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REVIEW OPEN

Pathophysiology of environmental enteric dysfunction
and its impact on oral vaccine efficacy
Chelsea Marie1, Asad Ali2, Kanta Chandwe3, William A. PetriJr1 and Paul Kelly3,4

Environmental enteric dysfunction (EED) refers to a subclinical disorder of intestinal function common in tropical countries and in
settings of poverty and economic disadvantage. The enteropathy that underlies this syndrome is characterized by mucosal
inflammation and villus blunting mediated by T cell activation. Epithelial cell disruption and microbial translocation drive systemic
inflammation. EED in young children is associated geographically with growth failure, malnutrition, and greatly impaired responses
to oral vaccines, notably rotavirus and poliovirus vaccines. In this review, we describe the pathophysiology of EED and examine the
evidence linking EED and oral vaccine failure. This evidence is far from conclusive. Although our understanding of EED is still
sketchy, there is limited evidence of disturbed innate immunity, B cell disturbances including aggregation into lymphoid follicles,
and autoantibody generation. Pathways of T cell activation and the possibility of dendritic cell anergy, which could help explain oral
vaccine failure, require further work.

Mucosal Immunology (2018) 11:1290–1298; https://doi.org/10.1038/s41385-018-0036-1

INTRODUCTION
It is widely appreciated that intestinal infection is a common cause
of diarrheal disease globally, leading to millions of deaths every
year.1 It is also well known that this enormous burden of disease is
attributable to a relatively limited number of pathogens, including
protozoa, bacteria, and viruses.2 However, recently published data
are beginning to reveal a much larger problem of subclinical
intestinal infectious disease associated with intestinal inflammation
and malnutrition. It is more than two decades since the negative
impact of subclinical cryptosporidiosis on child health was
described,3 and the severe growth deficit due to cryptosporidiosis
was defined.4 Recently, molecular diagnostic advances have
enabled more sensitive detection of enteric pathogens, and it is
becoming clear that children in low and middle income countries
(LMIC) carry heavy burdens of intestinal infection.5 With rotavirus
(RV) causing about 37% of deaths due to diarrhea in children age
<5 years,6 it is hoped that the current global RV vaccination
program worldwide will lead to substantial reductions in deaths
due to diarrheal disease. Given that most enteric pathogens are
transmitted by the fecal–oral route, it would seem logical that
water and sanitation (WASH) interventions should reduce enter-
opathogen burdens. Surprisingly, the evidence to date suggests
that efficacy of WASH interventions in reducing diarrhea,
malnutrition, or both is lower than would be expected.7 Vaccina-
tion is the alternative extant strategy for reducing morbidity and
mortality due to enteropathogens, and combined oral vaccination
against a range of major pathogens would be highly desirable.

THE PROBLEM WITH ORAL VACCINE EFFICACY
Although oral vaccines are available (Table 1), they work less well
in LMIC than they do in industrialized countries.8 The live,

attenuated cholera vaccine CVD 103-HgR elicited a significant
(four-fold or greater) rise in serum vibriocidal antibody in North
American adults, but responses to the same vaccine were
impaired in Indonesia, Thailand, Peru, and Ecuador.9 The same
was true of oral RV vaccine: efficacy was 78% against severe RV
diarrhea in Finland,10 but only 49% in Malawi.11 RV vaccine
efficacy was also reduced in Central America12 and Asia.13 Madhi
et al.11 showed that, because of the high incidence of severe
disease, a disappointing vaccine efficacy of 61% still resulted in a
substantial vaccine-attributable overall reduction in severe gastro-
enteritis of 5.0 cases per 100 infant-years. They also compared the
severe gastroenteritis episode cases from Malawi and South Africa
and found that, although vaccine efficacy was higher in South
Africa, there were more episodes (6.7 episodes prevented) of
severe RV gastroenteritis per 100 infant-years prevented by
vaccination in Malawi than in South Africa (4.2 episodes
prevented). Even though the efficacy of RV vaccine is low, it is
therefore still of value in the populations most heavily affected.
Oral polio vaccine (OPV) is also much less efficacious in
developing countries,14,15 and in recent campaigns in northern
India up to 20 doses have been administered per child. So,
although oral vaccines are available for some enteric infections,
and can be successful in reducing disease burden across the
globe, improved efficacy would be very valuable.
The reasons for the impaired efficacy of oral vaccines in LMIC

are not yet clear. Several possible factors may help explain this
phenomenon. Possibilities include interference from the high
titers of antibody in maternal breast milk,16 nutritional factors such
as vitamin A deficiency,17 and environmental enteropathy (EE).18

