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Abstract 

RECQL4 is a gene that encodes a 1208 amino acid protein. RECQL4 protein is required during 

DNA replication initiation and DNA end resection. A lack of RECQL4 is therefore associated 

with a decrease in DNA damage repair. There are three unrelated autosomal recessive 

diseases that are linked with mutations in RECQL4. Rothmund Thomson Syndrome is rare 

disorder which has documented mutations within RECQL4 which has been linked to an 

increased tendency to develop osteosarcomas.  

To study the effect of RECQL4 depletion, shRNA knockdowns, ASC52Telo cells, osteo-

differentiated cells and osteo-differentiated cells in long term PHA-767491 treatment were 

subjected to a series of experiments. The trilineage differentiation capability, growth 

characteristics, expression of cell proliferation and bone formation markers, drug sensitivity 

and chromosomal instability was tested for each of the cell lines. These results could be used 

to identify any differences in expressions and behaviours between the RECQL4 depleted cells 

and the control cells. 

All the cell lines were able to differentiate into adipocytes and osteoblasts, with p44 pLK0.1 

and p44 shRQ-9 having a decreased adipocyte differentiation in comparison to the others. No 

significant difference was observed in the growth assay between the cells in which RECQL4 

was depleted and their controls. The p44 shRQ-9 cells showed the lowest foci count when 

tested for 53BP expression but the highest Ki67 expression. There were no significant results 

between the RECQL4 depleted cells and their controls when looking at marker gene 

expressions. The drug sensitivity assays also show no significant differences however p14 

shRQ-10 and P44 shRQ-10 appear less sensitive in the mid-range concentrations. The 

chromosomal analysis showed that OD+PHA, p44 shRQ-9 and p44 shRQ-10 have an increased 

degree of aneuploidy and tetraploid cells.   
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1. Introduction 

1.1 Mesenchymal Stem cells 

Evidence was first provided by Friedenstein et al. (1970) that a population of hematopoietic 

stem cells (HSCs) and a rare population of plastic-adherent cells was present in the bone 

marrow (BM). During the 1980’s it was shown that mesenchymal stem cells (MSCs) had the 

capability of differentiating to osteoblasts, chondrocytes and adipocytes (Williams and Hare, 

2011). Since then MSCs have been shown to be present in a variety of foetal and adult tissues 

including cord blood, amniotic fluid, foetal blood and, in some cases, adult peripheral blood. 

Many researchers have had a keen interest in MSCs due to their therapeutic potential in tissue 

repair and immune modulation (Roberts, 2004). Owing to their ease of isolation, expansion 

and their multi-lineage differentiation ability, MSCs are applied in a range of experimental and 

medical applications. Some examples include the enhancement of HSC engraftment, the 

amelioration of acute graft-versus-host disease and regenerative medicine approaches, in 

particular for bone and cartilage ((Xiao et al., 2013) 

1.1.1 MSC defining Characteristics 

A universal definition of an MSC is difficult to decide on since there are no unique 

unambiguous cell surface markers to distinguish MSCs from HSCs. When undifferentiated, the 

shape of MSCs resemble the spindle shape of fibroblasts making them hard to distinguish 

(Williams and Hare, 2011). Stem cells have traditionally been defined by their multipotency 

and self-renewal capability (Nombela-Arrieta et al., 2011).  Some researchers are unsure 

whether MSCs are true stem cells or multipotent precursor cells. A standard criteria has been 

developed by the International Society of Cellular Therapy that defines MSCs by three 

characteristics: “1) adherence to plastic in standard culture conditions, 2) expression of CD105, 

CD73  and CD90 and no expression of CD45, CD34, CD14, CD11b, CD79b, CD19 and HLA-DR 

and 3) capacity to differentiate into osteoblasts, chondroblasts and adipocytes in vitro, termed 

trilineage differentiation potential” (Xiao et al., 2013).  

Phenotypically, MSCs express many different markers, although none of these are specific to 

MSCs. However, cell surface CD markers can be used to distinguish between MSCs and HSCs. 

For example MSCs lack the haematopoietic markers CD34, CD45, CD14, CD11 and HLA-DR. 

MSCs can also express markers including myofibroblasts, neurons and transforming growth 

factor-β (TGF-beta) (Ding et al., 2011). As well as the adhesion molecules mentioned in the 

standard criteria, MSCs also express some cytokine receptors (e.g. IL-1R, TNF-αR) and some 

stromal cell markers (e.g. SH-2, SH-3 and SH-4) (Roberts, 2004, Chamberlain et al., 2007).  
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1.1.2 Sources of MSCs 

MSCs can be obtained from various tissues including the umbilical cord, endometrial polyps, 

bone marrow, peripheral blood, skeletal muscle and adipose tissue (Ding et al., 2011, Wagner 

et al., 2005). These are ideal sources due to the quantity that can be obtained and ease of 

harvesting the cells (Ding et al., 2011). The most researched and most accessible source of 

MSCs is the BM, even though the number of cells present are low in frequency (0.01-0.0001% 

of nucleated cells in BM) (Roberts, 2004). Although BM represents the main source of MSCs, 

the number of BM MSCs available decreases with age and can be affected when there is a high 

degree of viral infection. Obtaining BM MSCs from a patient is also a highly invasive procedure, 

making it necessary to look for alternative sources of MSCs (Romanov et al., 2003, Kern et al., 

2006).  

Recently it has been shown that stem cells can be derived from the umbilical cord matrix and 

blood. Umbilical cord blood (UCB) is a much less invasive method that causes no harm to the 

mother of the infant (Kern et al., 2006). It is established that UCB is a rich source of HSCs, but 

the ability to establish MSC cultures from UCB is controversial. Some studies have proven to 

isolate MSCs from UCB at a sufficient yield to use in clinical application, but other studies have 

clearly failed (Zeddou et al., 2010). Researchers from Kansas State University concluded that 

cells from the matrix of the umbilical cord (UCM) had stem cell properties and thus could 

prove a rich source of primitive cells (Mitchell et al., 2003), with Zeddou et al. (2010) 

confirming it is possible to isolate MSCs from UCM in their experiment. 

Most of the evidence obtained so far suggests the MSCs are not present in the peripheral 

blood of healthy adults, only in specific circumstances. These can include patients with 

malignant diseases and healthy women during and after pregnancy (Roberts, 2004). There is, 

however, evidence that MSCs can be collected from menstrual blood (Ding et al., 2011). 

Around 400 menstrual cycles occur in each women’s reproductive years, with the average 

blood loss each menstruation around 35ml (Ding et al., 2011, Toyoda et al., 2007). Menstrual 

blood is usually discarded but could represent a new source of human MSCs to be used in 

regenerative medicine (Ding et al., 2011). Many of MSCs collected from this source have 

myogenic differentiation potential, especially towards forming cardiac muscle cells (Toyoda et 

al., 2007).  

Another alternative source of stem cells, which is less invasive and available in larger 

quantities, is adipose tissue (Kern et al., 2006). With the current increase in obesity across the 

world, subcutaneous adipose tissue is easily accessible and in abundance. Thousands of 
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liposuction surgeries are carried out each year and the lipoaspirate tissue is discarded (Bunnell 

et al., 2008). In the past a variety of names have been used to try and describe that plastic 

adherent cell population that can be isolated from adipose tissue. To help avoid confusion, the 

International Fat Applied Technology Society adopted the term “adipose-derived stem cells” 

(ASCs) to describe this cell population (Bunnell et al., 2008). ASCs are pluripotent cells with 

characteristics similar to BM-derived MSCs. Studies have shown that ASCs contain similar 

surface markers and gene profiling to the MSCs found in BM (Kim et al., 2007). 

1.1.3 Differentiation of MSCs 

As mentioned before, MSCs have the ability to differentiate into a variety of lineages of 

mesodermal origin. Their tri-lineage potential to differentiate into bone, cartilage and fat in 

vitro can be used to further help identify MSC populations (Ding et al., 2011).  

To promote adipogenesis differentiation, MSCs are induced through incubation with 

dexamethasone, insulin, isobutyl-methylxanthine and indomethacin for a period of 2-3 weeks. 

An accumulation of lipid-rich vacuoles within the cells can be seen which express peroxisome 

proliferation-activated receptor ƴ2, lipoprotein lipase and aP2: a fatty acid-binding protein 

(Pittenger et al., 1999). These lipid vacuoles can be assayed histologically by staining lipid 

droplets in cells using Oil Red O solution (Figure 1A) (Ding et al., 2011). These adipocytes were 

shown to remain healthy for at least 3 months in culture (Pittenger et al., 1999).  

Osteogenic differentiation has been widely induced in vitro by incubating a confluent 

monolayer of MSCs with a mixture of dexamethasone, β-glycerophosphate and ascorbic acid 

phosphate for a period of 2-3 weeks (Chamberlain et al., 2007). A study by Pittenger et al. 

(1999) showed the isolated MSCs formed aggregates which could be viewed by staining with 

Alizarin Red (Figure 1B). Any osteo-differentiation MSCs stain a bright orange-red colour. Their 

quantitative assays also showed that there was a 4-10 fold increase in alkaline phosphatase 

activity and that after 1 week of incubation there was evidence of calcium accumulation 

(Pittenger et al., 1999). 

Chondrogenic differentiation is promoted through the culturing of MSCs in the presence of 

TGF-β. Histological analysis using toluidine blue indicated the presence of glycosaminoglycans 

within the extracellular matrix (Chamberlain et al., 2007). The presence of glycosaminoglycans 

can also be shown with Alcian Blue staining (Figure 1C). 
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Figure 1. Trilineage potential of MSCs. Differentiation of MSCs into A) Adipocytes stained with Oil Red O, B) 

Osteoblasts stained with Alizarin Red and C) Chondrocytes stained with Alcian Blue (Dolley-Sonneville et al., 2013). 

Previous studies have also demonstrated that BM-derived MSCs have the ability to 

differentiate into myoblasts that can fuse into rhythmically beating myotubes, after treatment 

with 5-azacytidine and amphotericin B (Wakitani et al., 1995).  

All these differentiation events are accompanied by changes in gene expression and are tightly 

regulated by signalling events and transcription factors (Ding et al., 2011). 

1.1.3.1 Regulation of differentiation 

There are two main molecular pathways that describe the regulation of the differentiation of 

MSCs into cartilage and bone: the WNT canonical pathway and the TGF-β superfamily pathway 

(Augello and De Bari, 2010). It is likely that many different growth factors will interact with 

these pathways to help control MSC differentiation (Williams and Hare, 2011). 

The TGF-β pathway is involved in skeletal growth and the regulation of the chondrogenic 

differentiation of MSCs. TGF-β3 promotes chondrogenic differentiation in MSCs via several 

intracellular cascades, including the SMAD proteins, mitogen-activated protein kinases and 

extracellular-signal regulated kinases (Williams and Hare, 2011).  

WNT glycoproteins are soluble glycoproteins that activate receptor complexes composed of 

Lrp5 and Lrp6 proteins, which induces a series of intracellular events that monitor cell 

differentiation and proliferation (Westendorf et al., 2004). This WNT pathway has been shown 

to play an important role during skeletogenesis by promoting osteoblast proliferation and 

suppressing chondrocyte formation (Westendorf et al., 2004). WNT signalling leads to the 

stimulation of four different signalling pathways, the canonical pathway being the best 

characterised (Etheridge et al., 2004). This pathway regulates β-catenin stability, an integral 

part in transducing WNT signals to the nucleus (Westendorf et al., 2004). Disruptive mutations 

in the LRP5 receptor have been associated with a decreased bone mass and decreased 

osteoblast proliferation, whereas activating mutations in LRP5 can result in a high bone-mass 
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phenotype and increased osteoblast proliferation (Etheridge et al., 2004). There are a number 

of WNT ligands and receptors expressed on MSCs, each controlling MSC differentiation. For 

example WNT3A promotes undifferentiated MSC proliferation and suppresses osteogenic 

differentiation (Boland et al., 2004).  

 

Figure 2. Molecular regulation of MSC differentiation. WNT and TGF-β signalling pathways that regulate 

differentiation of MSCs (Adapted from (Williams and Hare, 2011) using PowerPoint). 

One of the genes shown to be a target of β-catenin is runt-related transcription factor 2 

(RUNX2), resulting in the stimulation of bone formation (Gaur et al., 2005). RUNX2 plays an 

essential role in osteoblast differentiation and during the later stages of chondrocyte 

differentiation. RUNX2 has been shown to upregulate osteoblast-related genes such as ALP, 

BGLAP, OCN, BSP and COL1A1 (Florencio-Silva et al., 2015). Another transcription factor 

involved in the regulation of bone formation and osteoblast differentiation is zinc finger 

transcription factor Osterix , which has been shown to be regulated by RUNX2 (Nishio et al., 

2006).  RUNX2 is the first transcription factor required to determine the osteoblast lineage, 

with canonical WNT signalling and Osterix further directing the outcome by blocking their 

differentiation into chondrocytes (Komori, 2008). 

1.1.4 Therapeutic uses of MSCs 

Due to their tri-lineage potential, ease of expansion and isolation, MSCs have therapeutic 

potential in a variety of medical applications. The ability of MSCs to maintain pluripotency 

after prolonged culturing offers the use of cultured MSCs in autologous and allogeneic 

transplants. Other medical applications that have seen the use of MSCs are in cardiac repair, 
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reducing graft-versus-host disease, enhancing marrow engraftment and in generating 

connective tissue elements that may be abnormal (Ng et al., 2008). The immunological 

characteristics of MSCs further enhance their therapeutic appeal (Javazon et al., 2004). 

1.1.5 Immunological characteristics of MSCs 

The immunological phenotype of MSCs is widely described as MHC I+, MHC II-, CD40-, CD80- 

and CD86-. This phenotype is regarded as non-immunogenic and therefore when used in 

transplantations, the allogeneic host may not require the use of immunosuppression. It is 

possible that MHC class I may activate T cells, but due to the absence of any costimulatory 

modules there would be no secondary signal (Javazon et al., 2004). There have been multiple 

studies that suggest MSCs have immunosuppressive properties, in particular that MSCs have 

the ability to modulate many T-cell functions, including cell activation. However, this 

suppression is independent of any MHC matching between the T cells and MSCs (Chamberlain 

et al., 2007).  

1.1.6 hTERT immortalisation of MSCs 

Human cell lines that have been derived from non-cancerous tissues have a finite lifespan 

when cultured under laboratory conditions meaning senescence occurs after a limited number 

of divisions. This limitation to the cell lines has proved to be a major obstacle in previous 

experiments and it also limited their use as therapeutic agents. Multiple forms of senescence 

have been shown to exist with telomere-controlled senescence proving a common form (Lee 

et al., 2004). The onset of telomere senescence is shown through the shortening of the 

telomeres. Telomeres shorten each time cell division occurs, providing a “molecular clock” for 

cell lines (Bernadotte et al., 2016).  This shortening ultimately leads to mortality stage 1 (M1) 

and stage 2 (M2). It has been shown that in cells of renewal tissues a DNA polymerase, named 

telomerase, is present and has the ability to synthesise telomeric repeats, which compensates 

for the end replication problem that is caused by the shortening of telomeres (Bernadotte et 

al., 2016). Telomerase is made up of two core components: human Telomerase Reverse 

Transcriptase (hTERT) and human Telomerase RNA (hTR). The first core component is involved 

in providing catalytic activity, and its expression is normally suppressed in human somatic cells. 

