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Online Identification of Interaction Behaviors from Haptic Data
during Collaborative Object Transfer

Ayse Kucukyilmaz1, Illimar Issak1

Abstract—Joint object transfer is a complex task, which is
less structured and less specific than what is existing in several
industrial settings. When two humans are involved in such a
task, they cooperate through different modalities to understand
the interaction states during operation and mutually adapt
to one another’s actions. Mutual adaptation implies that both
partners can identify how well they collaborate (i.e. infer about
the interaction state) and act accordingly. These interaction
states can define whether the partners work in harmony, face
conflicts, or remain passive during interaction. Understanding
how two humans work together during physical interactions is
important when exploring the ways a robotic assistant should
operate under similar settings. This study acts as a first step to
implement an automatic classification mechanism during ongoing
collaboration to identify the interaction state during object co-
manipulation. The classification is done on a dataset consisting
of data from 40 subjects, who are partnered to form 20 dyads.
The dyads experiment in a physical human-human interaction
(pHHI) scenario to move an object in an haptics-enabled vir-
tual environment to reach predefined goal configurations. In
this study, we propose a sliding-window approach for feature
extraction and demonstrate the online classification methodology
to identify interaction patterns. We evaluate our approach using
1) a support vector machine classifier (SVMc) and 2) a Gaussian
Process classifier (GPc) for multi-class classification, and achieve
over 80% accuracy with both classifiers when identifying general
interaction types.

Index Terms—Classification, Feature Extraction, Force and
Tactile Sensing, Haptics and Haptic Interfaces, Human Factors
and Human-in-the-Loop, Learning and Adaptive Systems, Phys-
ical Human-Human Interaction, Physical Human-Robot Interac-
tion, Recognition

I. INTRODUCTION

HUMANS collaborate through tiresome and demanding
physical activities during their daily routines, such as

lifting and moving objects. With recent developments in the
field, humanoid robots show great potential as helpers, which
can proactively aid humans in a wide range of physical
collaboration scenarios. However, even though these tasks
seem trivial to us, the variability in human operations impose
a big challenge for robots.

Human collaboration is complex; it involves strong interper-
sonal coordination and mutual role adaptation mechanisms [1].
These help humans to determine how and when their partner’s
goals and the overall interaction states change, allowing them
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Fig. 1. A dyad using haptic interfaces to collaboratively transfer an object to
a goal configuration in a virtual environment, shown in Fig. 2.

to enhance their movements [2]. Determining how and when
interaction behaviors change is a key issue in identifying
the underlying sensorimotor processes for collaboration and
assistance during physical human-human interaction (pHHI).
This fundamental understanding also has implications for
physical human-robot interaction (pHRI). A robot, which can
instantaneously infer about how well it interacts with a human
would be able to better complement the human operation as
an assistant. Such proactivity would facilitate the design of
many pHRI applications, ranging from tele-operation to robot-
assisted surgery and rehabilitation.

This study explores how two human partners’ interactive
states change over physical collaboration. We use the data
collected over a dyadic object transfer task, generated using
the setup shown in Figure 1. Using the interaction behavior
taxonomy proposed in [3], we investigate an online feature
extraction method and perform online classification for dis-
tinguishing between interaction states during pHHI. This is a
first step to build a proactive robotic partner, which can assist
a human, while being aware of the interaction state that the
partners are in.

II. BACKGROUND

Even though HHI has been studied by many researchers
to transfer physical collaboration skills to human-robot teams
[4], [5], [6], [7], [8], [9], not many studies inform the decision
process based on an understanding of human-human interac-
tion (HHI). In fact, there are only a few studies that made
an effort to define interaction patterns for pHHI. Melendez-
Calderon et al. [10] used interaction forces and muscle activa-
tion to classify specialization strategies in a tracking task. The
classification was rule-based and the framework was not robust
against the addition of new interaction strategies. Defined roles
were static and rather than attempting to distinguish between
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these, the study discussed their efficiacy for specific tasks.
In this sense, this study did not attempt to provide a general
classification of the interactive behaviors.

One of the most important studies for formalising human-
human interaction is by Jarrassé et al. [11], who proposed a
taxonomy, which identified several types of role arbitration
in shared control based on game theory and neuroscience
concepts. The interactive behaviors were classified as com-
petition, collaboration and cooperation, and made use of cost
functions that minimize error and effort to distinguish between
these classes. Among these types, we are mostly interested in
collaborative arbitration policies, which are most suitable for
general co-manipulation tasks.

