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floresta Amazônica e tivemos nossa amada filha, Melina. De coração, por tudo
que tu fizeste por mim e pela nossa famı́lia, eu te agradeço, meu amor!

Ao meu orientador, Carlos, pela oportunidade, confiança, incentivo,
parceria e amizade. Foi uma grande satisfação ter sido teu pupilo! Levarei
comigo tua eterna empolgação, as ideias infinitas e o prazer em fazer ciência.

Aos meus pais, Heloisa e Emilson, pelo estı́mulo incondicional ao estudo.
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só se consegue a simplicidade através de muito trabalho”.

Clarice Lispector





Abstract

The extent to which land-use change impairs tropical biodiversity is controver-
sial. This is because while some species may thrive in human-modified land-
scapes, others are locally extirpated – the so-called “few winners and many
losers” paradigm. Furthermore, reliable environmental impact assessments im-
ply that the correct drivers of biodiversity change are recognised, and suitable ref-
erence conditions are available. Herein, I examine vertebrate responses to habitat
fragmentation induced by two mega hydroelectric reservoirs in Brazilian Amazo-
nia. In the Tucuruı́ Hydroelectric Reservoir, bird point count surveys were carried
out on 36 forest islands in 2006 and 2007. In the Balbina Hydroelectric Reservoir,
I carried out bird mist-net surveys on 33 forest islands and five continuous forest
sites in 2015 and 2016; I also used autonomous recording units to survey anuran
species on 74 forest islands and four continuous forest sites in 2015. At Tucuruı́,
bird species traits associated with vulnerability to forest fragmentation included
rarity and forest dependency. At Balbina, species richness of understorey insec-
tivorous birds was more affected by island size than the amount of habitat sur-
rounding mist-net lines, indicating that a patch-centric approach is most appro-
priate to measure species responses to habitat loss if species exhibit low dispersal
ability and the surrounding habitat matrix is hostile. Regarding environmen-
tal impact assessments, the higher the intactness of the reference condition, the
greatest the estimated impact of habitat fragmentation on bird species richness.
In other words, studies of biodiversity responses to land-use change will likely
yield over-optimistic results if they are masked by the low conservation status of
either degraded or insufficiently large habitat patches regarded as the reference
condition. Finally, island size per se played a decisive role in explaining anuran
species richness on Amazonian forest islands, yet the inferential power of island
species-area relationships is only reliable if derived from an appropriate study
design.
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Chapter 1

Introduction

Every introduction of a scientific paper is supposed to present the reasons why
such research was carried out. That is an opportunity to convince readers of the
relevance of the research to engage their attention to the end of the paper. Al-
though sometimes engaging, the introduction of a scientific paper leaves behind
its most interesting reasons. “It presents a logical argument for why you should
have done the research, not the real reason, or even the true sequence of events
that led to the results” (Medawar 1964 apud Magnusson 2015).

When I presented my MSc project in 2008, I was enquired by one of the
examiners on “why birds?”. I had a few seconds to decide to give him either
the scientific or the real reason. The scientific reason was birds are a functionally
diverse species-rich group which often responds predictably to environmental
change. The real reason was that, having been raised in a large metropolis, I
did not know how to identify any species apart from birds in the hand – along
with a previous study of the expected species list, a couple of field guides and
photographs to double-check some identifications with hardened ornithologists.

I was tempted to begin this introduction with something like Land-use
change is the major threat to terrestrial biodiversity (Sala et al. 2000) as a rationale for
my thesis. Instead, I will tell you the true sequence of events that led to the study,
since the scientific reasons are already provided in the following data chapters.
In this section, I aim to inform the origin and context of this thesis work as well
as what lies behind the scene.
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1.1 The thesis topic

1.1.1 What is this thesis not about?

In 2012, when I talked to my supervisor, Carlos, for the very first time, he sug-
gested I should work on avifaunal recovery trajectories in insular vegetation
regrowth patches following deforestation by oil and gas enterprises at tropical
forest seismic clearings. The project was fantastic given the benign and unique
surrounding landscape context dominated by vast areas of undisturbed primary
forest: equal-sized clearings at different stages of regeneration embedded within
Amazonian primary forest (Figure 1.1).

Figure 1.1: Forest clearing surrounded by primary Amazonian forest. Image from
Google Earth.

Over the next two years, I went to two places in Amazonia to conduct
preliminary fieldwork where my study areas would presumably become estab-
lished. Discussions with Carlos, readings and field campaigns led me to apply
for a PhD studentship and I eventually got the seismic clearings project. How-
ever, our plans changed abruptly as the oil company went bankrupt following
two helicopter crashes and that project would no longer be viable.
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Luckily, Carlos promptly came up with a Plan B. He invited me to join
a large-scale project on forest fragmentation induced by the Balbina hydroelec-
tric dam in Brazilian Amazonia. Although a bit reluctant at the beginning, I was
even more sure about the risks involved in the clearings project. In 2014, I trav-
elled to Balbina to meet Carlos and familiarise myself with the landscape. Fortu-
nately, I left Balbina enthusiastic about all the logistical facilities and the research
prospects.

1.1.2 What is this thesis about?

This thesis is about responses by forest vertebrates – birds and frogs – to habitat
fragmentation, a process that involves both habitat loss and the breaking apart
of remaining habitat (Fahrig 2003; Figure 1.2). Compared to continuous habi-
tat, a fragmented landscape is characterised by a number of smaller patches of
smaller total area, isolated from each other by an intervening matrix that is struc-
turally distinct from habitat remnants (Figure 1.2). For example, the conversion
of forests (habitat) into pastureland (matrix) where some forest patches remain
(fragment; Figure 1.3). Likewise, flooding of lowland forest induced by river
damming where former hilltops form forest islands is also a type of habitat frag-
mentation, which could be regarded as habitat insularization since the interven-
ing matrix is water (Figure 1.3).

Habitat fragmentation research has largely focused on habitat patches sur-
rounded by terrestrial matrices (Fahrig 2017). However, the theoretical backbone
of habitat fragmentation research is rooted in the Theory of Island Biogeography
(IBT; MacArthur & Wilson 1967), which was developed to explain biodiversity
patterns on oceanic islands. Ironically, oceanic island formation (“creation” of
habitat) is the opposite of habitat fragmentation (“destruction” of habitat; Figure
1.3). Furthermore, terrestrial matrix habitats are far less hostile than open water
(Mendenhall et al. 2014) and may (1) favour some species by increasing habitat
heterogeneity, (2) allow species to move among habitat patches, and (3) provide
resources for patch-dependent species (Driscoll et al. 2013). Therefore, IBT has
been shown to be of limited application to understand biodiversity patterns in
habitat patches within terrestrial landscapes (Laurance 2008).

Habitat insularization consists of an intermediate scenario (Figure 1.3). On
the one hand, it is habitat fragmentation. On the other hand, the intervening
matrix is hostile. The extent to which IBT applies to reservoir islands is, therefore,
a topic yet to reach a consensus.

Both the origin and hostility of the matrix determine the structure of
species assemblages in habitat patches – here represented by habitat fragments,
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Figure 1.2: Illustration of habitat loss, and habitat loss combined with fragmenta-
tion. Habitat is represented in green and the intervening matrix in grey.

reservoir islands, and oceanic islands. According to Watson (2002), the patch
biota is divided into three species groups based on their origin: relict species (i.e.
present before fragmentation/insularization), matrix-derived species, and inter-
patch dispersers. Different from habitat fragments where all three species groups
are present, and oceanic islands where relict species are non-existent, reservoir is-
lands are mostly comprised of relict species because both matrix-derived species
and inter-patch dispersers are rare. However, only a fraction of the relict species
will persist in the long-run (Jones et al. 2016) typically resulting in impoverished
species assemblages.

Main aim

Broadly speaking, I aim to depict biodiversity patterns on forest islands induced
by hydroelectric reservoirs as guided by the following questions:

• How many species remain on forest islands?

• Which are the remaining species?

• What are the characteristics of extinction-prone species?

• How do both island and landscape attribute shape species assemblages?
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Figure 1.3: Examples of drivers of patchy systems: Fragmentation represented
by forest fragments surrounded by pastureland; insularization, which is a form
of fragmentation where the intervening matrix is water; island formation from
volcanic eruption. Photo credits: (a) c©Neil Palmer (CIAT), (b) Haag & Henriques
(2016), (c, f) c© Sam LaRussa, (d) Lees & Peres (2008), (e) Benchimol & Venticinque
(2014). All photos were cropped.
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1.2 Behind the scene

This thesis is structured as four data chapters. Although a thesis is a neat docu-
ment, the process of getting from A to B is often nonlinear, and each data chapter
has its own and sometimes independent conjectures. As a record of my PhD
journey, I share here the true sequence of events that led me to each data chapter
(Chapters 2 to 5).

1.2.1 Chapter 2

In early 2016, between the first and the second field campaigns, I did not have
much to do apart from data entry, project reports and a literature review. Consid-
ering that I could not write a paper with only half of my data, Carlos suggested
contacting a friend of him who had surveyed birds with another researcher on
forest islands within the Tucuruı́ Hydroelectric Reservoir, eastern Brazilian Ama-
zonia (Figure 2.1). The deal was quite simple: they would unearth the then de-
funct data buried in an old hard-drive, and I would write the paper.

For several reasons, Chapter 2 was the one from which I learned the most.
First, I was in constant contact with Magalli Henriques and Sidnei Dantas to un-
derstand their data, learning how to conduct collaborative research. Second, I
realised the importance of tedious data cleaning and repetitive checking; if you
seek for mistakes, you will find them. Third, I extracted environmental variables
from satellite images in a GIS environment having to start from scratch; the first
time I opened a raster or vector file was during my PhD! Finally, Carlos told me
I would have to cope with ”the issue of phylogenetic non-independence among
species” to perform the analysis. Again, I had to start from scratch by reading
textbooks, spending numerous days reading tutorials and doing exercises in the
R software.

This toolkit allowed me to investigate patterns of avian species loss and
the role of morpho-ecological traits in explaining species vulnerability to forest
fragmentation in an anthropogenic island system.

1.2.2 Chapter 3

I participated in the Brazilian Congress of Ornithology in 2012, where I had the
opportunity to attend a talk by Lenore Fahrig, an eminent landscape ecologist.
She presented the Habitat Amount Hypothesis (HAH), which was published a
year later (Fahrig 2013). The HAH predicts that the number of species at sample
sites is independent of the area of the particular patches in which samples are lo-
cated, if the amount of habitat surrounding sample sites is held constant (figure 7
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in Fahrig 2013). The HAH intrigued me because of a long-standing debate in
protected area design – whether it is most optimal to have one Single Large Or
Several Small (SLOSS) reserves of equivalent size (Diamond 1975) – would no
longer be relevant, although she had never mentioned the SLOSS debate. Then,
I looked for Lenore after her talk, and she kindly sat down with me to show me
some extra slides on her laptop, confirming that I was right: according to the
HAH, the SLOSS debate was presumably irrelevant.

The Island Biogeography Theory predicts that the number of species on
islands is affected by island size and isolation (MacArthur & Wilson 1967). In
fragmented landscapes, the HAH predicts that these two variables are simply
driven by the sample area effect, so that the main variable affecting the number
of species in equally-sized sample sites within habitat fragments would be the
total amount of surrounding habitat (Fahrig 2013). The applicability of IBT for
oceanic islands and of HAH for habitat fragments led me to the main question of
Chapter 3: which of these two major concepts in fragmentation ecology (IBT or
HAH) is the most appropriate theoretical framework for human-induced islands?

To address this question, I used mist nets to survey birds on 33 forest
islands within the Balbina Hydroelectric Reservoir, central Brazilian Amazonia
(Figure 3.1). Besides testing the HAH, I proposed a diagram, based on the degree
of matrix permeability and species dispersal ability, to determine whether IBT or
HAH is the most appropriate theoretical framework to understand patterns of
species richness in reservoir islands and analogous habitat patches.

1.2.3 Chapter 4

Many reasons account for contrasting results in the ecological literature, such as
landscape context, taxonomic group, sampling design and survey method. Dur-
ing my meetings with Carlos, when we discussed some ”unexpected” result from
the literature, he recurrently hypothesised that so-called control sites were often
degraded, thereby masking the true effects of land-use change on biodiversity.
The principle is simple: if the reference condition is degraded, the estimated im-
pacts will be obscured. Although this issue in environmental impact assessments
has been raised (Gardner et al. 2009), quantitative studies were still lacking.

To assess the effects of habitat fragmentation on biodiversity, it is common
to use sites in continuous habitats (e.g. Almeida-Gomes et al. 2016) or in the
largest available habitat fragment in the landscape (e.g. Daily et al. 2011) as
a reference condition to contrast with smaller habitat fragments. However, the
size of the largest available habitat fragment is rather variable. For example, the
reference condition in a Costa Rican bird study by Daily et al. (2001) was a forest
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fragment of c. 250 ha, whereas Uehara-Prado et al. (2007) used a forest fragment
of c. 10,000 ha as a reference condition in a butterfly study in the Brazilian Atlantic
Forest.

In Chapter 4, I assessed the extent to which the change in the size of for-
est islands used as a reference condition affects the estimated impact of forest
fragmentation on species richness. To do so, I mist-netted birds on 33 forest is-
lands and five continuous forest sites (Figure 4.1) and used different sets of sites
as a reference condition to contrast with a set of small islands (Figure 4.3). Con-
sidering that species richness fails to account for species identity, I did the same
comparative exercise using either only species recorded at references sites or the
overall species assemblage. In doing so, I examined how including species not
recorded at reference sites contributes to obscure the estimated effect of forest
fragmentation on species richness.

1.2.4 Chapter 5

Initially, I had considered surveying only birds with mist nets, which is a labour-
intensive method that limits spatial replication. However, autonomous recording
units (ARUs) are cost-effective and allows one to survey multiple sites at the same
time. Thus, during the first year of my fieldwork in 2015, I deployed ARUs at 151
plots located on 74 islands and in four continuous forest sites (Figure 5.1). Since
ARUs record any vocalising species, I decided to dedicate a chapter of my thesis
to frogs for several reasons. First, frogs comprise a less species-rich group than
birds and also show stereotyped vocalisations, thereby facilitating species identi-
fication of the overall frog assemblage present at each plot. Second, I had never
studied frogs before, and that would be an opportunity to open my mind to an-
other taxonomic group, which is instrumental in developing ecological thinking.
Third, there are much fewer studies on frogs in the fragmentation ecology litera-
ture compared to birds (Gardner et al. 2007); given the fact that journals always
look for novelty, a fragmentation study on frogs per se was something appealing.

My lack of knowledge on frog species identification through vocalisation
along with the huge amount of recordings obtained (over 3,500 hours) led me to
establish a collaborative project with Ígor Kaefer and Gabriel Masseli, two Brazil-
ian herpetologists, and to use a subset of recordings. Thus, 62 minutes of record-
ings per plot was listened to by Gabriel (over 150 hours in total), and the species
identifications were validated by Ígor. My task was then to provide them with
the recordings, analyse the data, and write the paper.

Chapter 5 is on species-area relationships. Although it is an over-studied
topic, my study differs from all others because most of the studies fail to control
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for several confounding factors before testing the effect of area per se on species
richness (see Hill 1994). Furthermore, I assessed the role of sampling design – the
number of islands and range in island size – in shaping species-area relationships
aiming to provide guidelines to yield reliable estimates of area-driven species
losses in habitat patches.

What follows next are four data-driven chapters which make up the em-
pirical and theoretical body of this doctoral thesis work. Happy reading!
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2.1 Abstract

Aim: We assessed patterns of avian species loss and the role of morpho-ecological
traits in explaining species vulnerability to forest fragmentation in an anthro-
pogenic island system. We also contrasted observed and detectability-corrected
estimates of island occupancy, which are often used to infer species vulnerability.

Location: Tucuruı́ Hydroelectric Reservoir, eastern Brazilian Amazonia.

Methods: We surveyed forest birds within 36 islands (3.4–2,551.5 ha) after 22
years of post-isolation history. We applied species–area relationships to as-
sess differential patterns of species loss among three data sets: all species, for-
est specialists and habitat generalists. After controlling for phylogenetic non-
independence, we used observed and detectability-corrected estimates of island
occupancy separately to build competing models as a function of species traits.
The magnitude of the difference between these estimates of island occupancy was
contrasted against species detectability.

Results: The rate of species loss as a function of island area reduction was higher
for forest specialists than for habitat generalists. Accounting for the area ef-
fect, forest fragmentation did not affect the overall number of species regard-
less of the data set. Only the interactive model including natural abundance,
habitat breadth and geographic range size was strongly supported for both esti-
mates of island occupancy. For 30 species with detection probabilities below 30%,
detectability-corrected estimates were at least tenfold higher than those observed.
Conversely, differences between estimates were negligible or non-existent for all
31 species with detection probabilities exceeding 45.5%.

Main conclusions: Predicted decay of avian species richness induced by forest
loss is affected by the degree of habitat specialisation of the species under consid-
eration, and may be unrelated to forest fragmentation per se. Natural abundance
was the main predictor of species island occupancy, although habitat breadth and
geographic range size also played a role. We caution against using occupancy
models for low-detectability species, because overestimates of island occupancy
reduce the power of species-level predictions of vulnerability.

KEYWORDS
detectability, insularization, island biogeography, occupancy, rarity, species-area
relationships
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2.2 Introduction

Amazonian forests have been extensively converted to cattle pasture and crop-
land inducing widespread loss and fragmentation of formerly continuous forests,
especially in the eastern and southern portions of the basin (Laurance et al., 2001;
Peres et al., 2010). This scenario is further exacerbated by a massive growth
in hydroelectric dams, which invariably inundate large tracts of forest, creating
archipelagic landscapes (Lees, Peres, Fearnside, Schneider, & Zuanon, 2016). For-
est fragmentation is widely recognised as a pervasive and lasting threat to bio-
diversity and ecosystem functioning as forest fragments are subject to the com-
bined detrimental effects of core area reduction, edge proliferation, and isola-
tion (Haddad et al., 2015). Nevertheless, the quality of the matrix surrounding
forest fragments plays a major role in determining the severity of fragmenta-
tion (Kennedy, Marra, Fagan, & Neel, 2010). Old-growth forest fragments sur-
rounded by secondary forests favour species that exploit matrix resources (Blake
& Loiselle, 2001), are less affected by edge effects (Laurance et al., 2011), and are
more permeable, ensuring species movements among forest fragments (Powell,
Stouffer, & Johnson, 2013). Conversely, forest islands within hydroelectric reser-
voirs exhibit lower functional connectivity, are expected to be dominated by edge-
mediated decay in forest structure (Benchimol & Peres, 2015), and harbour de-
pauperate extinction-driven species assemblages (Wolfe, Stouffer, Mokross, Pow-
ell, & Anciães, 2015). The detrimental consequences of forest fragmentation are
therefore amplified by a water matrix (Mendenhall, Karp, Meyer, Hadly, & Daily,
2014), rendering hydroelectric dams a more severe threat to forest biotas.

Habitat loss and fragmentation are the twin processes associated with
land-use change. From a species perspective, the former is defined as the con-
version of a “habitat” into a “non-habitat” (i.e., habitat amount shrinkage), and
the latter as the subdivision of a single large “habitat” into several smaller “habi-
tat patches” separated from one another by an intervening “non-habitat” matrix
(Lindenmayer & Fischer, 2007). While habitat loss has pervasive negative effects
on native biodiversity, fragmentation affects species differently (Fahrig, 2003).
For instance, habitat specialists are more consistently impaired by fragmentation
than habitat generalists (Devictor, Julliard, & Jiguet, 2008). Predictions of species
loss based on species–area relationships are therefore expected to be underes-
timated for habitat specialists if habitat generalists are included in the species
pool (Matthews, Cottee-Jones, & Whittaker, 2014). Moreover, habitat fragmenta-
tion per se (i.e., accounting for habitat loss) may either decrease or increase the
number of species that would be predicted by habitat loss alone (Yaacobi, Ziv,
& Rosenzweig, 2007). Therefore, a proper assessment of species loss in variable-
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sized habitat patches should focus on groups of target species (Matthews et al.,
2014) and disentangle the effects of habitat loss from fragmentation (Fahrig, 2003;
Yaacobi et al., 2007).

Species-level studies on responses to habitat fragmentation can further en-
hance our understanding of vulnerability-prone traits at both landscape (Fee-
ley, Gillespie, Lebbin, & Walter, 2007) and global scales (Bregman, Sekercioglu,
& Tobias, 2014), complementing assemblage-wide studies (Moura et al., 2016).
Accordingly, low-density, large-bodied species at high trophic levels (Ewers &
Didham, 2006), and those with restrict habitat breadth (Henle, Davies, Kleyer,
Margules, & Settele, 2004) and narrow geographic range (Newbold et al., 2014)
are expected to be at higher risk of extinction. The same holds true for bird
species inhabiting the lower strata of closed-canopy forests (Sekercioglu et al.,
2002), following ant-swarms and foraging in mixed-species flocks (Stouffer &
Bierregaard, 1995). Understanding trait-based patterns of extinction proneness
is therefore invaluable to anticipate species losses and tailor conservation pro-
grammes to vulnerable species. However, idiosyncratic species responses across
different regions (Gage, Brooke, Symonds, & Wege, 2004; Moura et al., 2016), and
the co-occurrence of confounding factors in human-modified landscapes, such as
matrix type, may limit the extent to which clear patterns can be uncovered (Ewers
& Didham, 2006), reinforcing the need for landscape-scale studies.

In fragmented landscapes, the area of remaining patches is the main driver
of species patch occupancy (Keinath et al., 2017). Area-sensitive species can no
longer occur in patches below a minimum spatial requirement, and are conse-
quently relegated to fewer patches than species requiring smaller areas (Dard-
anelli, Nores, & Nores, 2006). Thus, the proportion of patches occupied in a
landscape has often been used as a measure of species vulnerability to habitat
fragmentation (e.g., Meyer, Fründ, Lizano, & Kalko, 2008; Thornton, Branch, &
Sunquist, 2011; Wang, Thornton, Ge, Wang, & Ding, 2015). Due to inherent differ-
ences in species detectability and the fact that non-detections do not necessarily
imply absences, observed estimates of patch occupancy can be underestimated.
To overcome this bias, occupancy modelling has often been uncritically used
as it can estimate patch occupancy while accounting for imperfect detectability
(Banks-Leite et al., 2014). Unlike observed estimates, this analytical approach can
overestimate patch occupancy for species with low detection probability (< 30%;
MacKenzie et al., 2002), which may degrade inferential power about species vul-
nerability.