When expressed exogenously it can sufficiently reconstitute telomerase activity, preserving 

the length of the telomeres and ultimately preventing the onset of M1 and M2 (Lee et al., 

2004).  
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1.1.7 Osteoblasts to Osteocytes  

Osteoblasts are defined as bone forming cells that originated from MSCs. They are found along 

the bone surface and make up 4-6% of the composition of bone cells (Florencio-Silva et al., 

2015). Osteoblast cells secrete osteoid, a non-mineralised bone matrix, and become 

incorporated in mineralised bone matrix as osteocytes (Franz-Odendaal et al., 2006). 

Osteocytes comprise 90-95% of all bone cells, making them undoubtedly the most abundant 

cellular component of mammalian bones (Feng et al., 2006, Franz-Odendaal et al., 2006). The 

morphology of osteocytes depends on the type of bone. For example, osteocytes found in the 

trabecular bone are more rounded in appearance in comparison to those found in cortical 

bone. It is suggested that osteocytes on average have a half -life of around 25 years, much 

greater than the average lifespan of an osteoblasts which is only three months. (Florencio-Silva 

et al., 2015). Osteocytes have the ability to communicate not only with one another, but with 

all cells present at the bone surface through a meshwork of cell processes in the bone matrix 

that run through canaliculi (Palumbo et al., 1990). This ensures that all cells involved in the 

formation of bone remain connected during all stages (Franz-Odendaal et al., 2006)  

There are three different modes of ossification that transform osteoblasts into osteocytes; 

intramembranous, perichondral and endochondral. The mode used is dependent on what type 

of bone is being generated (woven or lamellar bone), the location of bone formation and the 

age/gender of the individual. Intramembranous bone formation forms membrane bones and 

occurs when bone is formed without the replacement of a cartilaginous model. In the presence 

of a cartilaginous precursor, perichondral ossification is the most common mode of bone 

formation. Endochondral ossification is normally seen in long bones and involves a 

cartilaginous template that is either remodelled or is replaced by bone through a series of co-

ordinated steps (Franz-Odendaal et al., 2006). 

There are four different fates for osteoblasts at the end of a bone-forming phase. They can 

become osteocytes embedded in the bone, become bone lining cells, undergo apoptosis or 

occasionally transdifferentiate into cells that deposit chondroid bone (Franz-Odendaal et al., 

2006). Parfitt (1990) reported that 65% of osteoblasts in cancellous bone undergo apoptosis 

and around 30% undergo osteocyte transformation.  

1.2 Osteosarcoma- Tumours of the bone 

Osteosarcoma is the most prevalent malignant bone tumour which is presumed to derive from 

cells of an osteoblastic lineage. It is characterised by the production of immature osteoid by 

neoplastic cells (Poos et al., 2015). Osteosarcoma most often presents itself in the femur (42% 
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with 75% occurring in the distal femur), humerus (10% with 90% in the proximal humerus) or 

the tibia (19% with 80% occurring in the proximal tibia) of patients. The age distribution of 

osteosarcoma is defined as bimodal, the first peak being during adolescence and the second 

peak during late adulthood (Ottaviani and Jaffe, 2010). The first peak normally occurs in the 

pubertal growth spurt in 10-14 year olds. The deaths due to osteosarcoma represent 8.9% of 

childhood and adolescent cancer deaths. The average 10 year survival rate is currently just 

over 65.8%, but only 24% in patients with formed metastases at the time of presentation 

(Duchman et al., 2015). Elderly patients have the poorest survival chances (Ottaviani and Jaffe, 

2010). There are many factors affecting the prognosis of osteosarcoma, a few of the factors 

being response to chemotherapy, presence of metastases, tumour site and tumour size (Clark 

et al., 2008). The current therapy to manage osteosarcoma consists of preoperative 

chemotherapy, complete surgical resection and postoperative chemotherapy. Owing to the 

advances in imaging techniques and the positive effect of the use of preoperative 

chemotherapy, amputation of the affected limb is rarely required as surgery can normally be 

limb-sparing (Luetke et al., 2014). 

Molecular markers and pathways that help contribute to the development of osteosarcoma 

have been a recent area of research to determine their significance as clinically predictive 

tools. These markers can be useful in predicting a patient’s response to chemotherapy, the 

overall prognosis and developing therapeutic agents to help with the treatment (Clark et al., 

2008). 

1.2.1 Molecular markers in osteosarcoma 

The current standard prognostic markers carry a level of inaccuracy and bear a number of 

limitations. This has presented the need for quantitative measures to help improve treatment 

planning. The table below outlines some of the molecular factors that have been associated 

with the prognosis of osteosarcoma (Clark et al., 2008). 

Table 1. Molecular factors shown to be associated with the prognosis of osteosarcoma. Modified from Clark et al. 

(2008). 

Factor Role in osteosarcoma Level present 

in 

osteosarcoma 

Any 

correlation 

with 

prognosis? 

Potential for 

therapeutic 

use 

VEGF Angiogenesis ↑ Controversial Yes 
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MMP2, 

MMP9 

Extra-cellular matrix 

invasion 

↑ Correlation Yes, positive 

results from 

other cancers 

PLAU/PLAUR Increases plasmin. Pro 

invasion 

↑ Correlation Yes, reduced 

invasion when 

regulated 

P-glycoprotein Drug resistance ↑ Correlation Undetermined 

CXCR4 Chemotaxis, organ 

specific metastasis 

↑ Correlation Yes 

TP53 Cell cycle control ↓/mutated Correlation Undetermined 

ERBB2 Cell signalling, 

proliferation 

Mixed results Controversial Undetermined 

Survivin Inhibits apoptosis ↑ Correlation Undetermined 

HLA class I Absence allows 

immune system 

invasion 

↓ Correlation Undetermined 

Ezrin Cell signalling, 

metastasis 

↑ Correlation Yes 

RB1 Tumour suppressor ↓/mutated Correlation Undetermined 

FOS Transcription ↑ Indirect 

correlation 

Undetermined 

 

1.2.2 Genomic instability in osteosarcoma 

Genomic instability has been shown to play a critical role in the development and progression 

of cancer, and has also shown to have implications on the aging progress (Petkovic et al., 

2005). Osteosarcoma exhibits a complex karyotype due to the high levels of genomic 

instability, particularly chromosomal instabilities (Poos et al., 2015). Over the years, many 

cytogenetic studies and genomic analyses of osteosarcomas have been carried out using 

multiple techniques such as karyotyping, comparative genomic hybridisations, quantitative 

PCR and many others. More recently, studies utilising single-nucleotide polymorphisms (SNPs) 

have been carried out to understand more about osteosarcoma genomics. There is still a lot of 

uncertainty around the genetic etiology, but there are some consistent findings. Many studies 

have shown that there is a higher prevalence to develop osteosarcoma in individuals with 

familial Li-Fraumeni syndrome (TP53 inactivation), Rothmund-Thomson syndrome (RECQL4 
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inactivation), Bloom syndrome (BLM inactivation) and Werner syndrome (WRN inactivation). 

The genes linked with these latter three syndromes encode DNA helicases of the RecQ family, 

involved in the maintenance of DNA (Martin et al., 2012). 

Osteosarcoma is susceptible to aneuploidy with a large number of chromosomal alterations 

being present (Nishijo et al., 2004). Previous cytogenic analysis of the cancerous cells in 

osteosarcoma has shown a clear change in the number of chromosomes and a tendency to 

develop structural chromosomal aberrations. (Al-Romaih et al., 2003). There are two subtypes 

of chromosomal instability (CIN): numerical CIN and structural CIN. The processes resulting in 

numerical CIN are those that result in copy number alterations. It is evident in polyploidy 

which can be caused by errors in mitosis, deletions, amplifications, translocations and 

aneuploidy. Structural CIN normally results from ineffective DNA damage response 

mechanisms induced by genotoxic insults, replication errors that can lead to chromosomal 

breakages and genomic rearrangements.  

1.2.3 Mutations linked with osteosarcoma 

The pathogenesis of osteosarcoma has previously been linked to mutations in several genes 

including RB1 and TP53, genes important for mitotic checkpoints (Cao et al., 2005, Maire et al., 

2009). It has also been shown that there is a significant correlation between the mutation of 

TP53 and increased levels of genomic instability in osteosarcoma, while studies involving RB1 

mutation show a contribution to the loss of heterozygosity in mice (Overholtzer et al., 2003, 

Coschi et al., 2010). A study by Maire et al. (2009) of 18 osteosarcoma cases showed a link 

between the overexpression of RECQL4, a gene that encodes a DNA helicase, and structural 

CIN. However, there are many studies suggesting other genes that may contribute to the 

development of osteosarcoma.  

1.3 DNA damage and repair: the role of DNA helicases 

During DNA replication, recombination and repair double stranded DNA must become partially 

unwound to form single stranded DNA intermediates (Lohman, 1993). DNA helicases are 

ubiquitous enzymes responsible for unwinding double stranded DNA and are involved in many 

of the cells basic cellular processes (Wang et al., 2003). DNA helicases utilise the energy 

produced from the hydrolysis of ATP to play an important role in DNA metabolism, 

participating in replication, transcription, repair and chromatin organisation (Croteau et al., 

2012, Mohaghegh and Hickson, 2001).  It is possible that any interruptions to the function of 

these helicases could reduce genomic stability resulting in an increased chance of 

tumorigenesis (Wang et al., 2003).  
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1.3.1 RecQ family helicases 

Helicases of the RecQ family play a critical role in ensuring efficient repair of DNA damage. 

RecQ helicases are members the SF2 superfamily involved in the resolution of DNA structure 

and travel in a 3’-5’ direction on single stranded DNA (Bernstein et al., 2010).   

There are five known RecQ homologues in humans and germ-line mutations in three of these 

are linked with premature aging and/or cancer predisposition (Bachrati and Hickson, 2003).  

RecQ proteins contain many different structural domains with all containing a core helicase 

domain. WRN, BLM and RECQ1 contain a helicase and RNAse D C-terminal (HRDC) and nuclear 

localisation sequences and all except RECQL4 contain a RecQ C-terminal (RQC) domain. It is 

thought that the HRDC and RQC domains are involved in the mediation of interactions with 

nucleic acids and other proteins. All the RecQ helicases except RECQL5 contain an acidic 

region, which enables protein-protein interactions. WRN is the only human RecQ protein that 

contains an exonuclease domain (Figure 3) (Bernstein et al., 2010).  

 

Figure 3. The structural domains of each member of the human RecQ helicases. Adapted from Bernstein et al. 

(2010). 

RecQ helicases are also important at various steps during DNA replication. The absence of 

RecQ helicase activity can result in stalled or collapsed replication forks, which requires 

repairing in order to prevent double strand breaks (DSBs). RecQ helicases can help the 

association of polymerases with the replication fork and unwind any DNA structures that could 

ultimately lead to replication fork stalling. 

1.3.2 RECQL4 

The RECQL4 gene encodes an 1208 amino acid protein and is located on human chromosome 

8q24.3 (Kitao et al., 1999, Wang et al., 2003). Although RECQL4 displays many domain 
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characteristics of the RecQ family, it lacks some features such as the domains that are used in 

DNA binding. Many previous experiments have shown that RECQL4 is required to assemble the 

machinery used in DNA replication initiation (Sangrithi et al., 2005). A study by Im et al. (2015) 

showed that RECQL4 is required during DNA replication initiation for Mcm10 and Ctf4 to 

associate with replication origins. Mcm10 and Ctf4 are crucial parts of the pre-replication 

complex and they are responsible in the recruitment of RECQL4 into the pre-replication 

complex to subsequently initiating replication. A lack of RECQL4 would prevent DNA 

replication initiation from occurring.  
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Figure 4. Schematic diagram showing the assembly of the pre-replication complex. (Adapted by 
Csanad Bachrati from (Diffley, 2004, Labib, 2010, Symeonidou et al., 2012). 
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RECQL4 has been shown to have intrinsic ATPase activity and also single stranded DNA 

annealing activity (Singh et al., 2010). A study by (Lu et al., 2016)) identified a role for RECQL4 

in DNA end resection, an essential step of homologous recombination dependent DNA double 

strand break repair. When a depletion of RECQL4 is seen, there is a subsequent reduction in 

homologous recombination mediated repair and end resection. An interaction is seen between 

RECQL4 and MRE11-RAD50-NBS1 (MRN), which identifies DSBs and initiates DNA end resection 

with the recruitment of CtIP. RECQL4 is also seen directly interacting with CtIP at DSBs via its 

N-terminal domain, recruiting CtIP to the MRN complex (Lu et al., 2016).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.3.3 DNA damage 

DNA damage occurs in many different forms and can result from defects in any part of DNA 

metabolism. In response to DNA damage, cells have developed a range of pathways to arrest 

the cell cycle and induce DNA repair (Mohaghegh and Hickson, 2001). Mutations can 

frequently occur in DNA repair genes, which results in genome destabilisation, consequently 

causing an increase in mutations at other loci. The maintenance of genomic stability is 

Figure 5. The role of RECQL4 in DSB repair. Adapted from Lu et al. (2016). 
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important in the prevention of cancer due to the importance of integrity of the proto-

oncogenes and tumour suppressor genes. This maintenance aims to eliminate spontaneous 

DNA damage through intrinsic errors in DNA metabolism and through DNA reactive agents 

(Mohaghegh and Hickson, 2001). 

One form of DNA damage is double strand breaks (DSBs). These can be generated through 

exogenous stress and programmed recombination events (Lu et al., 2016). They occur when 

the sugar-phosphate backbone of both DNA strands are broken in a close proximity allowing 

the dissociation of the helix into two molecules (Aparicio et al., 2014). DSBs can occur 

accidentally during normal metabolism or because of the presence of DNA-damaging agents. It 

is important that these DSBs are repaired in order to maintain genome integrity and prevent 

chromosome rearrangements or cell death (Symington, 2014). There are two main pathways 

normally used to repair DSBs: homologous recombination (HR) and non-homologous end 

joining (NHEJ) (Aparicio et al., 2014). HR-dependent double strand break repair is on the most 

part error free. This method of repair requires either a sister or non-sister chromatid as a 

template and is only active during G2 and S phases (Lu et al., 2016). Initiation of HR-dependent 

double strand break repair is by the 5’ end resection of DSBs, generating 3’ single strand DNA 

(ssDNA) tails. These subsequently become coated in RPA, an ssDNA binding protein. RAD52 

then recruits RAD51 to replace RPA and promote strand invasion leading to D loop formation 

(Bernstein et al., 2010). This leads to repair synthesis, ligation of the ends and the 

dissolution/resolution of Holliday junctions. On the other hand, NHEJ is error prone but is 

active during all phases of the cell cycle and DNA template-independent (Lu et al., 2016).  
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Figure 6. Homologous recombination. A simplified view of the execution step of homologous recombination repair 
of double-stranded DNA breaks to indicate the position and role of proteins used as functional markers (Created by 

Csanad Bachrati). 

1.3.4 Genotoxic insult to cells 

Many common clinical drugs have cytotoxic effects on cells resulting in DNA damage and can 

result in structural CINs. When treated with these drugs cells can normally rescue themselves 

from the DNA damage. If the cells are RECQL4 deficient then end resection doesn’t occur, 

preventing homologous recombination.  