In the context of pHRI, shared control is a way to take into
account human operation characteristics to proactively alter
robotic operation. This may involve enabling the human-robot
team to dynamically arbitrate leader and follower roles as done
in [12], [13], [14], [15], [16], [17], [18], [19]. Collaborative
arbitration is defined by dynamic role exchanges between the
human and the robot. Powell and O’Malley [20] implemented
different roles for creating different motor interactions and in-
vestigated the resulting physical interactions in shared control.
Oguz et al. [21] programmed robotic behaviors based on game
theory in a two-party physical negotiation scenario. However,
even though these roles might be considered human-inspired,
none of these studies were informed by observations from real
pHHI data.

Our study aims to distinguish between different collabo-
rative interaction states during pHHI with an aim to create
a computational model for physical human collaboration. An
interaction state may point to different aspects of collabora-
tion, such as joint attention, fatigue, role hierarchy, partner
specialization behaviors, etc. In our context, we focus on
the harmony between the collaborating agents as a quality
of partnership to define interaction states. In our earlier
work [3], we proposed a taxonomy of interactive behaviors,
defining three main classes of collaborative interaction types,
namely harmonious, conflicting and neutral behaviors. This is
a general and universal taxonomy that provides an interaction-
oriented characterization for any physical collaborative task. In
comparison to [11], ours provides a simpler characterization,
defining three universal classes of interaction types. Also,
being a hierarchical taxonomy, it is able to capture different
interaction patterns specifically observed in a given task. In
[3] six task-dependent interaction patterns were identified and
these patterns were automatically classified through supervised
learning. The study identified some descriptive features of
interaction; however, it required extensive human annotation,
and classification was done in an offline fashion. The current
study builds on this earlier work [3] and improves it by intro-
ducing an online feature extraction technique, which enables
classification to be done during ongoing collaboration.

This online classification approach requires working on
timeseries data. In robotics research, timeseries analysis has
been performed to estimate intentions and recognize actions.
Lin et al. [22] employed a sliding window approach over the
raw timeseries to extract features for distinguishing between
expert and intermediate surgeons in a 4-throw suturing task

using the da Vinci robotic surgical system. They used the
concatenation of raw data measurements enclosed by the
time window and merged the data from separate channels
of information to form a super-feature vector. Stefanov et al.
[23] adopted a similar approach for distinguishing between
the transportation and positioning phases of point-to-point
movement in a haptics enabled virtual environment. However,
instead of concatenating raw timeseries data, they concate-
nated features extracted from timeseries data as proposed
by Olszewski [24]. This method performed an amplitude
discretization of the continuous data by defining several thresh-
olds to split the signal into classes according to the signal mag-
nitude. This discretization resulted with reducing the signal to
a binary number, which served as the codebook feature vector.
In this study, we investigate the use of descriptive statistics of
raw data as features.

This study proposes an online feature extraction method
and illustrate its use for timeseries classification on a dataset
generated in [3]. The data is recorded as two humans remotely
collaborate through haptic interfaces to transport an object in
a virtual environment, and labelled according to Madan et al.’s
interaction behavior taxonomy [3]. In order to enable online
classification on this data, we use a sliding window approach
for feature extraction. The proposed approach uses a fixed-
size window, over which a constant number of features are
computed using the multidimensional timeseries data within
the window. This window is then shifted forwards by a fixed
amount as time advances, while extracting features on the way.
The classification is done for each window, and by setting the
window size small enough, we enable online estimations for
interaction states.

III. HHI INTERACTION DATASET

This study builds on our earlier work and uses the in-
teraction behavior taxonomy proposed in [3] to investigate
an online feature extraction and classification technique for
identifying interaction states on-the-fly during pHHI. We
analyze the data collected in a virtual environment, where
two humans interact through the haptic channel. The dataset
used in this study is publicly available at https://github.com/
aysekyz/HHIBehaviorDataset/.

A. HHI Experiment

40 volunteers (9 female and 31 male, aged between 21 and
29, all right-handed) participated in the study. Subjects were
randomly matched to form dyads. Each partner within a dyad
sat in a separate room in front of a computer screen, which
displayed a maze-like virtual scene. Subjects interacted with
a Sensable (currently Geomagic) Phantom Premium haptic
device using a stylus attachment as in Figure 1. The haptic
devices were connected to separate PCs and communicated
through a dedicated UDP connection over the local network.