Habitat fragmentation research has largely focused on terrestrial land-
scapes (Fahrig, 2017), where the remaining habitat (i.e., area of native vegetation)
is typically termed as “remnant”, “fragment”, or “patch”. Nonetheless, the term
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“island” best describes remaining habitats in archipelagic landscapes. To avoid
misleading terminology (Hall, Krausman, & Morrison, 1997), herein we refer to
the remaining habitats in terrestrial and archipelagic landscapes as “fragments”
and “islands”, respectively. Meanwhile, the term “patch” is used to encompass
both “fragment” and “island”. In this study, we assessed bird species responses
to forest fragmentation in a vast archipelagic landscape induced by a major hy-
droelectric dam in eastern Brazilian Amazonia, while addressing the four follow-
ing questions. First, do habitat generalists show a less steep decline in species
richness as a function of island area reduction compared to forest specialists? If
so, we predict that assessments of overall species loss relying on species–area re-
lationships also underestimate the loss of forest specialists in reservoir islands as
previously shown for forest fragments (Matthews et al., 2014). Second, does for-
est fragmentation per se exacerbate or reduce the impact of forest loss on species
richness for the overall species pool, forest specialists and habitat generalists? We
predict a neutral fragmentation effect on the overall species pool due to a nega-
tive effect on forest specialists and a positive effect on habitat generalists. Third,
which suite of morpho-ecological traits best explains species rates of island occu-
pancy within the forest archipelago? This allowed us to determine which species
are most or least prone to extirpation from anthropogenic island systems to antic-
ipate species losses driven by existing and future hydroelectric impoundments in
lowland tropical forests. Fourth, how divergent are observed and detectability-
corrected estimates of island occupancy for rarely detected species? We show
distinct responses to forest loss between forest specialists and habitat generalists,
and that forest fragmentation per se may not affect the overall number of species
in forest islands. We also emphasize the use of rarity metrics to assess species
vulnerability to forest fragmentation, and caution against the use of occupancy
models to infer island occupancy rates when species detection probability is low.

2.3 Methods

2.3.1 Study area

This study was carried out within the vast Tucuruı́ Hydroelectric Reservoir (here-
after, THR; 4◦16’ S, 49◦34’ W), located in the State of Pará, eastern Brazilian Ama-
zonia (Figure 2.1). The reservoir was formed in 1984 when the Tocantins River
was dammed, flooding over 250,000 ha of pristine lowland forests and creating
some 2,200 islands on higher elevation terrain. In 2002, the entire archipelago
and surrounding areas were set aside as a sustainable-use reserve (IUCN cate-
gory VI), spanning 568,667 ha. This protected area—Tucuruı́ Lake Environmental



30 Chapter 2

Protection Area (APA Lago de Tucuruı́, in Portuguese)—is a multiple-use mosaic
designated to meet both the interests of local communities and wildlife conserva-
tion.

Figure 2.1: (a) Location of the study area in eastern Brazilian Amazonia; (b)
Tucuruı́ Hydroelectric Reservoir (THR) within the Tucuruı́ Lake Environmental
Protection Area (grey and white areas), showing the two Wildlife Conservation
Zones (ZPVS 3 and 4, indicated by dotted lines) and heavily degraded areas sur-
rounding the THR (yellow); and (c) distribution of the 36 surveyed islands (dark
grey and black polygons) within or adjacent to the two ZPVS. The background
image was extracted from the TerraClass project (de Almeida et al., 2016), avail-
able at http://www.inpe.br/cra/projetos pesquisas/terraclass2008.php.

The vegetation is typical of Amazonian terra firme forests, containing
80%–90% forest cover and an understorey dominated by several palm species
(Ferreira, Neckel-Oliveira, Galatti, Fáveri, & Parolin, 2012). The climate is equa-
torial monsoonal (Am), with a rainy season from December to May and a dry
season from June to November (Alvares et al., 2013). Mean annual precipitation
and temperature are 2,354 mm and 27.5 ◦C, respectively (Alvares et al., 2013).

The THR is located in the most deforested region of Brazilian Amazonia,
known as the “Arc of Deforestation”, and encompasses both the Xingú and Belém
lowland areas of endemism, which are separated by the Tocantins River (da Silva,

http://www.inpe.br/cra/projetos_pesquisas/terraclass2008.php
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Rylands, & Da Fonseca, 2005). To survey the forest avifauna of the reservoir,
we selected an even number of islands across a comparable size range on each
bank of the former river channel. Many islands and mainland sites surround-
ing the reservoir were heavily degraded, but we surveyed a set of 36 relatively
undisturbed forest islands located within (n = 26) or adjacent to (n = 10) the two
Wildlife Protection Zones (ZPVS): ZPVS 3 on the left bank and ZPVS 4 on the
right bank (Figure 2.1b). The two largest islands (> 1,800 ha) were defined as
“pseudo-controls”, and 34 smaller islands as “treatments”, which were selected
to maximise the range of island sizes, shapes and degrees of connectivity (see
Table S2.1). The pseudo-control island on the right bank is actually a mainland
peninsula that was semi-isolated along a boundary of secondary forest.

2.3.2 Avian surveys

We conducted six field campaigns over a 15-month period: 6–25 August and
12–29 November in 2006, and 4–22 March, 12 April–1 May, 14–31 July and 22
September–10 October in 2007. During each field campaign, all 36 islands were
surveyed once using 10-min point counts by experienced observers (S.M.D. or
L.M.P.H.) accompanied by a field assistant, who simultaneously recorded bird
vocal activity (using a Sony TCM-5000 recorder and a semi-directional micro-
phone) as a voucher of species occurrences. To ensure that all birds recorded were
within surveyed islands, we restricted all individuals seen or heard to within an
estimated 50-m radius from the observer and discarded all flyovers. Given our
focus on diurnal forest species, we also discarded all aquatic, nocturnal and aerial
species, as well as every species that “does not normally occur in forest” (sensu
BirdLife International, 2017). Surveys were usually carried out between 06:00 and
10:00 h avoiding rainy and windy weather. The number of point count stations
(hereafter, PCs) surveyed per island, which ranged between 2 and 33 (see Table
S2.1), was roughly proportional to island area on a log-log scale (r2

adj = 0.863, P <

0.001). All 36 islands were surveyed along linear transects—three of each placed
at the two pseudo-control islands (see Figure S2.1) and one at each of the 34 treat-
ment islands—along which PCs were distributed at regular 200-m intervals. A
total of 240 PCs were visited six times each, amounting to 1,388 samples.

Sampling sufficiency per island was represented by individual-based rar-
efaction curves produced with 1,000 bootstrap replications in the INEXT R pack-
age (Hsieh, Ma, & Chao, 2016; R Core Team, 2016). Sampling completeness per
island was quantified as a percentage between the recorded and the estimated
number of species based on the first-order Jackknife estimator (Willie, Petre, Tagg,
& Lens, 2012) calculated using the VEGAN package (Oksanen et al., 2017).
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2.3.3 Species traits

We classified the degree of habitat specialisation of each species into “forest spe-
cialist” or “habitat generalist” based on two attributes extracted from BirdLife
International (2017), namely “forest dependency” and “habitats”. Species had
to meet two criteria to be classified as forest specialists: (1) “high” forest de-
pendency, and (2) “Forest—Subtropical/Tropical Moist Lowland”—the equiv-
alent to Amazonian lowland forest—listed as a habitat of “major” impor-
tance. Species that did not meet these criteria were classified as habitat gen-
eralists. Accordingly, a habitat generalist is a species that occurs in forest
(i.e., “low”, “medium” or “high” forest dependency) but does not have “For-
est—Subtropical/Tropical Moist Lowland” listed as a habitat of “major” impor-
tance. For example, Pitangus sulphuratus has a “low” forest dependency and
occurs throughout nine habitat types, including “Forest—Subtropical/Tropical
Moist Lowland” which is listed as a habitat of “suitable” importance. Like-
wise, Onychorhynchus coronatus was classified as a habitat generalist, despite
its “high” forest dependency, because this species is mostly associated with ri-
parian habitats (Bueno, Bruno, Pimentel, Sanaiotti, & Magnusson, 2012) and
this habitat type (i.e., “Forest—Subtropical/Tropical Swamp”) was inundated
by the THR floodwaters. Habitat generalist is then a species that may use the
“Forest—Subtropical/Tropical Moist Lowland” habitat as an alternative habitat.
Habitat specialisation was used to examine whether patterns of species loss dif-
fered between forest specialists and habitat generalists.

We also compiled data on seven additional traits associated with avian
extinction risk (Sodhi, Liow, & Bazzaz, 2004): body mass, trophic level, vertical
stratum, flocking behaviour, geographic range size, habitat breadth and natural
abundance (herein defined as the total number of individuals recorded within
pseudo-control islands; see Table S2.2 for variable descriptions and sources, and
Table S2.3 for species traits). We log10-transformed body mass (g), geographic
range size (km2) and natural abundance (n + 1) prior to analysis. Trophic level
is a continuous variable estimated from proportional consumption of food items
across five diet categories. Vertical stratum and flocking behaviour were con-
verted from nominal to ordinal (rank) variables to produce a gradient from
ground to canopy strata, and from low to high levels of gregariousness, respec-
tively. Stotz, Fitzpatrick, Parker, and Moskovits (1996) classified 41 habitats for
the Neotropical avifauna and assigned one to seven habitats used by each species.
Habitat breadth was then defined as a count variable representing the number
of habitats used, with lower and higher values indicating restricted and broad
habitat breadth, respectively. These traits were used to assess patterns of species
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occupancy across all 36 surveyed islands.

2.3.4 Island and landscape metrics

We used four RapidEye c© imagery tiles (250,000 ha at 5-m resolution) covering all
surveyed islands and an unsupervised classification performed in ESRI ARCMAP

10.2 to produce a categorical map with two land-cover classes: island and water
(Figure 2.1c). We then extracted three spatial metrics for each island: island area
in hectares (AREA), shape index (SHAPE), and proximity index (PROX). SHAPE is
a measure of the deviation in the perimeter of a given island from the perimeter
(m) of a perfect circle with the same area (m2), and calculated as

PERIMETER

2
√

π × AREA
,

with lower and higher values indicating simple and complex shapes, respectively
(Burchell, Shake, Moorman, Riddle, & Burchell, 2012). PROX (sensu McGarigal,
Cushman, & Ene, 2012) was used as a measure of connectivity, and considered
the total area of any island (> 1 ha) that was partially or entirely within a 500-m
external buffer (Benchimol & Peres, 2015), with smaller values indicating lower
connectivity or higher isolation. We arbitrarily assigned a PROX value one order
of magnitude greater than the most connected island for pseudo-control islands,
and a value of 0.01 for the least connected island. Finally, we log10-transformed
both AREA and PROX prior to analysis.

2.3.5 Species–area relationships and forest fragmentation effect

The logarithmic form of the species–area relationship (type IV curve sensu
Scheiner, 2003) was used to allow us to fit simple linear regression models (here-
after, SAR models; Rosenzweig, 1995) for three data sets—all species, only forest
specialists, and only habitat generalists—according to the following equation:

log10(S) = z× log10(A) + log10(c),

where S = number of species, z = regression slope, A = island area (ha), c = re-
gression intercept. As forest specialists were not recorded at one small surveyed
island, S was standardised as log10 (n + 1). To test whether z-values for forest
specialists and habitat generalists were significantly different (P 6 0.05), we per-
formed an ANCOVA model with habitat specialisation as the categorical inde-
pendent variable.
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We examined whether forest fragmentation per se either exacerbates or re-
duces species loss as a function of forest loss (i.e., island area reduction) following
Yaacobi et al. (2007). Accordingly, after fitting SAR models for each data set, we
extrapolated the number of species to a hypothetical island with the combined
area of all 36 surveyed islands (6,502.6 ha). We then compared the overall num-
ber of species recorded across the whole set of surveyed islands (i.e., gamma di-
versity) with the extrapolated number of species to the hypothetical island (i.e.,
predicted alpha diversity) for each data set. If the gamma diversity is lower or
higher than the predicted alpha diversity of the hypothetical island, forest frag-
mentation will have either exacerbated or reduced species loss, respectively. In
other words, additional factors other than forest loss operate in explaining the
gamma diversity, which we attributed to forest fragmentation. Values were con-
sidered significantly different if the overall number of species recorded was out-
side the 95% confidence interval of the extrapolated number of species. As the
accuracy of this method relies on SAR model fits, we deemed the method as ap-
propriate if the z-value was significant and the r2

adj was > 0.5 (Matthews, Triantis
et al., 2016).

Previous studies have shown that departures in the overall number of
species recorded from that predicted by extrapolating SAR models are related to
the nested structure of species assemblages (Matthews, Triantis et al., 2016; Santos
et al., 2010). To examine how the degree of nestedness relates to the fragmenta-
tion effect on species richness, we quantified the nested structure of the three data
sets using the nestedness metric based on overlap and decreasing fill (NODF) as
this metric is statically robust to overestimating nestedness (i.e., type I statistical
errors; Almeida-Neto, Guimarães, Guimaraes, Loyola, & Ulrich, 2008). We used
the nodf-program, version 2.0 (Almeida-Neto & Ulrich, 2011), to calculate NODF
values for all three data sets and for 1,000 simulated assemblages generated with
the proportional-row and proportional-column (PP) null model algorithm (Ul-
rich & Gotelli, 2012). NODF Z-transformed scores (hereafter, Z-scores) were then
used to determine whether the nested (positive Z-scores) or antinested (negative
Z-scores) structure of species assemblages were significantly different from those
of simulated assemblages (Matthews, Cottee-Jones, & Whittaker, 2015).

2.3.6 Species vulnerability to forest fragmentation

Species vulnerability to forest fragmentation corresponds to the risk of a species
to become locally extinct across the whole set of forest patches remaining in the
landscape. Hence, species occurring in a few patches would be more extinction-
prone than those occurring in many patches, particularly if an extinction debt
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has yet to be paid and patch colonization rates are low, which is likely the case
of forest archipelagos within hydroelectric reservoirs (Jones, Bunnefeld, Jump,
Peres, & Dent, 2016). In this case, patch occupancy is inversely related to vulner-
ability to forest fragmentation. However, species absences from a patch does not
necessarily imply that local extinctions had occurred because such species could
be initially absent from the patch at the time of its creation (Bolger, Alberts, &
Soule, 1991), meaning that patch occupancy may not always indicate vulnerabil-
ity to forest fragmentation (Keinath et al., 2017). Therefore, we first examined
whether local extinction had actually occurred across surveyed islands by com-
paring the SARs for birds in pseudo-control islands with that in much smaller
treatment islands (Bolger et al., 1991; Brown, 1971; Wang, Zhang, Feeley, Jiang, &
Ding, 2009). To accomplish this, we used the number of bird species as a func-
tion of surveyed area (number of PCs × point count area), and performed an
ANCOVA model with island type as the categorical independent variable (see
Appendix S2.1 for further details). We found that the predicted line derived from
treatment islands was well below and had a steeper slope than that of pseudo-
control islands (see Figure S2.2a), indicating that local extinctions had occurred in
the former. Subsequently, we estimated the number of local extinctions that had
occurred in each treatment island by subtracting the predicted number of species
in pseudo-control islands from the recorded number of species in treatment is-
lands (Bolger et al., 1991). Accordingly, we estimated a total of 788 local extinc-
tions across all 34 treatment islands over 22–23 years of post-isolation history at
the THR landscape (see Figure S2.2b). Given these results, we used estimates
of island occupancy (i.e., proportion of islands occupied—PIO) as a measure of
species vulnerability to forest fragmentation based on species occurrence across
all 36 surveyed islands.

Due to potential biases introduced by imperfect detectability, we calcu-
lated both the observed and detectability-corrected PIO for each species (Thorn-
ton et al., 2011; Wang et al., 2015). The latter was calculated using single-season
occupancy models (MacKenzie et al., 2002) implemented in the UNMARKED pack-
age (Fiske & Chandler, 2011). As some species can occasionally disperse across
islands by traversing the water matrix and our bird surveys were conducted over
six discrete field campaigns, we relaxed the closure assumption of single-season
models, which is defensible as long as (1) changes in island occupancy status oc-
cur at random—which is likely the case—and (2) “occupancy” is interpreted as
“use” (Mackenzie & Royle, 2005).

We modelled species occupancy probability (ψ) as a function of island
AREA, SHAPE and PROX, assuming an interactive effect between AREA and SHAPE

due to their combined effects in determining the severity of edge effects. As
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sampling effort increases the chances of detecting any given species, we mod-
elled the detection probability (p) as a function of the number of PCs per island
(EFFORT). We also considered both ψ and p as constants across islands. Accord-
ingly, we built 16 competitive occupancy models for each species (Table 1). We
then used the Akaike information criterion (AIC) to rank models and to calcu-
late Akaike weights to indicate the best-fit models (Burnham & Anderson, 2002).
From model-averaging based on all models with high support (∆AIC 6 2), we
summed the occupancy probability at each island and divided this by the to-
tal number of surveyed islands to obtain the detectability-corrected PIO for each
species (Thornton et al., 2011; Wang et al., 2015). We also summed the detection
probability for each visit per island and divided by 216 (36 islands × 6 surveys)
to obtain the overall detection probability for each species.

Table 2.1: Structure of the 16 occupancy models used to estimate detectability-
corrected proportions of islands occupied for 207 bird species surveyed across
36 islands at the Tucuruı́ Hydroelectric Reservoir landscape. Probability of oc-
cupancy (ψ) was modelled as a function of log10 island area in hectares (AREA),
shape index (SHAPE), and log10 proximity index (PROX). The probability of de-
tection (p) was modelled as a function of the number of point count stations sur-
veyed per island (EFFORT).

Model description

psi(.) p(.)
psi(AREA) p(.)
psi(SHAPE) p(.)
psi(PROX) p(.)
psi(AREA × SHAPE) p(.)
psi(AREA + PROX) p(.)
psi(SHAPE + PROX) p(.)
psi(AREA × SHAPE + PROX) p(.)
psi(.) p(EFFORT)
psi(AREA) p(EFFORT)
psi(SHAPE) p(EFFORT)
psi(PROX) p(EFFORT)
psi(AREA × SHAPE) p(EFFORT)
psi(AREA + PROX) p(EFFORT)
psi(SHAPE + PROX) p(EFFORT)
psi(AREA × SHAPE + PROX) p(EFFORT)

2.3.7 Species traits and vulnerability to forest fragmentation

It is widely assumed that closely related species share more traits than distantly
related species (Webb, Ackerly, McPeek, & Donoghue, 2002). Thus, analyses
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involving species as sampling units should be corrected for phylogenetic non-
independence among traits (Freckleton, Harvey, & Pagel, 2002). To account for
this, we built a majority-rule consensus tree based on 1,000 trees obtained from
birdtree.org (“Hackett All Species”; Jetz, Thomas, Joy, Hartmann, & Mooers,
2012) using the APE package (Paradis, Claude, & Strimmer, 2004). As a con-
sensus tree does not include branch lengths, we set all branch lengths equal to
one. We then performed Phylogenetic Generalised Least Squares (PGLS) models
using the CAPER package (Orme et al., 2013) and Pagel’s lambda branch length
transformation optimised by maximum likelihood (Freckleton et al., 2002). We
examined both observed and detectability-corrected PIO separately as response
variables and species traits as explanatory variables.

To assess the role of morpho-ecological traits in explaining species vulner-
ability to forest fragmentation, we built 13 competing PGLS models: a univariate
model for each of the seven traits, three additive models and three interactive
models. Additive and interactive models were built under the same combination
of traits. The first included natural abundance, habitat breadth and geographic
range size, and is referred to as “rarity model” as it combines all three dimensions
of rarity (sensu Rabinowitz, 1981). The second included natural abundance, body
mass and trophic level, and is referred to as “population size model”, following
Meyer et al. (2008). The third included trophic level, vertical stratum and flocking
behaviour, and is referred to as “foraging model”.

2.4 Results

Considering all 36 surveyed islands, we recorded 10,575 individuals representing
207 bird species, 150 genera and 31 families (see Table S2.3). The number of indi-
viduals recorded per island ranged from 28 to 1,997 (mean± SD = 293.8± 359.1),
and the number of species from 7 to 128 (46.3 ± 26.8). The number of individuals
recorded per species ranged widely from 1 to 1,385 (51.1 ± 124.2).

Despite our large sampling effort, individual-based rarefaction curves in-
dicate that further surveys would be necessary to reach sampling sufficiency (i.e.,
to approach the asymptote of the curves; see Figure S2.3). Completeness of the
inventories per island ranged from 64% to 89% (73.6 ± 5.1%; see Figure S2.3).
As near-exhaustive inventories (> 80% completeness) were only obtained at four
islands (see Figure S2.3), the number of species in most surveyed islands should
be regarded as conservative.
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2.4.1 Species–area relationships and forest fragmentation effect

Island area had a significant positive effect on the number of species for all
species, forest specialists and habitat generalists (Figure 2.2). The z-value for
habitat generalists was significantly lower than for forest specialists (P = 0.028;
Figure 2.2), indicating that the rate of species loss as a function of island area
reduction was higher for forest specialists.

 
 
          

               

   
 

  

   

          

                

 
 
 
 
 
  
 
  
 
  
 
  
 
 
 
  
 
  
 
 
  
 

           

 
 
          

               

   
 

  

   

          

                

                  

 
 
          

               

   
 

  

   

          

                

                   

 
 
          

               

   
 

  

   

          

                

 
 
 
 
 
  
 
  
 
  
 
  
 
 
 
  
 
  
 
 
  
 

           

 
 
          

               

   
 

  

   

          

                

                  

 
 
          

               

   
 

  

   

          

                

                   

Figure 2.2: Plots at the top show the species–area relationships, and their r2
adj-

and z-values for (a) all species; (b) forest specialists; and (c) habitat generalists
surveyed across 36 islands at the Tucuruı́ Hydroelectric Reservoir landscape (P
< 0.001 in all instances). Dotted lines indicate null predicted numbers of species
if forest fragmentation had no effect. Circles, squares and triangles correspond to
the recorded, extrapolated, and overall number of species, respectively. Coloured
regions and error bars show the 95% confidence intervals of predicted lines and
extrapolated values, respectively. Note the base 10 logarithmic scales along both
axes. Plots at the bottom show the maximally packed matrices for (d) all species;
(e) forest specialists; and (f) habitat generalists based on the NODF nestedness
metric (Almeida-Neto et al., 2008). Coloured bars indicate the islands (x-axis)
where each species (y-axis) was recorded. None of the data sets was either signif-
icantly nested or antinested.

The SAR models were deemed as appropriate to assess the forest fragmen-
tation effect on avian species richness as the z-value was significant and the r2

adj

was > 0.5 for all three data sets (Figure 2.2). We recorded a higher overall number
of species in surveyed islands than that extrapolated to an unfragmented forest
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area of 6,502.6 ha, the aggregate size of all 36 surveyed islands, considering both
all species (207 + 1 > 201.6; Figure 2.2a) and only habitat generalists (124 + 1
> 104.7; Figure 2.2c). In contrast, this trend was reversed for forest specialists
(83 + 1 < 109.1; Figure 2.2b). However, the difference between the recorded and
extrapolated number of species was not significant for all three data sets.

The Z-scores for all species (0.34), forest specialists (0.24) and habitat gen-
eralists (0.64) were not statistically significant, indicating that the structure of all
three data sets could not be described as either nested or antinested (Figure 2.2).

2.4.2 Trait-based vulnerability to forest fragmentation

Considering the observed PIO as a response variable, only the interactive PGLS
“rarity model” including natural abundance, habitat breadth and geographic
range size was highly supported based on AIC values (Table 2). This model
explained most of the variance in observed PIO (R2

adj = 0.649), outperforming
the univariate PGLS models of natural abundance (r2

adj = 0.554), habitat breadth
(r2

adj = 0.031) and geographic range size (r2
adj = 0.017). Accordingly, species with

higher natural abundance (Figure 2.3), broader habitat breadth and wider geo-
graphic range tended to have higher values of observed PIO (see Figure S2.4).