Bleomycin is an anticancer drug comprising of complex of water-soluble peptides which are 

extracted from Streptomyces verticillatus. It is considered an effective agent in the control of 

numerous human cancers (Adamson and Bowden, 1974). The use of bleomycin can affect 

many different cellular pathways, but the cause of its cytotoxic effect is through its ability to 

bind and cleave DNA. A number of studies also report that bleomycin produces reactive 

oxygen radicals, which when released can result in the expression of cytokines, subsequently 

inducing chromosomal aberrations, DNA strand breaks and DNA damage (Mishra et al., 2000).  

Another cytotoxic agent is Mitomycin C, is a bifunctional DNA alkylating agent that is used in 

cancer treatment. Mitomycin C induces the cross-linking of complementary strands of DNA, 

and it is these cross-links that are considered the critical cytotoxic lesions produced from its 

use (Palom et al., 2002).  
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Camptothecin is a strong anti-tumour drug that inhibits DNA and RNA synthesis resulting in 

fragmentation of cellular DNA. Its intracellular target is topoisomerase I, an enzyme that plays 

a key role in DNA replication, transcription and segregation. Camptothecin binds to both the 

topoisomerase and the DNA complex, forming a ternary complex. This binding prevents the re-

ligation step of topoisomerase action, causes S phase arrest and subsequently results in 

apoptosis (Ryan et al., 1991).   

Hydroxyurea has been used clinically since 1960 and is primarily used for the treatment of 

chronic granulocytic leukaemia. Hydroxyurea selectively inhibits ribonucleotide reductase and 

consequently causes the depletion of dNTP pools, stalling of DNA synthesis and subsequent 

collapsing of replication forks (Bernstein et al., 2010).  

KUO055933 is an inhibitor of the ATM kinase, which has a selectivity at least 100 fold greater 

than any other inhibitors for similar kinases (Li and Yang, 2010).  KUO055933 usage inhibits 

ATM-mediated DNA repair events (Nadkarni et al., 2012).  

PHA-767491 is a dual CDC7/CDK9 inhibitor which has shown cytotoxic activity in a range of 

cancers. One of the drug’s primary features is its ability to downregulate the expression of the 

MCL1 antiapoptotic protein and its cross-reactivity with CDK9. CDC7 is a protein kinase that 

plays an essential role in the initiation of DNA replication and cell cycle progression. CDC7 is 

responsible for the phosphorylation of the minichromosome maintenance 2-7 (MCM2-7) 

complex, which in turn activates its intrinsic DNA helicase activity. This starts the process to 

establish a competent replication fork for semiconservative DNA synthesis. In non-cancerous 

cells, the downregulation of CDC7 by short interfering RNA results in cell cycle progression 

arrest (Natoni et al., 2011). CDK9 is a kinase that forms the catalytic core of positive 

transcription elongation factor b (P-TEFb). This enzyme plays an essential role in the 

stimulation of transcription elongation of most protein coding genes by RNA polymerase II 

(RNAPII) (Kryštof et al., 2012).  

1.3.5 Associated RecQ helicase diseases  

Only three of the RecQ helicases are associated with syndromes that cause premature aging 

and a predisposition to develop cancer. Loss of function of WRN and BLM results in the 

development of autosomal recessive disorders Werner syndrome and Bloom syndrome, 

respectively (Croteau et al., 2012). There are three unrelated autosomal recessive diseases 

that are linked with mutations in RECQL4; Rothmund-Thomson Syndrome (RTS), RAPADILINO 

syndrome and Baller-Gerold syndrome (BGS) (Bernstein et al., 2010, Croteau et al., 2012).  
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RTS is a rare disorder which has seen an increased tendency to develop osteosarcoma in 

patients, shows signs of premature aging and signs of chromosomal instability (Wang et al., 

2003, Kitao et al., 1999). Other characteristics of RTS can be congenital skeletal abnormalities, 

short stature, sparse scalp hair, gastrointestinal disturbances and skin atrophy (Miozzo et al., 

1998, Siitonen et al., 2009). The evaluation of the prominent features of RTS has led to the 

development of two subclasses; type I and type II. RTS type I has mutations in genes that have 

not yet been identified and can be defined by its characteristic poikiloderma. RTS type II 

patients also have poikiloderma but they have documented mutations within RECQL4 which 

seems to be linked to an increase risk of osteosarcoma development (Croteau et al., 2012, 

Siitonen et al., 2009). Most mutations of RECQL4 found in RTS patients are nonsense or 

frameshift mutations that result in a truncated polypeptide (Piard et al., 2015). Somatic cells 

that were harvested from RTS individuals showed genomic instability such as trisomy, 

chromosomal arrangements and aneuploidy (Der Kaloustian et al., 1990).  

RAPADILINO is an acronym that indicates the principal signs of the syndrome: RA for radial ray 

defect, PA for both patellae hypoplasia or aplasia, DI for diarrhoea and dislocated joints, LI for 

little size and NO for long, slender nose and normal intelligence. RAPADILINO patients have 

many similar features to those with RTS such as growth retardation, skeletal malformations, 

and radial defects (Sangrithi et al., 2005, Siitonen et al., 2009). Like RTS patients, RAPADILINO 

patients also have an elevated risk of developing osteosarcomas and lymphomas (Croteau et 

al., 2012). Patients with the BGS phenotypes have shown to have mutations in RECQL4, TWIST 

and FGFR2 genes. BGS can be characterised by craniosynostosis and radial aplasia. Unlike the 

other two RECQL4 associated disorders, BGS patients are not predisposed to the development 

of osteosarcomas (Siitonen et al., 2009).   

1.3.6 Murine models of RTS 

There are several murine models that have been created to mimic RTS, focusing on mutations 

in RECQL4 that map to the helicase region (Bernstein et al., 2010). These mice models are 

useful for studying which symptoms are linked with RTS. Most of the mice died within a two-

week period after being born, but those that survived were smaller in size in comparison to 

wild-type mice. They also displayed other abnormalities such as dry skin, grey hair and also a 

loss of hair reminiscent of premature ageing. These mice, however, did not exhibit some of the 

symptoms RTS patients experience, such as osteosarcomas, poikiloderma and cataracts (Hoki 

et al., 2003). 
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Mann et al. (2005) created another mouse model in their study that mimics RTS through the 

disruption of the helicase domain encoded by exons 9-13 of RECQL4. 16% of these mice died 

within 24 hours of birth but the surviving mice showed an increased prevalence of skeletal 

defects in their limbs. However, these mice showed a normal wild-type life span, unlike RTS 

patients. When these mutant mice were combined with a mutant Apc tumour suppressor 

gene, there was an increased incidence of cancer development (Mann et al., 2005).  

1.4 Aims  

In this study I aim to identify how RECQL4 depletion contributes to the development of 

osteosarcoma in RTS patients. To achieve this aim I will carry out a series of experiments to 

detect chromosomal instabilities, increased sensitivity to genotoxic agents, differentiation 

potential and determine the level of expression of marker genes. Throughout this study I will 

be working with ASC52Telo cells immortalised by hTERT expression.  These results will 

hopefully allow for a better understanding of RECQL4 deficient cells and provide information 

to help identify prevention therapies.  



 
 

2. Materials and Methods 

2.1 Materials  

2.1.1 Cell lines  

ASC52Telo, hTERT immortalised adipose derived MSCs were originally obtained from the 

American Type Culture Collection® at passage 13 for use in previous research studies. These were 

stored in liquid nitrogen and thawed out for use at the beginning of the study. These cells will be 

referred to as “ASC52Telo cells” during this study.  

ASC52Telo cells were osteo-differentiated during a previous PhD research project to use during 

the study. These cells were stored in the liquid nitrogen and thawed out at the beginning of this 

study for use. These cells will be referred to as “OD” cells during this study. 

These “OD” cells were subjected to long term 1.5μM PHA-767491 treatment in order to study the 

effect on OD cells. These cells were thawed out and used during this study and will be referred to 

as “OD+PHA” cells. 

Two shRNA constructs (shRQ-9 and shRQ-10) in the pLK0.1 vector were developed during a 

previous research project. Fourth generation lentiviral particles were generated in 293T cells and 

the viral particles were used to transduce low passage as well as high passage ASC52telo cells by 

Dr Timea Palmai-Pallag. I continued the work with the characterisation of the resulting cell lines. 

2.1.1.1 Media used  

MesenPro RSTM medium was prepared by adding 10mL MesenPro RSTM growth supplement and 

5mL L-Glutamine to 500mL MesenPro RSTM basal medium reduced serum (2%). 

MesenPro RSTM basal medium reduced serum (2%)   Thermo Fisher Scientific 

MesenPro RSTM growth supplement      Thermo Fisher Scientific 

Stem Pro® adipogenesis differentiation kit    Thermo Fisher Scientific 

Stem Pro® osteogenesis differentiation kit    Thermo Fisher Scientific 

Stem Pro® chondrogenesis differentiation kit    Thermo Fisher Scientific 

2.1.2 Plasticware and Glassware 

96 well, standard, F plate (0.290cm2)     Sarstedt  

24 well, standard, F plate (1.820cm2)     Sarstedt 

12 well, standard, F plate (3.650cm2)     Sarstedt 

96 well, microtest plate, F (0290cm2)     Sarstedt 
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T25 flask (canted neck, vented caps)    Sarstedt 

15mL and 50mL conical centrifuge tubes   Sarstedt 

1.5mL microcentrifuge tubes     Sarstedt 

1.5mL cryotubes      Sarstedt 

13mm glass coverslips      Thermo scientific 

Haemocytometer (0.0025mm2/0.1000mm depth)  Sigma Aldrich 

5mL, 10mL and 20mL pipettes     Sarstedt 

20mm Tissue culture dish      CytoOne  

Ministart 0.45μl syringe filter     Sartorius 

2.1.3 Chemicals 

Acetic Acid        Fisher Scientific 

Alizarin Red S       Santa Cruz Biotechnology 

Alcian Blue 8GX       Santa Cruz Biotechnology 

Amersham ECL select western blotting detecting reagent Fisher Scientific 

Bleomycin       Carbosynth 

Bovine Serum Albumin (BSA)     Sigma-Aldrich 

Camptothecin        Sigma Aldrich 

CellTiter 96 aqueous MTS reagent powder   Promega 

Demecolcine       Sigma Aldrich 

Dimethyl Sulfoxide (DMSO)     Insight Biotechnology 

Dithiodibutyric acid (DTT)     Sigma-Aldrich 

Foetal Bovine Serum      Thermo Fisher Scientific (Gibco®) 

Formaldehyde        Cell Signalling Technology® 

Giemsa stain in Giemsa stain phosphate buffer pH 6.8  Gurr®, in StainRite® Wright 

HEPES        Sigma Aldrich 
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Hydroxyurea 98% powder     Sigma-Aldrich 

Isopropanol       Sigma-Aldrich 

KUO055933       Tocris Bioscience 

Methanol        Fisher Scientific  

Mitomycin C       Sigma-Aldrich 

MOPS SDS (20x)       NuPage 

Oil Red O Biological Stain     Fisher Scientific  

Paraformaldehyde       Sigma-Aldrich 

PHA-767491       Sigma-Aldrich 

Phosphate Buffered Saline (PBS) tablets    Fisher Scientific  

Phenazine Methosulfate (PMS)     Sigma-Aldrich  

Quick StartTM Bradford Protein assay    Bio-Rad  

Spectra Multicolor Broad Range Protein Ladder   Thermo Fisher Scientific 

Sodium Dodecyl Sulfate (SDS)     Fisher Scientific (Gibco®) 

Potassium Chloride (KCl)     Melford Laboratories  

Tris/Glycine buffer      Bio-Rad 

Triton X-100       Fisher Scientific (Gibco®) 

Trypan Blue       Sigma-Aldrich 

Trypsin EDTA (10X)      Fisher Scientific 

VECTASHIELD antifade mounting medium    Vector Laboratories 

100% Ethanol        Fisher Scientific 

4X Sodium Dodecyl Sulfate (SDS)    Invitrogen 

2.1.4 Antibodies 

Antibodies are detailed in tables when used during the methods.  
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2.2 Methods 

2.2.1 Routine culture of cells 

All methods carried out in tissue culture were performed in an appropriate laminar flow tissue 

culture hood (Thermo Fisher Scientific) under sterile conditions using 70% ethanol to sterile any 

equipment brought into the hood. Throughout all processes the cells were not allowed to remain 

dry for longer than 30 seconds at a time. All the cells used in this study were routinely cultured in 

6 well, standard, F plates and kept in an incubator set at 5% CO2, 95% relative humidity and 37°C. 

Once ~80% confluency was reached the cells were passaged. Until the cells reached the required 

confluency the media was changed every 2-3 days and the growth monitored using a Nikon 

Eclipse TS100 light microscope. The media was pre-warmed to 37°C before introduction with the 

cells. The cells were passaged by removing the old media, washing with 1mL PBS and then adding 

3 drops of Trypsin using a P100 pipette. The plates were incubated at 5% CO2, 95% relative 

humidity and 37°C with the Trypsin for ~5 minutes until all the cells detached. The plates were 

examined using a light microscope to ensure that all the cells had detached from the plate. 

Following adequate detachment, 1mL of MesenPro RSTM was added to each well and gently 

pipetted up and down to resuspend the cells. Depending on the confluency required during the 

next few days, 0.25-0.5mL of cells were added to a new well on a 6 well, standard, F plate and the 

required volume of prewarmed MesenPro RSTM to make a 1.5mL total volume.    

2.2.2 Cryopreservation of ASC’s  

When confluent, the cells were detached from the culture plates using the method explained in 

section 2.2.1. Once detached the cells were diluted with MesenPro RSTM media and the contents 

transferred into a 15ml conical centrifuge tube. This was centrifuged for 3 minutes at 1500 RPM 

at room temperature using an Eppendorf 5702 R table top centrifuge. The supernatant was 

removed and then the cells resuspended in 250-500μl of MesenPro RSTM that contained 10% 

DMSO and 20% foetal bovine serum. This suspension was transferred to a sterile 1.5mL cryogenic 

tube adequately labelled with the date, cell line, passage number and then transferred to a Mr. 

Frosty Container in the -80°C freezer. 

2.2.3 Recovery of cells 

The cells were removed from the liquid nitrogen storage and kept on dry ice until all equipment 

and reagents were ready for use. Once ready the cells were thawed until almost defrost. The cell 

suspensions were then transferred from the cryogenic tube to a 15mL conical centrifuge tube and 

centrifuged at 1500 RPM for 3 minutes at room temperature. The supernatant was removed, and 

the cells resuspended in 3ml of MesenPro RSTM and centrifuged again to ensure all the DMSO was 
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removed. The supernatant was removed again, and the cells resuspended in 1.5mL media and 

plated on a 6 well, standard, F plate. The plate was then incubated at 5% CO2, 95% relative 

humidity and 37°C. 

2.2.4 Counting cells 

When carrying out experiments that required comparable results between cell lines, it was 

important to plate out equal cell numbers in each well. To count cells the cells were cultured as 

described in section 2.2.1 until the stage where they had detached from the plate. The cells were 

then resuspended in 1mL MesenPro RSTM and 10μL was collected into a 1.5mL microcentrifuge 

tube. 10μL of Trypan blue was also added to the tube. 10μL of this solution was applied to a 

haemocytometer (0.0025mm2/0.1000mm depth) and the number of live cells in each 4x4 grid 

were counted under a light microscope. The use of Trypan blue helps distinguish between live and 

dead cells as only the dead cells take up the blue dye. The total of the four grids were added up, 

double to allow for the Trypan blue dilution and then divided by four to obtain the average 

number of cells per grid. This number is equal to the number of cells in 1μL of suspension, so 

when x103 we know the number of cells per 1mL of suspension. This result can be used to work 

out diluted the suspension needs to be in order to plate the correct number of cells in every well.   

