIT image appearances.  

B-1) Use the toolset to demonstrate the influence of heterogeneity by: Analysing and 

prioritising the individual imaging parameters that may affect classification software 

performance 

B-2) Use the toolset to demonstrate the influence of heterogeneity by: Performing 

sensitivity tests to measure the impact of different imaging parameters on developed 

classification tools 

Table 6-1 New objectives addressed in section 6 

 

Having measured the performance of machine learning classification tools and CADx 

software for (I123)FP-CIT imaging, the results of which were found to be largely positive, the 

remaining barriers to translation are now considered in order that the developed tools remain 

on a pathway towards widespread clinical use. This chapter is dedicated to phantom 

technology, which is a key ingredient required for assessing the impact of different 

acquisition factors (i.e. for measuring the influence of heterogeneity of the clinical 

environment).  

 

The following sections first consider the available, commercial phantom technology for 

(I123)FP-CIT imaging in the context of sensitivity testing for machine learning classification 

algorithms, the key requirement being that simulated images must be sufficiently similar to 

that of real patients under the same scanning conditions. Furthermore, the candidate 

technology must also be adaptable to different patient appearances. Due to a lack of ―off-

the-shelf‖ solutions, new phantom technology is proposed and developed. 
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6.1 Conventional technology – the need for a new type of phantom 

Imaging phantoms are typically divided into two categories: physical phantoms and digital 

phantoms. The advantage of physical phantoms is that real acquisition equipment can be 

used, incorporating the imaging characteristics seen in clinic. Conversely, for digital 

phantoms the imaging physics must be approximated in software, adding uncertainty to 

results. The major advantage of digital phantoms is that multiple tests can be simulated and 

run very quickly on a computer, dramatically increasing the number of variables that can be 

investigated.  

 

If phantoms are to be used to generate compelling evidence of the significance of different 

acquisition factors on classifier or CADx performance, uncertainties in the imaging process 

need to be minimised, particularly if results are to be used to justify clinical adoption. 

Therefore, physical phantoms are likely to the most appropriate choice. 

 

For (I123)FP-CIT imaging there is one commercially available phantom that can be 

purchased. This is the Alderson striatal phantom 

(http://www.rsdphantoms.com/nm_striatal.htm). In the context of this work it has a number of 

significant disadvantages. Firstly, it is constructed from fixed plastic cavities. Therefore, there 

is no possibility of altering the anatomy to reflect a range of patient appearances. This is 

unlikely to be sufficient for comprehensively assessing the performance of classification 

tools. 

 

Secondly, the design represents an oversimplification of tracer uptake patterns that are seen 

in patients. The putamen and caudate on both sides, and the remaining brain, are 

manufactured as single, separate cavities that must be filled with a single liquid. This 

dictates that more complex variation in uptake patterns, such as the reduced tracer levels 

often seen in the brain ventricles, cannot be replicated. The shape of the striatum is also not 

reflective of most patients. It extends further in the medial-lateral direction than is typically 

seen. Figure 6-1 demonstrates these contrasting image appearances using example data 

acquired at Sheffield Teaching Hospitals.  

 

These features severely limit the usefulness of the phantom in evaluating machine learning 

classification tools, particularly those algorithms which take whole images as inputs, such as 

the PCA-based algorithms presented in previous chapters. In these cases phantoms are 

required which are able to reproduce the voxel intensity distribution of real patients.  

http://www.rsdphantoms.com/nm_striatal.htm
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Figure 6-1 Reconstructed, central trans-axial slice from a typical normal patient (right) and 

from the Alderson phantom (left), demonstrating clear differences in striatal geometry (a/b < 

c/d). In this case the phantom was filled with an 8 to 1 striatum to reference brain activity 

concentration ratio. Each slice is scaled to its maximum pixel value. Adapted from (3) 

 

For these reasons a different approach is needed. The next section considers the creation of 

a new type of (I123)FP-CIT phantom, based on sub-resolution sandwich phantom 

technology. 

6.2 Development of a sub-resolution sandwich phantom for (I123)FP-

CIT imaging 

A promising physical phantom technique that could be adapted for creating a range of 

realistic image appearances is sub-resolution sandwich phantoms (SSPs). SSPs are created 

from inter-leaved layers of attenuating material and paper sheets with radioactive ink 

patterns on the surface. The ink patterns, reflective of patient uptake appearances, are 

typically created from an inkjet printer using cartridges containing both standard printer ink 

and aqueous radioactive solution. The greater the amount of ink printed per unit area, the 

higher the subsequent radioactive concentration.  

 

SSP technology is highly flexible and has been successfully adapted for a number of 

applications, including simulation of SPECT brain perfusion scans (117–119) and Positron 

Emission Tomography (PET) scans (120). With this impressive history in closely related 
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fields, SSP technology represents a low risk choice in the search for cost-effective 

technology that can facilitate sensitivity tests of classification algorithms. 

 

Although SSP technology appears capable of fulfilling the main requirements of objective A, 

the developed solution must also be practical, controllable and repeatable. Therefore, after 

setting out the phantom design concept, the following sub-sections examine each aspect of 

the phantom printing process and derive relevant metrics of performance. This data is used 

as a platform for creating a full head phantom, representative of a patient and useful for 

evaluating the impact of variations in acquisition on classifier / CADx performance.  

 

The following investigations were conducted in collaboration with colleagues at University 

Hospitals Bristol. Specifically, the 3D printed head was loaned from Bristol, and the method 

for generating and warping the anatomical template was adapted from that previously used 

in brain perfusion studies (119). Extracts of the following investigations contributed to a peer-

reviewed publication (3). 

6.2.1 Sub-resolution sandwich phantom: design concept 

SSPs consist of two separate parts that must be brought together when the final phantom is 

assembled – thin slabs of attenuating material and radioactive ink printed sheets. However, 

each of these constituent parts can be produced in several different ways. For the creation of 

(I123)FP-CIT phantoms, which is a previously unexplored application for SSP, the goal was 

to devise a production method that would lead to suitably realistic images for assessing 

classification / CADx systems. This is the motivating factor behind the following design 

choices. 

 

In relation to the attenuating material, the conventional approach is to use stacked plastic 

layers cut to a simple shape (119,120). However, with the advent of inexpensive additive 

manufacturing devices, 3D printing has also started to be used (121). The major advantage 

of 3D printing using Fused Deposition Modelling (FDM) is that infill density can be adjusted 

and filament materials changed in order to better reflect the radiation attenuation properties 

of tissue. Furthermore, the shape of the print can be finely tuned to achieve a geometry that 

is reflective of a real patient. For these reasons a 3D printing approach was adopted in this 

case. 
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In this work a 3D printed head was loaned from Bristol Teaching Hospitals to use as a basis 

for creating SSPs (see Figure 6-2). The head was constructed from 1.9mm thick slabs, the 

geometry of which was defined from a patient‘s segmented, high-resolution CT scan. The 

slab thickness was several times smaller than SPECT resolution and therefore each non-

radioactive slab, which was placed between radiation emitting paper, was indistinguishable 

on SPECT imaging. Each slab was printed with two different filament materials, conventional 

Polyactic Acid (PLA), at 85% infill density, and bronze-doped PLA at 100% density. The 

materials were designed to reflect the radiation attenuation properties of soft tissue and bone 

respectively. At a photon energy of 159 keV the linear attenuation coefficient of the PLA 

structure was approximately 0.16 cm-1, for the bronze-doped material it was approximately 

0.21 cm-1. 

 

 

Figure 6-2 Pictures of the 3D printed head loaned from Bristol, fully assembled (left) and with 

individual slices laid out separately (right) 

 

The paper sheets that define the radiopharmaceutical uptake are printed from an inkjet 

printer, where the cartridge contains both conventional ink and radioactive solution. The 

particular printer model selected for all the following investigations was an HP 8100 Officejet 

pro. This particular printer was selected due to its low cost and most importantly, the ease 

with which liquids can be injected into its cartridges. The input to the printer is a set of 

images, representing the patient‘s uptake profile in separate 2D slices (the anatomical 

template). These can be created manually or may be derived from real patient scans. The 

latter option was chosen in this study, in order to maintain clinical realism as far as possible. 

Each pixel in the anatomical template is converted from a greyscale value to an ink and 

radioactivity density by the printer. The printer‘s ink profile curve defines the mapping 
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between the two. Once printed, each sheet is drilled and then interleaved between the 

attenuation slabs, using the guide rods to locate the paper in the right position. The 

proposed overall workflow for creating (I123)FP-CIT phantoms is depicted in Figure 6-3 

 

 

Figure 6-3 Workflow depicting the proposed manufacturing process for creating physical 

(I123)FP-CIT phantoms. Adapted from (3) 

 

Further details on the anatomical template are set out in following sections in relation to the 

specific tests performed. 

6.2.2 Ink profile curve derivation 

The ink profile curve of the particular inkjet printer selected needs to be characterised in 

order to ensure correct activity distribution for the phantoms. The profile is defined in the 

printer software and the exact profile shape, which relates screen intensity to printed 

‗blackness‘ could theoretically be accessed by sending a request to the manufacturer. 

However, empirical testing was used in this case in order to derive a curve that was 

particular to the device in use. The ink (and radioactivity) density deposited by the printer 
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should be highly repeatable if several phantoms are to be created, with fixed design 

parameters. With this in mind the following investigation examined several repeated 

measurements of count density at different greyscales in order to characterise printer 

performance 

 

Method 

 

12 different greyscale levels were selected on a linear scale from 0.1. to 1.0, where 0.0 

represents the colour white and 1.0 black. Intermediate values are different shades of grey. 

The selected values were: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95 and 1.0. The 

increments in greyscale are smaller towards the top of the range to account for the likely 

exponential nature of the profile curve (i.e. small changes between darker shades of grey 

are likely to give bigger changes in ink density than the same magnitude changes at lower 

greyscale levels). 

 

For this test a black ink cartridge was filled with black ink and 99Tcm Pertechnetate in a 1:1 

volume ratio. The overall radioactive concentration of the ink-radionuclide mixture was 

approximately 50MBq / ml. Although the radionuclide used in this case was different to that 

of (I123)FP-CIT, mainly due to the much reduced cost of 99Tcm Pertechnetate, it is not 

anticipated that this will have any bearing on repeatability results. 

 

Each grey level was printed on to paper in the shape of a small rectangle (2cm x 5cm), using 

standard office paper (density 80g/m2). Each was then cut out, rolled up and placed within a 

tube on a rack before counting on a PerkinElmer 2480 sample counter (PerkinElmer). To 

ensure consistent geometric efficiency each piece of printed paper was placed at the bottom 

of each tube. Counting proceeded for 6 minutes per tube using an energy window centred at 

140 keV (±15%), with decay correction turned on. Total counts recorded in each case was 

greater than 400 kcts. The experiment was repeated 5 times (i.e. 60 measurements were 

made in total). This data was then used to create a continuous profile, mapping greyscale 

level to output printed radioactivity concentration. 

 

Results  

 

Figure 6-4 summarises the results of the sample counting experiments  
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Figure 6-4 Graph of total measured counts (measured over 6 minutes) against input 

greyscale level. Error bars depict maximum and minimum values across the 5 experiments. 

Adapted from (3) 
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Discussion 

 

The results demonstrated that the relationship between greyscale of the input and count 

density of the output print was non-linear, as expected. However, it also appeared that the 

repeatability was substantially degraded at higher greyscale levels as compared to lower 

greyscale levels. For example, the coefficient of variation for a greyscale of 0.95 and 1.0 was 

7% and 9% but 3% or lower for greyscales of 0.9 or less. This random error was in most 

cases greater than that which would be expected from the random nature of radioactive 

decay (i.e. greater than the standard deviation expected from Poisson statistics). It is likely 

that the ink printing mechanism introduced additional uncertainties, which were more acute 

for higher levels of ink deposition. This could perhaps be due to reduced precision 

associated with printer jets at the highest output rates or saturation effects on the paper. 

Given these results, it is prudent to restrict all future investigations to a maximum greyscale 

of 0.9 where repeatability errors are acceptably small for creating highly controlled prints. 

6.2.3 Printer uniformity 

In addition to tests of ink deposition repeatability it is also important to assess the uniformity 

of the printed output. If the printer is unable to achieve consistent radioactive ink deposition 

across a page then fully assembled phantoms may contain artificially raised or lowered 

areas of radionuclide density as compared to the anatomical design template. 

 

Method 

 

The most convenient method for assessing the uniformity of radioactivity across a page is 

gamma camera imaging. Although a gamma camera‘s response is unlikely to be perfectly 

uniform across the detector face, if resultant uniformity metrics are similar to that which 

would be expected from a uniform flood source then it can be assumed that any non-

uniformities present are insignificant in terms of SPECT imaging. 

 

For this test a constant level of greyscale was printed across a whole A4 page, excluding 

margins, at greyscale values of 0.5 and 0.9. This size of print is likely to be bigger than the 

cross-sectional area of most brain slices and so results will represent the likely worst case 

scenario. 
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Following printing using the same printer and cartridge setup as for section 6.2.2, each sheet 

was placed within a thin plastic wallet and then placed flat on the face of a GE Infinia gamma 

camera (GE Healthcare), with LEHR collimators in place. The camera in question had 

already passed relevant quality control checks on that day, including a test of uniformity. 

Imaging was conducted over a long acquisition period (10 hours) due to the low activity level 

present in each single printed sheet, using an acquisition matrix size of size 256 x 256 

(giving a smaller pixel size than that used during clinical SPECT acquisition). A standard 140 

keV ± 10% energy window was used. Images were assessed both visually and by 

measuring summary statistics across the printed area (after reducing the matrix size to 64 x 

64 to increase the counts per pixel). 