EE is an asymptomatic inflammatory disorder of the proximal
small intestine,8 which underlies environmental enteric dysfunc-
tion (EED). At least for polio virus type 1, it is highly likely that
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interference by concurrent infections such as non-polio enter-
oviruses contribute substantially to impaired vaccine efficacy, and
efficacy is also lower in the presence of diarrhea.15 There is also
evidence that strain variation may contribute to reduced efficacy,
at least for RV.19 Counter-intuitively, Helicobacter pylori infection,
which is common in those populations where oral vaccines are
less efficacious, seems unlikely to explain reduced vaccine
immunogenicity as there is some evidence that it actually
increases it.20

OTHER CONSEQUENCES OF EED
Malnutrition, manifested as stunting and/or acute wasting, is a
major factor behind child mortality and inability of children to
reach their full neurocognitive potential in resource-poor set-
tings.21 Stunting affects 165 million children globally.22 Stunting is
defined as failure of linear growth, which is often due to chronic,
insidious nutritional deficiencies. Wasting is a loss of weight due
to a more acute illness, often triggered by an infectious disease.
Studies reveal that malnutrition is not just a lack of food issue but
is also in large part due to EED.23 Absorption of critical
micronutrients may also be compromised in children with EED.
A study in Malawi showed that net zinc absorption after a
challenge dose was negatively correlated with lactulose:mannitol
ratio, which is a marker of increased gut permeability induced by
EED.24 This may be true with other critical micronutrients also.22

THE UNDERLYING CAUSES OF EED
This is an area of real uncertainty. It has been known for several
decades that EED is seasonal25 and reversible.26–28 Emerging
evidence suggests that children in LMIC have very high burdens of
intestinal infectious disease,5 not enough to cause diarrhea but
probably enough to induce epithelial damage. It is absolutely
plausible, but not proved, that this is the principal driver of
enteropathy. The strongest evidence to date that enteropathogen
burden contributes to pathogenesis is that azithromycin amelio-
rates some biomarkers of enteropathy, though it does not
significantly improve OPV responses.29 The role of malnutrition
is uncertain, but micronutrient trials have shown only modest
benefits.30,31 In Malawian children with stunting, amino acids were
found to be generally low32 and ω-3 and ω-6 polyunsaturated
fatty acids were also reduced in recent metabolomic studies.33

Increasing data suggest that the microbiota constitutes a critical
influence on the development of the gut and its mucosal immune
system. Evidence from Malawi implicates dysbiosis (a flora altered
in composition and usually reduced in complexity) in EED,34,35

though whether dysbiosis initiates EE or merely perpetuates it is
an unresolved question. Composition and function of the gut
microbiota of 2–3-year-old children could be linked with the child
and mother’s genetically determined secretor status, presumably
mediated by associated alterations in host glycans and breast
milk-associated human milk oligosaccharides.36

PATHOLOGY AND PATHOPHYSIOLOGY OF EED
In populations affected by EED, measurements of villus height or
intestinal permeability vary continuously over a wide range, but
the distributions of villus height25,37,38 and permeability39

measurements are reduced compared to populations in indus-
trialized countries. There are disturbances in multiple domains of
pathophysiology such as morphological change, malabsorption,
mucosal inflammation, microbial translocation (MT), systemic
inflammation, and changes in the microbiome.40–42 Do these
reflect multiple pathophysiological processes? Are there specific
derangements that are most clearly associated with failure of oral
vaccines or with growth failure? If specific features of pathophy-
siology can be associated with specific outcomes, then therapy
could be better targeted to the desired effect.
The hallmark of the enteropathy of EED is villus blunting, which

means that in histological sections villus height is reduced and
villus width increased (Fig. 1). There is a spectrum of morpholo-
gical change, ranging from subtle increases in lamina propria
infiltrates to total villus atrophy.25,38 It is not possible to specify an
absolute value of villus height that is normal, partly in view of the
paucity of morphometric data available from industrialized
countries free of EED.38