2.2.5 21 day differentiation assay 

The cells were cultured and detached as described in section 2.2.1. 2.5x104 cells of each cell line 

being differentiated were counted and prepared as described in 2.2.4 then each plated into 3 

separate wells on a 24 well, standard, F plate. These were left to settle overnight in the incubator 

at 37°C, 95% humidity and 5% CO2. The following day the complete media was aspirated and each 

of the 3 wells plated for each cell type had MesenPro RSTM replaced with 500μl of either StemPro® 

adipogenesis, osteogenesis or chondrogenesis media. The cells were left to differentiation for 21 

days with the media being changed every 2-3days. Photos of the cells differentiation progress 

were taken after 10 days and at the end of the 21 day period. After 21 days the differentiation 

media was aspirated, and the cells were gently rinsed with 1mL PBS. The PBS was then aspirated, 

and the cells fixed with 500μl of ice cold fixing solution (5mL 0.5M pH 7.4 HEPES, 1.06mL 33% 

paraformaldehyde and 3.94mL deionised water). The plate was incubated for 12 minutes in the 

fridge and following incubation the fixing solution was aspirated and the wells rinsed with 1mL 

PBS for three changes. The cells could now be stored in 1mL fresh PBS in the fridge until ready to 

be stained.  
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2.2.6 Staining of the differentiated cells  

2.2.6.1 Adipocyte staining  

The oil red o stock solution was prepared by weighing out 300mg of oil red o powder and mixing 

this with 99% isopropanol. This stock solution was stable for one year from the date which it was 

prepared. In a fume hood, 3 parts oil red o stock solution was mixed with 2 parts deionised water 

and allowed to sit at room temperature for 10 minutes. This working solution was only stable for 

~2 hours. The working solution was then filtered using a filter syringe into a 50mL conical 

centrifuge tube.  

During the staining the cells were not allowed to remain dry for longer than a period of 30 

seconds at any point. The wells were rinsed gently with sterile water being careful not to disturb 

the monolayer. The water was removed and enough 60% isopropanol to cover the bottom of the 

well was added to each well. This was left to sit for 2-5 minutes. The 60% isopropanol was 

removed and enough of the working oil red o solution was added to completely cover the cells in 

each well. The dish was slowly rotated in order to spread the oil red o evenly over the cells and 

then left to stand for 5 minutes. Once the 5 minutes were up the wells were rinsed with tap water 

until the tap water ran clear. Enough haematoxylin counterstain was then added to each well to 

ensure all the cells were covered and left to stand for 1 minute. The haematoxylin was removed, 

and the plate was rinsed with warm tap water until the water ran clear. Water was left in the 

wells until ready to image using a Nikon Eclipse 80i Fluorescence Microscope in transmitted light 

where any lipids will appear red and nuclei blue.  

2.2.6.2 Chondrocyte staining 

The Alcian blue 8 GX staining solution was prepared by mixing 60mL Ethanol (98-100%) with 40mL 

Acetic Acid (98-100%). 10mg of Alcian Blue 8 GX was dissolved in this solution. The resulting 

working solution was stable for one year from the date it was prepared. 120mL Ethanol (98-100%) 

was mixed with 80mL Acetic Acid (98-100%) to prepare the destaining solution.  

To stain the cells the PBS was removed, and the wells washed with distilled water. Enough Alcian 

staining solution was added to generously cover all the cells as some evaporation can occur. This 

was incubated overnight at room temperature in the dark. Once the incubation period was up the 

Alcian staining solution was removed and the destaining solution was added to each well and left 

to stand for 20 minutes. The destaining solution was removed and PBS added to each well. The 

cells could then be imaged on the phase microscope where any cartilage is an intense dark-blue 

and other tissue is at most a faint blue.  
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2.2.6.3 Osteocyte staining 

The Alizarin Red S staining solution was prepared by dissolving 2g Alizarin Red S in 100mL distilled 

water, mixing it and then adjusting the pH to 4.1-4.3 with 0.1% NH4OH. This solution was then 

filtered and stored in the dark.  

To stain the cells the PBS was removed, and enough Alizarin Red S staining solution added to each 

well to cover the monolayer. This was incubated at room temperature in the dark for 3-5 hours. 

The Alizarin Red S staining solution was removed, and the monolayer washed four times with 

distilled water. The water was removed, PBS added to each well and the cells imaged. 

Undifferentiated MSCs were slightly reddish whereas MSC derived osteoblasts were bright 

orange-red.  

2.2.7 Immunofluorescent staining 

2.2.7.1 Preparation of the cells for staining 

13mm diameter round cover slips were autoclaved and then sterilised in 70% ethanol to ensure 

they were completely sterile. One cover slip was then added to each well of a 24 well, standard, F, 

culture plate, rinsed with PBS and left to dry to ensure the removal of any residual ethanol. 3x104 

cells of each cell line being stained were seeded per well in MesenPro RSTM at a total of 1mL per 

well as described in sections 2.2.1 and 2.2.4. The plates were incubated at 5% CO2, 95% relative 

humidity and 37°C until ~80% confluency was achieved. Until then the media was changed every 

2-3 days, taking care not to disturb the monolayer. Once confluency was reached, the media was 

aspirated, and the wells rinsed with 1mL PBS. The PBS was then aspirated at 0.5mL of ice cold 

fixing solution (5mL 0.5M pH 7.4 HEPES, 1.06mL 33% paraformaldehyde and 3.94mL deionised 

water) was added to each well and incubated for 12 minutes. The fixing solution was aspirated, 

and the wells rinsed with 0.5mL PBS for three changes. 0.5mL of permeabilisation solution (10μl 

Triton X-100, 9.99mL PBS) was added to each well and incubated on ice for 20 minutes. This 

solution was then aspirated, and the cells were rinsed with 0.5mL PBS for a further 3-5 changes 

whilst gently rocking the plate. 0.5mL of blocking solution (10% Foetal Bovine Serum, 0.1% Triton 

X-100 in PBS) was added to each well and the plate incubated at 37°C for one hour. This solution 

was aspirated, and the cells stored in 0.5mL PBS until ready to be stained.  

2.2.7.2 Staining of the cover slips: Ki67, RUNX2, Osterix and 53BP1. 

The cells were prepared as explained in 2.2.7.1. Enough of the primary antibody for each stain 

was prepared to the correct dilution and volume to allow for 20μl per cover slip.  



RECQL4: linking DNA replication to bone tumorigenesis 

 
 

27 
 

Table 2. Primary antibodies used in Immunofluorescent staining. 

Stain Company Product code Animal Dilution 

Ki67 Abcam Ab15580-100 Rabbit 1:200 

Osterix R&D systems MAB7547 Mouse 1:200 

53BP1 Bethyl laboratories A300-272A Rabbit 1:500 

RUNX2 Santa cruz SC10758 Rabbit 1:200 

 

20μl of the primary was dropped onto a clean glass slide and the cover slip removed from the 24 

well plate, standard, F and placed cell side down onto the antibody. The edges of the coverslip 

were then fixed with Fixogum (Marabu) to retain moisture. Once the Fixogum had dried, the slide 

was placed into a clean petri dish with a damp piece of tissue and sealed with parafilm. These 

petri dishes were incubated overnight at 4°C. The following day, the Fixogum was removed from 

the slides and the cover slips replaced, cell side up, back into the 24 well, Standard, F, culture 

plate. The cover slips were then washed with 0.5mL PBS for 5 changes whilst rocking, each for a 

period of 5 minutes. A final wash was done with deionised water to remove any residual salt from 

the PBS. The secondary antibodies were then prepared according to table 3.  

Table 3. Secondary antibodies used in fluorescent staining. 

Stain Company Alexa Fluor  Cat. No. Animal Dilution 

Ki67, RUNX2, 

53BP1 

ThermoFisher 

Scientific 

AF488 A11055 Donkey anti-

rabbit 

1:800 

Osterix ThermoFisher 

Scientific 

AF555 A21422 Goat anti- 

mouse 

1:800 

 

150μl of the diluted secondary antibody was added to each well. The plate was sealed with 

parafilm and incubated in the dark at 5% CO2, 95% relative humidity and 37°C for one hour. After 

an hour the antibody was aspirated, and the coverslips were washed with 0.5mL PBS for 5 

changes and a final wash was done with deionised water. The coverslips were then removed and 

placed cell side up on Whatman® 3M filter paper to air dry. It is important that they remain in the 

dark whilst air drying. 10μl of VECTASHIELD antifade mounting medium with DAPI was applied to 

each cover slip. Each coverslip was mounted onto a clean glass slide. Light pressure was applied to 

the coverslips using Whatman® 3M filter paper to remove any excess VECTASHIELD. The slides 

were then sealed with clear nail varnish and stored at 4°C until ready to be imaged using the Leica 

confocal microscope.  
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2.2.7 Western blotting 

Prior to starting the western blot, the cells should be counted, as described in 2.2.4, and seeded 

into a standard 96 well, standard, F plate with a cell number of 1x104.  The cells were incubated 

overnight to ensure they’ve settled. 

2.2.7.1 Lysing the cell 

Reagents used: 

2x lysis solution: 25mM Tris-HCl (pH7.6) + 150mM NaCl + 1% NP-40 + 1% sodium-deoxycholate + 

0.1% SDS. 

Protein lysis buffer stock: 5ml 2x lysis stock solution + 3ml 18MΩ H20 + 500μl 5mM NaPPi + 100μl 

10 mM NaF. 

Protease inhibitor: 1 mini complete tablet + 1ml 18MΩ H20 (7x solution). 

Western blotting lysis buffer: 420 μl Protein lysis buffer stock + 71.4 μl protease inhibitor cocktail.  

PBS: 1 phosphate buffered saline tablet per 100 ml 18MΩ H20 (1x).  

To lyse the cells ready for western blotting the media was aspirated from the wells and then the 

wells were rinsed twice in0 .5mL PBS. The PBS was removed, replaced with 30μl of lysis buffer 

containing protease inhibitor and then left the plate to stand on ice for three minutes. The lysates 

were then collected into 1.5mL microcentrifuge tubes and kept on ice whilst processing the rest 

of the samples. The samples were then sonicated four times for three seconds bursts each time 

using Soniprep 150 Ultrasonic Disinegrator at full power. These lysates were then centrifuged at 

13,000 RPM, 4°C for 20 minutes.  

2.2.7.2 Protein content quantification 

The protein concentration of each sample was quantified using Quick StartTM Bradford Protein 

Assay.  5μl of each of the bovine serum albumin protein standards of known concentrations were 

added to a fresh 96 well, microtes plate, F (BSA: 0.1 mg/ml, 0.25 mg/ml, 0.5 mg/ml, 1.0 mg/ml, 

1.5 mg/ml, 2.0 mg/ml) including a blank of lysis buffer. Each of the samples were diluted 1:5 in 

H20 and 5μl of each sample was added to the 96 well, microtest, F plate. 250μl of Quick StartTM 

Bradford Reagent was added to each well and the plate incubated for 5 minutes in the dark. Using 

SoftMax Pro software, the plate could be read at an absorbance of 595nm using the Hidex 

Chameleon plate reader and SoftMax Pro 5.2 software. and the results used to calculate the 

appropriate dilutions for the western; the sample with the lowest protein sample was set as 100% 

and the high concentrations were diluted in lysis buffer in comparison to this concentration, 

ensuring a maximum loading volume of 20μl.  
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2.2.7.3 Running samples 

5μl of 4X Sodium Dodecyl Sulfate (SDS) Sample buffer supplemented with DTT was added to each 

of the samples in 200μl PCR tubes and then denatured at 98°C for 5 minutes using the C100 

TouchTM Thermal Cycler (BioRad). The samples were left on ice for two minutes and then 

centrifuged to reduce any condensation.   

2.2.7.3.1 10 well precast gradient polyacrylamide gels (Novex NuPage) 

These were running in CriterionTM running tanks (BioRad) using 500ml MOPS running buffer (25ml 

MOPS SDS (20X) + 475ml 18MΩ H20). A maximum of 20μl was loaded per well and 7μl of Spectra 

Multicolor Broad Range Protein Ladder was loaded either side of the sample. The gel was run at 

150V for ~1.5hours.  

2.2.7.3.2 18 well precast gradient polyacrylamide gels 

These were also running in CriterionTM running tanks (BioRad) using 500ml 1xTris-Glycine-SDS 

running buffer (30g Tris base, 144g Glycine 10g SDS + 1 litre H20).  A maximum of 30μl was loaded 

per well and 7μl of Spectra Multicolor Broad Range Protein Ladder was loaded either side of the 

sample. The gel was run at 120V for ~1 hour or 200#v for ~45 minutes.  

2.2.7.4 Blotting  

Once the gel had finished running the gel was transferred to Hybond ECL nitrocellulose 

membrane a blotting chamber filled with transfer buffer 1x Tris Glycine with 10% MetOH (100ml 

10x Tris-Glycine buffer + 700ml H20 + 200ml MetOH). Run at 100V for 50 minutes. 

2.2.7.5 Blocking, incubation with antibodies and imaging 

The membrane was blocked in the appropriate solution; either 5% milk in PBS-Tween (0.1%) or 

5% BSA in PBS-Tween (0.1%) for 30 minutes on a rocker. Primary antibodies were diluted using 

the same blocking buffer to the appropriate dilution.  

Table 4. Primary antibodies used in Western Btotting. 

Band Company Product code Animal Dilution 

RECQL4 Cell signalling 28145 Rabbit 1:500 in BSA 

Tubulin alpha Bio-Rad MCA78G Mouse 1:104 in milk 

 

The membrane was sealed in plastic pockets along with the diluted primary antibodies and 

incubated rotating at 4°C overnight. The membrane was then removed from the plastic pocket 

and washed in an excess of PBS-0.1% Tween-20 buffer for 10 minutes whilst rocking. This step 
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was repeated three times. Secondary antibodies were diluted in the same blocking buffer to the 

appropriate dilution and incubated with the membrane for 1 hour at room temperature.  

Table 5. Secondary antibodies used in western blotting. 

Band Company Product code Animal Dilution 

RECQL4 Promega F00108 Anti-rabbit IgG 

(FC) AP conj. 

1:5000 in BSA 

Tubulin Promega F00109 Anti-mouse IgG 

(H+L) AP conj. 

1:10000 in milk 

 

After an hour the membrane was washed in PBS-0.1% Tween-20 buffer for 10 minutes whilst 

rocking. This was repeated four times. Amersham ECL Select Wester Blotting Detection Reagent 

was used with a 1:1 ratio of the luminol and peroxide solutions. The membranes were incubated 

in the dark and then developed using x50 Autoradiography film (GE Healthcare Amersham).  