 

Results 

 

Figure 6-5 shows the raw acquired images from the uniform printed sheets at greyscale 

levels of 0.5 and 0.9. Table 6-2 shows summary descriptive statistics for the quantitative 

uniformity results. Here, parametric measures are used as it was assumed that variation in 

pixel values was largely due to random radioactive decay. 

 

 

 

Figure 6-5 Screen captures depicting the raw images acquired from A4 sheets printed with 

greyscale values of 0.9 (left) and 0.5 (right). Images are colour scaled individually.  
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Figure 6-5 demonstrates that although images were relatively noisy there were no significant 

non-uniformities present in either of the printed sheets 

 

 Pixel counts (kcts) 

Greyscale 

level 

Maximum Minimum Mean Standard 

deviation 

Coefficient 

of variation 

0.9 30.98 25.86 27.99 1.08 0.039 

0.5 2.97 2.34 2.71 0.10 0.036 

Table 6-2 Summary descriptive statistics for counts detected from A4 sheets printed with 

uniform greyscale levels 

Discussion 

 

The results of the uniformity test showed that the printer utilised in this study provided a 

relatively consistent ink output across a large area, with no areas of significant non-

uniformity seen from visual analysis. Even though quantitative results included the effects of 

extrinsic camera uniformity errors, the coefficient of variation of pixel values across each 

sheet was less than 4%. This compares to an expected counting error (from Poisson 

statistics) of approximately 0.6% per pixel for the image of printed ink at a greyscale value of 

0.9, and 2.0% for the image acquired from a sheet printed at a greyscale value of 0.5.  

 

Previous tests of camera uniformity conducted during routine quality assurance 

investigations, utilising a uniformly filled flood phantom, with a similar count per pixel to that 

of the 0.5 greyscale image, also produced a coefficient of variation of 4%. This indicates that 

the printing process does not introduce significant additional uncertainties in uniformity on 

top of the uncertainty already present due to the imperfect detection system.  

6.2.4 Printer input-output comparison  

Having demonstrated that the printer produces consistent and controllable ink output across 

a wide area, one further set of validation tests comparing the input design template and 

output print was undertaken to confirm close correlation between the two. This validation 

step mainly investigates the printer‘s resolution and geometric accuracy, and the reliability of 

the printer head motors. It is the first test conducted so far that scrutinises the whole printing 

process. 
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Method 

 

An anatomical template typical of a (I123)FP-CIT subject was generated such that results 

were relevant to the intended application. For this, a segmented brain scan was required 

which depicted the putamen and caudate as well as the remaining brain ―background‖. An 

assumed level of radiopharmaceutical uptake also had to be set in each of these different 

areas. In this case the well-established Montreal Neurological Institute (MNI)152 template 

was adopted (122). This is an MRI-based anatomical reference, created through the 

combination of scans from 152 healthy subjects, after non-linear registration to a common 

co-ordinate system. The automated anatomical atlas (AAL) is a freely available and 

frequently cited parcellation of the MNI template (123), providing regions of interest which 

encircle the different brain structures. This was used to denote the boundaries of the left and 

right striata of the MNI reference as well as the remaining brain (derived by combining all 

remaining brain regions).  

 

As previously suggested, apparent increased uptake within the putamen on SPECT imaging 

is in reality a combination of tracer uptake in the putamen and globus pallidus, which cannot 

be resolved separately due to limitations in camera resolution. In this study the globus 

pallidus was kept as part of the larger, non-specific background region and thus was 

assumed to not have a strong affinity for the tracer.  

 

Voxels within the striatal and brain background regions were set to intensity values that 

reflected uptake ratios from a healthy patient such that the striatum shape would appear 

prominently on subsequent imaging. Thus, all voxels within the left and right putamen and 

caudate were set to a greyscale level of 0.9, the maximum achievable for consistent printing 

using standard paper. Voxel intensities in the remaining background brain area were set to a 

greyscale value of 0.33, which through linear interpolation of the graph in Figure 6-4 

represents a count density ratio of 8 to 1, which is reflective of normal striatal binding ratios 

typically seen for healthy individuals (40). 

 

5 central slices from the created anatomical template were printed with radioactive ink, again 

using the same printer setup as for sections 6.2.2 and 6.2.3. Each was then inserted into 

separate plastic wallets and placed, one by one, on to the surface of a LEHR collimator of a 

GE Infinia gamma camera (GE Healthcare). Each was imaged for one hour using a 512 x 

512 matrix. By imaging with a large matrix size, at the surface of the detector, the extrinsic 
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resolution of the system was maximised, enabling a more detailed inspection of radioactive 

ink patterns. 

 

For analysis, the input anatomical template and imaged printed sheets were compared in 

terms of their relative overlap. This was achieved through rigid registration of each pair of 

images on a slice by slice basis, followed by a degree of smoothing (using a 5mm Gaussian 

filter). Segmentation of each gamma camera image was conducted by applying a whole 

image threshold, set at two different levels, in order to isolate the boundary of the striata and 

whole brain separately. Threshold levels were determined through measuring the mean 

count level at the centre of each structure and then dividing by 2. Each of these steps was 

performed using MIM software v6.6. 

 

The segmented gamma camera images and the original anatomical templates (with regional 

boundaries defined by the AAL) were compared visually and through the measurement of 

Dice Similarity Coefficients (DSCs, see Figure 2-9 for a formal definition). 

 

Results 

 

Visual comparison demonstrated that the whole brain region of each gamma camera image 

closely fitted the whole brain region of the input anatomical template. However, the 

segmented striatal shape extracted from the gamma camera images deviated from the 

anatomical template to a greater degree than the whole brain region. This was particularly 

noticeable in the small area in between the putamen and caudate on both sides, and at the 

inferior pole of the putamen (see Figure 6-6 for an example).  
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Figure 6-6 Example acquired image (left) alongside corresponding template image (right). 

Regions of interest generated from segmentation of the acquired data are shown, overlaid 

on the anatomical template  

 

Table 6-3 shows overlap results from comparison between segmented output images and 

the regions of interest derived from the AAL, averaged over 5 images. Standard deviation of 

the results is shown in brackets. 

 

Structure Dice Similarity Coefficient 

Whole brain 0.99 (0.00) 

Striatum 0.90 (0.01) 

Table 6-3 DSC scores of the relative overlap between imaged, segmented brain structures 

and regions in the anatomical template. Adapted from (3)  

Discussion 

 

The gamma camera images of the individual slices were largely as expected, showing 

consistent count levels through the striatum and the brain background. Despite the relatively 

high noise level in the images, the outline shape of the striata could be clearly seen. 

Overlaying of the gamma camera images on to the registered, corresponding anatomical 

template slices demonstrated that the two sets of data had a very similar shape. This is 

confirmed by Dice scores, which were high (with small standard deviation figures), 

particularly for the whole brain region. As might be expected from partial volume effects, the 
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scores were slightly lower for the striata, where the divide between putamen and caudate 

could not clearly be visualised on gamma camera acquisitions and where the thin ‗tail‘ of the 

putamen was cut-off following segmentation procedures. 

 

The analysis method chosen to quantify the relative overlap between input and output data 

was simplistic. The accuracy of this approach was limited to some extent by the high levels 

of noise. This explains the relatively jagged appearance of the brain region boundaries that 

were generated (see Figure 6-6). However, despite the limitations in the chosen 

methodology, results demonstrated that the printer output was a good representation of the 

input anatomical template in terms of the position of the boundaries of representative brain 

regions. 

6.2.5 Assembly and validation of a full phantom 

Having established that the technology is suitable for consistently producing radioactive ink 

patterns that accurately reflect a design template, and that ink output is predictable, tests of 

a fully assembled phantom may now be conducted. Resultant images will enable 

assessment of the complete SSP production and assembly process. In addition, usability 

aspects of phantom assembly and performance can also be assessed, in particular the time 

taken to fully build the phantom, the amount of ink required and resultant count rate from a 

full printed head.  

 

Validation of the fully assembled phantom is based on measurements of striatal binding 

ratios and linear dimensions of the striata. These values are compared with those of real 

patients (from subset A). SBRs provide an insight into whether mean uptake within the 

striatum was set at a realistic level for the patient group being replicated, whilst 

measurements of its dimensions give an indication as to the suitability of the chosen striatal 

geometry and shape (the Alderson phantom being deficient in this respect, see section 7.1).  

 

Method  

 

The anatomical template from section 6.2.4, which was largely derived from the automated 

anatomical labelling atlas, was registered to the geometrical space of the 3D printed head 

such that the ink patterns would fit within the assembled phantom structure. This process 

first involved segmentation of the CT scan originally used for manufacture of the 3D printed 

head. This was carried out in SPM12 software 
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(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). The procedure included segmentation 

and spatial normalisation of the CT images to MNI space, enabling the creation of forward 

and inverse deformation fields (124). The inverse deformation field was applied to warp the 

anatomical template from MNI geometric space on to that of the CT scan (see flowchart in 

Figure 6-7). Following registration, the template was resampled to a 2mm slice thickness 

such that each printed sheet would be positioned correctly between the 1.9mm thickness 

attenuation slabs (3).  

 

 

Figure 6-7 Workflow depicting the steps taken to create an anatomical (123)I-FP-CIT 

template fitted to the same geometry as the 3D printed head (adapted from (3)) 

 

In contrast to previous tests of the SSP technology, this investigation required that 123I be 

used as the printed radionuclide rather than 99mTc in order that gamma photons detected 

were representative of those emitted by (I123)FP-CIT. The most inexpensive (and 

accessible) form of this radionuclide is I123 Iodide, provided to most UK hospitals at a 

concentration of 37MBq/ml, which is lower than the radioactivity concentration used 

previously in this work and in published data from other authors. In order to maximise the 

phantom count rate the ratio of black ink to radioactive solution injected into the ink cartridge 

should be minimised. However, if too little ink is used then the printer deposition method is 

likely to be adversely affected due to the associated change in viscosity. Thus, a volume 

ratio of 1:1 was maintained for this investigation. 
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Greyscale values in the modified anatomical template were set to give a count density ratio 

of 8 to 1 in the striatum as compared to the surrounding brain tissue, using the measured ink 

profile curve. Again, this is reflective of the uptake ratios expected in healthy controls. Each 

slice was sent to a HP8100 printer and printed using a black ink cartridge containing 

approximately 16ml of combined ink-radionuclide solution. The full stack of paper from a 

single template print was placed within a jig, drilled in 3 places and then the paper sheets 

were interleaved, one-by-one, within the 3D printed head as shown in Figure 6-3. Excess 

paper was cut from around the border of the head as necessary. Once the whole phantom 

had been tightened using nylon screws it was placed on the camera bed, in the head 

support routinely used for patient acquisitions.  

 

The phantom was scanned on a GE Infinia camera with LEHR collimators in place. 

Acquisition parameters were the same as those used clinically (see section 2.2.1). 

Acquisition time was adjusted such that the total counts in the scan were approximately 

1.5Mcts, which is the minimum level considered acceptable by SNM guidelines and similar 

to the mean count level recorded for clinical patients over a 35 minute scan. 

 

Following acquisition, projections were reconstructed using the same, standard 

reconstruction protocol on Xeleris and the same method for calculating SBRs as applied in 

previous investigations (see section 2.2.1 and 2.2.5 for details). In addition, the medial-

lateral extent and the anterior-posterior extent of the striata in the new SSP design were 

measured on a 2D slab that was created through summation of 10 central brain slices. 

Ratios of these two values gave an aspect ratio that was a simple measure of striatal shape.  

 

This analysis was conducted in MIM software after manually aligning reconstructed data 

such that the trans-axial plane was parallel to the line connecting the anterior and posterior 

commissure, and then further adjusting alignment such that there was approximate 

symmetry between left and right hemispheres in both coronal and trans-axial views (see 

Figure 6-8 for a diagrammatic representation of these pre-processing steps). Linear 

measurements of left and right striata were carried out manually with the caliper tool. 
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Figure 6-8 Diagrammatic representation of the image rotation steps carried out before 

summation of axial slices and measurement of striatal lengths 

 

For comparison, analysis methods were also applied to 22 patient images from subset A 

where the probability of not having PDD was high (i.e. where uptake in the striatum was 

normal).  

 

Results 

 

Phantom printing and assembly took approximately 75 minutes to complete. Approximately 

4ml of I123 Iodide-ink solution was required to print 56 slices of the (I123)FP-CIT template, 

covering the entire brain. In order to acquire 1.5Mcts over the course of the acquisition an 

imaging time of 30s per projection was required. Four central, transaxial slices taken from 

the reconstructed images of the new SSP design are displayed in Figure 6-9 (reconstructed 

slice thickness was 7.2mm). 
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Figure 6-9 Four reconstructed slices from the centre of the new SSP design 

 

Figure 6-10 shows striatal binding ratio results for the SSP and for 22 clinical patients 

without evidence of PDD (whiskers represent maximum and minimum values).  
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Figure 6-10 Striatal binding ratio results for the new SSP design and for 22 clinical patients 

from subset A without pre-synaptic dopaminergic degeneration. Whiskers represent 

maximum and minimum SBRs 

 

Figure 6-11 and Figure 6-12 show linear measurements of striatal geometry and derived 

anterior-posterior / medial-lateral aspect ratio measurements for the new SSP design 

phantom and for the group of 22 patients. 
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Figure 6-11 Linear measurements of the striatum in images acquired from the new SSP 

design and from a group of 22 patients without evidence of dopaminergic deficit. Whiskers 

represent maximum and minimum lengths. Taken from (3) 

 

Figure 6-12 Anterior-posterior / medial-lateral aspect ratio measurements from the phantom 

and a group of 22 patients without evidence of dopaminergic deficit. Whiskers represent 

maximum and minimum aspect ratios. Taken from (3) 
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Discussion 

 

This investigation presents a new application of SSP technology, printing phantoms with an 

ink mixture based on 123I Iodide. The volume of ink solution required to print one full 

phantom suggests that approximately 5 different radioactive ink patterns could be printed 

from a single standard-sized cartridge (if filled to a maximum capacity of 23ml). The total 

printing and assembly time was longer than the preparation time required for the Alderson 

phantom (approximately 1-1.5 hours for the SSP as compared to 30-45 minutes for the 

Alderson phantom). However, the SSP assembly process has not yet been optimised. There 

is potential for time savings by, for example, rounding off the ends of the nylon guides rods 

to enable quicker stacking of paper and plastic layers. 

