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Abstract

For a classical group over a non-archimedean local field of odd residual characteristic p, we
construct all cuspidal representations over an arbitrary algebraically closed field of char-
acteristic different from p, as representations induced from a cuspidal type. We also give
a fundamental step towards the classification of cuspidal representations, identifying when
certain cuspidal types induce to equivalent representations; this result is new even in the case
of complex representations. Finally, we prove that the representations induced from more
general types are quasi-projective, a crucial tool for extending the results here to arbitrary
irreducible representations.

1 Introduction

In recent years, congruences between automorphic representations have assumed a central im-
portance in number theory. This has led to the desire to understand representations of re-
ductive p-adic groups on vector spaces over fields of positive characteristic ¢. There are vast
differences between the cases £ = p and ¢ # p, with the latter sharing many similarities with the
theory of complex representations, including the existence of a Haar measure. However, there
are also many important and interesting differences between the ¢ # p theory and the theory for
complex representations, including the presence of compact open subgroups of measure zero,
the non-semisimplicity of smooth representations of compact open subgroups, and that cuspidal
representations can and do appear as subquotients of parabolically induced representations (in
fact, all of these phenomena are related). In this article we focus on the ¢ # p case, and work
with an arbitrary algebraically closed field of characteristic £ or zero.
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The theory of (smooth) representations of a general reductive p-adic group over such fields was
developed by Vignéras in [25]. However, many subsequent articles and fundamental results (for
example, the unicity of supercuspidal support) focus just on the general linear group. One of
the main reasons that this group has been more accessible for a modular theory, is that the
Bushnell-Kutzko classification of irreducible complex representations via types extends in a
natural way to f-modular representations, which is the subject of the final chapter of [ibid.].
This classification, in favourable circumstances, allows one to reduce a problem to an analogous
question in associated finite groups where hopefully it is either tractable to the pursuer, or
already known. Recently, this approach has been adopted for other groups: Sécherre and
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Minguez in [16] for inner forms of GL,,; and the first author in [13] for unramified U(2,1). In
this article, we pursue this approach for p-adic classical groups G over locally compact non-
archimedean local fields with odd residual characteristic.

Of particular importance in this approach is the construction of all irreducible cuspidal complex
representations of general linear groups as compactly induced representations. We accomplish
this for /-modular representations in our main results:

Theorem A (Theorems [[T1] IT.2)). There is an explicit list of cuspidal types, consisting of
certain pairs (J, ), with J a compact open subgroup of G and A an irreducible R-representation
of J such that

(i) the compactly induced representation ind? A is irreducible and cuspidal;

(ii) every irreducible cuspidal representation arises as in for some cuspidal type (J, A).

See below for a more precise definition of cuspidal type. For complex representations this is
the main result of [24]. But here we do more, giving an initial refinement of this exhaustive
list of cuspidal types. Part of the data used to define a cuspidal type is a family of skew
semisimple characters. In the case where two cuspidal types are defined relative to the same
family (see below for a more precisely-worded condition), we obtain the following intertwining
implies conjugacy result:

Theorem B (Theorem [IT3]). Let (J1,A1), (J2, A2) be cuspidal types defined relative to the
same family of skew semisimple characters. Then ind?1 A ind?2 A2 if and only if there exists
g € G such that J{ = J and \{ ~ \s.

Note that A\{ here denotes the representation of J{ = g~1.Jig given by \(j) = A1 (gjg~!), for
j € Ji. In forthcoming joint work with Skodlerack, this theorem will be combined with work
of the second author and Skodlerack to prove an intertwining implies conjugacy result without
the condition on the skew semisimple characters. We now give more details and explain our
approach.

Let G be a p-adic classical group with p odd, that is (the points of) a unitary, symplectic
or special orthogonal group defined over a locally compact non-archimedean local field F' of
residual characteristic p. Let § € LieG be a semisimple element, and put Gg = Cg(5) the
G-centraliser of 8. Let A be an op-lattice sequence corresponding to a point in the Bruhat—Tits
building of Gg. From S and A we get a set of self-dual semisimple characters 05 of a group
H}\; and given another lattice sequence T as above, there is a canonical transfer map giving
a corresponding self-dual semisimple character 6y of H}r Also write Jj for the normaliser of
0 in the (non-connected) parahoric subgroup of G corresponding to A, and J}\ for its pro-p
radical. There is a unique irreducible representation 1, of J}\ which contains 65 on restriction.
Our first major diversion from the earlier results of the second author is:

Theorem C (Theorems B.10 & [A.T]). With notation as above.

(i) The intertwining of 05 with Oy is JyGgJa.

(ii) The intertwining spaces of np with ny are at most one dimensional; more precisely:

1 if g € JyGgJy;

dimp HomJ}\ﬂ(J%)g (a4 77%) - {0 otherwise



This theorem is an asymmetric generalisation of [23, Propositions 3.27 & 3.31] (cf. also [17])
which deals with the case A = Y. It appears possible, and indeed it is already hinted at in [4,
1.5.12], that one could prove such an intertwining result by developing the theory ab initio,
with lattice sequences such as these rather than just a single lattice sequence. However, our
approach is more brief and elegant, utilising a construction for semisimple characters to relate
the case of not necessarily conjugate lattice sequences to the case of conjugate lattice sequences
in a larger group. This construction is inspired by a similar one for simple strata, in work of
the second author with Broussous and Sécherre [3].

The next step is to extend 7np to a suitable representation of Jy, called a S-extension, which
is accomplished in Section While we have to change the proofs of [24] here, the changes
are straightforward. That the formation of covers, of [24] and [I7], is still valid in positive
characteristic is proved in SectionsBand[@0 Let kp be a S-extension of ny. The quotient Jy / JI{
is a product of finite reductive groups and we write J° or the inverse image of the connected
component. Let 7 be an irreducible representation of Jy / JI{ with cuspidal restriction to J§ / JI{,
and put A\ = kp, ® 7 and J = Jp. We call the pair (J,\) a type; and if the centraliser Gg has
compact centre, and the corresponding (connected) parahoric subgroup J§ N G is maximal,
we call the pair (J,\) a cuspidal type.

Finally, we are able to extend the main result of the second author in [24] to /~-modular repre-
sentations (see Theorem A). Our approach to proving Theorem A is different to [24] at the top
level of the construction, relying on a reduction to level zero argument (see Section [7]). Thanks
to our work in this paper on asymmetric intertwining of semisimple characters and Heisenberg
representations, this new approach allows us to compare cuspidal representations in this ex-
haustive list whose semisimple characters are in the same family (i.e. are related by the transfer
map), and make an initial refinement of the exhaustive list (see Theorem B).

We now mention further results we prove with future work in mind. In the f-modular set-
ting, compactly induced representations from types may not be projective. This provides an
obstruction to following Bushnell-Kutzko’s approach via covers to the admissible dual, as the
category of representations containing a type (J,A), will not in general be equivalent to the
the category of right modules over the algebra End(;(ind?;v A). Following Minguez—Sécherre we
construct covers on pro-p groups (Theorem [0.3]); these will have the advantage of providing such
an equivalence of categories to the category of modules over an algebra as above. It may be that
this algebra will prove unwieldy for classification purposes, but it can be related to a similar
algebra in depth zero. For general linear groups, promising initial results in this direction have
recently been obtained by Chinello in his thesis [6], while Dat has begun a detailed study of the
depth zero subcategory in [8]. Writing A° for an irreducible component of the restriction of A
to J°, we thus show:

Theorem D (Theorem 10.2). The representation ind$. \° is quasi-projective.

Thanks to work of Vignéras and Arabia [26], this implies that the irreducible quotients of
indS;o A° are in bijection with the simple right modules of Endg(indgo A°), (see Section [2 for
details). As any irreducible representation of G is a quotient of such an induced representa-
tion, this result is the starting point of an approach to classifying all irreducible /-modular
representations of G.
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2 Notation and background

Let Fj be a non-archimedean local field of odd residual characteristic p and let F' be either Fy
or a quadratic extension of Fy. Let — denote the generator of Gal(F/Fp). If E is a non-
archimedean local field we denote by og the ring of integers of E, by pr the unique maximal
ideal of op, by kg the residue field and by gg the cardinality of k. We write 0g = 0p,, and
similarly abbreviate pg, ko, qo. We fix a uniformizer wp of F' such that @Wr = —wp if F/F
is ramified and wr = wp otherwise. We fix a character ¢y of the additive group Fy with
conductor pg and let Yp = g o Trp/ g, .

Let V be an N-dimensional F-vector space equipped with a non-degenerate e-hermitian form h :
V xV — F with e = +1. Let A = Endp(V) and G = Autp(V). The group Gt = {g € G :
h(gv,gw) = h(v,w) for all v,w € V} is the Fy-points of a unitary, symplectic or orthogonal
algebraic group G defined over Fy. We let G denote the Fy-points of the connected component
of G* and call G a classical group. Hence the special orthogonal group is a classical group
whereas the full orthogonal group is not.

Let — denote the adjoint (anti)-involution induced on A by h and let A~ ={a € A:a+a =
0} ~ Lie(G). Let o denote both the involution on G defined by o : g — g, for g € G, and
its derivative a — —a, for a € A. Let 3 be the cyclic group of order two generated by o.
Then Gt = G* and A~ = A, We have A = A~ ® AT where AT ={a € A:a—a=0}. We
let a = poTry p. If S is a subset of A, we let S* = {z € A:¢Ya(xS) =1}

We let R denote an algebraically closed field of characteristic ¢ different from p, allowing the
case £ = 0. For any locally compact topological group H, we denote by SRr(H) the category of
smooth R-representations of H.

2.1 Representations and Hecke algebras

For general results on representations of reductive p-adic groups over an algebraically closed
field of characteristic different from p, we refer to Vignéras’s book [25].

Let G be a reductive p-adic group. Let K, K7, K3 be compact open subgroups of G, (7, W) be
a smooth R-representation of K, and (7;, ;) be smooth R-representations of K;, for i = 1,2.
For g € G, the g-intertwining space of 71 with 19 is defined to be the set

Ig(71,72) = Homp g (71, 7).

and the intertwining of 7 with 7 in G is

IG(Tl,TQ) = {g eqd: Ig(Tl,TQ) 7é 0},

where K§ = g7 'Ksg and 7§ (x) = m(grg™!) for z € K. For an R-representation (m,)) of a
locally profinite group we denote by (7¥,VV) its contragredient representation.

Remark 2.1. The motivation for this definition is provided by the following decomposition

Homg(indfﬁ(n),ind%Q(Tg)) ~ @ Iy(1,72),
Ko\Ig(r1,m2)/K1

by reciprocity and Mackey theory. Note that, if K = K1 = Ko, 7 = 7 = 9 and g € G, for com-
plex representations or if K is pro-p, the spaces I,(7) = Homgngos(7,79) and Homgrsg (T, 97)
are the same, as representations of K N9K = K N K9 are semisimple, so in previous works one
sees intertwining defined in either way.



Suppose that K7 and Ko are normal open subgroups of K. Let H(G, 11, 72) be the R-vector
space of compactly supported functions f : G — Hompg(Wi, Ws) which transform on the left
by 7 and on the right by 7. Let H(G,7) = H(G,7,7) denote the R-algebra consisting of
compactly supported functions f : G — Endg(W) which transform on the left and the right
by 7 together with the convolution product

fixfa(h) = " fi(9)f2lg™ " h),

geG/K

for f1, fo € H(G, 7). This algebra has a unit element if the index of every open subgroup in K is
invertible in R (i.e. the pro-order of K is invertible in R). The K-invariant bilinear pairing ( , )
on W x WV induces an anti-isomorphism H(G,7) — H(G,7") by f — fY with fV defined
by (w, fV(g~Hw) = (f(g)w,w) for all w € W, @ € WY. Under convolution H(G,71,72) has
an (H(G, 1), H(G, 2))-bimodule structure. If g € G, we let H(G, 11, 72), denote the subspace
of all functions with support Kqg9Ko.

Under composition, Endg(ind% 7) has an R-algebra structure and Homg(imdg1 T, ind%2 To) is
an (Endg(ind%, m), Endg(ind%, 72))-bimodule. The proof of the following Lemma follows from
the proofs contained in [25] §8.5, 8.6, & 8.10].

Lemma 2.2. (i) We have an isomorphism of algebras

H(G,7) ~ Endg(ind% 7).

(i) For i = 1,2, we identify H(G,7;) with Ende(ind%, ;) by We have an isomorphism
of (H(G, 1), H(G, 12))-bimodules

H(G,T1,T) =~ Homg(indg1 T, imd%2 7).

(iii) For i = 1,2, let H; be compact open subgroups of G containing K;. We have an isomor-

phism of (H(G, 1), H(G, T2))-bimodules
H(G, indgi T1, indgi T9) ~ H(G, 11, T2),
which restricts to give isomorphisms of vector spaces, for g € G,

H(G, indf 7y, indf2 1)y ~ II HGmmm

heH1\G/H>
K1hKa=K1gKo»

2.2 Lattice sequences and parahoric subgroups

An op-lattice sequence in V is a function
A : Z — {op-lattices in V'}

which is decreasing, that is A(n + 1) C A(n), for all n € Z, and periodic, that is, there exists a
positive integer e(A) such that A(n + e(A)) = wrpA(n), for all n € Z.