Considering the detectability-corrected PIO as a response variable, only
the interactive PGLS “rarity model” was highly supported based on AIC val-
ues (Table 2). This model explained a fifth of the variance in detectability-
corrected PIO (R2

adj = 0.199), outperforming the univariate models of natural
abundance (r2

adj = 0.113), habitat breadth (r2
adj = 0.047) and geographic range

size (r2
adj = 0.018). Accordingly, species with higher natural abundance, broader

habitat breadth and wider geographic range tended to have higher values of
detectability-corrected PIO (see Figure S2.4).
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Figure 2.3: Site-by-species incidence matrix for 207 bird species surveyed across
36 islands at the Tucuruı́ Hydroelectric Reservoir landscape. Squares represent-
ing at least one individual recorded per island are coloured according to the
natural abundance of each species, defined as the total number of individuals
recorded within pseudo-control islands. Islands are ordered from the largest to
the smallest (black bars on a log10 scale; see Table S2.1); species are ordered from
the most to the least naturally abundant (see Table S2.3 for species codes).

2.4.3 Observed versus detectability-corrected estimates of island

occupancy

Vulnerability to forest fragmentation was widely variable across the 207 species in
terms of the proportion of islands occupied (PIO), regardless of whether we con-
sidered observed or detectability-corrected PIO (see Table S2.3). The variation in
observed PIO ranged from 2.8% to 94.4% (22.4± 22.5%), whereas the variation in
detectability-corrected PIO ranged from 5.6% to 96.4% (42.4 ± 24.4%). Estimates
of island occupancy corrected for imperfect detectability were higher than those
observed for 200 species, identical for five, and slightly lower for two (see Table
S2.3). For 30 species with detection probabilities below 30%, the detectability-
corrected PIO was at least tenfold higher than the observed PIO (16.0 ± 5.1%;
Figure 2.4; see Table S2.3). Conversely, differences between these two estimates
were negligible or non-existent (1.02 ± 0.02%) for all 31 species with detection
probabilities exceeding 45.5% (Figure 2.4; see Table S2.3). Once phylogenetic non-
independence was accounted for, detection probabilities was higher for more nat-
urally abundant species (r2

adj = 0.202, P < 0.001; Figure 2.4).
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Figure 2.4: Ratio between detectability-corrected and observed estimates of pro-
portion of islands occupied (PIO) as a function of species detectability for 207
bird species surveyed across 36 islands at the Tucuruı́ Hydroelectric Reservoir
landscape; y-values indicate how many times detectability-corrected estimates
are higher than observed estimates. Circles are coloured according to the natural
abundance of each species, defined as the total number of individuals recorded
within pseudo-control islands.

2.5 Discussion

Here, we present one of the most comprehensive landscape-scale efforts to date
to assess the role of morpho-ecological traits in explaining species vulnerability to
forest fragmentation, in terms of the number of surveyed islands (n = 36), range
of island sizes (3.4–2,551.5 ha), overall sampling effort (n = 1,388 samples) and
number of species surveyed (n = 207). This effort exploited a quasi-experimental
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anthropogenic tropical forest archipelago, following an even-aged post-isolation
history of 22–23 years, and allowed us to uncover which traits pose the greatest
threats to bird species in forest islands within hydroelectric reservoirs. We also
highlight potentially misleading applications of species occupancy models by
contrasting observed and detectability-corrected estimates of island occupancy.

2.5.1 Species–area relationships and forest fragmentation effect

Although SARs are arguably the most ironclad relationship in ecology (Rosen-
zweig, 1995), rates of species loss induced by declining habitat areas are highly
variable. Triantis, Guilhaumon, & Whittaker (2012) synthesised 449 data sets
from log-log SAR applications to islands in inland, continental-shelf and oceanic
systems, and reported z-values ranging from 0.064 to 1.312 (mean ± SD = 0.321
± 0.164). Such variance was attributed to several factors, namely island type,
taxonomic group and range of island areas (Triantis, Guilhaumon, & Whittaker,
2012). A reliable comparison of z-values among studies should therefore take
these factors into account.

Z-values derived for forest islands have been shown to be higher than
for forest fragments (Matthews, Guilhaumon, Triantis, Borregaard, & Whittaker,
2016), rendering forest fragmentation induced by hydroelectric dams (i.e., forest
insularization) a more severe threat to biodiversity than that induced by agro-
pastoral activities. We largely attribute such difference in z-values to the perme-
ability of the intervening matrix, which may either preclude (increasing z-values;
Moore, Robinson, Lovette, & Robinson, 2008) or allow species to disperse among
forest patches, offsetting species losses through the rescue effect (decreasing z-
values; Stouffer, Strong, & Naka, 2009). For instance, in a fragmented south-
ern Amazonian landscape dominated by cattle pasture—where 338 bird species
were surveyed across 30 forest fragments (1–14,476 ha)—Lees and Peres (2008)
derived a z-value of 0.191, which is considerably lower than in this study (0.316).
Although we do not have direct evidence on species dispersal in these two land-
scapes, both studies are comparable in most factors affecting z-values (Triantis,
Guilhaumon, & Whittaker, 2012), except for the intervening matrix. Therefore,
we predict that forest islands in existing and future hydroelectric reservoirs will
experience a pronounced species richness decay, resulting in depauperate avian
assemblages shaped by selective extinction (Mendenhall, Karp, Meyer, Hadly, &
Daily, 2014; Si, Baselga, Leprieur, Song, & Ding, 2016; Wolfe et al., 2015).

Predictions of species losses based on the species–area relationship are af-
fected by the degree of habitat specialisation of the species included in the anal-
ysis. In 16 of 23 data sets, avian species richness decreased at a greater rate as a
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function of fragment area reduction for forest specialists than for habitat gener-
alists (Matthews et al., 2014). Moreover, the inclusion of habitat generalist and
edge species can even reverse the generally positive species–area relationship,
whereby small patches will counter-intuitively harbour the most species-rich as-
semblages (Lövei, Magura, Tóthmérész, & Ködöböcz, 2006). In archipelagic land-
scapes, colonisation of habitat generalists into forest islands is expected to be hin-
dered by the aquatic matrix, ultimately reducing their impact in reducing z-value
estimates. In fact, our z-value derived for all species (0.316) approaches the mean
value of island systems (0.321; Triantis, Guilhaumon, & Whittaker, 2012) rather
than that of terrestrial landscapes (0.202; Watling & Donnelly, 2006). However,
our z-value estimate for forest specialists (0.414) was significantly greater than
that for habitat generalists (0.262). Including habitat generalists in the species
pool therefore reduced our assemblage-wide rate of species loss, obscuring the
more severe impact of habitat loss on forest specialists, which reinforces the no-
tion that habitat patches must be defined from the perspective of target species
(Lövei, Magura, Tóthmérész, & Ködöböcz 2006).

Forest fragmentation per se neither significantly decreased nor increased
the overall number of species predicted by forest loss (i.e., island area reduction)
regardless of the data set used, which corroborates our prediction regarding the
fragmentation effect on all species (neutral) but not on both forest specialists (neg-
ative) and habitat generalists (positive). Likewise, species richness was unrelated
to fragmentation in previous studies undertaken in different landscapes across a
wide range of taxonomic groups. For instance, fragmentation effects on the over-
all number of species in forest fragments were not evident for perennial flowering
plants and two beetle families in an agricultural landscape (Tenebrionidae and
Carabidae; Yaacobi et al., 2007), and for butterflies in an urban landscape (Soga &
Koike, 2012). Yet this failed to hold true for lizards in an archipelagic landscape,
where the overall number of species in forest islands was significantly decreased
by fragmentation (Wang et al., 2009). Hypothetically, terrestrial matrices can then
buffer fragmentation effects as they are more permeable to species movements
than water matrices (Soga & Koike, 2012), or even increase gamma diversity as
shown for spider species in forest fragments of two agricultural landscapes in Is-
rael (Gavish, Ziv, & Rosenzweig, 2012). To test this hypothesis, we reanalysed the
bird data available from the Thousand Island Lake forest archipelago in China
(Si, Baselga, & Ding, 2015) applying the same analysis carried out here (Yaacobi
et al., 2007). We found no support for that hypothesis as forest fragmentation per
se significantly increased the overall number of bird species in forest islands (60
recorded > 42.6 extrapolated; see Figure S2.5), which is partially explained by
the low z-value (0.098; see Yu, Hu, Feeley, Wu, & Ding, 2012) and the antinested
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structure (Si et al., 2015) of the avian assemblages in the Thousand Island Lake
(Matthews, Triantis et al., 2016; Santos et al., 2010). Accordingly, antinested as-
semblages (i.e., species present at an island are not present at other islands) are
expected to have a higher gamma diversity than nested assemblages (i.e., species
present in smaller islands are subsets of larger islands; Santos et al., 2010), ul-
timately determining the direction (positive or negative) and magnitude of the
fragmentation effect on species richness. In this study, the lack of fragmentation
effects on species richness for the data sets including all species, forest specialists,
and habitat generalists was thus unsurprisingly given the non-significant nested
structure of these avian assemblages. Collectively, this indicates that the extrapo-
lation of SAR models is an indirect method to infer the nested structure of species
assemblages (this study; Santos et al., 2010; Matthews, Triantis et al., 2016).

In a recent SLOSS-type analysis, Fahrig (2017) uncovered a significantly
higher overall number of species in several small patches compared to a single
large patch based on 60 compiled data sets. This suggests that habitat fragmen-
tation per se increases the overall number of species in habitat patches, but we
caution against such assertion for three reasons. First, antinested assemblages
are shaped by species turnover, which depends on landscape-dispersal processes
determined by isolation (with lower isolation leading to greater antinested struc-
ture; Santos et al., 2010), matrix permeability (Stouffer, Johnson, Bierregaard, &
Lovejoy, 2011) and species dispersal ability (Si, Pimm, Russell, & Ding, 2014). Sec-
ond, methodological choices may lead to biased outcomes as exemplified by the
widespread nested structure of species assemblages in fragmented landscapes
(Watling & Donnelly, 2006; n = 67 data sets), which were recently deemed as an
analytical artefact as most species assemblages were neither significantly nested
nor antinested (Matthews et al., 2015; n = 97 data sets). As fragmentation ef-
fects on species richness are strictly related to the nested structure of species as-
semblages, we believe that a fragmentation effect on species richness would not
be evident for most studies compiled by Matthews et al. (2015). This contra-
dicts Fahrig’s (2017) conclusions, which were largely grounded on the positive
fragmentation effect on species richness when comparing species accumulation
curves of sites ordered according to either increasing or decreasing patch area
(Quinn & Harrison, 1988). Nevertheless, this method is biased towards detect-
ing higher species richness in several small patches compared to a single large
patch due to unequal sampling intensity (i.e., proportion of patch area that is sur-
veyed) among surveyed patches (Gavish et al., 2012). Third, an assemblage-level
approach may mask fragmentation effects on individual species, as measures of
species richness completely disregard species identity.
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2.5.2 Trait-based vulnerability to forest fragmentation

Rarity is an intrinsic property of certain species that results from variable cross-
scale combinations of small local population size, restricted habitat breadth and
narrow geographic range (Rabinowitz, 1981). Rare species are inherently predis-
posed to high extinction risk, which justifies the use of rarity as a measure of
species vulnerability to a wide range of anthropogenic stressors (Kattan, 1992;
Mace et al., 2008). Using a global-scale analysis, Newbold et al. (2014) reported
that forest specialists and narrow-range bird species from tropical and subtropical
forest biomes are more vulnerable to land-use change than habitat generalists and
wide-range species. We corroborate this outcome at the scale of an archipelagic
landscape, and endorse other comparative analyses incorporating field data (i.e.,
estimates of local population size; Feeley et al., 2007) and synergistic interactions
among species traits that amplify the power of predictive models (Wang et al.,
2015). Moreover, we identified rarity as a decisive factor exacerbating species
vulnerability at all three spatial dimensions defined by Rabinowitz (1981), par-
ticularly because rarity is unrelated to several key traits, such as body mass and
flocking behaviour (Thiollay, 1994; but see Kattan, 1992). As such, species with
higher natural abundance, broader habitat breadth and wider geographic range
were in general those with the highest rates of island occupancy at the THR land-
scape. Nevertheless, natural abundance played a disproportionately important
role compared to habitat breadth and geographic range size, a pattern corrob-
orated in another Amazonian fragmented landscape (Lees & Peres, 2008). A
positive abundance-occupancy relationship, in which more abundant species oc-
cupy more sites, is widely considered a general rule in ecology (Hartley, 1998).
Although many underlying mechanisms have been proposed to explain this re-
lationship, there is no broadly accepted consensus as to why locally abundant
species should be more ubiquitous (Gaston et al., 2000). We stress that our find-
ings can be extended to other fragmented landscapes, including those dominated
by variable-quality terrestrial matrices, in which non-random extirpations could
also be predicted by metrics of rarity.

Based on our PGLS models, we failed to find support for some morpho-
ecological traits that are often associated with avian extinction risk in human-
modified tropical forest landscapes, namely body mass, trophic level, vertical
foraging stratum and flocking behaviour (Sodhi et al., 2004). However, this does
not imply that these traits are not meaningful (Hamer et al., 2015), although body
mass, foraging specialisation and vertical stratum were unrelated to bird species
vulnerability in a fragmented Atlantic Forest of southern Brazil (dos Anjos, 2006).
In some instances, the role of species traits in predicting vulnerability to forest
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fragmentation depends on the scale (global vs. landscape) and the response vari-
able (e.g., population size vs. global extinction risk scores) used in the study
(Keinath et al., 2017). For example, body mass has been often reported as a mean-
ingful trait in broad-scale studies using global extinction risk scores (Keinath et
al., 2017). Moreover, in model selection approaches, the best-fit models depend
on the entire set of plausible competitive models (Aho, Derryberry, & Peterson,
2014). Had we considered only univariate models including each of those four
traits separately, body mass (∆AIC 6 2 in this instance) would have emerged
as the most important trait in explaining observed island occupancy rates (Table
2), with small-bodied species occupying more islands than large-bodied species
(r2

adj = 0.015). Any given trait or combination of traits may therefore play a role
in a comparative analysis, but collectively may operate as less meaningful vari-
able (Keinath et al., 2017). Furthermore, the large number of species included in
the analysis (n = 207) can obscure the role of ecological traits associated with only
a few species (e.g., obligate ant-followers, n = 2), as the deviance of a few values
may change the balance of strength in competing traits but not the main outcome.

It has been widely reported that insectivore species are particularly vul-
nerable to forest fragmentation (Bregman et al., 2014; Powell, Cordeiro, & Strat-
ford, 2015), especially ground insectivores (Stratford & Stouffer, 1999) and obli-
gate flocking species (i.e., mixed-species flock attendants and ant-followers; Van
Houtan, Pimm, Bierregaard, Lovejoy, & Stouffer, 2006). Hence, species at higher
trophic levels, using lower forest strata, and joining flocks were expected to ex-
hibit lower rates of island occupancy. We failed to corroborate these expectations,
which we largely attribute to differences in sampling design and analytical ap-
proaches among studies (Powell et al., 2015). For example, in an anthropogenic
tropical forest archipelago in Malaysia, avian insectivores showed the steepest
decline in the number of species with decreasing island area compared to either
omnivores or frugivores (Yong et al., 2011). Had we applied the semi-log form
of the species–area relationship [S ∼ log10(A)] to the same three avian forag-
ing guilds, as the authors did, we would also have identified insectivores (sensu
Wilman et al., 2014) as the most impaired foraging guild (see Figure S2.6). To pro-
vide further evidence of the impact of the analytical approach on the outcomes,
we additionally applied the log-log form of the species–area relationship to both
our data set and the data set available from the Malaysian archipelago (Yong et
al., 2011). Although the outcomes converged between studies, at this time, fru-
givores emerged as the most impaired foraging guild, rather than insectivores
(see Figure S2.6). Another noteworthy point is that species grouped into a for-
aging guild may span more than an entire trophic level (Hamer et al., 2015). As
such, the trophic level of an insectivore species could overlap that of a carnivore



Chapter 2 49

(Hamer et al., 2015), omnivore or granivore species (see Figure S2.7). In Bornean
rainforests, insectivore species showed variable responses to selective logging,
with species at higher trophic levels more adversely affected than those at lower
trophic levels (Hamer et al., 2015). These authors used stable isotopes to quantify
trophic levels, a more accurate approach than our energetic score, preventing a
direct comparison between studies.

Ground insectivores were extirpated from small Amazonian forest rem-
nants (6 10 ha) following fragmentation (Stratford & Stouffer, 1999) as edge-
dominated remnants could no longer sustain critical foraging microhabitats for
these species (Stratford & Stouffer, 2013). Likewise, none of the five ground in-
sectivores we recorded (Conopophaga aurita, Conopophaga roberti, Formicarius analis,
Formicarius colma and Hylopezus macularius) was found in islands smaller than 30
ha (see Figure S2.8). Moreover, obligate flocking species were extirpated from
small fragments (6 10 ha) after isolation (Stouffer & Bierregaard, 1995), a pattern
corroborated at the THR landscape, where smaller islands also harboured de-
pauperate assemblage of these social species (see Figure S2.8). Although mixed-
species flocks and obligate ant-followers can reassemble and recolonize small
fragments following the regrowth of the intervening matrix (Stouffer & Bierre-
gaard, 1995; Stouffer et al., 2011), these rebounds, by definition, cannot occur
within hydroelectric reservoirs. Finally, the only comparable avian island bio-
geography study (Thousand Island Lake, China; Wang et al., 2015)—in terms
of both the sampling design and analytical approach used here—is largely con-
sistent with our findings, in which only natural abundance and habitat breadth
had sufficiently high support in explaining species occupancy patterns in forest
islands.

2.5.3 Observed versus detectability-corrected estimates of island

occupancy

Occupancy modelling is assumed to derive more reliable estimates of patch occu-
pancy as it accounts for potentially present species that go undetected in a given
patch (MacKenzie et al., 2002). As a result, estimates of patch occupancy cor-
rected for imperfect detectability are, as a general rule, equal to or higher than
observed estimates (this study; Thornton et al., 2011; Wang et al., 2015). In an
archipelagic landscape created by China’s Thousand Island Lake, detectability-
corrected proportions of islands occupied were up to sevenfold higher than that
observed for a small raptor (Accipiter soloensis; Wang et al., 2015). At the THR
landscape, those estimates were at least tenfold higher for 30 bird species, and
almost 29-fold higher for two of them (Figure 2.4; see Table S2.3). These large
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discrepancies can be explained by overestimates of patch occupancy for species
with detection probabilities below 30% (MacKenzie et al., 2002). Overcoming this
artefact to obtain more reliable estimates of patch occupancy would require in-
creasing the number of samples per patch, but this is not always feasible due to
logistical constraints (Mackenzie & Royle, 2005).

Estimates of patch occupancy for species with low detection probabilities
(< 30%) can be misleading and the large uncertainties they carry should be inter-
preted with caution (Welsh, Lindenmayer, & Donnelly, 2013). Such species may
be defined as ubiquitous due to overestimates of patch occupancy, even though
they have been recorded at only a few patches (Banks-Leite et al., 2014), which
would invalidate species–specific predictions of vulnerability based on rates of
patch occupancy. This was the case for Myiopagis caniceps and Psarocolius bifascia-
tus, which were recorded in only one island but were estimated to occupy 29. As
species detectability tends to increase with increasing natural abundance, occu-
pancy models yield far more reliable estimates of patch occupancy for common
species than for those that are rare (Banks-Leite et al., 2014). Because over 200
species distributed across many lineages were considered in this study, identi-
fying morpho-ecological characteristics that can best explain species vulnerabil-
ity to forest fragmentation was largely unbiased. However, the same cannot be
stated for species-poor assemblages in which most species have low detection
probabilities. We argue that estimates of detectability-corrected proportions of
patches occupied should always be reported and examined together with species
detectability and observed estimates, to avoid misleading assessments of species
vulnerability based on rates of patch occupancy.

2.6 Conclusions

On the basis of a comprehensive bird survey undertaken in forest islands within
a major Amazonian hydroelectric reservoir, we addressed four questions: (1) Do
habitat generalists show a less steep decline in species richness as a function of
island area reduction compared to forest specialists? (2) Does forest fragmen-
tation per se exacerbate or reduce the impact of forest loss on species richness
for the overall species pool, forest specialists and habitat generalists? (3) Which
suite of morpho-ecological traits best explains species rates of island occupancy
within the forest archipelago? (4) How divergent are observed and detectability-
corrected estimates of island occupancy for rarely detected species? Our find-
ings show that (1) rates of species loss of forest specialists in land–bridge islands
are underestimated if habitat generalists are included in the species pool because
habitat generalists are less impacted by island area reduction than forest special-
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ists; (2) fragmentation per se does not necessarily exacerbate the impact of forest
loss on species richness; (3) rare species, especially those with low natural lo-
cal abundance, are the most extinction-prone in fragmented landscapes; and (4)
detectability-corrected estimates of island occupancy can be much higher than
observed estimates for species with low detection probability, ultimately limit-
ing the use of occupancy models for rare or elusive species. Finally, we conclude
that forest islands within hydroelectric reservoirs are expected to typically har-
bour depauperate avian assemblages, mostly consisting of naturally abundant
and habitat generalist species.
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2. Almeida-Neto, M., Guimarães, P., Guimaraes, J. P. R., Loyola, R. D., & Ul-
rich, W. (2008). A consistent metric for nestedness analysis in ecological
systems: Reconciling concept and measurement. Oikos, 117, 1227–1239.
https://doi.org/10.1111/j.0030-1299.2008.16644.x

3. Almeida-Neto, M., & Ulrich, W. (2011). A straightforward com-
putational approach for measuring nestedness using quantitative
matrices. Environmental Modelling and Software, 26, 173–178.
https://doi.org/10.1016/j.envsoft.2010.08.003

4. Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes, G., Leonardo, J.,
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Leader-Williams, N., . . . Stuart, S. N. (2008). Quantification of extinction
risk: IUCN’s system for classifying threatened species. Conservation Biol-
ogy, 22, 1424–1442. https://doi.org/10.1111/j.1523-1739.2008.01044.x



Chapter 2 57

48. MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Andrew,
Royle. J., & Langtimm, C. A. (2002). Estimating site occupancy rates
when detection probabilities are less than one. Ecology, 83, 2248–2255.
https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2

49. Mackenzie, D. I., & Royle, J. A. (2005). Designing occupancy studies: Gen-
eral advice and allocating survey effort. Journal of Applied Ecology, 42,
1105–1114. https://doi.org/10.1111/j.1365-2664.2005.01098.x

50. Matthews, T. J., Cottee-Jones, H. E., & Whittaker, R. J. (2014). Habitat frag-
mentation and the species-area relationship: A focus on total species rich-
ness obscures the impact of habitat loss on habitat specialists. Diversity and
Distributions, 20, 1136–1146. https://doi.org/10.1111/ddi.12227

51. Matthews, T. J., Cottee-Jones, H. E. W., & Whittaker, R. J. (2015). Quan-
tifying and interpreting nestedness in habitat islands: A synthetic anal-
ysis of multiple datasets. Diversity and Distributions, 21, 392–404.
https://doi.org/10.1111/ddi.12298

52. Matthews, T. J., Guilhaumon, F., Triantis, K. A., Borregaard, M. K., & Whit-
taker, R. J. (2016). On the form of species-area relationships in habitat is-
lands and true islands. Global Ecology and Biogeography, 25, 847–858.
https://doi.org/10.1111/geb.12269

53. Matthews, T. J., Triantis, K. A., Rigal, F., Borregaard, M. K., Guilhau-
mon, F., & Whittaker, R. J. (2016). Island species-area relationships and
species accumulation curves are not equivalent: An analysis of habi-
tat island datasets. Global Ecology and Biogeography, 25, 607–618.
https://doi.org/10.1111/geb.12439

54. McGarigal, K., Cushman, S. A., & Ene, E. (2012). FRAGSTATS
v4: Spatial Pattern Analysis Program for Categorical and Continu-
ous Maps. Computer software program produced by the authors
at the University of Massachusetts, Amherst, USA. Retrieved from
http://www.umass.edu/landeco/research/fragstats/fragstats.html

55. Mendenhall, C. D., Karp, D. S., Meyer, C. F. J., Hadly, E. A., & Daily, G. C.
(2014). Predicting biodiversity change and averting collapse in agricultural
landscapes. Nature, 509, 213–217. https://doi.org/10.1038/nature13139

56. Meyer, C. F. J., Fründ, J., Lizano, W. P., & Kalko, E. K. V. (2008). Ecological
correlates of vulnerability to fragmentation in Neotropical bats. Journal of
Applied Ecology, 45, 381–391.