 

The imaging time required to reach typical clinical count levels was similar to that of patients, 

which suggests that even when using 123I Iodide at a relatively low radioactivity 

concentration (37 MBq/ml), SSP is a practical alternative technology to traditional fixed 

cavity phantoms. This is an important finding as 123I Iodide is widely (and cheaply) available 

to UK nuclear medicine departments. 

 

Visual analysis of the reconstructed phantom images (see Figure 6-9) demonstrates uniform, 

high uptake throughout the striata on both sides with a wide area of relatively low, uniform 

uptake in remainder of the brain. This closely reflects the characteristics of the simplified 

anatomical template and provides some reassurance that there were no significant problems 

in phantom assembly. Visually, the reconstructed SSP images had similar appearances to 

that of real patients, although there was a noticeable lack of skin uptake (this could however 

be corrected in the design template). In addition, linear measurements of the shape and size 

of the striata were also within the range measured from real patients. This is reassuring in 

light of previous criticisms of the Alderson phantom. 

 

Striatal binding ratio results (in the left and right putamen and caudate) for the SSP were 

above the mean but still within the range of results generated for a group of 22 non-

Parkinsonian patients. This suggests that the SSP design was reflective of non-PDD patients 

with higher uptake ratios, and provided a degree of reassurance that the developed SSP 

method was capable of producing images reflective of a particular patient cohort. 

 

However, it is also worth acknowledging methodological limitations:  
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 Patient age is a known co-variate for striatal binding ratio (40) and was ignored in the 

comparison exercise. 

 SBR and striatal dimension measurements do not define every important feature of a 

(I123)FP-CIT dataset, and are therefore not a comprehensive assessment of the 

SSP‘s suitability for replicating particular scan appearances.  

 The anatomical template used in this investigation is idealised. There are several 

areas where the template differs from real patient data. For example, patient SPECT 

images often show reduced uptake in the ventricles and increased uptake in extra-

striatal tissues such as the pons and thalamus (125). Furthermore, the template only 

included increased uptake in the putamen and caudate, and not the smaller globus 

pallidus. 

 

Although these limitations dictate that the developed phantom cannot yet be considered as 

providing an exact replica of real patient appearances, nonetheless the findings indicate 

suitability of the technique for creating 3 dimensional uptake patterns closely resembling 

certain (I123)FP-CIT scan features. Using the current anatomical template, image 

appearances are already more realistic than the available commercial phantom technology 

(i.e. the Alderson phantom).   

 

Less idealized, more patient specific ink patterns could be created through suitable alteration 

of the anatomical template pattern. This could be achieved, for example, through 

comparison of reconstructed phantom and patient scans, followed by iterative adjustment 

and reprinting of the anatomical template, then repeated scan comparisons, as per Holmes 

et al. (119). 

 

Thus, the results presented in this section show that SSP technology can be successfully 

adapted to (I123)FP-CIT imaging. The developed techniques lay the groundwork for the 

creation of realistic, patient specific phantoms.  

6.3 Summary 

Performing sensitivity analysis to examine the impact of different acquisition factors on 

machine learning algorithm performance in (I123)FP-CIT imaging requires repeated imaging 

of the same patient uptake pattern. Phantoms can enable this type of investigation without 

having to scan real patients. However, the only commercially available physical phantom, 

the Alderson phantom, is inadequate for replicating patient appearances to the level 
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demanded for investigations of classification software performance. Thus a new type of 

physical phantom was investigated and developed, based on sub-resolution sandwich 

phantom technology. 

 

Tests were conducted to probe the practicality, controllability and repeatability of the chosen 

SSP production method for simulating (I123)FP-CIT appearances. Firstly, the radioactive ink 

printing process, which is central to SSP technology, was shown to be highly controllable 

and consistent. Ink deposition was predictable for a range of greyscale values (up to 0.9) 

and the printer produced sufficiently uniform printed sheets. Individual slices from an input 

anatomical template (based on the MNI dataset) closely matched the resultant output. All of 

these findings justify the use of the particular printer setup for creating phantoms for 

investigations of classification algorithm performance. 

 

The final section of this chapter demonstrated successful application of SSP technology to 

creating a full (I123)FP-CIT phantom. Although the radionuclide used had a relatively low 

radioactivity concentration (approx. 18 MBq/ml when mixed with ink), resultant count rate 

was acceptable. Total assembly and printing time was slightly longer than the assembly time 

of the conventional Alderson phantom. However, unlike for the Alderson phantom, measures 

of SBR and linear striatal dimensions showed that the simple MNI-based anatomical 

template produced quantitative measures in line with clinical data.  

 

Overall, this chapter demonstrated that the highly flexible SSP process is a practical, 

inexpensive and repeatable solution for creating controllable, 3D (I123)FP-CIT phantoms. 

This is a crucial first step for enabling comprehensive evaluation of automated classification 

tools, which isn‘t possible with existing Alderson phantoms. Through careful selection of the 

anatomical input template, the developed SSP technology can now be used to mimic a 

range of patient appearances and to evaluate any classification tool.  

 

Having selected an appropriate physical phantom technology, the next chapter considers 

sensitivity analysis for (I123)FP-CIT classification algorithms. 
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7 Measuring the impact of clinical heterogeneity: 

sensitivity analysis 

New objectives addressed by this section (in black, bold): 

 

A) Examine and develop phantom technology to provide a toolset that can be adapted to 

simulate a range of realistic (I123)FP-CIT image appearances.  

B-1) Use the toolset to demonstrate the influence of heterogeneity by: Analysing 

and prioritising the individual imaging parameters that may affect classification 

software performance 

B-2) Use the toolset to demonstrate the influence of heterogeneity by: Performing 

sensitivity tests to measure the impact of different imaging parameters on 

developed classification tools 

Table 7-1 New objectives addressed in section 7 

 

Image acquisition procedures and protocols vary between hospitals, giving rise to different 

image appearances for the same tracer distribution. To minimise the effects from such 

confounding variables, clinical data in this work was taken from only a single institution 

where the acquisition procedures were consistent and the range of gamma cameras used 

was limited. If a mixed database of patients from multiple hospitals was used to train a 

classifier, with no algorithm adaptations to take account of the increased variability in the 

data, it is likely that accuracy would be reduced. Used in a CADx context, this could increase 

the likelihood of a clinician making an incorrect diagnosis, which could lead to inappropriate 

treatment.  

 

However, even if the training database is restricted to data from a single institution, if the 

algorithm is applied on a wide scale throughout the NHS it is likely that at least some of the 

clinical cases would have been acquired in a different way to the training data, which would 

again reduce classification accuracy and increase the risk of incorrect patient care.  

 

Consequently, the sensitivity of classification algorithms to different acquisition factors needs 

to be examined, and this is particularly pertinent if a fixed diagnostic threshold is involved. 

Once this important issue has been addressed, further effort can be expended in addressing 

other regulatory, economic and management aspects of the clinical translation challenge. 
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This chapter first seeks to develop a strategy for identifying and prioritising imaging 

parameters in terms of their potential impact on CADx / classification software. Following 

this, the developed SSP technology is used as an example, illustrating a sensitivity analysis 

of classification tools, according to the strategy. 

7.1 Strategy for prioritising image acquisition factors 

A strategy for sensitivity analysis relies on an understanding of the expected variability in 

image acquisition factors currently found in the clinic. In order to understand such variability, 

an audit should ideally be performed. However, although a national audit of Nuclear 

Medicine departments has recently been performed in the UK, revealing useful information 

with regards to the make/model of gamma cameras currently in use, and the type of 

collimator adopted (37), the data available is limited. A more comprehensive audit is required 

for this study but is not feasible within the time frame of this work. 

 

Therefore, relevant clinical guidelines (from EANM, SNM and the leaflet supplied with vials 

of (I123)FP-CIT) are used instead. The range of values cited within these documents for 

different acquisition parameters is assumed to be representative of the breadth of acquisition 

conditions seen in different hospitals. This information is used as a basis for creating a 

focused strategy, dictating which types of tests should be carried out in order to understand 

the likely performance variability of classification software in clinic. Information from 

guidelines is supplemented by data from protocols used locally at Sheffield Teaching 

Hospitals, as well as relevant research, which may also inform practice. 

 

Some of the differences in acquisition parameters that are implied by relevant guidelines are 

likely to be relatively unimportant in terms of impact on classification algorithm performance, 

or may be controlled to such an extent they are no longer of concern. Acknowledging that 

resources available for testing classification algorithms are likely to be limited, each 

acquisition factor is considered in turn to find those which are of highest priority (see Table 

7-2). In each case the potential impact on classification algorithm performance is scored 

qualitatively considering the likely variability between centres. The potential for controlling 

variability is also scored. By combining these two outputs a priority rating is given. The 

highest scores are associated with acquisition factors judged to have a high potential impact 

on classification algorithm performance, and low potential for control. 

 



 

 

151 

 

 

In addition to image acquisition recommendations, clinical guidelines also provide guidance 

on patient factors, such as the influence of vascular lesions on image appearances and the 

effects of different types of drugs on tracer uptake levels. Although these are important, such 

patient selection and patient preparation considerations are excluded from the table below in 

order to provide a strategy that is focused purely on the mechanics of acquiring and 

processing data.
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Image acquisition factors, ordered according to relative priority for investigation in sensitivity tests 

Image 

acquisition 

factor 

Explanation and potential variability Potential impact 

on classification 

algorithm 

performance 

Potential for control Priority for 

investigation 

Camera-

collimator 

design 

Collimator geometry dictates image resolution, sensitivity and also 

image noise (through relative contribution from septal 

penetration).  

 

There are differences in guideline recommendations: the leaflet 

supplied with (I123)FP-CIT recommends ―high resolution‖ 

collimators, SNM recommends LEHR or LEUHR collimators (32), 

EANM suggests that LEHR / LEUHR collimators are the most 

frequently used but specifically recommends fan-beam design 

over parallel hole design (6). 

 

This potential variability in selected collimator is exacerbated by 

the known large differences between the resolution and sensitivity 

of GE cameras with LEHR collimators and Siemens cameras with 

LEHR collimators (the two most commonly used systems (37)).  

HIGH. Different 

camera systems 

(with different 

collimators) are 

known to give rise 

to different semi-

quantitative values 

(50), and therefore 

different 

appearances 

 

LOW. Many 

departments only have 

camera(s) from one 

manufacturer with 

limited collimator 

options 

HIGH 
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Non-standard 

detector 

positioning 

For patients that are not able to tolerate a standard acquisition 

due to, for example, claustrophobia or a physical deformity 

preventing scanning close to the head, gamma camera detectors 

can be positioned differently during acquisition to reduce chances 

of a failed scan.  

 

Although not specifically recommended by any guidelines, in 

Sheffield a single planar vertex view (acquired superiorly to the 

skull) is currently acquired for those that cannot tolerate a detector 

passing close to the face. Detectors are also set at an increased 

radius, incorporating shoulders, for patients with kyphosis. 

 

Recent studies suggest that diagnostically useful information 

could be collected from claustrophobic patients by acquiring data 

with detectors moving behind the patient only (126). Therefore, 

there are potentially many different non-standard acquisition 

procedures used in hospitals 

HIGH. Planar 

vertex views 

cannot be 

processed by the 

developed 

algorithms. 

Acquiring data at a 

greater radius, or 

using an 

incomplete 

acquisition arc is 

known to cause 

significant changes 

in appearances as 

compared to a 

standard 

acquisition 

(126,127) 

LOW. Claustrophobia is 

likely to be very difficult 

to control and physical 

deformities, such as 

kyphotic spine, cannot 

be scanned under a 

normal protocol using 

conventional gamma 

camera equipment 

HIGH 
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Total 

acquisition 

counts 

Radioactive decay is a random process and so the more counts 

detected from the patient, the greater the signal to noise ratio in 

the final image. 

 

The leaflet supplied with (I123)FP-CIT recommends total counts 

of > 0.5Mcts. SNM guidelines recommend > 1.5Mcts (32) and 

EANM guidelines recommend > 3Mcts (6). Thus, there is 

potentially wide variation between centres. 

HIGH. Wide 

ranging image 

counts is likely to 

be associated with 

wide ranges in 

image noise and 

appearances 

HIGH. Total counts 

could be much more 

strictly controlled if 

required (for example 

by estimating count rate 

from an initial static 

image and setting 

acquisition time 

accordingly).  

MEDIUM 

Radius of 

rotation 

The radius of rotation dictates distance from the patient and 

therefore image resolution, which is an important consideration 

given that striatal tissues are small and relatively deep within the 

brain. 