2.2.8 Growth assay 

1.5x103 cells of each cell line being analysed were seeded into 96 well, standard, tissue culture 

plates as described in sections 2.2.1 and 2.2.4. One plate was analysed each day for 7 days using 

MTS/PMS solution to analyse the number of metabolically active cells. Both the MTS solution and 

the Phenazine methosulfate (PMS) solution were made up as per the manufacturer’s instructions 

and aliquoted before needed then stored at -20°C. Immediately before use the solutions were 

thawed and 50μl of PMS solution was added to 1.0ml of MTS solution (MTS:PMA 1:20). 20μl of 

the combined MTS/PMS solution was pipetted into each well of the 96 well, standard, F plate. The 

plate was incubated for 1-4 hours at 37°C in a 95% humidified and 5% CO2 atmosphere. The 

absorbance was read at 490nm using the Hidex Chameleon plate reader. This was repeated every 

24hours for 7 days.  

2.2.9 Drug sensitivity assay 

To determine the sensitivity of each cell line to a variety of drugs, the cells were grown and 2x103 

were seeded into 96 well, standard, F, tissue culture plates as described in sections 2.2.1 and 

2.2.4. The cells were left to settle overnight in 100μl of complete MesenPro RSTM. The following 

day the MesenPro RSTM was removed and were the treated with different concentrations of the 

chosen drug over a 6 day period. The drugs were diluted in MesenPro RSTM. The media containing 

the drug was changed after 2-3 days. After 6 days an MTS assay was carried out on each plate as 

described in section 2.2.8.  
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2.2.10 Chromosome preparation 

3x105 cells were seeded in 90cm petri dishes in 8mL of complete MesenPro RSTM and left to grow 

until around 70% confluent as described in 2.2.1 and 2.2.4. Once the appropriate confluency was 

reached, 80μl of 10μg/mL Demecolcine was added to each petri dish to arrest the cells in 

metaphase. The cells were incubated for 8 hours at 95% humidity, 37°C and 5% C02. During this 

time 75mM Potassium Chloride and Caranoy’s fixative (Methanol and Glacial Acetic acid at a ratio 

of 3:1) was prepared ready for use in the following steps. After 8 hours the media was removed 

and collected into a 15mL conical centrifuge tube. The cells were then rinsed in 3mL pre-warmed 

PBS which was subsequently removed and put into the same conical centrifuge tube. 1mL of 

trypsin was added to each petri dish and incubated until the cells detached. The cells were 

collected from the petri dish using the media collected in the 15mL conical centrifuge tube. The 

plate was then rinsed one final time with PBS to collect any remaining cells and also put in the 

same 15mL conical centrifuge tube. Each conical centrifuge tube was centrifuged at 1.0K RPM for 

5 minutes. Once centrifuged the supernatant was carefully removed and the cells washed with 

PBS. Each time a new solution was added the 15mL conical centrifuge tube was flicked to agitate 

the cells and re-suspend them. The tubes were centrifuged once more at 1.0K RPM for 5 minutes. 

The supernatant was removed once again and 7mL of warm 75mM Potassium Chloride solution 

was added dropwise to each tube to hypotonise cells. The tubes were incubated for 8 minutes in 

a 37°C water bath and then centrifuged at 1.0K RPM for 5 minutes. The supernatant was removed 

and 7mL of Caranoy’s fixative mixed with PBS (1:1 ratio) was added dropwise to each tube. The 

tubes were further centrifuged at 1.2K RPM for 5 minutes. The cells were then fixed by the 

dropwise addition of 7mL Caranoy’s fixative. The tubes were centrifuged at 1.2K RPM for 5 

minutes. This addition of Caranoy’s fixative was repeated once more and after a final centrifuge 

most of the supernatant was removed leaving only 0.5mL. The cells were re-suspended and 

stored at -20°C overnight. The following day the fixed cells were dropped onto slides and left to sit 

overnight.  

2.2.10.1 Giemsa staining 

The slides were rinsed for 5 minutes in PBS using a Coplin jar. These slides were then transferred 

into a Coplin jar containing 10% Giemsa staining solution (Gurr®, in StainRite® Wright-Giemsa 

stain phosphate buffer pH 6.8) for ~1 hour. The slides were then transferred to a final Coplin jar 

and washed three times with distilled water. The slides could then be imaged under a Nikon 

Eclipse 80i Fluorescence Microscope in transmitted light. Images were taken of the chromosomes 

and the number of chromosomes present were counted. 
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3 Results 

The following section presents the data and images collected from the experiments carried out 

during this project.  

3.1  Verification of RECQL4 depletion by western blot 

In order to study the effect of RECQL4 depletion in ASC cells, two shRNA constructs (shRQ-9 and 

shRQ-10) were previously built in the pLKO.1 vector in our laboratory as part of a PhD project. 

Fourth generation lentiviral particles were generated in 293T cells and the viral particles were 

used to transduce low passage as well as high passage ASC52telo cells by Dr Timea Palmai-Pallag. I 

continued the work with the characterisation of the resulting cell lines. 

A western blot was performed to determine whether RECQL4 was adequately depleted by the 

Lentiviral shRNA construct. The RECQL4 protein is 150kDa in size and a band at this mark is only 

expected to be seen for P14 pLKO.1 and p44 pLKO.1 

Figure 7. Western blot to verify depletion of RECQL4 in the ASC52telo clones. A) Lower and higher passage 
knockdowns and their pLKO.1 controls probed for RECQL4 protein levels. B) Tubulin controls of each sample to control 
equal loading.  

 

A clear western blot was not obtained, and a high background can be seen. However, the band for 

P44 shRQ-9 and P44 shRQ-10 is a lot weaker in intensity than for any of the other cell lines. The 

control samples have a visibly stronger band. β-Tubulin was used as loading control to give a 

visualisation of whether equal amounts of protein from each sample were loaded.   

A 

B 



RECQL4: linking DNA replication to bone tumorigenesis 

 
 

33 
 

3.2  Assaying Differentiation capability 

In order to assess if suppression of RECQL4 expression impacts differentiation capability of our 

adipose-derived stem cells their trilineage differentiation capacity was tested with standard 

methods. 

 

 

 

 

 

 

 

 

 

  

Figure 8. Trilineage potential of ASC52telo cells. Differentiation capability of ASC52telo cells into adipocytes, osteocytes 
and chondrocytes after 10 and 21 days. A) adipocyte differentiation after 10 days (x40), B) osteocyte differentiation after 
10 days (x40), C) chondrocyte differentiation after 10 days (x40), D) adipocyte differentiation stained with oil red O after 
21 days (x40), E) osteocyte differentiation stained with Alizarin Red after 21 days (x100) and F) chondrocyte 
differentiation stained with Alcian Blue after 21 days (x40). 
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Figure 9. Trilineage potential of P14 pLK0.1. Differentiation capability of P14 pLK0.1 cells into adipocytes, osteocytes 
and chondrocytes after 10 and 21 days. A) adipocyte differentiation after 10 days (x40), B) osteocyte differentiation after 
10 days (x40), C) chondrocyte differentiation after 10 days (x40), D) adipocyte differentiation stained with oil red O after 
21 days (x40), E) osteocyte differentiation stained with Alizarin Red after 21 days (x100) and F) chondrocyte 
differentiation stained with Alcian Blue after 21 days (x40). 
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Figure 10. Trilineage potential of P14 shRQ-9. Differentiation capability of P14 shRQ-9 into adipocytes, osteocytes and 
chondrocytes after 10 and 21 days. A) adipocyte differentiation after 10 days (x40), B) osteocyte differentiation after 10 
days (x40), C) chondrocyte differentiation after 10 days (x40), D) adipocyte differentiation stained with oil red O after 21 
days (x40), E) osteocyte differentiation stained with Alizarin Red after 21 days (x100) and F) chondrocyte differentiation 
stained with Alcian Blue after 21 days (x40). 
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Figure 11. Trilineage potential of P14 shRQ-10. Differentiation capability of P14 shRQ-10 into adipocytes, osteocytes and 
chondrocytes after 10 and 21 days. A) adipocyte differentiation after 10 days (x40), B) osteocyte differentiation after 10 
days (x40), C) chondrocyte differentiation after 10 days (x40), D) adipocyte differentiation stained with oil red O after 21 
days (x40), E) osteocyte differentiation stained with Alizarin Red after 21 days (x100) and F) chondrocyte differentiation 
stained with Alcian Blue after 21 days (x40). 
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Figure 12. Trilineage potential of P44 pLK0.1. Differentiation capability of P44 pLK0.1 into adipocytes, osteocytes and 
chondrocytes after 10 and 21 days. A) adipocyte differentiation after 10 days (x40), B) osteocyte differentiation after 10 
days (x40), C) chondrocyte differentiation after 10 days (x40), D) adipocyte differentiation stained with oil red O after 21 
days (x40), E) osteocyte differentiation stained with Alizarin Red after 21 days (x100) and F) chondrocyte differentiation 
stained with Alcian Blue after 21 days (x40). 
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Figure 13. Trilineage potential of P44 shRQ-9. Differentiation capability of P44 shRQ-9 into adipocytes, osteocytes and 
chondrocytes after 10 and 21 days. A) adipocyte differentiation after 10 days (x40), B) osteocyte differentiation after 10 
days (x40), C) chondrocyte differentiation after 10 days (x40), D) adipocyte differentiation stained with oil red O after 21 
days (x40), E) osteocyte differentiation stained with Alizarin Red after 21 days (x100) and F) chondrocyte differentiation 
stained with Alcian Blue after 21 days (x40). 
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The ASC52Telo cells, RECQL4 knockdowns and their controls were treated for 21 days with 

adipogenesis, osteogenesis and chondrogenesis media, to establish whether all the cell lines still 

have the trilineage differentiation potential found in normal MSCs. All cell lines differentiated into 

adipocytes, shown by the presence of lipid vacuoles, and osteoblasts, shown by the presence of 

Alizarin red stained calcified extracellular matrix, but we had difficulties with chondrogenic 

differentiation due to the loss of cells and detachment of the monolayer. The higher passage 

PLK0.1 and shRQ-9 cells appear to have a decreased adipocyte differentiation in comparison to 

the lower passage cells.  

Figure 14. Trilineage potential of P44 shRQ-10. Differentiation capability of P44 shRQ-10 into adipocytes, osteocytes 
and chondrocytes after 10 and 21 days. A) adipocyte differentiation after 10 days (x40), B) osteocyte differentiation 
after 10 days (x40), C) chondrocyte differentiation after 10 days (x40), D) adipocyte differentiation stained with oil red 
O after 21 days (x40), E) osteocyte differentiation stained with Alizarin Red after 21 days (x100) and F) chondrocyte 
differentiation stained with Alcian Blue after 21 days (x40). 
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As the first step to characterise the cultures that were recovered from long term osteogenic 

differentiation, we wanted to show if this culture still contains cells that are capable to 

differentiated into directions other than osteoblasts. OD and OD+PHA cells were treated for 21 

days with adipogenesis media to see if any differentiation occurs. Both cell lines show the 

presence of lipid vacuoles, with the PHA-767491 treated OD cells displaying a lower number in 

comparison to the untreated OD cells.  However, their overall morphology and the extent of 

adipogenic differentiation is different to what was observed using ASC52telo cells. 

Figure 15. Adipogenesis potential of OD and OD+PHA cell lines. OD and OD+PHA cells after 
10 days and 21 days culturing with adipogenesis media. A) OD cells after 10 days culturing in 
adipogenesis media (x40), B) OD+PHA cells after 10 days culturing in adipogenesis media 
(x40), C) OD cells after 21 days culturing in adipogenesis media (x40), D) OD+PHA cells after 
21 days culturing in adipogenesis media (x40). 
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3.3  Growth assay 

We also wanted to assess whether there was a difference in the growth characteristics of cells in 

which RECQL4 was depleted, or replication initiation was disturbed during osteogenic 

differentiation. Seven plates were set up for each cell line and an MTT assay carried out on a plate 

each day. This allowed us to plot the growth of the cell lines over a period of 7 days.  
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Figure 16. Growth curves of all the knockdowns, their controls, OD cells and OD+PHA cells. 
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No significant difference was observed between the cells in which RECQL4 was knocked down and 

their controls. Cells that were recovered from osteoblastic differentiation (OD cells) have the 

quickest cell proliferation rate and for the first four days, the OD cells treated with PHA-767491, 

to interfere with replication initiation, proliferate at half the rate of the untreated OD cells. 
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3.4  Immunofluorescence staining 

Immunofluorescence staining was carried out on the knockdowns, OD cells and OD+PHA cells to 

identify any differences in 53BP1, Ki67, RUNX2 and Osterix expression.  

3.4.1 53BP1 staining 

53BP1 is essential in maintaining genome stability and is an important mediator of DNA damage 

checkpoint. Abnormal expressions of 53BP1 have been linked with tumour prevalence and 

development (Bi et al., 2015). 
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DAPI 53BP1 and DAPI 53BP1 

Figure 17.  Immunofluorescence images of each cell line stained with DAPi (blue) and 
53BP1 (green). 
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The results show a lower average foci number in P44 shRQ-9 cells particularly in comparison to 

the rest, and P14 PLK0.1 and P44 shRQ-10 show a higher count. There are no significant 

differences between the cell lines.  
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Figure 18. The average foci count of each cell line when stained to show 53BP1 expression. The confocal images 
were analysed using cell profiler which provided the number of foci counted per cell. The average could then be 

calculated. 
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3.4.2 Ki67 staining 

Ki67 protein expression is associated with cell proliferation. It can be detected during all active 

phases of the cell cycle, but is absent in G0 phase (resting cells) (Scholzen and Gerdes, 2000). 
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DAPI Ki67 and DAPI Ki67 
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Figure 19. Immunofluorescence images of each cell line stained with DAPI (blue) and 
Ki67 (green). 
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Figure 20. The Ki67 staining intensity of each cell line group into dim, borderline and strong intensities. The confocal 
images were analysed using cell profiler which provided the number of foci counted per cell. The average could then be 

calculated. 

 

Intensity of the KI67 signal was quantified with CellProfiler and cells were categorised as ‘strong’ 

and actively proliferating, and ‘dim’ as resting cells. A third category was established and 

characterised by a small number of cells which cannot be convincingly put in either of the two 

categories; these cells are likely in the process of exiting cycling. At least 60% of the intensity 

results for each cell line are in the strong category, suggesting all the cell lines contain a 

considerable proportion of proliferating cells. The P14 shRQ-10 cells have the lowest proportion 

of intensities in the strong category out of all the cell lines, suggesting that this cell line is the least 

actively proliferating.  
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3.4.3 RUNX2 and Osterix staining 

RUNX2 and Osterix are transcription factors that play an essential role in bone formation and 

osteoblast differentiation (Martin et al., 2011). RUNX2 is expressed in mesenchymal stem cells 

and during early osteoblast differentiation (Martin et al., 2011), while Osterix expression is 

characteristic to osteoblasts.   
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Figure 22. Immunofluorescence staining of each cell line with DAPI (blue), RUNX2 (green) 
and Osterix (red). 