The subjects were asked to coordinate their motion and
jointly move an object to match a target configuration. In
order to provoke a range of different interaction patterns, two
different scenes, named straight and bifurcated, were created
as shown in Figure 2. The scenes were designed so that it was

https://github.com/aysekyz/HHIBehaviorDataset/
https://github.com/aysekyz/HHIBehaviorDataset/
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Fig. 2. The subjects were shown two scenes in the virtual environment as part
of the experiment. The straight scene (top) and the bifurcated scene (bottom).
The object (pink rectangular prism), target (bright green rectangular area),
boundaries (dark green walls), and the agents’ grasping points (blue and green
spheres on the object) are shown.

possible to observe interaction patterns during rotation and
translation of the object. In each scene, five different manipula-
tion scenarios were created1. Each manipulation scenario was
presented twice in both straight and bifurcated scenes, ensuring
that each dyad has experimented with each scenario exactly
twice in the course of 10 trials. The order of the scenarios was
the same between the first and the second set of 5 trials. As a
result of this procedure, 400 interaction sequences (2 scenes
× 20 dyads × 10 trials) are recorded.

At the beginning of the experiments, the dyads were pre-
sented with two practice trials in order to familiarize them
with the setup and the task. In order to balance the learning
effects, dyads were assigned random numbers and the order of
the scenarios were permuted using a Latin square design de-
pending on this number. The subjects were not given detailed
descriptions of the scenarios or the interaction patterns, but
they were informed that their partners may have conflicting
goals or no goal at all. The purpose of the task was to
complete the object transfer task, parking the object at a target
configuration and staying there for a predetermined period
of 5 seconds before moving on to another goal. During the
experiment, the subjects were presented with two different
scenes to observe interaction patterns in both translational and
rotational motion. The first scene, dubbed the straight scene,
depicts a horizontal path, whereas the second scene, called the
bifurcated scene, presents a fork-shaped path for the users to
follow.

The experiment involved using visual and haptic cues when
completing the task. The users were given proprioceptive in-
formation by showing them their grasping points, represented
as blue and green spheres attached to the object. In each trial,
a single target was depicted with a green rectangle with clear

1Please note that [3] defines four interaction scenarios, in which conflicts
between partners are artificially invoked by providing each agent with different
visual information about the location of the target configuration. In one of the
scenarios, only one subject is shown a goal, making the other agent blind to
the goal. In order to balance the experience, this scenario is repeated twice,
so that both partners act as the blinded subject at some point during the
experiment. For brevity, here, we say five different scenarios were created in
[3], considering the two dual sub-scenarios as separate.

orientation information. The target changed color to blue once
the object reached the desired configuration, and a countdown
timer was shown in the middle of the screen, informing the
dyad of the time they needed to wait before moving onto
another target configuration. If the dyad managed to wait in
the desired configuration for 5 seconds, a new target appeared,
starting a new trial.

The manipulated object was physically modeled as a rigid
body of 0.4 kg, which could move in 2D, in response to
forces applied on it. The translational and rotational inertia
was computed using the mass. The movement of the haptic
interfaces were used to compute the interaction forces applied
on the object. In particular, the end-effector positions of the
haptic styli along x- and z-axes mapped to the positions of the
individual haptic interface points (HIPs) in the virtual world.
The movement was constrained to a virtual plane parallel
to the ground, where motion in x- and z-axes respectively
controlled right/left and forward/backward directions with
respect to where the user sat. We programmed two spring-
damper systems between each agent’s HIP and their grasping
point on the object to compute the individual forces FHIP1

and FHIP2 applied by the agents on the object as follows:

FHIP1 = Kp(xHIP1 − xg1) +Kd(ẋHIP1 − ẋg1) (1)

FHIP2 = Kp(xHIP2 − xg2) +Kd(ẋHIP2 − ẋg2) (2)

where Kp = 0.25 N/mm and Kd = 0.001 Ns/mm are spring
and damper coefficients, xHIP1 , xHIP2 , ẋHIP1 , ẋHIP2 are
the positions and velocities of HIPs, and xg1 , xg2 , ẋg1 , ẋg2

are the positions and velocities of the grasping points of the
agents. The agents were reciprocally fed back with forces
−FHIP1 and −FHIP2 through the haptic devices, so that
they could feel the dynamics of the object2.