 

The (I123)FP-CIT leaflet recommends a radius of 11-15cm (SNM 

guidelines suggest these values are ―typical‖ (32)), EANM 

recommends the ―smallest possible‖ radius (6). 

 

MEDIUM. Imaging 

at 11cm or 15cm, 

as permitted by 

guidelines, has 

been shown to be 

associated with 

small changes in 

SBRs (127) (and 

therefore 

appearance) 

MEDIUM. Departments 

could set stricter radius 

settings if tolerable by 

patients (if not, see 

non-standard 

acquisition protocols for 

alternatives) 

MEDIUM 

Reconstructio

n software 

and 

Reconstruction method (whether analytical or iterative) and 

associated parameters have a substantial impact on contrast, 

noise and resolution. 

HIGH. 

Reconstruction 

methods / 

HIGH. Most 

departments have 

access to adjustable 

MEDIUM 
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parameters  

EANM and SNM both recommend either filtered back projection 

or iterative reconstruction with low pass filtering (6,32). 

Attenuation correction is also recommended by both. However, no 

guidance is given on number of iterations, subsets or other 

specific parameters and so clinical departments may have a wide 

range of different reconstruction settings. 

 

 

parameters can 

have a substantial 

effect on measured 

SBRs (47,48) (and 

therefore 

appearances) 

reconstruction software. 

It is possible to obtain 

similar reconstruction 

results between 

software from different 

vendors for example by 

measuring and 

matching the frequency 

response curves after 

applying different 

reconstruction 

parameters, as 

performed by Lawson 

et al. (128) 

Rotation step 

size 

The rotation step size is one of the factors which determines 

SPECT image resolution 

 

EANM and SNM guidelines both recommend 3 degrees per step 

(6,32). The (I123)FP-CIT leaflet suggests this should be a 

minimum target. Thus, there is little difference in 

recommendations. 

LOW.  HIGH. All modern 

gamma cameras allow 

fine control of step size 

LOW 

Energy The energy window selected dictates the relative proportion of LOW.  HIGH. All modern LOW 
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window primary and scattered photons detected by the system and is 

therefore linked to the signal to noise ratio and appearances of 

the image 

 

SNM guidelines and the (I123)FP-CIT leaflet both recommend a 

single window of 159 keV ± 10% (32). EANM gives no specific 

recommendations (6). Therefore, there is little difference in 

recommended values. 

gamma cameras allow 

fine control of energy 

windows 

Pixel size 

(image zoom) 

Image zoom (and pixel size) have an impact on image resolution 

and noise 

 

Both SNM guidelines and the (I23)FP-CIT leaflet recommend a 

pixel size of 3.5-4.5mm (32). EANM recommendations are very 

similar: a pixel size that is one third to one half of the system 

resolution (6). Therefore, there is little difference in recommended 

values. 

LOW. HIGH. Pixel size can be 

controlled to a high 

degree on modern 

camera systems 

LOW 

 

Table 7-2 Summary of acquisition factors with qualitative assessment of their potential impact on classification algorithm performance, and 

potential for control in clinic. Factors are ordered according to decreasing priority for investigation. 
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Table 7-2 provides a guide to machine learning researchers as to which acquisition 

parameters should be considered first when performing sensitivity analysis of classification 

algorithms for (I123)FP-CIT. It shows that there are two image acquisition factors which are 

judged to be of highest priority: camera-collimator design and non-standard detector 

positioning. Both of these factors are related to issues that cannot be controlled in clinic and 

which could potentially limit the scope of application of classification algorithms. Camera-

collimator design is perhaps of most concern as the vast majority of (UK) patients are 

currently scanned with either a GE or Siemens system, equipped with LEHR collimators 

(37). If significant differences are found in terms of how a classification algorithm responds to 

these systems, a significant proportion of (I123)FP-CIT patients could immediately be 

excluded from the benefits of CADx. Should alternative detector positioning be 

contraindicated when applying CADx, the number of patients potentially benefitting is likely 

to be smaller.  

 

The following section will consider these two highest priority acquisition factors in a set of 

practical investigations, putting into practice the developed phantom technology to assess 

changes in classification output as a result of varying acquisition conditions. 

7.2 Method 

Ideally, sensitivity tests would be conducted with a number of different, realistic SSP 

designs, to reflect the expected range of patient appearances, in order to comprehensively 

assess all the developed classification algorithms. However, the radionuclide and gamma 

camera resources available within this study for further developing anatomical template 

designs are limited. Therefore, the following sensitivity tests continue to use the simplified 

SSP anatomical template that is already established, in a limited number of imaging 

acquisitions.  

 

The continued use of an idealised anatomical template dictates that acquired images are 

most useful for testing classification algorithms based on simple, derived image features 

such as SBRs, rather than those based on raw voxel intensities or principal components 

(which would require phantoms that were clinically realistic at the voxel level). Therefore, 

only the simplest of the algorithms developed in chapter 2 is analysed: the ML46 algorithm 

(see chapter 2.1.3), where 4 SBR values and patient age are input to a linear SVM. 

Algorithms based on principal components, such as that adopted for reporting tests in 
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chapter 4, could be tested in the same way in future once more realistic anatomical 

templates have been created and optimised. 

7.2.1 Metrics 

To assess the impact on classification algorithm performance of different acquisition 

settings, appropriate metrics are required. However, given that clinical heterogeneity is rarely 

considered in the machine learning literature, there is little guidance or consensus on which 

metrics may be most appropriate. For the following studies the raw SVM scores output from 

the algorithm are examined, in line with previous work by Abdulkadir et al. (129). To provide 

context, Figure 7-1 characterises the distribution of SVM scores measured for patients in 

subset A for the ML46 algorithm. This shows that the SVM output was more variable for the 

non-PDD, normal patients than for the diseased group. The gap in scores between the pre-

synaptic dopaminergic degeneration group and the non-dopaminergic degeneration group 

(approximately 4 on average) provides a baseline against which changes in SVM score, as a 

result of patient and equipment factors, can be compared. 

 

Figure 7-1 SVM score distribution for patients in subset A, using features based on SBRs. 

Median and inter-quartile ranges are shown in grey 

7.2.2 Acquisition  

The methodology for each investigation is summarised in Table 7-4. For each set of tests, 

unless otherwise stated, most camera acquisition parameters were consistent (see Table 

7-3). These parameters were largely dictated by the available guidance on (I123)FP-CIT 

imaging (6,32) and the settings used in the local clinical service. 
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Acquisition parameter Value 

Total counts 1.5 Mcts 

Matrix size 128 x 128 

Radius of rotation 14cm 

Zoom 1.2 

Projections 60 per head over 180 degrees 

Energy window 159keV ± 10% 

Collimator LEHR 

Table 7-3 Camera acquisition parameters 

Following acquisition, each scan was reconstructed using the standard reconstruction 

protocol on Xeleris. Data were then processed through the selected machine learning 

algorithm as previously described (see chapter 2). Patient age was assumed to be 60 years 

in all cases. All investigations in this chapter are based on algorithms trained with local 

clinical data (from subset B) only, as such algorithms are more likely to be of use in the clinic 

than algorithms trained with PPMI research data.  
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Sensitivity analysis: summary of investigation methods 

Factor Investigation method 

Camera-

collimator 

design 

Tests considered two different acquisition cameras: a GE Infinia and a Siemens Symbia. These are the most commonly used 

acquisition systems, according to a recent UK audit (37). 

 

Using the same template shape described in the previous chapter, two different phantom prints were designed with two different 

greyscale ratios. The first phantom had printed count densities of 8 to 1 in both striata as compared to the remainder of the brain 

(‗normal‘ phantom) whilst the second phantom had a count density ratio of 5 to 1 (‗borderline‘ phantom). 8 to 1 is representative 

of the true underlying tracer concentration ratio present in normal controls (130). 5 to 1 represents a more borderline case. 

Additional uptake ratios were not tested due to limitations on time and scanning resources 

 

After assembly, each phantom was scanned twice on each camera (enabling evaluation of repeatability). Scanning parameters 

were either the same or as close as possible for each camera (the only difference was in applied zoom, 1.2 for the Infinia and 

1.23 for the Symbia).  
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Non-

standard 

scanning 

conditions 

Tests evaluated three alternative scanning protocols that may be applied for complex patients, including those that are 

claustrophobic and those with anatomical abnormalities (such as kyphosis), which dictate that detectors cannot be brought close 

to the patient‘s head. In the local clinical department, these are the main reasons for protocol deviations or abandoned 

acquisitions. 

 

Two acquisition methods were considered for claustrophobic patients: acquiring from behind the head only using either a single 

detector (with the other at maximum radial distance), or both detectors set at 90° to each other in ‗L-mode‘ (126). For patients 

where anatomical abnormalities prevent a small radius of rotation, a standard acquisition at an increased radius was the only 

alternative considered. 

 

The same anatomical template was adopted as in the previous investigation (i.e. striatal uptake was defined from adaptation of 

the MNI template). The fully assembled head was scanned four times on a GE Infinia camera, as follows: 

 

1) Standard acquisition procedure 

2) ‗L-mode‘ acquisition, acquired over 180°, posterior to the patient. 

3) Standard acquisition with one active detector acquiring data close to the posterior of the head and the other inactive 

detector at the maximum radius away from the patient‘s face 

4) Standard acquisition with both detectors at an increased radius of rotation (21.4cm, such that a patient‘s shoulders could 

reasonably be expected to be included within the field of view) 

 

A schematic of these different acquisition conditions is shown in Figure 7-2 (numbered according to the list above). The 

anatomical template was printed twice, with different striatum to background ratios, to reflect two different patient appearances. 
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As before, print 1 had a striatum to background greyscale ratio of 8 to 1 on both sides of the brain (‗normal‘ phantom). Print 2 had 

a striatum to background ratio of 6.5 to 1 on the right and 5 to 1 on the left side (‗borderline‘ phantom).  

 

 

 

Figure 7-2 Schematic of the different acquisition protocols. 

 Table 7-4 Summary of investigation methods for assessing classification algorithm sensitivity to different acquisition factors 
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7.3 Results 

7.3.1 Camera-collimator design 

Figure 7-3 shows the SVM score results for the two phantoms scanned on the different 

camera systems (for an assumed patient age of 60 years). Note that SVM scores for the 

borderline phantom are so close to zero that they are barely visible. Table 7-5 summarises 

repeatability errors. Table 7-6 provides an estimate of between camera differences, taken 

from differences in the means of the repeated scans on each camera.  

 

 

Figure 7-3 Summary of the mean SVM score results for different camera systems (assumed 

patient age of 60 years) 

 

Camera 

system  Phantom 

SVM score differences 

between repeat scans 

GE Borderline 0.05 

GE Normal -0.44 

Siemens Borderline -0.04 

Siemens Normal 0.17 

Table 7-5 Summary of repeatability results 
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Phantom 

Mean SVM score differences 

between cameras 

Borderline 0.10 

Normal 1.18 

Table 7-6 Summary of camera comparison results (mean GE Infinia result minus mean 

Siemens Symbia result) 

7.3.2 Non-standard scanning conditions 

Figure 7-4 shows reconstructed slices following acquisition under standard conditions, and 

with both detectors set in L-mode. Figure 7-5 summarises the figures output from the SVM 

algorithm after inputting data acquired under different conditions. Table 7-7 shows 

differences in SVM scores as compared to standard scanning conditions.  

 

 

Figure 7-4 Reconstructed slices from the normal phantom acquired in H-mode (left) and L-

mode (right) 
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Figure 7-5 Summary of the SVM score results for different acquisition protocols for both 

phantoms (patient age of 60 years) 

 

 

SVM score differences vs standard 

acquisition 

Phantom L-mode 

One 

detector 

increased 

radius 

Borderline 0.18 -0.35 0.25 

Normal 0.33 0.36 0.23 

Table 7-7 Summary of acquisition conditions comparison (SVM score from standard 

acquisition minus SVM score from alternative scenario). 

7.4 Discussion 

This chapter first sought to develop a strategy for prioritising the different acquisition 

conditions that could affect classification algorithms performance, and to conduct a 

sensitivity analysis using developed phantom technology. These endeavours are a response 

to the research objectives identified in chapter 5. 
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The sensitivity analysis strategy was largely based on examination of relevant clinical 

guidelines with respect to equipment factors. Although this is likely to be less reflective of the 

range of acquisition conditions seen in clinic, findings provide a suitable starting point for 

evaluation of classification tools. The strategy could perhaps be updated and improved in 

future through consultation with relevant stakeholders in the (I123)FP-CIT clinical 

community. 

 

It was intended that sensitivity analysis would be conducted using a number of different 

phantoms, after further optimising the SSP anatomical template to more closely reflect real 

patient appearances. Although, due to resource constraints, this was not achievable, results 

from the application of a simplified phantom to one of the developed classification tools do 

provide useful insights, as described below. The processes and analysis employed here 

could be applied to any classification tool, including that used for clinical reporting tests in 

chapter 4, when more realistic anatomical template designs have been created and 

optimised. 

7.4.1 Camera-collimator design 

Many clinical departments in the UK do not have the luxury of being able to choose between 

cameras when scanning patients. Often there may be only one camera available or there 

may be multiple cameras locally, but all from the same manufacturer. Furthermore, after a 

gamma camera has been in use for longer than its expected lifetime, a hospital may choose 

to buy a completely different model as a replacement. Across the country there will be 

multiple different types of systems in use at any one time, with varying acquisition 

procedures between centres. Before a CADx or automated classification tool can even be 

considered for development into widely available software, performance for the most 

commonly available camera-collimator equipment needs to be understood. This is a key 

consideration that is often neglected by the machine learning research community. 

