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Cuspidal ℓ-modular representations of p-adic classical groups
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Abstract

For a classical group over a non-archimedean local field of odd residual characteristic p, we
construct all cuspidal representations over an arbitrary algebraically closed field of char-
acteristic different from p, as representations induced from a cuspidal type. We also give
a fundamental step towards the classification of cuspidal representations, identifying when
certain cuspidal types induce to equivalent representations; this result is new even in the case
of complex representations. Finally, we prove that the representations induced from more
general types are quasi-projective, a crucial tool for extending the results here to arbitrary
irreducible representations.

1 Introduction

In recent years, congruences between automorphic representations have assumed a central im-
portance in number theory. This has led to the desire to understand representations of re-
ductive p-adic groups on vector spaces over fields of positive characteristic ℓ. There are vast
differences between the cases ℓ = p and ℓ 6= p, with the latter sharing many similarities with the
theory of complex representations, including the existence of a Haar measure. However, there
are also many important and interesting differences between the ℓ 6= p theory and the theory for
complex representations, including the presence of compact open subgroups of measure zero,
the non-semisimplicity of smooth representations of compact open subgroups, and that cuspidal
representations can and do appear as subquotients of parabolically induced representations (in
fact, all of these phenomena are related). In this article we focus on the ℓ 6= p case, and work
with an arbitrary algebraically closed field of characteristic ℓ or zero.

The theory of (smooth) representations of a general reductive p-adic group over such fields was
developed by Vignéras in [25]. However, many subsequent articles and fundamental results (for
example, the unicity of supercuspidal support) focus just on the general linear group. One of
the main reasons that this group has been more accessible for a modular theory, is that the
Bushnell–Kutzko classification of irreducible complex representations via types extends in a
natural way to ℓ-modular representations, which is the subject of the final chapter of [ibid.].
This classification, in favourable circumstances, allows one to reduce a problem to an analogous
question in associated finite groups where hopefully it is either tractable to the pursuer, or
already known. Recently, this approach has been adopted for other groups: Sécherre and
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Mı́nguez in [16] for inner forms of GLn; and the first author in [13] for unramified U(2, 1). In
this article, we pursue this approach for p-adic classical groups G over locally compact non-
archimedean local fields with odd residual characteristic.

Of particular importance in this approach is the construction of all irreducible cuspidal complex
representations of general linear groups as compactly induced representations. We accomplish
this for ℓ-modular representations in our main results:

Theorem A (Theorems 11.1, 11.2). There is an explicit list of cuspidal types, consisting of
certain pairs (J, λ), with J a compact open subgroup of G and λ an irreducible R-representation
of J such that

(i) the compactly induced representation indGJ λ is irreducible and cuspidal;

(ii) every irreducible cuspidal representation arises as in (i), for some cuspidal type (J, λ).

See below for a more precise definition of cuspidal type. For complex representations this is
the main result of [24]. But here we do more, giving an initial refinement of this exhaustive
list of cuspidal types. Part of the data used to define a cuspidal type is a family of skew
semisimple characters. In the case where two cuspidal types are defined relative to the same
family (see below for a more precisely-worded condition), we obtain the following intertwining
implies conjugacy result:

Theorem B (Theorem 11.3). Let (J1, λ1), (J2, λ2) be cuspidal types defined relative to the
same family of skew semisimple characters. Then indGJ1 λ1 ≃ indGJ2 λ2 if and only if there exists
g ∈ G such that Jg

1 = J2 and λg1 ≃ λ2.

Note that λg1 here denotes the representation of Jg
1 = g−1J1g given by λg1(j) = λ1(gjg

−1), for
j ∈ J1. In forthcoming joint work with Skodlerack, this theorem will be combined with work
of the second author and Skodlerack to prove an intertwining implies conjugacy result without
the condition on the skew semisimple characters. We now give more details and explain our
approach.

Let G be a p-adic classical group with p odd, that is (the points of) a unitary, symplectic
or special orthogonal group defined over a locally compact non-archimedean local field F of
residual characteristic p. Let β ∈ LieG be a semisimple element, and put GE = CG(β) the
G-centraliser of β. Let Λ be an oF -lattice sequence corresponding to a point in the Bruhat–Tits
building of GE . From β and Λ we get a set of self-dual semisimple characters θΛ of a group
H1

Λ; and given another lattice sequence Υ as above, there is a canonical transfer map giving
a corresponding self-dual semisimple character θΥ of H1

Υ. Also write JΛ for the normaliser of
θΛ in the (non-connected) parahoric subgroup of G corresponding to Λ, and J1

Λ for its pro-p
radical. There is a unique irreducible representation ηΛ of J1

Λ which contains θΛ on restriction.
Our first major diversion from the earlier results of the second author is:

Theorem C (Theorems 3.10 & 4.1). With notation as above.

(i) The intertwining of θΛ with θΥ is JΥGEJΛ.

(ii) The intertwining spaces of ηΛ with ηΥ are at most one dimensional; more precisely:

dimR HomJ1
Λ∩(J

1
Υ)g(ηΛ, η

g
Υ) =

{
1 if g ∈ JΥGEJΛ;

0 otherwise.
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This theorem is an asymmetric generalisation of [23, Propositions 3.27 & 3.31] (cf. also [17])
which deals with the case Λ = Υ. It appears possible, and indeed it is already hinted at in [4,
1.5.12], that one could prove such an intertwining result by developing the theory ab initio,
with lattice sequences such as these rather than just a single lattice sequence. However, our
approach is more brief and elegant, utilising a construction for semisimple characters to relate
the case of not necessarily conjugate lattice sequences to the case of conjugate lattice sequences
in a larger group. This construction is inspired by a similar one for simple strata, in work of
the second author with Broussous and Sécherre [3].

The next step is to extend ηΛ to a suitable representation of JΛ, called a β-extension, which
is accomplished in Section 5. While we have to change the proofs of [24] here, the changes
are straightforward. That the formation of covers, of [24] and [17], is still valid in positive
characteristic is proved in Sections 8 and 9. Let κΛ be a β-extension of ηΛ. The quotient JΛ/J

1
Λ

is a product of finite reductive groups and we write J◦ or the inverse image of the connected
component. Let τ be an irreducible representation of JΛ/J

1
Λ with cuspidal restriction to J◦

Λ/J
1
Λ,

and put λ = κΛ ⊗ τ and J = JΛ. We call the pair (J, λ) a type; and if the centraliser GE has
compact centre, and the corresponding (connected) parahoric subgroup J◦

Λ ∩ GE is maximal,
we call the pair (J, λ) a cuspidal type.

Finally, we are able to extend the main result of the second author in [24] to ℓ-modular repre-
sentations (see Theorem A). Our approach to proving Theorem A is different to [24] at the top
level of the construction, relying on a reduction to level zero argument (see Section 7). Thanks
to our work in this paper on asymmetric intertwining of semisimple characters and Heisenberg
representations, this new approach allows us to compare cuspidal representations in this ex-
haustive list whose semisimple characters are in the same family (i.e. are related by the transfer
map), and make an initial refinement of the exhaustive list (see Theorem B).

We now mention further results we prove with future work in mind. In the ℓ-modular set-
ting, compactly induced representations from types may not be projective. This provides an
obstruction to following Bushnell–Kutzko’s approach via covers to the admissible dual, as the
category of representations containing a type (J, λ), will not in general be equivalent to the
the category of right modules over the algebra EndG(ind

G
J λ). Following Mı́nguez–Sécherre we

construct covers on pro-p groups (Theorem 9.3); these will have the advantage of providing such
an equivalence of categories to the category of modules over an algebra as above. It may be that
this algebra will prove unwieldy for classification purposes, but it can be related to a similar
algebra in depth zero. For general linear groups, promising initial results in this direction have
recently been obtained by Chinello in his thesis [6], while Dat has begun a detailed study of the
depth zero subcategory in [8]. Writing λ◦ for an irreducible component of the restriction of λ
to J◦, we thus show:

Theorem D (Theorem 10.2). The representation indGJ◦ λ◦ is quasi-projective.

Thanks to work of Vignéras and Arabia [26], this implies that the irreducible quotients of
indGJ◦ λ◦ are in bijection with the simple right modules of EndG(ind

G
J◦ λ◦), (see Section 2 for

details). As any irreducible representation of G is a quotient of such an induced representa-
tion, this result is the starting point of an approach to classifying all irreducible ℓ-modular
representations of G.

Acknowledgements. This work was supported by the Engineering and Physical Sciences
Research Council (EP/H00534X/1) and the Heilbronn Institute for Mathematical Research.
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2 Notation and background

Let F0 be a non-archimedean local field of odd residual characteristic p and let F be either F0

or a quadratic extension of F0. Let denote the generator of Gal(F/F0). If E is a non-
archimedean local field we denote by oE the ring of integers of E, by pE the unique maximal
ideal of oE , by kE the residue field and by qE the cardinality of kE . We write o0 = oF0 , and
similarly abbreviate p0, k0, q0. We fix a uniformizer ̟F of F such that ̟F = −̟F if F/F0

is ramified and ̟F = ̟F otherwise. We fix a character ψ0 of the additive group F0 with
conductor p0 and let ψF = ψ0 ◦TrF/F0

.

Let V be an N -dimensional F -vector space equipped with a non-degenerate ε-hermitian form h :
V × V → F with ε = ±1. Let A = EndF (V ) and G̃ = AutF (V ). The group G+ = {g ∈ G :
h(gv, gw) = h(v,w) for all v,w ∈ V } is the F0-points of a unitary, symplectic or orthogonal
algebraic group G+ defined over F0. We let G denote the F0-points of the connected component
of G+ and call G a classical group. Hence the special orthogonal group is a classical group
whereas the full orthogonal group is not.

Let denote the adjoint (anti)-involution induced on A by h and let A− = {a ∈ A : a + a =
0} ≃ Lie(G). Let σ denote both the involution on G̃ defined by σ : g 7→ g−1, for g ∈ G̃, and
its derivative a 7→ −a, for a ∈ A. Let Σ be the cyclic group of order two generated by σ.
Then G+ = G̃Σ and A− = AΣ. We have A = A− ⊕ A+ where A+ = {a ∈ A : a − a = 0}. We
let ψA = ψF ◦TrA/F . If S is a subset of A, we let S∗ = {x ∈ A : ψA(xS) = 1}.

We let R denote an algebraically closed field of characteristic ℓ different from p, allowing the
case ℓ = 0. For any locally compact topological group H, we denote by RR(H) the category of
smooth R-representations of H.

2.1 Representations and Hecke algebras

For general results on representations of reductive p-adic groups over an algebraically closed
field of characteristic different from p, we refer to Vignéras’s book [25].

Let G be a reductive p-adic group. Let K,K1,K2 be compact open subgroups of G, (τ,W) be
a smooth R-representation of K, and (τi,Wi) be smooth R-representations of Ki, for i = 1, 2.
For g ∈ G, the g-intertwining space of τ1 with τ2 is defined to be the set

Ig(τ1, τ2) = HomK1∩K
g
2
(τ1, τ

g
2 ),

and the intertwining of τ1 with τ2 in G is

IG(τ1, τ2) = {g ∈ G : Ig(τ1, τ2) 6= 0},

where Kg
2 = g−1K2g and τ g2 (x) = τ2(gxg

−1) for x ∈ Kg
2 . For an R-representation (π,V) of a

locally profinite group we denote by (π∨,V∨) its contragredient representation.

Remark 2.1. The motivation for this definition is provided by the following decomposition

HomG(ind
G
K1

(τ1), ind
G
K2

(τ2)) ≃
⊕

K2\IG(τ1,τ2)/K1

Ig(τ1, τ2),

by reciprocity and Mackey theory. Note that, if K = K1 = K2, τ = τ1 = τ2 and g ∈ G, for com-
plex representations or if K is pro-p, the spaces Ig(τ) = HomK∩Kg(τ, τ g) and HomK∩gK(τ, gτ)
are the same, as representations of K ∩ gK = K ∩Kg are semisimple, so in previous works one
sees intertwining defined in either way.
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Suppose that K1 and K2 are normal open subgroups of K. Let H(G, τ1, τ2) be the R-vector
space of compactly supported functions f : G → HomR(W1,W2) which transform on the left
by τ2 and on the right by τ1. Let H(G, τ) = H(G, τ, τ) denote the R-algebra consisting of
compactly supported functions f : G → EndR(W) which transform on the left and the right
by τ together with the convolution product

f1 ⋆ f2(h) =
∑

g∈G/K

f1(g)f2(g
−1h),

for f1, f2 ∈ H(G, τ). This algebra has a unit element if the index of every open subgroup in K is
invertible in R (i.e. the pro-order ofK is invertible inR). TheK-invariant bilinear pairing 〈 , 〉
on W × W∨ induces an anti-isomorphism H(G, τ) → H(G, τ∨) by f 7→ f∨ with f∨ defined
by 〈w, f∨(g−1)w̌〉 = 〈f(g)w, w̌〉 for all w ∈ W, w̌ ∈ W∨. Under convolution H(G, τ1, τ2) has
an (H(G, τ1),H(G, τ2))-bimodule structure. If g ∈ G, we let H(G, τ1, τ2)g denote the subspace
of all functions with support K1gK2.

Under composition, EndG(ind
G
K τ) has an R-algebra structure and HomG(ind

G
K1
τ1, ind

G
K2
τ2) is

an (EndG(ind
G
K1
τ1),EndG(ind

G
K2
τ2))-bimodule. The proof of the following Lemma follows from

the proofs contained in [25, §8.5, 8.6, & 8.10].

Lemma 2.2. (i) We have an isomorphism of algebras

H(G, τ) ≃ EndG(ind
G
K τ).

(ii) For i = 1, 2, we identify H(G, τi) with EndG(ind
G
Ki
τi) by (i). We have an isomorphism

of (H(G, τ1),H(G, τ2))-bimodules

H(G, τ1, τ2) ≃ HomG(ind
G
K1
τ1, ind

G
K2
τ2).

(iii) For i = 1, 2, let Hi be compact open subgroups of G containing Ki. We have an isomor-
phism of (H(G, τ1),H(G, τ2))-bimodules

H(G, indH1
K1
τ1, ind

H2
K2
τ2) ≃ H(G, τ1, τ2),

which restricts to give isomorphisms of vector spaces, for g ∈ G,

H(G, indH1
K1
τ1, ind

H2
K2
τ2)g ≃

∐

h∈H1\G/H2
K1hK2=K1gK2

H(G, τ1, τ2)h.

2.2 Lattice sequences and parahoric subgroups

An oF -lattice sequence in V is a function

Λ : Z → {oF -lattices in V }

which is decreasing, that is Λ(n + 1) ⊆ Λ(n), for all n ∈ Z, and periodic, that is, there exists a
positive integer e(Λ) such that Λ(n+ e(Λ)) = ̟FΛ(n), for all n ∈ Z.

The ε-hermitian form h defines a duality on the set of oF -lattices; given an oF -lattice L we
let L♯ = {v ∈ V : h(v, L) ⊆ pF }. An oF -lattice sequence Λ is called self-dual if Λ(k)♯ = Λ(1−k),
for all k ∈ Z.
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An oF -lattice sequence Λ induces a decreasing filtration on A by oF -lattices An(Λ) in A where

An(Λ) = {x ∈ A : xΛ(m) = Λ(m+ n),m ∈ Z}, for n ∈ Z.

This filtration induces a valuation on A defined by

νΛ(x) =

{
sup{n ∈ Z : x ∈ An(Λ)} if x ∈ A\{0};

∞ if x = 0.

If Λ is self-dual, it induces a decreasing filtration on A− by oF -lattices A−
n (Λ) in A

− where

A−
n (Λ) = An(Λ) ∩A

−, for n ∈ Z.

We let

P̃n(Λ) =

{
An(Λ)

× if n = 0;

1 + An(Λ) if n > 0.

Then P̃ (Λ) = P̃ 0(Λ) is a compact open subgroup of G̃ and P̃n(Λ), n > 0, is a decreasing filtration
of P̃ (Λ) by normal open subgroups. If Λ is self-dual then P (Λ) = P̃ (Λ) ∩ G (resp. P+(Λ) =
P̃ (Λ) ∩ G+) is a compact open subgroup of G (resp. G+) which has a decreasing filtration of
normal compact open subgroups Pn(Λ) = P̃n(Λ) ∩G, n > 0. We have a short exact sequence

1 → P 1(Λ) → P (Λ)
π
−→M(Λ) → 1

where M(Λ) is the k0-points of a reductive group M defined over k0. Let M
◦(Λ) denote the k0-

points of the connected component of M and let P ◦(Λ) be the inverse image of M◦(Λ) under π.
We call the subgroups P̃ (Λ) of G̃ and P ◦(Λ) of G parahoric subgroups.

In fact, by [2] and [14], the filtrations of parahoric subgroups defined here, by considering
different (self-dual) lattice sequences in the vector space V , coincide with the Moy–Prasad
filtrations.