In case of collisions with the boundaries, an impact force
FI and an impact moment MI were computed based on
the penetration depth of the object into the boundaries us-
ing the calculated object pose. This calculated force vector
was mapped over the object, assuming 2D dynamics. Also,
translational and rotational friction (Ff and Mf ), calculated
using the Coulomb friction model were applied on the object
to affect its motion3.

B. Interaction Behavior Taxonomy

The taxonomy assumes that there are three main types
of interaction in any collaborative task between humans: 1.
working in harmony, 2. coping with conflicts, 3. remaining
passive during interaction. With this understanding, frequently
observed patterns, which were specific to this task domain,
were defined and a taxonomy of physical interaction was
created as shown in Figure 3. The taxonomy includes 6 task-
dependent interaction pattern classes, which fall into 3 task-
independent interaction types:

2Due to mechanical constraints of the haptic devices, the forces fed back
to the humans were thresholded at 4.0 N.

3The values of the static and kinetic friction coefficients were respectively
set to µt,s = 0.19 and µt,k = 0.15 for the translational case and to µr,s =
0.20 and µr,k = 0.19 for the rotational case. This created a slippery dynamic
environment, requiring good communication for fine control.
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Interaction 
Types

Motion Intentions Interaction 
Behavior Patterns

Dyadic 
Interaction

T1: Harmonious 
Interaction

T2: Conflicting 
Interaction

T3: Neutral 
Interaction

Common intention to 
start/continue motion 

Common intention to 
stop motion

Conflicting intention 
for motion

Conflict-free but no 
common intention for 

motion

C1: Harmonious 
translation

C2: Harmonious 
rotation with 

translation 

C3: Harmonious 
braking

C4: Persistent 
conflict

C5: Jerky conflict

C6: Passive 
agreement

Fig. 3. Taxonomy of physical interactions in dyadic object manipulation.

T1: Harmonious interaction: C1: Harmonious Translation;
C2: Harmonious Rotation with Translation; C3: Harmo-
nious Braking

T2: Coping with conflicts: C4: Persistent Conflict; C5 Jerky
Conflict

T3: Neutral interaction: C6: Passive Agreement
The data collected in the experiment was manually labelled
following the taxonomy definitions by two independent an-
notators, resulting with a populated dataset of 1944 instances
of different lengths. This is equivalent to more than 6 hours-
worth of physical interaction data. The details of the annotation
process and the dataset can be found in [3].

IV. METHODOLOGY

The dataset presented in the previous section contains vari-
able length interaction behaviors segments, which are labeled
to belong to a single interaction class. In order to perform
online identification of pHHI behaviors, we adopt a sliding-
window approach to capture smaller chunks of potentially
meaningful data sequences during interaction. We set fixed-
sized windows over the whole interaction data and compute
features over each window. Using these features, we perform
classification and compare the predictions to the ground truth
annotations. Even though this study presents these results over
recorded data, the approach can be transferred to real-time
interaction once classification models are trained.

In the rest of this section, we describe our end-to-end
methodology: As a first step, we prepare the dataset for classi-
fication and perform feature extraction over sliding windows.
We test our features with two different classifiers, namely a
support vector machine (SVMc) and a Gaussian process (GPc)
classifier. Since we use sliding windows on annotated data,
our approach is prone to capture interaction segments which
cover data belonging to more than one class. Systematic post-
processing is performed to conservatively select a matching
label for such interaction chunks, which can then be matched
with the ground truth to compute the classification accuracy.

A. Online Feature Extraction

Prior to starting with online classification, we prepare the
raw timeseries data for processing. This is done by assigning

every data point a label, which matches the annotation defining
the class of the corresponding interaction segment. Using this
labeled timeseries data, we set a short window to extract a
small time sequence to be used for feature extraction. In the
experiments, we used window size as 2s, and sliding distance
as 1.5s. In other words, we extract 2s worth of features from
the interaction every 1.5s. These parameters are empirically
set to respect human perception-response time for physical
actions and to ensure that each iteration mines enough data
for accurate classification. [25] indicates that the perception
of an active force cue can take around 1 seconds. This, added
with the kinesthetic reaction time for responding to the force
cue, would render 2 seconds as a reasonable choice to mimic
online collaboration behavior with a human.