 

Camera comparison results demonstrated that differences between GE and Siemens 

systems can be relatively large for a machine learning algorithm built on SBR features. The 

maximum recorded difference in SVM score was 1.18, which is approximately one third the 

size of the mean difference between normal and abnormal patients (see Figure 7-1). This 

score differential was consistent across all assumed patient ages (due to the linear nature of 

the adopted classification algorithm). In every case the GE camera produced a higher 

classification algorithm output than the Siemens camera, thus for every patient there was an 
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increased probability of belonging to the non-PDD group if they were scanned with GE 

equipment. These findings are perhaps unsurprising given that the classification algorithm 

was created with data that were only acquired from GE systems, and so the Siemens data 

represented a shift in input signal that was not accounted for in the training process. 

Previous research has shown that GE and Siemens scanners give systematic differences in 

SBR measurements (50), due to differences in resolution and septal penetration 

characteristics. In this case it appears that such differences in SBR translated into an overall 

change in classification algorithm score. 

 

It is interesting to note that the magnitude of the change in SVM score was far larger for the 

phantom with a count density ratio of 8 to 1 (normal phantom) than for the phantom based 

on a count density ratio of 5 to 1 (borderline phantom). This can perhaps be attributed to the 

underlying SBR figures, which changed by a greater magnitude for the normal phantom 

when scanning on the different systems. There was also a substantial difference in the 

repeatability error: differences in SVM score were 0.05 and 0.44 for the borderline and 

normal phantom respectively. Without taking further measurements it is difficult to ascertain 

whether repeated scanning (and processing) of the more borderline simulated patient is 

associated with less variability, or whether variability differences between the phantoms are 

due to chance. However, whatever the underlying pattern in repeatability error, it is clear that 

differences in acquisition equipment can have a substantial impact on the algorithm under 

consideration, and would potentially stop it from being developed further into a widely 

available clinical tool. 

 

The apparent differences in results for the two phantoms emphasises the importance of 

testing a range of different patient appearances (ideally more than was investigated in this 

case), in order to fully assess the sensitivity of a classification algorithm. This again 

emphasises the inadequacy of the fixed Alderson phantom for evaluating machine learning 

tools. Ideally, further experiments would also be carried out on other commonly used camera 

systems to evaluate whether patterns seen here are reflected more widely.  

 

In this study a single GE and Siemens camera were tested. However, it is likely that there 

would be some variability between the performance of individual cameras of the same model 

type. Tests on multiple identical cameras would be needed to quantify this variability.  

 

The magnitude of the measured change in classification algorithm output needs to be 

understood in the clinical context. Figure 7-3 shows that although the changes in SVM score 
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were much smaller for the borderline phantom (and may not be significant beyond 

repeatability error), scanning on the different systems did cause the SVM output to change 

between a positive and negative value. Thus, overall binary classification for the phantom 

changed depending on the camera used (classification was normal when scanned on the 

GE system, and abnormal group when scanned on the Siemens system). Conversely, the 

larger changes in SVM score seen for the normal phantom still resulted in a large, overall 

positive classification algorithm score (and therefore high probability of belonging to the 

normal class), no matter which camera system was used. Hence, it could be argued that the 

small changes seen for the more borderline simulated patient are perhaps more critical in 

the clinical context, particularly if the classification tool was to be used as an automated 

system for screening out normal scans from the reporting list.  

7.4.2 Non-standard scanning conditions 

(I123)FP-CIT scanning using a standard protocol requires patients to remain still for 

approximately 35 minutes, with gamma camera detectors passing close to the face. In 

addition, the patient‘s head is firmly strapped into a support. However, some patients cannot 

tolerate these conditions due to different physical or mental health difficulties. For 

claustrophobic patients seen at Sheffield Teaching Hospitals this would have previously 

dictated that the scan was either abandoned or a planar vertex view taken. For those with a 

physical deformity, preventing scanning close to the head, acquisition would have continued 

but with detectors at an increased radius (such that the shoulders could be included in the 

field of view for example). All such patients were excluded from the local databases used in 

this thesis. 

 

Although not recommended specifically by any clinical guidelines, the local Nuclear Medicine 

department is currently considering alternative scanning procedures for claustrophobic 

patients in order to reduce the number of failed acquisitions, namely: scanning from behind 

the head with either a single detector or with both detectors set at 90° to each other. Other 

Nuclear Medicine departments are currently using such protocols routinely. It is essential to 

understand how a classification algorithm performs under these conditions, or when the 

detector radius is set at a larger value, such that decisions can be made as to whether CADx 

is contraindicated for these patients or not. Without such evidence or guidance machine 

learning tools could cause inappropriate diagnosis or patient care when used in the clinic 

 



 

 

169 

 

 

Figure 7-4 demonstrates one of the problems caused when data is collected asymmetrically, 

from only one side of the patient, namely that the striata can appear warped. This geometric 

distortion was as expected given that gamma camera imaging characteristics, including 

attenuation, scatter and particularly resolution, are depth dependent. In a standard H-mode 

acquisition, acquired for one full rotation, the effects of improved resolution near the camera 

face, and degraded resolution far from the detector, are averaged out over the whole scan. 

However, for a 180° L-mode acquisition where detector heads never pass close to the 

patient‘s face, the anterior brain is never sampled at a higher resolution. The distortion 

effects from an incomplete acquisition rotation are worse the further away the object from the 

centre of rotation (131,132). Unfortunately, in this case it was not possible to place the 

detectors close enough to the bed to always keep the striatum within the central field of view. 

Thus, the geometric distortion appears worse than might otherwise be expected. 

 

However, despite the obvious differences in appearances caused by the alternative 

scanning conditions for claustrophobic patients, the measured differences in SVM score 

were not as large as might be expected. For the normal phantom, for example, the SVM 

score differential as compared to standard scanning conditions was 0.33 and 0.36 for the L-

mode and one-detector acquisitions respectively, which are far lower than differences 

caused by scanning on a different camera system (see 7.3.1). These differences are also 

lower than the maximum repeatability error seen in the previous section. SVM score 

differentials for the phantom representing a more borderline patient (5 / 6.5 to 1) were of 

similar magnitude and are perhaps of more concern in the clinical context given that the 

machine learning algorithm output is closer to zero (the boundary between normal and 

abnormal groups). 

 

The fact that there was much less contrast between phantom results in this investigation, as 

compared to the previous, again shows that reproducing a range of simulated patient 

appearances is important for fully appreciating the impact of different acquisition settings. 

 

Due to the geometric distortion induced by both forms of 180° acquisition, the image 

registration step is likely to have played a significant part in either causing or reducing 

discrepancies in SVM or SBR score. Visual analysis suggested that the affine registration 

had placed each striatum in approximately the right position as compared to the template. 

However, given the thin, elongated shape of the striatum in the L-mode 180° acquisition (see 

Figure 7-4), there is no single ‗correct‘ registration. A number of different scan 

transformations may have placed the organs in approximately the correct position, each of 
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which may have led to different scores. Therefore, results presented here are as much a 

function of image pre-processing as the analysis algorithms themselves, probably more so 

than for investigations of other factors. 

 

Results for the acquisition carried out at an increased radius of rotation, simulating the 

effects of including a patient‘s shoulders within the field of view, showed a consistent but 

relatively small effect on SVM scores across the two phantoms. This suggests that the loss 

in resolution caused by this scanning setup may be less important in terms of algorithm 

performance than acquiring data on different camera systems. 

 

It is interesting to note that in all but one case, the 3 alternative scanning scenarios gave 

SVM scores that were slightly higher than for the standard acquisition (therefore having a 

greater probability of belonging to the normal patient group). This was unexpected given that 

each of the alternative acquisitions was associated with appearances that would normally be 

considered to be more abnormal. These findings emphasise the fact that a machine learning 

algorithm built on derived SBR features may not necessarily behave in the same way as a 

human observer. Classification algorithms which analyse raw pixel values, or principal 

components of raw pixel values, may give very different results. 

 

This investigation considered only a limited number of patient conditions that would require 

alternative scanning procedures. There are many more that could be considered, particularly 

those causing patient movement during acquisition. For example, a patient suffering from 

DLB may be very forgetful and may try to get up during an acquisition. Furthermore, for the 

patient group referred for clinical (I123)FP-CIT scanning, Dyskinesia is a common symptom, 

which may cause constant movement of the striatum during a scan. Any such significant 

movement is likely to lead to reduced resolution and perhaps reduced contrast, which could 

result in significantly altered striatal appearances and reduced classification algorithm 

reliability. Investigations are required to examine the extent of movement that can be 

tolerated by classification algorithms before their use becomes contraindicated. However, 

given that there is likely to be wide variability between patients in terms of the magnitude, 

timing and duration of their movements, investigation of effects on classification algorithm 

performance would require a large number of acquisitions to be performed to cover these 

variations. These could be considered in future. 
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7.5 Summary 

This chapter first provided a strategy for prioritising investigations into the sensitivity of 

classification systems to different acquisition conditions, as part of an overall aim to address 

heterogeneity of the clinical environment, a vital consideration in the drive towards clinical 

translation. The two acquisition conditions found to be of highest priority in terms of their 

potential impact were camera-collimator design and non-standard patient positioning. 

 

Following this, a set of sensitivity analyses were conducted using developed SSP 

technology. A single machine learning algorithm was considered for all tests, based on 

binding ratios and patient age input to a linear SVM classifier. Of all the developed 

classification algorithms, this was most suited to testing with the idealised SSP patient 

uptake pattern that was developed in previous investigations. However, the testing 

methodology applied in this chapter is likely to be relevant to any form of classification tool 

(assuming that sufficiently realistic phantoms can be produced) and so provides a guide to 

other researchers also grappling with the challenges of clinical translation. 

 

Initial investigations characterised the baseline level of difference in SVM score between 

PDD and non-PDD patient groups (acquired under a single set of acquisition conditions), to 

give perspective to the findings. The examinations that followed utilised a limited number of 

phantom acquisitions, based on an idealised uptake pattern.  

 

Overall, the collected evidence suggested that utilising a different gamma camera system to 

that which the algorithm was trained on can give a systematic change in SVM score, which 

can be substantial and may be larger than repeatability error.  

 

Selection of an alternative acquisition protocol, as might be used for claustrophobic patients 

or those with physical deformities, was generally associated with smaller changes in SVM 

output, less than the maximum repeatability error. Such protocols are clearly less of an issue 

for the classification algorithm, even though they were not addressed in the algorithm‘s 

training process. The raw SVM scores from each alternative scenario were generally 

increased as compared to standard scanning conditions. This was despite the more 

abnormal striatal appearances. These findings emphasised the fact that a classification 

algorithm built upon derived binding ratios may not always behave in a similar fashion to a 

human observer.   
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The SVM score provided a useful metric for analysing the sensitivity of SVM algorithms to 

different scenarios. However, in the clinical CADx context the impact of the reporter also 

needs to be considered in order to understand how changing algorithm outputs translates 

into changing diagnostic decisions. This is a more complex problem, which may vary 

depending on the experience, skill and confidence of the reporter. In order to make any 

insights further reporting tests are required, using changing algorithm outputs.  

 

It is clear from the analysis above that different acquisition factors can have a substantial 

impact on classification algorithm performance. Results imply that, for the algorithm under 

consideration, use of a Siemens camera may be contraindicated due to the potential 

substantial shift in SVM score. Thus, theoretically, a large proportion of UK centres would 

not be able to benefit from the software, if it were released for clinical use in its current form. 

Even at a local level, results suggest that if a new camera were purchased (with different 

characteristics), the CADx / classification system may not achieve adequate performance. 

Such major limitations would be likely to discourage further investment. This again shows 

the importance of considering heterogeneity of the clinical environment in the journey 

towards clinical translation. 

 

However, algorithms such as this can be redesigned to some extent in order to ameliorate 

the impact from different acquisition conditions, in order that the potential for positive clinical 

impact is maximised. Possible methods for overcoming issues highlighted in sensitivity 

analyses, for this algorithm and more widely, are discussed in the following section. 

7.6 Algorithm adaptations for the clinic 

The problem of differing data acquisition conditions is a major concern in other machine 

learning applications in other imaging modalities (133). Often in the radiological machine 

learning literature, algorithms are developed using established ‗legacy‘ data, acquired using 

certain equipment and protocols. Frequently this is data from research studies, such as the 

Alzheimer‘s Disease Neuroimaging Initiative (ADNI), http://adni.loni.usc.edu/. However, once 

trained, the goal is usually to apply machine learning algorithms to images acquired under 

different (clinical) conditions, using different and often more modern scanning equipment. 

Under these conditions the performance of even state-of-the-art algorithms, such as 

Convolutional Neural Networks (CNNs), is often poor (134).  

 

http://adni.loni.usc.edu/
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Techniques for adaptation of machine learning algorithms to different acquisition conditions 

are often referred to as ‗transfer learning‘ or ‗domain adaptation‘. There are many methods 

that fall under these headings. The most obvious solution to enable domain adaptation is to 

collect large databases of images covering all possible data acquisition conditions, where 

patient classification is known. This data can then be directly implemented within the 

algorithm learning process such that the relationship between extracted features and 

different acquisition parameters can be modelled. However, this is usually impractical.  