Let Λ be an oF -lattice sequence in V . For integers a, b ∈ Z, we let aΛ+b be denote the oF -lattice
sequence in V defined by

aΛ+ b(r) = Λ (⌊(r − b)/a⌋) ,

for all r ∈ Z. The affine class of Λ, is the set of lattices of the form aΛ+ b with a, b ∈ Z, a > 1.

2.3 Semisimple strata and characters

A stratum in A is a quadruple [Λ, n, r, β] where Λ is an oF -lattice sequence in V , n, r ∈ Z

with n > r > 0, and β ∈ A−r(Λ). A stratum [Λ, n, r, β] is called self-dual if Λ is self-dual
and β ∈ A−. Two strata [Λ, n, r, β1] and [Λ, n, r, β2] are called equivalent if β1 − β2 ∈ A−r(Λ).
If n > r > n

2 > 0, an equivalence class of strata corresponds to a character of P̃r+1(Λ), by

[Λ, n, r, β] 7→ ψβ

where ψβ(x) = ψA(β(x − 1)) for x ∈ P̃r+1(Λ), while an equivalence class of self-dual strata
corresponds to a character of Pr+1(Λ), by

[Λ, n, r, β] 7→ ψ−
β = ψβ |Pr+1(Λ) .

If F [β] is a field then we let B = CA(β) be the A-centraliser of β, G̃E = B×, Bk(Λ) = Ak(Λ)∩B
and nk(β,Λ) = {x ∈ A0(Λ) : βx − xβ ∈ Ak(Λ)}. We say [Λ, n, r, β] is a zero stratum if n = r
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and β = 0 and we call [Λ, n, r, β] simple if it is either zero or F [β] is a field, Λ is an oE-lattice
sequence, νΛ(β) = −n < −r and n−r(β,Λ) ⊂ B0(Λ) + A1(Λ).

Suppose V =
⊕

i∈I V
i is a decomposition of V into F -subspaces. We let Λi = Λ ∩ V i and

we let βi = eiβei, where ei : V → V i is the projection with kernel
⊕

j 6=i V
j . The decomposi-

tion V =
⊕

i∈I V
i of V is called a splitting of [Λ, n, r, β] if β =

∑
i∈I βi and Λ(k) =

⊕
i∈I Λ

i(k),
for all k ∈ Z. A stratum [Λ, n, r, β] in A is called semisimple if it is zero or νΛ(β) = −n and
there exists a splitting

⊕
i∈I V

i for [Λ, n, r, β] such that:

(i) for i ∈ I, the stratum [Λi, qi, r, βi] in EndF (V
i) is simple, where

qi =

{
r if βi = 0,

−νΛi(βi) otherwise;

(ii) for i, j ∈ I with i 6= j, the stratum [Λi ⊕ Λj ,max{qi, qj}, r, βi + βj ] is not equivalent to a
simple stratum in EndF (V

i ⊕ V j).

We write E = F [β] and Ei = F [βi], hence E =
⊕

i∈I Ei is a sum of fields. As in the case when E

is a field, we write B = CA(β) and G̃E = B×. By abuse of notation, we will call a sum
⊕

i∈I Λi

of oEi
-lattice sequences in Vi an oE-lattice sequence in V . We write Bk(β,Λ) = Ak(Λ) ∩ B

which gives the filtration on B by considering Λ as an oE-lattice sequence. We write B(β,Λ) =
B0(β,Λ), Q(β,Λ) = B1(β,Λ) and A(Λ) = A0(Λ).

Let Aij = HomF (V
j, V i) and L =

⊕
i∈I A

ii, and write L̃ = L× =
∏

i∈I G̃i, where G̃i =

AutF (V
i). Also put Bi = CAii(βi) and G̃Ei

= B×
i ⊆ G̃i. Then B =

⊕
i∈I Bi ⊆ L and G̃E =∏

i∈I G̃Ei
⊆ L̃. We write ΛE when we want to make it clear that we are considering Λ as

an oE-lattice sequence.

If [Λ, n, 0, β] is a non-zero semisimple stratum we let

k0(β,Λ) = −min{r ∈ Z : [Λ, n, r, β] is not semisimple}

denote the critical exponent of [Λ, n, 0, β] and kF (β) := 1
e(Λ)k0(β,Λ); by [23, §3.1], this is

independent of Λ.

If [Λ, n, r, β] is self-dual with associated splitting V =
⊕

i∈I V
i then, for each i ∈ I, there exists

a unique σ(i) = j ∈ I such that βi = −βj . We set I0 = {i ∈ I : σ(i) = i} and choose a set
of representatives I+ for the orbits of σ in I \ I0. Then we let I− = σ(I+) so that we have a
disjoint union I = I+ ∪ I0 ∪ I−.

A semisimple stratum [Λ, n, r, β] is called skew if it is self-dual and the associated splitting
⊕

i∈I V
i

is orthogonal with respect to the ǫ-hermitian form h, i.e. I = I0 in the notation above. In this
case, we let GEi

= G̃Ei
∩G and GE =

∏
i∈I GEi

.

Associated to a semisimple stratum [Λ, n, r, β] there are two oF -orders H(β,Λ) and J(β,Λ) which
are defined inductively in [23, §3.2]. These give rise to compact open subgroups H̃(β,Λ) =
H(β,Λ) ∩ P̃ (Λ) and J̃(β,Λ) = J(β,Λ) ∩ P̃ (Λ) of G̃ with decreasing filtrations H̃ i(β,Λ) =
H(β,Λ) ∩ P̃i(Λ) and J̃

i(β,Λ) = J(β,Λ) ∩ P̃i(Λ), for i > 1 by compact open normal subgroups.

If [Λ, n, r, β] is self-dual then the associated orders and groups are stable under the action
of Σ and we write J−(β,Λ) = J(β,Λ) ∩ A−, J(β,Λ) = J̃(β,Λ) ∩ G, J+(β,Λ) = J̃(β,Λ) ∩
G+, J i(β,Λ) = J̃ i(β,Λ) ∩ G, for i > 1, and similarly define H−(β,Λ),H(β,Λ),H i(β,Λ). We
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have J(β,Λ) = P (ΛE)J
1(β,Λ) and

J(β,Λ)/J1(β,Λ) ≃ P (ΛE)/P
1(ΛE) ≃M(ΛE).

The group M(ΛE) is the group of points of a finite reductive group over kF , and we denote
by J◦(β,Λ) the inverse image of the connected component M◦(ΛE) under the projection map.

By [23, Proposition 3.4], the stratum [Λ, n, r+1, β] is equivalent to a semisimple stratum [Λ, n, r+
1, γ] with γ ∈ L. In [23, Definition 3.13], for 0 6 m < r + 1, a set of characters C(Λ,m, β)
of H̃m+1(β,Λ) is attached to [Λ, n, r, β], depending on our initial choice of ψF . Precisely, C(Λ,m, β)
consists of the characters θ̃ of H̃m+1(β,Λ) which satisfy

(i) θ̃ |H̃m+1(β,Λ)∩G̃i
is a simple character, in the sense of [4, Definition 3.2.3];

(ii) if m′ = max{m, ⌈r/2⌉} then there exists θ̃0 ∈ C(Λ,m′, γ) such that θ̃ |H̃m′+1(β,Λ)= θ̃0ψβ−γ .

If [Λ, n, r, β] is self-dual then C(Λ,m, β) is preserved by the involution σ and, as in [23, § 3.6], one
associates to [Λ, n, r, β] the set C−(Λ,m, β) of characters of H

m+1(β,Λ) obtained by restriction
from C(Λ,m, β)Σ.

The following results were proved in the case R = C but, since the groups involved are all pro-p,
their proofs apply provided the characteristic of R is not p, as is the case here.

Theorem 2.3 ([23, Theorem 3.22]). Let [Λ, n, 0, β] be a semisimple stratum in A.

(i) If θ̃ ∈ C(Λ, 0, β) then IG̃(θ̃) = J̃1(β,Λ)G̃E J̃
1(β,Λ).

(ii) Let [Λ′, n′, 0, β] be another semisimple stratum in A. There is a bijection

τΛ,Λ′,β : C(Λ, 0, β) → C(Λ′, 0, β),

called the transfer map, which takes θ̃ ∈ C(Λ, 0, β) to the unique character θ̃′ ∈ C(Λ′, 0, β)
such that G̃E ⊆ I

G̃
(θ̃, θ̃′).

Let [Λ, n, r, β] be a semisimple stratum. The affine class of [Λ, n, r, β] is the set of all (semisim-
ple) strata of the form

[Λ′, n′, r′, β],

where Λ′ = aΛ+ b is in the affine class of Λ, n′ = an and r′ is any integer such that ⌊r′/a⌋ = r.
By induction on kF (β) (cf. [3, Lemma 2.2]), many objects associated to a semisimple stratum
only depend on the affine class of the stratum. In particular, if [Λ′, n′, r′, β] is in the affine class
of [Λ, n, r, β], we have:

(i) H̃m′+1(β′,Λ′) = H̃m+1(β,Λ);

(ii) C(Λ′,m′, β′) = C(Λ,m, β);

(iii) the transfer map τΛ,Λ′,β : C(Λ,m, β) → C(Λ′,m′, β) is the identity.

If the associated strata are self-dual, then we have the following analogue of Theorem 2.3.

Theorem 2.4 ([17, Lemma 2.5]). Let [Λ, n, 0, β] be a self-dual semisimple stratum in A.
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(i) If θ ∈ C−(Λ, 0, β) then IG(θ) = J1(β,Λ)GEJ
1(β,Λ).

(ii) Let [Λ′, n′, 0, β] be another self-dual semisimple stratum in A. There is a bijection

τΛ,Λ′,β : C−(Λ, 0, β) → C−(Λ
′, 0, β),

called the transfer map, which takes θ ∈ C−(Λ, 0, β) to the unique character θ
′ ∈ C−(Λ

′, 0, β)
such that GE ⊆ IG(θ, θ

′).

Let [Λ, n, 0, β] be a semisimple stratum and θ̃ ∈ C(Λ, 0, β).

Theorem 2.5 ([23, Corollary 3.25]). There exists a unique irreducible representation η̃ of J̃1(β,Λ)
containing θ̃.

If [Λ, n, 0, β] is self-dual and θ ∈ C−(Λ, 0, β), then we have the following analogue of Theorem 2.5.

Theorem 2.6 ([17, Lemma 2.5]). There exists a unique representation η of J1(β,Λ) contain-
ing θ.

We call the representations η and η̃ of Theorems 2.5 and 2.6, Heisenberg representations. We
define a bijection, which we also denote by τΛ,Λ′,β, between the set of Heisenberg representations

of J̃1(β,Λ) containing a semisimple character in C(Λ, 0, β) and the set of Heisenberg representa-
tions of J̃1(β,Λ′) containing a semisimple character in C(Λ′, 0, β) which restricts to the transfer
map, i.e. if η̃ is the unique Heisenberg representation of J̃1(β,Λ) containing θ̃ ∈ C(Λ, 0, β)
then τΛ,Λ′,β(η̃) is the unique Heisenberg representation of J̃1(β,Λ′) containing τΛ,Λ′,β(θ̃). Sim-
ilarly, we define a bijection τΛ,Λ′,β between the set of Heisenberg representations of J1(β,Λ)
containing a self-dual semisimple character in C−(Λ, 0, β) and the set of Heisenberg representa-
tions of J1(β,Λ′) containing a self-dual semisimple character in C−(Λ

′, 0, β).

2.4 Double coset identities

We state mild generalisations of some results of [21], the proofs of which, [op. cit., Lem-
mas 2.1, 2.2 and Theorem 2.3], still apply. The notation in this short subsection is independent
of that in the rest of the paper. Let G be a group and Γ a group of automorphisms of G. If H
is a Γ-stable subgroup of G we let HΓ denote subgroup of fixed points of Γ.

Theorem 2.7. Let U1 and U2 be Γ-stable subgroups of G.

(i) Suppose that, for all g ∈ G, the (non-abelian) cohomology pointed set H1(Γ, gU1g
−1∩U2)

is trivial. Then, for all g ∈ GΓ, we have (U1gU2)
Γ = UΓ

1 gU
Γ
2 .

(ii) Suppose that Γ is a soluble group of order coprime to p, that U1 and U2 are Γ-stable pro-p
subgroups of G, and that g ∈ G.

(a) (U1gU2)
Γ 6= ∅ if and only if U1gU2 is stable under Γ.

(b) Let H be a Γ-stable subgroup of G such that U1hU2 ∩H = (U1 ∩H)h(U2 ∩H), for
all h ∈ H. Then (U1HU2)

Γ = UΓ
1 H

ΓUΓ
2 .

9



2.5 Modular representation theory techniques

As R-representations of compact open subgroups are not necessarily semisimple (unlike the
case R = C), we will need to use appropriate versions of some well known representation theory
techniques. The first is the simple criterion for irreducibility of [27].

Lemma 2.8. Let λ be an irreducible representation of a compact open subgroup K of G.
Suppose that EndG(ind

G
K(λ)) ≃ R and, for any irreducible representation π of G, if λ is a

subrepresentation of π then it is also a quotient of π. Then indGK(λ) is irreducible.

A representation π of G is called quasi-projective if, for all representations π′ of G and all
surjective homomorphisms ϕ : π → π′, the homomorphism EndG(π) → HomG(π, π

′), α 7→ α ◦ϕ
for α ∈ EndG(π), is surjective. The second modular representation theory criterion we make
use of is the simple criterion for quasi-projectivity of [27] (cf. also [11, Proposition 3.15]).

Lemma 2.9. Let K be a compact open subgroup of G, λ an irreducible representation of K
and π = indGK(λ). If the λ-isotypic component of π is a direct summand of the restriction of π
to K and no subquotient of its complement is isomorphic to λ then π is quasi-projective.

Let π, τ be R-representations of G. Then HomG(π, τ) is a right EndG(π)-module by pre-
composition. In attempts to classify the irreducible representations of G, quasi-projective rep-
resentations are particularly interesting due to the following theorem of Arabia.

Theorem 2.10 ([26, Appendix Théorème 10]). Suppose π is quasi-projective and finitely gener-
ated. Then the functor RR(G) → EndG(π)-mod, τ 7→ HomG(π, τ), induces a bijection between
the irreducible quotients of π and the simple right EndG(π)-modules.

Suppose that J is a compact open subgroup of G containing a compact open pro-p subgroup J1

which is normal in J and that η is an irreducible representation of J1 which extends to an
irreducible representation κ of J . Then we have the following lemma, implicit in [27] (cf. [28,
Proposition 4.2] and [16, Lemme 2.6] for a proof).

Lemma 2.11. The functor κ⊗− induces an equivalence of categories between RR(J/J
1) and

the category RR(J, η) of η-isotypic representations of J .

The following lemma is a mild abstraction of [4, Proposition 5.3.2].

Lemma 2.12. Let X1 and X2 be subgroups of G, and X1
1 (resp. X1

2 ) be a subgroup of X1

(resp. X2). For i = 1, 2, let ζi be a representation of Xi trivial on X
1
i , and let µi be a represen-

tation of Xi. Suppose that

HomX1∩X2(µ1, µ2) = HomX1
1∩X

1
2
(µ1, µ2) ≃ R.

Then, for any non-zero S ∈ HomX1∩X2(µ1, µ2), the map

HomX1∩X2(ζ1, ζ2) HomX1∩X2(µ1 ⊗ ζ1, µ2 ⊗ ζ2)

T S ⊗ T

is an isomorphism of vector spaces.
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Proof. It is easy to check that the map is well-defined, and it is clearly injective, so we need
only check surjectivity. Let f ∈ HomX1∩X2(µ1 ⊗ ζ1, µ2 ⊗ ζ2) be non-zero. Write f as a finite
sum

∑
k Sk ⊗ Tk, with Sk ∈ HomR(µ1, µ2) non-zero and Tk ∈ HomR(ζ1, ζ2), such that {Tk} is

linearly independent over R. Let x ∈ X1
1 ∩X1

2 ; then f ◦ µ1 ⊗ ζ1(x) = µ2 ⊗ ζ2(x) ◦ f . Hence,
as ζ1, ζ2 are trivial on X1

1 ∩X1
2 , we have

∑

k

(Skµ1(y)− µ2(y)Sk)⊗ Tk = 0,

for y ∈ X1
1 ∩ X1

2 . Thus Sk ∈ HomX1
1∩X

1
2
(µ1, µ2), by the linear independence of {Tk}. The

intertwining spaces HomX1
1∩X

1
2
(µ1, µ2) and HomX1∩X2(µ1, µ2) are one-dimensional and equal

by our hypotheses. Thus Sk is a scalar multiple of S and we can write f = S ⊗ T with T ∈
HomR(ζ1, ζ2). Furthermore,

S ⊗ T (µ1 ⊗ ζ1(y)v) = (µ2(y)S ⊗ ζ2(y)T )(v)

and
S ⊗ T (µ1 ⊗ ζ1(y)v) = (Sµ1(y)⊗ Tζ1(y))(v) = (µ2(y)S ⊗ Tζ1(y))(v)

for all y ∈ X1 ∩X2 and v in the space of µ1 ⊗ ζ1. Hence T ∈ HomX1∩X2(ζ1, ζ2) and, since f =
S ⊗ T , our map is surjective.