The e-hermitian form h defines a duality on the set of op-lattices; given an op-lattice L we
let L¥ = {v € V : h(v, L) C pp}. An op-lattice sequence A is called self-dual if A(k)* = A(1—E),
for all k € Z.



An op-lattice sequence A induces a decreasing filtration on A by op-lattices 2, (A) in A where
A, (A)={x e A:zA(m) =A(m+n),m € Z}, for n € Z.

This filtration induces a valuation on A defined by

va(z) = {sup{n €Z:xeA, (N} if z € A\{0};

00 if x =0.
If A is self-dual, it induces a decreasing filtration on A~ by op-lattices 2, (A) in A~ where

A (A) =2, (A)N A, forn € Z.

n

We let
~ x e ()
Pr(A) = 2, (A) it n=0;
1+2,(A) ifn>0.

Then P(A) = PO(A) is a compact open subgroup of G and P™(A), n > 0, is a decreasing filtration
of P(A) by normal open subgroups. If A is self-dual then P(A) = P(A) N G (resp. PT(A) =
P(A)NG™) is a compact open subgroup of G (resp. G*) which has a decreasing filtration of
normal compact open subgroups P"(A) = ?"(A) NG, n > 0. We have a short exact sequence

1= P{A) = PN DS MA -1

where M (A) is the ko-points of a reductive group M defined over kg. Let M°(A) denote the ko-
points of the connected component of M and let P°(A) be the inverse image of M°(A) under 7.
We call the subgroups P(A) of G and P°(A) of G parahoric subgroups.

In fact, by [2] and [14], the filtrations of parahoric subgroups defined here, by considering
different (self-dual) lattice sequences in the vector space V', coincide with the Moy—Prasad
filtrations.

Let A be an op-lattice sequence in V. For integers a,b € Z, we let aA+b be denote the op-lattice
sequence in V' defined by

al +b(r) = A([(r —b)/a]),
for all r € Z. The affine class of A, is the set of lattices of the form aA + b with a,b € Z,a > 1.

2.3 Semisimple strata and characters

A stratum in A is a quadruple [A,n,r, ] where A is an op-lattice sequence in V, n,r € Z
with m > r > 0, and 8 € 2A_,(A). A stratum [A,n,r, (] is called self-dual if A is self-dual
and g € A~. Two strata [A,n,r, 1] and [A, n,r, B2] are called equivalent if 5 — 53 € A_,.(A).
If n>7r > % >0, an equivalence class of strata corresponds to a character of ﬁrJrl(A), by

[Aa n,r, 5] = ¢ﬁ

where 9g(x) = Ya(B(z — 1)) for x € P,.1(A), while an equivalence class of self-dual strata
corresponds to a character of P.y1(A), by

[A’n7747 5] — T/JE = ¢B ‘PT+1(A) .

If F[f)] is a field then we let B = C4(3) be the A-centraliser of 3, G = B*, Bj(A) = Ax(A)NB
and ng(B,A) = {x € Ao(A) : Bz — af € Ap(A)}. We say [A,n,r,[] is a zero stratum if n = r



and 8 = 0 and we call [A,n,r, 3] simple if it is either zero or F[f] is a field, A is an opg-lattice
sequence, VA () = —n < —r and n_.(8,A) C Bo(A) + A1 (A).

Suppose V' = @,; V% is a decomposition of V into F-subspaces. We let A’ = A N V*? and
we let B; = e'fe’, where €' : V — V" is the projection with kernel @j# V7. The decomposi-
tion V = @0,;c; V' of V is called a splitting of [A,n,r, 8] if 8 =>,.; B and A(k) = @,;c; A'(k),
for all k € Z. A stratum [A,n,r, ] in A is called semisimple if it is zero or vx(8) = —n and
there exists a splitting @, ; V¢ for [A,n,r, B] such that:

(i) for i € I, the stratum [A?, ¢;,7, 3;] in Endp(V?) is simple, where

T 1fﬂZ:0,
qi =

—vpi(B;) otherwise;

(ii) for 4,7 € I with i # j, the stratum [A’ & AJ, max{q;,q;},7, B + B;] is not equivalent to a
simple stratum in Endp(V* @ V7).

We write E' = F[3] and E; = F[3;], hence E = @, ; E; is a sum of fields. As in the case when E/
is a field, we write B = C4(8) and Gg = B*. By abuse of notation, we will call a sum DPicr i
of op,-lattice sequences in V; an og-lattice sequence in V. We write Br(8,A) = Ax(A) N B

which gives the filtration on B by considering A as an op-lattice sequence. We write B(5,A) =
%0(57A)7 Q(/BaA) = %1(57A) and Q[(A) = Q[O(A)

Let AY = Homp(V7, V') and £ = @,;c; A", and write L =L%= [Lics Gy, where G; =
Autp(V?). Also put B; = Cuii(f;) and G, = B C G;. Then B = @,.; B; C £ and G =
Hie I G B C L. We write Ap when we want to make it clear that we are considering A as
an op-lattice sequence.

If [A,n,0, 3] is a non-zero semisimple stratum we let
ko(B,A) = —min{r € Z: [A,n,r, (] is not semisimple}

denote the critical exponent of [A,n,0,5] and kp(B) = ﬁkzo(ﬁ,A); by [23, §3.1], this is
independent of A.

If [A,n,r, 8] is self-dual with associated splitting V' = @, V' then, for each i € I, there exists
a unique o(i) = j € I such that §; = —f;. We set Iy = {i € I : 0(i) = i} and choose a set
of representatives I for the orbits of o in I\ Iy. Then we let I_ = o([) so that we have a
disjoint union I = I, Uy U I_.

A semisimple stratum [A, n, r, 3] is called skew if it is self-dual and the associated splitting ), ; Vi
is orthogonal with respect to the e-hermitian form h, i.e. I = I in the notation above. In this
case, we let G, = Gg, NG and Gg = [[,c; G-

Associated to a semisimple stratum [A, n, r, 5] there are two op-orders (5, A) and J(3, A) which
are defined inductively in [23, §3.2]. These give rise to compact open subgroups ﬁ (B,A) =
9(8,A) N P(A) and J(B,A) = J(B,A) N P(A) of G with decreasing filtrations H*(3,A) =
H(8,A) N By(A) and J'(3,A) = J(8,A) N By(A), for i > 1 by compact open normal subgroups.

If [A,n,r, (] is self-dual then the associated orders and groups are stable under the action

of ¥ and we write J~(8,A) = J(B,A) N A~, J(B,A) = J(B,A) NG, JT(B,A) = J(B,A) N
GT, JY(B,A) = J(B,A) NG, for i > 1, and similarly define $H~(3,A), H(B,A), H (5,A). We



have J(B,A) = P(Ag)J*(B,A) and
J(B,N)/JB,A) ~ P(Ag)/P*(Ap) ~ M(Ag).

The group M(Ag) is the group of points of a finite reductive group over kg, and we denote
by J°(5,A) the inverse image of the connected component M°(Ag) under the projection map.

By [23, Proposition 3.4], the stratum [A, n, r+1, 5] is equivalent to a semisimple stratum [A, n, r+
1,79] with v € £. In [23, Definition 3.13], for 0 < m < r + 1, a set of characters C(A,m, 3)
of H™+1(, A) is attached to [A,n, 7, B8], depending on our initial choice of 1. Precisely, C(A, m, ()
consists of the characters 6 of H™1(3, A) which satisfy

(i) 6 \ﬁmﬂ(ﬁ’[\)m@ is a simple character, in the sense of [4] Definition 3.2.3];

(i) if m’ = max{m, [r/2]} then there exists fy € C(A,m’, ) such that 6 |ﬁm’+1(ﬁ = 501#3_7.

If [A, n, 7, (] is self-dual then C(A, m, B) is preserved by the involution ¢ and, as in [23] § 3.6], one
associates to [A,n,r, 8] the set C_(A, m, B) of characters of H™*1(3, A) obtained by restriction
from C(A,m, B)>.

The following results were proved in the case R = C but, since the groups involved are all pro-p,
their proofs apply provided the characteristic of R is not p, as is the case here.

Theorem 2.3 ([23] Theorem 3.22]). Let [A,n,0, 5] be a semisimple stratum in A.

(i) If 6 € C(A,0, 8) then I5(0) = J' (B, A)GrJ (B, A).
(ii) Let [A’,n’,0, ] be another semisimple stratum in A. There is a bijection
TAAN B C(A, 0, ﬂ) — C(A/, 0, ﬂ),
called the transfer map, which takes 0 e C(A,0, ) to the unique character g € C(N,0,5)

such that Gg C I5(0,0").

Let [A,n,r, 8] be a semisimple stratum. The affine class of [A,n,r, 5] is the set of all (semisim-
ple) strata of the form
[A/’ n/’ Tl’ B:I’

where A’ = aA +b is in the affine class of A, ' = an and 7’ is any integer such that |r'/a| = r.
By induction on kp(8) (cf. [3, Lemma 2.2]), many objects associated to a semisimple stratum
only depend on the affine class of the stratum. In particular, if [A’,n/,’, 5] is in the affine class
of [A,n,r, (], we have:

(i) H™HH(B,N) = HTH(B, A);

(ii) C(A',m/,B") =C(A,m,B);

(iii) the transfer map 74 ar : C(A,m, 3) — C(A',m’, ) is the identity.

If the associated strata are self-dual, then we have the following analogue of Theorem 2.3

Theorem 2.4 ([I7, Lemma 2.5]). Let [A,n,0, 5] be a self-dual semisimple stratum in A.



(i) If 6 € C_(A,0, B) then I5(0) = JL(B,A\)GrJ (3, A).
(ii) Let [A,n’,0, (] be another self-dual semisimple stratum in A. There is a bijection
TAN B ¢ C*(Aa 0’ 5) — C*(A/a 0’ 5)5

called the transfer map, which takes 8 € C_(A, 0, 8) to the unique character ' € C_(A’, 0, )
such that Gg C 1¢(0,6').

Let [A,n,0, 5] be a semisimple stratum and 0 e C(A,0,p5).

Theorem 2.5 ([23, Corollary 3.25]). There exists a unique irreducible representation 7 of JHB,A)
containing 6.

If [A, n,0, 5] is self-dual and 0 € C_(A, 0, 3), then we have the following analogue of Theorem 251

Theorem 2.6 ([17, Lemma 2.5]). There exists a unique representation 7 of J'(3,A) contain-
ing 6.

We call the representations 1 and 7 of Theorems and 2.6] Heisenberg representations. We
define a bijection, which we also denote by 74 A 3, between the set of Heisenberg representations
of J1(, A) containing a semisimple character in C(A, 0, 3) and the set of Heisenberg representa-
tions of J1(3,A') containing a semisimple character in C(A’,0, ) which restricts to the transfer
map, i.e. if 77 is the unique Heisenberg representation of Jl(ﬂ A) containing 0 € C(A,0,8)
then 75 ar g(7) is the unique Heisenberg representation of J J (8,A’) containing T Ar 5(0) Sim-
ilarly, we define a bijection 75 pr 3 between the set of Heisenberg representations of J L(B,A)
containing a self-dual semisimple character in C_(A, 0, 5) and the set of Heisenberg representa-
tions of J1(j3,A’) containing a self-dual semisimple character in C_(A’,0, 3).

2.4 Double coset identities

We state mild generalisations of some results of [21], the proofs of which, [op. cit., Lem-
mas 2.1, 2.2 and Theorem 2.3], still apply. The notation in this short subsection is independent
of that in the rest of the paper. Let G be a group and I' a group of automorphisms of G. If H
is a I-stable subgroup of G we let H' denote subgroup of fixed points of I,

Theorem 2.7. Let U; and U; be I'-stable subgroups of G.

(i) Suppose that, for all g € G, the (non-abelian) cohomology pointed set H'(I', gU1g~ ' NUs)
is trivial. Then, for all g € GY, we have (U;gUs)! = U gUL .

(ii) Suppose that I' is a soluble group of order coprime to p, that U; and Us are I'-stable pro-p
subgroups of G, and that g € G.
(a) (UiglUs)' # 0 if and only if Uy gUs is stable under T

(b) Let H be a I'-stable subgroup of G such that UjhUs N H = (U; N H)h(Us N H), for
all h € H. Then (U;HU)' = UTHYUS .



2.5 Modular representation theory techniques

As R-representations of compact open subgroups are not necessarily semisimple (unlike the
case R = C), we will need to use appropriate versions of some well known representation theory
techniques. The first is the simple criterion for irreducibility of [27].

Lemma 2.8. Let A be an irreducible representation of a compact open subgroup K of G.
Suppose that Endg(ind%(\)) ~ R and, for any irreducible representation 7 of G, if X is a
subrepresentation of 7 then it is also a quotient of w. Then ind%()) is irreducible.

A representation m of G is called quasi-projective if, for all representations 7’ of G and all
surjective homomorphisms ¢ : 7 — 7/, the homomorphism Endg(7) — Homg(mw, '), a — aop
for @ € Endg(m), is surjective. The second modular representation theory criterion we make
use of is the simple criterion for quasi-projectivity of [27] (cf. also [11, Proposition 3.15]).