 

One possible approach to transfer learning, utilising only limited data, involves different 

weighting of samples in the training process according to their origin. For example, in the 

adaptation of classification algorithms to patient data acquired from a Siemens camera, 

images acquired from a GE camera could be given a lower weighting in algorithm training 

than samples from a Siemens camera. Here the GE data would help to regularise the 

classification model but not at the expense of reduced performance on Siemens data. This 

form of sample weighting can help to create reliable classification algorithms even with just a 

few training examples acquired under the target scanning conditions (133). However, 

improved performance using such techniques is not necessarily guaranteed. Furthermore, 

research into the specific use of transfer learning for SPECT data is so far very limited and 

thus there is little indication of the likely success of this form of algorithm training. 

 

Alternatively, different acquisition factors could be normalised for in image pre-processing. 

This could be achieved, for example, by incorporating physics models into the processing 

pipeline or deriving empirical correction factors between camera systems based on limited 

phantom data, such that semi-quantification figures are transferrable between different 

equipment. This is the approach used for the PPMI data and in the ENCDAT project 

(http://earl.eanm.org/cms/website.php?id=/en/projects/enc-dat.htm). Although such 

corrections ignore differences due to striatal anatomy variations, this technique has been 

shown to reduce differences in SBR figures between camera systems (49) and would be 

likely to dramatically reduce the inter-camera variance seen in the sensitivity analysis of 

section 7.3.1.  

 

Overall, it is acknowledged that classification algorithms could be further adapted, if 

required, to enable better generalisability to different clinical environments. However, even if 

machine learning tools are trained to cope with varying acquisition conditions from the 

outset, methods for validating the impact of clinical heterogeneity are still required. The 

previous two chapters provide guidance on methods that could be used to assess (I123)FP-

http://earl.eanm.org/cms/website.php?id=/en/projects/enc-dat.htm
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CIT classification algorithms in relation to this important translational issue, and represent an 

important step forward in clinical machine learning research. 
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8 Concluding remarks 

8.1 Summary 

This thesis was composed of two separate but complementary parts. In the first part the 

main research question was: How effective is a CADx tool, based on established machine 

learning algorithms, for assisted (I123)FP-CIT image reporting? Defining effectiveness in 

terms of independent algorithm classification accuracy, and in terms of the impact on 

reporter performance, the question was addressed through setting and pursuing 5 main 

objectives: 

 

1) Select and implement machine learning classification tools.  

2) Collect a database of (I123)FP-CIT images.  

3) Compare the performance of machine learning algorithms with semi-quantification.  

4) Develop software for testing of human reporters.  

5) Assess the impact of an automated classification tool, implemented as a CADx 

system, on reporting. 

 

These objectives were met in the following ways: 

 

A selection of binary automated classification algorithms were designed and implemented 

based on promising techniques identified in the literature. Data for training and testing was 

collected from Sheffield Teaching Hospitals NHS Foundation Trust, with a minority of the 

patient cases having diagnosis established through clinical follow-up. This data was 

supplemented by images from the PPMI database. In the cross validation exercise the 

developed classification algorithms demonstrated similar or superior standalone 

performance in classifying both the local and PPMI data, as compared to a wide range of 

different semi-quantification methods. This is the first comprehensive comparison exercise 

conducted between these assistive technologies, and provides justification for the pursuit of 

clinical machine learning tools. 

 

Software for capturing reporting decisions of human observers was manufactured through 

adaptation of an existing clinical program. A CADx tool based on 5 principal components and 

a support vector machine classifier was selected for testing. A pilot study and main clinical 

study quantified the effects on reporting decisions from using this tool, again with both local 

and PPMI data. CADx output was in the form of a single probability value. It was shown that 
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reporters gave more consistent image scores (with increased inter-reporter reliability) after 

being exposed to these figures and that reporting accuracy was higher as a result, 

particularly when reporters were shown images with unfamiliar appearances. It was also 

found that intra-reporter variability, using visual analysis alone, was high. This was the case 

for both junior radiologists and more experienced reporters, which exposes the disadvantage 

of relying on human visual perception alone in image reporting. Indeed, reduced reporting 

variance may be one of the most important benefits of CADx, particularly given that 

(I123)FP-CIT imaging is a relatively rare test which, in smaller nuclear medicine 

departments, may only be seen by a reporter a few times a year. 

 

These novel, encouraging results for CADx were complemented by analysis of questionnaire 

results, which provided rich insights into the reporter-CADx relationship (which has not 

previously been studied in the field of (I-123)FP-CIT imaging). In particular, it was found that 

reporters were generally highly trusting of the classification system and that reporters from 

different clinical backgrounds appeared to have differing opinions on the usefulness of a 

CADx system.  

 

The standalone binary classification performance of the CADx tool was consistently shown 

to be at a similar level to that of experienced reporters. Results therefore suggested that the 

machine learning tool could perhaps instead be used independently, possibly as an initial 

screening tool to remove normal cases from the list of images viewed by reporters. The main 

advantage of this approach over the CADx paradigm is that the potential efficiency savings 

are higher. 

 

Despite the large number of published journal articles related to machine learning and (I-

123)FP-CIT classification, this work represents the first attempt to consider and evaluate the 

impact of classification tools in a clinical scenario, with reporters. Such investigations are 

vital for moving machine learning technology towards clinical use and the positive results 

add weight to the arguments in favour of clinical translation. In answer to the original 

research question, the results summarised above demonstrate that this form of CADx is 

highly effective for assisting (I-123)FP-CIT reporting. 

 

However, although machine learning had been considered here in the clinical context, 

generating new and important information related to likely algorithm performance, the initial 

approach had arguably been naïve. There was still a long way to go before the developed 

classification tools could be used routinely in hospitals. Notwithstanding the need to 
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generate more robust statistics through collection of more data, testing of more reporters 

and perhaps even conducting a prospective clinical trial, it was demonstrated that there are 

many other psychological, economic, legal, management as well as technical issues that 

needed to be addressed on the path to widespread clinical translation. Although other 

authors have suggested that clinical translation is often not adequately addressed by the 

research community, these issues were perhaps more wide ranging than has yet been 

described in the literature. The scale of the translation challenge is substantial, affecting all 

machine learning applications in radiology, not just for (I123)FP-CIT imaging.  

 

Frustratingly, many researchers are either unaware of these issues or choose to ignore 

them. Consequently, clinical use of machine learning tools remains disappointingly low in 

medical imaging. Undoubtedly a new research approach is needed, focusing more on the 

translation gap than continual development of the technologies themselves. As shown by 

this thesis, even well-established machine learning algorithms are already sufficiently mature 

to offer real benefits to clinical care. Making sure such technology can and does thrive in the 

clinic should be a greater priority. It is hoped that the research community will in future take 

heed of this suggestion. 

 

The second half of the thesis considered aspects of the translation burden in relation to 

(123)FP-CIT classification software, to improve the prospects for future clinical uptake. 

Given the limited remaining time and resources it was decided that the final chapters would 

focus on addressing one of the most pressing and most significant technical barriers, namely 

heterogeneity of the clinical environment. Specifically, it is known that gamma camera 

imaging characteristics vary between systems in different hospitals, which could lead to 

variability in (123)FP-CIT classifier output. Investigations are needed to measure this 

variability to establish whether classification software is likely to be successful outside of the 

hospital in which it was developed. Without performing such tests it is unlikely that 

classification / CADx tools would be turned into commercial, clinical products. 

 

With so little previous consideration given to the challenges of clinical translation in the 

literature, there is little available guidance on how clinical heterogeneity might be addressed. 

Clearly, repeated scans of patient uptake patterns, under different acquisition conditions are 

likely to be required. Performing these tests using phantoms rather than real patients is likely 

to be more viable (due to financial and ethical considerations). However, as shown in 

chapter 6 there isn‘t yet a suitable phantom technology for this task. 
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Thus, the main focus of the second half of this thesis was on creating novel technologies 

and strategies that would facilitate investigations into the effects of different acquisition 

conditions on classifier / CADx performance. 

 

The new objectives for chapters 6 and 7 were to: 

 

 A)  Examine and develop phantom technology to provide a toolset that can be 

adapted to simulate a range of realistic (I123)FP-CIT image appearances.  

 B): Use the toolset to demonstrate the influence of heterogeneity by: 

 Analysing and prioritising the individual imaging parameters that may affect 

classification software performance.  

 Performing sensitivity tests to measure the impact of different imaging 

parameters on developed classification tools 

 

Therefore, the targets for the remaining research effort were both ambitious, going beyond 

the scope of the original research question and far beyond the vast majority of machine 

learning investigations, but they were also necessary given the huge translation challenges 

that remained. 

 

Chapter 6 provided results from development on a new (I123)FP-CIT phantom based on 

sub-resolution sandwich phantom technology. A series of investigations demonstrated that 

this flexible method of phantom manufacture was practical, controllable and repeatable. A 

fully assembled phantom based on an idealised anatomical template produced image 

features that were reflective of a cohort of patients. 

 

A strategy for prioritising and selecting image acquisition parameters for sensitivity tests was 

developed by examining relevant guidelines, and considering the potential for control in the 

clinical environment. The two highest priority factors were found to be: camera-collimator 

design and non-standard positioning.  

 

Sensitivity analysis was conducted according to these priority areas, using the idealised SSP 

anatomical template. For the single classification algorithm that was tested it was shown that 

use of different image acquisition equipment, from a different manufacturer, can have a 

substantial impact on algorithm output. This would be likely to preclude the algorithm from 

being widely used. The impact from using non-standard positioning was found to be smaller. 
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Although only the simplest of the developed algorithms was tested (that based on SBR 

features), the investigations demonstrated the suitability of developed processes and 

technology for assessing classification software. The same methodology could in future be 

applied to any (I123)FP-CIT classification algorithm once more patient specific anatomical 

templates had been optimised. 

 

Thus, objectives A, B (part 1 and 2) were largely completed, providing a basis for further 

work to address the remaining translation gap.  

 

In summary, this thesis has contributed several novel and important findings to the literature: 

 

 Direct, comprehensive comparison between semi-quantification and machine 

learning tools for classification of (I123)FP-CIT images, demonstrating the superiority 

of machine learning algorithms 

 Evaluation of machine learning software in a clinical (I123)FP-CIT reporting scenario, 

showing the positive impact on inter-reporter reliability and accuracy, and the ability 

of machine learning software to match human performance 

 Distillation and analysis of the wider barriers to adoption for all machine learning 

classification tools, that extend far beyond the scope of most machine learning 

studies 

 Development and demonstration of a new, flexible, controllable and repeatable 

phantom technology, facilitating phantom-based sensitivity analysis of (I123)FP-CIT 

classification software (which was not previously possible using the Alderson system) 

 Creation of a new prioritisation strategy for investigating the impact of different 

acquisition conditions 

 Sensitivity analysis results, demonstrating that differences in camera equipment and 

acquisition protocols can have a substantial impact on machine learning classification 

software performance 

8.2 Future work 

Although a lot has been achieved in this work, there remains a number of avenues that 

deserve further attention, particularly in relation to the remaining translation gap, which I 

believe is the most significant problem for machine learning in radiology. The next steps set 

out below seek to address some of the more immediate questions and issues that have 

arisen following investigations of automated (I123)FP-CIT classification tools. These ideas 
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for future work consider both the technologies specifically developed in this thesis but also 

the wider picture related to translation of machine learning technology. 

8.2.1 Mapping out a pathway from initial research to clinical adoption 

This work has highlighted the barriers that would prevent immediate widespread adoption of 

the developed algorithms in clinic. However, only one of these barriers (heterogeneity of the 

clinical environment) has been partially addressed so far. The necessary steps required to 

navigate all the other identified hurdles are not clear. What is needed, ideally, is a blueprint 

for how researchers and other stakeholders could create a clinically successful automated 

classification or CADx tool. To maximise impact, such a model should ideally be relevant to 

any application. As a first step towards meeting these goals a workflow diagram was 

developed, which maps a pathway from initial research idea to clinical adoption for CADx 

systems. This draft document is introduced below. 

 

In order to create a model for algorithm development, a specific endpoint needs to be 

defined. One possible choice would be to target inclusion within current clinical guidelines for 

the specific disease area such that clinical departments wishing to achieve accreditation, or 

to demonstrate high quality patient care, are incentivised to adopt the technology. However, 

with numerous national bodies producing clinical guidelines for different areas in medicine, 

most of which do not have clear criteria for accepting protocols or technologies into 

guidelines, this would be impractical for creating a generally applicable development model. 

 

A more well-defined endpoint would be achieving NICE approval through either the Medical 

Technologies Evaluation Programme (MTEP) or the Diagnostic Assessment Programme 

(DAP). These programmes aim to accelerate the adoption of technologies which have the 

potential to improve patient outcomes, reduce costs or provide benefits to the healthcare 

system. Although approval through these routes does not guarantee widespread uptake, it 

does provide a seal of approval that is likely to dramatically increase pressure on hospitals to 

invest in the technology. 

 

NICE approval has a list of requirements and assessment processes as set out in relevant 

guidance documents (135), which provides a basis for creating a pathway to adoption. 

NICE evaluation covers device regulations, clinical evidence and health economics. 

Evaluation panels also receive input from multiple different stakeholders. Therefore, many of 

the barriers to clinical adoption already identified in chapter 5 are also considered as part of 
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NICE approval procedures. Much of the work undertaken in this thesis (particularly in 

chapters 2-4) could contribute towards the evidence based requirements of these processes. 

 

Based on the requirements of NICE approval in the context of CAD I produced a peer 

reviewed publication (5), setting out the main considerations for any new algorithm aiming 

for clinical adoption. Using the NICE requirements as a target, I also produced a workflow 

diagram, mapping the whole development pathway, from initial research idea to NICE 

submission (see Figure 8-1). Although this has not yet been subject to peer review, it could 

potentially be used by other researchers in future to help ensure that future CAD projects are 

conducted with clinical translation in mind.  