Figure 21. A graph to show the average foci count of each cell line when stained to show RUNX2 expression. The 
confocal images were analysed using cell profiler which provided the number of foci counted per cell. The average 

could then be calculated. 
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The RUNX2 average foci count results show a higher count in the p44 knockdowns than the rest of 

the cell lines. The OD cells have the second lowest count which is expected as these cells contain a 

large proportion of fully differentiated osteoblasts, and a population of undifferentiated MSCs 

that are still RUNX2 positive. The Osterix foci count shows results that we would expect to see 

from these cell lines. The average foci count is much higher in the two osteo-differentiated cell 

lines compared to the six knockdowns. The osteo-differentiated cells treated with PHA-767491 

display a lower Osterix expression, suggesting a slower osteoblast differentiation rate. 
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Figure 23. A graph to show the average foci count of each cell line when stained to show Osterix expression. The 
confocal images were analysed using cell profiler which provided the number of foci counted per cell. The average 

could then be calculated. 
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3.5  Drug sensitivity assays 

The literature reports contradictory results of sensitivity of cells mutated in RECQL4. We wanted 

to know how depletion of RECQL4 in ASC cells affects their sensitivity to drugs that induce DNA 

damage. 

 

 

 

 

 

 

 

 

Figure 24. Survival assays for the treatment of the knockdowns, their controls, ASC52Telo cells, OD cells, OD+PHA 
cells+ (PHA present) and OD+PHA cells- (PHA not present) with Hydroxy Urea for a period of 7 days. Logarithmic scale, 

base 10. 
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Figure 25. Survival assays for the treatment of the knockdowns, their controls, ASC52Telo cells and OD cells 
with KUO055933 for a period of 7 days. Logarithmic scale, base 5. 
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Figure 26. Survival assays for the treatment of the knockdowns, their controls, ASC52Telo cells, OD cells, OD+PHA+ 
cells (PHA present) and OD+PHA- cells (PHA not present) with Camptothecin for a period of 7 days. Logarithmic scale, 

base 10. 
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Figure 27. Survival assays for the treatment of the knockdowns, their controls, ASC52Telo cells, OD cells,) and 
OD+PHA- cells (PHA not present) with Mitomycin C for a period of 7 days. Logarithmic scale, base 10. 



RECQL4: linking DNA replication to bone tumorigenesis 

 
 

56 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

0

20

40

60

80

100

120

0.25 0.5 1 2 4

R
el

at
iv

e 
ab

so
rb

an
ce

 (
%

)

Concentration (µM)

Survival assay when treated with PHA-767491- All cell lines

P14 PLK0.1

P14 shRQ-9

P14 shRQ-10

P44 PLK0.1

P44 shRQ-9

P44 shRQ-10

OD

ASC

0

20

40

60

80

100

120

0.25 0.5 1 2 4

R
el

at
iv

e 
ab

so
rb

an
ce

 (
%

)

Concentration (µM)

Survival assay when treated with PHA-
767491- Lower passage knockdowns

PLK0.1

shRQ-9

shRQ-10

0

20

40

60

80

100

120

0.25 0.5 1 2 4

R
el

at
iv

e 
ab

so
rb

an
ce

 (
%

)

Concentration (µM)

Survival assay when treated with PHA-
767491- Higher passage knockdowns

PLK0.1

shRQ-9

shRQ-10

0

20

40

60

80

100

120

0.25 0.5 1 2 4

R
el

at
iv

e 
ab

so
rb

an
ce

 (
%

)

Concentration (μM)

Survival assay when treated with PHA-
767491- Controls

OD

ASC

Figure 28. Survival assays for the treatment of the knockdowns, their controls, ASC52Telo cells and OD cells 
with PHA-767491 for a period of 7 days. Logarithmic scale, base 2. 
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Figure 29. Survival assays for the treatment of the knockdowns, their controls, ASC52Telo cells and OD cells 
with Bleomycin for a period of 7 days. Logarithmic scale, base 10. 
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Survival assays were carried out on all of the cell lines testing for sensitivity when treated with 

Bleomycin, Mitomycin C, PHA-767491, Camptothecin, KU0055933 and Hydroxy urea. The cells 

were treated for a period of seven days with each drug and an MTT assay carried out at the end of 

the seven days to test the number of viable cells left. These results are plotted on graphs to show 

the decrease in viability as drug concentration increases (see figures 24-29). The assays are 

plotted on a logarithmic scale to better the spread of the results. The results show no significant 

difference in sensitivity between the controls and the RECQL4 deficient cells. However, we can 

see from some of the sensitivity assays that p14 shRQ-10 and p44 shRQ-10 appear to be less 

sensitive in the mid-range concentrations in comparison to the control ASC52Telo cells and OD 

cells.  
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3.6  Evaluation of chromosomal instability 

Mutations of RECQL4 and interference with replication initiation may cause chromosomal 

instabilities (Maire et al., 2009). Chromosomes were prepared from each cell line and analysed to 

identify any chromosome alterations.  
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Figure 30. Preparation and count of chromosomes in ASC52Telo cells. ~35 sets of chromosomes were imaged, counted 
and analysed for any alterations. A) giemsa stained chromosomes (x100), B) a graph showing the number of 

chromosomes in each cell counted. 
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Figure 31. Preparation and count of chromosomes in OD cells. ~35 sets of chromosomes were imaged, counted and 
analysed for any alterations. A) giemsa stained chromosomes (x100), B) a graph showing the number of chromosomes 

in each cell counted. 
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Figure 32. Preparation and count of chromosomes in OD+PHA cells. ~35 sets of chromosomes were imaged, counted 
and analysed for any alterations. A) giemsa stained chromosomes (x100), B) a graph showing the number of 

chromosomes in each cell counted. 
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Figure 33. Preparation and count of chromosomes in P14 pLK0.1 cells. ~35 sets of chromosomes were imaged, 
counted and analysed for any alterations. A) giemsa stained chromosomes (x100), B) a graph showing the number of 

chromosomes in each cell counted. 
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Figure 34. Preparation and count of chromosomes in P14 shRQ-9 cells. ~35 sets of chromosomes were imaged, 
counted and analysed for any alterations. A) giemsa stained chromosomes (x100), B) a graph showing the number of 

chromosomes in each cell counted. 
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Figure 35. Preparation and count of chromosomes in P14 shRQ-10 cells. ~35 sets of chromosomes were imaged, 
counted and analysed for any alterations. A) giemsa stained chromosomes (x100), B) a graph showing the number of 

chromosomes in each cell counted. 
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Figure 36. Preparation and count of chromosomes in P44 pLK0.1 cells. ~35 sets of chromosomes were imaged, 
counted and analysed for any alterations. A) giemsa stained chromosomes (x100), B) a graph showing the number of 

chromosomes in each cell counted. 
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Figure 37. Preparation and count of chromosomes in P44 shRQ-9 cells. ~35 sets of chromosomes were imaged, 
counted and analysed for any alterations. A) giemsa stained chromosomes (x100), B) a graph showing the number of 

chromosomes in each cell counted. 
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Figure 38. Preparation and count of chromosomes in P44 shRQ-10 cells. ~35 sets of chromosomes were imaged, 
counted and analysed for any alterations. A) giemsa stained chromosomes (x100), B) a graph showing the number of 

chromosomes in each cell counted. 
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Cells were arrested in metaphase and chromosomes were prepared from all of the cell lines and 

then dropped onto glass slides. These slides were then stained with Giemsa and ~35 metaphase 

nuclei were imaged. The chromosomes were counted for each cell that was imaged and analysed 

to identify any signs of chromosomal alterations. None of the cells lines show any signs of 

structural chromosomal alterations that were observable with this technique. The chromosome 

counts show a modal count of 46, which is the normal number of chromosomes expected to be 

seen. Each cell line has cells that display aneuploidy, missing or gaining only one or two 

chromosomes. Importantly however, cells with a modal chromosome number of 92, (tetraploid 

cells) and cells with an increased degree of aneuploidy can be seen in the OD+PHA, P44 shRQ-9 

and P44 shRQ-10 cell lines.  
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4. Discussion 

This study set out to identify how RECQL4 depletion in ASC52Telo cells contributes to the 

development of osteosarcoma in RTS patients using long term in vitro culturing of hTert 

immortalised ASC52Telo cells.  

Verification of RECQL4 knockdown 

The tubulin control confirms that a comparable amount of each protein sample was loaded. 

Although bands are seen at 150kDa on the western as expected, there are also non-specific bands 

present at other molecular weights on the western. The band at around 100kDa is likely a 

degradation product. The western blot results suggest the knockdown is working at a good 

efficiency in the higher passage clones, both shRQ-9 and shRQ-10, whereas the knockdown in the 

lower passage clones is less convincing. 

The RECQL4 antibody used in this experiment has caused difficulties in the past due to its quick 

loss of activity when in storage. It has also proven sensitive to the blocking agent used and so 

after some experimentation BSA was identified as the most efficient blocking agent. The levels of 

RECQL4 expression is also cell cycle-dependent and so cells that are slow cycling or unhappy show 

very low expression. When loading the samples, they are normalised for total protein 

concentration and as ASC cells are very large and there is a possibility of under loading the gel for 

the detection of RECQL4; a nuclear protein. To try and solve this issue of under loading the cell 

extracts were fractionated to enrich any nuclear proteins present. Unfortunately, this extra 

process did not produce any results that were more successful. Nevertheless, the western results 

confidently show that the knockdown of RECQL4 has worked at least in high passage cells and 

perhaps in low passage cells with shRQ-9. 

Differentiation capability of RECQL4 containing ASCs and RECQL4 deficient 

ASCs.  

Adipogenesis and osteogenesis can be seen in all the cell lines to some degree. A study by Ng et 

al. (2015) showed a decrease in osteogenic differentiation in conditional Recql4 mutant mice, 

which supports the low bone mass and short stature symptoms seen in RTS patients. Our RECQL4 

deficient cells lines appeared to carry out osteogenic differentiation equally as well as the control 

cell lines. The higher passage cell lines seemed to show a lower number of cells that successfully 

differentiated into adipocytes as a lower number of vacuoles are present both at day 10 and day 

21. Higher passage numbers can sometimes see alterations in the ability of the cells to 

differentiate and proliferate efficiently which could explain the difference in our results for each 
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cell line induced to carry out adipogenesis. Our chondrogenic differentiation does not show the 

results we were expecting to see, as there is a distinct lack of cells growing on the coverslip. The 

sparse number of cells present may be due a faster rate of proliferation that caused the cells to 

become over-confluent and lift off the cover slip. This results in the cells being washed away 

during a media change. This occurred during every repeat of this experiment.   

The OD and OD+PHA cells were only treated with adipogenesis media to see if the recovered 

populations contain cells with mesenchymal stem cell characteristics, or whether they are 

differentiated osteoblasts. The results suggest that some cells may be able to differentiate into 

adipocytes. However, given that the number of cells that differentiated to adipocytes was 

considerably lower than in parallel control cultures, it suggests that these cultures contain a high 

percentage of committed osteogenic cells. The presence of PHA-767491 doesn’t seem to affect 

the differentiation capability of these cultures.  

Expression of marker genes: Ki67, RUNX2, Osterix and 53BP1 

The differentiation capability results of the OD and OD+PHA cells is further supported through the 

immunostaining for the expression of marker genes. Osterix and RUNX2 are transcription factors 

involved in bone formation and osteoblast differentiation (Martin et al., 2011). Osterix is a more 

accurate marker of osteoblast differentiation as RUNX2 is expressed in MSCs, as well as early 

osteoblasts (Zou et al.). The RUNX2 results show no significant difference whereas our average 

Osterix foci number is much higher in OD and OD+PHA cells, confirming that there is a higher 

percentage of committed osteogenic cells. Lu et al. (2008) reported that when quantitative 

reverse transcription-PCR analysis of RUNX2 in osteosarcoma patient’s samples was carried out, 

overexpression of RUNX2 was seen. Our results show that when treated with PHA-767491 a 

higher level of RUNX2 expression was seen, suggesting that PHA-767491 treatment may induce 

transformation and osteosarcoma in these treated cultures. A link could be possible in p44 pLK0.1 

and p44 shRQ-9 cells between a high RUNX2 expression and a reduced capability in 

differentiating.  

53BP1 is an important mediator of DNA damage check points and abnormal quantities can be 

linked with tumour development (Bi et al., 2015). It is a key regulator of DSB repair pathway 

choice and promotes NHEJ during G1 by antagonising DNA end-resection (Panier and Boulton, 

2013). A study by Singh et al. (2010) showed that when exposed to gamma-irradiation, RECQL4 

deficient fibroblasts displayed an increased number of 53BP1 foci. This suggested that defects in 

efficient DSB repair were present in the RECQL4 deficient fibroblasts. Our results show no 

statistically significant differences between the levels of 53BP1 expression in each cell line. 
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Contrary to the results found by Singh et al. (2010), the p14 shRQ-9, p14 shRQ-10 and p44 shRQ-9 

cells show a lower average foci count in comparison to the other cell lines. These results could 

suggest that there is no abnormal DNA damage to any of the cell lines.  

Ki67 protein expression is associated with cell proliferation (Scholzen and Gerdes, 2000). Studies 

of breast cancer patients have shown that a high level of Ki67 expression is associated with a 

worse prognosis (Inwald et al., 2013). This suggests that any development of osteosarcoma will 

result in an increased expression of Ki67 being present. Our results show no significant differences 

in the expression of Ki67 between the knockdowns and the controls.  

Differences in growth  

RECQL4 plays an important role in DNA replication initiation and so without this gene it is 

assumed that the efficiency of cell proliferation would be decreased as DNA replication would 

occur at a reduced rate. _ENREF_76Sangrithi et al. (2005) obtained evidence that RECQL4 

depletion results in cell proliferation failure. The results from this study do not complement this 

evidence as no significant difference can be seen between the RECQL4 deficient cells and the 

controls. This is, although unexpected, not inexplicable. There might be some residual RECQL4 

expression in these clones, as suggested by Figure 7. It is not uncommon to achieve only around 

95% knockdown with siRNA / shRNA, and this residual activity can be sufficient enough to carry 

out some functions meaning the cells that are more sensitive to expression levels might be 

affected (Fakhr et al., 2016). Patient-derived RECQL4 mutant cell lines can also display different 

degrees of activity, which may explain the differences they show in proliferation capacity. Full 

knockout of Recql4 in the mouse is embryonic lethal, other mouse mutant alleles are 

hypomorphic with residual expression that retains some activity of the protein (Xu and Liu, 2009). 

Sensitivity to genotoxic stress 

There are a number of studies available that provide data and information on the sensitivity of 

RTS cells to different genotoxic agents, and the data that is available is contradictory. These 

inconsistent findings could indicate genetic heterogeneity in RTS (Jin et al., 2008). As RECQL4 

plays a key role in DNA replication initiation, sensitivity is expected to be seen in RECQL4 deficient 

cells when treated with DNA damaging agents that inhibit replication. This is because stalled 

replication forks can be rescued by the firing of dormant origins (Petermann et al., 2010), and if 

this firing is inhibited it results in sensitivity to replication inhibition in general. To test if our 

RECQL4 deficient cells were more sensitive in comparison to their controls, we treated them for a 

seven day period with Camptothecin, Mitomycin C, Hydroxy Urea, PHA-767491, Bleomycin and 

KU0055933 and then evaluated the cytotoxic effect using an MTT assay. Mitomycin C and Hydroxy 
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Urea both cause replication fork arrest directly as Mitomycin C creates DNA inter-strand crosslinks 

and Hydroxy Urea inhibits ribonucleotide reductase, which depletes the dNTP pool. Camptothecin 

is an inhibitor of DNA topoisomerase I; it arrests TOPO1 in its transient state when the single-

stranded break is created by the enzyme and it induces collapse of the replication fork. PHA-

767491 inhibits replication initiation by inhibiting CDC7/DBF4. Bleomycin induces double-stranded 

DNA breaks, while KU0055933 is an ATM inhibitor and it interferes with the DNA damage 

response. 