58 Chapter 2

57. Moore, R. P., Robinson, W. D., Lovette, I. J., & Robinson, T. R. (2008).
Experimental evidence for extreme dispersal limitation in tropical for-
est birds. Ecology Letters, 11, 960–968. https://doi.org/10.1111/j.1461-
0248.2008.01196.x

58. Moura, N. G., Lees, A. C., Aleixo, A., Barlow, J., Berenguer, E., Fer-
reira, J., . . . Gardner, T. A. (2016). Idiosyncratic responses of Ama-
zonian birds to primary forest disturbance. Oecologia, 180, 903–916.
https://doi.org/10.1007/s00442-015-3495-z

59. Newbold, T., Hudson, L. N., Phillips, H. R. P., Hill, S. L. L., Contu, S.,
Lysenko, I., . . . Purvis, A. (2014). A global model of the response of
tropical and sub-tropical forest biodiversity to anthropogenic pressures.
Proceedings of the Royal Society B: Biological Sciences, 281, 20141371.
https://doi.org/10.1098/rspb.2014.1371

60. Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P.,
McGlinn, D., . . . Wagner, H. (2017). vegan: Community Ecology
Package. R package version 2.4-3. Retrieved from https://CRAN.R-
project.org/package=vegan

61. Orme, D., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S., Isaac, N., &
Pears, W. (2013). caper: Comparative Analyses of Phylogenetics and Evo-
lution in R. R package version 0.5.2. Retrieved from https://CRAN.R-
project.org/package=caper

62. Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of Phy-
logenetics and Evolution in R language. Bioinformatics, 20, 289–290.
https://doi.org/10.1093/bioinformatics/btg412

63. Peres, C. A., Gardner, T. A., Barlow, J., Zuanon, J., Michalski, F., Lees, A.
C., . . . Feeley, K. J. (2010). Biodiversity conservation in human-modified
Amazonian forest landscapes. Biological Conservation, 143, 2314–2327.
https://doi.org/10.1016/j.biocon.2010.01.021

64. Powell, L. L., Cordeiro, N. J., & Stratford, J. A. (2015). Ecol-
ogy and conservation of avian insectivores of the rainforest under-
story: A pantropical perspective. Biological Conservation, 188, 1–10.
https://doi.org/10.1016/j.biocon.2015.03.025

65. Powell, L. L., Stouffer, P. C., & Johnson, E. I. (2013). Recovery of understory
bird movement across the interface of primary and secondary Amazon rain-
forest. The Auk, 130, 459–468. https://doi.org/10.1525/auk.2013.12202



Chapter 2 59

66. Quinn, J. F., & Harrison, S. P. (1988). Effects of habitat fragmentation and
isolation on species richness: Evidence from biogeographic patterns. Oe-
cologia, 75, 132–140. https://doi.org/10.1007/BF00378826

67. R Core Team (2016). R: A language and environment for statistical comput-
ing. Vienna, Austria: R Foundation for Statistical Computing.

68. Rabinowitz, D. (1981). Seven forms of rarity. In H. Synge (Ed.), The biolog-
ical aspects of rare plant conservation (pp. 205–217). Chichester, UK: John
Wiley & Sons.

69. Rosenzweig, M. L. (1995). Species diversity in space
and time. Cambridge, UK: Cambridge University Press.
https://doi.org/10.1017/CBO9780511623387

70. Santos, A. M. C., Whittaker, R. J., Triantis, K. A., Borges, P. A. V., Jones,
O. R., Quicke, D. L. J., & Hortal, J. (2010). Are species-area relationships
from entire archipelagos congruent with those of their constituent islands?
Global Ecology and Biogeography, 19, 527–540.

71. Scheiner, S. M. (2003). Six types of species-area curves. Global Ecol-
ogy and Biogeography, 12, 441–447. https://doi.org/10.1046/j.1466-
822X.2003.00061.x

72. Sekercioglu, C. H., Ehrlich, P. R., Daily, G. C., Aygen, D., Goehring, D., &
Sandi, R. F. (2002). Disappearance of insectivorous birds from tropical forest
fragments. Proceedings of the National Academy of Sciences of the United
States of America, 99, 263–267. https://doi.org/10.1073/pnas.012616199

73. Si, X., Baselga, A., & Ding, P. (2015). Revealing beta-diversity patterns of
breeding bird and lizard communities on inundated land-bridge islands
by separating the turnover and nestedness components. PLoS ONE, 10,
e0127692. https://doi.org/10.1371/journal.pone.0127692

74. Si, X., Baselga, A., Leprieur, F., Song, X., & Ding, P. (2016). Selec-
tive extinction drives taxonomic and functional alpha and beta diversi-
ties in island bird assemblages. Journal of Animal Ecology, 85, 409–418.
https://doi.org/10.1111/1365-2656.12478

75. Si, X., Pimm, S. L., Russell, G. J., & Ding, P. (2014). Turnover of breeding bird
communities on islands in an inundated lake. Journal of Biogeography, 41,
2283–2292. https://doi.org/10.1111/jbi.12379



60 Chapter 2

76. Sodhi, N. S., Liow, L. H., & Bazzaz, F. A. (2004). Avian ex-
tinctions from tropical and subtropical forests. Annual Re-
view of Ecology, Evolution, and Systematics, 35, 323–345.
https://doi.org/10.1146/annurev.ecolsys.35.112202.130209

77. Soga, M., & Koike, S. (2012). Relative importance of quantity, quality and
isolation of patches for butterfly diversity in fragmented urban forests. Eco-
logical Research, 27, 265–271. https://doi.org/10.1007/s11284-011-0896-2

78. Stotz, D. F., Fitzpatrick, J. W., Parker, T. A. III, & Moskovits, D. K. (1996).
Neotropical birds: Ecology and conservation. Chicago, IL: The University
of Chicago Press.

79. Stouffer, P. C., & Bierregaard, R. O. (1995). Use of Amazonian forest
fragments by understory insectivorous birds. Ecology, 76, 2429–2445.
https://doi.org/10.2307/2265818

80. Stouffer, P. C., Johnson, E. I., Bierregaard, R. O., & Lovejoy, T. E. (2011).
Understory bird communities in Amazonian rainforest fragments: Species
turnover through 25 years post-isolation in recovering landscapes. PLoS
ONE, 6, e20543. https://doi.org/10.1371/journal.pone.0020543

81. Stouffer, P. C., Strong, C., & Naka, L. N. (2009). Twenty years of understorey
bird extinctions from Amazonian rain forest fragments: Consistent trends
and landscape-mediated dynamics. Diversity and Distributions, 15, 88–97.
https://doi.org/10.1111/j.1472-4642.2008.00497.x

82. Stratford, J. A., & Stouffer, P. C. (1999). Local extinctions of terres-
trial Insectivorous birds in a fragmented landscape near Manaus, Brazil.
Conservation Biology, 13, 1416–1423. https://doi.org/10.1046/j.1523-
1739.1999.98494.x

83. Stratford, J. A., & Stouffer, P. C. (2013). Microhabitat associa-
tions of terrestrial insectivorous birds in Amazonian rainforest and
second-growth forests. Journal of Field Ornithology, 84, 1–12.
https://doi.org/10.1111/jofo.12000

84. Thiollay, J.-M. (1994). Structure, density and rarity in an Amazo-
nian rainforest bird community. Journal of Tropical Ecology, 10, 449.
https://doi.org/10.1017/S0266467400008154

85. Thornton, D., Branch, L., & Sunquist, M. (2011). Passive sampling
effects and landscape location alter associations between species traits



Chapter 2 61

and response to fragmentation. Ecological Applications, 21, 817–829.
https://doi.org/10.1890/10-0549.1

86. Triantis, K. A., Guilhaumon, F., & Whittaker, R. J. (2012). The island
species-area relationship: Biology and statistics. Journal of Biogeography,
39, 215–231. https://doi.org/10.1111/j.1365-2699.2011.02652.x

87. Ulrich, W., & Gotelli, N. J. (2012). A null model algorithm for presence-
absence matrices based on proportional resampling. Ecological Modelling,
244, 20–27. https://doi.org/10.1016/j.ecolmodel.2012.06.030

88. Van Houtan, K. S., Pimm, S. L., Bierregaard, R. O., Lovejoy, T. E., & Stouffer,
P. C. (2006). Local extinctions in flocking birds in Amazonian forest frag-
ments. Evolutionary Ecology Research, 8, 129–148.

89. Wang, Y., Thornton, D. H., Ge, D., Wang, S., & Ding, P. (2015). Ecologi-
cal correlates of vulnerability to fragmentation in forest birds on inundated
subtropical land-bridge islands. Biological Conservation, 191, 251–257.
https://doi.org/10.1016/j.biocon.2015.06.041

90. Wang, Y., Zhang, J., Feeley, K. J., Jiang, P., & Ding, P. (2009). Life-
history traits associated with fragmentation vulnerability of lizards in
the Thousand Island Lake, China. Animal Conservation, 12, 329–337.
https://doi.org/10.1111/j.1469-1795.2009.00257.x

91. Watling, J. I., & Donnelly, M. A. (2006). Fragments as islands: A synthe-
sis of faunal responses to habitat patchiness. Conservation Biology, 20,
1016–1025. https://doi.org/10.1111/j.1523-1739.2006.00482.x

92. Webb, C. O., Ackerly, D. D., McPeek, M. A., & Donoghue,
M. J. (2002). Phylogenies and community ecology. An-
nual Review of Ecology and Systematics, 33, 475–505.
https://doi.org/10.1146/annurev.ecolsys.33.010802.150448

93. Welsh, A. H., Lindenmayer, D. B., & Donnelly, C. F. (2013). Fit-
ting and interpreting occupancy models. PLoS ONE, 8, e52015.
https://doi.org/10.1371/journal.pone.0052015

94. Willie, J., Petre, C.-A., Tagg, N., & Lens, L. (2012). Evaluation of species
richness estimators based on quantitative performance measures and sen-
sitivity to patchiness and sample grain size. Acta Oecologica, 45, 31–41.
https://doi.org/10.1016/j.actao.2012.08.004



62 Chapter 2

95. Wilman, H., Belmaker, J., Simpson, J., de la Rosa, C., Rivadeneira,
M. M., & Jetz, W. (2014). EltonTraits 1.0: Species-level foraging
attributes of the world’s birds and mammals. Ecology, 95, 2027.
https://doi.org/10.1890/13-1917.1

96. Wolfe, J. D., Stouffer, P. C., Mokross, K., Powell, L. L., & Anciães, M. M.
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Appendix S2.1

Details on estimates of local extinctions

The use of estimates of island occupancy (i.e., proportion of islands occupied –
PIO) as a measure of species vulnerability to forest fragmentation is only mean-
ingful if local extinctions have occurred at the study islands (Bolger et al., 1991;
Keinath et al., 2017). Ideally, bird surveys would be carried out at the time of is-
land creation, which could be compared with present-day species distributions to
determine the occurrence of local extinctions (Bolger et al., 1991). In the absence
of historical data, which is typically the case in ecological studies, the comparison
between species-area relationships (SARs) for birds in pseudo-control islands and
in treatment islands can be alternatively used to infer the occurrence of local ex-
tinctions across study islands (Brown, 1971; Bolger et al., 1991; Wang et al., 2009).
As such, bird surveys were carried out in pseudo-control islands within plots of
similar size to those in treatment islands to represent species distributions in an
unfragmented habitat (Bolger et al., 1991; Wang et al., 2009).

To produce the species-area curves for both pseudo-control islands and
treatment islands, we used the number of bird species recorded as a function of
surveyed area rather than total island area to make the spatial extent of radial
surveys around point count stations comparable in both pseudo-control islands
and treatment islands (Wang et al., 2009). Only species that had been recorded
in pseudo-control islands (n = 164) were considered for this comparison. For
example, one of the seven species recorded at our smallest site (3.39 ha), Island
Caua (Table S2.1), was not recorded in pseudo-control islands, so the number of
species in that island was restricted to six. Surveyed areas (expressed in hectares)
were calculated as the survey area of a point count station (π × 502; hereafter,
PCs) times the number of PCs sampled. For instance, the surveyed area within
Island Caua was 1.57 ha as we deployed two PCs in that island, each of which
covering an area of 0.785 ha.

For treatment islands, each island was considered as a data point (n =
34; blue circles in Figure S2.2a) with the total number of species recorded de-
fined as the dependent variable and total surveyed area as the independent vari-
able. In contrast, for pseudo-control islands, we used the mean number of species
recorded in each of the six survey transects placed therein (Figure S2.1) as the de-
pendent variable, which was calculated from the aggregated number of species
recorded across all possible combinations of adjacent PCs (Figure S2.1) for any
given area surveyed (i.e., independent variable) in treatment islands. As such,
the total survey area was held constant in both pseudo-control and treatment is-
lands. For example, to calculate the mean number of species along the transect



Chapter 2 65

Pedral-B (which contained five PCs; Figure S2.1) for an area equivalent to two
adjacent PCs (1.57 ha), we used the number of species recorded by pairing PCs
1-2, 2-3, 3-4 and 4-5 (Figure S2.1). In this case, the number of species recorded was
38, 40, 49 and 45, respectively, with a mean of 43 species. We followed the same
procedure for all transects and combinations of 2, 3, 4, 6, 8, 10, 11 and 13 adjacent
PCs, amounting to 33 data points (red circles in Figure S2.2a). Subsequently, we
performed an ANCOVA model with island type as the categorical independent
variable to determine whether the intercept (c-value) and the slope (z-value) of
the predicted lines (red and blue lines in Figure S2.2a) were statistically different.

Predicted lines derived from pseudo-control islands (r2
adj = 0.950, P =

0.001) and from treatment islands (r2
adj = 0.614, P = 0.001) were different in

both the c-values (P < 0.001) and z-values (P = 0.008). For treatment islands,
the c-value was 1.125 and the z-value was 0.745. For pseudo-control islands, the
c-value was 1.533 and the z-value was 0.450. As such, treatment islands sup-
ported depauperate species assemblages and had experienced a much higher rate
of species loss as a function of surveyed area in relation to equivalent-sized sur-
vey areas within pseudo-control islands, which indicates that local extinction had
indeed occurred in treatment islands.

To estimate the number of extinctions that had occurred in treatment is-
lands, we rounded down to the nearest integer the predicted number of species
in pseudo-control islands (red line in Figure S2.2a) which was subtracted from
the number of species recorded in treatment islands (blue circles in Figure S2.2a;
Bolger et al., 1991). For example, the estimated number of local extinctions at
the small Island Caua was 35, since the predicted number of species in pseudo-
control islands for an equivalent survey area of 1.57 ha was 41.85 (41), whereas
the recorded number of species in that island was only 6 (Figure S2.2b). Over-
all, we estimated that a total of 788 local extinctions had occurred across all 34
treatment islands over 22-23 years of post-isolation history at the Tucuruı́ Hydro-
electric Reservoir landscape.



66 Chapter 2

Figure S2.1: Schematic representation of all six transects and 54 point count sta-
tions (PCs) deployed within the two pseudo-control islands (Divisa and Pedral)
at the Tucuruı́ Hydroelectric Reservoir landscape. PCs (black dots) and their 50-
m fixed-radius survey areas (circles) were distributed at regular 200-m intervals
along transects (black lines).
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Figure S2.2: (a) Species-area relationships for birds in pseudo-control islands (red
lines and circles) and in treatment islands (blue lines and circles) as a function
of surveyed area around point count stations. Coloured regions show the 95%
confidence intervals of predicted lines. Note the base 10 logarithmic scales along
both axes. (b) Numbers of bird species within pseudo-control islands (n = 164)
that were either recorded (blue horizontal bars) or estimated to have been locally
extinct (red horizontal bars) following isolation across 34 treatment islands at the
Tucuruı́ Hydroelectric Reservoir landscape. Islands are ordered top to bottom
from the largest to the smallest (Table S2.1).
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Figure S2.3: Individual-based rarefaction curves of the number of bird species
recorded per surveyed island at the Tucuruı́ Hydroelectric Reservoir landscape.
Each line represents one island coloured according to its sampling completeness,
which was quantified as a percentage between the recorded and the estimated
number of species based on the first-order Jackknife estimator. Islands are or-
dered by decreasing size as in Table S2.1. Note the different scales on both the x
and y axes.
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Figure S2.4: Caption on the next page
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Figure S2.4: Relationships between the proportion of islands occupied (PIO) and
species traits included in Phylogenetic Generalised Least Squares (PGLS) mod-
els with high support (∆AIC 6 2), namely natural abundance (a and b), habi-
tat breadth (c and d) and geographic range size (e and f). Grey circles repre-
sent the 207 bird species surveyed across 36 islands at the Tucuruı́ Hydroelec-
tric Reservoir landscape. Observed PIO was quantified as a percentage between
the number of islands where a species was recorded divided by the total num-
ber of surveyed islands, whereas detectability-corrected PIO was quantified from
single-season occupancy models (MacKenzie et al., 2002). See Table S2.3 for a
description of species traits. Note the base 10 logarithmic scales of the x-axes in
(a), (b), (e) and (f).
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Figure S2.5: Species-area relationship for birds surveyed across 37 islands at the
Thousand Island Lake in China (data reanalysed from Si et al., 2015) (P < 0.001).
The dotted line indicates null predicted numbers of species if forest fragmenta-
tion had no effect. Circles, squares, and triangles correspond to the recorded,
extrapolated, and overall number of species, respectively. Grey region and error
bars show the 95% confidence intervals of the predicted line and the extrapolated
value, respectively. See Yu et al. (2012) for an explanation for the low z-value
for bird species at the Thousand Island Lake. Note the base 10 logarithmic scales
along both axes.
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Figure S2.6: Comparison of the species-area relationships (SARs) for three avian
foraging guilds at the Tucuruı́ Hydroelectric Reservoir landscape (see Figure 2.S7)
and Lake Kenyir in Malaysia (data from Yong et al., 2011) (P 6 0.01 in all 12 in-
stances). Plots at the top show the semi-log form of the SARs and their respective
slope values, and those at the bottom show the log-log form of the SARs and their
respective z-values (z). Slope and z-values in each plot are sorted by decreasing
order, indicating the most (higher values) to the least (lower values) impaired
foraging guilds in terms of species losses as a function of island area reduction.
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Figure S2.7: Distribution of trophic level scores in six foraging guilds for 207 bird
species surveyed across 36 islands at the Tucuruı́ Hydroelectric Reservoir land-
scape. Species guilds were assigned according to Wilman et al. (2014), expect for
nectarivore-frugivores, which were split into nectarivores (Trochilidae and Co-
erebidae) and frugivores. Note that the trophic level of some species belonging
to a foraging guild may overlap those of another foraging guild.
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Figure S2.8: Caption on the next page
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Figure S2.8: Species occurrence of ground insectivores, obligate ant-followers,
and obligate mixed-species flock attendants along the island area gradient. Bars
indicate species occurrence on islands, ordered left to right from the smallest to
the largest. Bars at the bottom indicate the area of each island, which ranged from
3.4 to 2551.5 ha. Ground insectivores: C. aurita, C. roberti, F. analis, F. colma, H.
macularius; obligate ant-followers: P. nigromaculata, P. leuconota; obligate mixed-
species flock attendants: A. infuscatus, H. guira, H. hypoxanthus, H. ochraceiceps,
M. longipennis, M. menetriesii, P. minor, P. erythrocercum, T. luctuosus, T. caesius, X.
minutus, X. spixii.



Table S2.1: Description of the 36 islands surveyed at the Tucuruí Hydroelectric 

Reservoir landscape, and number of bird species occurring therein. ‘Effort’ 

indicates the number of point count stations (PCs) and ‘Samples’ indicates the 

number of PCs times the number of survey visits per PCs. 
 