 

 

Figure 8-1 CADx development workflow 
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The workflow is designed for both CADe and CADx applications and is linear, suggesting 

that steps be taken one after another. Five distinct stages are identified, with each 

generating additional evidence towards the final goal. Given that it is difficult to know a-priori 

which technology will work best, it is assumed that multiple possible algorithms will be 

selected to solve the clinical problem in the early stages. However, only one algorithm will be 

selected to progress through clinical and economic evaluations (due to the high cost of 

performing these tasks). The workflow was designed such that early stages are less 

resource intensive, enabling initial investigations of potential software solutions with minimal 

outlay. Due to the significant demands of the NICE approval it is anticipated that very few 

CAD systems would progress through every stage without being rejected. 

 

At each stage a decision must be made as to the sufficiency of performance given the 

metrics generated from different tests. Should performance be deemed unacceptable the 

algorithm is either abandoned or updated. Such are the requirements from NICE with 

regards to compelling empirical evidence, the first stage of the workflow (the preparation 

phase) involves an assessment of the potential for CAD to have a clinical or economic 

impact, the implication being that projects should only be undertaken if there is the potential 

for significant improvements to the current status quo. If standard reporting is quick, 

inexpensive and effective then there is little point investing time in creating an automated 

classifier. This strict, impact-focused approach contrasts strongly with much of the current 

machine literature, where studies are often driven by the availability of data, rather than the 

potential for improvements to care or efficiency. 

 

Stages 1 and 2 of the workflow involve assessments of standalone performance and 

analysis of the ability of the algorithms to cope with data derived from different (but realistic) 

acquisition scenarios. Although these procedures are not specifically referenced in NICE 

processes they are, as shown by previous discussions related to heterogeneity of the clinical 

environment, necessary for understanding baseline performance. If such results are not at a 

sufficiently high level (for example they are lower than human performance unaided) then it 

is unlikely that clinical investigations will achieve the outcomes necessary to encourage 

clinicians to adopt the technology. Stage 2 permits adjustments to the algorithm to be carried 

out (assuming they do not adversely impact on standalone performance) or other 

compensatory mechanisms to be instigated, including additional pre-processing of data, in 

order that performance figures are maintained at a high level with the widest possible scope 

of application.  
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Stage 3 of the workflow involves the collection of clinical study data through comparison of 

the performance of standard care procedures (usually radiologists performing visual 

analysis) and radiologists working with CAD support. This process has been subdivided into 

a pilot study and a main study, in a similar way to chapter 4. Ideally the main study should be 

conducted as part of a multicentre trial, whereby a wide range of radiologists can be included 

in the results, such that results are representative of general clinical usage.  

 

Stage 4 involves analysis of the direct costs of the CAD intervention (including costs of 

software licences, infrastructure, maintenance, staffing and training) as well as the indirect 

costs that would result in relation to changes to the patient pathway (for example the 

additional number of secondary care consultations that may result per patient). A health 

economic analysis is then conducted to predict the overall system impact from introduction 

of CAD. It is assumed here that results from clinical evaluations can be extrapolated to 

estimate the effects on the patient pathway. The uncertainties of this approach are likely to 

be higher than for a full clinical trial which examined patient outcomes over the longer term 

following diagnostic assessment with and without CAD. However, the costs to the developer 

are likely to be much lower using this simplified technique. 

 

Through each stage of the workflow it is assumed that evaluation methodologies are chosen 

such that uncertainties are minimised. For example, that tests conducted with radiologists 

use randomly selected patient images, thus minimising recall bias, and that investigations of 

standalone performance use large databases of images, covering most expected image 

appearances. Methodological errors that are likely to bias estimates of algorithm 

performance, such as those highlighted in recent literature (93,94), should be avoided. 

Maintaining high standards in data collection is crucial, as highlighted by a recent review of 

the MTEP programme, which showed that the 3 main reasons for technologies failing to 

progress to guidance development were a lack of evidence, insufficient/uncertain benefit to 

the NHS and insufficient/uncertain benefit to the patient (136). In addition to maintaining high 

standards in methodology, it is assumed that patient data used is always anonymised such 

that data protection and ethical issues are reduced. 

 

The workflow does not make assumptions about who should be responsible for each stage 

of the process. However, it is assumed that the individuals or groups working on the project 

are aiming towards the same goal. It is possible that some aspects of the workflow could be 

carried out by external parties, or could be derived from previous literature. For example, the 

selection and testing of different algorithms in stage 1 could be largely derived from the 
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results of ‗grand challenges‘ such as those run each year at the Medical Image Computing 

and Computer Assisted Intervention (MICCAI) conference. Here, databases of images are 

made freely available to researchers from around the world. Participants submit their created 

algorithms for evaluation on a (usually held back) test set. Algorithm details are then 

published and each is ranked according to chosen metrics. Thus, consideration of these 

results (if available) could be an efficient and cost effective way of comparing the 

performance of multiple candidate algorithms. 

 

Regulatory authorisation (particularly CE marking) needs to occur once the system design is 

finalised, which is likely to be after the clinical evaluations are completed. However, 

compliance processes could instead be completed after the system impact of CAD has been 

predicted. Thus, the CE marking stage is not strictly tied to either stage 3 or 4 in the 

workflow. It is also assumed that research publications would be produced at each stage of 

the workflow, cumulatively adding to the evidence base for the technology. 

 

This model for algorithm development represents my first attempt at trying to create a 

plausible pathway to help guide researchers on the tortuous path towards clinical translation. 

Bourne out of a frustration with the current disconnect between the rapidly expanding, 

exciting machine learning research arena, and the stubbornly low clinical use of machine 

learning technology, this model undoubtedly has limitations. For instance, the workflow 

provides no guidance on what type of expertise is required at each stage in order to meet 

the multidisciplinary challenges presented. Furthermore, there is no guidance on specific 

processes required in order to meet regulatory requirements (i.e. CE marking), and no 

consideration of what might be done if prevailing professional and public opinions were 

largely negative. The model needs to be presented to and critiqued by other experts, and 

possibly altered, before it can be put forward as guidance for researchers and developers. 

This would be a priority for future work. However, it undoubtedly offers a useful starting point 

for driving conversation in the machine learning community towards a more clinic-focused 

approach. 

8.2.2 Development of realistic anatomical templates 

The ability to conduct sensitivity tests for more complex (I123)FP-CIT machine learning 

algorithms is currently hampered by a lack of realistic anatomical template patterns for use 

with the SSP production method. Given that the most successful machine learning 
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algorithms developed in this thesis cannot yet be tested with SSP technology, this problem 

needs to be addressed.  

 

One possible route to creating more realistic templates for (I123)FP-CIT imaging would be to 

select images from patients who had already undergone both MRI acquisitions and 

(I123)FP-CIT SPECT within a short time window. The shape of the anatomical template 

could be defined by segmenting the MRI scan. After setting an assumed count density 

pattern, printing and scanning, the resultant reconstructed projections could be compared to 

the patient‘s real gamma camera images. By taking the difference between the simulated 

uptake pattern and the real image, on a voxel-by-voxel basis, an update can be made to the 

design template to iteratively bring it closer to the patient‘s underlying uptake pattern. The 

process could be repeated as many times as required. This methodology was adopted by 

Holmes et al. for the creation of realistic brain perfusion scans (119). Once such templates 

have been created, sensitivity tests can be conducted for the PCA-based machine learning 

algorithm used in chapter 4, to add further evidence of its suitability for clinical use. Algorithm 

adaptations could then be investigated if required. 

8.2.3 Evaluation of a (I123)FP-CIT screening tool 

As suggested following the clinical study in chapter 4, the performance of developed 

classification technology was so high (at or above the level of experienced reporters) that the 

algorithm could perhaps be better exploited as an independent diagnostic device than a 

CADx tool. It is likely that using such technology as a screening tool (removing the most 

obviously normal cases from the reporting list) would be the lowest risk and most acceptable 

way to perform automated, independent image analysis, at least initially. Indeed the US 

Food and Drug Administration (FDA) recently granted regulatory approval to the first 

machine-learning based medical image analysis tool which works independently from 

humans (named IDx-DR), designed to screen out retinal images showing mild or no disease 

(137). However, no clinical studies have yet been carried out according to this reporting 

scenario for (I123)FP-CIT imaging and so the potential benefits are not yet clear.  

 

A number of fundamental questions need to be addressed, in particular, what probability 

value should be used as a cut-off for deciding on whether an image should be shown to a 

radiologist of not? This could be investigated, in the first instance, through retrospective 

studies. The available clinical data already extracted from the archives at Sheffield could be 

split into two halves, the first used for retraining a classification algorithm and the second half 
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for determining a cut-off in algorithm output that is able to achieve 100% specificity (with a 

suitable, additional error margin). This could be calculated, for example, from Receiver 

Operator Curve analysis. The algorithm could then be used in a prospective study, whereby 

it is applied to all new (I123)FP-CIT scans acquired in the department, working alongside 

conventional reporting practices. The clinical reports could be compared to the algorithm 

output to confirm whether the selected cut-off was sufficient for ensuring that all abnormal 

cases continued to be displayed to reporters, and for quantifying the proportion of studies 

that could potentially be removed from reporting lists. Such information would be vital for 

evidencing potential improvements in efficiency and for justifying further algorithm 

development. 

8.2.4 Understanding perceptions of machine learning classification technology 

If automated classification software is to achieve widespread clinical adoption, particularly if 

used as an independent screening system, health professionals and patients need to be 

accepting of this new approach to radiological reporting. In particular, NICE committees 

which evaluate new medical technologies (such as the Medical Technologies Advisory 

Committee), take evidence from patient groups as well as relevant clinicians (136), whose 

opinions of the technology are likely to have a strong bearing on the final decision. Indeed, 

the developed pathway to translation (see section 8.2.1) explicitly includes evidence of 

public and professional opinions. 

 

Although the opinions of such individuals cannot be predicted it is useful to understand 

whether there are commonly held beliefs which may hamper clinical uptake. The use of 

machine learning and artificial intelligence in all aspects of life is a topic that is frequently 

visited in media reports. Such coverage is often negative. For example, the recent data 

sharing agreement between the Royal Free Hospital in London and Google Deepmind for 

development of machine learning algorithms was severely criticised in multiple publications. 

The Information Commissioner‘s Office deemed that the clinical trial had failed to comply 

with data protection law (138). It could be that such reports may naturally cause people to be 

more sceptical about machine learning in general, no matter what the empirical evidence 

that is presented. 

 

A separate Ipsos MORI survey commissioned on behalf of the Wellcome Trust (139) was 

conducted to assess public views on commercial access to health data. This is of relevance 

here as machine learning tools rely on patient data for adequate training and testing. It was 
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found that the general public and health professionals are often concerned and sceptical 

about the use of health data by private companies, in part due to lack of transparency. A 

significant minority think that health data should never be shared with commercial institutions 

under any circumstances. This could have implications for the work presented in this thesis if 

it was ever decided that software should be developed by a private company. 

 

The perils of not fully understanding the opinions of stakeholders in relation to digital 

technology are shown by the recent, high-profile failure of the care.data initiative in the NHS, 

which was designed to create a central database of primary care records. One of the key 

reasons identified for the failure was the lack of adequate information provided to the public 

on how their data would be used (140). 

 

As part of the promotion strategy for (I123)FP-CIT classification software, in the push 

towards clinical translation, it would therefore be advantageous to seek out clinical and 

patient opinions of automatic diagnosis in relation to Parkinson‘s Disease. These could be 

gathered through structured focus groups.  

 

A pilot study was conducted to provide initial data on public perceptions, and to assess the 

suitability of developed questions for a larger study. Four individuals from the Sheffield 

Parkinson‘s Disease society group volunteered to attend the focus group. Initial questions 

presented to the volunteers assessed current understanding of technical terms such as 

artificial intelligence and machine learning. Different scenarios were described, highlighting 

the use of computer software to augment or replace human work. These were discussed as 

a group, with questions posed to elicit views on acceptability. 

 

The main themes identified from discussions with the volunteers were: 

 

 Humanity in medicine (and elsewhere) should always been maintained i.e. there 

always needs to be some human interaction between patients and healthcare 

experts 

 Machines and software should augment what a human does, not replace or 

downgrade human work 

 Trust is important. If a patient trusts a doctor then the fact that CADx or classification 

software is used to inform their PD diagnosis is a minor consideration. 
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 Acceptance of automated diagnostic software is likely to increase as it is used more 

routinely. 

 Some patients may expect the latest technology to be used on them. These 

individuals may be disappointed if machine learning wasn‘t used to inform their PD 

diagnosis. 

 

The findings were somewhat contradictory in that there was a universal desire to maintain 

and protect human functions and skills, but that use of automated diagnostic algorithms 

could be tolerated or even desired so long as the patient‘s main clinical contact was with a 

human that they trusted. This suggests that marketing and promotion of any classification 

tool needs to be conducted carefully, emphasising the benefits of algorithms to clinicians and 

the patient. It may also be easier to induce positive opinions of classification tools if used as 

part of a CADx system, rather than as a screening tool where human input is removed. 

 

A larger scale qualitative study is needed to confirm these findings and to further explore 

where the boundary of acceptability lies between human and software based diagnosis. 

Ideally this would include interviews with radiologists and neurologists too, whose work 

would be directly affected by new (I123)FP-CIT classification software, and whose opinions 

are likely to have a substantial impact on whether such technology will flourish or not. 