As we iterate through the interactions, we hit some windows
that contain segments belonging to more than one class. For
example when we are moving the window halfway over Class
1, the other half of the window may cover some Class 2
interaction data. In these cases, there is an ambiguity about
the correct class of that window. When generating the training
set, we discard such ambiguous windows in order to keep
the model as clean as possible as they would reduce the
performance of the classifier. For this purpose, we check
whether the difference between the most prominent label and
second most prominent label is less than 20%. If that is true,
we drop the window, else we extract the features as usual and
add the most prominent label to the match this instance in
the training set. With this method, approximately 8% of the
windows were dropped. This means that on average, every 24
seconds we encounter some interaction that is too ambiguous
to classify as belonging to any of the interaction behaviors.

On the other hand, when testing, discarding such data
is neither meaningful nor realistic. When performing online
feature extraction in a real world scenario on unseen data,
we would have no information about the labels, hence it
would be impossible to drop such windows. Hence, for the
purposes of our evaluation in this study, we treat the window
as belonging to either one of these classes, and we accept
any of the candidate classes as a correct classification in
case of ambiguity. We consider a window ambiguous if the
most occurring class within the window is less than 15%
more prominent than the second most occurring label in that
window. This is a bit less conservative than our approach for
the training set, but allows us more flexibility when identifying
possible patterns. Algorithm 1 illustrates the feature extraction
process over sliding windows.

Once all labels are set, feature extraction is done within
each window. Using the feature definitions in [3], for each
window, we compute the mean, standard deviation, median,
and interquartile range for each of the variables summarized
in Table I. The feature set contains 48 features, which are
normalized before being used for training and testing.

B. Model Training

During the experiment each subject conducted 10 trials for
each of the two scenes, where the first 5 trials consist of the
five scenarios and the second 5 trials repeat the 5 scenarios in
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Algorithm 1 Dataset creation over sliding windows
procedure CREATE DATASETS(segments, labels)

X ← [nil, nil] . Create dataset
start← 0
end← start+ 2000 . window size is 2 seconds
slider ← 1500 . each slide is 1.5 seconds
while end < segments.length do

window ← segments(start : end)
windowLabel← labels(start : end)
features← ExtractFeatures(window)
mc← % of most occurring label in window
smc← % of second most occurring label
if isTestSet(window) = True then

if mc− smc < 0.15 then . check ambiguity
X ← [features,mc, smc] . add both

else . add only most prominent label
X ← [features,mc]

end if
else . training set

if mc− smc < 0.2 then . ambiguous window
continue . skip

else
X ← [features,mc]

end if
end if
start← start+ slider
end← end+ slider

end while
end procedure

TABLE I
FEATURE DEFINITIONS AND EXTRACTED VARIABLES

Variables # of
vars

Agent interaction forces: FHIP1 , FHIP2 4
Net force acting on object: Fnet = FHIP1 + FHIP2 2
Interactive force acting on object [26]: 1

fi =



FHIP1x sign(FHIP1x ) 6= sign(FHIP2x )

∧ |FHIP1x | ≤ |FHIP2x |
−FHIP2x sign(FHIP1x ) 6= sign(FHIP2x )

∧ |FHIP1x | > |FHIP2x |
0 sign(FHIP1x ) = sign(FHIP2x )

Object velocity: ẋobj , θ̇obj 3

Power: PHIP1 =
∣∣FHIPu · ẋobj

∣∣+ ∣∣∣MHIPu θ̇obj

∣∣∣ 2

PHIP2
=
∣∣FHIPu · ẋobj

∣∣+ ∣∣∣MHIPu θ̇obj

∣∣∣
the same order. Considering that the first 5 trials consist of all
the scenarios, we determined that a reasonable way to partition
the dataset into training and test sets is to use the first 5 trials
for training and the remaining 5 for testing. This allows the
model to be trained in all interaction scenarios, which would
be encountered during testing. In the experiments, data from
all dyads are used to train the classifier.

We compared the performances of SVMc and GPc for
online classification. For SVMc, we used the scikit-learn im-
plementation. A radial basis function (RBF) kernel is adopted
and parameters are optimized by performing a grid search with

5-fold cross-validation. GPy is used as the GPc implementa-
tion. The GPc is trained with an RBF kernel, using Bernoulli
likelihood and Expectation propagation (EP) inference [27].
Parameter optimization is done by using built-in functionality
in GPy, which optimizes the lengthscale and the variance of the
kernel against the approximate marginal likelihood. In order to
enable multi-class classification, we implemented a one-vs-all
scheme for both classifiers.