Lemma 2.9. Let K be a compact open subgroup of G, A an irreducible representation of K
and 7 = ind%()\). If the M-isotypic component of 7 is a direct summand of the restriction of =
to K and no subquotient of its complement is isomorphic to A then 7 is quasi-projective.

Let m,7 be R-representations of G. Then Homg(mw,7) is a right Endg(m)-module by pre-
composition. In attempts to classify the irreducible representations of GG, quasi-projective rep-
resentations are particularly interesting due to the following theorem of Arabia.

Theorem 2.10 (|26, Appendix Théoréme 10]). Suppose 7 is quasi-projective and finitely gener-
ated. Then the functor Rr(G) — Endg(w)-mod, 7 — Home (7, 7), induces a bijection between
the irreducible quotients of 7 and the simple right Endg (7)-modules.

Suppose that .J is a compact open subgroup of G containing a compact open pro-p subgroup J!
which is normal in J and that 7 is an irreducible representation of J! which extends to an
irreducible representation k of J. Then we have the following lemma, implicit in [27] (cf. [28,
Proposition 4.2] and [16, Lemme 2.6] for a proof).

Lemma 2.11. The functor x ® — induces an equivalence of categories between Rg(J/J!) and
the category Rp(J,n) of n-isotypic representations of J.

The following lemma is a mild abstraction of [4, Proposition 5.3.2].

Lemma 2.12. Let X; and X3 be subgroups of G, and X{ (resp. X3) be a subgroup of X;
(resp. Xo). For i = 1,2, let (; be a representation of X; trivial on Xl-l, and let u; be a represen-
tation of X;. Suppose that

Homx,nx, (p1, p2) = Homyiqx1 (p1, p2) ~ R.

Then, for any non-zero S € Homx,nx, (¢t1, p2), the map

Hom x,nx, (¢1,¢2) —— Homx,nx, (11 ® (1, 12 ® C2)
T —> ST

is an isomorphism of vector spaces.
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Proof. 1t is easy to check that the map is well-defined, and it is clearly injective, so we need
only check surjectivity. Let f € Homx,nx, (11 ® (1, p2 ® (2) be non-zero. Write f as a finite
sum ), S ® Ty, with S, € Hompg(p1, p12) non-zero and Tj, € Hompg((1, (2), such that {7}} is
linearly independent over R. Let x € X{ N X3; then f o u; ® (1(z) = po @ (a(x) o f. Hence,
as (1, (2 are trivial on X{ N X4, we have

> (Skpa(y) — p2(y)Sk) © Tr = 0,
P

for y € X{ N X3. Thus Sy, € Homy1x1 (1, p2), by the linear independence of {T}}. The
intertwining spaces Homy1nx1 (111, p12) and Homx,nx,(p1,12) are one-dimensional and equal
by our hypotheses. Thus Sy is a scalar multiple of S and we can write f = S ® T with T €
Hompg((1,(2). Furthermore,

ST (1 @ C(y)v) = (p2(y)S @ G(y)T)(v)

and
ST (w1 @ C(y)v) = (Sui(y) @ T (y))(v) = (p2(y)S @ T¢i(y)) (v)

for all y € X; N X5 and v in the space of u; ® ¢;. Hence T' € Homx,x, ({1, (2) and, since f =
S ® T, our map is surjective. ]

3 Asymmetric generalisations via -constructions

In this section we present a particularly useful construction: to an op-lattice sequence A in V,
we associate a strict op-lattice sequence AT of period e(A) in a direct sum of e(A) copies of V,
whose associated hereditary order 2((AT) is principal and such that all the blocks A% (Af) =
2A(A), for 0 < @ < e(A). This construction becomes useful later when applied to two op-
lattice sequences A and T in V', which, if necessary, after changing in their affine classes we
assume e(A) = e(Y); in this situation A(AT) and 2A(YT) are principal orders in VT of the same
block size, hence are conjugate, yet when we restrict to a single block we find the not necessarily
conjugate orders 2A(A) and A(Y). This construction originates in work of the second author
with Broussous and Sécherre in [3]. The first part of this section is concerned with revisiting
the construction of [ibid.] and generalising it to semisimple strata. Then we provide two
new applications of {: a generalisation of the semisimple intersection property of [24] and an
extension of the computation of the intertwining a semisimple character in [23] to the case of
two semisimple characters related by transfer.

3.1 The j-construction

Let A be an op-lattice sequence in V' of op-period e(A). Let VI =V @ --- @V (e(A) times).
Following [3, Section 2], we define an op-lattice sequence AT in VT by

e(A)—1
Ar)y= D A +k), forallr € Z
k=0

Then, for all r € Z,
e(A)—1
dimg,. (AT(r)/AT(r + 1)) = Z dimg, (A(r + k)/A(r + k+ 1)) = dimp(V).
k=0

11



Therefore, AT is a strict op-lattice sequence in V1 of period e(A) whose associated order 2A(AT)
is principal.

Let [A,n,r, 3] be a semisimple stratum in A with associated splitting V' = @,; Vi and e =

e(A) = e(A;). Foreachi € I,let Vil =Vig... @V (e(A) times), and let A;r be the op-lattice
sequence in V¥, defined as above. Let V1 = @ Vet and let AT be the op-lattice sequence
in V' defined by AT = ,.; A*". Note that this is the same lattice sequence as that defined

above (working directly with A within V). Let At = Endp(V1) and GT = Autp(V7).

We recall that 8 = >,.; 8;, where 3; = e;8¢; and ¢; : V — V% is the projection map with
kernel € it V3. Let ﬁj denote the image of 3; under the diagonal embedding of Endp(V?)

into Enle(Vi’T)7 and g7 = Yicr ﬁ;r . Then A®" is an o E;-lattice sequence, whose associated
hereditary op-order 2(A%") is principal. Moreover, the stratum [AT, n, 7, 3] in AT is semisimple,
with associated splitting V1 = @, el Vo,

We recall also that L is the stabilizer in G of the decomposition V' = @, ; V. Let @ = Eﬁg
be a parabolic subgroup of G with Levi component E and opposite parabolic Qv_ = EUE with

respect to L. Then, for any m > 0, the group H m+1(3,A) has an Iwahori decomposition with
respect to (L, Q) with

H™ (B, A)NL=][H™"(8:,A). (3.1)
el

Moreover, by [23, Lemma 3. 15] any semisimple character 0 € C(B,m,A) is trivial on the
unipotent parts H™ (8, A) N UQ and

0l i s.nni) = Q) i

el

with 5 € C(Bi,m, A?) a simple character. Analogously, we have the Levi subgroup Lt which is
the stabilizer of the decomposition V1 = ,; V' and H H™+1(3t A1) has an Iwahori decompo-

sition with respect to any parabolic subgroup QJr with Levi component LT, with

™ (BN AN L= [T A" (8] A%
el

Let MT denote the Levi subalgebra of A% which is the stabilizer of the splitting Vi=ve ..oV,
and let M T be its group of units. Let I" be the subgroup of M Mt consisting of elements with
blocks +£1Id. Let PT be any parabolic subgroup of G with Levi factor M T and unipotent
radical U . and let ﬁ*’Ldenote the opposite parabolic of Pt with respect to M T, with Levi
decomposition Pt = Mt x U1 Similarly, for each i € I, we have a Levi subgroup M®f
of éj = Autp (Vo).

For all m > 0, using [24, Proposition 5.2], we have an Iwahori decomposition
H™H (BT, AT) = (H™ (8T, A n U (H™ (81, A7) n MO)(HE™H (81,4 NTT),  (3.2)
A5 AN N M = BB, A) x -+ x H™L(B, ).
There are similar decompositions for H m“(ﬁ;r BT,

Letf €C (8, m, A) be a semisimple character, corresponding to simple characters 0; € C(Bi,m, AY)
as in (3J). Put 92 = Tri Ait g, 5T(9i)’ the transfer of 6; to C(ﬁj,m,AI). By [3, Lemma 2.7], the
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restriction of HT to H’”H(ﬁJr AT N M1 has the form 6; ® - ®91, moreover, for Pt = Mt
any parabolic subgroup of G with Levi component M Z’T the restriction of HT to the unipotent
part Hm“(ﬁj, ABTY N Ut is trivial.

Lemma 3.3. There is a unique semisimple character 87 € C (BT, m, AT) such that

9 |(Hm+1 Bt ADNLY) EBH
el

Moreover, 67 is trivial on the unipotent parts in (3.2)), and

01 |(ﬁm+1(m7m)mﬁf): - 0.

Proof. The first part follows easily from the inductive definition of semisimple characters (see
in particular [23, Lemma 3.15]). Moreover, for any parabolic subgroup Qf = LTUg2 with Levi

component ET, the restriction of 8T to H™*1 (BT, AH)N U 22 is trivial; the second statement follows
from this, the corresponding statement in the simple case ([3, Lemma 2.7]) and the unicity in [23],
Lemma 3.15] again. O

For g € C~¥, let g' denote its diagonal embedding in GT.

Lemma 3.4. For i = 1,2, let 0; be semisimple characters in C(A,m, ;). If g intertwines 0
and 05, then ¢ intertwines 91[ and 9;.

Proof. For simple characters, it is shown in the proof of [3 Proposition 2.6] that this fol-
lows from [3] Lemma 2.7]. The proof in the semisimple case follows mutatis mutandis using
Lemma [3.3] in place of [3] Lemma 2.7]. O

3.2 Applications of |

Let [A,ny,0,4] and [Y,ny,0, 3] be semisimple strata in A with splitting V = @,.; V*. Let ex
(resp. ey) denote the op-period of A (resp. Y), and hence of A" (resp. T*) for all i € I. By
changing [A,nx,0, (] and [Y,ny,0, (] in their affine classes, we assume the e = ey = ey. As
remarked earlier, this does not change the objects (orders, groups, characters) associated to the
semisimple strata.

For i € I, we apply the construction of Section Bl to A® and to Y*. Suppose that the og,-
period eg, of A, and hence of T, is related to the op-period e, by

e, = mse,

so that m; is the ramification index of F;/F. Then, for all r € Z,

miep; —1
dimy,, (ABT(r) /NS (r + 1)) Z dimy,, (A'(r + k) /N (r + k4 1)) = m; dimp, (V7).
k=0

Hence, the lattice sequences AT and T»! are strict o g,-lattice sequences in Vil of op-period e
(and og,-period eg, ). Furthermore, the associated hereditary og,-orders B(3;, A%T)and B(5;, Y1)
are principal op;-orders with the same block size, hence there exist x; € C T(ﬁj ), such that

AT (r) = 2 - T (1),
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for all r € Z. Let . = ), x;; then = € é;; and we have

el
At =z .71t

It follows that the data coming from the semisimple strata [Af, ny,0, 8] and [YT,ny, 0, 51] are
conjugate in G; and we get:

Lemma 3.5. In the situation above, there exists = € é; such that

(i) JI(BT,AT) =3(87, TT)* and H(BT, AT) = (57, TT)*;
(i) J(8T,AT) = J(8,01)" and H(5T,AT) = H(B', Y1)
(iii) conjugation by z defines a bijection C(37,0,AT) — C(5T,0,YT).

Throughout this section, “applying the f-construction” will mean applying it in the way just
described.

3.3 Semisimple intersection property

In this section we generalise the semisimple intersection property of |24, Lemma 2.6].

Lemma 3.6. Let [A,n,,0,5] and [T, ny,0, 5] be semisimple strata in A and y € Gp. Then

PYY)yPY(A)NGg = PY(YE)yP (AR).

Proof. Applying the f-construction, by Lemma we have x € é; such that
P YNyt PY (AT = PL YTyl P (YTt

By the semisimple intersection property in é;f; (cf. the proof of 24, Lemma 2.6]), because x € é;;
we have N N B B ~
PY(ryfzP (Y N G = P (T])y'aP (1))
Hence B B B B B
Py PY AT NG = PH(X)y PHAR).

Recall, M1 is the Levi subgroup of ¢ G defined by the decomposition of VT into a sum of copies
of V, and I is the 2-subgroup of M T consisting of elements with blocks +1d. Notice that, M T
is equal to the fixed point subgroup of G f under the conjugation action of I. Hence, because I'
is a 2-group and PI(ATE) and PI(TE) are pro-p groups, with p odd, HI(I’,yTPl(TTE)(yT)*1 N
Pl(AE)) =1 and we can apply Theorem 27(i)| to find

Pyt PHAL) n Mt = (PL(Yh) n Mty (PH(AL) n M.
We have (ﬁl(TE)ﬂMT) = TIL, PY(Tg) and (]BI(AE)HMT) = [1%, PY(Ag). Thus, restricting
to a single block in M T we recover the result. O
Corollary 3.7. Let [A,ny,0, 5] and [T, ny,0, 5] be self-dual semisimple strata in A. Then
PH(T)yP'(A) NGy = PH(Yp)yP (Ap), for y € Gf;
PY(T)yP (A) NG = P (Yp)yP'(AR), fory € Gg.
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Proof. Applying Theorem D:ZE], under the fixed points of the involution o, we have
PY(Yp)yP'(Ap) NG = (P'(Yr) N GLy(P'(Ap) NGE).