Increased intestinal permeability, measured by monosaccharide
and disaccharide probes, is also considered a diagnostic hallmark
of EED.39,43,44 The principle of the test is that larger sugars (such as
lactulose) cross the epithelium paracellularly, through dysfunc-
tional tight junctions, while smaller monosaccharides (such as
mannitol and rhamnose) are absorbed transcellularly and reflect
the absorptive capacity of the epithelium.45 This test does not
discriminate between opening up of the tight junctions,46,47 which
would allow only small molecules to cross the epithelium, and
larger defects such as those recently identified using confocal
laser endomicroscopy (CLE). CLE permits imaging of the leakage of
fluorescein from systemic circulation into the gut lumen. In adults
with EED, CLE identified extensive leakage into the lumen focused
at villus tips, suggesting that microerosions caused by disordered
epithelial cell shedding may be an important factor underlying
increased intestinal permeability in EED.37

Barrier failure is associated with increased MT from the lumen to
the systemic circulation. Although the correlation between the
two is not close,48 biomarkers of translocation and inflammation
did correspond across different patient groups in Zambia (Fig. 2).
MT can exacerbate chronic inflammatory states,49 including EED.50

Biomarkers of MT include: lipopolysaccharide (LPS), a component
of bacterial cell walls; the soluble LPS co-receptor CD14 (sCD14),
which is upregulated by LPS; and antibodies to the core LPS core
antigen (EndoCAb), which decrease after LPS binding (Table 2).
Multiple other biomarkers are available that measure derange-
ments in multiple domains of pathology, including permeability,
enterocyte injury, and mucosal and systemic inflammation
(Table 2). In adults with EED, intestinal permeability (as measured
by CLE) was correlated with plasma LPS concentrations.37 More-
over, MT increased pro-inflammatory cytokines such as tumor

Table 1. Commercially available oral vaccines

Vaccine type Disease Vaccine constituents Protection Commercial name

Live attenuated Typhoid S. typhi (Ty21a) 67% over 3 years Vivotif

Live attenuated Cholera V. cholera (CVD103-HgR) 80–90% Vaxchora

Live attenuated Rotavirus Attenuated virus 85–100% Rotarix

Live attenuated Rotavirus Human–bovine reassortant viruses 74% RotaTeq

Inactivated Cholera Heat-killed V. cholerae+CTB 80–90% Dukoral

Inactivated Cholera V. cholerae (Biv-WC) 90% at 10 days; protection
at later times unknown

Shanchol, Euvichol
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necrosis factor-α (TNFα), interferon-γ (INFγ), interleukin (IL)-1β, and
IL-13.
TNFα can directly modulate barrier function via regulation of

epithelial cell shedding and actin cytoskeleton via activation of
myosin light chain kinase (MLCK). Mice with constitutively active
MLCK develop chronic subclinical mucosal immune activation, as
measured by increased numbers of lamina propria CD4+ T cells
and increased production of IFN-γ and TNF-α. Despite this, mice
grew normally and did not develop spontaneous colitis, though
the severity and onset of immune-induced colitis was significantly
worse .51

MUCOSAL IMMUNOLOGY IN EED
The development of mucosal immunity after oral vaccination
depends on many immune cell interactions. Briefly, mucosal
dendritic cells (DCs) present antigen to T cells and both T cells and
DCs can stimulate B cells to mature, traffic to the intestine,
and produce secretory immunoglobulin A (sIgA). In EED, repeated
exposure to enteric pathogens is hypothesized to induce a state of
chronic immune activation at the intestinal epithelium.52 The
mucosal immune response in EED is understudied owing to safety
and ethical concerns of invasive intestinal biopsies. A single study
comparing immune infiltrates in Gambian children with EED to UK
controls identified profound alterations in the mucosal immune
system.53 Similar immune alterations in the intestinal mucosa have
also been described in adults with EED.54 Further, a recent
transcriptomic study of cells isolated from fecal samples of
children found that the 12 transcripts correlated with EED severity
were related to mucosal immune responses including:

chemokines that stimulate T cell proliferation, Fc fragments of
multiple immunoglobulin families, IFN-induced proteins, activa-
tors of neutrophils and B cells, and mediators that dampen cellular
responses to hormones.55 More detailed studies of the alterations
in immune cell populations and their impact of these oral vaccine
response in EED are important areas for future investigation.