Island name Latitude 

(S) 

Longitude 

(W) 

Area 

(ha) 

Shape 

index 

Proximity 

index 

Effort 

(PCs) 

Samples Sfsa Shgb Sallc 

Divisa 

Pedral 

Marcelo 

Eduardo 

Tamarindo 

Prefeito 

Cornélio 

Bicuda 

Lucyana 

Juarez 

Miúdo 

Queimada 

Nívia-B4 

Cornélio-Jr 

Chifre 

Sidnei 

Roca 

Gito 

Tiago-B4 

Urubu-rei 

Embaúba 

Fantasia 

Vandir 

Placa 

Guariba 

Carrapato 

Nívia-B3 

Lobão 

Barranco 

Ailton 

Duca 

Fora 

Panema 

Castanha 

Chuva 

Caua 

4°12'22" 

4°22'44" 

4°09'17" 

4°18'32" 

4°16'09" 

4°19'51" 

4°17'15" 

4°09'30" 

4°10'09" 

4°16'29" 

4°25'15" 

4°16'23" 

4°14'58" 

4°17'42" 

4°17'16" 

4°20'47" 

4°25'41" 

4°17'52" 

4°13'52" 

4°16'05" 

4°18'08" 

4°15'24" 

4°22'31" 

4°19'12" 

4°10'39" 

4°23'56" 

4°17'38" 

4°18'22" 

4°09'34" 

4°21'06" 

4°17'11" 

4°08'26" 

4°10'33" 

4°09'03" 

4°10'59" 

4°23'18" 

49°30'04" 

49°35'31" 

49°32'45" 

49°39'17" 

49°39'49" 

49°37'35" 

49°28'05" 

49°32'01" 

49°33'47" 

49°30'56" 

49°33'16" 

49°38'55" 

49°29'41" 

49°29'05" 

49°38'04" 

49°37'32" 

49°33'38" 

49°36'47" 

49°30'19" 

49°29'25" 

49°38'12" 

49°30'07" 

49°33'47" 

49°37'51" 

49°32'40" 

49°34'22" 

49°37'25" 

49°37'38" 

49°34'07" 

49°35'13" 

49°30'25" 

49°33'57" 

49°33'05" 

49°33'24" 

49°32'29" 

49°34'08" 

2551.45 

1823.35 

342.43 

251.93 

232.74 

198.66 

178.27 

113.99 

98.23 

91.55 

57.75 

43.09 

40.52 

36.18 

34.79 

34.62 

34.35 

33.19 

32.53 

31.61 

28.32 

26.06 

24.39 

22.95 

19.50 

19.17 

18.30 

17.09 

16.99 

14.74 

11.02 

5.95 

5.40 

4.29 

3.79 

3.39 

8.42 

5.63 

3.97 

3.59 

2.39 

2.29 

3.52 

2.43 

2.42 

2.43 

1.91 

2.02 

1.91 

2.01 

1.80 

1.54 

1.58 

2.26 

1.32 

2.70 

1.97 

1.51 

1.36 

1.56 

1.37 

1.65 

1.23 

1.89 

1.29 

1.20 

1.44 

1.15 

1.11 

1.09 

1.09 

1.06 

40111.28 

40111.28 

99.15 

699.83 

1.07 

813.48 

64.99 

4011.13 

72.43 

9.83 

1131.61 

450.06 

584.42 

86.66 

5.68 

42.16 

18.53 

0.42 

1.74 

0.80 

25.75 

913.16 

85.16 

128.96 

186.97 

218.36 

9.98 

32.06 

66.34 

2136.92 

8.53 

20.74 

19.78 

52.51 

2200.61 

0.01 

33 

21 

13 

13 

13 

13 

13 

6 

10 

11 

8 

4 

4 

4 

4 

4 

6 

6 

4 

3 

4 

4 

3 

4 

2 

3 

3 

4 

3 

2 

3 

2 

4 

2 

2 

2 

195 

124 

78 

70 

78 

76 

78 

36 

59 

65 

45 

19 

24 

20 

23 

21 

36 

33 

23 

18 

24 

24 

18 

22 

12 

18 

15 

21 

18 

12 

18 

12 

24 

8 

12 

9 

49 

55 

31 

28 

23 

35 

27 

27 

23 

15 

23 

6 

20 

7 

13 

22 

17 

9 

14 

8 

10 

17 

8 

15 

2 

13 

6 

10 

8 

7 

2 

10 

13 

6 

6 

0 

79 

64 

45 

35 

39 

49 

45 

43 

45 

38 

35 

18 

33 

29 

29 

25 

30 

35 

32 

30 

21 

37 

22 

23 

6 

15 

12 

19 

25 

14 

18 

20 

25 

19 

20 

7 

128 

119 

76 

63 

62 

84 

72 

70 

68 

53 

58 

24 

53 

36 

42 

47 

47 

44 

46 

38 

31 

54 

30 

38 

8 

28 

18 

29 

33 

21 

20 

30 

38 

25 

26 

7 
 

 

           a Sfs: number of forest specialist species 
           b Shg: number of habitat generalist species 
           c Sall: overall number of species 
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Table S2.2: Description and sources of seven morpho-ecological traits for bird 

species considered in this study. 
 

Species trait Description Source 

Body mass Species mean body mass (g) Wilman et al., 2014 

Trophic level 

Sum of the proportional food 

consumption in each diet category 

weighted by an energetic score: 

(1) foliage and other plant material, 

(2) fruit and nectar, (3) seed, 

(4) invertebrate, (5) vertebrate, including 

carrion. For example, a species relying 

entirely on invertebrates is assigned a 

value 4, and a species relying on 50% 

fruits and 50% invertebrates is assigned 

a value 3 

Wilman et al., 2014 

Vertical stratum 

Preferred foraging stratum classified 

into four categories: (1) ground, (2) 

understorey, (3) midstorey, (4) canopy 

Stotz et al., 1996; 

Henriques et al., 2003; 

Wilman et al., 2014; 

personal observation 

Flocking behaviour 

Degree of gregariousness classified into 

six categories: (1) solitary or pairs, 

(2) monospecific flocks, (3) facultative 

ant-follower, (4) facultative mixed-

species flock attendant, (5) obligate ant-

follower, and (6) obligate mixed-species 

flock attendant 

Willis & Oniki, 1978; 

Munn & Terborgh, 1979; 

Jullien & Thiollay, 1998; 

Thiollay & Jullien, 1998; 

Jullien & Clobert, 2000; 

Willson, 2004; 

Martínez et al., 2016; 

personal observation 

Geographic range size 
Breeding/resident extent of occurrence 

(km2) 

BirdLife International, 

2017 

Habitat breadth Number of habitats used Stotz et al., 1996 

Natural abundance 
Total number of individuals recorded 

within pseudo-control islands 
 

Field surveys 
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archipelago

# Clear workspace and disable scientific notation
remove(list = ls()); options(scipen = 999)

Packages

library(caper)
library(qpcR)

Species-area relationships (SAR models)

tables1 = read.table("https://ndownloader.figshare.com/files/15158654", header = T, row.names = 1)

sar.all = lm(log10(Sall + 1) ~ log10(area), data = tables1)
sar.fs = lm(log10(Sfs + 1) ~ log10(area), data = tables1)
sar.hg = lm(log10(Shg + 1) ~ log10(area), data = tables1)

summary(sar.all)

##
## Call:
## lm(formula = log10(Sall + 1) ~ log10(area), data = tables1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.55351 -0.05124 0.02985 0.10188 0.25938
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.10043 0.06963 15.80 < 0.0000000000000002 ***
## log10(area) 0.31574 0.04028 7.84 0.00000000398 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.158 on 34 degrees of freedom
## Multiple R-squared: 0.6438, Adjusted R-squared: 0.6334
## F-statistic: 61.46 on 1 and 34 DF, p-value: 0.000000003985
summary(sar.fs)

##
## Call:
## lm(formula = log10(Sfs + 1) ~ log10(area), data = tables1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.67741 -0.08069 0.02970 0.14995 0.38494
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##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.45772 0.09878 4.634 0.0000510189 ***
## log10(area) 0.41435 0.05714 7.252 0.0000000215 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2242 on 34 degrees of freedom
## Multiple R-squared: 0.6073, Adjusted R-squared: 0.5958
## F-statistic: 52.59 on 1 and 34 DF, p-value: 0.00000002148
summary(sar.hg)

##
## Call:
## lm(formula = log10(Shg + 1) ~ log10(area), data = tables1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.51392 -0.04700 0.04992 0.08502 0.20200
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.02117 0.06324 16.15 < 0.0000000000000002 ***
## log10(area) 0.26190 0.03658 7.16 0.0000000281 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1435 on 34 degrees of freedom
## Multiple R-squared: 0.6012, Adjusted R-squared: 0.5895
## F-statistic: 51.26 on 1 and 34 DF, p-value: 0.00000002805

Forest specialists vs. habitat generalists

sar.comparison = as.data.frame(cbind(c(tables1$area, tables1$area),
c(tables1$Sfs, tables1$Shg)))

names(sar.comparison) = c("area", "richness")
sar.comparison$group = "forest_specialists"
sar.comparison[37:72,]$group = "habitat_generalists"

summary(lm(log10(richness + 1) ~ log10(area) * group, data = sar.comparison))

##
## Call:
## lm(formula = log10(richness + 1) ~ log10(area) * group, data = sar.comparison)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.67741 -0.06330 0.04875 0.11563 0.38494
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.45772 0.08294 5.519
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## log10(area) 0.41435 0.04797 8.637
## grouphabitat_generalists 0.56344 0.11729 4.804
## log10(area):grouphabitat_generalists -0.15246 0.06784 -2.247
## Pr(>|t|)
## (Intercept) 0.00000057627628 ***
## log10(area) 0.00000000000153 ***
## grouphabitat_generalists 0.00000893061520 ***
## log10(area):grouphabitat_generalists 0.0279 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1882 on 68 degrees of freedom
## Multiple R-squared: 0.6968, Adjusted R-squared: 0.6834
## F-statistic: 52.09 on 3 and 68 DF, p-value: < 0.00000000000000022

Fragmentation effect

combined.area = data.frame(area = sum(tables1$area))

# All species
10^(predict(sar.all, combined.area, interval = "confidence"))

## fit lwr upr
## 1 201.5509 130.4784 311.3373
# Forest specialists
10^(predict(sar.fs, combined.area, interval = "confidence"))

## fit lwr upr
## 1 109.0632 58.85262 202.1113
# Habitat generalists
10^(predict(sar.hg, combined.area, interval = "confidence"))

## fit lwr upr
## 1 104.6634 70.51507 155.3486

Phylogenetic Generalised Least Squares (PGLS)

tables3 = read.table("https://ndownloader.figshare.com/files/15158657", header = T, row.names = 1)

# Bird tree (1,000 phylogenetic download from birdtree.org - Hacket All Species)
tree.1000 = read.nexus("https://ndownloader.figshare.com/files/15158651")
tree.consensus = consensus(tree.1000, p = 0.5)
tree = compute.brlen(tree.consensus, 1)

dataset = comparative.data(tree, tables3, species, vcv = TRUE)

PGLS models

# Response variable: observed.PIO
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# Univariate models
obs.body.mass = pgls(observed.PIO ~

log10(body.mass),
dataset, lambda = "ML")

obs.trophic.level = pgls(observed.PIO ~
trophic.level,

dataset, lambda = "ML")

obs.vertical.stratum = pgls(observed.PIO ~
vertical.stratum,

dataset, lambda = "ML")

obs.flocking.behaviour = pgls(observed.PIO ~
flocking.behaviour,

dataset, lambda = "ML")

obs.geographic.range.size = pgls(observed.PIO ~
log10(geographic.range.size),

dataset, lambda = "ML")

obs.habitat.breadth = pgls(observed.PIO ~
habitat.breadth,

dataset, lambda = "ML")

obs.natural.abundance = pgls(observed.PIO ~
log10(natural.abundance + 1),

dataset, lambda = "ML")

# Additive models
obs.add.rarity = pgls(observed.PIO ~

log10(geographic.range.size) +
habitat.breadth +
log10(natural.abundance + 1),

dataset, lambda = "ML")

obs.add.pop.size = pgls(observed.PIO ~
log10(natural.abundance + 1) +
log10(body.mass) +
trophic.level,

dataset, lambda = "ML")

obs.add.foraging = pgls(observed.PIO ~
trophic.level +
vertical.stratum +
flocking.behaviour,

dataset, lambda = "ML")

# Interactive models
obs.int.rarity = pgls(observed.PIO ~

log10(geographic.range.size) *
habitat.breadth *
log10(natural.abundance + 1),
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dataset, lambda = "ML")

obs.int.pop.size = pgls(observed.PIO ~
log10(natural.abundance + 1) *
log10(body.mass) *
trophic.level,

dataset, lambda = "ML")

obs.int.foraging = pgls(observed.PIO ~
trophic.level *
vertical.stratum *
flocking.behaviour,

dataset, lambda = "ML")

# Model selection
obs.AIC = AIC(
obs.body.mass,
obs.trophic.level,
obs.vertical.stratum,
obs.flocking.behaviour,
obs.geographic.range.size,
obs.habitat.breadth,
obs.natural.abundance,
obs.add.rarity,
obs.add.pop.size,
obs.add.foraging,
obs.int.rarity,
obs.int.pop.size,
obs.int.foraging)

obs.AIC$deltaAIC = akaike.weights(obs.AIC$AIC)$deltaAIC
obs.AIC$weights = akaike.weights(obs.AIC$AIC)$weights

obs.R2 = c(
summary(obs.body.mass)[11],
summary(obs.trophic.level)[11],
summary(obs.vertical.stratum)[11],
summary(obs.flocking.behaviour)[11],
summary(obs.geographic.range.size)[11],
summary(obs.habitat.breadth)[11],
summary(obs.natural.abundance)[11],
summary(obs.add.rarity)[11],
summary(obs.add.pop.size)[11],
summary(obs.add.foraging)[11],
summary(obs.int.rarity)[11],
summary(obs.int.pop.size)[11],
summary(obs.int.foraging)[11])

obs.AIC$R2 = obs.R2
obs.AIC[order(obs.AIC$df, obs.AIC$AIC),]

## df AIC deltaAIC
## obs.natural.abundance 2 1697.151 43.91801
## obs.habitat.breadth 2 1847.325 194.09149
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## obs.geographic.range.size 2 1850.594 197.36105
## obs.body.mass 2 1851.311 198.07724
## obs.flocking.behaviour 2 1854.150 200.91651
## obs.vertical.stratum 2 1854.443 201.20923
## obs.trophic.level 2 1854.845 201.61137
## obs.add.rarity 4 1666.006 12.77283
## obs.add.pop.size 4 1700.690 47.45681
## obs.add.foraging 4 1857.672 204.43835
## obs.int.rarity 8 1653.233 0.00000
## obs.int.pop.size 8 1703.471 50.23766
## obs.int.foraging 8 1862.848 209.61422
## weights
## obs.natural.abundance 0.0000000002901317601347173152741276691557459344039671
## obs.habitat.breadth 0.0000000000000000000000000000000000000000007125875949
## obs.geographic.range.size 0.0000000000000000000000000000000000000000001389511267
## obs.body.mass 0.0000000000000000000000000000000000000000000971277103
## obs.flocking.behaviour 0.0000000000000000000000000000000000000000000234857139
## obs.vertical.stratum 0.0000000000000000000000000000000000000000000202880563
## obs.trophic.level 0.0000000000000000000000000000000000000000000165926934
## obs.add.rarity 0.0016814538813696659064200744637673778925091028213501
## obs.add.pop.size 0.0000000000494486035020742518628078521203406126005575
## obs.add.foraging 0.0000000000000000000000000000000000000000000040368805
## obs.int.rarity 0.9983185457667386186741964593238662928342819213867187
## obs.int.pop.size 0.0000000000123112154063535430734924874807134642651363
## obs.int.foraging 0.0000000000000000000000000000000000000000000003034732
## R2
## obs.natural.abundance 0.5540062
## obs.habitat.breadth 0.03140069
## obs.geographic.range.size 0.01672049
## obs.body.mass 0.01524488
## obs.flocking.behaviour -0.0007736182
## obs.vertical.stratum -0.002445984
## obs.trophic.level -0.004384838
## obs.add.rarity 0.6199413
## obs.add.pop.size 0.5506145
## obs.add.foraging -0.007402409
## obs.int.rarity 0.6493197
## obs.int.pop.size 0.5529954
## obs.int.foraging -0.01492667
# Response variable: detectability.corrected.PIO

# Univariate models
cor.body.mass = pgls(detectability.corrected.PIO ~

log10(body.mass),
dataset, lambda = "ML")

cor.trophic.level = pgls(detectability.corrected.PIO ~
trophic.level,

dataset, lambda = "ML")

cor.vertical.stratum = pgls(detectability.corrected.PIO ~
vertical.stratum,

dataset, lambda = "ML")
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cor.flocking.behaviour = pgls(detectability.corrected.PIO ~
flocking.behaviour,

dataset, lambda = "ML")

cor.geographic.range.size = pgls(detectability.corrected.PIO ~
log10(geographic.range.size),

dataset, lambda = "ML")

cor.habitat.breadth = pgls(detectability.corrected.PIO ~
habitat.breadth,

dataset, lambda = "ML")

cor.natural.abundance = pgls(detectability.corrected.PIO ~
log10(natural.abundance + 1),

dataset, lambda = "ML")

# Additive models
cor.add.rarity = pgls(detectability.corrected.PIO ~

log10(geographic.range.size) +
habitat.breadth +
log10(natural.abundance + 1),

dataset, lambda = "ML")

cor.add.pop.size = pgls(detectability.corrected.PIO ~
log10(natural.abundance + 1) +
log10(body.mass) +
trophic.level, dataset,

lambda = "ML")

cor.add.foraging = pgls(detectability.corrected.PIO ~
trophic.level +
vertical.stratum +
flocking.behaviour,

dataset, lambda = "ML")

# Interactive models
cor.int.rarity = pgls(detectability.corrected.PIO ~

log10(geographic.range.size) *
habitat.breadth *
log10(natural.abundance + 1),

dataset, lambda = "ML")

cor.int.pop.size = pgls(detectability.corrected.PIO ~
log10(natural.abundance + 1) *
log10(body.mass) *
trophic.level,

dataset, lambda = "ML")

cor.int.foraging = pgls(detectability.corrected.PIO ~
trophic.level *
vertical.stratum *
flocking.behaviour,

dataset, lambda = "ML")
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# Model selection
cor.AIC = AIC(
cor.body.mass,
cor.trophic.level,
cor.vertical.stratum,
cor.flocking.behaviour,
cor.geographic.range.size,
cor.habitat.breadth,
cor.natural.abundance,
cor.add.rarity,
cor.add.pop.size,
cor.add.foraging,
cor.int.rarity,
cor.int.pop.size,
cor.int.foraging)

cor.AIC$deltaAIC = akaike.weights(cor.AIC$AIC)$deltaAIC
cor.AIC$weights = akaike.weights(cor.AIC$AIC)$weights

cor.R2 = c(
summary(cor.body.mass)[11],
summary(cor.trophic.level)[11],
summary(cor.vertical.stratum)[11],
summary(cor.flocking.behaviour)[11],
summary(cor.geographic.range.size)[11],
summary(cor.habitat.breadth)[11],
summary(cor.natural.abundance)[11],
summary(cor.add.rarity)[11],
summary(cor.add.pop.size)[11],
summary(cor.add.foraging)[11],
summary(cor.int.rarity)[11],
summary(cor.int.pop.size)[11],
summary(cor.int.foraging)[11])

cor.AIC$R2 = cor.R2
cor.AIC[order(cor.AIC$df, cor.AIC$AIC),]

## df AIC deltaAIC weights
## cor.natural.abundance 2 1877.104 15.115382 0.00040633043973531
## cor.habitat.breadth 2 1891.950 29.961541 0.00000024270399151
## cor.geographic.range.size 2 1898.307 36.318896 0.00000001010636301
## cor.body.mass 2 1901.063 39.074212 0.00000000254850565
## cor.trophic.level 2 1902.062 40.073670 0.00000000154616540
## cor.flocking.behaviour 2 1902.317 40.328237 0.00000000136137392
## cor.vertical.stratum 2 1902.804 40.815409 0.00000000106706179
## cor.add.rarity 4 1864.512 2.523701 0.22035774683845807
## cor.add.pop.size 4 1875.745 13.756426 0.00080162814017317
## cor.add.foraging 4 1905.494 43.505318 0.00000000027802451
## cor.int.rarity 8 1861.988 0.000000 0.77829264307246515
## cor.int.pop.size 8 1879.215 17.226645 0.00014139186565967
## cor.int.foraging 8 1909.816 47.827843 0.00000000003202277
## R2
## cor.natural.abundance 0.1129218
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## cor.habitat.breadth 0.04737096
## cor.geographic.range.size 0.01786144
## cor.body.mass 0.004830527
## cor.trophic.level -0.0006297909
## cor.flocking.behaviour -0.0020095
## cor.vertical.stratum -0.004370121
## cor.add.rarity 0.1731607
## cor.add.pop.size 0.1281231
## cor.add.foraging -0.007763853
## cor.int.rarity 0.1985205
## cor.int.pop.size 0.129537
## cor.int.foraging -0.0100225

Detectability as a function of natural abundance

summary(pgls(detectability ~ log10(natural.abundance + 1), dataset, lambda = "ML"))

##
## Call:
## pgls(formula = detectability ~ log10(natural.abundance + 1),
## data = dataset, lambda = "ML")
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.5863 -3.3878 0.6103 3.3986 13.3980
##
## Branch length transformations:
##
## kappa [Fix] : 1.000
## lambda [ ML] : 0.437
## lower bound : 0.000, p = 0.0000010465
## upper bound : 1.000, p = 0.000000000037904
## 95.0% CI : (0.193, 0.691)
## delta [Fix] : 1.000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.2878 3.6098 2.0189 0.0448
## log10(natural.abundance + 1) 13.6458 1.8700 7.2972 0.000000000006332
##
## (Intercept) *
## log10(natural.abundance + 1) ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.033 on 205 degrees of freedom
## Multiple R-squared: 0.2062, Adjusted R-squared: 0.2023
## F-statistic: 53.25 on 1 and 205 DF, p-value: 0.000000000006332

Chapter 2 95





Chapter 3

Patch-scale biodiversity retention in
fragmented landscapes: Reconciling
the habitat amount hypothesis with
the island biogeography theory

Published as:
Bueno AS, Peres CA (2019) Patch-scale biodiversity retention in fragmented land-
scapes: Reconciling the habitat amount hypothesis with the island biogeography
theory. Journal of Biogeography 46:621–632. doi:10.1111/jbi.13499.

97

https://doi.org/10.1111/jbi.13499


98 Chapter 3

3.1 Abstract

Aim: To test whether the species richness of understorey insectivorous birds on
forest islands induced by a major hydroelectric dam is best explained by either
the island biogeography theory (IBT) or the habitat amount hypothesis (HAH).
Given the low dispersal ability of the focal species group and the hostile water
matrix, we predict that the species richness will be predominantly driven by an
island effect as posited by the IBT, rather than a sample area effect as posited by
the HAH.

Location: Forest islands within the Balbina Hydroelectric Reservoir, central
Brazilian Amazonia.

Taxon: Birds.

Methods: We mist-netted birds at 33 forest islands (0.63–1,699 ha), totalling 874
individuals of 59 species. The size of the local landscape used to calculate the
habitat amount was determined by a multi-scale analysis in which buffers around
mist-net lines ranged from 50 to 2,000 m. We applied four tests to examine
whether the species richness on forest islands is predominantly driven by either
an island effect (island size) or a sample area effect (habitat amount).

Results: From the four tests applied, one was consistent with an island effect, two
were regarded as inappropriate to test the HAH, and one could not be adequately
addressed due to island size being highly correlated with habitat amount in the
local landscape (200-m buffer).

Main conclusions: Some of the proposed ways of testing the HAH may lead
to misleading conclusions. The relative importance of island size in determin-
ing the species richness of understorey insectivorous birds on forest islands is
higher than that of surrounding habitat amount, thereby providing stronger sup-
port for IBT. We propose a conceptual framework, based on the degree of matrix
permeability and species dispersal ability, to determine to what extent a patch- or
landscape-centric worldview in landscape ecology provides the most appropriate
framework to assess the effects of habitat fragmentation on biodiversity.

KEYWORDS
Amazonia, habitat amount hypothesis, habitat fragmentation, habitat loss, in-
sularization, island biogeography theory, SLOSS, species richness, Species–area
relationship, tropical forest
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3.2 Introduction

MacArthur and Wilson’s (1967) island biogeography theory (hereafter, IBT) has
been widely applied as a paradigmatic conceptual framework in habitat fragmen-
tation ecology, implying that habitat patches are analogous to oceanic islands
surrounded by a hostile matrix (Haila, 2002; Laurance, 2008). However, such
analogy has been repeatedly challenged as IBT does not account for many fac-
tors operating in fragmented landscapes (Laurance, 2008; Wiens, 2008), which
were later incorporated into a landscape ecology framework (Haila, 2002). For
example, species move among suitable habitat patches as a function of varying
degrees of terrestrial matrix permeability (Powell, Stouffer, & Johnson, 2013), in-
dicating that habitat patches exert weaker boundaries to local populations and
their derivative assemblages compared to oceanic islands. If habitat patches fail
to behave as discrete spatial units, the universally celebrated species–area rela-
tionship (hereafter, SAR)—which is widely observed in fragmented landscapes
(Matthews, Guilhaumon, Triantis, Borregaard, & Whittaker, 2016)—may be gov-
erned at spatial scales larger than that of island effects driven by habitat patch
size.