3 Asymmetric generalisations via †-constructions

In this section we present a particularly useful construction: to an oF -lattice sequence Λ in V ,
we associate a strict oF -lattice sequence Λ† of period e(Λ) in a direct sum of e(Λ) copies of V ,
whose associated hereditary order A(Λ†) is principal and such that all the blocks Aii(Λ†) =
A(Λ), for 0 6 i 6 e(Λ). This construction becomes useful later when applied to two oF -
lattice sequences Λ and Υ in V , which, if necessary, after changing in their affine classes we
assume e(Λ) = e(Υ); in this situation A(Λ†) and A(Υ†) are principal orders in V † of the same
block size, hence are conjugate, yet when we restrict to a single block we find the not necessarily
conjugate orders A(Λ) and A(Υ). This construction originates in work of the second author
with Broussous and Sécherre in [3]. The first part of this section is concerned with revisiting
the construction of [ibid.] and generalising it to semisimple strata. Then we provide two
new applications of †: a generalisation of the semisimple intersection property of [24] and an
extension of the computation of the intertwining a semisimple character in [23] to the case of
two semisimple characters related by transfer.

3.1 The †-construction

Let Λ be an oF -lattice sequence in V of oF -period e(Λ). Let V † = V ⊕ · · · ⊕ V (e(Λ) times).
Following [3, Section 2], we define an oF -lattice sequence Λ† in V † by

Λ†(r) =

e(Λ)−1⊕

k=0

Λ(r + k), for all r ∈ Z.

Then, for all r ∈ Z,

dimkF (Λ
†(r)/Λ†(r + 1)) =

e(Λ)−1∑

k=0

dimkF (Λ(r + k)/Λ(r + k + 1)) = dimF (V ).
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Therefore, Λ† is a strict oF -lattice sequence in V † of period e(Λ) whose associated order A(Λ†)
is principal.

Let [Λ, n, r, β] be a semisimple stratum in A with associated splitting V =
⊕

i∈I V
i, and e =

e(Λ) = e(Λi). For each i ∈ I, let V i,† = V i ⊕ · · · ⊕ V i (e(Λ) times), and let Λ†
i be the oF -lattice

sequence in V i,†, defined as above. Let V † =
⊕

i∈I V
i,† and let Λ† be the oF -lattice sequence

in V ′ defined by Λ† =
⊕

i∈I Λ
i,†. Note that this is the same lattice sequence as that defined

above (working directly with Λ within V ). Let A† = EndF (V
†) and G̃ † = AutF (V

†).

We recall that β =
∑

i∈I βi, where βi = eiβei and ei : V → V i is the projection map with

kernel
⊕

j 6=i V
j. Let β†i denote the image of βi under the diagonal embedding of EndF (V

i)

into EndF (V
i,†), and β† =

∑
i∈I β

†
i . Then Λi,† is an oEi

-lattice sequence, whose associated
hereditary oF -order A(Λ

i,†) is principal. Moreover, the stratum [Λ†, n, r, β†] in A† is semisimple,
with associated splitting V † =

⊕
i∈I V

i,†.

We recall also that L̃ is the stabilizer in G̃ of the decomposition V =
⊕

i∈I V
i. Let Q̃ = L̃Ũ+

Q

be a parabolic subgroup of G̃ with Levi component L̃, and opposite parabolic Q̃− = L̃Ũ−
Q with

respect to L̃. Then, for any m ≥ 0, the group H̃m+1(β,Λ) has an Iwahori decomposition with
respect to (L̃, Q̃) with

H̃m+1(β,Λ) ∩ L̃ =
∏

i∈I

H̃m+1(βi,Λ
i). (3.1)

Moreover, by [23, Lemma 3.15], any semisimple character θ̃ ∈ C(β,m,Λ) is trivial on the
unipotent parts H̃m+1(β,Λ) ∩ Ũ±

Q and

θ̃|(H̃m+1(β,Λ)∩L̃) =
⊗

i∈I

θ̃i,

with θ̃i ∈ C(βi,m,Λ
i) a simple character. Analogously, we have the Levi subgroup L̃† which is

the stabilizer of the decomposition V † =
⊕

i∈I V
i,† and H̃m+1(β†,Λ†) has an Iwahori decompo-

sition with respect to any parabolic subgroup Q̃† with Levi component L̃†, with

H̃m+1(β†,Λ†) ∩ L̃† =
∏

i∈I

H̃m+1(β†i ,Λ
i,†).

Let M† denote the Levi subalgebra of A† which is the stabilizer of the splitting V † = V ⊕· · ·⊕V ,
and let M̃ † be its group of units. Let Γ be the subgroup of M̃ † consisting of elements with
blocks ± Id. Let P̃ † be any parabolic subgroup of G̃ † with Levi factor M̃ † and unipotent
radical Ũ †, and let P̃−,† denote the opposite parabolic of P̃ † with respect to M̃ †, with Levi
decomposition P̃−,† = M̃ † ⋉ Ũ−,†. Similarly, for each i ∈ I, we have a Levi subgroup M̃ i,†

of G̃†
i = AutF (V

i,†).

For all m > 0, using [24, Proposition 5.2], we have an Iwahori decomposition

H̃m+1(β†,Λ†) = (H̃m+1(β†,Λ†) ∩ Ũ−,†)(H̃m+1(β†,Λ†) ∩ M̃ †)(H̃m+1(β†,Λ†) ∩ Ũ †), (3.2)

H̃m+1(β†,Λ†) ∩ M̃ † = H̃m+1(β,Λ) × · · · × H̃m+1(β,Λ).

There are similar decompositions for H̃m+1(β†i ,Λ
i,†).

Let θ̃ ∈ C(β,m,Λ) be a semisimple character, corresponding to simple characters θ̃i ∈ C(βi,m,Λ
i)

as in (3.1). Put θ̃†i = τ
Λi,Λi,†,βi,β

†
i

(θ̃i), the transfer of θ̃i to C(β†i ,m,Λ
†
i ). By [3, Lemma 2.7], the
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restriction of θ̃†i to H̃
m+1(β†i ,Λ

i,†)∩M̃ i,† has the form θ̃i⊗· · ·⊗ θ̃i; moreover, for P̃ i,† = M̃ i,†Ũ i,†

any parabolic subgroup of G̃i,† with Levi component M̃ i,†, the restriction of θ̃†i to the unipotent

part H̃m+1(β†i ,Λ
i,†) ∩ Ũ i,† is trivial.

Lemma 3.3. There is a unique semisimple character θ̃† ∈ C(β†,m,Λ†) such that

θ̃†|
(H̃m+1(β†,Λ†)∩L̃†)

=
⊕

i∈I

θ̃†i ;

Moreover, θ̃ † is trivial on the unipotent parts in (3.2), and

θ̃† |
(H̃m+1(β†,Λ†)∩M̃ †)

= θ̃ ⊗ · · · ⊗ θ̃.

Proof. The first part follows easily from the inductive definition of semisimple characters (see

in particular [23, Lemma 3.15]). Moreover, for any parabolic subgroup Q̃† = L̃†Ũ †
Q with Levi

component L̃†, the restriction of θ̃† to H̃m+1(β†,Λ†)∩ Ũ †
Q is trivial; the second statement follows

from this, the corresponding statement in the simple case ([3, Lemma 2.7]) and the unicity in [23,
Lemma 3.15] again.

For g ∈ G̃, let g† denote its diagonal embedding in G̃ †.

Lemma 3.4. For i = 1, 2, let θ̃i be semisimple characters in C(Λ,m, βi). If g intertwines θ̃1
and θ̃2, then g

† intertwines θ̃†1 and θ̃†2.

Proof. For simple characters, it is shown in the proof of [3, Proposition 2.6] that this fol-
lows from [3, Lemma 2.7]. The proof in the semisimple case follows mutatis mutandis using
Lemma 3.3 in place of [3, Lemma 2.7].

3.2 Applications of †

Let [Λ, nΛ, 0, β] and [Υ, nΥ, 0, β] be semisimple strata in A with splitting V =
⊕

i∈I V
i. Let eΛ

(resp. eΥ) denote the oF -period of Λ (resp. Υ), and hence of Λi (resp. Υi) for all i ∈ I. By
changing [Λ, nΛ, 0, β] and [Υ, nΥ, 0, β] in their affine classes, we assume the e = eΛ = eΥ. As
remarked earlier, this does not change the objects (orders, groups, characters) associated to the
semisimple strata.

For i ∈ I, we apply the construction of Section 3.1 to Λi and to Υi. Suppose that the oEi
-

period eEi
of Λ, and hence of Υ, is related to the oF -period e, by

eEi
= mie,

so that mi is the ramification index of Ei/F . Then, for all r ∈ Z,

dimkEi
(Λi,†(r)/Λi,†(r + 1)) =

mieEi
−1∑

k=0

dimkEi
(Λi(r + k)/Λi(r + k + 1)) = mi dimEi

(V i).

Hence, the lattice sequences Λi,† and Υi,† are strict oEi
-lattice sequences in V i,† of oF -period e

(and oEi
-period eEi

). Furthermore, the associated hereditary oEi
-ordersB(βi,Λ

i,†)andB(βi,Υ
i,†)

are principal oEi
-orders with the same block size, hence there exist xi ∈ C

G̃ †
i

(β†i ), such that

Λi †(r) = xi ·Υ
i †(r),

13



for all r ∈ Z. Let x =
∑

i∈I xi; then x ∈ G̃ †
E and we have

Λ† = x ·Υ†.

It follows that the data coming from the semisimple strata [Λ†, nΛ, 0, β
†] and [Υ†, nΥ, 0, β

†] are

conjugate in G̃ †
E and we get:

Lemma 3.5. In the situation above, there exists x ∈ G̃ †
E such that

(i) J(β†,Λ†) = J(β†,Υ†)x and H(β†,Λ†) = H(β†,Υ†)x;

(ii) J̃(β†,Λ†) = J̃(β†,Υ†)x and H̃(β†,Λ†) = H̃(β†,Υ†)x;

(iii) conjugation by x defines a bijection C(β†, 0,Λ†) → C(β†, 0,Υ†).

Throughout this section, “applying the †-construction” will mean applying it in the way just
described.

3.3 Semisimple intersection property

In this section we generalise the semisimple intersection property of [24, Lemma 2.6].

Lemma 3.6. Let [Λ, nΛ, 0, β] and [Υ, nΥ, 0, β] be semisimple strata in A and y ∈ G̃E . Then

P̃ 1(Υ)yP̃ 1(Λ) ∩ G̃E = P̃ 1(ΥE)yP̃
1(ΛE).

Proof. Applying the †-construction, by Lemma 3.5 we have x ∈ G̃ †
E such that

P̃ 1(Υ†)y†P̃ 1(Λ†) = P̃ 1(Υ†)y†xP̃ 1(Υ†)x−1.

By the semisimple intersection property in G̃ †
E (cf. the proof of [24, Lemma 2.6]), because x ∈ G̃ †

E

we have
P̃ 1(Υ†)y†xP̃ 1(Υ†) ∩ G̃ †

E = P̃ 1(Υ†
E)y

†xP̃ 1(Υ†
E).

Hence
P̃ 1(Υ†)y†P̃ 1(Λ†) ∩ G̃ †

E = P̃ 1(Υ†
E)y

†P̃ 1(Λ†
E).

Recall, M̃ † is the Levi subgroup of G̃ † defined by the decomposition of V † into a sum of copies
of V , and Γ is the 2-subgroup of M̃ † consisting of elements with blocks ± Id. Notice that, M̃ †

is equal to the fixed point subgroup of G̃ † under the conjugation action of Γ. Hence, because Γ
is a 2-group and P̃ 1(Λ†

E) and P̃ 1(Υ†
E) are pro-p groups, with p odd, H1(Γ, y†P̃ 1(Υ†

E)(y
†)−1 ∩

P̃ 1(Λ†
E)) = 1 and we can apply Theorem 2.7(i) to find

P̃ 1(Υ†
E)y

†P̃ 1(Λ†
E) ∩ M̃

† = (P̃ 1(Υ†
E) ∩ M̃

†)y†(P̃ 1(Λ†
E) ∩ M̃

†).

We have (P̃ 1(Υ†
E)∩M̃

†) =
∏d

i=1 P̃
1(ΥE) and (P̃ 1(Λ†

E)∩M̃
†) =

∏d
i=1 P̃

1(ΛE). Thus, restricting

to a single block in M̃ † we recover the result.

Corollary 3.7. Let [Λ, nΛ, 0, β] and [Υ, nΥ, 0, β] be self-dual semisimple strata in A. Then

P 1(Υ)yP 1(Λ) ∩G+
E = P 1(ΥE)yP

1(ΛE), for y ∈ G+
E ;

P 1(Υ)yP 1(Λ) ∩GE = P 1(ΥE)yP
1(ΛE), for y ∈ GE .
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Proof. Applying Theorem 2.7(i), under the fixed points of the involution σ, we have

P̃ 1(ΥE)yP̃
1(ΛE) ∩G

+
E = (P̃ 1(ΥE) ∩G

+
E)y(P̃

1(ΛE) ∩G
+
E).

Therefore, by Lemma 3.6, P 1(Υ)yP 1(Λ) ∩G+
E = P 1(ΥE)yP

1(ΛE). The second equality follows
by intersecting with G, since P 1(ΛE) ⊆ GE .

A simple application of the semisimple intersection property gives us the following bijection of
double cosets, where we note that JΥGEJΛ = J1

ΥGEJ
1
Λ.

Lemma 3.8. Let [Λ, nΛ, 0, β] and [Υ, nΥ, 0, β] be self-dual semisimple strata in A. Let JΥ =
J(β,Λ) and JΥ = J(β,Υ). The following map is a bijection

P (ΥE)\GE/P (ΛE) JΥ\JΥGEJΛ/JΛ

X JΥXJΛ.

Proof. Let g ∈ GE . Considering Λ and Υ as oF -lattice sequences, we have containments J1
Υ ⊆

P 1(Υ) and J1
Λ ⊆ P 1(Λ). Hence

J1
Υ(P (ΥE)gP (ΛE))J

1
Λ ∩GE ⊆ P 1(Υ)(P (ΥE)gP (ΛE))P

1(Λ) ∩GE .

We choose a set of representatives for the finite double coset space P 1(Υ)\(P (ΥE)gP (ΛE))/P
1(Λ)

and for each representative we apply the simple intersection property, Corollary 3.7, to find

P 1(Υ)(P (ΥE)gP (ΛE))P
1(Λ) ∩GE = P (ΥE)gP (ΛE).

Therefore P (ΥE)gP (ΛE) = J1
Υ(P (ΥE)gP (ΛE))J

1
Λ ∩GE and the map is a bijection.

3.4 Intertwining of transfers

Let [Λ, nΛ, 0, β] and [Υ, nΥ, 0, β] be semisimple strata. Let θ̃Λ ∈ C(Υ, 0, β) and θ̃Υ = τΛ,Υ,β(θ̃Υ).

We apply the †-construction and abbreviate J̃1
Λ = J̃1(β,Λ) and (J̃ †

Λ)
1 = J̃1(β†,Λ†), with similar

notation for Υ, and also write τ = τΛ,Υ,β and τ † = τΛ†,Υ†,β† .

Theorem 3.9. We have
IG̃(θ̃Λ, θ̃Υ) = J̃1

ΥG̃E J̃
1
Λ.

Proof. Let g ∈ IG̃(θ̃Λ, θ̃Υ) and, as before, let g
† denote the diagonal embedding of g in G̃ †. By

Lemma 3.4, we have
g† ∈ IG̃(θ̃

†
Λ, θ̃

†
Υ).

Thus, as GE ∈ I
G̃
(θ̃Λ, θ̃Υ) by Theorem 2.3 (ii), we have

G̃ †
E ∈ I

G̃
(θ̃ †

Λ, θ̃
†
Υ),

hence θ̃ †
Υ = τ †(θ̃ †

Λ), again by Theorem 2.3 (ii). Moreover, taking x ∈ G̃ †
E such that Λ† = x ·Υ†,

as in Lemma 3.5, we have
G̃ †

E ⊆ IG̃(θ̃
†
Λ, (θ̃

†
Λ)

x),

as G̃ †
E intertwines θ̃ †

Λ by Theorem 2.3 (i). Since (θ̃ †
Λ)

x ∈ C(Υ, 0, β), we deduce that θ̃ †
Υ = (θ̃ †

Λ)
x

by the unicity of the transfer in Theorem 2.3 (ii).
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By Theorem 2.3 (i), we have

IG̃(θ̃
†
Λ, θ̃

†
Λ) = (J̃ †

Λ)
1G̃ †

E(J̃
†
Λ)

1.