Therefore, by Lemma 36, PY(Y)yPY(A) NG}, = PL(Yg)yP'(Ag). The second equality follows
by intersecting with G, since P'(Ag) C Gp. O

A simple application of the semisimple intersection property gives us the following bijection of

double cosets, where we note that JyGgJy = JaerEJ}\.

Lemma 3.8. Let [A,ny,0,5] and [Y,ny,0, 5] be self-dual semisimple strata in A. Let Jy =
J(B,A) and Jy = J(B,T). The following map is a bijection

P(Yp)\Ge/P(Ag) —— Jy\JxGrJn/JIr
X — Jr X JA.

Proof. Let g € Gg. Considering A and Y as op-lattice sequences, we have containments Jt C
PY(T) and J} C P1(A). Hence

Jr(P(Tp)gP(AR))JA NGE C PYT)(P(TE)gP(AR)P (M) NG

We choose a set of representatives for the finite double coset space P1(Y)\(P(Yg)gP(Ag))/P'(A)
and for each representative we apply the simple intersection property, Corollary B to find

PYY)(P(YE)gP(Ap))P'(A)NGp = P(Tp)gP(Ap).

Therefore P(Yg)gP(Ar) = J¥(P(Tr)gP(Ag))Ji N Gg and the map is a bijection. O

3.4 Intertwining of transfers

Let [A,ny,0, 8] and [T, 7,0, 8] be semisimple strata. Let 65 € C(T,0,3) and fy = TA7T75(§T).
We apply the {-construction and abbreviate j}\ = JY(B,A) and (j/;r)l = JY(BT, AT), with similar
notation for T, and also write 7 = 75 v 3 and = TAT YT B -

Theorem 3.9. We have o o
I5(0,67) = JxGrJy.

Proof. Let g€ I 5(5/\, 53() and, as before, let ¢ denote the diagonal embedding of ¢ in GT. By
Lemma [3.4] we have o
g' € I5(0}.01).

Thus, as Gg € Ié(gA, 5’{) by Theorem [QZ{I we have
é; € I@(H/J{’H;r‘)a

hence 5; =t (5);), again by Theorem 23[(ii)] Moreover, taking = € é; such that AT =2 - Y1,
as in Lemma B3] we have

Gl € 1505, (01)"),
as é; intertwines g;{ by Theorem 23[(i)] Since (@;)”C € C(T,0,5), we deduce that 5; = (g[];)gﬁ
by the unicity of the transfer in Theorem [2:3]
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By Theorem |23] we have

15(04,03) = (J)'GLIN"
If ye Gt then y € Ié(g;[,gb if and only if zy € Ié(gl];, (5;{)””) Therefore
15(04.01) =« 150}, (01)") = = (TD'GLCD" = (F'GLAD'"

Now, as in the proof of Lemma [B.6] let I' be the group 2-subgroup of Mt generated by blocks
consisting of Id and — Id. Because I' is a 2-group and (j K )! and (j;)l are pro-p groups, with p
odd, the non-abelian cohomology pointed set H(T, g(jTT)lg_1 N (j/;r)l) is trivial, for all g € G.
Hence, by Theorem 2.7]

(D' GEIDN N M T = ()0 MINGEN M) M)
= (AN MYGEN MY nMh.
Finally, for gt € I 5(5];, 5}), we have an Iwahori decomposition
H(81,AY) n (8,10 = (7 (81, AT n i (81, Y1) n U)

(' (8", AN (81, T N (st ATy n 2 (BT, e n T,
and, by Lemma 3.3, ] /];, 5; are trivial on the unipotent parts of this decomposition. Hence, we
have _ B o .

Iy OF |57+, 0% I570) = T5(0). 64) N M 1.
Therefore
I (0] |=,04 |=50) = (JEn MYGEn MYt
art On |7 Oy I571) = (Uy (€52 )(Jx )-

Restricting this equality to a single block in M we recover Ié(gA, gr) = JxGplJy. U

Suppose further that [A,ny,0, 5] and [T, ny,0, 5] are self-dual. Let 05 € C_(A,0,5) and 6y =
Ta,r,8(0a). Let Jo = J(B,A) and Jy = J(B, 7).

Theorem 3.10. We have I (04, 0y) = JyGgrJa.

Proof. Let Or €C (A,0,5) and bv €C (7,0, 3) be self-dual semisimple characters which restrict
to Op and Oy respectively. Since Oy is the unique >-fixed semisimple character restricting to 6+,
we have Oy = T(gA). Furthermore, letting g denote the Glauberman correspondence (cf. [22, §2]
and the references therein), 6y = g(fx) and 6y = g(fy). By [22, Corollary 2.5, Ig(gA,gy) #0

if and only if Ig(g(gA), g(fr)) # 0. Therefore,
Ig(HA,HT) = IG'(gA, HNT) NG.
Furthermore, IG'(gA,g'r) — JxGpJr by Theorem B9, and (jTéEjA) NG = (jA%C?Ej[{) NG =

JLGrJt = JyGgJy by Theorem 2.7 and the semisimple intersection property Corollary 3.7l O

3.5 Some exact sequences

Let [A,n4,0,0] be a semisimple stratum in A. We denote by ag the adjoint map given
by ag(x) = pxr — af for x € A, and by s a tame corestriction on A relative to F[§]/F (cf.
[4, 1.3] and [23], Proposition 3.31]).
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Lemma 3.11. (i) Let [A, ny,0, (] be a semisimple stratum in A. The sequence

0—— 9(8,A) —— J'(B.A) — 51(8,A) —~ B(3,A) —— 0

is exact.

(ii) Let [A,n4,0,0] and [T, ny,0, 5] be semisimple strata in A and y € Gp. The sequence

0 —— Q(8,A) +(Q(3, 1))
/O‘B

HLB,A)* + (9B, 1)*)Y —— B(B,A) + (B(B, 1)) — 0

JHBA) + (3B, 1))

is exact.

Proof. When A = Y, both parts follow from [23, Lemma 3.17] (c¢f. [op. cit., Proposition 3.31]).
Passing to t we have the second exact sequence for the semisimple strata [AT, na,0, 3T] and [YT, n}r\, 0, 4],

by choosing = € G ; as in Lemma [35 and replacing y by zy in the exact sequence for Af. In-
tersecting with a single block we have while [(i)|is the special case y = 1. U

When we have a self-dual semisimple stratum [A,ny,0, 5], we may (and do) choose a tame
corestriction s which commutes with the anti-involution o on A (cf. [20, 2.1.1]). Then we get
the self-dual analogue of Lemma B.T1]

Lemma 3.12. (i) Let [A, ny,0, 8] be a self-dual semisimple stratum in A. The sequence
_ ~ ag * s _

is exact.

(ii) Let [A,np,0,0] and [Y,ny,0, 5] be self-dual semisimple strata in A and y € GE. The
sequence

0 ——Q7(8,A) +(Q(5,7))" JL(B,A) + (FL(B,T1))Y

as
HLB, A+ (HL(B, 1)) —— B~ (B,A) + (B~ (B, 1)y — 0

is exact.

4 Intertwining of Heisenberg representations
While up to now, we have been generalising results for both G and G in this section we concern
ourself only with representations of G. The same methods apply for representations of G.

Let [A,na,0,3] and [T, ny,0, 8] be self-dual semisimple strata in A. In this section we will ab-
breviate lattices in A~ without the superscript ~, to simplify the notation. Thus we write Qz =

Q7 (B,A), 92 = HL(B,A), Ja = JL(B,A), and By = B~ (B, A), using analogous notation for Y.
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(Note, in particular, that we are omitting the superscript ! here.) We also write Hy = H(3, A)
and Ji = JY(B,A), with HY, J3 defined similarly.

Let 07 € C_(A,0,8) and Oy = 75 v 3(0r). Let ny be the unique Heisenberg representation
containing fx and 7y = 75 v g(na) the unique Heisenberg representation containing fv.

Theorem 4.1. The intertwining of 5 and ny in G is given by

1 if g € JyGpJa;

0 otherwise.

dimpg(Iy(na,nv)) = {

This theorem is an asymmetric generalisation of [4, Proposition 5.1.8] in the classical groups
setting (see also [23], Proposition 3.31]) and we imitate those proofs.

Lemma 4.2. For any y € G}., we have

(Jx s Iy Nydyy Yy 1y~ Hxy N Jy) = (Hy : Hy NyHyy ') (Hy sy~ Hyy N Hy).

Proof. We begin by recalling the following from [4]: let 0 — V4 — Vo — V3 — V4 — 0 be an
exact sequence of finite-dimensional F-vector spaces and, for 1 < ¢ < 4, let u; be an F-Haar
measure on V;. By [4, Lemma 5.1.3], there is a constant ¢ € F* such that, if the sequence
restricts to an exact sequence 0 — Ly — Lo — Lg — L4y — 0 of op-lattices L; in V;, then

pa (L) ps(Ls)
p2(La)pa(La)

Moreover, u1(L1)p1(L7) is also independent of the op-lattice Ly, by [4, Lemma 5.1.5].

= C.

We have such an exact sequence

0—>B—+A—w A2+ pB— 1y,

and, choosing F-Haar measures pug on A and pup on B, we denote by ¢ € F* the invariant
given by [4, Lemma 5.1.3], as above. Now we apply this to the rows of the following giant
commutative diagram of op-lattices, which we get from Lemma B.I2|(ii)|

0

QxN9Y Ia Ny

5N (H5)Y —— By NBL —— 0

0—— Ny — eI — N O — BraBL —— 0

0 —— N +0F —— N +F —— N +OF) —— Ba+B5, —— 0
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Using the first row, we get

pAO} 0 (50)7) _pu(Ba N DY)
IGINaRES! pB(QaNQY)’

we have pp(Qa N Q%) = pp(Qa)us(Qr)/ne(Qa + %), from the first column, and similarly
for pa($H3 N (H%)Y), whence

pa($DR)1a(Hy) (B 0B )up(Qa + 9F)

nA@a NI pa(®} + (H%)Y) 1B(Qa)ps(Qr) ’

Since (4 NHY)* = H3 + (H%)Y, from [4, Lemma 5.1.5] we have

A + (9 pa($9a N HY) = (a(Hr)na(H3)ma(Hr)na(H%))2,

with a similar result using (B NBY)* = Qp + QY. Substituting, we get

11A(Hr NHY) (MA(fJT\)MA(ﬁ’%)
pa@aNIy) \pna®a)pa($r)

Finally, from Lemma B:Ij[]ﬁi], we have

pan) _  1B(Ba)
pA(Ja) pp(Qa)’

T

and similarly for Y, which gives

MA(mﬂﬁ%’f):< A (m)>%
AINGREY ARQA)paQr)
(

Conjugating by y, we get the same formula for ps(YHa N Hy)/pa(?Ia NJy). Multiplying these
and rearranging, we get

<MA€§£?WA5)5%)> (MA(/Z?J(Aﬁr:zﬁr)> N <MAI[(L§A(?\)?%)> (NAZ;I\%E\‘?;)\?T)> '

The result follows from this additive statement since H} is the image under the Cayley transform
of $Hx, and similarly for the other groups involved. O

Lemma 4.3. For any y € G7},, we have

=

|HA\Jhy A /HA| = (J4 - HY)Z(J4 : HY)Z.

Proof. Fix a F-Haar measure i on G. Decomposing J}nyl{ by right J%—(:osets7 and by left JI{—
cosets, and then multiplying, we have

u(JryJ3)? = n(I)rr) A = A Ny~ Iy) (Jr sy iyt 0 Jy).
By normality of H}\ in Jflx and H%f in J%, for any 3y’ € J%yJ/{ we similarly have
p(Hyy HY)? = p(H)p(Hy)(Hy - Hy 0y~ Hyy)(Hy : yHyy ™ 0 Hy).

Therefore, we have |H{\JAgJt/Hy| = (J} H}\)%(J}r : HAlr)%, by Lemma [4.2] O
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1
Proof of Theorem [{.1 By [23, Corollary 3.29] the induced representation indIJ{A1 (0p) is a multi-
A

ple of na, that multiple being (J} : H}x)%, and analogously for fy. Thus
; - a7A g inglT 1. giyiol . g1 o
dlmR(Ig(lndH}\ 9/\,11&qu1r Or)) = (Jp : Hy)2 (Jy - Hy)2 dimg(Lg(na, 1))
By Lemma

. Jl . Ji
%(G,mdlﬁeA,degaT)g: ]_[ H(G, 04, 07)p.

he HA\G/HL

JihJL=TLgJk
Therefore, by Theorem [3.10] and Lemma [£.3], we have
(JL:HO2(JL: HY)2 if g € JyGrla;
0 otherwise,

. N Ut
dlmR(Ig(lnde 9,\,11&qu1r Oy)) =

whence the result. O

Remark 4.4. In the setting of Theorem B.I0, we also have I+ (0a,0y) = JEGLJA by in-
tersecting the intertwining of I5(6x,0y) with G rather than G. Moreover, in the setting of
Theorem 1] the same proof shows that the intertwining of ny and 7y in G is given by

1 ifge JAGLIL;

dimp (I , =
R g(nA ) {0 otherwise.

We will also make use of the following lemma of [24].