With this in mind, Fahrig (2013) proposed the habitat amount hypothesis
(hereafter, HAH), which posits that habitat patches are not discrete spatial units,
and the habitat surrounding any given patch is the main source of immigrants.
The underlying mechanism of SARs in fragmented landscapes is therefore pre-
dicted to be the sample area effect, rather than the island effect. Accordingly, sam-
ple sites within larger habitat patches harbour more species because they are also
associated with a greater amount of surrounding habitat. Meanwhile, sample
sites associated with the same amount of landscape-scale habitat should harbour
the same number of species, regardless of patch size (fig. 7 in Fahrig, 2013). Such
notion implies that conservation efforts should primarily focus on increasing the
overall habitat amount (i.e. proportion of habitat in the landscape) without nec-
essarily considering its spatial arrangement (i.e. size and isolation of individual
habitat patches) (Seibold et al., 2017).

The generalisation of the HAH was initially criticised as its application
was considered to be restricted to small-scale landscapes containing large habi-
tat amounts (Hanski, 2015), although the HAH was yet to be tested (Fahrig,
2015). Recent empirical studies carried out in a variety of natural (e.g. forest
fragments, fluvial islands, calcareous grasslands) and experimental fragmented
landscapes (e.g. dead-wood microhabitats, moss fragments), across a wide range
of taxonomic groups (e.g. small and arboreal mammals, birds, vascular plants,
saproxylic beetles, micro-arthropods), have either supported (Melo, Sponchiado,
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Cáceres, & Fahrig, 2017; Rabelo, Bicca-Marques, Aragón, & Nelson, 2017; Seibold
et al., 2017) or refuted (Evju & Sverdrup-Thygeson, 2016; Haddad et al., 2016; Tor-
renta & Villard, 2017) the HAH. Therefore, further empirical studies are needed to
appraise the degree to which the HAH can be generalised to different landscape
scenarios and taxonomic groups (Rabelo et al., 2017).

The IBT and HAH were originally developed within a context of oceanic
islands (MacArthur & Wilson, 1967) and habitat patches within terrestrial land-
scapes (Fahrig, 2013), respectively. These two landscape scenarios may be seen as
extremes along a continuum. In a global synthesis, Matthews et al. (2016) showed
that z-values of SARs are higher in true islands than in habitat patches. They
also reported gradients in z-values ranging from inland water-body to oceanic
islands, and from forest to mountaintop habitat patches. Hence, the magnitude
of island effects is context-dependent regarding the type of matrix surrounding
habitat patches (Prugh, Hodges, Sinclair, & Brashares, 2008). Patterns of species
richness in intermediate landscape scenarios, such as inland water-body islands
and mountaintops, could therefore be explained by either IBT or HAH.

The HAH was erected under the assumption that species perceive the
wider macrohabitat mosaic as functionally connected (Fahrig, 2013). Matrix per-
meability, as measured by the structural similarity between habitat patches and
any surrounding matrix (Prevedello & Vieira, 2010), along with inherent differ-
ences in species dispersal ability (Lees & Peres, 2009), would then determine
whether species use their habitat primarily at the patch- or landscape-scale. Ac-
cordingly, we hypothesise that patterns of species richness in fragmented land-
scapes can be better explained under either the HAH, if species exhibit high lev-
els of dispersal ability across a permeable matrix, or the IBT, if species exhibit low
dispersal ability across a hostile matrix.

Here, we examined whether the HAH can be extended to anthropogenic
archipelagic landscapes using the number of understorey insectivorous bird
species on forest islands induced by a large hydroelectric dam in central Brazil-
ian Amazonia. We focused on understorey insectivorous birds because they
are particularly vulnerable to forest loss and fragmentation (Powell, Cordeiro,
& Stratford, 2015), and exhibit low dispersal ability through non-forest matrix
habitats (Laurance, Stouffer, & Laurance, 2004; Şekercioḡlu et al., 2002). We
show that the number of understorey insectivorous bird species on forest is-
lands is best explained by an island effect, which is consistent with the IBT.
Moreover, we propose a conceptual framework, based on the degree of matrix
permeability and species dispersal ability, to determine which point along the
continuum between a patch- and landscape-centric worldview in fragmentation
ecology—represented here by either IBT or HAH—provides the most appropri-
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ate guiding framework for biodiversity studies in fragmented landscapes.

3.3 Methods

3.3.1 Study area

This study was carried out within the Balbina Hydroelectric Reservoir (BHR)
in central Brazilian Amazonia (1◦40’ S, 59◦40’ W; Figure 3.1). The BHR spans
c. 300,000 ha and was formed by the damming of the Uatumã River in 1987
(Fearnside, 2016), creating over 3,500 land-bridge islands of variable size (range
= 0.2–4,878 ha), which are surrounded by a vast water reservoir often contain-
ing dead tree snags rising above the water level (Benchimol & Peres, 2015a). To
offset the environmental impacts of the dam, the left bank of the former Uatumã
River, including all islands, became strictly protected by the 940,358-ha Uatumã
Biological Reserve (IUCN category Ia), the largest of its category in Brazil (Figure
3.1).

Figure 3.1: (a) Location of the study area in central Brazilian Amazonia, indicated
by a solid rectangle containing (b) the Balbina Hydroelectric Reservoir (BHR)
landscape, showing the boundaries of the Uatumã Biological Reserve, a strictly-
protected area safeguarding most of this landscape; (c) larger inset map show-
ing the spatial distribution of the 33 surveyed islands; and (d) the 200-m buffer
area (red polygon) around a mist-net line (white line) representing the local land-
scapes derived for the understorey insectivorous birds examined here. Photo
credit: Eduardo M. Venticinque.

The vegetation is comprised primarily of submontane dense om-
brophilous (terra firme) forest, although igapó forest subjected to seasonal flooding
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formerly occurred along the margins of the Uatumã River before damming. For-
est structure varies among islands due to both island size and associated edge-
mediated disturbance: smaller islands are species-poor and dominated by pio-
neer tree species, whereas larger islands are species-rich and contain a higher
dominance of large-seeded canopy tree species (Benchimol & Peres, 2015a). Ac-
cording to the Köppen classification, the climate is equatorial fully humid (Af),
with mean annual precipitation and temperature of 2,464 mm and 26.5◦C, respec-
tively (Alvares, Stape, Sentelhas, Gonçalves, & Sparovek, 2013).

3.3.2 Sampling design

We selected 33 forest islands within the BHR, ranging in size from 0.63 to 1,699
ha. Sixteen islands were on the left bank, whereas 17 islands were on the right
bank (Figure 3.1). The combined study meta-landscape encompassed 175,583 ha
where sample sites were spaced apart by an average distance of 27.9 km (SD =
15.0 km; range = 2.0–68.5 km).

We surveyed birds using mist nets (12 × 2.5 m, Ecotone 1016/12) from July
to December in two consecutive years (2015 and 2016). We placed 16 mist nets
end-to-end in the understorey along a continuous near-linear net-line (c. 200 m)
whenever possible, but used a cross-shaped net-line design on islands smaller
than 4 ha, thereby ensuring the same sampling effort across all 33 surveyed is-
lands. Herein, each mist-net line corresponds to one sample site. Mist nets were
operated from 06:00 to 15:00 h for 2 days at each site each year, resulting in a total
sampling effort of 19,008 net-hours (16 mist nets × 9 hr × 2 days × 2 years × 33
sites). To avoid double-counting, we ringed birds with coded aluminium rings
and excluded recaptures. Rings were provided by the Brazilian National Center
for Bird Conservation and Research (CEMAVE) under research permits SISBIO
49068 and CEMAVE 3984.

3.3.3 Response variable and species group

We used the number of species of understorey insectivorous birds as the response
variable, and limited our analysis to forest species because the habitat type (i.e.
forest) must be appropriately defined for the focal species group (Fahrig, 2013).
We defined forest species as those classified as having “medium” or “high”
levels of forest dependency (sensu BirdLife International, 2018), and insectivo-
rous species as those classified under the “invertebrate” dietary category (sensu
Wilman et al., 2014). The only forest insectivorous species omitted from the anal-
ysis was the Amazonian Pygmy-Owl (Glaucidium hardyi) because surveys were
diurnal, and this species is nocturnal (Wilman et al., 2014). As understorey mist
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nets primarily capture understorey birds and occasionally those that walk on the
ground or forage at forest strata higher than 2.5 m (Karr, 1981), we considered all
species captured as understorey birds to avoid misinterpretation.

3.3.4 Predictor variables

We extracted data on island size and habitat amount for all 33 sample sites using
a classified image (Collection 2, 2015, Amazon) derived from 30-m resolution
LANDSAT imagery downloaded from the Brazilian Annual Land Use and Land
Cover Mapping Project (available at http://mapbiomas.org). To do so, we used
the QGIS software (QGIS Development Team, 2016) and the LecoS plugin (Jung,
2016). Island size corresponds to the total forest area (in hectares) within an is-
land, and habitat amount corresponds to the percentage of forest cover within a
given surrounding landscape at varying scales. In extracting the predictor vari-
ables, only “dense forest” (pixel value 3) was defined as forest, because other
pixel values effectively represent either heavily degraded forests or non-forest
land cover types.

3.3.5 Data analysis

Scale of effect

Species-landscape relationships are strongly affected by the scale at which land-
scape attributes are measured (Jackson & Fahrig, 2015). We therefore employed
a multi-scale analysis to determine the “scale of effect”—the landscape-scale at
which the relationship between the number of species and habitat amount peaks
(Jackson & Fahrig, 2015). We defined the scale of effect as the “local landscape”
for understorey insectivorous birds at the Balbina forest archipelago. Our multi-
scale analysis examined 40 different buffer sizes around sample sites (i.e. mist-net
lines), ranging from 50 to 2,000 m at 50-m intervals. The smallest landscape-scale
(50 m) corresponds to the average between the reluctance of Amazonian under-
storey birds to cross forest clearings as narrow as 30 m (Laurance et al., 2004) and
an assemblage-wide avian gap-crossing ability of up to 70 m (Lees & Peres, 2009).
The largest landscape-scale (2,000 m) includes those frequently used in avian
fragmentation studies (Aurélio-Silva, Anciães, Henriques, Benchimol, & Peres,
2016; Jackson & Fahrig, 2015; Morante-Filho, Faria, Mariano-Neto, & Rhodes,
2015). For this analysis, we included all 33 surveyed islands and log-transformed
the response and predictor variables (log10 x + 1).

http://mapbiomas.org
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IBT versus HAH

The number of species in fragmented landscapes can be explained by either patch
size (e.g. Torrenta & Villard, 2017) or habitat amount (e.g. Melo et al., 2017),
which represents two worldviews in assessing the total area of suitable habitat.
This means that the iconic SAR (Rosenzweig, 1995) holds true regardless of its
spatial drivers (patch size or habitat amount), but that the underlying mecha-
nism may be either the island effect driven by patch size as posited by the IBT
(MacArthur & Wilson, 1967), or the sample area effect driven by habitat amount
as posited by the HAH (Fahrig, 2013). We applied four tests to determine whether
the IBT or the HAH is the most appropriate theoretical framework to explain the
number of understorey insectivorous bird species on forest islands within the
BHR.

Test 1: Multiple linear regression

We used multiple linear regression analysis to examine the independent effects
of island size and habitat amount in the local landscape on species richness. This
method allows one to estimate how much of the variation in the response variable
(i.e. number of species) can be attributed solely to a predictor variable (e.g. island
size), once the effects of another predictor (e.g. habitat amount) are controlled for
(Legendre & Legendre, 1998).

An effect of island size, rather than one of habitat amount, would provide
support for IBT, whereas the reverse would provide support for HAH (Figure
3.2). The response and predictor variables were log-transformed (log10 x + 1)
prior to analysis. The predictor variables were also standardised (mean = 0, SD =
1) to allow comparison of regression slopes. Finally, we examined the strength of
correlation values between island size and habitat amount across the entire spec-
trum of 40 landscape-scales (50–2,000 m) to assess the suitability of the multiple
linear regression test.
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Test 2: Z-values

We used the logarithmic form of the SAR (type IV curve sensu Scheiner, 2003) to
fit simple linear regression models (Rosenzweig, 1995) for islands surrounded by
either low habitat amounts (up to c. 50% of the landscape; Morante-Filho et al.,
2015) or high habitat amounts, according to the following equation:

log10(S + 1) = z× log10(A + 1) + log10(c),

where S = number of species, z = regression slope, A = island size, c = regres-
sion intercept. To assess whether the z-values derived from either SARs were
significantly different (p < 0.05), we performed an ANCOVA model with habi-
tat amount (low or high) as an independent categorical variable. To support the
IBT, the SAR for islands with low habitat amounts should have a higher z-value
than those with high habitat amounts (Figure 3.2). Conversely, z-values should
be statistically equivalent to support the HAH (Figure 3.2).

Test 3: Species accumulation curves

We compared the cumulative number of species across all 33 surveyed islands
ordered according to either increasing (small-to-large) or decreasing (large-to-
small) island sizes (Quinn & Harrison, 1988), which may lead to three possible
outcomes. First, the small-to-large accumulation curve lies below the large-to-
small, supporting IBT (Figure 3.2). Second, the curves overlap, supporting HAH
(Figure 3.2). Third, the small-to-large accumulation curve lies above the large-to-
small, supporting neither IBT nor HAH (Figure 3.2).

Test 4: Extrapolation of SAR

We fit a SAR model (see Test 2: Z-values) to all 33 surveyed islands. We fur-
ther extrapolated the number of species to a hypothetical island containing the
area (+1) of all 33 surveyed islands combined (7,874 ha), and compared the to-
tal number of species observed across surveyed islands to the extrapolated value
(Yaacobi, Ziv, & Rosenzweig, 2007). Compared to the extrapolated value, a lower
observed number of species would support IBT; a statistically equivalent number,
HAH; a higher number, neither IBT nor HAH (Figure 3.2).
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Figure 3.2: Possible conceptual relationships of the four empirical tests applied
to determine whether either the island biogeography theory (IBT; graphs on the
left) or the habitat amount hypothesis (HAH; graphs on the right) is the most
appropriate framework to explain the number of understorey insectivorous bird
species on forest islands within the Balbina Hydroelectric Reservoir in central
Brazilian Amazonia.
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3.4 Results

We captured a total of 874 individual understorey insectivorous birds represent-
ing 59 species, 49 genera, and 19 families across all 33 sample sites (see Table S3.1
in Supporting Information). The number of individuals per island ranged from
0 to 84 (26.5 ± 23.4), and the number of species from 0 to 27 (8.8 ± 7.5; see Table
S3.2).

3.4.1 Scale of effect

The correlational peak between the number of species and habitat amount (i.e.
the scale of effect) occurred at 200-m buffers around sample sites (r = 0.873; see
Figure S3.1), thereby corresponding to the local landscape for understorey insec-
tivorous birds at the Balbina forest archipelago. The fact that this local landscape
is intermediate between the smallest and the largest landscape-scales examined
here indicates that our multi-scale analysis included the true scale of effect (Jack-
son & Fahrig, 2015). Therefore, habitat amount is defined as the percentage of
forest cover only within 200-m buffer local landscapes for all subsequent analy-
ses.

3.4.2 IBT versus HAH

Test 1: Multiple linear regression

A multiple linear regression model including island size and habitat amount
showed that both predictor variables were strongly and positively related to the
number of species (R2

adj = 0.804, p < 0.001). Partial regressions also showed that
habitat amount had a slightly better fit and higher regression slope than island
size (see Figure S3.2), which in itself would lend more support for HAH than
IBT. However, island size and habitat amount were positively correlated across
the entire range of 40 landscape-scales examined and peaked exactly at the scale
of effect (200-m buffer; see Figure S3.3). Due to the high collinearity between
predictors (r = 0.857), regression coefficients could change depending on the ran-
dom component in the response variable (Legendre & Legendre, 1998), thereby
precluding us from raising any conclusions derived from Test 1.
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Test 2: Z-values

The SAR for islands surrounded by low habitat amounts (<55%) had a statis-
tically higher z-value (0.747) than islands surrounded by high habitat amounts
(>70%; 0.311), as shown by the ANCOVA test (p = 0.009; Figure 3.3). This out-
come supports an island effect, rather than solely a sample area effect (Fahrig,
2013), thereby lending stronger support for IBT.

●

●

●

●

●

●●

●

●●

●

●

●

● ●

z−value = 0.747

z−value = 0.311

1

3

10

30

3 10 30 100 300 1,000
Island size + 1 (ha)

N
um

be
r 

of
 s

pe
ci

es
 +

 1
 (

n)

Habitat amount
low (< 55%)
high (> 70%)

Figure 3.3: Divergent species–area relationships for understorey insectivorous
birds surveyed at 33 forest islands surrounded by either low (r2

adj = 0.598, p <

0.001, n = 15) or high (r2
adj adj = 0.547, p < 0.001, n = 18) habitat amounts. Circle

sizes scale to the landscape-scale habitat amount, with smaller and larger circles
representing islands surrounded by either low or high habitat amounts, respec-
tively. Note the different z-values for these two landscape scenarios (p = 0.009)
and the base 10 logarithmic scales along both axes.
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Test 3: Species accumulation curves

Species accumulation curves (SACs) did not overlap whether sampling sites were
ordered according to either increasing (small-to-large) or decreasing (large-to-
small) island sizes. The small-to-large curve lay above the large-to-small curve
(Figure 3.4), which contradicts both IBT and HAH.
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Figure 3.4: Species accumulation curves of understorey insectivorous birds for
islands ordered according to either increasing (light grey circles, dashed line) or
decreasing (dark grey circles, solid line) island sizes.
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Test 4: Extrapolation of SAR

We observed a larger number of species (59 + 1) across all 33 surveyed islands
than that extrapolated (55.2) to a hypothetical island containing the area (+1) of
all surveyed islands combined (7,874 ha). However, the difference between the
observed and extrapolated number of species was not significant (Figure 3.5),
which lends support for HAH.
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Figure 3.5: Species–area relationship for understorey insectivorous birds sur-
veyed at 33 forest islands. The white circle shows the extrapolated number of
species (55.2) to a hypothetical island containing the area (+1) of all 33 surveyed
islands combined (7,874 ha), whereas the black circle shows the total number of
species observed in this study (59 + 1). Dashed lines show the 95% confidence
intervals of the predicted line. Note the base 10 logarithmic scales along both
axes
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3.5 Discussion

Compared to the HAH, there was more evidence giving support to the IBT in ex-
plaining the number of understorey insectivorous bird species within Amazonian
forest islands in one of the largest hydroelectric reservoirs on Earth. Considering
the four tests applied, test 2 (z-values) was consistent with an island effect as
posited by the IBT, tests 3 (SACs) and 4 (extrapolation of SAR) were regarded
as inappropriate to test the HAH (see below), and test 1 (multiple linear regres-
sion) could not be adequately addressed due to a prohibitively high correlation
between island size and habitat amount at the local landscape. As both an island
effect (e.g. Evju & Sverdrup-Thygeson, 2016) and a sample area effect (e.g. Rabelo
et al., 2017) may explain patterns of species richness in fragmented landscapes,
the key question becomes which of these two theoretical frameworks provides
the best fit to different scenarios in “real-world” fragmented landscapes. This
question has critical implications to biodiversity conservation strategies as em-
pirical evidence primarily supporting IBT would imply a management focus on
the spatial arrangement of remaining habitat patches, whereas support for HAH
would imply a management strategy focused on retaining the maximum overall
amount of habitat regardless of its configuration (Seibold et al., 2017).

The independent effects of predictor variables may be disentangled using
statistical methods such as multiple regression analysis. However, as the degree
of collinearity between predictor variables increases, the accuracy in determining
their independent effects decreases, particularly above a high threshold (r > 0.7)
from which parameter estimates begin to be severely distorted in regression-type
analyses (Dormann et al., 2013). In our set of sample sites, the highest correlation
between island size and habitat amount occurred exactly at the scale of effect (i.e.
200-m buffer; r = 0.857), which precluded us from directly testing the predictions
of the HAH. Ideally, patch size and habitat amount should be either orthogonally
independent or negatively correlated (fig. 7 in Fahrig, 2013). However, the perva-
sive positive correlation between habitat patch size and habitat amount in land-
scapes worldwide is the rule rather than the exception (Fahrig, 2003), and this
correlation becomes even stronger and more ubiquitous for smaller local land-
scapes (Rabelo et al., 2017). For instance, island size and habitat amount were
more likely to be independent in our study system at larger scales, well beyond a
demographically realistic local landscape for our focal species group.

The scale of effect is indeed unlikely to be known before sampling design
is established; thereby a multi-scale analysis is necessary to determine the local
landscape (Fahrig, 2013). This implies that sample sites selected a priori to con-
trol for the positive correlation between patch size and habitat amount may fail
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to achieve this goal if the size of the local landscape is different than initially
thought. To illustrate this, consider a set of sample sites where the size of the
focal habitat patches increases while the amount of habitat remains constant (Fig-
ure 3.6). If the size of the local landscape derived from a multi-scale analysis is
found to be half of that defined a priori, patch size and habitat amount will be
positively correlated (Figure 3.6). Therefore, directly testing the HAH under its
main assumptions is expected to be less feasible if the scale of effect is small or not
known a priori. Despite these shortcomings, there are alternative ways of testing
the HAH (Fahrig, 2013).

Figure 3.6: Sampling design established to control for the positive correlation
between patch size and habitat amount. The solid black circle correspondents to
the local landscape defined a priori (i.e. before the scale of effect is known). The
dashed black circle corresponds to the local landscape derived from a multi-scale
analysis (i.e. post data analysis). The difference between the two landscapes
scales (solid and dashed black circles) implies that even a well-designed study
may fail to control for the collinearity between predictors. Figure modified from
Fahrig (2013).

First, if patch size per se does not affect the number of species, as predicted
by the HAH, z-values derived from SARs are expected to be the same in land-
scapes with either low or high habitat amounts (Figure 3.2). We showed that
the z-value for islands at landscapes isolated by low habitat amounts (<55%) is
statistically higher than that at landscapes connected by high habitat amounts
(>70%; Figure 3.3), which contradicts a prediction of the HAH. Such a difference
could be attributed to the selected cutoff (55%) that distinguishes low from high
habitat amounts. To test whether the difference in z-values is sensitive to this
threshold, we reran test 2 (z-values) using different cutoffs for habitat amount
(54%, 50%, 48.5%, 45%, 43.1%, 30%; see Supporting Information). The differences
in z-values held true except when the SAR for islands surrounded by low habi-
tat amounts was not significant. As all islands were smaller than 10 ha for the
lower cutoffs (645%), the lack of a relationship may be explained by the small
island effect (i.e. for small islands, the variation in island size does not affect the
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number of species; Lomolino & Weiser, 2001). In sum, forest islands surrounded
by low habitat amounts had a steeper decline in species richness as a function of
island size reduction (i.e. higher z-value) than those surrounded by high habitat
amounts whenever the SAR models were significant.