If y ∈ G̃ † then y ∈ IG̃(θ̃
†
Λ, θ̃

†
Λ) if and only if xy ∈ IG̃(θ̃

†
Λ, (θ̃

†
Λ)

x). Therefore

I
G̃
(θ̃ †

Λ, θ̃
†
Υ) = x−1I

G̃
(θ̃ †

Λ, (θ̃
†
Λ)

x) = x−1(J̃ †
Λ)

1G̃ †
E(J̃

†
Λ)

1 = (J̃ †
Υ)

1G̃ †
E(J̃

†
Λ)

1.

Now, as in the proof of Lemma 3.6, let Γ be the group 2-subgroup of M̃ † generated by blocks
consisting of Id and − Id. Because Γ is a 2-group and (J̃ †

Λ)
1 and (J̃ †

Υ)
1 are pro-p groups, with p

odd, the non-abelian cohomology pointed set H1(Γ, g(J̃ †
Υ)

1g−1 ∩ (J̃ †
Λ)

1) is trivial, for all g ∈ G̃.
Hence, by Theorem 2.7,

((J̃ †
Υ)

1G̃ †
E(J̃

†
Λ)

1) ∩ M̃ † = ((J̃ †
Υ)

1 ∩ M̃ †)(G̃ †
E ∩ M̃ †)((J̃ †

Λ)
1 ∩ M̃ †)

= (J̃ †
Υ ∩ M̃ †)(G̃ †

E ∩ M̃ †)(J̃ †
Λ ∩ M̃ †).

Finally, for g† ∈ IG̃(θ̃
†
Λ, θ̃

†
Υ), we have an Iwahori decomposition

H̃1(β†,Λ†) ∩ H̃1(β†,Υ†)g
†

= (H̃1(β†,Λ†) ∩ H̃1(β†,Υ†)g
†

∩ Ũ−,†)

(H̃1(β†,Λ†) ∩ H̃1(β†,Υ†)g
†

∩ M̃ †)(H̃1(β†,Λ†) ∩ H̃1(β†,Υ†)g
†

∩ Ũ−,†),

and, by Lemma 3.3, θ̃ †
Λ, θ̃

†
Υ are trivial on the unipotent parts of this decomposition. Hence, we

have
I
M̃ †(θ̃

†
Λ |

M̃ † , θ̃
†
Υ |

M̃ †) = IG̃(θ̃
†
Λ, θ̃

†
Υ) ∩ M̃

†.

Therefore
I
M̃ †(θ̃

†
Λ |

M̃ † , θ̃
†
Υ |

M̃ †) = (J̃ †
Υ ∩ M̃ †)(G̃ †

E ∩ M̃ †)(J̃ †
Λ ∩ M̃ †).

Restricting this equality to a single block in M̃ † we recover I
G̃
(θ̃Λ, θ̃Υ) = J̃ΥG̃E J̃Λ.

Suppose further that [Λ, nΛ, 0, β] and [Υ, nΥ, 0, β] are self-dual. Let θΛ ∈ C−(Λ, 0, β) and θΥ =
τΛ,Υ,β(θΛ). Let JΛ = J(β,Λ) and JΥ = J(β,Υ).

Theorem 3.10. We have IG(θΛ, θΥ) = JΥGEJΛ.

Proof. Let θ̃Λ ∈ C(Λ, 0, β) and θ̃Υ ∈ C(Υ, 0, β) be self-dual semisimple characters which restrict
to θΛ and θΥ respectively. Since θ̃Υ is the unique Σ-fixed semisimple character restricting to θΥ,
we have θ̃Υ = τ(θ̃Λ). Furthermore, letting g denote the Glauberman correspondence (cf. [22, §2]
and the references therein), θΛ = g(θ̃Λ) and θΥ = g(θ̃Υ). By [22, Corollary 2.5], Ig(θ̃Λ, θ̃Υ) 6= 0

if and only if Ig(g(θ̃Λ),g(θ̃Υ)) 6= 0. Therefore,

IG(θΛ, θΥ) = IG(θ̃Λ, θ̃Υ) ∩G.

Furthermore, IG(θ̃Λ, θ̃Υ) = J̃ΥG̃E J̃Λ by Theorem 3.9, and (J̃ΥG̃E J̃Λ) ∩ G = (J̃1
ΥG̃E J̃

1
Λ) ∩ G =

J1
ΥGEJ

1
Λ = JΥGEJΛ by Theorem 2.7 and the semisimple intersection property Corollary 3.7.

3.5 Some exact sequences

Let [Λ, nΛ, 0, β] be a semisimple stratum in A. We denote by aβ the adjoint map given
by aβ(x) = βx − xβ for x ∈ A, and by s a tame corestriction on A relative to F [β]/F (cf.
[4, 1.3] and [23, Proposition 3.31]).
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Lemma 3.11. (i) Let [Λ, nΛ, 0, β] be a semisimple stratum in A. The sequence

0 Q(β,Λ) J1(β,Λ) H1(β,Λ)
∗

B(β,Λ) 0
aβ s

is exact.

(ii) Let [Λ, nΛ, 0, β] and [Υ, nΥ, 0, β] be semisimple strata in A and y ∈ G̃E . The sequence

0 Q(β,Λ) + (Q(β,Υ))y J1(β,Λ) + (J1(β,Υ))y

H1(β,Λ)∗ + (H1(β,Υ)∗)y B(β,Λ) + (B(β,Υ))y 0

αβ

s

is exact.

Proof. When Λ = Υ, both parts follow from [23, Lemma 3.17] (cf. [op. cit., Proposition 3.31]).

Passing to † we have the second exact sequence for the semisimple strata [Λ†, nΛ, 0, β
†] and [Υ†, n†Λ, 0, β],

by choosing x ∈ G̃ †
E as in Lemma 3.5, and replacing y by xy in the exact sequence for Λ†. In-

tersecting with a single block we have (ii), while (i) is the special case y = 1.

When we have a self-dual semisimple stratum [Λ, nΛ, 0, β], we may (and do) choose a tame
corestriction s which commutes with the anti-involution σ on A (cf. [20, 2.1.1]). Then we get
the self-dual analogue of Lemma 3.11.

Lemma 3.12. (i) Let [Λ, nΛ, 0, β] be a self-dual semisimple stratum in A. The sequence

0 Q−
Λ(β,Λ) J1−(β,Λ) H1

−(β,Λ)
∗

B−(β,Λ) 0
aβ s

is exact.

(ii) Let [Λ, nΛ, 0, β] and [Υ, nΥ, 0, β] be self-dual semisimple strata in A and y ∈ G+
E . The

sequence

0 Q−(β,Λ) + (Q−(β,Υ))y J1−(β,Λ) + (J1−(β,Υ))y

H1
−(β,Λ)

∗ + (H1
−(β,Υ)∗)y B−(β,Λ) + (B−(β,Υ))y 0

αβ

s

is exact.

4 Intertwining of Heisenberg representations

While up to now, we have been generalising results for both G̃ and G in this section we concern
ourself only with representations of G. The same methods apply for representations of G̃.

Let [Λ, nΛ, 0, β] and [Υ, nΥ, 0, β] be self-dual semisimple strata in A. In this section we will ab-
breviate lattices in A− without the superscript −, to simplify the notation. Thus we write QΛ =
Q−(β,Λ), HΛ = H1

−(β,Λ), JΛ = J1−(β,Λ), and BΛ = B−(β,Λ), using analogous notation for Υ.
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(Note, in particular, that we are omitting the superscript 1 here.) We also write H1
Λ = H1(β,Λ)

and J1
Λ = J1(β,Λ), with H1

Υ, J
1
Υ defined similarly.

Let θΛ ∈ C−(Λ, 0, β) and θΥ = τΛ,Υ,β(θΛ). Let ηΛ be the unique Heisenberg representation
containing θΛ and ηΥ = τΛ,Υ,β(ηΛ) the unique Heisenberg representation containing θΥ.

Theorem 4.1. The intertwining of ηΛ and ηΥ in G is given by

dimR(Ig(ηΛ, ηΥ)) =

{
1 if g ∈ JΥGEJΛ;

0 otherwise.

This theorem is an asymmetric generalisation of [4, Proposition 5.1.8] in the classical groups
setting (see also [23, Proposition 3.31]) and we imitate those proofs.

Lemma 4.2. For any y ∈ G+
E , we have

(J1
Λ : J1

Λ ∩ yJ1
Υy

−1)(J1
Υ : y−1J1

Λy ∩ J
1
Υ) = (H1

Λ : H1
Λ ∩ yH1

Υy
−1)(H1

Υ : y−1H1
Λy ∩H

1
Υ).

Proof. We begin by recalling the following from [4]: let 0 → V1 → V2 → V3 → V4 → 0 be an
exact sequence of finite-dimensional F -vector spaces and, for 1 ≤ i ≤ 4, let µi be an F -Haar
measure on Vi. By [4, Lemma 5.1.3], there is a constant c ∈ F× such that, if the sequence
restricts to an exact sequence 0 → L1 → L2 → L3 → L4 → 0 of oF -lattices Li in Vi, then

µ1(L1)µ3(L3)

µ2(L2)µ4(L4)
= c.

Moreover, µ1(L1)µ1(L
∗
1) is also independent of the oF -lattice L1, by [4, Lemma 5.1.5].

We have such an exact sequence

0 B A A B 0,
s aβ s

and, choosing F -Haar measures µA on A and µB on B, we denote by c ∈ F× the invariant
given by [4, Lemma 5.1.3], as above. Now we apply this to the rows of the following giant
commutative diagram of oF -lattices, which we get from Lemma 3.12(ii).

0 0 0 0

0 QΛ ∩Q
y
Υ JΛ ∩ J

y
Υ H∗

Λ ∩ (H∗
Υ)

y BΛ ∩B
y
Υ 0

0 QΛ ⊕Q
y
Υ JΛ ⊕ J

y
Υ H∗

Λ ⊕ (H∗
Υ)

y BΛ ⊕B
y
Υ 0

0 QΛ +Q
y
Υ JΛ + J

y
Υ H∗

Λ + (H∗
Υ)

y BΛ +B
y
Υ 0

0 0 0 0
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Using the first row, we get

µA(H
∗
Λ ∩ (H∗

Υ)
y)

µA(JΛ ∩ J
y
Υ)

= c
µB(BΛ ∩B

y
Υ)

µB(QΛ ∩Q
y
Υ)
.

we have µB(QΛ ∩Q
y
Υ) = µB(QΛ)µB(QΥ)/µB(QΛ +Q

y
Υ), from the first column, and similarly

for µA(H
∗
Λ ∩ (H∗

Υ)
y), whence

µA(H
∗
Λ)µA(H

∗
Υ)

µA(JΛ ∩ J
y
Υ)µA(H

∗
Λ + (H∗

Υ)
y)

= c
µB(BΛ ∩B

y
Υ)µB(QΛ +Q

y
Υ)

µB(QΛ)µB(QΥ)
,

Since (HΛ ∩H
y
Υ)

∗ = H∗
Λ + (H∗

Υ)
y, from [4, Lemma 5.1.5] we have

µA(H
∗
Λ + (H∗

Υ)
y)µA(HΛ ∩ H

y
Υ) = (µA(HΛ)µA(H

∗
Λ)µA(HΥ)µA(H

∗
Υ))

1
2 ,

with a similar result using (BΛ ∩B
y
Υ)

∗ = QΛ +Q
y
Υ. Substituting, we get

µA(HΛ ∩ H
y
Υ)

µA(JΛ ∩ J
y
Υ)

(
µA(H

∗
Λ)µA(H

∗
Υ)

µA(HΛ)µA(HΥ)

) 1
2

= c

(
µB(BΛ)µB(BΥ)

µB(QΛ)µB(QΥ)

) 1
2

.

Finally, from Lemma 3.11(i), we have

µA(H
∗
Λ)

µA(JΛ)
= c

µB(BΛ)

µB(QΛ)
,

and similarly for Υ, which gives

µA(HΛ ∩ H
y
Υ)

µA(JΛ ∩ J
y
Υ)

=

(
µA(HΛ)µA(HΥ)

µA(JΛ)µA(JΥ)

) 1
2

.

Conjugating by y, we get the same formula for µA(
yHΛ ∩HΥ)/µA(

yJΛ ∩ JΥ). Multiplying these
and rearranging, we get

(
µA(HΛ)

µA(HΛ ∩ H
y
Υ)

)(
µA(HΥ)

µA(
yHΛ ∩ HΥ)

)
=

(
µA(JΛ)

µA(JΛ ∩ J
y
Υ)

)(
µA(JΥ)

µA(
yJΛ ∩ JΥ)

)
.

The result follows from this additive statement sinceH1
Λ is the image under the Cayley transform

of HΛ, and similarly for the other groups involved.

Lemma 4.3. For any y ∈ G+
E , we have

∣∣H1
Υ\J

1
ΥyJ

1
Λ/H

1
Λ

∣∣ = (J1
Λ : H1

Λ)
1
2 (J1

Υ : H1
Υ)

1
2 .

Proof. Fix a F -Haar measure µ on G. Decomposing J1
ΥyJ

1
Λ by right J1

Υ-cosets, and by left J1
Λ-

cosets, and then multiplying, we have

µ(J1
ΥyJ

1
Λ)

2 = µ(J1
Λ)µ(J

1
Υ)(J

1
Λ : J1

Λ ∩ y−1J1
Υy)(J

1
Υ : yJ1

Λy
−1 ∩ J1

Υ).

By normality of H1
Λ in J1

Λ and H1
Υ in J1

Υ, for any y
′ ∈ J1

ΥyJ
1
Λ we similarly have

µ(H1
Υy

′H1
Λ)

2 = µ(H1
Λ)µ(H

1
Υ)(H

1
Λ : H1

Λ ∩ y−1H1
Υy)(H

1
Υ : yH1

Λy
−1 ∩H1

Υ).

Therefore, we have
∣∣H1

Λ\J
1
ΛgJ

1
Υ/H

1
Υ

∣∣ = (J1
Λ : H1

Λ)
1
2 (J1

Υ : H1
Υ)

1
2 , by Lemma 4.2.
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Proof of Theorem 4.1. By [23, Corollary 3.29] the induced representation ind
J1
Λ

H1
Λ
(θΛ) is a multi-

ple of ηΛ, that multiple being (J1
Λ : H1

Λ)
1
2 , and analogously for θΥ. Thus

dimR(Ig(ind
J1
Λ

H1
Λ
θΛ, ind

J1
Υ

H1
Υ
θΥ)) = (J1

Λ : H1
Λ)

1
2 (J1

Υ : H1
Υ)

1
2 dimR(Ig(ηΛ, ηΥ)).

By Lemma 2.2(iii),

H(G, ind
J1
Λ

H1
Λ
θΛ, ind

J1
Υ

H1
Υ
θΥ)g ≃

∐

h∈H1
Λ\G/H1

Υ

J1
ΛhJ

1
Υ=J1

ΛgJ
1
Υ

H(G, θΛ, θΥ)h.

Therefore, by Theorem 3.10 and Lemma 4.3, we have

dimR(Ig(ind
J1
Λ

H1
Λ
θΛ, ind

J1
Υ

H1
Υ
θΥ)) =

{
(J1

Λ : H1
Λ)

1
2 (J1

Υ : H1
Υ)

1
2 if g ∈ JΥGEJΛ;

0 otherwise,

whence the result.

Remark 4.4. In the setting of Theorem 3.10, we also have IG+(θΛ, θΥ) = J1
ΥG

+
EJ

1
Λ by in-

tersecting the intertwining of IG̃(θ̃Λ, θ̃Υ) with G+ rather than G. Moreover, in the setting of
Theorem 4.1 the same proof shows that the intertwining of ηΛ and ηΥ in G+ is given by

dimR(Ig(ηΛ, ηΥ)) =

{
1 if g ∈ J1

ΥG
+
EJ

1
Λ;

0 otherwise.

We will also make use of the following lemma of [24].

Lemma 4.5 ([24, Lemma 3.6]). We have dim(ηΛ)/dim(ηΥ) = (J1
Λ : J1

Υ)/(P
1(ΛE) : P

1(ΥE)).

Conjugating if necessary, we assume that B(Λ) and B(Υ) contain a common minimal self-
dual hereditary order B(Γ) corresponding to an oE-lattice sequence Γ in V ; thus P ◦(ΓE) is an
Iwahori subgroup of GE . Let θΓ = τΛ,Γ,β(θΛ) = τΥ,Γ,β(θΥ) ∈ C−(Γ, 0, β). Let ηΓ be the unique
Heisenberg representation containing θΓ and let JΓ = J(β,Γ). Since P 1(ΓE) normalises J1

Λ

and J1
Υ we can form the groups J1

Γ,Λ = P 1(ΓE)J
1
Λ and J1

Γ,Υ = P 1(ΓE)J
1
Υ.