Lemma 4.5 ([24, Lemma 3.6]). We have dim(ny)/dim(ny) = (J} : J+)/(PY(Ag) : PY(YE)).

Conjugating if necessary, we assume that B(A) and B(Y) contain a common minimal self-
dual hereditary order B(I") corresponding to an opg-lattice sequence I' in V; thus P°(I'g) is an
Iwahori subgroup of Gg. Let Or = 7a 1 3(0a) = 7rr s(0r) € C_(I',0,5). Let nr be the unique
Heisenberg representation containing fr and let Jr = J(B,T). Since P!(I'g) normalises J}
and J3. we can form the groups JﬁA = PY(T'g)J} and J%,T = PY(T'g)J+.

Lemma 4.6 ([24, Proposition 3.7]). There exist unique irreducible representations nr s of Jg
and nr v of Jll v such that

(i) mra = na and nry [ ;1= 1

(ii) nr.a, nrx and nr induce equivalent irreducible representations of PLI).
We can now extend the intertwining result of [24] Proposition 3.7]. The proof is essentially the
same as that of [4, Proposition 5.1.19].
Lemma 4.7. The intertwining of np o and nry in G is given by

1 if g € JpxGrJf

dimp({, , =
RUg(wasmr.0) {0 otherwise.

We remark that Jll +G EJ% A= JA}G EJI{, and that we have a similar result for the intertwining
in Gt.
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Proof. We have Ig(nra,nrx) C Ig(na,ny) = J}rGEJ}\ and the non-zero intertwining spaces
are one-dimensional by Lemma 1l If 2 € Gg then = € Ig(nr), by Theorem 1] so = €

Ig(Indfll(F) (nr)). Thus z € Ig(Indf;ll(F) (np,A),Indfll(F) (nrr)) by Lemma Therefore there
T A oY

exist u,v € PYI') such that uzv € Ig(nra,nry); since this intertwining set is contained
in J+GpJ}, there exist jpo € Ji and jy € J& such that jyuzvja € Gg. By CorollaryB.7, P1(T')zPL(A)N
Gg = PY(Tg)zP'(Ag). Therefore, we can find ' € P}(T'g) and v' € P}(Ag) such that v/xv" =
Jiuzvja, whence z € Ig(nra, nr,y). O

5 [-extensions

We generalise the definition of S-extensions for classical groups, as defined by the second author
when R = C in [24]. As the J groups are not pro-p, the proofs of the corresponding statements
need to be adapted in characteristic £. However, as the J! groups are pro-p, these modifications
are relatively simple.

Let [A,np, 0, 5] be a self-dual semisimple stratum, §; € C_(A, 0, 8) and 1, the unique Heisenberg
representation containing 65. We will write B(Ag) = B(S, A) for the hereditary og-order in B
determined by the lattice sequence A, and will abbreviate JX = JT(B, ), etc.

Theorem 5.1. Let I' be any self-dual og-lattice sequence such that B(I'g) is a minimal self-
dual og-order in B contained in B(Ag). There exists a representation f@X of J]\L extending nr A.
Moreover, any two such extensions differ by a character of PT(Ag)/P!(Ag) which is trivial on
the subgroup generated by all its unipotent subgroups.

Proof. The proof follows mutatis mutandis the proof of |24, Theorem 4.1]. O

If B(Ag) is a maximal self-dual og-order in B, we call an extension x| of 7, as constructed
in Theorem Bl a B-extension. In the case where B(Ag) is not maximal, while Theorem [B.1]
gives a collection of extensions of ny it gives too many such extensions. As in the complex
case, we define B-extensions in the non-maximal case by compatibility with S-extensions in the
maximal case. Let [T, ny,0, 5] be a self-dual semisimple stratum such that B(Y g) is maximal
and %(AE) - %(TE), let Oy = TA,T,B(HA) and ny = TA,T,B(n/\)' Let J}\’T = Pl(AE)J'lr
and Jy = P*(Ag)Jy.

Theorem 5.2. There is a canonical bijection

ba,r : {extensions k} of na to Ji} — {extensions £} v of ny to Ji +}.

Furthermore, if 2(A) C 2A(T) then by y(x}) is the unique extension of ny such that x}
and by y(k}) induce to equivalent irreducible representations of PT(Ag)PL(A).

Proof. Assume that A(A) C 2(T) and, as in the proof of [24, Lemma 4.3, Case (i)], we follow
the argument of [4, Proposition 5.2.5]. Let /@X be an extension of 777( to J]\L and put

. PH(Ag)PY(A
)\:deX( 2)P )(/-;j{).
By Mackey Theory,

ResIIZJr(AE)PI(A)()\) PLA) (nA),

1A) ~ indJ}\
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which is irreducible, since Iz(na) N P1(A) = J}i; in particular, A is irreducible. Moreover, by

Lemma [£.6],

PH(Ag)P'(A) . qPHA)
Res A) ~ind
P1(A) ( ) le\,T (nA,T)a
+ 1
so there is an irreducible quotient “XT of Resf"])+ Ae)PHA) \ Which contains na,v; indeed, there
’ AT
. . . : ) o . PY(A) . PY(A)
is a unique such quotient, since np v appears with multiplicity 1 in Res, (AT) ind g1 (ma,r)s
) ALY

by Lemma 7l Now put

)\/ — indP+(AE)P1(A) l<;+

T AT
Then, as above,
PH(Ag)PY(A . PYHA
Respny” " (V) = ind )y Vi ),

so that ) is also irreducible, and hence equivalent to A. Comparing dimensions, using Lemma[Z.5]
we see that /{X v extends na y as required.

The argument is reversible, giving the required bijection, and the remainder of the proof follows
from this special case 2A(A) C A(Y), exactly as in the proof of [24] Lemma 4.3]. O

An extension /<;X of mp to J]\L is called a [-extension if there exist a self-dual semisimple stra-

tum [Y,ny,0, 3] such that B(Yg) is a maximal self-dual og-order containing B(Ag) and a [5-
+

extension k3 of ny = 7o s(na) such that by y(k}) = Resjﬁ (k¥). More precisely, we say that
AT

such a representation Iij\_ is a B-extension relative to Y.

There is a standard (non-canonical) choice for the self-dual og-lattice sequence Y. Let

ph AN0) ifie Iy
My (2r +5) = Pl Al(s) if i € Io;
pp, A1) ifiel .

Then 9y = @, MY is a self-dual op-lattice sequence in V' such that (M, )N B is a maximal
self-dual hereditary og-order in B. A representation /-{X of J]\L is called a standard B-extension
of ny if it is a B-extension relative to My .

If nj{ is a standard /3 extension and [T, ny, 0, f] is another self-dual semisimple stratum with 0y =
Ma, we say that the standard S-extension /@J{ of Jfrr is compatible /-{X if they correspond to the
same [-extension of J;TA. In the case that 2A(A) C 2A(Y), this is equivalent to saying that
+
and Resj“fr K+ induce to equivalent (irreducible) representations of P+ (Ag)P(A).
AT

We also call the restriction from J; to Ja (resp. J3) of a (standard) S-extension a (standard) -
extension and denote the restriction of ki to Ja (resp. J3) by ka (resp. k3), and speak of
compatibility for these standard (-extensions.

Remark 5.3. Being smooth representations of a compact group, all Q,-beta extensions are
integral. When B(Ag) is a maximal self-dual og-order in B, it is straightforward to check that
reduction modulo-¢ defines a surjective map from the set of Q-beta extensions to the set of Fy-
beta extensions. Moreover, the bijections ba v, for Q-representation and Fy-representations,
defined by Theorem commute with reduction modulo-¢; thus reduction modulo-¢ defines
a surjective map from the set of Q-beta extensions to the set of Fy-beta extensions in all
cases. Moreover, the reduction modulo-¢ of a standard Q,-beta extension is a standard F,-beta
extension.
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5.1 Induction functors for classical groups

Now suppose that [A,n,0, ] is a skew semisimple stratum in A. Let 8 € C_(A,0, 3), let n be
the unique Heisenberg extension of @ to J'(3,A) and  be a B-extension of i to J(3,A). Recall
that we have an exact sequence

1= JY(B,A) = J(B,A) = M(Ag) — 1,
with M (Ag) a (possibly disconnected) finite reductive group.

We have a functor I, : Rr(M(Ag)) — Rr(G), which we call k-induction, given by

. . aJ(BA
Le(=) = ind§g o) (5 @ infly {1 ()

where inﬁﬁf/’\/;)) :Rr(M(AR)) — Rr(J(B,A)) is the functor defined by trivial inflation to J1(8, A).
The functor I,; possesses a right adjoint Ry : Rr(G) — Rr(M(Ag)), which we call k-restriction,
given by

Ri(—) = HomJ1(57A)(/<;, -).

If 7 is a smooth representation of G, the action of M(Ag) on Re(m) is given as follows: if f €
Ry(m), m € M(Ag) and j € J(B,A) is any representative for m, then m - f = w(j) o fok(j~1).
The functors of k-induction and x-restriction are exact functors as J'(3,A) is pro-p.

Now let [Y,ny,0,5] be another self-dual semisimple stratum with Dy = My and A(A) C
2A(Y), and let Oy be the transfer of . Let x be a S-extension and let ky be a compatible (-
extension of J(5,Y). Set P/{S’T = P(Ag)/PY(Yg), a parabolic subgroup of M(Yg) with Levi
M(YEg) M(Yg)
PPy PEy

By transitivity of induction, an exercise shows that we have isomorphisms of functors

factor M (Ag); we write @ for the parabolic induction functor and r for its adjoint.

Ly oz’MéTE) ~ 1. and TME(TE) o Ry ~ Ry,
Pyy Pyy
where the latter follows from the former by unicity of the adjoint.

We also have the special case of these functors when the stratum is zero, which we can ap-
ply in Gg. Thus, since Agp is an opg-lattice chain, we have a level zero parahoric induction
functor Ipn, : Rr(M(Ag)) — Rr(GE) attached to [A,n,0, 5] given by
. 4G .. aP(A
Ing (=) = ind@,  (infly () ()

where inﬂﬂ(([)\’g) :Rr(M(Ag)) — Rr(P(Ag)) is the functor defined by trivial inflation to P! (Ag).

The functor 15, possesses a right adjoint, which we call level zero parahoric restriction, Rp, :
Rr(GE) — Rr(M(Ag)) given by the functor of P!(Ag)-invariants
Rap (=) = ()7,

with the group P(Ag)/P'(Ag) ~ M(Ag) acting naturally. Level zero parahoric induction and
restriction are exact functors.

6 Level zero interlude

In this section we recall some results of Morris [18] and Vignéras [27] on level zero representations
of G (cf. also |29, §4]). Later, we will apply them to Gg, which will be a product of groups
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like G over extensions of F'. The results of this section apply in the greater generality of [18],
and we retain the notation of [ibid.] as it is much more convenient here, as such, the notation
of this section is independent of that of the rest of the paper. We recall this notation briefly
below and explain how to translate to our notation in the rest of the paper.

Let G be a connected reductive group over F', T be a maximal F-split torus in G, and N =
Ng(T). We write G = G(F'), T = T(F), and N = N(F) for the respective groups of F-points.
Let B be an Iwahori subgroup of G. Following [ibid.], (G, B, N) is called a generalised affine BN -
pair, and, associated to this data, we have a generalised affine Weyl group W = N/B N N.
According to [ibid.], we have a decomposition W = Q x W’ with W’ the affine Weyl group of
some split affine root system. Let S be a set of fundamental reflections in W',

If J C S is a proper subset of S, we let W; be the subgroup of W generated by the reflections
in J. The standard parahoric subgroups of G correspond to proper subsets of S, via J C S maps
to Py = BN;B for Nj any set of representatives of W; in G. Given a parahoric subgroup Py,
we write Uy for its pro-p unipotent radical and M; = P;/U; the points of a connected reductive
group over a finite field. We write Up for the pro-p unipotent radical of B = Fj.

Let J, K be proper subsets of S. A set of double coset representatives D sk for W \W/Wg
is called distinguished if each representative has minimal length in its double coset, (cf. [ibid.,
§3.10]). A set of double coset representatives D for P;\G/Pk is called distinguished if its
projection to W is a set of distinguished double coset representatives for W;\W/Wy. Let D g
be a set of distinguished set of double coset representatives for P;\G/Pk. Let d € D and w
be its projection in W. By [ibid., Lemma 3.19, Corollary 3.20, Lemma 3.21], we have

(i) Prrwr = Uj(P;N"Pg) with unipotent radical Ujnyx = Uj(Py N"Uk).

(ii) P:,]mwK = Pjnwi /Uy is a parabolic subgroup of M; = P;NU;.