Our results show no increase in sensitivity in the RECQL4 deficient cells in comparison to the 

control cell lines. These results support the results obtained by Cabral et al. (2008) that there was 

no significant increase in sensitivity of the RECQL4 deficient cells in comparison to the controls 

when treated with Mitomycin C and Hydroxy Urea. When treated with Hydroxy Urea and 

Camptothecin, the lower passage shRQ-10 knockdown appears to have a slightly decreased 

sensitivity in comparison to the healthy OD and ASC cells. These results are contrary to those 

obtained in a study by Jin et al. (2008) that showed RTS fibroblasts were more sensitive to 

Hydroxy Urea and Camptothecin in comparison to their controls. Differences in results could be 

due to the different systems and models used to mimic RTS RECQL4 deficient cells. However, as 

seen above in sections 3.1 and 4.1, the most likely cause for the inconsistencies is the nature of 

the mutations and residual expression. The PHA-767491 sensitivity assay shows a dip at 0.25µM 

and 0.5μM for P44 shRQ-9. This result may be promising if real; in earlier studies in our laboratory 

increased sensitivity of the RECQL4 deficient RTS fibroblast cell line AG05013 to PHA-767491 was 

demonstrated (Tammy Wiltshire, personal communication). However, this sudden decrease could 

also be due to pipetting errors in those wells meaning there were not enough cells to pick up cell 

proliferation again, rather than the effects of the PHA-767491 itself.  

Chromosomal analysis 

Osteosarcomas normally see a number of chromosome alterations and genomic instability with 

aneuploidy being a common feature within cells in osteosarcoma patients (Nishijo et al., 2004). 

Chromosome instability is also a characteristic of RTS cell lines. Chromosomes were prepared 

from all nine of the cell lines used in this study and their chromosome number counted from 

around 35 cells. The chromosomes were also thoroughly examined for any obvious structural 

defects. As most previous studies show, aneuploidy exists in all RECQL4 deficient cells lines, but it 

is also seen in control cell lines. However, the degree of aneuploidy in both of the higher passage 

RECQL4 deficient cell lines and the OD+PHA cell line is greater, and contain cells with a tetraploid 

modal number of chromosomes. A study by Muff et al. (2015) reported that the gene expression 
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signature osteosarcoma cells is difficult to determine with stochastic chromosomal instability 

playing a key role in altered gene expressions. None of the cell lines show signs of chromosomal 

defects detectable by the techniques we used. Breakage analysis conducted by Smida et al. (2017) 

shows unstable regions in osteosarcoma in tumour suppressor genes such as TP53 and RB1. 

Comparative analysis of osteosarcoma-derived cell lines suggests that chromosomal instability 

arises from chromatin modifications at specific genomic locations in the osteosarcoma. Further 

tests would need to be conducted to evaluate whether our results support any of these findings.  
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5. Conclusion and further research 

Multiple experiments were carried out in this study to determine whether there are any 

differences in chromosomal instabilities, sensitivity to genotoxic agents, differentiation potential 

and level of expression of marker genes between RECQL4 deficient ASC52Telo and control cells. 

Although we found no significant differences in growth characteristics, marker expression and 

drug sensitivity, the degree of numerical chromosomal instabilities was found to be greater in 

RECQL4 deficient cells. Slight differences could be seen in some of the results, but without 

confirmation that there is no residual RECQL4 expression in the knockdowns, it cannot be 

confirmed that the results are due to RECQL4 depletion.  

There are some improvements and variations that could be considered for future development of 

this experiment. These could benefit both the accuracy of the experiment, and the depth of 

information obtained. 

To better clarify RECQL4 expression in the shRNA knockdowns, a repeat of the western with a 

better RECQL4 antibody needs to be carried out. Patient derived cell lines from RTS patients with 

confirmed RECQL4 depletion could also be used to ensure RECQL4 depleted cells are being used.  

A popular method of analysing chromosomes is using spectral karyotyping (SKY). If a collaborator 

could be found, the samples obtained from these cells lines could be sent to be analysed to gain 

more accurate results and see if any chromosomal alterations can be identified. SKY staining of 

these chromosomal preparations would unravel structural chromosomal rearrangements at much 

higher sensitivity and resolution, and would also increase confidence in analysing numerical 

abnormalities. Chromosomes could also be prepared from RECQL4 depleted cells treated with the 

genotoxic agents to see if any obvious abnormalities can be seen when DNA damage is 

stimulated.  Immunofluorescence staining could also be repeated on RECQL4 depleted cells 

treated with the genotoxic agents to evaluate the expression DNA damage response markers.  

  



RECQL4: linking DNA replication to bone tumorigenesis 

 
 

75 
 

References 

ADAMSON, I. Y. R. & BOWDEN, D. H. 1974. The Pathogenesis of Bleomycin-Induced Pulmonary 
Fibrosis in Mice. The American Journal of Pathology, 77, 185-198. 

AL-ROMAIH, K., BAYANI, J., VOROBYOVA, J., KARASKOVA, J., PARK, P. C., ZIELENSKA, M. & SQUIRE, 
J. A. 2003. Chromosomal instability in osteosarcoma and its association with centrosome 
abnormalities. Cancer Genetics and Cytogenetics, 144, 91-99. 

APARICIO, T., BAER, R. & GAUTIER, J. 2014. DNA double-strand break repair pathway choice and 
cancer. DNA repair, 19, 169-175. 

AUGELLO, A. & DE BARI, C. 2010. The regulation of differentiation in mesenchymal stem cells. 
Human gene therapy, 21, 1226-1238. 

BACHRATI, C. Z. & HICKSON, I. D. 2003. RecQ helicases: suppressors of tumorigenesis and 
premature aging. Biochemical Journal, 374, 577-606. 

BERNADOTTE, A., MIKHELSON, V. M. & SPIVAK, I. M. 2016. Markers of cellular senescence. 
Telomere shortening as a marker of cellular senescence. Aging (Albany NY), 8, 3-11. 

BERNSTEIN, K. A., GANGLOFF, S. & ROTHSTEIN, R. 2010. The RecQ DNA helicases in DNA repair. 
Annual review of genetics, 44, 393-417. 

BI, J., HUANG, A., LIU, T., ZHANG, T. & MA, H. 2015. Expression of DNA damage checkpoint 53BP1 
is correlated with prognosis, cell proliferation and apoptosis in colorectal cancer. 
International Journal of Clinical and Experimental Pathology, 8, 6070-6082. 

BOLAND, G. M., PERKINS, G., HALL, D. J. & TUAN, R. S. 2004. Wnt 3a promotes proliferation and 
suppresses osteogenic differentiation of adult human mesenchymal stem cells. Journal of 
cellular biochemistry, 93, 1210-1230. 

BUNNELL, B. A., FLAAT, M., GAGLIARDI, C., PATEL, B. & RIPOLL, C. 2008. Adipose-derived stem 
cells: isolation, expansion and differentiation. Methods, 45, 115-120. 

CABRAL, R. E. C., QUEILLE, S., BODEMER, C., DE PROST, Y., NETO, J. B. C., SARASIN, A. & DAYA-
GROSJEAN, L. 2008. Identification of new RECQL4 mutations in Caucasian Rothmund–
Thomson patients and analysis of sensitivity to a wide range of genotoxic agents. 
Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 643, 41-47. 

CAO, Y., ZHOU, Z., DE CROMBRUGGHE, B., NAKASHIMA, K., GUAN, H., DUAN, X., JIA, S.-F. & 
KLEINERMAN, E. S. 2005. Osterix, a transcription factor for osteoblast differentiation, 
mediates antitumor activity in murine osteosarcoma. Cancer research, 65, 1124-1128. 

CHAMBERLAIN, G., FOX, J., ASHTON, B. & MIDDLETON, J. 2007. Concise Review: Mesenchymal 
Stem Cells: Their Phenotype, Differentiation Capacity, Immunological Features, and 
Potential for Homing. STEM CELLS, 25, 2739-2749. 

CLARK, J. C. M., DASS, C. R. & CHOONG, P. F. M. 2008. A review of clinical and molecular 
prognostic factors in osteosarcoma. Journal of Cancer Research and Clinical Oncology, 
134, 281-297. 

COSCHI, C. H., MARTENS, A. L., RITCHIE, K., FRANCIS, S. M., CHAKRABARTI, S., BERUBE, N. G. & 
DICK, F. A. 2010. Mitotic chromosome condensation mediated by the retinoblastoma 
protein is tumor-suppressive. Genes & Development, 24, 1351-1363. 

CROTEAU, D. L., SINGH, D. K., HOH FERRARELLI, L., LU, H. & BOHR, V. A. 2012. RECQL4 in genomic 
instability and aging. Trends in Genetics, 28, 624-631. 

DER KALOUSTIAN, V. M., MCGILL, J. J., VEKEMANS, M. & KOPELMAN, H. R. 1990. Clonal lines of 
aneuploid cells in Rothmund-Thomson syndrome. American Journal of Medical Genetics, 
37, 336-339. 

DIFFLEY, J. F. 2004. Regulation of early events in chromosome replication. Current Biology, 14, 
R778-R786. 

DING, D.-C., SHYU, W.-C. & LIN, S.-Z. 2011. Mesenchymal stem cells. Cell transplantation, 20, 5-14. 



RECQL4: linking DNA replication to bone tumorigenesis 

 
 

76 
 

DOLLEY-SONNEVILLE, P. J., ROMEO, L. E. & MELKOUMIAN, Z. K. 2013. Synthetic surface for 
expansion of human mesenchymal stem cells in xeno-free, chemically defined culture 
conditions. PloS one, 8, e70263. 

DUCHMAN, K. R., GAO, Y. & MILLER, B. J. 2015. Prognostic factors for survival in patients with 
high-grade osteosarcoma using the Surveillance, Epidemiology, and End Results (SEER) 
Program database. Cancer epidemiology, 39, 593-599. 

ETHERIDGE, S. L., SPENCER, G. J., HEATH, D. J. & GENEVER, P. G. 2004. Expression profiling and 
functional analysis of wnt signaling mechanisms in mesenchymal stem cells. Stem cells, 
22, 849-860. 

FAKHR, E., ZARE, F. & TEIMOORI-TOOLABI, L. 2016. Precise and efficient siRNA design: a key point 
in competent gene silencing. Cancer gene therapy, 23, 73-82. 

FENG, J. Q., WARD, L. M., LIU, S., LU, Y., XIE, Y., YUAN, B., YU, X., RAUCH, F., DAVIS, S. I., ZHANG, 
S., RIOS, H., DREZNER, M. K., QUARLES, L. D., BONEWALD, L. F. & WHITE, K. E. 2006. Loss 
of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral 
metabolism. Nature Genetics, 38, 1310. 

FLORENCIO-SILVA, R., SASSO, G. R. D. S., SASSO-CERRI, E., SIMÕES, M. J. & CERRI, P. S. 2015. 
Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. 
BioMed Research International, 2015, 421746. 

FRANZ-ODENDAAL, T. A., HALL, B. K. & WITTEN, P. E. 2006. Buried alive: How osteoblasts become 
osteocytes. Developmental Dynamics, 235, 176-190. 

FRIEDENSTEIN, A., CHAILAKHJAN, R. & LALYKINA, K. 1970. The development of fibroblast colonies 
in monolayer cultures of guinea‐pig bone marrow and spleen cells. Cell Proliferation, 3, 
393-403. 

GAUR, T., LENGNER, C. J., HOVHANNISYAN, H., BHAT, R. A., BODINE, P. V., KOMM, B. S., JAVED, A., 
VAN WIJNEN, A. J., STEIN, J. L. & STEIN, G. S. 2005. Canonical WNT signaling promotes 
osteogenesis by directly stimulating Runx2 gene expression. Journal of Biological 
Chemistry, 280, 33132-33140. 

HOKI, Y., ARAKI, R., FUJIMORI, A., OHHATA, T., KOSEKI, H., FUKUMURA, R., NAKAMURA, M., 
TAKAHASHI, H., NODA, Y., KITO, S. & ABE, M. 2003. Growth retardation and skin 
abnormalities of the Recql4 -deficient mouse. Human Molecular Genetics, 12, 2293-2299. 

IM, J.-S., PARK, S.-Y., CHO, W.-H., BAE, S.-H., HURWITZ, J. & LEE, J.-K. 2015. RecQL4 is required for 
the association of Mcm10 and Ctf4 with replication origins in human cells. Cell Cycle, 14, 
1001-1009. 

INWALD, E. C., KLINKHAMMER-SCHALKE, M., HOFSTÄDTER, F., ZEMAN, F., KOLLER, M., 
GERSTENHAUER, M. & ORTMANN, O. 2013. Ki-67 is a prognostic parameter in breast 
cancer patients: results of a large population-based cohort of a cancer registry. Breast 
Cancer Research and Treatment, 139, 539-552. 

JAVAZON, E. H., BEGGS, K. J. & FLAKE, A. W. 2004. Mesenchymal stem cells: paradoxes of 
passaging. Experimental hematology, 32, 414-425. 

JIN, W., LIU, H., ZHANG, Y., OTTA, S. K., PLON, S. E. & WANG, L. L. 2008. Sensitivity of RECQL4-
deficient fibroblasts from Rothmund–Thomson syndrome patients to genotoxic agents. 
Human genetics, 123, 643-653. 

KERN, S., EICHLER, H., STOEVE, J., KLÜTER, H. & BIEBACK, K. 2006. Comparative analysis of 
mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem 
cells, 24, 1294-1301. 

KIM, W.-S., PARK, B.-S., SUNG, J.-H., YANG, J.-M., PARK, S.-B., KWAK, S.-J. & PARK, J.-S. 2007. 
Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on 
human dermal fibroblasts. Journal of dermatological science, 48, 15-24. 

KITAO, S., LINDOR, N. M., SHIRATORI, M., FURUICHI, Y. & SHIMAMOTO, A. 1999. Rothmund–
Thomson syndrome responsible gene, RECQL4: genomic structure and products. 
Genomics, 61, 268-276. 



RECQL4: linking DNA replication to bone tumorigenesis 

 
 

77 
 

KOMORI, T. 2008. Regulation of bone development and maintenance by Runx2. Frontiers in 
bioscience: a journal and virtual library, 13, 898-903. 

KRYŠTOF, V., BAUMLI, S. & FÜRST, R. 2012. Perspective of Cyclin-dependent kinase 9 (CDK9) as a 
Drug Target. Current Pharmaceutical Design, 18, 2883-2890. 

LABIB, K. 2010. How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome 
replication in eukaryotic cells? Genes & development, 24, 1208-1219. 

LEE, K. M., CHOI, K. H. & OUELLETTE, M. M. 2004. Use of exogenous hTERT to immortalize primary 
human cells. Cytotechnology, 45, 33-38. 

LI, Y. & YANG, D.-Q. 2010. The ATM Inhibitor KU-55933 Suppresses Cell Proliferation and Induces 
Apoptosis by Blocking Akt In Cancer Cells with Overactivated Akt. Molecular Cancer 
Therapeutics, 9, 113-125. 

LOHMAN, T. M. 1993. Helicase-catalyzed DNA unwinding. Journal of Biological Chemistry, 268, 
2269-72. 