Findings from such work would also be valuable to researchers and developers working in 

other areas of machine learning in medicine. 

 

The four suggested areas for further work described above need to be prioritised. Of these 

projects, perhaps the highest priority should be given to creation of an accepted 

development workflow, mapping the pathway from initial CAD research to clinical translation, 

as such a document could have a big impact. Also of high priority is the need to develop 

realistic anatomical templates for the newly developed phantom. Without such work the 

momentum behind the work completed in early chapters of this thesis would be lost. 

Evaluating a screening tool for (I123)FP-CIT and performing more in-depth qualitative 

analysis of public / professional perceptions are topics that are arguably less urgent, 

particularly as the latter relies upon a viable clinical tool being in place first. 

8.3 Conclusion 

At the beginning this thesis focused on assistive reporting technology in (I123)FP-CIT 

imaging. The main research question asked how effective was a CADx tool, based on 
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established machine learning algorithms, for assisted (I123)FP-CIT image reporting. 

Validation test results showed for the first time that machine learning tools outperform a wide 

range of semi-quantification approaches in terms of binary classification performance, and 

that a CADx tool built on such algorithms offered increased consistency between reporters 

and increased accuracy. Thus, in answer to the research question, machine learning for 

CADx in (I123)FP-CIT imaging proved to be highly effective. 

 

However, following a realisation that the path to clinical translation would be highly 

challenging, both for this application and others in medical imaging, there was a subsequent 

shift in focus towards addressing translation barriers. Driven by a desire to prevent 

developed technologies from being forever confined to the literature, wider questions related 

to heterogeneity of the clinical environment were considered. As a result, new phantom 

technologies and new strategies were created, which facilitated sensitivity testing. 

 

The suggested future work also focuses on wider considerations in relation to clinical 

translation, for both (i123)FP-CIT imaging and other machine learning applications in 

radiology. I hope that other researchers will also come to the realisation that in order for 

machine learning to make an impact in clinic, these areas need to be more of a priority. 
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10 Appendix 1 – handouts provided as part of the pilot 

reporting study 

Computer aided diagnosis (CAD) for DaTSCAN SPECT imaging 

John Fenner, Jonathan Taylor 

 

Introduction 

Welcome to the SPECT / CAD lab exercise. This brings together many facets of the taught 

material in the FRCR course: 

 

 Ionising radiation and dose 

 Gamma camera 

 Diagnostic protocols 

 Tomographic reconstruction (SPECT) 

 Image interpretation 

 Image quantification  

 Diagnostic performance 

 New techniques 

 

The session will last 2.5 hours and involve diagnosis of brain scan images, after an initial 

period of training.  

 

Learning objectives: 

 Consolidation of SPECT imaging 

 Introduction to DaTSCAN and its clinical rationale 

 Training in how to interpret DaTSCAN images 

 Introduction to quantitative aids in diagnosis 

 Practical exposure to CAD diagnosis and its implications for diagnostic practice 

 Introduction to metrics of diagnostic performance 

 

Timetable: 

 Part 1 (14:00-15:00) 
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 The exercise will start with a reminder of SPECT techniques and an introduction to 

DaTSCAN imaging.  

 You will be trained, as a group, to recognise the appearances of normal and 

abnormal DaTSCAN images using a series of 15 training datasets.  

 After training you will each be asked to interpret a series of 30 further patient images, 

displayed automatically on a computer. Interpretation will be in the form of a score, 

from 1-5, representing the degree to which you think the particular image is normal or 

abnormal.  

 

Break for coffee (15:00-15:15) 

 

Part 2 (15:15-16:15) 

 

 The reporting exercise will be repeated but this time the opinion of the computer 

aided diagnosis software will also be displayed for each of the 30 datasets (the CAD 

output will be displayed in terms of a probability value).  

 At the end of the exercise summary statistics on your performance will be provided 

(and compared to that of experienced reporters).  

 Discussion about diagnosis and the use of CAD for assisted reporting.  

 

This work is contributing to quantitative image developments within the department of 

Nuclear Medicine 

 

DaTSCAN background information 

 

The following information is largely taken from the GE website (md.gehealthcare.com). 

 

Indications 

 

DaTSCAN (Ioflupane I 123 Injection) is a radiopharmaceutical indicated for striatal dopamine 

transporter visualization. Single photon emission computed tomography (SPECT) brain 

imaging is used to assist in the evaluation of adult patients with suspected Parkinsonian 

syndromes (PS). In these patients, DaTSCAN may be used to help differentiate essential 

tremor from tremor due to PS (idiopathic Parkinson's disease, multiple system atrophy and 
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progressive supranuclear palsy). In addition, DaTSCAN is also used to differentiate between 

dementia with Lewy Bodies and other forms of dementia.  

 

Patient pathway (Sheffield) 

 

Approximately 2 patients per week are referred for DaTSCAN tests at Sheffield Teaching 

Hospitals. This represents approximately 1% of the department‘s total workload. Most 

referrals are from Neurologists based in secondary care in the local region. Approximately a 

quarter of referrals come from primary care. 

 

Clinical pharmacology – mechanism of action 

 

The active drug substance in DaTSCAN is N-ω-fluoropropyl-2β-carbomethoxy-3β-(4- [ 123 

I]iodophenyl)nortropane or ioflupane I 123. In vitro, ioflupane binds reversibly to the human 

recombinant dopamine transporter (DaT). Autoradiography of post-mortem human brain 

slices exposed to radiolabeled ioflupane shows concentration of the radiolabel in striatum 

(caudate nucleus and putamen). Parkinsonian syndromes reduce DaT availability, enabling 

DaTSCAN to be used as a tracer to detect these conditions.  

 

DaTSCAN also accumulates in other parts of the body, particularly the liver and lungs. Over 

time the tracer is washed out of the body, mostly via urinary excretion (60% over 48 hours). 

 

Dosage and administration 

 

The recommended DaTSCAN dose is 111 to 185 MBq (delivered intravenously). Images 

should be acquired between 3 and 6 hours post-injection (when tracer binding is maximised 

and stable). 

 

The Effective Dose resulting from a DaTSCAN administration (activity of 185 MBq) is 3.94 

mSv in an adult 

 

Physical characteristics 

 

Iodine 123 is a cyclotron-produced radionuclide that decays to 123 Te by electron capture 

and has a physical half-life of 13.2 hours. The most abundant emission is a gamma ray at 

159keV, which is used for imaging. 
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The first half-value thickness of lead (Pb) for iodine 123 is 0.005 cm. The half-value 

thickness in soft tissue is approximately 5.0 cm 

 

Imaging parameters (Sheffield) 

 

3D SPECT images provide a map of the concentration of radioactive tracer within the body. 

DaTSCAN images are reconstructed from multiple 2D projections, taken from different 

angles around the patient. This is a tomographic reconstruction technique in which images 

are acquired for 30s per projection with a matrix size of 128 x 128. Each of the 2 detector 

heads of the gamma camera are positioned 180 degrees apart, on opposite sides of the 

patient. Each detector acquires 60 images, with 3 degrees rotation between each, in a 

circular orbit around the patient‘s head such that the detector gantry rotates 180 degrees 

over the course of the scan. An energy window of 159keV (+/- 10%) is used. Total imaging 

time is approximately 35 minutes. Once the scan is finished the projection data are 

converted into a tracer concentration map through iterative reconstruction. This form of 

reconstruction has advantages over more traditional filtered back projection algorithms, often 

leading to reduced noise and improved contrast 
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Figure 1. Circular orbit of gamma camera heads 

 

Image interpretation 

 

Determination of whether an image is normal or abnormal is made by assessing the extent 

(as indicated by shape) and intensity of the striatal signal. Image interpretation does not 

involve relating the striatal image appearance with clinical signs and/or symptoms. 

 

Normal: In transaxial images, normal images are characterized by two symmetric comma or 

crescent-shaped focal regions of activity mirrored about the median plane. Striatal activity is 

distinct, relative to surrounding brain tissue (Figure 2).  

 

Abnormal: Abnormal DaTSCAN images fall into at least one of the following three 

categories (all are considered abnormal).  

 Activity is asymmetric, e.g. activity in the region of the putamen of one hemisphere is 

absent or greatly reduced with respect to the other. Activity is still visible in the 

caudate nuclei of both hemispheres resulting in a comma or crescent shape in one 
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and a circular or oval focus in the other. There may be reduced activity between at 

least one striatum and surrounding tissues (Figure 3). 

 Activity is absent in the putamen of both hemispheres and confined to the caudate 

nuclei. Activity is relatively symmetric and forms two roughly circular or oval foci. 

Activity of one or both is generally reduced (Figure 4).  

 Activity is absent in the putamen of both hemispheres and greatly reduced in one or 

both caudate nuclei. Activity of the background with respect to the striata is more 

prominent (Figure 5). 

 

      Figure 2    Figure 3 

 

          Figure 4               Figure 5 

 

Visual interpretation is inherently qualitative. More objective image analysis is available with 

the use of quantitative software, based on region of interest (ROI) tools. This is useful in 

quantifying tracer uptake and can be a helpful aid to diagnosis.   

  

Reduced uptake 

in R putamen 

Reduced uptake 

in R + L putamen 

Reduced / absent 

uptake in putamen 

and caudate on both 

sides 

Normal uptake 

in putamen and 

caudate on both 

sides 



 

 

211 

 

 

Semi-quantification with an ROI tool 

 

Semi-quantification refers to the measurement of a particular quantity within one region of 

interest in an image relative to that of a standard. In DaTSCAN imaging, tracer uptake within 

the striatum (or subregions of the striatum) is measured with respect to a reference. The 

European Association of Nuclear Medicine (EANM) procedure guidelines recommend that 

semiquantitative analysis is performed to objectively assess striatal DaT binding, in addition 

to visual interpretation. It is now used routinely in many UK hospitals. 

 

Commonly, regions of interest are defined on DaTSCAN images, over left and right 

putamena and caudates, with an additional region drawn over the visual cortex or 

cerebellum as a reference. ROIs may be determined automatically or may require user 

intervention. Semi-quantitative figures are derived by dividing detected counts within striatal 

regions by those measured in the reference area. Comparison with normal ranges enables 

an objective assessment of the presence or absence of disease. 

 

 

Figure 5 Typical regions of interest used to measure tracer uptake 

 

 

Figure 6 Example semi-quantification output (relative tracer uptake in the striatum as 

compared to a normal database) 
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Quantification and semi-quantification are becoming more common in many other areas of 

imaging. For instance, cardiac ejection fraction is routinely derived from MRI, CT, Ultrasound 

and Nuclear Medicine data by drawing regions of interest at systole and diastole and 

comparing volumes. In addition, tumour volumes are regularly measured on CT or MRI data 

to enable assessment of the progression of disease. Another example is the calcium score 

(Agatston score), used to quantify the extent and severity of calcium build up in the coronary 

arteries. 

 

The DaTSCAN semi-quantification tool is a simple but robust addition to the diagnostic 

armoury, but more sophisticated methods are available. Computer aided diagnosis (CAD) is 

one example and its potential is explored in this lab exercise. 
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Computer aided diagnosis 

 

Computer aided diagnosis (CAD) software generates more than a potentially relevant tracer 

uptake value. It can be considered to be an objective assessment of an image. It generates 

a diagnostic score which is shared with the reporting clinician in order to improve reporting 

accuracy and consistency. It is an extension of simple quantification since the image data is 

analysed by an independent entity (the software) to come up with an objective output related 

to the patient‘s state of disease. It makes a decision as to whether the patient is likely to 

have a particular disease or not. For instance, the output from a CAD algorithm may be a 

probability value related to the likelihood of disease being present. CAD algorithms can be 

more effective than quantification techniques in the detection of disease. 

 

CAD methods have been developed and refined over several decades (Doi, 2007). 

However, use in the clinic has historically been very limited. CAD for assisted interpretation 

of mammograms is one of the few areas where commercial software tools have found 

widespread uptake (prevalent in the USA). Recent technological advancements have made 

the effectiveness of CAD algorithms much greater. In several areas CAD algorithms have 

shown evidence of performance that surpasses that of human observers. With significant 

recent investment many companies are now actively developing CAD software for use in the 

clinic and these are likely to become mainstream in the future. However, currently there 

remains a significant gap in the evidence base in terms of CAD‘s impact on reporting 

performance. 

 

The aim of this lab session is to introduce you to CAD assisted diagnosis. In this study you 

will observe how a CAD system, which reports a single probability value, affects reporting 

decisions. Findings will be augmented through a feedback session, where wider implications 

associated with the software will be discussed. The output from the exercise will be used to 

inform a wider clinical study, both in terms of the CAD system design and the study protocol. 

 

Metrics of performance 

 

An important consideration when introducing new clinical tools is performance. Does the 

new tool improve diagnostic performance? Does it have adverse outcomes? What kind of 

metrics are appropriate for judging the merit of a new tool / protocol? 
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In many respects this is a cost-benefit exercise and might include simple measures such as 

time to diagnose. A rigorous approach will often incorporate the use of ROC curves, 

requiring an appreciation of true/false positives/negatives, the setting of diagnostic 

thresholds and an assessment of diagnostic impact (on the patient pathway). This exercise 

will make use of these approaches to expose the utility of CAD as a diagnostic tool. 

 

References: 

 

Doi, K. 2007. Computer-aided diagnosis in medical imaging: Historical review, current status 

and future potential. Computerized Medical Imaging and Graphics, 31: pp198-21 

 

 