Lemma 4.6 ([24, Proposition 3.7]). There exist unique irreducible representations ηΓ,Λ of J1
Γ,Λ

and ηΓ,Υ of J1
Γ,Υ such that

(i) ηΓ,Λ |J1
Λ
= ηΛ and ηΓ,Υ |J1

Υ
= ηΥ;

(ii) ηΓ,Λ, ηΓ,Υ and ηΓ induce equivalent irreducible representations of P 1(Γ).

We can now extend the intertwining result of [24, Proposition 3.7]. The proof is essentially the
same as that of [4, Proposition 5.1.19].

Lemma 4.7. The intertwining of ηΓ,Λ and ηΓ,Υ in G is given by

dimR(Ig(ηΓ,Λ, ηΓ,Υ)) =

{
1 if g ∈ J1

Γ,ΥGEJ
1
Γ,Λ;

0 otherwise.

We remark that J1
Γ,ΥGEJ

1
Γ,Λ = J1

ΥGEJ
1
Λ, and that we have a similar result for the intertwining

in G+.
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Proof. We have IG(ηΓ,Λ, ηΓ,Υ) ⊆ IG(ηΛ, ηΥ) = J1
ΥGEJ

1
Λ and the non-zero intertwining spaces

are one-dimensional by Lemma 4.1. If x ∈ GE then x ∈ IG(ηΓ), by Theorem 4.1, so x ∈

IG(Ind
P 1(Γ)

J1
Γ

(ηΓ)). Thus x ∈ IG(Ind
P 1(Γ)

J1
Γ,Λ

(ηΓ,Λ), Ind
P 1(Γ)

J1
Γ,Υ

(ηΓ,Υ)) by Lemma 4.6. Therefore there

exist u, v ∈ P 1(Γ) such that uxv ∈ IG(ηΓ,Λ, ηΓ,Υ); since this intertwining set is contained
in J1

ΥGEJ
1
Λ, there exist jΛ ∈ J1

Λ and jΥ ∈ J1
Υ such that jΥuxvjΛ ∈ GE . By Corollary 3.7, P 1(Γ)xP 1(Λ)∩

GE = P 1(ΓE)xP
1(ΛE). Therefore, we can find u′ ∈ P 1(ΓE) and v

′ ∈ P 1(ΛE) such that u′xv′ =
j1uxvj2, whence x ∈ IG(ηΓ,Λ, ηΓ,Υ).

5 β-extensions

We generalise the definition of β-extensions for classical groups, as defined by the second author
when R = C in [24]. As the J groups are not pro-p, the proofs of the corresponding statements
need to be adapted in characteristic ℓ. However, as the J1 groups are pro-p, these modifications
are relatively simple.

Let [Λ, nΛ, 0, β] be a self-dual semisimple stratum, θΛ ∈ C−(Λ, 0, β) and ηΛ the unique Heisenberg
representation containing θΛ. We will write B(ΛE) = B(β,Λ) for the hereditary oE-order in B
determined by the lattice sequence Λ, and will abbreviate J+

Λ = J+(β,Λ), etc.

Theorem 5.1. Let Γ be any self-dual oE-lattice sequence such that B(ΓE) is a minimal self-
dual oE-order in B contained in B(ΛE). There exists a representation κ+Λ of J+

Λ extending ηΓ,Λ.
Moreover, any two such extensions differ by a character of P+(ΛE)/P

1(ΛE) which is trivial on
the subgroup generated by all its unipotent subgroups.

Proof. The proof follows mutatis mutandis the proof of [24, Theorem 4.1].

If B(ΛE) is a maximal self-dual oE-order in B, we call an extension κ+Λ of ηΛ, as constructed
in Theorem 5.1, a β-extension. In the case where B(ΛE) is not maximal, while Theorem 5.1,
gives a collection of extensions of ηΛ it gives too many such extensions. As in the complex
case, we define β-extensions in the non-maximal case by compatibility with β-extensions in the
maximal case. Let [Υ, nΥ, 0, β] be a self-dual semisimple stratum such that B(ΥE) is maximal
and B(ΛE) ⊆ B(ΥE); let θΥ = τΛ,Υ,β(θΛ) and ηΥ = τΛ,Υ,β(ηΛ). Let J1

Λ,Υ = P 1(ΛE)J
1
Υ

and J+
Λ,Υ = P+(ΛE)J

1
Υ.

Theorem 5.2. There is a canonical bijection

bΛ,Υ : {extensions κ+Λ of ηΛ to J+
Λ } → {extensions κ+Λ,Υ of ηΥ to J+

Λ,Υ}.

Furthermore, if A(Λ) ⊆ A(Υ) then bΛ,Υ(κ
+
Λ ) is the unique extension of ηΥ such that κ+Λ

and bΛ,Υ(κ
+
Λ ) induce to equivalent irreducible representations of P+(ΛE)P

1(Λ).

Proof. Assume that A(Λ) ⊆ A(Υ) and, as in the proof of [24, Lemma 4.3, Case (i)], we follow
the argument of [4, Proposition 5.2.5]. Let κ+Λ be an extension of η+Λ to J+

Λ and put

λ = ind
P+(ΛE)P 1(Λ)

J+
Λ

(κ+Λ ).

By Mackey Theory,

Res
P+(ΛE)P 1(Λ)
P 1(Λ)

(λ) ≃ ind
P 1(Λ)

J1
Λ

(ηΛ),
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which is irreducible, since IG(ηΛ) ∩ P
1(Λ) = J1

Λ; in particular, λ is irreducible. Moreover, by
Lemma 4.6,

Res
P+(ΛE)P 1(Λ)
P 1(Λ)

(λ) ≃ ind
P 1(Λ)

J1
Λ,Υ

(ηΛ,Υ),

so there is an irreducible quotient κ+Λ,Υ of Res
P+(ΛE)P 1(Λ)

J+
Λ,Υ

λ which contains ηΛ,Υ; indeed, there

is a unique such quotient, since ηΛ,Υ appears with multiplicity 1 in Res
P 1(Λ)
J1(Λ,Υ)

ind
P 1(Λ)

J1
Λ,Υ

(ηΛ,Υ),

by Lemma 4.7. Now put

λ′ = ind
P+(ΛE)P 1(Λ)

J+
Λ,Υ

κ+Λ,Υ.

Then, as above,

Res
P+(ΛE)P 1(Λ)
P 1(Λ)

(λ′) ≃ ind
P 1(Λ)

J1
Λ,Υ

(ηΛ,Υ),

so that λ′ is also irreducible, and hence equivalent to λ. Comparing dimensions, using Lemma 4.5,
we see that κ+Λ,Υ extends ηΛ,Υ as required.

The argument is reversible, giving the required bijection, and the remainder of the proof follows
from this special case A(Λ) ⊆ A(Υ), exactly as in the proof of [24, Lemma 4.3].

An extension κ+Λ of ηΛ to J+
Λ is called a β-extension if there exist a self-dual semisimple stra-

tum [Υ, nΥ, 0, β] such that B(ΥE) is a maximal self-dual oE-order containing B(ΛE) and a β-

extension κ+Υ of ηΥ = τΛ,Υ,β(ηΛ) such that bΛ,Υ(κ
+
Λ) = Res

J+
Υ

J+
Λ,Υ

(κ+Υ). More precisely, we say that

such a representation κ+Λ is a β-extension relative to Υ.

There is a standard (non-canonical) choice for the self-dual oE-lattice sequence Υ. Let

Mi
Λ(2r + s) =





prEi
Λi(0) if i ∈ I+;

prEi
Λi(s) if i ∈ I0;

prEi
Λi(1) if i ∈ I−.

Then MΛ =
⊕

i∈I M
i
Λ is a self-dual oE-lattice sequence in V such that A(MΛ)∩B is a maximal

self-dual hereditary oE-order in B. A representation κ+Λ of J+
Λ is called a standard β-extension

of ηΛ if it is a β-extension relative to MΛ.

If κ+Λ is a standard β extension and [Υ, nΥ, 0, β] is another self-dual semisimple stratum withMΥ =
MΛ, we say that the standard β-extension κ+Υ of J+

Υ is compatible κ+Λ if they correspond to the
same β-extension of J+

MΛ
. In the case that A(Λ) ⊆ A(Υ), this is equivalent to saying that κ+Λ

and Res
J+
Υ

J+
Λ,Υ

κ+Υ induce to equivalent (irreducible) representations of P+(ΛE)P
1(Λ).

We also call the restriction from J+
Λ to JΛ (resp. J◦

Λ) of a (standard) β-extension a (standard) β-
extension and denote the restriction of κ+Λ to JΛ (resp. J◦

Λ) by κΛ (resp. κ◦Λ), and speak of
compatibility for these standard β-extensions.

Remark 5.3. Being smooth representations of a compact group, all Qℓ-beta extensions are
integral. When B(ΛE) is a maximal self-dual oE-order in B, it is straightforward to check that
reduction modulo-ℓ defines a surjective map from the set of Qℓ-beta extensions to the set of Fℓ-
beta extensions. Moreover, the bijections bΛ,Υ, for Qℓ-representation and Fℓ-representations,
defined by Theorem 5.2 commute with reduction modulo-ℓ; thus reduction modulo-ℓ defines
a surjective map from the set of Qℓ-beta extensions to the set of Fℓ-beta extensions in all
cases. Moreover, the reduction modulo-ℓ of a standard Qℓ-beta extension is a standard Fℓ-beta
extension.
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5.1 Induction functors for classical groups

Now suppose that [Λ, n, 0, β] is a skew semisimple stratum in A. Let θ ∈ C−(Λ, 0, β), let η be
the unique Heisenberg extension of θ to J1(β,Λ) and κ be a β-extension of η to J(β,Λ). Recall
that we have an exact sequence

1 → J1(β,Λ) → J(β,Λ) →M(ΛE) → 1,

with M(ΛE) a (possibly disconnected) finite reductive group.

We have a functor Iκ : RR(M(ΛE)) → RR(G), which we call κ-induction, given by

Iκ(−) = indGJ(β,Λ)(κ⊗ infl
J(β,Λ)
M(ΛE)(−))

where infl
J(β,Λ)
M(ΛE) : RR(M(ΛE)) → RR(J(β,Λ)) is the functor defined by trivial inflation to J1(β,Λ).

The functor Iκ possesses a right adjoint Rκ : RR(G) → RR(M(ΛE)), which we call κ-restriction,
given by

Rκ(−) = HomJ1(β,Λ)(κ,−).

If π is a smooth representation of G, the action of M(ΛE) on Rκ(π) is given as follows: if f ∈
Rκ(π), m ∈M(ΛE) and j ∈ J(β,Λ) is any representative for m, then m · f = π(j) ◦ f ◦ κ(j−1).
The functors of κ-induction and κ-restriction are exact functors as J1(β,Λ) is pro-p.

Now let [Υ, nΥ, 0, β] be another self-dual semisimple stratum with MΥ = MΛ and A(Λ) ⊆
A(Υ), and let θΥ be the transfer of θ. Let κ be a β-extension and let κΥ be a compatible β-
extension of J(β,Υ). Set PE

Λ,Υ = P (ΛE)/P
1(ΥE), a parabolic subgroup of M(ΥE) with Levi

factor M(ΛE); we write i
M(ΥE)

PE
Λ,Υ

for the parabolic induction functor and r
M(ΥE)

PE
Λ,Υ

for its adjoint.

By transitivity of induction, an exercise shows that we have isomorphisms of functors

IκΥ
◦ i

M(ΥE)

PE
Λ,Υ

≃ Iκ and r
M(ΥE)

PE
Λ,Υ

◦RκΥ
≃ Rκ,

where the latter follows from the former by unicity of the adjoint.

We also have the special case of these functors when the stratum is zero, which we can ap-
ply in GE . Thus, since ΛE is an oE-lattice chain, we have a level zero parahoric induction
functor IΛE

: RR(M(ΛE)) → RR(GE) attached to [Λ, n, 0, β] given by

IΛE
(−) = indGE

P (ΛE)(infl
P (ΛE)
M(ΛE)(−))

where infl
P (ΛE)
M(ΛE) : RR(M(ΛE)) → RR(P (ΛE)) is the functor defined by trivial inflation to P 1(ΛE).

The functor IΛE
possesses a right adjoint, which we call level zero parahoric restriction, RΛE

:
RR(GE) → RR(M(ΛE)) given by the functor of P 1(ΛE)-invariants

RΛE
(−) = (−)P

1(ΛE),

with the group P (ΛE)/P
1(ΛE) ≃M(ΛE) acting naturally. Level zero parahoric induction and

restriction are exact functors.

6 Level zero interlude

In this section we recall some results of Morris [18] and Vignéras [27] on level zero representations
of G (cf. also [29, §4]). Later, we will apply them to GE , which will be a product of groups
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like G over extensions of F . The results of this section apply in the greater generality of [18],
and we retain the notation of [ibid.] as it is much more convenient here, as such, the notation
of this section is independent of that of the rest of the paper. We recall this notation briefly
below and explain how to translate to our notation in the rest of the paper.

Let G be a connected reductive group over F , T be a maximal F -split torus in G, and N =
NG(T). We write G = G(F ), T = T(F ), and N = N(F ) for the respective groups of F -points.
Let B be an Iwahori subgroup ofG. Following [ibid.], (G,B,N) is called a generalised affine BN -
pair, and, associated to this data, we have a generalised affine Weyl group W = N/B ∩ N .
According to [ibid.], we have a decomposition W = Ω ⋉W ′ with W ′ the affine Weyl group of
some split affine root system. Let S be a set of fundamental reflections in W ′.

If J ⊂ S is a proper subset of S, we let WJ be the subgroup of W generated by the reflections
in J . The standard parahoric subgroups of G correspond to proper subsets of S, via J ⊂ S maps
to PJ = BNJB for NJ any set of representatives of WJ in G. Given a parahoric subgroup PJ ,
we write UJ for its pro-p unipotent radical andMJ = PJ/UJ the points of a connected reductive
group over a finite field. We write UB for the pro-p unipotent radical of B = P∅.

Let J,K be proper subsets of S. A set of double coset representatives DJ,K for WJ\W/WK

is called distinguished if each representative has minimal length in its double coset, (cf. [ibid.,
§3.10]). A set of double coset representatives DJ,K for PJ\G/PK is called distinguished if its
projection to W is a set of distinguished double coset representatives for WJ\W/WK . Let DJ,K

be a set of distinguished set of double coset representatives for PJ\G/PK . Let d ∈ DJ,K and w
be its projection in W . By [ibid., Lemma 3.19, Corollary 3.20, Lemma 3.21], we have

(i) PJ∩wK = UJ(PJ ∩ nPK) with unipotent radical UJ∩wK = UJ(PJ ∩ nUK).

(ii) P J
J∩wK = PJ∩wK/UJ is a parabolic subgroup of MJ = PJ ∩ UJ .

We can form the following lattice of groups:

1 UJ PJ MJ 1

1 UJ PJ∩wK P J
J∩wK 1

1 UJ(PJ ∩ nUK) PJ∩wK MJ∩wK 1

Furthermore, as D−1
J,K is a set of distinguished double coset representatives for PK\G/PJ ,

the group PK
w−1J∩K is a parabolic subgroup of MK and we can form an analogous diagram

for PK
w−1J∩K . Note also that MJ∩wK = (Mw−1J∩K)w.

This section collects results based upon the following theorem of Vignéras. Before we state it,
we must recall the parahoric induction/restriction functors in this notation; let IJ : RR(MJ) →
RR(G) denote the parahoric induction functor

IJ(−) = indGPJ
(inflPJ

MJ
(−)),

and RJ : RR(G) → RR(MJ ) denote, its right adjoint, the parahoric restriction functor

RJ(−) = (−)UJ .
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The normaliser NG(PJ ) of PJ in G normalises UJ , and M+
J = NG(PJ)/UJ contains MJ as a

normal subgroup. We write I+J : RR(M
+
J ) → RR(G) for the functor

I+J (−) = indGNG(PJ )
(−),

and R+
J : RR(G) → RR(M

+
J ) its right adjoint, again given by UJ -invariants.

Theorem 6.1 ([27, Basic decomposition 5.1]). We have an isomorphism of functors

RJ ◦ IK ≃
⊕

w∈DJ,K

iMJ

P J
J∩wK

◦

(
rMK

PK

w−1J∩K

)w

.

Corollary 6.2. Let τ be a cuspidal R-representation of MK .

(i) The representation RK ◦ IK(τ) is a direct sum of conjugates of τ .

RK ◦IK(τ) ≃
⊕

w∈WK,K

wK=K

τw.