We can form the following lattice of groups:

1 Us Py M;y 1
1 Uy Prowg — P — 1

|

1 ——U;(PiN"Uk) — Pjawx — Mjnwx — 1

J

Furthermore, as D;}( is a set of distinguished double coset representatives for Px\G/Pj,

the group Pf,l Jnk 18 a parabolic subgroup of Mk and we can form an analogous diagram

for Pf—lJmK' Note also that Mjrwrx = (My-1705)"-

This section collects results based upon the following theorem of Vignéras. Before we state it,
we must recall the parahoric induction/restriction functors in this notation; let 17 : Rg(M;) —
R (G) denote the parahoric induction functor

. . P
I;(—-)= 1nd%(mﬁﬁ}(—)),
and Ry : Rr(G) — Rr(My) denote, its right adjoint, the parahoric restriction functor
Ry(=) = (=)".
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The normaliser Ng(Pjy) of P; in G normalises Uy, and Mjr = Ng(Py)/Uy contains My as a
normal subgroup. We write I} : Rg(M}) — Rr(G) for the functor

G
I}r(—) = lndNG(PJ)(—)7
and R} : Rp(G) — Re(M7) its right adjoint, again given by U, -invariants.
Theorem 6.1 (|27, Basic decomposition 5.1]). We have an isomorphism of functors

w
Ryolg~ @ & (gg ) |

= JNwK w—1lJnK
weDj Kk

Corollary 6.2. Let 7 be a cuspidal R-representation of M.

(i) The representation Ry oIx(7) is a direct sum of conjugates of 7.

Ry olg(7) ~ @ .
wEWK’K
wK=K

Moreover, if Py is a maximal and 77 is an irreducible R-representation of MI‘; with
cuspidal restriction to Mg, then

R}; OI}(T"') =77,
(ii) Suppose that Pk is maximal and Pj is not conjugate to Pk in G. Then

Ryolg(r) =0.

Proof. All statements are straightforward applications of the theorem. Part is [27, Corollaries
5.2 & 5.3], and part follows as if Pj is not conjugate to Py, then Plf)(_lJﬂK is a proper

parabolic subgroup of My, for any w € W g, and hence Tf,? (%) = 0 by cuspidality. O
w=lJNK

Remark 6.3. In case (i) of Lemma [6.2] the direct sum can be infinite. Indeed this is the case
when K is empty (and the building of G is not a point).

Finally, we will need the following variant of [18, Proposition 4.13], (cf. [24, Lemma 1.1]), which
requires a different proof in our setting.

Lemma 6.4. Let J, K be proper subsets of S, and D be a set of distinguished double coset
representatives for Pg\G/P;. Let T be a representation of M; with cuspidal restriction to M§,
and let n € D. If n lies in the support of H(G, T |v,), i.e.

Homy,nug (1,7") # 0,

then wK = J, where w € W is the projection of n.

Proof. By [18, Lemma 3.21], we have Py N U C Ujnyx € Up. Hence, as Up C UJ, we have
Homyznpn (7, 7") € Homp,nyyp (7,7") = Homp,nuyp (7, dim(7)1).

But, by [ibid.], Py N U} is the unipotent radical of the parabolic subgroup Pjnyx /Uy of M.
Hence by cuspidality of 7, we must have wK = J. U
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6.1 Level zero Hecke algebras

Let P°(T) be a parahoric subgroup of G associated to the op-lattice sequence YT with pro-p
unipotent radical P'(Y) and connected finite reductive quotient M°(Y).

Remark 6.5. By conjugating if necessary, we the parahoric subgroup P°(YT) will be equal to
a standard parahoric subgroup P; considered above, and we will interchange notations freely.

Let Q°(A) be a parabolic subgroup of M°(Y) with Levi decomposition Q°(A) = M°(A) x
U°(A), and denote by P°(A) the parahoric subgroup which is the preimage of Q°(A) under
the projection map P°(Y) — M°(Y). Thus the quotient of P°(A) by its pro-p unipotent
radical P'(A) is M°(A). Let 7 be an irreducible cuspidal representation of M°(A) and 7 denote
both its inflation to @Q°(A) and to P°(A). The following Lemma follows immediately from the
definitions.

Lemma 6.6. We have a support preserving isomorphism of Hecke algebras H(M°(Y),7T) ~
H(P°(A),7): if f € H(M°(Y),T) is supported on Q°(A)yQ°(A) for y € M°(Y) then the
corresponding element f' € H(P°(A),T) is supported on P°(A)yP°(A).

Let W(M°(A), ) denote the inertia group of T, that is, the elements of the relative Weyl group
of M°(A) in M°(Y) which normalize 7 (see [10, Proposition 4.2.11]). We can give a presentation

of the algebra H(M°(Y),7) due to Howlett—Lehrer [12] when R = C and to Geck—Hiss—Malle [9]
in general.

Theorem 6.7 ([10, Theorem 4.2.12]). There are a Coxeter system (W7, S1) and a finite group €2
acting on (Wi,S1) such that W(M°(A),7) ~ Q x Wy; furthermore H(M°(Y),7) has a ba-
sis {Ty : w € W(M°(A), 7)} which gives a presentation of the algebra with the following rules
for multiplication:

(i) for all w € W and v’ € Q,
T % Ty = 1w, 0 )Tt a0nd Topr % Tow = (0", ) Tograo,
for some 2-cocycle p: W(M°(A),7) x W(M°(A),7) = R™;
(ii) for s € S1, there are ps € R\{0, 1}, such that,
Fordu = {Z;w + (pe— 1T, y ZE:; - ZEZ;

for all s € S1 and w € Wy, where [y is the length function on Wj.

7 Reduction to level zero

Let [YT,ny,0,0] and [A,na,0, 5] be self-dual semisimple strata in A. By conjugating by an
element of Gg, if necessary, we assume that Tg and Ag lie in the closure of a common
chamber in the building of Gg, corresponding to an og-lattice sequence I'g in V. As be-
fore, let 6y € C_(7Y,0,3) and 05 = 7v 5 g(fr). Let ny be the unique Heisenberg representation
containing 6y and na = 7y a g(nr) the unique Heisenberg representation containing 6. Let sy
be a standard p-extension of ny and kp be a standard S-extension of 7.

We will abbreviate Jy = J(8,7T), and also Py = P(YTg) and My = M(Yg), with analogous
notation for A and I'. We also write Jllx = P%J}f, etc.
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Lemma 7.1. The intertwining of gy and sy in G is given by

1 ifge JLGpJ};

dimg(Hom KA, K3)) =
A( J‘I‘m‘]%( 2 57)) {0 otherwise.

Proof. We have J}\ nJ4 C J}\ N K9 for some Sylow p-subgroup K of Jy. All Sylow p-subgroups
of Jy are conjugate to Jllx so K = (J%,T)j for some j € Jy. Thus Resi(T Ky =~ 1y and, as
vector spaces, we have

Hom 119 (ka, KY) ~ Hokan(J%’T)jg (14, W%?T)-
As np v extends 1y, the result now follows by applying Lemma .7 and Theorem HA.1l O
Let 7 be a representation of My which we identify with a representation of Jy trivial on J4

and with a representation of Py trivial on PA}. By Mackey’s restriction-induction formula and
exactness of kp-restriction we have the following lemma.

Lemma 7.2. We have isomorphisms of representations of My

Riy oLy (1) @ Hom ;1 <"€A7indjim]%((’” ® 7-)9)> :
Jr\G/Jn

RY oT&(7) ~ @ Hom p1 <17indiﬁmp¥(79)> .
Py\Gg/Px

Lemma 7.3. Let g € G. If HomJ}\ </¢A,indﬁmﬂ (ky ® 7')9) # 0 then g € J%GEJ[{.
T

Proof. Consider Hom 7 (nA, indjﬁ AJ2 (kr @ T)9 > as an abstract R-vector space. We have
e
Hom ;1 (Res”? kp, Res’™ oind”> (ky @ 7)9) ~ GB Hom n (1A, (ky @ )90
I Jy Ji JANJS. - JinJs: ’
he(JANJE\Ia/ T}

by Mackey’s restriction-induction formula and Frobenius reciprocity. We have an injection of
vector spaces

Hom o (ms (e @ 7)) < Hom gy o (mas (s @ 7))

and on (J%)9" we have /f?rh = ngrh and 79" is a multiple of the trivial representation. Thus gh €
Ig(na,mr) = JEGrJi, by Theorem B and we deduce that g € JYGpJy = JLGEJ}. O
Lemma 7.4. (i) Letg € Gg. IfHomPA(l,ind]]jimpg (19)) = 0, then HomJ/l\(/fA,indﬁmﬂ{r (kr®
7)9) = 0.
(ii) As representations of M (Y g), we have isomorphisms
Hom j1 (kv, iy ® 7) ~ Hompy (1,7) ~ 7.
Proof. As an abstract vector space, by Mackey theory, we have
.
Hom j1 (k4, deimJ% (kyr ®T)9) ~ @ HomJ}\mJ%h (A, (ky ® T)9M).

he(IaNJE\JIa/ T}
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By Lemma [T1] gh intertwines na with sy for every h € Jj. Hence by Lemma 2.12] (applied
with X1 = X} = J}, Xo = J{', X} = (JA)9", py =, p2 = 69", (1 = 1, and G = 79") for
each summand, we have an isomorphism of vector spaces

rY ~ h
HOmJI{mJ%h (T]A, (/f’r ® T)g > =~ HomJ}\ﬂJﬁ%h(l’ Tg )
Moreover, as Ji N J%h contains P} N Pff’h, we have

HomJ1 Jgh(l r9h) C HomPAmP¥h(17Tgh)

But, the right hand side is isomorphic as a vector space to a direct summand of the represen-
tation

HomP1(1 lndP mPg (T)g) >~ @ HomP/{ﬂPf’rhl(l’ Tgh )7
h'€(PANPY)\Py /Py

where the above decomposition is again an isomorphism of abstract vector spaces obtained by

Mackey theory. However, by our hypotheses Hom P1(1 ind PA APy (79)) is trivial, whence all the

summands HomJ}me%h (na, (ky ®7)9") are trivial and, thus, so is Hom ;1 (KA, 1ndJ A8 (ky ®7)9)

and we have shown case (i).

For the second part, we can take S € Hom . (K, kv ) to be the identity element. By Lemma([2.12]
(applied with X; = X{ = Xy = X4 = JT7 1 =pe =mny, ¢ =1,and (o = 7 | 1= dim(7)1) we
have an isomorphism of vector spaces HomJ%(l, T) — HomJ% (/-vr, Ky ®@T) given by T'— S®T.
The action of M (T g) on Hom ;1 (kr, Ky ®0) induced from the action of M (Y g) on Ry 0L, (7)
is given by m - ® = sy @ 7(j) 0o ® 0 ki (j71), for m € M(Yg), ® € Hoqulr(K’r,K’r ® 1) and j
any representative of m in J. Thus, we have
m-S®T=rk@7(j)o(S@T)or(j7 1)
=k(j)oSor(jTH)@T1(j)oT.

However, as S € Hom (v, k%), whence kv (j)oSoky(j71) = S. Therefore, we have m-S®T =
S ® m - T, the isomorphism of vector spaces is an isomorphism of representations of M (Y g).

Moreover,
HomJ%(l,T) o~ HomP%(l,T) ~ T

Corollary 7.5. Let 7 be a representation of My.

(i) If RE oT£(7) is trivial then so is Ry, oIy (7).

(ii) Suppose 7 is irreducible with cuspidal restriction to M$. If Gg has compact centre
and P°(YTg) is a maximal parahoric subgroup of Gg then

Riy ol (1) 7.

Proof. By Lemmas and [[.3] we have isomorphisms of representations of My

Riy oliy (1) @ HomJ}\ </£A,1ndJ g ((ky ® T)g)) :
J\JLG L /A
RE oIE(7) ~ @ Hompi (1 1ndPAmPg (7’9)) .
Pr\GEg/Pa
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We choose a set of distinguished double coset representatives for Py\Gg /Py, which by with the
bijection of Lemma [3.8] fixes a set of double coset representatives of JT\J%G EJl{ /Jp in Gg.
We can now compare the summands of both isomorphisms on the right. Part (i) follows from
Lemma [74] part (i), and Lemma Part (ii). For Part (ii) notice by Lemma [7.4] parts (i)
and (i), and Lemma Part (i), that the only summands which contribute correspond to
distinguished double cosets Pyn Py where n has projection w in the extended affine Weyl group
satisfying wK = K for K the proper subset of fundamental reflections of the affine Weyl group
corresponding to Py. However, as Py is maximal wK = K implies that n € Ng,(Py) = Pr by
18, Appendix]. Thus Part (ii) follows from Lemma [7.4] Part (ii). O

8 Skew covers

This section is concerned with revisiting and making the necessary changes to the second authors
construction of covers in [24] so that the same construction works in positive characteristic £.
The construction follows mutatis mutandis the constructions of the second author for complex
representations and rather than go through all the proofs, which are lengthy, we introduce all
the the notation of op. cit. and indicate where changes need to be made to the proofs.

8.1 Iwahori decompositions

Let [A,n,0, (] be a semisimple stratum with associated splitting V' = @,.; V*. A decomposi-
tion V = @j:l WU of V is called subordinate to [A,n,0, 3] if

(i) each WU NViis an E;-subspace of Vi
(i) WO =@,,,(whinvi);
(il) A(r) =D)L (A(r) N W)y, for all r € Z;

It is called properly subordinate to [A,n,0,f] if it is subordinate and, also,

(iv) for each r € Z and i € I, there is at most one j such that
AW AV D (A@r+1)n W jnv,

If [A,n,0,[] is a semisimple stratum and V = @;ﬂ:l W) is a decomposition which is subor-
dinate to [A,n,0, 8] then we put AY) to be the op-lattice sequence in W) given by AU (r) =
A(r)NW; and put B = el Beli) where el?) is the orthogonal projection V — W;. Then there
is an integer n¥) such that [AY) n) 0,80)] is a semisimple stratum in AY) = Endp(W©)
with splitting W) = @ieI(W(j) N V). We put BY) = C ;) (8Y)).