T CELL DERANGEMENTS IN EED
Mucosal T cells are critical mediators of intestinal immunity.
Increased densities of intraepithelial (intraepithelial lymphocytes
(IELs)) and lamina propria (LP) T cell populations have been
observed in intestinal biopsies of children with EED, which was
subsequently referred to as a T cell-mediated enteropathy.53,54

Expression of CD69 and HLA-DR were increased in T cells in the
mucosa in adults in Zambia compared to South African controls,
and numbers of IELs were increased.54

Intestinal IELs
IELs constitute a large and diverse population of lymphoid cells
that reside between intestinal epithelial cells (IECs) and mediate
barrier protection and homeostasis. A study of children with EE
found elevated numbers of IELs with increased frequencies of
both CD8+ perforin and TCRγδ+ IELs compared to UK controls.53

IELs arise from distinct lineages. In EE, the increased IEL counts
could arise from increased antigenic exposure leading to
accelerated accumulation of “induced” IELs (originating from
conventional TCRαβ activated in the periphery). However, the
observation of increased TCRγδ+ cells is also of note, as this
“natural” IEL subset traffics to the gut directly upon maturation

a

b

c

d

e

Fig. 1 Hematoxylin and eosin-stained sections of small intestinal biopsies from Zambian adults with EE and children with more severe
malnutrition showing a moderate enteropathy (villus height:crypt depth <1.0) with pronounced inflammatory cell infiltrate, b total villus
atrophy with lymphoid aggregates in the lamina propria, c higher magnification of epithelial lesion with several cells in detachment and
exposure of basement membrane to the luminal stream. Imaging using confocal laser endomicroscopy37 shows d normal mucosa with all
circulating (white) fluorescein contained by the epithelial barrier, and e leakage of fluorescein into the lumen leading to opacification at the
top of the image
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and may recognize auto-antigens.56 Both subsets of IELs are not
only important for pathogen clearance, homeostasis, and tissue
repair but can also promote pathology via excessive cytotoxicity
and inflammatory responses. In celiac disease (CD), IEL-mediated
direct cytotoxic activity toward IECs increases intestinal pathol-
ogy.57–59 A critical feature of IELs is rapid T cell receptor (TCR)-
dependent and/or TCR-independent activation that can shape
downstream immune response.60,61 As such, IEL activation has the
potential directly or indirectly to shape the development of
mucosal immunity to oral vaccination, though the implications for
antigen specificity of responses are not understood. One example
of IEL participation in vaccine responses is suggested by the
recent finding that secreted factors from activated IELs upregu-
lated antiviral IFN-responsive genes in IECs and increased
resistance to norovirus infection in vitro.62 This study raises the
possibility that, in the context of EED, high numbers of activated
IELs could indirectly hinder vaccine efficacy by inducing IEC
resistance to infection with live-virus vaccines.

Regulatory and effector T cells
In EED, repeated enteric infections are hypothesized to increase T
cell recruitment and activation in the intestine. Increased T cell
activation has also been documented in Zambian adults via
expression of the markers CD69 or HLA-DR.54 Likewise, children
with EED have higher frequencies of both regulatory (transforming
growth factor-β and IL-10) and pro-inflammatory (IFN-γ and TNF-α)