Moreover, if PK is a maximal and τ+ is an irreducible R-representation of M+
K with

cuspidal restriction to MK , then

R+
K ◦ I+K(τ+) = τ+.

(ii) Suppose that PK is maximal and PJ is not conjugate to PK in G. Then

RJ ◦ IK(τ) = 0.

Proof. All statements are straightforward applications of the theorem. Part (i) is [27, Corollaries
5.2 & 5.3], and part (ii) follows as if PJ is not conjugate to PK , then PK

w−1J∩K is a proper

parabolic subgroup of MK , for any w ∈WJ,K, and hence rMK

PK

w−1J∩K

(τw) = 0 by cuspidality.

Remark 6.3. In case (i) of Lemma 6.2, the direct sum can be infinite. Indeed this is the case
when K is empty (and the building of G is not a point).

Finally, we will need the following variant of [18, Proposition 4.13], (cf. [24, Lemma 1.1]), which
requires a different proof in our setting.

Lemma 6.4. Let J,K be proper subsets of S, and D be a set of distinguished double coset
representatives for PK\G/PJ . Let τ be a representation of MJ with cuspidal restriction to M◦

J ,
and let n ∈ D. If n lies in the support of H(G, τ |UB

), i.e.

HomUB∩Un
B
(τ, τn) 6= 0,

then wK = J , where w ∈W is the projection of n.

Proof. By [18, Lemma 3.21], we have PJ ∩ Un
K ⊆ UJ∩wK ⊆ UB . Hence, as U

n
K ⊆ Un

B, we have

HomUB∩Un
B
(τ, τn) ⊆ HomPJ∩U

n
K
(τ, τn) = HomPJ∩U

n
K
(τ,dim(τ)1).

But, by [ibid.], PJ ∩ Un
K is the unipotent radical of the parabolic subgroup PJ∩wK/UJ of MJ .

Hence by cuspidality of τ , we must have wK = J .
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6.1 Level zero Hecke algebras

Let P ◦(Υ) be a parahoric subgroup of G associated to the oF -lattice sequence Υ with pro-p
unipotent radical P 1(Υ) and connected finite reductive quotient M◦(Υ).

Remark 6.5. By conjugating if necessary, we the parahoric subgroup P ◦(Υ) will be equal to
a standard parahoric subgroup PJ considered above, and we will interchange notations freely.

Let Q◦(Λ) be a parabolic subgroup of M◦(Υ) with Levi decomposition Q◦(Λ) = M◦(Λ) ⋉
U◦(Λ), and denote by P ◦(Λ) the parahoric subgroup which is the preimage of Q◦(Λ) under
the projection map P ◦(Υ) → M◦(Υ). Thus the quotient of P ◦(Λ) by its pro-p unipotent
radical P 1(Λ) is M◦(Λ). Let τ be an irreducible cuspidal representation of M◦(Λ) and τ̃ denote
both its inflation to Q◦(Λ) and to P ◦(Λ). The following Lemma follows immediately from the
definitions.

Lemma 6.6. We have a support preserving isomorphism of Hecke algebras H(M◦(Υ), τ̃ ) ≃
H(P ◦(Λ), τ̃ ): if f ∈ H(M◦(Υ), τ̃) is supported on Q◦(Λ)yQ◦(Λ) for y ∈ M◦(Υ) then the
corresponding element f ′ ∈ H(P ◦(Λ), τ̃ ) is supported on P ◦(Λ)yP ◦(Λ).

Let W (M◦(Λ), τ) denote the inertia group of τ , that is, the elements of the relative Weyl group
ofM◦(Λ) inM◦(Υ) which normalize τ (see [10, Proposition 4.2.11]). We can give a presentation
of the algebra H(M◦(Υ), τ̃) due to Howlett–Lehrer [12] when R = C and to Geck–Hiss–Malle [9]
in general.

Theorem 6.7 ([10, Theorem 4.2.12]). There are a Coxeter system (W1, S1) and a finite group Ω
acting on (W1, S1) such that W (M◦(Λ), τ) ≃ Ω ⋉ W1; furthermore H(M◦(Υ), τ̃ ) has a ba-
sis {Tw : w ∈ W (M◦(Λ), τ)} which gives a presentation of the algebra with the following rules
for multiplication:

(i) for all w ∈W and w′ ∈ Ω,

Tw ⋆ Tw′ = µ(w,w′)Tww′ and Tw′ ⋆ Tw = µ(w′, w)Tw′w,

for some 2-cocycle µ : W (M◦(Λ), τ) ×W (M◦(Λ), τ) → R×;

(ii) for s ∈ S1, there are ps ∈ R\{0, 1}, such that,

Ts ⋆ Tw =

{
Tsw if l1(sw) > l1(w),

psTsw + (ps − 1)Tw if l1(sw) < l1(w),

for all s ∈ S1 and w ∈W1, where l1 is the length function on W1.

7 Reduction to level zero

Let [Υ, nΥ, 0, β] and [Λ, nΛ, 0, β] be self-dual semisimple strata in A. By conjugating by an
element of GE , if necessary, we assume that ΥE and ΛE lie in the closure of a common
chamber in the building of GE , corresponding to an oE -lattice sequence ΓE in V . As be-
fore, let θΥ ∈ C−(Υ, 0, β) and θΛ = τΥ,Λ,β(θΥ). Let ηΥ be the unique Heisenberg representation
containing θΥ and ηΛ = τΥ,Λ,β(ηΥ) the unique Heisenberg representation containing θΛ. Let κΥ
be a standard β-extension of ηΥ and κΛ be a standard β-extension of ηΛ.

We will abbreviate JΥ = J(β,Υ), and also PΥ = P (ΥE) and MΥ = M(ΥE), with analogous
notation for Λ and Γ. We also write J1

Γ,Υ = P 1
ΓJ

1
Υ, etc.
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Lemma 7.1. The intertwining of ηΛ and κΥ in G is given by

dimR(HomJ1
Λ∩J

g
Υ
(κΛ, κ

g
Υ)) =

{
1 if g ∈ J1

ΥGEJ
1
Λ;

0 otherwise.

Proof. We have J1
Λ∩Jg

Υ ⊆ J1
Λ∩Kg for some Sylow p-subgroup K of JΥ. All Sylow p-subgroups

of JΥ are conjugate to J1
Γ,Υ so K = (J1

Γ,Υ)
j for some j ∈ JΥ. Thus ResJΥK κΥ ≃ ηjΓ,Υ and, as

vector spaces, we have

HomJ1
Λ∩J

g
Υ
(κΛ, κ

g
Υ) ≃ HomJ1

Λ∩(J
1
Γ,Υ)jg (ηΛ, η

jg
Γ,Υ).

As ηΓ,Υ extends ηΥ, the result now follows by applying Lemma 4.7 and Theorem 4.1.

Let τ be a representation of MΥ which we identify with a representation of JΥ trivial on J1
Υ

and with a representation of PΥ trivial on P 1
Υ. By Mackey’s restriction-induction formula and

exactness of κΛ-restriction we have the following lemma.

Lemma 7.2. We have isomorphisms of representations of MΛ

RκΛ
◦ IκΥ

(τ) ≃
⊕

JΥ\G/JΛ

HomJ1
Λ

(
κΛ, ind

JΛ
JΛ∩J

g
Υ
((κΥ ⊗ τ)g)

)
;

RE
Λ ◦ IEΥ(τ) ≃

⊕

PΥ\GE/PΛ

HomP 1
Λ

(
1, indPΛ

PΛ∩P
g
Υ
(τ g)

)
.

Lemma 7.3. Let g ∈ G. If HomJ1
Λ

(
κΛ, ind

JΛ
JΛ∩J

g
Υ
(κΥ ⊗ τ)g

)
6= 0 then g ∈ J1

ΥGEJ
1
Λ.

Proof. Consider HomJ1
Λ

(
κΛ, ind

JΛ
JΛ∩J

g
Υ
(κΥ ⊗ τ)g

)
as an abstract R-vector space. We have

HomJ1
Λ

(
ResJΛ

J1
Λ
κΛ,Res

JΛ
J1
Λ
◦ indJΛ

JΛ∩J
g
Υ
(κΥ ⊗ τ)g

)
≃

⊕

h∈(JΛ∩J
g
Υ)\JΛ/J

1
Λ

Hom
J1
Λ∩J

gh
Υ

(
ηΛ, (κΥ ⊗ τ)gh

)

by Mackey’s restriction-induction formula and Frobenius reciprocity. We have an injection of
vector spaces

Hom
J1
Λ∩J

gh
Υ

(
ηΛ, (κΥ ⊗ τ)gh

)
→֒ HomJ1

Λ∩(J
1
Υ)gh

(
ηΛ, (κΥ ⊗ τ)gh

)

and on (J1
Υ)

gh we have κghΥ = ηghΥ and τ gh is a multiple of the trivial representation. Thus gh ∈
IG(ηΛ, ηΥ) = J1

ΥGEJ
1
Λ, by Theorem 4.1, and we deduce that g ∈ J1

ΥGEJΛ = J1
ΥGEJ

1
Λ.

Lemma 7.4. (i) Let g ∈ GE . If HomP 1
Λ
(1, indPΛ

PΛ∩P
g
Υ
(τ g)) = 0, then HomJ1

Λ
(κΛ, ind

JΛ
JΛ∩J

g
Υ
(κΥ⊗

τ)g) = 0.

(ii) As representations of M(ΥE), we have isomorphisms

HomJ1
Υ
(κΥ, κΥ ⊗ τ) ≃ HomP 1

Υ
(1, τ) ≃ τ.

Proof. As an abstract vector space, by Mackey theory, we have

HomJ1
Λ
(κΛ, ind

JΛ
JΛ∩J

g
Υ
(κΥ ⊗ τ)g) ≃

⊕

h∈(JΛ∩J
g
Υ)\JΛ/J

1
Λ

Hom
J1
Λ∩J

gh
Υ
(ηΛ, (κΥ ⊗ τ)gh).
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By Lemma 7.1 gh intertwines ηΛ with κΥ for every h ∈ JΛ. Hence by Lemma 2.12 (applied

with X1 = X1
1 = J1

Λ, X2 = Jgh
Υ , X1

2 = (J1
Υ)

gh, µ1 = ηΛ, µ2 = κgh, ζ1 = 1, and ζ2 = τ gh) for
each summand, we have an isomorphism of vector spaces

Hom
J1
Λ∩J

gh
Υ

(
ηΛ, (κΥ ⊗ τ)gh

)
≃ Hom

J1
Λ∩J

gh
Υ
(1, τ gh).

Moreover, as J1
Λ ∩ Jgh

Υ contains P 1
Λ ∩ P gh

Υ , we have

Hom
J1
Λ∩J

gh
Υ
(1, τ gh) ⊆ Hom

P 1
Λ∩P

gh
Υ
(1, τ gh)

But, the right hand side is isomorphic as a vector space to a direct summand of the represen-
tation

HomP 1
Λ
(1, indPΛ

PΛ∩P
g
Υ
(τ)g) ≃

⊕

h′∈(PΛ∩P
g
Υ)\PΛ/P

1
Λ

Hom
P 1
Λ∩P

gh′

Υ

(1, τ gh
′

),

where the above decomposition is again an isomorphism of abstract vector spaces obtained by
Mackey theory. However, by our hypotheses HomP 1

Λ
(1, indPΛ

PΛ∩P
g
Υ
(τ g)) is trivial, whence all the

summands Hom
J1
Λ∩J

gh
Υ
(ηΛ, (κΥ⊗τ)gh) are trivial and, thus, so is HomJ1

Λ
(κΛ, ind

JΛ
JΛ∩J

g
Υ
(κΥ⊗τ)g)

and we have shown case (i).

For the second part, we can take S ∈ HomJΥ(κΥ, κΥ) to be the identity element. By Lemma 2.12
(applied with X1 = X1

1 = X2 = X1
2 = J1

Υ, µ1 = µ2 = ηΥ, ζ1 = 1, and ζ2 = τ |J1= dim(τ)1) we
have an isomorphism of vector spaces HomJ1

Υ
(1, τ) → HomJ1

Υ
(κΥ, κΥ ⊗ τ) given by T 7→ S ⊗ T .

The action ofM(ΥE) on HomJ1
Υ
(κΥ, κΥ⊗σ) induced from the action ofM(ΥE) on RκΥ

◦ IκΥ
(τ)

is given by m · Φ = κΥ ⊗ τ(j) ◦ Φ ◦ κΥ(j
−1), for m ∈ M(ΥE), Φ ∈ HomJ1

Υ
(κΥ, κΥ ⊗ τ) and j

any representative of m in J . Thus, we have

m · S ⊗ T = κ⊗ τ(j) ◦ (S ⊗ T ) ◦ κ(j−1)

= κ(j) ◦ S ◦ κ(j−1)⊗ τ(j) ◦ T.

However, as S ∈ HomJ(κΥ, κ
g
Υ), whence κΥ(j)◦S◦κΥ(j

−1) = S. Therefore, we have m·S⊗T =
S ⊗m · T , the isomorphism of vector spaces is an isomorphism of representations of M(ΥE).
Moreover,

HomJ1
Υ
(1, τ) ≃ HomP 1

Υ
(1, τ) ≃ τ.

Corollary 7.5. Let τ be a representation of MΥ.

(i) If RE
Λ ◦ IEΥ(τ) is trivial then so is RκΛ

◦ IκΥ
(τ).

(ii) Suppose τ is irreducible with cuspidal restriction to M◦
Υ. If GE has compact centre

and P ◦(ΥE) is a maximal parahoric subgroup of GE then

RκΥ
◦ IκΥ

(τ) ≃ τ.

Proof. By Lemmas 7.2 and 7.3, we have isomorphisms of representations of MΛ

RκΛ
◦ IκΥ

(τ) ≃
⊕

JΥ\J1
ΥGEJ1

Λ/JΛ

HomJ1
Λ

(
κΛ, ind

JΛ
JΛ∩J

g
Υ
((κΥ ⊗ τ)g)

)
;

RE
Λ ◦ IEΥ(τ) ≃

⊕

PΥ\GE/PΛ

HomP 1
Λ

(
1, indPΛ

PΛ∩P
g
Υ
(τ g)

)
.

28



We choose a set of distinguished double coset representatives for PΥ\GE/PΛ, which by with the
bijection of Lemma 3.8, fixes a set of double coset representatives of JΥ\J

1
ΥGEJ

1
Λ/JΛ in GE .

We can now compare the summands of both isomorphisms on the right. Part (i) follows from
Lemma 7.4 part (i), and Lemma 6.2 Part (ii). For Part (ii) notice by Lemma 7.4 parts (i)
and (ii), and Lemma 6.2 Part (i), that the only summands which contribute correspond to
distinguished double cosets PΥnPΥ where n has projection w in the extended affine Weyl group
satisfying wK = K for K the proper subset of fundamental reflections of the affine Weyl group
corresponding to P ◦

Υ. However, as P
◦
Υ is maximal wK = K implies that n ∈ NGE

(P ◦
Υ) = PΥ by

[18, Appendix]. Thus, Part (ii) follows from Lemma 7.4 Part (ii).

8 Skew covers

This section is concerned with revisiting and making the necessary changes to the second authors
construction of covers in [24] so that the same construction works in positive characteristic ℓ.
The construction follows mutatis mutandis the constructions of the second author for complex
representations and rather than go through all the proofs, which are lengthy, we introduce all
the the notation of op. cit. and indicate where changes need to be made to the proofs.

8.1 Iwahori decompositions

Let [Λ, n, 0, β] be a semisimple stratum with associated splitting V =
⊕

i∈I V
i. A decomposi-

tion V =
⊕m

j=1W
(j) of V is called subordinate to [Λ, n, 0, β] if

(i) each W (j) ∩ V i is an Ei-subspace of V i;

(ii) W (j) =
⊕

i∈I(W
(j) ∩ V i);

(iii) Λ(r) =
⊕m

j=1(Λ(r) ∩W
(j)), for all r ∈ Z;

It is called properly subordinate to [Λ, n, 0, β] if it is subordinate and, also,

(iv) for each r ∈ Z and i ∈ I, there is at most one j such that

(Λ(r) ∩W (j) ∩ V i)) ) (Λ(r + 1) ∩W (j)j ∩ V i).

If [Λ, n, 0, β] is a semisimple stratum and V =
⊕m

j=1W
(j) is a decomposition which is subor-

dinate to [Λ, n, 0, β] then we put Λ(j) to be the oE-lattice sequence in W (j) given by Λ(j)(r) =
Λ(r)∩Wj and put β(j) = e(j)βe(j) where e(j) is the orthogonal projection V →Wj . Then there
is an integer n(j) such that [Λ(j), n(j), 0, β(j)] is a semisimple stratum in A(j) = EndF (W

(j))
with splitting W (j) =

⊕
i∈I(W

(j) ∩ V i). We put B(j) = CA(j)(β(j)).