Let M denote the Levi subgroup of G equal to the stabiliser of the decomposition V =
@ W(]) and let P be any parabolic subgroup of G with Levi factor M and Levi decom-
position P=MxU.

Lemma 8.1 ([24, Propositions 5.2 and 5.4]). If V.= @, W) is subordinate to [A,n,0, ]
then J1(3,A) and H'(8, A) have Iwahori decompositions with respect to (]\7, P). Moreover

H'(B,A)N M = HHl ), A0,
7=1
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there is a similar decomposition for J LB, A)N M , and we can form the groups
71 77l F1 7 71 _ 77l F1 >

which have Iwahori decompositions with respect to any parabolic subgroup with Levi factor M.
If the decomposition V' = @;n:1 W) is properly subordinate to [A,n,0, 3] then J(3,A) also
has an Iwahori decomposition with respect to (M, P), we also have

m

H BU) A(]

and we can form the group jlg = H'Y(3,A)(J(B8,A) N P) which has an Iwahori decomposition

with respect to any parabolic subgroup with Levi factor M.

Let [A,n,0, 8] be a self-dual semisimple stratum. A decomposition V' =7~ W) is called
self-dual if, for —m < j < m, the orthogonal complement of W) is D, 1 Wk, Put M =

M NG aLevi subgroup of G and M+t =M Nd G a Levi subgroup of G*. Choosing a o-stable
parabolic subgroup P of G with Levi factor M we have P = PN G a parabolic subgroup of G
with Levi factor M and Pt = PNG* a parabolic subgroup of G* with Levi factor M.

Lemma 8.2 ([24, Corollaries 5.10 and 5.11] (¢f. [, Fait 8.10])). If V.= @ _ WU is a

j_fm
self-dual subordinate decomposition to [A,n,0, 8], then the groups H'(3,A) and J'(3, A) have
Iwahori decompositions with respect to (M, P),

HY(B,A)NM~H'\3 H 7, A0,

there is a similar decomposition for J'(3,A), and we can form the groups
Hp = H'(B,M)(J"(8,M)NU), Jp=H"B,A)(J(B,A)NP).

Moreover, if the decomposition is properly subordinate to [A,n,0, 8] then JT (3, A) has an Iwa-
hori decomposition with respect to (M ™+, PT), J(3,A) and J°(3, A) have Iwahori decompositions
with respect to (M, P),

m

J(B,A) N M~ J(BO AO) x H J(BY), A

there are similar decompositions for J*(3,A) N M* and J°(8,A) N M, and we can form the
groups

Ji=H (BN (B,A)NP), Jp=H'(BA)(JB,A)NP), Jp=H(8,A)(J(B,A)NP).

Let 6 € C(A,n,0,83) and 7 be the unique Heisenberg representation of J! (8,A) containing 0.
By Lemma [24, Lemma 5.6], we can define a character of H}B by

05(hj) = 0(h),

for h € HY(3,A) and j € JY(3,A)NU

30



Lemma 8.3 (|24, Corollary 5.7 and Lemma 5. 8]) There exists a unique irreducible repre-

sentation of J i containing 9~ Moreover 1 = 1nd 77~) and for each y € Gg, there is a

unique (Jlls, J}s)—double coset in J1(B8, A)yJ (53, A) Wthh intertwines 7z and I 5 (9 ) =15(np) =
LGl

Let € C_(A,0,3) and n be the unique Heisenberg representation of J!(3, A) containing . We
can define a character 6p of H}; by

for h € HY(B,A) and j € J'(3,A)NU. Then 0p = g(gﬁ) is the Glauberman transfer of gﬁ

(as ] 5 is a character the Glauberman transfer here is just restriction to Hp).

We let np = g(13). Using properties of the Glauberman correspondence the following Lemma
is proved in [24].

Lemma 8.4. The representation np is the unique irreducible representation of J ]1_—, which con-

tains Op, n = indJl(B’A) (np). Moreover for each y € G, there is a unique (J}, J})-double

coset in J1(B, )le(ﬁ A) which intertwines np and dimg(I,(np)) is 1 if g € JLGLJL and 0
otherwise.

Let T be a standard 3-extension of 7. We can form the natural representation /-{JIS of JIJS on

+
the space of (J' N U)-fixed vectors in k™ by normality. Then ResJP (k}) = np, hence kp is

irreducible. The Mackey restriction formula as in [24, Proposition 5. 13] shows that ind” 7% (/<;J]S)
k1. We can also define representations of kp of Jp and k% of J%, for which analogous statements

I3 JE
hold and Res’;” (k}) = kp, Resjg (k) = K.
In the next Lemma we identify H'(8,A) N M with H'(3®, A©)) x [T Hl(ﬁ(J (7)) using
Lemma B2] and use the similar identifications for J*(3,A) N M and J (ﬁ A) N M.

Lemma 8.5 ([24, Section 5]). If V.= @’ | W) is a self-dual subordinate decomposition,

then
Op | ga)nm="0 )®®< )

with ) € ¢_(A©,0,30) and 1) € C(AD,0,3). Similarly we have

m
e |neanu= 1" @ Q) n,
j=1
where n© is the unique irreducible representation of J! (5(0),1\(0)) containing 0 and 7@ is
~ ) . ~ .\ 2
the unique irreducible representation of J 1(5(7),/&(])) containing (0(])> . Moreover, if V =
@Tzfm W) is a self-dual properly subordinate decomposition,

KP | g8,0nm= "”vz[)) ® @g(j)’
]:

with HZEB) an extension of 7(®) to J+ (3, A(0) and K(j) an extension of 7)) to J(BD, AG)),
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Lemma 8.6 (24, Lemma 6.1]). Let K be a compact open subgroup of J¥(8,A) contain-
ing J1(B8,A) which has an Iwahori decomposition with respect to (M™*, P*) with K N M+ =
K(O x [TK@. Let p be the inflation to K of an irreducible representation of K/J'(3,A), A =
Res’, T, A)( )®p and Ap the representation of Kp = H*(3, A)(KNP) on the space of J(3, A)N
U- ﬁxed vectors in A\. Then

(i) Ap is irreducible and A = indﬁp Ap.
(ii) Ap ~ kp ® p considering p as a representation of Kp/Jh ~ K/J' (B, A).

(i) Ap |knm= )\ ® QL ), where A0 = K0y |x© @p® is a representation of K
and A0) = (j) ]K(J) ®ﬁ( ) is a representation of KU), for 1 < j < m.

(iv) There is a support preserving algebra homomorphism H(GT,A\p) ~ H(GT,\); if ¢ €
H(GT,\) has support KyK for some y € GE then the corresponding ¢p € H(G™, \p)
has support KpyKp.

Proof. The proof follows mutatis mutandis the proof of |24, Lemma 6.1], making use of the
results quoted in this section and Lemma [2.11] for parts and O

The self-dual decomposition V = @Tzfm W) is exactly subordinate to [A,n,0, 3], in the sense
of [24] Definition 6.5], if P°(Ag) N M is a maximal parahoric subgroup of Gg N M and, for
each j # 0, there is an i such that W) is contained in V* and 2(AU)) N BU) is a maximal o -
order in BY), or equivalently, if it is minimal amongst all self-dual decompositions which are
properly subordinate to [A,n, 0, 3].

For the rest of this section, we suppose that the self-dual decomposition V = @;n:_m W) is
exactly subordinate to [A,n,0,]. For j,k > 0, in [24, Section 6.2] a collection of Weyl group
element s;,s;, and sjw, all of which lie in GE, of G is defined. The element s;; exchanges
the blocks el Ael) and e®) Ae(®)  and the blocks e(=7) Ae(~) and (%) Ae(=*). The elements 55
and s exchange the blocks e Ael) and e~ Ae(=7) . Let AM be a 0g-lattice sequence in V such
that A(AY) is a maximal op-order containing 2(Ag). For j,k > 0, WU) and W®) are called
companion with respect to AM if Sjk € P*(A% ), while W) and W) are called companion with
respect to AM if sj or s7 lies in P+(AM ). Following these definitions in op. cit. an involution o;

is defined on C~¥j ={(g 9 € G x GU )} by conjugation by s;. Furthermore, by [24, Lemma
6.9], the group J(ﬂ(j),A(J)) is stable under o, and , if 1 < j <k <m and WO ~ Wk as E;-
spaces for some 7, then conjugation by s; ; induces an isomorphism J(ﬁ(j), A(j)) ~ J(ﬁ(k), A(k)).

Lemma 8.7 ([24, Proposition 6.3, Corollary 6.10]). Suppose the self-dual decomposition V =
@ WU is exactly subordinate to [A,n,0,8]. Then /<;( 0) Is & standard 8(9-extension of 1(©

to J*(ﬁ(o 7A(O)) and Ky is a standard 280)-extension of 717 to j(ﬁ(j),A(j)). Furthermore,
for 1 < j < m, conjugation by s; induces and equivalence k(jy00; ~ K(j), and, if 1 <j <k <m

. J)
and W)

W) as E;-spaces for some i, then conjugation by sjk induces an equivalence £ ;) =~
R (k)-

This lemma together with the comparison of S-extensions leads to the following observation,
as in op. cit. Let AM, AM" be self-dual op-lattice sequences such that the associated op-orders
are maximal and contain 2(Ag). Let k be a B-extension of 7 relative to AM and x’ be a S-
extension of 7 relative to AM'. There are oy-invariant characters YU) of k;z and a character x(?)
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of M°(Ag) such that, setting y = x(*) ® ®;n:1 Y9 o det'?) | we have

# = ind’. "N (kp @ ).

8.2 kp-induction and restriction

We have functors 1., : Rr(M°(Ag)) — Rr(G) and 1., : Rr(M°(Ag)) — Rr(L) with right
adjoint functors Ry, : Rr(G) — Rr(M°(Ag)) and Ry, : Rr(L) — Rr(M°(Ag)); defined
analogously to I,; and Ry in Section 5.1l In fact, as indgp (kp) =~ K, we have natural isomorphisms
of functors I, ~ 1, and R ~ R,,.

8.3 Bounding I;(kp)

Suppose P°(Ag) is not maximal. Let Ng denote the normaliser in G of the product of
maximal Ej-split tori T, in Gg;, chosen relative to a certain Ej-basis of Vi as in [24, Section
6]. Let Ny = {w € Ng : w normalises P°(Ag) N M} and Np(p) = {n € Np : p" =~ p}.

Lemma 8.8 ([24, Corollary 6.16]). The intertwining of % is given by
Ia(rp) 2 JpNA(p) Jp,
and the intertwining of A\, = Ap | Je, 1s given by

Ia(Ap) = JpNa(p)Jp-

The proof follows exactly as in op. cit. with one caveat: we replace the use of [24] Proposi-
tion 1.1] with Lemma [6.4]

8.3.1 A Hecke algebra injection

Let [A,n,0,0] and [A',n,0,8] be skew semisimple strata with 2A(Ag) C 2A(A%). Let 0 €
C_(A,0,8) and 0" = 7a A 3(6) be semisimple characters, x and &’ compatible [-extensions
of 6 and ¢, and p denote the inflation of an irreducible cuspidal representation p of M°(8,A)
to the groups J°(B,A), J3 » and P°(Ag). We put A = K ® p and X' = #/ lse ., ®p. We
have a canonical support preserving isomorphism H(G,\) ~ H(G,)\) as in [24, Proposi-
tion 7.1], this follows essentially by transitivity of induction and our results on [-extensions.
Exactly as in op. cit. Proposition 7.2, we have a support preserving isomorphism of alge-
bras H(J(B8,A"), ) ~ H(P(A’;),p). The composition of these isomorphisms with the natural
injection H(J(B,A"), \') < H(G,)\), gives us an injective map

H(P(Ag),p) = H(G,N),
which preserves support; if ¢ € H(P(A;), p) has support P°(Ag)yP°(Ag) for y € P(A;) then
the corresponding ¢g € H(G, A) has support JpyJp.

8.3.2 Skew covers

Let 7 be an irreducible cuspidal representation of G, and consider the set of all such pairs ([A, n, 0, (], 6)
such that [A,n,0, ] is a skew semisimple strata, € C_(A,0,3) and 7 contains 6. Choose a
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pair in this set whose parahoric subgroup P°(Ag) is minimal under containment relative to all
other pairs in the set. Since there is a unique irreducible representation 1 of J!(3,A) contain-
ing 6, m must also contain 1. Hence, by Lemma 2.1l 7 contains a representation A = k° ® p
of J°(B,A) where k° is a standard [-extension of 7 and p is an irreducible representation
of J°(B,A)/J (B,A). As P°(Ag) is minimal, it follows that p is cuspidal (cf. [24, Lemma 7.4]).

Suppose that either P°(Ag) is not a maximal parahoric subgroup in Gg or Gg does not have
compact centre.