The difference between z-values is attributed to an island effect, which is
consistent with the IBT (Fahrig, 2013). Accordingly, larger and less isolated is-
lands are more species-rich than smaller and more isolated islands because the
former experience lower extinction (area effect) and higher colonisation rates
(distance effect) (MacArthur & Wilson, 1967). Thus, if islands within their local
landscapes were functionally connected as assumed by the HAH, the number of
immigrants reaching focal islands would mainly depend on the amount of habi-
tat surrounding those islands (sample area effect), thereby compensating species
declines through rescue effects (Fahrig, 2013; see Seibold et al., 2017).

Second, the SACs from either small-to-large patches or from large-to-small
patches should roughly coincide to support the HAH (Figure 3.2) as this is caused
by a sample area effect, meaning that the long-celebrated dichotomy between a
Single Large Or Several Small patches (SLOSS) should harbour a similar number
of species. Alternatively, a faster accumulation in the number of species from
large-to-small patches, compared to that from small-to-large patches, would be
attributed to an island effect (IBT). The cumulative number of understorey insec-
tivorous bird species at the Balbina forest archipelago rose faster from small-to-
large patches than from large-to-small patches, which supports neither IBT nor
HAH.

The fact that several small patches (islands) apparently harboured more
species than a single large patch (Figure 3.4) is consistent with the literature
(Fahrig, 2017). However, we did not find support for several possible explana-
tions for this pattern at the Balbina forest archipelago. First, we strictly focused on
forest species implying that the pattern was not confounded by the inclusion of
disturbance-adapted species, which would increase the overall number of species
across small patch sites (Lövei, Magura, Tóthmérész, & Ködöböcz, 2006). Second,
habitat heterogeneity, regarding vegetation structure in Amazonian terra firme
forests, is associated with elevation (Castilho et al., 2006), below-ground vertical
distance to the water-table (Schietti et al., 2014) and horizontal distance to peren-
nial streams (Drucker, Costa, & Magnusson, 2008). Thus, several small patches
could harbour more species than a single large patch if they covered wider to-
pographic and hydrologic gradients, resulting in higher levels of habitat hetero-
geneity (Báldi, 2008). However, our islands consist of upland habitat remnants
resulting from hilltop terrains of the once continuous forest. As such, they span
similar elevations and streams were missing from all but two very large islands



114 Chapter 3

(Beco do Catitu and Mascote). As a result, surveyed islands shared relatively low
levels of intra-patch habitat heterogeneity regarding closed-canopy forest struc-
ture. Third, the Balbina islands are isolated by a hostile water matrix which likely
hampers the dynamic of colonisation and extinction (Palmeirim, Vieira, & Peres,
2017), particularly for species that are unable to either cross wide gaps or use dead
tree snags as stepping stones. Indeed, the disappearance of understorey insectiv-
orous birds from forest fragments has been largely attributed to dispersal limita-
tion (Şekercioḡlu et al., 2002), which along with a severely hostile water matrix
explain patterns of bird species occupancy on forest islands (Moore, Robinson,
Lovette, & Robinson, 2008). The relatively small local landscape threshold (200-m
buffer) for understorey insectivorous birds at the Balbina forest archipelago pro-
vides additional evidence of such dispersal limitation (Jackson & Fahrig, 2012).

The most likely explanation for the observed SACs (Figure 3.4) relies on
a bias associated with this method. In a SLOSS-type study, Gavish, Ziv, and
Rosenzweig (2012) compared four methods to examine the effects of habitat loss
and fragmentation on the species richness of spiders. They concluded that only
SACs (Quinn & Harrison, 1988) should be avoided as this method was biased
towards detecting more species in several small habitat patches than in a single
large patch. This occurs because the method is sensitive to sampling intensity
(i.e. proportion of patch area that is sampled), which could lead to an apparent
higher number of species in small but more intensively sampled patches (Gavish
et al., 2012). As the proportion of the island area we sampled in smaller islands
was immensely higher than in larger islands, the result of the SACs is likely to be
misleading. Moreover, the pattern of SACs was inconsistent with the HAH even
in an experiment designed to decouple the independent effects of patch size and
habitat amount on saproxylic beetles whose revealed strong support for HAH
(Seibold et al., 2017).

Third, the extrapolation of the SAR model (Yaacobi et al., 2007) suggests
that several small islands did not harbour more understorey insectivorous bird
species than a single large island containing the same aggregate area of several
small islands (Figure 3.5). This result is presumably consistent with the HAH
(Fahrig, 2013; MacDonald, Anderson, Acorn, & Nielsen, 2018). However, had
this method been suitable to test the HAH, oceanic archipelagos should har-
bour fewer species than that predicted by the extrapolation of SAR models de-
rived from their constituent islands. Indeed, observed and extrapolated values of
species richness for most oceanic archipelagos are statistically the same (75%–95%
of 40 case studies; Santos et al., 2010). Collectively, this means that neither SACs
nor an extrapolation of SAR models seem to be reliable methods to test the HAH.

Testing the HAH is by no means a trivial task for two main reasons. First,



Chapter 3 115

as a general rule, habitat patch size and habitat amount tend to be positively cor-
related (Fahrig, 2003). However, these two predictors should be either largely
orthogonal or negatively correlated to properly test predictions derived from
the HAH (fig. 7 in Fahrig, 2013). Depending on the landscape, this constraint
may however be overcome if the scale of effect (sensu Jackson & Fahrig, 2015)
is known prior to the establishment of the experimental design. Second, species
assemblages are comprised of species with varying degrees of dispersal ability,
although within some groups, such as understorey insectivorous birds, such a
trait is broadly similar across species (Laurance et al., 2004). Thus, the scale of
effect for a given species assemblage will result from a combination of species
with either lower or higher dispersal ability (Lees & Peres, 2009). Therefore, we
believe the most robust way forward in testing the HAH would be to focus on
individual species (Hanski, 2015) whose dispersal ability through the matrix (i.e.
landscape vagility) is known a priori and derived from in situ studies (e.g. Awade
& Metzger, 2008).

3.5.1 Moving beyond: a conceptual framework to assess the role

of patch size and habitat amount in explaining species re-

sponses to habitat fragmentation

We can reasonably expect that local assemblage structure is primarily governed
by patch-level characteristics in a hypothetical situation in which species seldom
if ever exit the patch, due to low dispersal ability, low matrix permeability, or
both (Moore et al., 2008). Conversely, landscape-level characteristics should mat-
ter most in a hypothetical situation in which species often move among patches
within the local landscape, due to high dispersal ability, high matrix permeabil-
ity, or both (Walter et al., 2017). Hence, the degree to which either a patch- or
landscape-centric worldview is most pertinent in fragmentation ecology stud-
ies should be determined by the species vagility within the local landscape,
which is largely a combination of matrix permeability (a landscape attribute)
and dispersal ability (a species trait) (Figure 3.7). Accordingly, increasing sup-
port for IBT should be expected for a species assemblage with low dispersal abil-
ity in patches surrounded by an impermeable matrix (Figure 3.7c; this study;
Palmeirim et al., 2017). Conversely, increasing support for HAH would be ex-
pected for a species assemblage in which high dispersal ability is prevalent and
habitat patches are surrounded by a permeable matrix (Figure 3.7b; Melo et al.,
2017). Under intermediate scenarios (Figure 3.7a,d), the most appropriate the-
oretical framework—IBT or HAH—would depend on the relative contributions
of matrix permeability and species dispersal ability. For instance, support for
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HAH would be expected if species successfully move among patches even if they
are surrounded by an impermeable matrix (Figure 3.7a; Storck-Tonon & Peres,
2017), whereas support for IBT would be expected if species fail to move among
patches even if they are surrounded by a relatively permeable matrix (Figure 3.7d;
Munguı́a-Rosas & Montiel, 2014).
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Figure 3.7: Conceptual framework based on the degree of matrix permeability
and species dispersal ability in determining whether the island biogeography
theory (IBT) or the habitat amount hypothesis (HAH) is the most appropriate
guiding framework for biodiversity studies in fragmented landscapes.

A recent empirical study testing the HAH (MacDonald et al., 2018) pro-
vides further support for our conceptual framework. Accordingly, the inclusion
of highly mobile species in the species pool led to stronger support for HAH in ex-
plaining the number of butterfly species on islands within a natural archipelagic
landscape (Figure 3.7a), whereas excluding highly mobile species led to stronger
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support for IBT (Figure 3.7c). Our conceptual framework also accounts for dy-
namic matrix habitats that change over time. As such, for a given forest land-
scape dominated by a regenerating vegetation matrix that accumulates above-
ground phytomass, a patch-centric approach should be gradually replaced by
a landscape-centric approach as the matrix becomes more permeable, ultimately
enhancing species vagility of even the most sedentary species (Powell et al., 2013).
The Biological Dynamics of Forest Fragments Project (BDFFP) in central Brazil-
ian Amazonia is an iconic example of a dynamic tropical landscape, in which
a cattle pasture matrix surrounding primary forest fragments has been fully re-
placed by an ageing secondary forest over the past c. 35 years (Stouffer, Johnson,
Bierregaard, & Lovejoy, 2011). As the structural contrast between forest frag-
ments and their adjacent matrix decreases, forest species can resume movements
between forest fragments (Stouffer et al., 2011), exploit newly available matrix
resources (Blake & Loiselle, 2001), and incorporate matrix habitats into their ter-
ritories (Stouffer, Bierregaard, Strong, & Lovejoy, 2006). In such situation, a di-
chotomous classification of the landscape into either habitat or non-habitat is at
best misleading (Stouffer et al., 2006), and a landscape-centric approach would
be most appropriate.

At the Balbina forest archipelago, the structural contrast between habitat
patches (forest islands) and the matrix (open-water) could not be greater, and is
aggravated by the fact that matrix recovery, by definition, cannot occur within
hydroelectric reservoirs with stable water levels. Such harsh landscape scenario
restricts populations of species with low dispersal ability to fewer islands com-
pared to species that can traverse the matrix. Indeed, the inherent swimming ca-
pacity—a measure of dispersal ability on open-water—of large vertebrate species
at the Balbina forest archipelago is positively related to species island occupancy
(Benchimol & Peres, 2015b). Based on both patch- and landscape-scale predictors,
that study also found island size to be the single best predictor of island occu-
pancy for most species. Likewise, island size was a powerful predictor of species
richness of terrestrial and arboreal vertebrates (r2 = 0.910, Benchimol & Peres,
2015c), birds (r2 = 0.808, Aurélio-Silva et al., 2016), lizards (r2 = 0.870, Palmeirim
et al., 2017), and frogs (r2 = 0.891, Lima et al., 2015) within Amazonian forest
archipelagos. Given this bulk of evidence showing a strong island size effect on
species richness, a patch-centric approach (IBT) is likely to be the most appro-
priate in true archipelagic landscapes. Nevertheless, species with high dispersal
ability (e.g. orchid bees, Storck-Tonon & Peres, 2017; butterflies, MacDonald et
al., 2018) may still be able to cross hostile expanses of water, which would justify
a landscape-centric approach (HAH).
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3.6 Conclusions

We tested the HAH under one extreme of the continuum of matrix permeabil-
ity and species dispersal ability (Figure 3.7c) and found stronger support for IBT.
Meanwhile, we hypothesize that stronger support for HAH is expected under the
opposite extreme of this continuum (Figure 3.7b), and to either IBT or HAH un-
der intermediate scenarios (Figure 3.7a,d). This notion implies that most species
responses to habitat fragmentation lie somewhere along these extremes. Hence,
IBT and HAH should not be seen as a mutually exclusive dichotomy, but instead
a continuum in explaining patterns of species retention in habitat patches. The
conceptual framework we propose (Figure 3.7) also considers fragmented land-
scapes with dynamic (e.g. vegetation re-growth following land abandonment) or
managed matrices (e.g. restored habitats following human intervention). In such
landscapes, patch-centric patterns of occupancy (IBT) should gradually transit
into those dominated by entire landscapes (HAH) given the role of matrix type
in mediating SARs (Freeman, Olivier, & van Aarde, 2018). Conversely, matrix
habitat degradation would revert the emphasis back to prime habitat patches.
Although ameliorating the harshness of water matrices is virtually impossible,
other hostile matrix habitats, such as bauxite mining (Kennedy & Marra, 2010),
can be managed to enhance functional connectivity among habitat patches (fig. 7
in Villard & Metzger, 2014). Finally, we conclude that the most appropriate
worldview in fragmentation ecology (IBT or HAH) is not only context-dependent
but also dynamic. Therefore, the best conservation strategy—focusing on ei-
ther the spatial arrangement of remaining habitat patches or the overall habitat
amount in the landscape—is neither static nor can be generalised to a wide spec-
trum of landscape scenarios and taxonomic groups.
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3.9 Supporting Information

This supporting information contains:

• Table S3.1

• Table S3.2

• Figure S3.1

• Figure S3.2

• Figure S3.3

• R code

Click here to download the R code in .Rmd file format

https://ndownloader.figshare.com/files/15159716


Table S3.1: Forest insectivorous bird species captured on the understorey of 33 

forest islands. ‘Islands’ corresponds to the number of forest islands at which 

species were captured. ‘Individuals’ corresponds to the number of individuals 

captured. Taxonomy follows Piacentini et al. (2015). 
 

Family Species Islands Individuals 

Cuculidae 

Trogonidae 

Galbulidae 

Bucconidae 

 

Picidae 

 

Thamnophilidae 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conopophagidae 

Formicariidae 

 

Scleruridae 

Dendrocolaptidae 

 

 

 

 

 

 

 

 

Xenopidae 

Coccycua minuta 

Trogon rufus 

Galbula albirostris 

Bucco tamatia 

Monasa atra 

Celeus elegans 

Campephilus rubricollis 

Epinecrophylla gutturalis 

Myrmotherula axillaris 

Myrmotherula menetriesii 

Isleria guttata 

Thamnomanes ardesiacus 

Thamnomanes caesius 

Thamnophilus murinus 

Thamnophilus punctatus 

Myrmoderus ferrugineus 

Hylophylax naevius 

Percnostola rufifrons 

Cercomacroides tyrannina 

Hypocnemis cantator 

Pithys albifrons 

Willisornis poecilinotus 

Conopophaga aurita 

Formicarius colma 

Formicarius analis 

Sclerurus rufigularis 

Dendrocincla fuliginosa 

Sittasomus griseicapillus 

Certhiasomus stictolaemus 

Glyphorynchus spirurus 

Xiphorhynchus pardalotus 

Xiphorhynchus obsoletus 

Nasica longirostris 

Dendrocolaptes certhia 

Hylexetastes perrotii 

Xenops minutus 

1 

2 

7 

1 

7 

11 

1 

1 

23 

1 

13 

3 

3 

7 

1 

6 

1 

16 

3 

14 

1 

9 

1 

4 

2 

3 

17 

2 

3 

16 

21 

5 

1 

19 

1 

4 

1 

2 

19 

1 

11 

13 

1 

1 

186 

1 

44 

7 

5 

9 

2 

7 

1 

54 

10 

72 

2 

30 

2 

4 

2 

3 

45 

2 

8 

84 

73 

8 

1 

39 

1 

5 
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Family Species Islands Individuals 

Furnariidae 

 

 

 

 

Onychorhynchidae 

 

 

Platyrinchidae 

 

Rhynchocyclidae 

 

 

 

 

Tyrannidae 

 

 

Troglodytidae 

 

Turdidae 

Thraupidae 

Automolus ochrolaemus 

Automolus infuscatus 

Philydor erythrocercum 

Philydor pyrrhodes 

Synallaxis rutilans 

Onychorhynchus coronatus 

Terenotriccus erythrurus 

Myiobius barbatus 

Platyrinchus saturatus 

Platyrinchus coronatus 

Mionectes macconnelli 

Rhynchocyclus olivaceus 

Tolmomyias poliocephalus 

Lophotriccus vitiosus 

Lophotriccus galeatus 

Ramphotrigon ruficauda 

Myiarchus tuberculifer 

Rhytipterna simplex 

Pheugopedius coraya 

Henicorhina leucosticta 

Turdus albicollis 

Saltator maximus 

Saltator grossus 

1 

1 

3 

2 

1 

2 

3 

4 

1 

2 

6 

1 

2 

1 

3 

2 

1 

3 

1 

2 

15 

1 

1 

1 

1 

4 

3 

3 

6 

7 

8 

1 

5 

12 

1 

2 

1 

3 

2 

1 

3 

2 

8 

39 

2 

3 
 

 

Reference 

Piacentini, V. de Q., Aleixo, A., Agne, C.E., et al. (2015) Annotated checklist of the 

birds of Brazil by the Brazilian Ornithological Records Committee. Revista 

Brasileira de Ornitologia, 23, 91–298.  
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Table S3.2: Characteristics of the sample sites surveyed on 33 forest islands within 

the Balbina Hydroelectric Reservoir in central Brazilian Amazonia. ‘Habitat 

amount’ is defined as the percentage of forest cover within 200-m buffer around 

sample sites (i.e. mist-net lines). 
 

Island name Latitude 

(S) 

Longitude 

(W) 

Island size 

(ha) 

Habitat amount 

(%) 

Richness 

(n) 

Abundance 

(n) 

Joaninha 

Xibé 

Formiga 

André 

Cafundó 

Panema 

Torem 

Pé Torto 

Jiquitaia 

Arrepiado 

Garrafa 

Piquiá 

Abusado 

Coata 

Palhal 

Neto 

Adeus 

Bacaba 

Relógio 

Sapupara 

Moitá 

Pontal 

Furo de Santa Luzia 

Cipoal 

Jabuti 

Tucumari 

Martelo 

Tristeza 

Beco do Catitu 

Mascote 

Fuzaca 

Porto Seguro 

Gavião-real 

1°31'22" 

1°28'08" 

1°50'00" 

1°35'05" 

1°30'02" 

1°46'28" 

1°49'46" 

1°45'59" 

1°50'08" 

1°30'54" 

1°35'19" 

1°30'23" 

1°45'44" 

1°29'18" 

1°47'25" 

1°50'29" 

1°52'26" 

1°30'15" 

1°40'55" 

1°41'50" 

1°33'36" 

1°49'52" 

1°44'25" 

1°41'54" 

1°37'34" 

1°35'29" 

1°39'51" 

1°46'03" 

1°44'22" 

1°38'56" 

1°29'33" 

1°46'48" 

1°35'46" 

59°49'44" 

59°50'11" 

59°25'16" 

59°52'19" 

59°36'37" 

59°41'33" 

59°37'57" 

59°21'49" 

59°35'44" 

59°44'21" 

59°50'08" 

59°47'20" 

59°40'43" 

59°47'13" 

59°26'52" 

59°21'08" 

59°39'45" 

59°49'20" 

59°39'09" 

59°36'45" 

59°53'33" 

59°41'12" 

59°26'31" 

59°47'05" 

59°45'24" 

59°25'47" 

59°42'51" 

59°45'16" 

59°42'18" 

59°49'58" 

59°51'36" 

59°31'02" 

59°37'58" 

0.63 

0.90 

1.54 

2.08 

2.62 

3.08 

3.62 

4.98 

6.79 

7.42 

9.41 

13.03 

13.30 

16.19 

21.35 

32.84 

49.40 

52.38 

70.48 

77.71 

91.19 

106.48 

198.31 

217.40 

232.24 

329.68 

460.04 

497.86 

631.85 

663.06 

934.29 

1323.13 

1678.96 

3.50 

14.69 

8.17 

11.17 

43.23 

17.74 

17.78 

22.44 

29.30 

29.08 

43.08 

48.35 

54.04 

48.72 

74.70 

71.92 

53.44 

74.10 

92.80 

84.96 

78.74 

85.21 

93.49 

93.10 

90.80 

91.47 

84.76 

95.99 

97.18 

100.00 

100.00 

100.00 

100.00 

0 

1 

0 

2 

3 

0 

0 

4 

2 

2 

3 

12 

3 

10 

6 

6 

10 

4 

9 

8 

5 

16 

22 

9 

11 

17 

7 

19 

16 

18 

27 

21 

17 

0 

1 

0 

7 

4 

0 

0 

17 

4 

4 

7 

16 

26 

18 

30 

33 

21 

9 

47 

18 

12 

37 

64 

33 

36 

45 

19 

61 

54 

46 

84 

74 

47 
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Figure S3.1: Correlation between number of forest insectivorous bird species and
habitat amount (i.e. percentage of forest cover) across 40 landscape scales, rang-
ing from 50 to 2,000-m buffer at 50-m intervals. The peak of correlation value
(dashed line) corresponds to the size of the local landscape (i.e. the scale of ef-
fect).
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Figure S3.2: Partial regression plots illustrating the independent effects of (a)
island size and (b) habitat amount on the number of forest insectivorous bird
species occurring at 33 forest islands within the Balbina Hydroelectric Reservoir
in central Brazilian Amazonia.
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Figure S3.3: Correlation between island size and habitat amount (i.e. percentage
of forest cover) across 40 landscape scales, ranging from 50 to 2,000-m buffer at
50-m intervals. Note that the maximum correlation value (dashed line) between
island size and habitat amount occurs exactly at the scale of effect (200-m buffer;
see Fig. S1).



Supporting Information
Patch-scale biodiversity retention in fragmented landscapes: Reconciling the habitat amount hypothesis

with the island biogeography theory

Preamble

Any given analytical framework is at the heart of modern ecological studies, yet this is rarely presented in detail as supplementary
guidelines in the interest of transparent reproducibility should anyone wish to replicate parts or the entirety of the analyses. This
extended section was constructed with the explicit intent of walking interested students and future investigators through every
sequential step of our analytical strategy to test the Habitat Amount Hypothesis – HAH (Fahrig, 2013). The section contains
step-by-step R codes which may be used to generate all inferential statistics and supporting elements presented in this paper,
herein disclosed as Supporting Information. We do this to both make every analytical procedure of this paper crystal-clear and to
leave no ambiguity as to how our results were derived. We hope this is useful to our readership and can be put to use.

# Clear workspace and disable scientific notation
remove(list = ls()); options(scipen = 999)

Packages

# Load required packages
library(ggplot2)
library(vegan)

Dataset

We provide the raw data derived from original fieldwork conducted during the project Ecological Impacts of River Damming on
Forest Bird Assemblages in the Brazilian Amazon. Find out more at the project webpage.

Data are available from the KNB repository and should be cited as:

Anderson Saldanha Bueno. 2018. Balbina Understory Bird Data from 2015 to 2016. Knowledge Network for Biocomplexity.
urn:uuid:dbfd1504-2212-422c-8e04-610fb2327b7c.

Import data

• The file balbina_understory_birds_captures.csv contains information on birds captured in the fieldwork.
• The file balbina_understory_birds_taxonomy_traits.csv contains the taxonomy and traits of bird species captured.
• The file balbina_environmental_variables.csv contains environmental variables of sample sites.

# Load the file "balbina_understorey_birds_captures.csv"
birds = read.csv("https://ndownloader.figshare.com/files/15158531")

# Load the file "balbina_understorey_birds_taxonomy_traits.csv"
traits = read.csv("https://ndownloader.figshare.com/files/15158534")

# Load the file "balbina_environmental_variables.csv"
env = read.csv("https://ndownloader.figshare.com/files/15158528", row.names = 1)
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Data handling

The raw data are stored in the long table format and include all individuals captured. This means that each bird captured is
represented by a row. However, the analysis performed in this study requires the short table format, where sample sites are in
rows and species are in columns. Furthermore, here we focus only on forest insectivorous birds (referred to in the main text
as understorey insectivorous birds).