Let M̃ denote the Levi subgroup of G̃ equal to the stabiliser of the decomposition V =⊕m
j=1W

(j) and let P̃ be any parabolic subgroup of G̃ with Levi factor M̃ and Levi decom-

position P̃ = M̃ ⋉ Ũ .

Lemma 8.1 ([24, Propositions 5.2 and 5.4]). If V =
⊕m

j=1W
(j) is subordinate to [Λ, n, 0, β]

then J̃1(β,Λ) and H̃1(β,Λ) have Iwahori decompositions with respect to (M̃, P̃ ). Moreover

H̃1(β,Λ) ∩ M̃ =
m∏

j=1

H̃1(β(j),Λ(j)),
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there is a similar decomposition for J̃1(β,Λ) ∩ M̃ , and we can form the groups

H̃1
P̃
= H̃1(β,Λ)(J̃1(β,Λ) ∩ Ũ), J̃1

P̃
= H̃1(β,Λ)(J̃1(β,Λ) ∩ P̃ )

which have Iwahori decompositions with respect to any parabolic subgroup with Levi factor M̃ .
If the decomposition V =

⊕m
j=1W

(j) is properly subordinate to [Λ, n, 0, β] then J̃(β,Λ) also

has an Iwahori decomposition with respect to (M̃ , P̃ ), we also have

J̃(β,Λ) ∩ M̃ =

m∏

j=1

J̃(β(j),Λ(j)),

and we can form the group J̃
P̃

= H̃1(β,Λ)(J̃ (β,Λ) ∩ P̃ ) which has an Iwahori decomposition

with respect to any parabolic subgroup with Levi factor M̃ .

Let [Λ, n, 0, β] be a self-dual semisimple stratum. A decomposition V =
⊕m

j=−mW
(j) is called

self-dual if, for −m 6 j 6 m, the orthogonal complement of W (j) is
⊕

k 6=±jW
(k). Put M =

M̃ ∩G a Levi subgroup of G and M+ = M̃ ∩G+ a Levi subgroup of G+. Choosing a σ-stable
parabolic subgroup P̃ of G with Levi factor M̃ , we have P = P̃ ∩G a parabolic subgroup of G
with Levi factor M and P+ = P̃ ∩G+ a parabolic subgroup of G+ with Levi factor M+.

Lemma 8.2 ([24, Corollaries 5.10 and 5.11] (cf. [7, Fait 8.10])). If V =
⊕m

j=−mW
(j) is a

self-dual subordinate decomposition to [Λ, n, 0, β], then the groups H1(β,Λ) and J1(β,Λ) have
Iwahori decompositions with respect to (M,P ),

H1(β,Λ) ∩M ≃ H1(β(0),Λ(0))×
m∏

j=1

H̃1(β(j),Λ(j)),

there is a similar decomposition for J1(β,Λ), and we can form the groups

H1
P = H1(β,Λ)(J1(β,Λ) ∩ U), J1

P = H1(β,Λ)(J1(β,Λ) ∩ P ).

Moreover, if the decomposition is properly subordinate to [Λ, n, 0, β] then J+(β,Λ) has an Iwa-
hori decomposition with respect to (M+, P+), J(β,Λ) and J◦(β,Λ) have Iwahori decompositions
with respect to (M,P ),

J(β,Λ) ∩M ≃ J(β(0),Λ(0))×
m∏

j=1

J̃(β(j),Λ(j)),

there are similar decompositions for J+(β,Λ) ∩M+ and J◦(β,Λ) ∩M , and we can form the
groups

J+
P = H1(β,Λ)(J+(β,Λ) ∩ P ), JP = H1(β,Λ)(J(β,Λ) ∩ P ), J◦

P = H1(β,Λ)(J◦(β,Λ) ∩ P ).

Let θ̃ ∈ C(Λ, n, 0, β) and η̃ be the unique Heisenberg representation of J̃1(β,Λ) containing θ̃.
By Lemma [24, Lemma 5.6], we can define a character of H̃1

P̃
by

θ̃P̃ (hj) = θ̃(h),

for h ∈ H̃1(β,Λ) and j ∈ J̃1(β,Λ) ∩ Ũ .
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Lemma 8.3 ([24, Corollary 5.7 and Lemma 5.8]). There exists a unique irreducible repre-

sentation of J̃1
P̃

containing θ̃P̃ . Moreover η̃ = ind
J̃1(β,Λ)

J̃1
P̃

(η̃P̃ ) and for each y ∈ G̃E , there is a

unique (J̃1
P̃
, J̃1

P̃
)-double coset in J̃1(β,Λ)yJ̃1(β,Λ) which intertwines η̃P̃ and IG̃(θ̃P̃ ) = IG̃(η̃P̃ ) =

J̃1
P̃
G̃E J̃

1
P̃
.

Let θ ∈ C−(Λ, 0, β) and η be the unique Heisenberg representation of J1(β,Λ) containing θ. We
can define a character θP of H1

P by
θP (hj) = θ(h),

for h ∈ H1(β,Λ) and j ∈ J1(β,Λ) ∩ U . Then θP = g(θ̃P̃ ) is the Glauberman transfer of θ̃P̃
(as θ̃

P̃
is a character the Glauberman transfer here is just restriction to H1

P ).

We let ηP = g(η̃P̃ ). Using properties of the Glauberman correspondence the following Lemma
is proved in [24].

Lemma 8.4. The representation ηP is the unique irreducible representation of J1
P which con-

tains θP , η = ind
J1(β,Λ)

J1
P

(ηP ). Moreover for each y ∈ GE , there is a unique (J1
P , J

1
P )-double

coset in J1(β,Λ)yJ1(β,Λ) which intertwines ηP and dimR(Ig(ηP )) is 1 if g ∈ J1
PG

+
EJ

1
P and 0

otherwise.

Let κ+ be a standard β-extension of η. We can form the natural representation κ+P of J+
P on

the space of (J1 ∩ U)-fixed vectors in κ+ by normality. Then Res
J+
P

J1
P

(κ+P ) = ηP , hence κP is

irreducible. The Mackey restriction formula as in [24, Proposition 5.13] shows that indJ
+

J+
P

(κ+P ) ≃

κ+. We can also define representations of κP of JP and κ◦P of J◦
P , for which analogous statements

hold and Res
J+
P

JP
(κ+P ) = κP , Res

J+
P

J◦
P
(κ+P ) = κ◦P .

In the next Lemma we identify H1(β,Λ) ∩M with H1(β(0),Λ(0)) ×
∏m

j=1 H̃
1(β(j),Λ(j)) using

Lemma 8.2, and use the similar identifications for J1(β,Λ) ∩M and J(β,Λ) ∩M .

Lemma 8.5 ([24, Section 5]). If V =
⊕m

j=−mW
(j) is a self-dual subordinate decomposition,

then

θP |H1(β,Λ)∩M= θ(0) ⊗
m⊗

j=1

(
θ̃(j)

)2
,

with θ(0) ∈ C−(Λ
(0), 0, β(0)) and θ̃(j) ∈ C(Λ(j), 0, β(j)). Similarly we have

ηP |J1(β,Λ)∩M= η(0) ⊗
m⊗

j=1

η̃(j),

where η(0) is the unique irreducible representation of J1(β(0),Λ(0)) containing θ(0) and η̃(j) is

the unique irreducible representation of J̃1(β(j),Λ(j)) containing
(
θ̃(j)

)2
. Moreover, if V =

⊕m
j=−mW

(j) is a self-dual properly subordinate decomposition,

κP |J(β,Λ)∩M= κ+(0) ⊗
m⊗

j=1

κ̃(j),

with κ+(0) an extension of η(0) to J+(β(0),Λ(0)) and κ̃(j) an extension of η̃(j) to J̃(β
(j),Λ(j)).
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Lemma 8.6 ([24, Lemma 6.1]). Let K be a compact open subgroup of J+(β,Λ) contain-
ing J1(β,Λ) which has an Iwahori decomposition with respect to (M+, P+) with K ∩M+ =
K(0) ×

∏
K̃(j). Let ρ be the inflation to K of an irreducible representation of K/J1(β,Λ), λ =

Res
J+(β,Λ)
K (κ+)⊗ρ and λP the representation ofKP = H1(β,Λ)(K∩P ) on the space of J1(β,Λ)∩

U -fixed vectors in λ. Then

(i) λP is irreducible and λ = indKKP
λP .

(ii) λP ≃ κP ⊗ ρ considering ρ as a representation of KP /J
1
P ≃ K/J1(β,Λ).

(iii) λP |K∩M= λ(0) ⊗
⊗m

j=1 λ̃
(j), where λ̃(0) = κ(0) |K(0) ⊗ρ(0) is a representation of K(0)

and λ̃(j) = κ̃+(j) |K̃(j) ⊗ρ̃
(j) is a representation of K̃(j), for 1 6 j 6 m.

(iv) There is a support preserving algebra homomorphism H(G+, λP ) ≃ H(G+, λ); if φ ∈
H(G+, λ) has support KyK for some y ∈ G+

E then the corresponding φP ∈ H(G+, λP )
has support KP yKP .

Proof. The proof follows mutatis mutandis the proof of [24, Lemma 6.1], making use of the
results quoted in this section and Lemma 2.11 for parts (i), (ii), and (iii).

The self-dual decomposition V =
⊕m

j=−mW
(j) is exactly subordinate to [Λ, n, 0, β], in the sense

of [24, Definition 6.5], if P ◦(ΛE) ∩M is a maximal parahoric subgroup of GE ∩M and, for
each j 6= 0, there is an i such that W (j) is contained in V i and A(Λ(j))∩B(j) is a maximal oEi-
order in B(j), or equivalently, if it is minimal amongst all self-dual decompositions which are
properly subordinate to [Λ, n, 0, β].

For the rest of this section, we suppose that the self-dual decomposition V =
⊕m

j=−mW
(j) is

exactly subordinate to [Λ, n, 0, β]. For j, k > 0, in [24, Section 6.2] a collection of Weyl group
element sj,k, sj, and s̟j , all of which lie in G+

E , of G is defined. The element sj,k exchanges

the blocks e(j)Ae(j) and e(k)Ae(k), and the blocks e(−j)Ae(−j) and e(−k)Ae(−k). The elements sj
and s̟j exchange the blocks e(j)Ae(j) and e(−j)Ae(−j). Let ΛM be a oE-lattice sequence in V such

that A(ΛM
E ) is a maximal oE-order containing A(ΛE). For j, k > 0, W (j) and W (k) are called

companion with respect to ΛM if sj,k ∈ P+(ΛM
E ), whileW (j) andW (−j) are called companion with

respect to ΛM if sj or s
̟
j lies in P+(ΛM

E ). Following these definitions in op. cit. an involution σj

is defined on G̃j = {(g−1, g) ∈ G̃(−j)× G̃(j)} by conjugation by sj. Furthermore, by [24, Lemma

6.9], the group J̃(β(j),Λ(j)) is stable under σj , and , if 1 6 j < k 6 m and W (j) ≃W (k) as Ei-

spaces for some i, then conjugation by sj,k induces an isomorphism J̃(β(j),Λ(j)) ≃ J̃(β(k),Λ(k)).

Lemma 8.7 ([24, Proposition 6.3, Corollary 6.10]). Suppose the self-dual decomposition V =⊕m
j=−mW

(j) is exactly subordinate to [Λ, n, 0, β]. Then κ+(0) is a standard β(0)-extension of η(0)

to J+(β(0),Λ(0)) and κ̃(j) is a standard 2β(j)-extension of η̃(j) to J̃(β(j),Λ(j)). Furthermore,
for 1 6 j 6 m, conjugation by sj induces and equivalence κ̃(j) ◦σj ≃ κ̃(j), and, if 1 6 j < k 6 m

andW (j) ≃W (k) as Ei-spaces for some i, then conjugation by sj,k induces an equivalence κ̃(j) ≃
κ̃(k).

This lemma together with the comparison of β-extensions leads to the following observation,
as in op. cit. Let ΛM ,ΛM ′

be self-dual oE-lattice sequences such that the associated oE-orders
are maximal and contain A(ΛE). Let κ be a β-extension of η relative to ΛM and κ′ be a β-
extension of η relative to ΛM ′

. There are σi-invariant characters χ̃
(j) of k×Ei

and a character χ(0)
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of M◦(ΛE) such that, setting χ = χ(0) ⊗
⊗m

j=1 χ̃
(j) ◦ det(j), we have

κ′ = ind
J◦(β,Λ)
J◦
P

(κP ⊗ χ).

8.2 κP -induction and restriction

We have functors IκP
: RR(M

◦(ΛE)) → RR(G) and IκL
: RR(M

◦(ΛE)) → RR(L) with right
adjoint functors RκP

: RR(G) → RR(M
◦(ΛE)) and RκL

: RR(L) → RR(M
◦(ΛE)); defined

analogously to Iκ and Rκ in Section 5.1. In fact, as indJJP (κP ) ≃ κ, we have natural isomorphisms
of functors Iκ ≃ IκP

and Rκ ≃ RκP
.

8.3 Bounding IG(κP )

Suppose P ◦(ΛE) is not maximal. Let NE denote the normaliser in GE of the product of
maximal Ei-split tori TEi

in GEi, chosen relative to a certain Ei-basis of V i as in [24, Section
6]. Let NΛ = {w ∈ NE : w normalises P ◦(ΛE) ∩M} and NΛ(ρ) = {n ∈ NΛ : ρn ≃ ρ}.

Lemma 8.8 ([24, Corollary 6.16]). The intertwining of κ◦P is given by

IG(κ
◦
P ) ⊇ J◦

PNΛ(ρ)J
◦
P ,

and the intertwining of λ◦P = λP |J◦
P
is given by

IG(λ
◦
P ) = J◦

PNΛ(ρ)J
◦
P .

The proof follows exactly as in op. cit. with one caveat: we replace the use of [24, Proposi-
tion 1.1] with Lemma 6.4.

8.3.1 A Hecke algebra injection

Let [Λ, n, 0, β] and [Λ′, n′, 0, β] be skew semisimple strata with A(ΛE) ⊆ A(Λ′
E). Let θ ∈

C−(Λ, 0, β) and θ′ = τΛ,Λ′,β(θ) be semisimple characters, κ and κ′ compatible β-extensions
of θ and θ′, and ρ denote the inflation of an irreducible cuspidal representation ρ of M◦(β,Λ)
to the groups J◦(β,Λ), J◦

Λ,Λ′ and P ◦(ΛE). We put λ = κ ⊗ ρ and λ′ = κ′ |J◦
Λ,Λ′

⊗ρ. We

have a canonical support preserving isomorphism H(G,λ) ≃ H(G,λ′) as in [24, Proposi-
tion 7.1], this follows essentially by transitivity of induction and our results on β-extensions.
Exactly as in op. cit. Proposition 7.2, we have a support preserving isomorphism of alge-
bras H(J(β,Λ′), λ′) ≃ H(P (Λ′

E), ρ). The composition of these isomorphisms with the natural
injection H(J(β,Λ′), λ′) →֒ H(G,λ′), gives us an injective map

H(P (Λ′
E), ρ) →֒ H(G,λ),

which preserves support; if φ ∈ H(P (Λ′
E), ρ) has support P

◦(ΛE)yP
◦(ΛE) for y ∈ P (Λ′

E) then
the corresponding φG ∈ H(G,λ) has support J◦

P yJ
◦
P .

8.3.2 Skew covers

Let π be an irreducible cuspidal representation ofG, and consider the set of all such pairs ([Λ, n, 0, β], θ)
such that [Λ, n, 0, β] is a skew semisimple strata, θ ∈ C−(Λ, 0, β) and π contains θ. Choose a
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pair in this set whose parahoric subgroup P ◦(ΛE) is minimal under containment relative to all
other pairs in the set. Since there is a unique irreducible representation η of J1(β,Λ) contain-
ing θ, π must also contain η. Hence, by Lemma 2.11, π contains a representation λ = κ◦ ⊗ ρ
of J◦(β,Λ) where κ◦ is a standard β-extension of η and ρ is an irreducible representation
of J◦(β,Λ)/J1(β,Λ). As P ◦(ΛE) is minimal, it follows that ρ is cuspidal (cf. [24, Lemma 7.4]).

Suppose that either P ◦(ΛE) is not a maximal parahoric subgroup in GE or GE does not have
compact centre.

Theorem 8.9 ([24, Proposition 7.13] (cf. [17, Appendix A])). There exists an exactly sub-
ordinate self-dual decomposition V =

⊕m
j=−mW

(j) to [Λ, n, 0, β] such that the pair (J◦
P , λ

◦
P )

is a G-cover of (J◦
P ∩ M,λP |M ), where Jx◦P is as constructed in Lemma 8.2 and κP as in

Lemma 8.5.