C. Model Evaluation

We evaluate the performance of our models using confusion
matrices and by reporting the correct classification rates. A
confusion matrix displays the prediction counts for all classes
where diagonal elements represent the number of correctly
classified instances and off-diagonal elements represent false
positives and false negatives. We normalize the confusion
matrix by the number of instances per class to represent the
class predictions as percentages. The accuracy of the classifier
denote the percentage of correctly classified instances. To get
the accuracy we compare all the predicted labels to all the
corresponding ground truth labels in the test labels set. If the
labels match, then the prediction is set as correct, then the
correct classifications are divided by the total number of test
labels to get the accuracy. In case of ambiguous labels, we
register a correct classification in case the predicted labels
match either of the possible labels.

V. RESULTS

We investigate online classification performance of SVMc
and GPc in two stages of Madan et al.’s hierarchy [3], on
both task-dependent and task-independent behaviors. In doing
so, we present two experiments: In the first experiment, we
look at how our models perform in distinguishing specific
interaction patterns (C1-C6). In the second experiment, we
investigate how our approach performs in distinguishing more
general behaviors: Harmonious interaction (T1: merged from
C1, C2 and C3), Conflicting interaction (T2: merged from C4
and C5 ) and Neutral interaction (T3: C6). A third experiment
is presented to compare the classifier performance for the
baseline offline classification approach implemented in [3].

Experiment 1: Online classification of interaction patterns

This experiment investigates the online classification perfor-
mance for pHHI patterns consisting of six classes (C1 to C6).
Our results indicate that SVMc reaches a 78.04% accuracy,
whereas GPc achieves an accuracy of 80.79% on the online
feature set, with 2.75% improvement on the performance of
SVMc. Both classifiers perform extremely well in classifying
passive agreement patterns (C6) with an impressive accuracy
over 90%.

As can be seen in Figure 4, even though both classifiers
work better than a baseline classifier with random guessing,
they end up with a strong confusion in recognising C2 and C3.
As seen on the confusion matrices, harmonious braking (C3)
is often classified as passive agreement (C6). This illustrates
that detecting harmonious braking behaviors is harder in online



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER, 2019

C1 C2 C3 C4 C5 C6

Predicted label

C1

C2

C3

C4

C5

C6

T
ru

e
 l

a
b

e
l

0.76 0.02 0.05 0.00 0.13 0.04

0.07 0.45 0.05 0.00 0.33 0.10

0.05 0.02 0.55 0.01 0.13 0.23

0.00 0.01 0.03 0.73 0.17 0.06

0.01 0.01 0.04 0.04 0.76 0.15

0.01 0.01 0.01 0.00 0.05 0.93

Norm alised GPC

0.0

0.2

0.4

0.6

0.8

C1 C2 C3 C4 C5 C6

Predicted label

C1

C2

C3

C4

C5

C6

T
ru

e
 l

a
b

e
l

0.79 0.02 0.04 0.00 0.08 0.06

0.10 0.37 0.08 0.00 0.30 0.15

0.08 0.01 0.44 0.02 0.13 0.32

0.00 0.00 0.04 0.73 0.17 0.06

0.02 0.02 0.05 0.06 0.68 0.17

0.01 0.00 0.01 0.00 0.04 0.93
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Fig. 4. Confusion matrices for SVMc and GPc for the online classification
of interaction patterns

classification, due to the fact that we are looking at smaller
segments, where we do not get to see enough of the interaction
to find braking patterns. As observed in [3], the breaking
behavior is a complex one: it can be characterized to look
similar to harmonious translation at the beginning, followed by
some form of conflict and finally a passive agreement. This
complex nature of the behavior is hard to capture with our
small-sized windows.

Another confusion is observed between harmonious rotation
with translation (C2) and jerky conflict (C5). We believe that
this, again, might be due the small window-sizes. Jerky conflict
typically causes the object to rotate involuntarily or follow
undesired trajectories, leading to much lower linear velocity
for the object during the course of the interaction pattern.
In [3], we had observed that using power or force-related
features could not solve the confusion between C2 and C5.
On the other hand, the velocity features were very successful
in distinguishing between these classes. Since both classes
involve rotational forces and velocities, the linear velocity
over the course of the whole interaction segment could be
deterministic of the correct class. However, the small window
sizes we use may not be able to capture such features well
enough, leading to lower classification accuracy.