Theorem 8.9 ([24, Proposition 7.13] (c¢f. [I7, Appendix A])). There exists an exactly sub-
ordinate self-dual decomposition V = @;n:_m WU to [A,n,0, 4] such that the pair (Jp, %)
is a G-cover of (Jp N M,\p |nm), where J%op is as constructed in Lemma and kp as in
Lemma 851

The construction follows mutatis mutandis that of op. cit., noting that:

(i) We use the results for [-extensions in positive characteristic from Section B and use
Lemma [Z.T7] (the characteristic zero version of which is obvious).

(ii) In the construction of op. cit. for a parahoric subgroup P°(9) containing P°(Ag), the
proof requires knowledge of the structure of H(P(9M), p°) (cf. Section 7.2.2 of op. cit.)
given by the results of [18]. Here we must appeal to Geck—Hiss-Malle’s generalisation of
the description of the structure of H(P(9), p°) to positive characteristic (see Lemma [6.7]).

(iii) The proof of op. cit. requires the construction of covers in general linear groups, namely
it uses [19, Proposition 6.7]. For general linear groups, the analogous proposition holds in
positive characteristic (see [16, Remarque 2.25]).

(iv) In the definition of lies over (cf. [24, Definition 7.6]), the use of the word component
should be replaced with quotient.

9 Self-dual and pro-p covers

This section generalises the construction of covers we have give for skew strata to semisimple
strata, following [I7]. Also, inspired by [15, Lemme 5.19], we define pro-p covers at the level of
the J! groups. These results will not be used in the rest of the paper, and are included with
future work in mind.

Let M be a Levi subgroup of G which is the stabiliser of the self-dual decomposition V =
DL ., WG, Letting GU) = Autp(W0)) and GO = Autp(W©®) N G we have M = GO x
H G @, Let 7 = 70 g ® T(] be a cuspidal irreducible representation of M. Let M
denote the stabiliser of V = @@’ fa— W) in A.

Lemma 9.1 ([7, Proposition 8.10], [I7, Proposition 5.1]). There are a self-dual semisimple

stratum [A,n, 0, 3] with 8 € M and a self-dual semisimple character 6 of H'(3, A) such that V =
@ T W(] is properly subordinate to [A,n,0, 5] and

m

H‘HlﬁAmM— ®< )

with 0 contained in 7(®) and, for each j > 0, (5@) contained in 7; where we have identi-

fied H'(3,A) N M with H*(8©), A©) x [T, HY (W, AD) as in Lemma BH
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Let p be an irreducible cuspidal representation of M°(Ag) = Jp/J5 ~ J2/J1. We can form
the representations \p = kp ® p of Jp and A\ = k1 ® p of J; by inflation.

Theorem 9.2 ([I7, Theorem 4.3] (cf. also [24, Proposition 7.13])). The pair (Jp,A%) is a G-
cover of (J7, A7) relative to P.

The proof generalises to positive characteristic with the same adaptions as commented on the
proof of Theorem B9

Theorem 9.3. The pair (Jb,np) is a G-cover of (J1,ny) relative to P.

Proof. By [1, Page 246, (0.5)], it is equivalent to show that; for all smooth R-representations
of GG the map of vector spaces

© : Ryepo (1) = R, (15 (7)),

given by ®(f) = r$ o f for f € Ry, (m), is injective. This map is easily checked to be a
homomorphism of representations of M°(Ag). Assume ker(®), the kernel of ®, is non-zero and
let ¢ be an irreducible subrepresentation of ker(®). Let (7, L) be in the cuspidal support of ¢,
here we mean that ¢ is a quotient of i% (7).

Thus L is a Levi subgroup of M°(Ag) (we allow the case L = M°(Ag)). Let P be the standard
parabolic subgroup of M°(Ag) containing L with Levi decomposition P = LU. Choose a
self-dual op-lattice sequence A’ such that P°(A’;) is equal to the preimage of P under the
projection P°(Ag) — Mp and such that P°(A) O P°(A’) (considering A and A’ as op-lattice
sequences), this is possible by [24, Lemma 2.8]. Let x’ = bp a(x). The decomposition of V' =
@’ _,, W; is exactly subordinate to the [A’,n’,0, ]. Hence we can form the groups

j=—m
Jp=H'(B,N)(J°(B,N)NP), Jy=JpNL

and the representations £’» of J}, (the natural representation on the (J°(3, A")NU)-fixed vectors
of k') and K}, = Kp |7 .

We have the left exact sequence

0 = w = Rip(m) = Ree (rE ().

M(Ag) (

We apply the Jacquet functor 5 which is exact) and have

M(A
0= 1 (@) = Ry (m) = Ry (rfi (),

as r%/[(AE) © Ryp(m) = Ry, (m) and r%/[(AE) o Ry, (r§(m)) ~ Ry, (rG (7)) by compatibility of x
and x’. Then, taking the T-isotypic components (which is a left exact functor) we have an exact

sequence

_ A _ _
0— HomZ(T,rﬂg( E)(w)) — Homy (7, Ry, (7)) = Homy (7, Ry, (r8(m))).

By right adjointness of RH;D and RH'L with IH’P and IH'L and right adjointness of restriction with
compact induction this is isomorphic to the exact sequence

0 — Homy(7, T'%/I(AE)(C«))) — Homys (kp @7, 7) — Homye (K], @7, rG(n))

As w contains a subrepresentation with cuspidal support 7, Homz(7, r%/[ (e )(w)) # 0. How-
ever, by Theorem 0.2, (Jp,k» ® T) is a G-cover of (J],k; ® T) relative to P. Hence, by [I}
Page 246, (0.5)], the map Hom o (kp ® 7,7) — Hom jo (k] ® T, r§ (7)) is injective, a contradic-
tion. O
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10 Quasi-projectivity of types

This section shows that the types we consider are quasi-projective, so that Theorem 2. I0lapplies.

Lemma 10.1. Suppose that n is a distinguished double coset representative of Py\Gp/Py
with projection w in the affine Weyl group of G such that, if Py corresponds to the subset K
of the fundamental reflections in the affine Weyl group W’ (cf. Section []), then wK = K. Let 7
be a representation of M°(Yg). Then, we have an isomorphism of vector spaces

.Y
Hom ;1 (K%, lndjgm(tj%)n(l{% ® 1)) ",

which is an isomorphism of representations if n € Ig(k%).

Proof. Observe that we have Jg = JH(J% N (J$)™) 2 JL(Pg N (PR)") and moreover JS./Jt =
Jy (P N (PR)™)/J}, as wK = K (and using Section [@[(i)). Therefore

Jt = Jr(Py 0 (PR)").

Thus, by Mackey theory, we have
Res’ (indJ% (ky @T)") ~ ind’T (ky @ T)"
Ik JeN(Jg)n \MY AN\ :
Therefore, we have isomorphisms of vector spaces

o

. JS . Jl
Homler (K7, 1ndJ§m(J%)n (kS @ 7)) ~ Homelr (K7, 1ndJ¥m(J%)n (K% ®7)")
~ Homyy s e (K3 (K5)" © 7)
which, checking actions, is actually an isomorphism of representations of M3., where the action

of
My = Jx(J5 N (J3)") /T = (J3 0 (J3)™)/(Jx N (J3)"™)

on homomorphisms in Hom JLA(IS)n (K%, (KS)"®T™) is given in the usual way by pre-composition
with (k)™ and post-composition with (k%)" ® 7. By Lemma [l we can choose S €
Hom 1 (yg)n (K%, (+3)") nonzero, and Hom j1 o yn (w5, (£%)") = Hom 1 1 yn (85, (53)") =~ R
by Theorem LIl Hence, by Lemma (applied with X; = X] = J§, Xy = J}, X] =
(JE)™, p1 = nr, po = k%, (1 = 1, and (o = 7") we have an isomorphism of vector spaces

Hoqulfm(J;)n(l, ™) — Hom ;1 soyn (K%, (k)" ®T™),

given by the tensor product with S which is an isomorphism if S € Hom jo(je)n (K%, (KS)™),
which will be the case if Hom jorso)n (5%, (k3)") # 0, ie. if n € Ig(kT). Moreover, as a
representation of M$ = (Jg N (J$)™)/(J% N (J$)™),
HOmJ%m(J%)n(l, Tn) ~ Tn.
O
It seems likely that the elements n considered in Lemma [I0.J] do intertwine x5, we do not prove

this here as it is not needed for our application.

Theorem 10.2. Suppose 7 is cuspidal. The representation I,;¢ (1) is quasi-projective.
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Proof. Notice that, as J“lr is pro-p, the 7-isotypic component of L (1) is a summand of the
restriction of Lo (1) to Jy, and no representation in its complement contains 7, whence cannot be
isomorphic to A = k3 ® 7. However, we have e (7)7 ~ k3 ®@ Rys 0 lxe (1) (¢f. [16, Lemme 2.6]).
We can decompose Rys ol (7) as a direct sum and choose distinguished double cosets for each
summand as in the proof of Theorem By Lemmas [T.4] and [[0.1], the summands are either
zero (when the distinguished coset representative projects to an element w with wK # K),
or have the same dimension of 7. Hence the k5 ® 7-isotypic component must be a direct
summand of the n-isotypic component of I,;¢ (7) and, by Lemma 2.9, the representation L (7)
is quasi-projective. ]

11 Exhaustion

We show how Corollary[.5] can be used to show certain representations of G we have constructed
are irreducible and cuspidal. Moreover, with Theorem B9, we show that this construction
exhausts all irreducible cuspidal representations of G. In the complex case this construction
is the same as [24] Corollary 6.19]. However, in addition to extending this construction to /-
modular representations, Corollary allows us to make some comparisons between certain
irreducible cuspidal representations in our exhaustive lists.

We call a skew semisimple stratum [A,n, 0, 5] cuspidal if G has compact centre and P°(Ag) is
a maximal parahoric subgroup. A type for G is a pair (J, k®@7) where J = J(, A) for some self-
dual semisimple stratum [A, n, 0, 5], x is a S-extension of the unique Heisenberg representation n
containing # € C_(A, 0, 8) and 7 is an irreducible representation of .J/.J! with cuspidal restriction
to J°/J'. We call a type (J, k®7) cuspidal if [A,n,0, 8] is a cuspidal stratum. We call a cuspidal
type (J,k ® T) supercuspidal if T is supercuspidal on restriction to J°/J*.

Theorem 11.1. Let (J,x ® 7) be a cuspidal type for G relative to the skew semisimple stra-
tum [A, n,0, 5], then I;(7) is irreducible and cuspidal.

Proof. The conditions on [A,n,0, 3] guarantee that P(Ag) is its own normaliser. By Corol-
lary [T Endg(I.(7)) ~ R. Let 7 be an irreducible R-representation of G such that k ® 7 is
a subrepresentation of 7 (hence 7 is a quotient of I,(7)). We must show that k ® 7 is also a
quotient of 7 in order to apply Lemma B8 As J! is pro-p, we can decompose 7 ~ 7 & ()
where 7" denotes the n-isotypic component of 7 and no subquotient of 7(n) contains n. By
Corollary [[.5l we have I,,(7)7 ~ k ® 7, and hence by exactness 7" ~ k ® 7 (or zero which it
can’t be as kK ® 7 is a subrepresentation of 7). Therefore, by Lemma 2.8] I,(7) is irreducible.
Cuspidality follows from a classical argument (cf. [5, §1] and [25] §2, 2.7]). O

Theorem 11.2. Every irreducible cuspidal representation of GG contains a cuspidal type.

Proof. Let m be an irreducible cuspidal representation of G. By [23, Theorem 5.1], the proof of
which applies in positive characteristic ¢ # p, there exist a skew semisimple stratum [A, n, 0, 5]
and 6 € C_(A,0, 3) such that 7 contains #. Thus 7 contains the unique extension 7 of 6 to J*.
Let x be a standard (-extension of 7. By Lemma [2.11], the functor x ® — identifies the category
of R-representations of M (Ag) with the category of n-isotypic representations of J. Thus 7
contains k£ ® 7 for some irreducible representation 7 of .J/.J'. The proof now follows, using [26,
IT 10.1}, from Theorem B9 (¢f. [I7, Appendix A] and [24, Theorem 7.14]). O

A consequence of the of Corollary is the following intertwining implies conjugacy theorem:
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Theorem 11.3. Suppose (Jp,kp @ 7p) and (Jy, Ky ® Ty) are cuspidal types associated to the
semisimple strata [A,na,0, 5] and [T, ny,0,5]. If I, (TA) ~ L. (7r), then there exists g € Gg
such that (J%, k% ® 7%) = (Ja, kA ® Ta).

Proof. By Corollary and Corollary the lattice sequences Ag and Tg are in the
same G g-orbit. Hence, by conjugating by an element of G g if necessary, we can assume A = 1.
Hence the groups of the cuspidal types coincide, and by twisting 75 by a character x of M(Ag)
if necessary, we can assume kp = ky. By Corollary and adjointness, we have

HomM(TE)(L’vT (X ® TA)’ Ly (TT)) = HomM(TE)(X @ TA, TT),

which is non-zero by hypothesis. Hence x ® 74 ~ 7v and thus the cuspidal types are conjugate
by an element of Gg. O
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