cytokine-secreting cells in the LP.53 In healthy individuals, tissue
T cells were predominantly naive and regulatory in infants, with
specialized tissue-resident effector memory populations accumu-
lating with age.63,64 Tissue regulatory T (TReg) cells suppress
endogenous T cell activation and can suppress harmful inflamma-
tion and promote epithelial repair. Children with enteropathy had
4–5-fold more LP CD3+ T cells and 15–30-fold more CD25+ T cells
relative to UK controls. Of note, CD25+ cells were decreased in
children with the most severe malnutrition.53 As CD25 is
expressed by Tregs, as well as by activated T cells, a more detailed
analysis of T cell phenotype and function is needed to understand
the origin and function of CD25+ cells in EED and vaccine
response. Overall, limited histologic data suggest that increased T
cell recruitment and activation in intestinal tissue is a hallmark of
EED, and understanding the origin and function of T cell subsets in
EED will likely be helpful for understanding reduced oral
vaccination efficacy.

B CELL DERANGEMENTS
A key feature of oral vaccination is the induction of mucosal
memory responses mediated by B cells residing in gut-associated
lymphoid tissue. Children with EED had 2–3 times more B cells in
the LP compared to UK controls, whereas mature plasma cells
(syndecan-1+) were 25–30 times higher.53 In EED, unlike in CD
which otherwise has similar histology, B cell aggregates are found

a b

c d

Fig. 2 Biomarkers of microbial translocation and systemic inflammation in plasma from three groups: adults with EED, children with severe
acute malnutrition (SAM), and children with EED (data from Amadi et al.38). Biomarkers shown are a plasma lipopolysaccharide (LPS); b plasma
LPS binding protein (LBP); c plasma soluble CD14; and d plasma CD163, a marker of Kupffer cell response to microbial translocation50
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in the LP (J Turner, personal communication). Murine studies have
shown that small intestinal B cell aggregates are induced by
environmental signals, including the microbiota65; however, the
origin of B cell aggregates in EED and their impact on memory cell
formation and IgA production is still unknown.

Secretory IgA
sIgA is the major antibody at the intestinal mucosa and is a critical
component of immunity induced by oral vaccines. In oral
vaccination, mucosal DCs present antigen to T cells and both
T cells and DCs stimulate B cells to mature and produce sIgA. B
cells then enter circulation and traffic to the LP differentiating into
long-lived plasma cells that release sIgA dimers. IgA dimers can
act in the LP, in the epithelium against intracellular pathogens
during translocation, or in the intestinal lumen.
The induction of primary IgA responses and the duration of

memory responses are critical for immunity induced by oral
vaccination. IgA memory B cells can be detected in peripheral
blood following oral cholera vaccination but have a relatively short
duration in the circulation relative to IgG memory B cells.66,67 A

recent study in Bangladesh found that robust circulating IgA
responses were induced by a single dose of oral cholera vaccine in
adults and toddlers but not in infants.68 In contrast, the responses
to a second dose of cholera vaccine in infants were similar to older
children and adults. Plasma IgA peaked on day 5 after vaccination
and fecal sIgA responses were detected at day 7, suggesting that
plasma IgA decreases as memory B cells migrate to the mucosa.68

One possible explanation for the lack of a response in infants is
that natural exposure in older individuals primes an enhanced
response to the first dose of oral vaccine. We are not aware of
studies of total IgA or sIgA in EED nor have studies yet explored a
possible effect of vitamin A deficiency on vaccine efficacy through
effects on the polymeric Ig receptor as has been demonstrated
in vitro.69

The duration of intestinal IgA memory B cells induced by oral E.
coli vaccination is least 1–2 years in healthy adults.70 Recent
evidence suggests chronic pathogen exposure could impact the
development and duration of sIgA responses to oral vaccination in
EED. In a mouse model of transient bacterial colonization, a highly
specific memory IgA response was maintained even after bacterial

Table 2. Commonly used biomarkers of EED

Biomarker Source Interpretation Ref.