Experiment 2: Online classification of interaction types

The second experiment focuses on identifying general inter-
action types during pHHI. For this purpose we merge the inter-
action patterns into pHHI interaction types, to assess the online
classification performances on high-level task-independent be-
haviors. In particular, the interaction patterns are merged into
harmonious interaction (T1), conflicting interaction (T2), and
neutral interaction (T3), as described in the taxonomy, prior
to training the models.

The results indicate that SVMc reaches an 83.31% accuracy
when distinguishing between interaction types. This is a 5.27%
improvement on the classification performance for interaction
patterns. Similarly, GPc achieves an 83.40% accuracy with
a 2.61% improvement over the performance of GPc, which
was trained to classify the interaction patterns. As seen in
Figure 5, in contrast with SVMc, GPc performs a bit better
when classifying the neutral interaction types (T3), but the
difference is too small to draw any conclusions.
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Fig. 5. Confusion matrices for SVMc and GPc for the online classification
of interaction types

Experiment 3: Offline classification performance

In [3], we adopted similar feature definitions, however
we extracted these from within the annotated interaction se-
quences in the dataset. Each interaction sequence was variable-
length, hence we followed a systematic subdivision approach
to extract Haar-like features, by dividing the whole interaction
segment into support regions and then computing the mean,
standard deviation, median, and interquartile range values for
each variable within each region. A one-against-one strategy
was used with SVMc to obtain classification results through
an offline analysis. We call this an offline analysis, because
this approach, unlike what we present in the current study,
requires a prior knowledge of the length and boundaries of
the annotated segments. In this experiment, we verify that we
can reproduce the previous results with SVMc and use GPc to
get an understanding for the baseline performance, where we
have perfect knowledge of behavior boundaries. Table II shows
accuracies achieved for offline classification of interaction
patterns, which reproduced some of the results presented
in [3]. It also presents a summary of the the classification
results of the previous two experiments. [3] had reached a
classification accuracy of 86% with SVMc, which is consistent
with our results. We observe that the use of GPc provides
comparable performance with only 1.2% improvement over
SVMc for the offline classification.

TABLE II
A COMPARISON OF SVMC AND GPC CLASSIFICATION PERFORMANCES

Offline classification Online classification
Int. Patterns Int. Patterns Int. Types

SVMc 86.1% 78.0% 83.3%
GPc 87.2% 80.8% 83.4%

VI. DISCUSSION AND FUTURE WORK

Our experiments indicate that a combination of haptic
data and object velocities can be used to accurately classify
human interaction types and patterns in real-time. We also
demonstrate an online feature extraction method for timeseries
classification to identify interaction states during ongoing
collaboration.

Based on the results, we observe that both GPc and SVMc
perform well at online classification of interaction states using
our feature extraction technique, with GPc achieving slightly
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better performance. However, given the training time require-
ments of GPc, reaching O(N3), this study demonstrates the
feasibility of SVMc to reach good identification performance
with much less training time. To be more specific, on an 8-
Core Intel i7-4770 CPU @ 3.40GHz machine with 16 GB
RAM, learning the SVMc model for classifying interaction
patterns with 4992 training samples took approximately 7
minutes. On the other hand, training the GPc with the same
number of training instances took approximately 39 hours.
Please note that once training is done, the time required for
the prediction of the interaction states is negligible and would
support real-time interaction.

Our work focused on developing an online classification
technique for identifying pHHI behaviors. In physical in-
teraction, haptics plays an important role, which captures a
dimension that cannot be represented through other modalities.
Despite its importance, the number of studies investigating the
physical interaction between the partners and in particular the
ones on haptic communication are limited, and the interaction
in such systems is still artificial when compared to natural
human-human collaboration. In future work, we will design
and experiment with sophisticated haptic features, which could
provide insight into how much information can be carried
over haptics in physical collaboration. We will evaluate the
descriptive power of haptic features in determining interaction
patterns through feature selection; and we will investigate
alternative methods for incorporating time-dependent charac-
teristics in feature definitions to inform the decision process
to distinguish between commonly confused classes.

This study presented an evaluation of pHHI behaviors. This
approach will be useful to inform the collaboration process
when a human works along with a robot as well. As future
work, we plan to incorporate interaction state classification in
physical human-robot interaction, and program the robot to
reactively act in response to the predicted behaviors.

We do not anticipate that our classification method could
be trained on one task and tested on another. In this sense,
transfer learning was out of the scope of this paper. However,
in a future study, we plan to elaborate on how well the trained
models respond to changes in task dynamics, as an effort to
evaluate the generality of the approach.
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