The construction follows mutatis mutandis that of op. cit., noting that:

(i) We use the results for β-extensions in positive characteristic from Section 5, and use
Lemma 2.11 (the characteristic zero version of which is obvious).

(ii) In the construction of op. cit. for a parahoric subgroup P ◦(M) containing P ◦(ΛE), the
proof requires knowledge of the structure of H(P (M), ρ◦) (cf. Section 7.2.2 of op. cit.)
given by the results of [18]. Here we must appeal to Geck–Hiss–Malle’s generalisation of
the description of the structure of H(P (M), ρ◦) to positive characteristic (see Lemma 6.7).

(iii) The proof of op. cit. requires the construction of covers in general linear groups, namely
it uses [19, Proposition 6.7]. For general linear groups, the analogous proposition holds in
positive characteristic (see [16, Remarque 2.25]).

(iv) In the definition of lies over (cf. [24, Definition 7.6]), the use of the word component
should be replaced with quotient.

9 Self-dual and pro-p covers

This section generalises the construction of covers we have give for skew strata to semisimple
strata, following [17]. Also, inspired by [15, Lemme 5.19], we define pro-p covers at the level of
the J1 groups. These results will not be used in the rest of the paper, and are included with
future work in mind.

Let M be a Levi subgroup of G which is the stabiliser of the self-dual decomposition V =⊕m
j=−mW

(j). Letting G̃(j) = AutF (W
(j)) and G(0) = AutF (W

(0)) ∩ G we have M = G(0) ×∏m
j=1 G̃

(j). Let τ = τ (0) ⊗
⊗m

j=1 τ̃
(j) be a cuspidal irreducible representation of M . Let M

denote the stabiliser of V =
⊕m

j=−mW
(j) in A.

Lemma 9.1 ([7, Proposition 8.10], [17, Proposition 5.1]). There are a self-dual semisimple
stratum [Λ, n, 0, β] with β ∈ M and a self-dual semisimple character θ ofH1(β,Λ) such that V =⊕m

j=−mW
(j) is properly subordinate to [Λ, n, 0, β] and

θ |H1(β,Λ)∩M= θ(0) ⊗
m⊗

j=1

(
θ̃(j)

)2
,

with θ(0) contained in τ (0) and, for each j > 0,
(
θ̃(j)

)2
contained in τ̃j where we have identi-

fied H1(β,Λ) ∩M with H1(β(0),Λ(0))×
∏m

j=1 H̃
1(β(j),Λ(j)) as in Lemma 8.5.
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Let ρ be an irreducible cuspidal representation of M◦(ΛE) = J◦
P /J

1
P ≃ J◦

L/J
1
L. We can form

the representations λ◦P = κP ⊗ ρ of J◦
P and λ◦L = κL ⊗ ρ of J◦

L by inflation.

Theorem 9.2 ([17, Theorem 4.3] (cf. also [24, Proposition 7.13])). The pair (J◦
P , λ

◦
P ) is a G-

cover of (J◦
L, λ

◦
L) relative to P .

The proof generalises to positive characteristic with the same adaptions as commented on the
proof of Theorem 8.9.

Theorem 9.3. The pair (J1
P , ηP ) is a G-cover of (J

1
L, ηL) relative to P .

Proof. By [1, Page 246, (0.5)], it is equivalent to show that; for all smooth R-representations π
of G the map of vector spaces

Φ : RκP
(π) → RκL

(rGP (π)),

given by Φ(f) = rGP ◦ f for f ∈ RκP
(π), is injective. This map is easily checked to be a

homomorphism of representations of M◦(ΛE). Assume ker(Φ), the kernel of Φ, is non-zero and
let φ be an irreducible subrepresentation of ker(Φ). Let (τ , L) be in the cuspidal support of φ,
here we mean that φ is a quotient of iGP (τ).

Thus L is a Levi subgroup of M◦(ΛE) (we allow the case L =M◦(ΛE)). Let P be the standard
parabolic subgroup of M◦(ΛE) containing L with Levi decomposition P = LU . Choose a
self-dual oE-lattice sequence Λ′ such that P ◦(Λ′

E) is equal to the preimage of P under the
projection P ◦(ΛE) → M◦

P and such that P ◦(Λ) ⊇ P ◦(Λ′) (considering Λ and Λ′ as oF -lattice
sequences), this is possible by [24, Lemma 2.8]. Let κ′ = bΛ,Λ′(κ). The decomposition of V =⊕m

j=−mWj is exactly subordinate to the [Λ′, n′, 0, β]. Hence we can form the groups

J ′
P = H1(β,Λ′)(J◦(β,Λ′) ∩ P ), J ′

L = J ′
P ∩ L

and the representations κ′P of J ′
P (the natural representation on the (J◦(β,Λ′)∩U)-fixed vectors

of κ′) and κ′L = κ′P |J ′
L
.

We have the left exact sequence

0 → ω → RκP
(π) → RκL

(rGP (π)).

We apply the Jacquet functor r
M(ΛE)

P
(which is exact) and have

0 → r
M(ΛE)

P
(ω) → Rκ′

P
(π) → Rκ′

L
(rGP (π)),

as r
M(ΛE)

P
◦ RκP

(π) ≃ Rκ′
P
(π) and r

M(ΛE)

P
◦ RκL

(rGP (π)) ≃ Rκ′
L
(rGP (π)) by compatibility of κ

and κ′. Then, taking the τ -isotypic components (which is a left exact functor) we have an exact
sequence

0 → HomL(τ , r
M(ΛE)

P
(ω)) → HomL(τ ,Rκ′

P
(π)) → HomL(τ ,Rκ′

L
(rGP (π))).

By right adjointness of Rκ′
P
and Rκ′

L
with Iκ′

P
and Iκ′

L
and right adjointness of restriction with

compact induction this is isomorphic to the exact sequence

0 → HomL(τ , r
M(ΛE)

P
(ω)) → HomJ◦

P
(κ′P ⊗ τ , π) → HomJ◦

L
(κ′L ⊗ τ , rGP (π))

As ω contains a subrepresentation with cuspidal support τ , HomL(τ , r
M(ΛE)

P
(ω)) 6= 0. How-

ever, by Theorem 9.2, (J ′
P , κ

′
P ⊗ τ) is a G-cover of (J ′

L, κ
′
L ⊗ τ) relative to P . Hence, by [1,

Page 246, (0.5)], the map HomJ◦
P
(κ′P ⊗ τ , π) → HomJ◦

L
(κ′L ⊗ τ , rGP (π)) is injective, a contradic-

tion.
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10 Quasi-projectivity of types

This section shows that the types we consider are quasi-projective, so that Theorem 2.10 applies.

Lemma 10.1. Suppose that n is a distinguished double coset representative of P ◦
Υ\GE/P

◦
Υ

with projection w in the affine Weyl group of GE such that, if P ◦
Υ corresponds to the subset K

of the fundamental reflections in the affine Weyl group W ′ (cf. Section 6), then wK = K. Let τ
be a representation of M◦(ΥE). Then, we have an isomorphism of vector spaces

HomJ1
Υ
(κ◦Υ, ind

J◦
Υ

J◦
Υ∩(J◦

Υ)n(κ
◦
Υ ⊗ τ)n) ≃ τn,

which is an isomorphism of representations if n ∈ IG(κ
◦
Υ).

Proof. Observe that we have J◦
Υ = J1

Υ(J
◦
Υ ∩ (J◦

Υ)
n) ⊇ J1

Υ(P
◦
Υ ∩ (P ◦

Υ)
n) and moreover J◦

Υ/J
1
Υ =

J1
Υ(P

◦
Υ ∩ (P ◦

Υ)
n)/J1

Υ, as wK = K (and using Section 6 (i)). Therefore

J◦
Υ = J1

Υ(P
◦
Υ ∩ (P ◦

Υ)
n).

Thus, by Mackey theory, we have

Res
J◦
Υ

J1
Υ
(ind

J◦
Υ

J◦
Υ∩(J◦

Υ)n(κ
◦
Υ ⊗ τ)n) ≃ ind

J1
Υ

J1
Υ∩(J◦

Υ)n
(κ◦Υ ⊗ τ)n.

Therefore, we have isomorphisms of vector spaces

HomJ1
Υ
(κ◦Υ, ind

J◦
Υ

J◦
Υ∩(J◦

Υ)n(κ
◦
Υ ⊗ τ)n) ≃ HomJ1

Υ
(κ◦Υ, ind

J1
Υ

J1
Υ∩(J◦

Υ)n
(κ◦Υ ⊗ τ)n)

≃ HomJ1
Υ∩(J◦

Υ)n(κ
◦
Υ, (κ

◦
Υ)

n ⊗ τn)

which, checking actions, is actually an isomorphism of representations of M◦
Υ, where the action

of
M◦

Υ = J1
Υ(J

◦
Υ ∩ (J◦

Υ)
n)/J1

Υ ≃ (J◦
Υ ∩ (J◦

Υ)
n)/(J1

Υ ∩ (J◦
Υ)

n)

on homomorphisms in HomJ1
Υ∩(J◦

Υ)n(κ
◦
Υ, (κ

◦
Υ)

n⊗τn) is given in the usual way by pre-composition

with (κ◦Υ)
−1 and post-composition with (κ◦Υ)

n ⊗ τn. By Lemma 7.1 we can choose S ∈
HomJ1

Υ∩(J◦
Υ)n(κ

◦
Υ, (κ

◦
Υ)

n) nonzero, and HomJ1
Υ∩(J◦

Υ)n(κ
◦
Υ, (κ

◦
Υ)

n) = HomJ1
Υ∩(J1

Υ)n(κ
◦
Υ, (κ

◦
Υ)

n) ≃ R

by Theorem 4.1. Hence, by Lemma 2.12 (applied with X1 = X1
1 = J1

Υ, X2 = Jn
Υ, X

1
2 =

(J1
Υ)

n, µ1 = ηΥ, µ2 = κnΥ, ζ1 = 1, and ζ2 = τn) we have an isomorphism of vector spaces

HomJ1
Υ∩(J◦

Υ)n(1, τ
n) → HomJ1

Υ∩(J◦
Υ)n(κ

◦
Υ, (κ

◦
Υ)

n ⊗ τn),

given by the tensor product with S which is an isomorphism if S ∈ HomJ◦
Υ∩(J◦

Υ)n(κ
◦
Υ, (κ

◦
Υ)

n),
which will be the case if HomJ◦

Υ∩(J◦
Υ)n(κ

◦
Υ, (κ

◦
Υ)

n) 6= 0, i.e. if n ∈ IG(κ
◦
Υ). Moreover, as a

representation of M◦
Υ = (J◦

Υ ∩ (J◦
Υ)

n)/(J1
Υ ∩ (J◦

Υ)
n),

HomJ1
Υ∩(J◦

Υ)n(1, τ
n) ≃ τn.

It seems likely that the elements n considered in Lemma 10.1 do intertwine κ◦Υ, we do not prove
this here as it is not needed for our application.

Theorem 10.2. Suppose τ is cuspidal. The representation Iκ◦
Υ
(τ) is quasi-projective.
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Proof. Notice that, as J1
Υ is pro-p, the η-isotypic component of Iκ◦

Υ
(τ) is a summand of the

restriction of Iκ◦
Υ
(τ) to JΥ, and no representation in its complement contains η, whence cannot be

isomorphic to λ = κ◦Υ⊗ τ . However, we have Iκ◦
Υ
(τ)η ≃ κ◦Υ⊗Rκ◦

Υ
◦ Iκ◦

Υ
(τ) (cf. [16, Lemme 2.6]).

We can decompose Rκ◦
Υ
◦ Iκ◦

Υ
(τ) as a direct sum and choose distinguished double cosets for each

summand as in the proof of Theorem 7.5. By Lemmas 7.4 and 10.1, the summands are either
zero (when the distinguished coset representative projects to an element w with wK 6= K),
or have the same dimension of τ . Hence the κ◦Υ ⊗ τ -isotypic component must be a direct
summand of the η-isotypic component of Iκ◦

Υ
(τ) and, by Lemma 2.9, the representation Iκ◦

Υ
(τ)

is quasi-projective.

11 Exhaustion

We show how Corollary 7.5 can be used to show certain representations of G we have constructed
are irreducible and cuspidal. Moreover, with Theorem 8.9, we show that this construction
exhausts all irreducible cuspidal representations of G. In the complex case this construction
is the same as [24, Corollary 6.19]. However, in addition to extending this construction to ℓ-
modular representations, Corollary 7.5 allows us to make some comparisons between certain
irreducible cuspidal representations in our exhaustive lists.

We call a skew semisimple stratum [Λ, n, 0, β] cuspidal if GE has compact centre and P ◦(ΛE) is
a maximal parahoric subgroup. A type for G is a pair (J, κ⊗τ) where J = J(β,Λ) for some self-
dual semisimple stratum [Λ, n, 0, β], κ is a β-extension of the unique Heisenberg representation η
containing θ ∈ C−(Λ, 0, β) and τ is an irreducible representation of J/J1 with cuspidal restriction
to J◦/J1. We call a type (J, κ⊗τ) cuspidal if [Λ, n, 0, β] is a cuspidal stratum. We call a cuspidal
type (J, κ⊗ τ) supercuspidal if τ is supercuspidal on restriction to J◦/J1.

Theorem 11.1. Let (J, κ ⊗ τ) be a cuspidal type for G relative to the skew semisimple stra-
tum [Λ, n, 0, β], then Iκ(τ) is irreducible and cuspidal.

Proof. The conditions on [Λ, n, 0, β] guarantee that P (ΛE) is its own normaliser. By Corol-
lary 7.5, EndG(Iκ(τ)) ≃ R. Let π be an irreducible R-representation of G such that κ ⊗ τ is
a subrepresentation of π (hence π is a quotient of Iκ(τ)). We must show that κ ⊗ τ is also a
quotient of π in order to apply Lemma 2.8. As J1 is pro-p, we can decompose π ≃ πη ⊕ π(η)
where πη denotes the η-isotypic component of π and no subquotient of π(η) contains η. By
Corollary 7.5, we have Iκ(τ)

η ≃ κ ⊗ τ , and hence by exactness πη ≃ κ ⊗ τ (or zero which it
can’t be as κ ⊗ τ is a subrepresentation of π). Therefore, by Lemma 2.8, Iκ(τ) is irreducible.
Cuspidality follows from a classical argument (cf. [5, §1] and [25, §2, 2.7]).

Theorem 11.2. Every irreducible cuspidal representation of G contains a cuspidal type.

Proof. Let π be an irreducible cuspidal representation of G. By [23, Theorem 5.1], the proof of
which applies in positive characteristic ℓ 6= p, there exist a skew semisimple stratum [Λ, n, 0, β]
and θ ∈ C−(Λ, 0, β) such that π contains θ. Thus π contains the unique extension η of θ to J1.
Let κ be a standard β-extension of η. By Lemma 2.11, the functor κ⊗− identifies the category
of R-representations of M(ΛE) with the category of η-isotypic representations of J . Thus π
contains κ⊗ τ for some irreducible representation τ of J/J1. The proof now follows, using [26,
II 10.1], from Theorem 8.9 (cf. [17, Appendix A] and [24, Theorem 7.14]).

A consequence of the of Corollary 7.5 is the following intertwining implies conjugacy theorem:
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Theorem 11.3. Suppose (JΛ, κΛ ⊗ τΛ) and (JΥ, κΥ ⊗ τΥ) are cuspidal types associated to the
semisimple strata [Λ, nΛ, 0, β] and [Υ, nΥ, 0, β]. If IκΛ

(τΛ) ≃ IκΥ
(τΥ), then there exists g ∈ GE

such that (Jg
Υ, κ

g
Υ ⊗ τ gΥ) = (JΛ, κΛ ⊗ τΛ).

Proof. By Corollary 7.5 (i) and Corollary 6.2 (ii), the lattice sequences ΛE and ΥE are in the
same GE-orbit. Hence, by conjugating by an element of GE if necessary, we can assume Λ = Υ.
Hence the groups of the cuspidal types coincide, and by twisting τΛ by a character χ of M(ΛE)
if necessary, we can assume κΛ = κΥ. By Corollary 7.5 (ii) and adjointness, we have

HomM(ΥE)(IκΥ
(χ⊗ τΛ), IκΥ

(τΥ)) = HomM(ΥE)(χ⊗ τΛ, τΥ),

which is non-zero by hypothesis. Hence χ⊗ τΛ ≃ τΥ and thus the cuspidal types are conjugate
by an element of GE .
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[26] Marie-France Vignéras. Induced R-representations of p-adic reductive groups. Selecta
Math. (N.S.), 4(4):549–623, 1998.

[27] Marie-France Vignéras. Irreducible modular representations of a reductive p-adic group
and simple modules for Hecke algebras. In European Congress of Mathematics, Vol. I
(Barcelona, 2000), volume 201 of Progr. Math., pages 117–133. Birkhäuser, Basel, 2001.
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