LU, H., SHAMANNA, RAGHAVENDRA A., KEIJZERS, G., ANAND, R., RASMUSSEN, LENE J., CEJKA, P., 
CROTEAU, DEBORAH L. & BOHR, VILHELM A. 2016. RECQL4 Promotes DNA End Resection 
in Repair of DNA Double-Strand Breaks. Cell Reports, 16, 161-173. 

LU, X.-Y., LU, Y., ZHAO, Y.-J., JAEWEON, K., KANG, J., XIAO-NAN, L., GE, G., MEYER, R., PERLAKY, L., 
HICKS, J., CHINTAGUMPALA, M., CAI, W.-W., LADANYI, M., GORLICK, R., LAU, C. C., PATI, 
D., SHELDON, M. & RAO, P. H. 2008. Cell Cycle Regulator Gene CDC5L, a Potential Target 
for 6p12-p21 Amplicon in Osteosarcoma. Molecular cancer research : MCR, 6, 937-946. 

LUETKE, A., MEYERS, P. A., LEWIS, I. & JUERGENS, H. 2014. Osteosarcoma treatment – Where do 
we stand? A state of the art review. Cancer Treatment Reviews, 40, 523-532. 

MAIRE, G., YOSHIMOTO, M., CHILTON-MACNEILL, S., THORNER, P. S., ZIELENSKA, M. & SQUIRE, J. 
A. 2009. Recurrent RECQL4 Imbalance and Increased Gene Expression Levels Are 
Associated with Structural Chromosomal Instability in Sporadic Osteosarcoma. Neoplasia, 
11, 260-IN6. 

MANN, M. B., HODGES, C. A., BARNES, E., VOGEL, H., HASSOLD, T. J. & LUO, G. 2005. Defective 
sister-chromatid cohesion, aneuploidy and cancer predisposition in a mouse model of 
type II Rothmund–Thomson syndrome. Human Molecular Genetics, 14, 813-825. 

MARTIN, J. W., SQUIRE, J. A. & ZIELENSKA, M. 2012. The Genetics of Osteosarcoma. Sarcoma, 
2012, 11. 

MARTIN, J. W., ZIELENSKA, M., STEIN, G. S., VAN WIJNEN, A. J. & SQUIRE, J. A. 2011. The Role of 
RUNX2 in Osteosarcoma Oncogenesis. Sarcoma, 2011, 13. 

MIOZZO, M., CASTORINA, P., RIVA, P., DALPRA, L., FUHRMAN CONTI, A. M., VOLPI, L., HOE, T. S., 
KHOO, A., WIEGANT, J. & ROSENBERG, C. 1998. Chromosomal instability in fibroblasts and 
mesenchymal tumors from 2 sibs with Rothmund-Thomson syndrome. International 
journal of cancer, 77, 504-510. 

MISHRA, A., DOYLE, N. A. & MARTIN, W. J. 2000. Bleomycin-mediated pulmonary toxicity: 
evidence for a p53-mediated response. American journal of respiratory cell and molecular 
biology, 22, 543-549. 

MITCHELL, K. E., WEISS, M. L., MITCHELL, B. M., MARTIN, P., DAVIS, D., MORALES, L., HELWIG, B., 
BEERENSTRAUCH, M., ABOU‐EASA, K. & HILDRETH, T. 2003. Matrix cells from Wharton's 
jelly form neurons and glia. Stem cells, 21, 50-60. 

MOHAGHEGH, P. & HICKSON, I. D. 2001. DNA helicase deficiencies associated with cancer 
predisposition and premature ageing disorders. Human Molecular Genetics, 10, 741-746. 

MUFF, R., RATH, P., KUMAR, R. M. R., HUSMANN, K., BORN, W., BAUDIS, M. & FUCHS, B. 2015. 
Genomic instability of osteosarcoma cell lines in culture: impact on the prediction of 
metastasis relevant genes. PloS one, 10, e0125611. 

NADKARNI, A., SHRIVASTAV, M., MLADEK, A. C., SCHWINGLER, P. M., GROGAN, P. T., CHEN, J. & 
SARKARIA, J. N. 2012. ATM inhibitor KU-55933 increases the TMZ responsiveness of only 
inherently TMZ sensitive GBM cells. Journal of neuro-oncology, 110, 349-357. 



RECQL4: linking DNA replication to bone tumorigenesis 

 
 

78 
 

NATONI, A., MURILLO, L. S., KLISZCZAK, A. E., CATHERWOOD, M. A., MONTAGNOLI, A., SAMALI, A., 
O'DWYER, M. & SANTOCANALE, C. 2011. Mechanisms of Action of a Dual Cdc7/Cdk9 
Kinase Inhibitor against Quiescent and Proliferating CLL Cells. Molecular Cancer 
Therapeutics, 10, 1624-1634. 

NG, A. J. M., WALIA, M. K., SMEETS, M. F., MUTSAERS, A. J., SIMS, N. A., PURTON, L. E., WALSH, N. 
C., MARTIN, T. J. & WALKLEY, C. R. 2015. The DNA Helicase Recql4 Is Required for Normal 
Osteoblast Expansion and Osteosarcoma Formation. PLoS Genetics, 11, e1005160. 

NG, F., BOUCHER, S., KOH, S., SASTRY, K. S. R., CHASE, L., LAKSHMIPATHY, U., CHOONG, C., YANG, 
Z., VEMURI, M. C., RAO, M. S. & TANAVDE, V. 2008. PDGF, TGF-β, and FGF signaling is 
important for differentiation and growth of mesenchymal stem cells (MSCs): 
transcriptional profiling can identify markers and signaling pathways important in 
differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood, 
112, 295-307. 

NISHIJO, K., NAKAYAMA, T., AOYAMA, T., OKAMOTO, T., ISHIBE, T., YASURA, K., SHIMA, Y., 
SHIBATA, K. R., TSUBOYAMA, T. & NAKAMURA, T. 2004. Mutation analysis of the RECQL4 
gene in sporadic osteosarcomas. International journal of cancer, 111, 367-372. 

NISHIO, Y., DONG, Y., PARIS, M., O'KEEFE, R. J., SCHWARZ, E. M. & DRISSI, H. 2006. Runx2-
mediated regulation of the zinc finger Osterix/Sp7 gene. Gene, 372, 62-70. 

NOMBELA-ARRIETA, C., RITZ, J. & SILBERSTEIN, L. E. 2011. The elusive nature and function of 
mesenchymal stem cells. Nature reviews. Molecular cell biology, 12, 126. 

OTTAVIANI, G. & JAFFE, N. 2010. The Epidemiology of Osteosarcoma. In: JAFFE, N., BRULAND, O. 
S. & BIELACK, S. (eds.) Pediatric and Adolescent Osteosarcoma. Boston, MA: Springer US. 

OVERHOLTZER, M., RAO, P. H., FAVIS, R., LU, X.-Y., ELOWITZ, M. B., BARANY, F., LADANYI, M., 
GORLICK, R. & LEVINE, A. J. 2003. The presence of p53 mutations in human 
osteosarcomas correlates with high levels of genomic instability. Proceedings of the 
National Academy of Sciences of the United States of America, 100, 11547-11552. 

PALOM, Y., SURESH KUMAR, G., TANG, L.-Q., PAZ, M. M., MUSSER, S. M., ROCKWELL, S. & 
TOMASZ, M. 2002. Relative toxicities of DNA cross-links and monoadducts: new insights 
from studies of decarbamoyl mitomycin C and mitomycin C. Chemical research in 
toxicology, 15, 1398-1406. 

PALUMBO, C., PALAZZINI, S., ZAFFE, D. & MAROTTI, G. 1990. Osteocyte Differentiation in the Tibia 
of Newborn Rabbit: An Ultrastructural Study of the Formation of Cytoplasmic Processes. 

PANIER, S. & BOULTON, S. J. 2013. Double-strand break repair: 53BP1 comes into focus. Nature 
Reviews Molecular Cell Biology, 15, 7. 

PARFITT, A. 1990. Bone forming cells in clinical conditions. Bone: A Treatise, The Osteoblast and 
Osteocyte., 1, 351-429. 

PETERMANN, E., ORTA, M. L., ISSAEVA, N., SCHULTZ, N. & HELLEDAY, T. 2010. Hydroxyurea-Stalled 
Replication Forks Become Progressively Inactivated and Require Two Different RAD51-
Mediated Pathways for Restart and Repair. Molecular Cell, 37, 492-502. 

PETKOVIC, M., DIETSCHY, T., FREIRE, R., JIAO, R. & STAGLJAR, I. 2005. The human Rothmund-
Thomson syndrome gene product, RECQL4, localizes to distinct nuclear foci that coincide 
with proteins involved in the maintenance of genome stability. Journal of Cell Science, 
118, 4261-4269. 

PIARD, J., ARAL, B., VABRES, P., HOLDER‐ESPINASSE, M., MEGARBANE, A., GAUTHIER, S., CAPRA, 
V., PIERQUIN, G., CALLIER, P. & BAUMANN, C. 2015. Search for ReCQL4 mutations in 39 
patients genotyped for suspected Rothmund–Thomson/Baller‐Gerold syndromes. Clinical 
genetics, 87, 244-251. 

PITTENGER, M. F., MACKAY, A. M., BECK, S. C., JAISWAL, R. K., DOUGLAS, R., MOSCA, J. D., 
MOORMAN, M. A., SIMONETTI, D. W., CRAIG, S. & MARSHAK, D. R. 1999. Multilineage 
potential of adult human mesenchymal stem cells. science, 284, 143-147. 



RECQL4: linking DNA replication to bone tumorigenesis 

 
 

79 
 

POOS, K., SMIDA, J., MAUGG, D., ECKSTEIN, G., BAUMHOER, D., NATHRATH, M. & KORSCHING, E. 
2015. Genomic heterogeneity of osteosarcoma - shift from single candidates to functional 
modules. PloS one, 10. 

ROBERTS, I. 2004. Mesenchymal stem cells. Vox Sanguinis, 87, 38-41. 
ROMANOV, Y. A., SVINTSITSKAYA, V. A. & SMIRNOV, V. N. 2003. Searching for Alternative Sources 

of Postnatal Human Mesenchymal Stem Cells: Candidate MSC-Like Cells from Umbilical 
Cord. STEM CELLS, 21, 105-110. 

RYAN, A. J., SQUIRES, S., STRUTT, H. L. & JOHNSON, R. T. 1991. Camptothecin cytotoxicity in 
mammalian cells is associated with the induction of persistent double strand breaks in 
replicating DNA. Nucleic Acids Research, 19, 3295-3300. 

SANGRITHI, M. N., BERNAL, J. A., MADINE, M., PHILPOTT, A., LEE, J., DUNPHY, W. G. & 
VENKITARAMAN, A. R. 2005. Initiation of DNA Replication Requires the RECQL4 Protein 
Mutated in Rothmund-Thomson Syndrome. Cell, 121, 887-898. 

SCHOLZEN, T. & GERDES, J. 2000. The Ki‐67 protein: from the known and the unknown. Journal of 
cellular physiology, 182, 311-322. 

SIITONEN, H. A., SOTKASIIRA, J., BIERVLIET, M., BENMANSOUR, A., CAPRI, Y., CORMIER-DAIRE, V., 
CRANDALL, B., HANNULA-JOUPPI, K., HENNEKAM, R. & HERZOG, D. 2009. The mutation 
spectrum in RECQL4 diseases. European journal of human genetics, 17, 151. 

SINGH, D. K., KARMAKAR, P., AAMANN, M., SCHURMAN, S. H., MAY, A., CROTEAU, D. L., BURKS, L., 
PLON, S. E. & BOHR, V. A. 2010. The involvement of human RECQL4 in DNA double‐strand 
break repair. Aging cell, 9, 358-371. 

SMIDA, J., XU, H., ZHANG, Y., BAUMHOER, D., RIBI, S., KOVAC, M., VON LUETTICHAU, I., BIELACK, 
S., O'LEARY, V. B., LEIB-MÖSCH, C., FRISHMAN, D. & NATHRATH, M. 2017. Genome-wide 
analysis of somatic copy number alterations and chromosomal breakages in 
osteosarcoma. International Journal of Cancer, 141, 816-828. 

SYMEONIDOU, I.-E., TARAVIRAS, S. & LYGEROU, Z. 2012. Control over DNA replication in time and 
space. FEBS letters, 586, 2803-2812. 

SYMINGTON, L. S. 2014. End resection at double-strand breaks: mechanism and regulation. Cold 
Spring Harbor perspectives in biology, 6, a016436. 

TOYODA, M., CUI, C. & UMEZAWA, A. 2007. Myogenic transdifferentiation of menstrual blood-
derived cells. Acta Myologica, 26, 176. 

WAGNER, W., WEIN, F., SECKINGER, A., FRANKHAUSER, M., WIRKNER, U., KRAUSE, U., BLAKE, J., 
SCHWAGER, C., ECKSTEIN, V. & ANSORGE, W. 2005. Comparative characteristics of 
mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord 
blood. Experimental hematology, 33, 1402-1416. 

WAKITANI, S., SAITO, T. & CAPLAN, A. I. 1995. Myogenic cells derived from rat bone marrow 
mesenchymal stem cells exposed to 5‐azacytidine. Muscle & nerve, 18, 1417-1426. 

WANG, L. L., GANNAVARAPU, A., KOZINETZ, C. A., LEVY, M. L., LEWIS, R. A., CHINTAGUMPALA, M. 
M., RUIZ-MALDANADO, R., CONTRERAS-RUIZ, J., CUNNIFF, C. & ERICKSON, R. P. 2003. 
Association between osteosarcoma and deleterious mutations in the RECQL4 gene in 
Rothmund–Thomson syndrome. Journal of the National Cancer Institute, 95, 669-674. 

WESTENDORF, J. J., KAHLER, R. A. & SCHROEDER, T. M. 2004. Wnt signaling in osteoblasts and 
bone diseases. Gene, 341, 19-39. 

WILLIAMS, A. R. & HARE, J. M. 2011. Mesenchymal stem cells. Circulation research, 109, 923-940. 
XIAO, W., MOHSENY, A. B., HOGENDOORN, P. C. W. & CLETON-JANSEN, A.-M. 2013. Mesenchymal 

stem cell transformation and sarcoma genesis. Clinical Sarcoma Research, 3, 10-10. 
XU, X. & LIU, Y. 2009. Dual DNA unwinding activities of the Rothmund–Thomson syndrome 

protein, RECQ4. The EMBO Journal, 28, 568-577. 
ZEDDOU, M., BRIQUET, A., RELIC, B., JOSSE, C., MALAISE, M. G., GOTHOT, A., LECHANTEUR, C. & 

BEGUIN, Y. 2010. The umbilical cord matrix is a better source of mesenchymal stem cells 
(MSC) than the umbilical cord blood. Cell biology international, 34, 693-701. 



RECQL4: linking DNA replication to bone tumorigenesis 

 
 

80 
 

ZOU, L., KIDWAI, FAHAD K., KOPHER, ROSS A., MOTL, J., KELLUM, CORY A., WESTENDORF, 
JENNIFER J. & KAUFMAN, DAN S. Use of RUNX2 Expression to Identify Osteogenic 
Progenitor Cells Derived from Human Embryonic Stem Cells. Stem Cell Reports, 4, 190-
198. 

 