Intestinal absorption

None in widespread use, stable isotope approaches being evaluated

Intestinal “leak’”and permeability; tight junction disruption

Dual (or quadruple) sugar tests Differential absorption of sugars
based on size

Increased lactulose permeation in relation to monosaccharide
absorption (e.g., rhamnose, mannitol) reflects increased
permeability

39,43,

44

α-1-Antitrypsin (AAT) in stool or
duodenal aspirates

Protease inhibitor Not synthesized in the gut, AAT in stool reflects protein loss and
increased permeability. Can be increased by infection

91

Claudin-2, claudin-4, claudin -15,
zonulin

Tight junctions between
epithelial cells

Increased release into blood or urine may reflect breach of
barrier function; dysregulated in epithelial cells

37,38,

92

Enterocyte mass, turnover, or injury

Citrulline Enterocytes Correlated with enterocyte mass, surface area 93

Regenerating proteins (Reg1a and
Reg1b)

Paneth cells, intestinal crypt cells Released in response to injury. Antiapoptotic, stimulates tissue
regeneration, and cell proliferation

94

Intestinal fatty acid binding protein (I-
FABP)

Epithelial protein located at villus
tips

Short half-life in circulation, high levels indicate recent intestinal
injury

37,38

Glucagon-like peptide 2 (GLP-2) Enteroendocrine cells Hormonal response to malabsorption aimed at epithelial repair;
interpretation not yet clear

37

Microbial translocation

Lipopolysaccharide (LPS) Component of Gram-negative
bacteria

Increased during microbial translocation 50

16S rRNA gene DNA in blood Component of all prokaryotes Increased during microbial translocation 50

LPS-binding protein Released by mononuclear cells on
LPS binding

Increased during microbial translocation 50

Endotoxin core antibodies Antibody response to LPS Increased during microbial translocation 53

Mucosal inflammation

Neopterin (NEO) in stool Macrophages and dendritic cells Produced in response to IFN-γ; marker of inflammation 91

Myeloperoxidase (MPO) in stool Neutrophils Bacterial killing; marker of inflammation 91

Calprotectin in stool Neutrophils Indicator of gut damage but can be high in healthy infants 95

Kynurenine-tryptophan ratio (KTR) Indolamine 2,3-dioxygenase
activity

Immune activation, though tissue responsible for altered ratio
not yet clear

96

Systemic inflammation

Soluble CD14 (sCD14) in blood Released by mononuclear cells on
LPS binding

Soluble LPS receptor 37,38

Pro-inflammatory cytokines: (IFN-γ,
TNF-α, IL-6, IL-10)

Signaling cytokines that activate
immune cells

Inflammation 50

α-1-acid glycoprotein, C-reactive
protein (CRP), ferritin

Acute-phase proteins Inflammatory response 37
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clearance but was rapidly replaced upon exposure to another
species of bacteria.71 In the context of EED, it is plausible that
increased exposure to enteric pathogens results in faster attrition
of vaccine-induced IgA secreting cells as sIgA responses adapt to
luminal antigen exposure.
A recent study found that children with severe acute malnutri-

tion had increased concentrations of two celiac auto-antibodies:
tissue transglutaminase and deamidated gliadin peptides.38

Though within normal ranges, auto-antibody concentrations were
inversely correlated with villus height and positively correlated
with the systemic inflammatory marker LPS-binding protein. Thus
it appears that autoreactivity may exacerbate (or possibly just
reflect) mucosal pathology in EED as well as in CD.38 CD is a T cell-
mediated enteropathy with some similar histological features to
EE. An early study investigating the efficacy of OPV found
subnormal IgA responses to OPV in CD patients72; however, a
subsequent study found the opposite, with celiac patients
producing significantly more IgA than controls.73 Thus it remains
unclear whether secretory IgA production is altered more broadly
in T cell-mediated enteropathies.

DC DERANGEMENTS
To our knowledge, there are no data on DC populations in EED or
on their function. Children with severe acute malnutrition were
found to have fewer DCs than healthy children in one study from
Zambia, and fully 17% of children had anergic DCs,74 meaning
that DCs from malnourished children showed reduced HLA-DR
expression, failure of secretion of IL-12, and failure to drive T cell
proliferation. This phenomenon was associated with endotoxe-
mia.74 As endotoxemia due to MT is a dominant feature of the
pathophysiology of EED (Fig. 2), it would be reasonable to propose
that DCs may be dysfunctional in EED, but this has not been
demonstrated directly.

INNATE IMMUNE DERANGEMENTS
Innate immunity is a broad term that encompasses cellular and
soluble host defense mechanisms, which do not require
anamnestic (learned) responses. Innate immunity may be
modulated by recent exposure, often referred to as “trained
immunity.” There is little information about trained immunity in
the gut, especially in the context of EED, and this will not be
considered further here.
Cellular responses include the activity of polymorphonuclear

leucocytes (neutrophils, eosinophils, and basophils) and macro-
phages. To our knowledge there are no data on mucosal
populations of these cells in EED nor on functional capacity.
However, there is an indirect evidence for disturbances of these
cells in EED. In an analysis of the fecal transcriptome in children
with EED, several gene ontology pathways were identified that
suggest disturbed neutrophil function.55

Soluble mediators of innate defense include antimicrobial
peptides75 and C-type lectins such as mannose-binding lectin.76

Antimicrobial peptides expressed in the gut are summarized in
Table 3. There is evidence from several studies in Zambian adults
with EED that expression of Paneth cell defensins is reduced
compared to adults in the UK,77,78 but these studies have not been
conducted in other settings and the generalizability of these
findings is uncertain. Could this alteration in antimicrobial peptide
expression help explain vaccine under-performance? Intriguingly,
β-defensins appear to have adjuvant properties,79–81 but again
firm data are needed concerning their potential role in contribut-
ing to vaccine responses.

COULD ENTEROPATHY PLAUSIBLY EXPLAIN POOR ORAL
VACCINE RESPONSES?
Responses to oral RV vaccine were associated with fecal markers
of inflammation in Nicaragua.82 Vaccine responses to oral RV
vaccine were attenuated in children with malnutrition and
diarrhea in Bangladesh,83 but this was not found in an earlier
study from Brazil and Venezuela.84 More recently, the PROVIDE
study demonstrated that OPV and RV vaccine responses were
negatively impacted by EED, as measured by fecal biomarkers.85

Children with evidence of EED at the time of vaccination had
lower Rotarix® vaccine response (plasma IgA) and Rotarix®
protection from RV diarrhea than those without (Fig. 3). In
contrast, EED did not affect the response to tetanus, pertussis,
diphtheria, Haemophilus influenza type B, or measles vaccines
(Fig. 3). Biomarkers of EED were also negatively associated with
linear and ponderal growth to age 1 year. Children with EED also
had lower serum-neutralizing antibody responses to OPV (Fig. 3).85

Further work suggests that non-polio enterovirus and Campylo-
bacter infection at the time of vaccination may have mediated the
poor responsiveness.86

A study of oral cholera vaccine efficacy in older children with
EED in Bangladesh found contradictory associations between
plasma and fecal biomarkers of EED and vaccine responses. In this
study, fecal myeloperoxidase (MPO) and plasma sCD14 were
positively associated with the development of plasma antibody
responses to vaccination, whereas fecal AAT and plasma EndoCab
were negatively associated with cholera toxin-specific T cell
responses, including IL-10 production.87

In a large (n= 754) trial in India of azithromycin given from 11
to 14 days before vaccination, the intervention had no effect on
OPV responses.29 It did, however, reduce fecal MPO by 26% and
α1-antitrypsin by 19%, suggesting that enteropathy and vaccine
responses can be dissociated.
In a randomized controlled trial of a synbiotic in India, the

combination of Lactobacillus plantarum plus fructo-
oligosaccharide was found to reduce sepsis and death in Indian
infants.88 As the intervention has its effects in the gut, it is likely
that the synbiotic has its effects on reducing MT, perhaps by

Table 3. Antimicrobial peptides in the gut

Peptide Gene Cellular source Alteration in EED Ref.

Human defensin 5 DEFA5 Paneth cells Reduced 77

Human defensin 6 DEFA6 Paneth cells Reduced 77

Lysozyme LYZ Paneth cells Unknown but increased in celiac and inflammatory bowel diseases 97

α1-antitrypsin SERPINA1 Paneth cells Unknown —

hBD1 DEFB1 Enterocytes Unknown —

hBD2 DEFB4 Enterocytes Reduced 78

hBD3 DEF103B Enterocytes Unknown —

LL37 CAMP Enterocytes Reduced 78
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enhancing mucosal healing. Such approaches could be used to
test whether reducing EE could improve oral vaccine responses.
Other interventions designed to manipulate the microbiota,
including milk oligosaccharides,89 could be evaluated for effects
on vaccine responses.
Multiple studies have recently reported inconsistent associa-

tions of several EED biomarkers with oral vaccine response. One
hypothesis put forward to explain contradictory associations is
that an amplified pro-inflammatory response in the mucosa due
to EED may increase the immunogenicity of oral vaccines. At this
moment, the interpretation of conflicting results from association
studies requires an understanding of the relationship with
biomarkers of EED, biomarkers of oral vaccine response, and
protection from infection. As measuring protection from natural
infection is cumbersome to measure, many studies use serum

antibody titers to assess response to oral vaccination though
it is unclear if this is a suitable proxy for the development of
mucosal responses and protection from natural infection.
Additionally, recent studies have shown that the timing of
peripheral antibody response is critical.
A promising avenue to complement ongoing clinical work with

mechanistic studies is the newly developed murine model of EED. The
authors found that both malnutrition and specific microbial exposure
was required to induce features of human EED including: villous
blunting, growth stunting, increased intestinal permeability, and
intestinal inflammation. In this model, malnutrition alone altered the
intestinal microbiota and increased intestinal permeability, suggesting
that undernutrition primes the development of EED by altering the
mucosal environment.90 This model offers a way to test specific
interventions designed to reverse EED or enhance oral vaccine efficacy.

Fig. 3 Relationship of EED and poor performance of oral vaccines against polio and rotavirus. At the time of vaccination, biomarkers of
systemic and gut inflammation, micronutrients, and maternal health were measured and correlated with vaccine response. Heatmap of FDR
values from univariate linear regression analysis. Biomarkers with a FDR value of 0.2 or below for at least one outcome are depicted on the
heatmap. Markers are grouped according to hierarchical cluster results. A positive correlation is indicated by a blue box, and a negative
correlation is indicated by a red box. Color patterns reveal associations of biomarkers with outcomes, indicating an improvement or
worsening of response. An FDR value close to 0 indicates a strong correlation. Color intensity is indicative of FDR value: darker colors are closer
to 0. Reprinted from Naylor et al., with permission from EBiomedicine 85 Fecal biomarkers were used to measure EE surrounding the time of
vaccination. Myeloperoxidase, calprotectin, and neopterin measured enteric inflammation, and α-1 anti-trypsin and reg1B were chosen to
represent compromised intestinal epithelial integrity. Systemic inflammation, socioeconomic status, and maternal health were also measured.
Nutritional status was assessed by anthropometry and micronutrient levels. Systemic inflammation was tested with inflammatory and
regulatory cytokines, acute-phase proteins (CRP, ferritin), and sCD14. The primary outcomes were serum-neutralizing antibody titers to OPV,
serum titers to rotavirus IgA, and rotavirus vaccine success. EED was defined noninvasively through biomarkers following a cluster analysis.85

HAZ height-for-age z score, WHZ weight-for-height z score, WAZ weight-for-age z score, all defined by comparison to World Health
Organization reference growth curves.
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CONCLUSION
While there is important evidence from ecological studies that EED
and oral vaccine failure are associated, rigorous proof in multiple
populations is lacking. If effective therapy were available for any of
the domains of pathophysiology of EED, it would be possible to
demonstrate that such therapy improves responses to oral
vaccines. Such therapy is not yet available, but it is likely that it
would also improve child growth and possibly micronutrient
status. Immunological understanding of EED is also still at an
early stage, with much of it dependent on a very small number of
key studies. Current studies will help determine whether the
immune alterations in EED are the same as those that impair oral
vaccine responses. Evidence from published studies does not give
a clear answer. That azithromycin can ameliorate EED, while
having no impact on OPV responses, casts doubt on EED being an
explanation for poor vaccine responses, but further work is
needed, perhaps using prebiotics, probiotics or synbiotics or other
tools to heal the mucosal lesion or modulate the microbiota.
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