To obtain the table we need, we first add to each row of the raw data (object birds) species traits (from the object traits) on forest
dependency, diet, and foraging time, which will be used to select diurnal forest insectivorous birds.

# Remove recaptures
birds = subset(birds, birds$new.individual != "no")

# Add a column with the forest dependency of each species
birds$forest.dependency = traits$forest.dependency[match(birds$species,

traits$cbro.2015)]

# Add a column with the diet of each species
birds$diet = traits$diet.5cat[match(birds$species, traits$cbro.2015)]

# Add a column with the foraging time of each species
birds$nocturnal = traits$nocturnal[match(birds$species, traits$cbro.2015)]

# Add a column indicating that each bird captured (row) corresponds to
# an individual record
birds$occurrence = 1

The next step is to produce the table in the short format containing both bird and environmental data.

# Site-by-species abundance matrix
birds.matrix = tapply(birds$occurrence, list(birds$site, birds$species), sum)
# Species non detected in a given site are real zeros
birds.matrix[is.na(birds.matrix)] = 0

# Site-by-species abundance matrix with environmental data Add environmental
# data to the site-by-species abundance matrix
birds.env = cbind(birds.matrix, env)

We now make a species list of forest insectivorous birds.

# Species list of forest insectivorous birds
ins = subset(traits,

# Select only forest species
c(traits$forest.dependency == "Medium" |

traits$forest.dependency == "High") &
# Select only insectivorous species
traits$diet.5cat == "Invertebrate" &
# Remove nocturnal species
traits$nocturnal == 0)$cbro.2015

Finally, we produce a table containing data from all 33 surveyed islands, and omit data from continuous forest sites because they
were not used in this study.

# Island-by-species abundance matrix with environmental data Select only
# forest insectivorous birds captured on islands
islands.spp = birds.env[-c(8:12), ins][colSums(birds.env[-c(8:12), ins]) > 0]
# Select environmental data for islands
islands.env = birds.env[-c(8:12), c(131:ncol(birds.env))]
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# Combine bird with environmental data
islands = cbind(islands.spp, islands.env)

Table S1

# Species frequency (number of islands) and abundance (number of individuals)
table.s1 = data.frame(Islands = colSums(ifelse(islands[1:59] > 0, 1, 0)),

Individuals = colSums(islands[1:59]))

# Species taxonomy
# Position of the species in the taxonomic sequence
table.s1$ID = traits$id[match(rownames(table.s1), traits$cbro.2015)]
# Species name
table.s1$Species = rownames(table.s1)
# Species family
table.s1$Family = traits$family[match(rownames(table.s1), traits$cbro.2015)]

# Rearrange the table
table.s1 = table.s1[order(table.s1$ID), c(5, 4, 1, 2)]
row.names(table.s1) = NULL

#table.s1

TABLE S1 Forest insectivorous bird species captured on the understorey of 33 forest islands within the Balbina Hydroelectric
Reservoir in central Brazilian Amazonia. ‘Islands’ corresponds to the number of forest islands at which species were captured.
‘Individuals’ corresponds to the number of individuals captured. Taxonomy follows Piacentini et al. (2015).

Variables

Response variable

We used the number of species (also referred to as species richness) of forest insectivorous birds as the response variable.

# Calculate species richness of forest insectivorous birds
islands$richness = rowSums(ifelse(islands.spp > 0, 1, 0))

Scale of effect

We employed a multi-scale analysis to determine the ‘scale of effect’ - the landscape scale at which the relationship between the
number of species and habitat amount peaks. We defined the scale of effect as the ‘local landscape’ for forest insectivorous
birds at the Balbina forest archipelago. Our multi-scale analysis examined 40 different buffer sizes around sample sites (i.e. mist-
net lines), ranging from 50 to 2,000 m at 50-m intervals.

# Pearson's product-moment correlation between number of species and habitat amount
# across 40 landscape scales
buffer = apply(islands[63:102], 2, function(z)
cor.test(log10(z + 1), log10(islands$richness + 1)))

# Convert the results stored as a 'list' object into a 'matrix' object
buffer = do.call(rbind, lapply(buffer, function(z) z[4]))
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# Save the results in a 'data frame' object
buffer = data.frame(buffer = seq(50, 2000, 50), r = as.numeric(buffer))

# Scale of effect: 200-m buffer around mist-net lines
buffer[order(-buffer$r), ][1, ]

## buffer r
## 4 200 0.873322

Figure S1

# Graph of the correlation between number of species and habitat amount
# across 40 landscape scales
fig.s1 =
ggplot(data = buffer,

aes(x = buffer, y = r)) +

labs(x = "Buffer of the landscape scale (m)",
y = "Pearson correlation coefficient (r):\nnumber of species vs. habitat amount") +

scale_x_continuous(breaks = c(50, 200, 500, 1000, 1500, 2000),
labels = c("50", "200", "500", "1,000", "1,500", "2,000")) +

geom_segment(x = 200, xend = 200, y = 0, yend = max(buffer$r), linetype = "dashed") +
geom_point(shape = 21, colour = "black", fill = "#999999", size = 5) +

theme_bw(base_size = 20) +
theme(panel.grid = element_blank(),

panel.border = element_rect(colour = "black"),
axis.title = element_text(colour = "black", face = "bold"),
axis.text = element_text(colour = "black"),
axis.ticks = element_line(colour = "black", size = 0.5))

#fig.s1

FIGURE S1 Correlation between number of forest insectivorous bird species and habitat amount (i.e. percentage of forest cover)
across 40 landscape scales, ranging from 50 to 2,000-m buffer at 50-m intervals. The peak of correlation value (dashed line)
corresponds to the size of the local landscape (i.e. the scale of effect).

Predictor variables

We used island size (ha) and habitat amount (%) within 200-m buffer local landscapes as predictor variables. In addition, local
landscapes were classified as surrounded by either ‘low’ (< 55%) or ‘high’ habitat amount (> 70%).

Relevant variables

For simplicity, we create a table with the relevant variables to perform the analyses. Geographic coordinates and the number of
individuals (i.e. species abundance) are included for informative purpose.

# Response and predictor variables used to perform the tests of the HAH
variables = data.frame(row.names = rownames(islands),

# Island size (ha)
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island.size = islands$area.ha,
# Habitat amount (%)
habitat.amount = islands$forest.cover.200,
# Habitat amount category
ha.cat.55 = ifelse(islands$forest.cover.200 < 55, "low", "high"),

# Number of species
richness = islands$richness)

# Order rows by island size
variables = variables[order(variables$island.size), ]

Table S2

# Information to include in the table
table.s2 = data.frame("Island name" = rownames(islands),

# Y coordinate (datum WGS 84)
"Latitude" = islands$latitude.WGS84,
# X coordinate (datum WGS 84)
"Longitude" = islands$longitude.WGS84,
# Forest area in hectares
"Island size" = islands$area.ha,
# Forest cover within 200-m buffer (%)
"Habitat amount" = islands$forest.cover.200,
# Number of species captured (n)
"Richness" = islands$richness,
# Number of individuals captured (n)
"Abundance" = rowSums(islands[1:59]))

# Order rows by island size
table.s2 = table.s2[order(table.s2$Island.size), ]
row.names(table.s2) = NULL

#table.s2

TABLE S2 Characteristics of the sample sites surveyed at 33 forest islands within the Balbina Hydroelectric Reservoir in central
Brazilian Amazonia.

IBT vs. HAH

We applied four tests to determine whether the island biogeography theory (IBT) or the habitat amount hypothesis (HAH) is
the most appropriate theoretical framework to explain the number of forest insectivorous bird species on forest islands within the
Balbina Hydroelectric Reservoir.

Test 1: Multiple linear regression

We used multiple linear regression analysis to examine the independent effects of island size and habitat amountwithin the local
landscape on species richness. Prior to analysis, the response and predictor variables were log-transformed (log10 x + 1). The
predictor variables were also standardised (mean = 0, SD = 1) to allow comparison of regression slopes (i.e. beta coefficients).
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# To shorten the codes, we log-transform and standardise the variables
# accordingly and save them as 'vector' objects Species richness (sr),
# log-transformed
sr = log10(variables$richness + 1)
# Island size (is), log-transformed and standardised
is = scale(log10(variables$island.size + 1))
# Habitat amount (ha), log-transformed and standardised
ha = scale(log10(variables$habitat.amount + 1))

# Multiple linear regression model
mod = lm(sr ~ is + ha)
summary(mod)

##
## Call:
## lm(formula = sr ~ is + ha)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.36621 -0.08383 -0.02406 0.09675 0.39747
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.82547 0.03325 24.825 < 0.0000000000000002 ***
## is 0.19311 0.06561 2.943 0.00622 **
## ha 0.21082 0.06561 3.213 0.00313 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.191 on 30 degrees of freedom
## Multiple R-squared: 0.8159, Adjusted R-squared: 0.8036
## F-statistic: 66.46 on 2 and 30 DF, p-value: 0.000000000009492

Partial regression plots

To visualise the results of the multiple linear regression model, we can produce partial regression plots to show the scatter of data
points around the partial lines and their respective coefficients.

The next chunks of code describe how to produce partial regression plots, following Moya-Laraño & Corcobado (2008).

Partial regression between the number of species and island size

# 1) To calculate the residuals of the regression between number of species
# and habitat amount Number of species controlling for habitat amount
res.sr.ha = residuals(lm(sr ~ ha))

# 2) To calculate the residuals of the regression between island size and
# habitat amount Island size controlling for habitat amount
res.is.ha = residuals(lm(is ~ ha))

# 3) To regress the residuals from step 1 against the residuals from step 2
# to estimate the effect of island size on the number of species,
# controlling for the effect of habitat amount
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mod.sr.is = lm(res.sr.ha ~ res.is.ha)
summary(mod.sr.is)

##
## Call:
## lm(formula = res.sr.ha ~ res.is.ha)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.36621 -0.08383 -0.02406 0.09675 0.39747
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) -0.000000000000000003732 0.032710467700918323397 0.000
## res.is.ha 0.193107547142374991189 0.064547803391814984053 2.992
## Pr(>|t|)
## (Intercept) 1.0000
## res.is.ha 0.0054 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1879 on 31 degrees of freedom
## Multiple R-squared: 0.224, Adjusted R-squared: 0.199
## F-statistic: 8.95 on 1 and 31 DF, p-value: 0.005401
# Coefficients of the partial regression between number of species and
# habitat amount (step 3) Adjusted R-squared = 0.199
round(summary(mod.sr.is)$adj.r.squared, 3)

## [1] 0.199
# Slope = 0.193
round(summary(mod.sr.is)$coefficients[2, 1], 3)

## [1] 0.193
# P-value = 0.005
round(summary(mod.sr.is)$coefficients[2, 4], 3)

## [1] 0.005

Partial regression between number of species and habitat amount

# 4) To calculate the residuals of the regression between the number of
# species and island size Number of species controlling for island size
res.sr.is = residuals(lm(sr ~ is))

# 5) To calculate the residuals of the regression between habitat amount and
# island size Habitat amount controlling for island size
res.ha.is = residuals(lm(ha ~ is))

# 6) To regress the residuals from step 4 against the residuals from step 5
# to estimate the effect of habitat amount on the number of species,
# controlling for the effect of island size
mod.sr.ha = lm(res.sr.is ~ res.ha.is)
summary(mod.sr.ha)
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##
## Call:
## lm(formula = res.sr.is ~ res.ha.is)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.36621 -0.08383 -0.02406 0.09675 0.39747
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) -0.00000000000000002567 0.03271046770091832340 0.000
## res.ha.is 0.21082306275781120819 0.06454780339181498405 3.266
## Pr(>|t|)
## (Intercept) 1.00000
## res.ha.is 0.00266 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1879 on 31 degrees of freedom
## Multiple R-squared: 0.256, Adjusted R-squared: 0.232
## F-statistic: 10.67 on 1 and 31 DF, p-value: 0.002663
# Coefficients of the partial regression between number of species and
# habitat amount (step 6) Adjusted R-squared = 0.232
round(summary(mod.sr.ha)$adj.r.squared, 3)

## [1] 0.232
# Slope = 0.211
round(summary(mod.sr.ha)$coefficients[2, 1], 3)

## [1] 0.211
# P-value = 0.003
round(summary(mod.sr.ha)$coefficients[2, 4], 3)

## [1] 0.003

Figure S2

# Data to produce the plots
partials = data.frame(res.sr.ha, res.is.ha, res.sr.is, res.ha.is)

# Partial regression plot: number of species ~ island size
fig.s2a =

ggplot(data = partials[order(partials$res.is.ha), ],
aes(x = res.is.ha, y = res.sr.ha)) +

labs(x = ~ atop(paste("Residual ", bold("island size")),
paste(scriptstyle("(controlling for habitat amount)"))),

y = ~ atop(paste("Residual ", bold("number of species")),
paste(scriptstyle("(controlling for habitat amount)")))) +

geom_smooth(method = "lm", se = FALSE, colour = "black", size = 1.5) +
geom_point(shape = 21, colour = "black", fill = "#999999", size = 5) +
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theme_bw(base_size = 20) +
theme(panel.grid = element_blank(),

panel.border = element_rect(colour = "black"),
axis.title = element_text(colour = "black", face = "bold"),
axis.text = element_text(colour = "black"),
axis.ticks = element_line(colour = "black", size = 0.5)) +

annotate("text", x = min(partials$res.is.ha), y = max(partials$res.sr.ha),
hjust = 0, vjust = 1, fontface = "bold", size = 10, label = "(a)") +

annotate("text", x = max(partials$res.is.ha), y = min(partials$res.sr.ha),
hjust = 1, vjust = -2, size = 6,
parse = T,

label = as.character(expression(partial~italic(R)^{2}*""[adj]*" = 0.199"))) +
annotate("text", x = max(partials$res.is.ha), y = min(partials$res.sr.ha),

hjust = 1, vjust = -2, size = 6, label = "slope = 0.193") +
annotate("text", x = max(partials$res.is.ha), y = min(partials$res.sr.ha),

hjust = 1, vjust = 0, size = 6,
parse = T, label = as.character(expression(italic(p)*" = 0.005")))

# Partial regression plot: number of species ~ habitat amount
fig.s2b =

ggplot(data = partials[order(partials$res.ha.is), ],
aes(x = res.ha.is, y = res.sr.is)) +

labs(x = ~ atop(paste("Residual ", bold("habitat amount")),
paste(scriptstyle("(controlling for island size)"))),

y = ~ atop(paste("Residual ", bold("number of species")),
paste(scriptstyle("(controlling for island size)")))) +

scale_x_continuous(breaks = seq(-1.6, 0.8, length = 5)) +
scale_y_continuous(breaks = seq(-0.3, 0.5, length = 5)) +

geom_smooth(method = "lm", se = FALSE, colour = "black", size = 1.5) +
geom_point(shape = 21, colour = "black", fill = "#999999", size = 5) +

theme_bw(base_size = 20) +
theme(panel.grid = element_blank(),

panel.border = element_rect(colour = "black"),
axis.title = element_text(colour = "black", face = "bold"),
axis.text = element_text(colour = "black"),
axis.ticks = element_line(colour = "black", size = 0.5)) +

annotate("text", x = min(partials$res.ha.is), y = max(partials$res.sr.is),
hjust = 0, vjust = 1, fontface = "bold", size = 10, label = "(b)") +

annotate("text", x = max(partials$res.ha.is), y = min(partials$res.sr.is),
hjust = 1, vjust = -2, size = 6,
parse = T,
label = as.character(expression(partial~italic(R)^{2}*""[adj]*" = 0.232"))) +

annotate("text", x = max(partials$res.ha.is), y = min(partials$res.sr.is),
hjust = 1, vjust = -2, size = 6, label = "slope = 0.211") +

annotate("text", x = max(partials$res.ha.is), y = min(partials$res.sr.is),
hjust = 1, vjust = 0, size = 6,
parse = T, label = as.character(expression(italic(p)*" = 0.003")))
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#fig.s2a; fig.s2b

FIGURE S2 Partial regression plots illustrating the independent effects of (a) island size and (b) habitat amount on the number
of forest insectivorous bird species occurring at 33 forest islands within the Balbina Hydroelectric Reservoir in central Brazilian
Amazonia.

Correlation between predictors

Weexamined the strength of correlation values between island size and habitat amount across the entire spectrum of 40 landscape
scales (50-2,000 m) to assess the suitability of the multiple linear regression test.

# Pearson's product-moment correlation between island size and habitat
# amount across 40 landscape scales
cor.predictors = apply(islands[63:102], 2, function(z) cor.test(log10(z + 1),

log10(islands$area.ha + 1)))

# Convert the results stored as a 'list' object into a 'matrix' object
cor.predictors = do.call(rbind, lapply(cor.predictors, function(z) z[4]))

# Save the results in a 'data frame' object
cor.predictors = data.frame(buffer = seq(50, 2000, 50), r = as.numeric(cor.predictors))

# The highest correlation between island size and habitat amount occurred
# exactly at the scale of effect: 200-m buffer
cor.predictors[order(-cor.predictors$r), ][1, ]

## buffer r
## 4 200 0.8574179

Figure S3

# Graph of the correlation between island size and habitat amount
# across 40 landscape scales
fig.s3 =
ggplot(data = cor.predictors,

aes(x = buffer, y = r)) +

labs(x = "Buffer of the landscape scale (m)",
y = "Pearson correlation coefficient (r):\nisland size vs. habitat amount") +

scale_x_continuous(breaks = c(50, 200, 500, 1000, 1500, 2000),
labels = c("50", "200", "500", "1,000", "1,500", "2,000")) +

scale_y_continuous(breaks = seq(0.60, 0.85, 0.05)) +

geom_segment(x = 200, xend = 200, y = 0, yend = max(cor.predictors$r),
linetype = "dashed") +

geom_point(shape = 21, colour = "black", fill = "#999999", size = 5) +

theme_bw(base_size = 20) +
theme(panel.grid = element_blank(),

panel.border = element_rect(colour = "black"),
axis.title = element_text(colour = "black", face = "bold"),
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axis.text = element_text(colour = "black"),
axis.ticks = element_line(colour = "black", size = 0.5))

#fig.s3

FIGURE S3 Correlation between island size and habitat amount (i.e. percentage of forest cover) across 40 landscape scales,
ranging from 50 to 2,000-m buffer at 50-m intervals. Note that the maximum correlation value (dashed line) between island size
and habitat amount occurs exactly at the scale of effect (200-m buffer; see Fig. S1).

Test 2: Z-values

Weused the logarithmic form of the species-area relationship (SAR) to fit simple linear regressionmodels for islands surrounded by
either low habitat amounts (up to c. 50% of the landscape) or high habitat amounts. To assess whether the z-values (i.e. regression
sloes) derived from either SARs were significantly different (p < 0.05), we performed an ANCOVA model with habitat amount (low
or high) as an independent categorical variable. To support the IBT, the SAR for islands with low habitat amounts should have a
higher z-value than those with high habitat amounts. Conversely, z-values should be statistically equivalent to support the HAH.

# SAR for forest islands surrounded by low habitat amount (SAR low)
sar.low.55 = lm(log10(richness + 1) ~ log10(island.size + 1), data = subset(variables,

variables$ha.cat.55 == "low"))
summary(sar.low.55)

##
## Call:
## lm(formula = log10(richness + 1) ~ log10(island.size + 1), data = subset(variables,
## variables$ha.cat.55 == "low"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.38960 -0.14095 -0.05168 0.21539 0.36381
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1068 0.1437 -0.743 0.470462
## log10(island.size + 1) 0.7469 0.1600 4.667 0.000441 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2442 on 13 degrees of freedom
## Multiple R-squared: 0.6262, Adjusted R-squared: 0.5975
## F-statistic: 21.78 on 1 and 13 DF, p-value: 0.0004406
# Z-value of the SAR low
summary(sar.low.55)$coefficients[2, 1]

## [1] 0.746865
# Is the SAR low significant?
summary(sar.low.55)$coefficients[2, 4] < 0.05

## [1] TRUE
# SAR for forest islands surrounded by high habitat amount (SAR high)
sar.high.55 = lm(log10(richness + 1) ~ log10(island.size + 1), data = subset(variables,

variables$ha.cat.55 == "high"))
summary(sar.high.55)
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##
## Call:
## lm(formula = log10(richness + 1) ~ log10(island.size + 1), data = subset(variables,
## variables$ha.cat.55 == "high"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.297587 -0.080551 -0.001453 0.081922 0.275937
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.37142 0.16127 2.303 0.035030 *
## log10(island.size + 1) 0.31060 0.06698 4.637 0.000274 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1529 on 16 degrees of freedom
## Multiple R-squared: 0.5734, Adjusted R-squared: 0.5467
## F-statistic: 21.5 on 1 and 16 DF, p-value: 0.0002739
# Z-value of the SAR high
summary(sar.high.55)$coefficients[2, 1]

## [1] 0.3105972
# Is the SAR high significant?
summary(sar.high.55)$coefficients[2, 4] < 0.05

## [1] TRUE
# Compare the z-values
sar.ancova.55 = lm(log10(richness + 1) ~ log10(island.size + 1) * ha.cat.55,

data = variables)
summary(sar.ancova.55)

##
## Call:
## lm(formula = log10(richness + 1) ~ log10(island.size + 1) * ha.cat.55,
## data = variables)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.38960 -0.11950 -0.00623 0.15190 0.36381
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3714 0.2100 1.769 0.08741
## log10(island.size + 1) 0.3106 0.0872 3.562 0.00130
## ha.cat.55low -0.4782 0.2404 -1.989 0.05619
## log10(island.size + 1):ha.cat.55low 0.4363 0.1569 2.780 0.00944
##
## (Intercept) .
## log10(island.size + 1) **
## ha.cat.55low .
## log10(island.size + 1):ha.cat.55low **
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## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1991 on 29 degrees of freedom
## Multiple R-squared: 0.8066, Adjusted R-squared: 0.7866
## F-statistic: 40.31 on 3 and 29 DF, p-value: 0.0000000001799
# Are the z-values significantly different?
anova(sar.ancova.55)[3, 5] < 0.05

## [1] TRUE

Figure 3

# Graph showing the species-area curves for forest islands surrounded by either
# low and high habitat amounts.
fig.3 =
ggplot(data = variables,

aes(x = island.size + 1, y = richness + 1,
size = habitat.amount, colour = ha.cat.55, fill = ha.cat.55)) +

labs(x = "Island size + 1 (ha)",
y = "Number of species + 1 (n)",
colour = "Habitat amount") +

scale_x_log10(breaks = c(3, 10, 30, 100, 300, 1000),
labels = c("3", "10", "30", "100", "300", "1,000")) +

scale_y_log10(limits = c(NA, 10^max(predict(sar.high.55, interval = "confidence"))),
breaks = c(1, 3, 10, 30)) +

annotation_logticks() +

geom_smooth(method = "lm", linetype = 0) +
geom_smooth(method = "lm", se = F, size = 1.5) +
geom_point(shape = 21, colour = "black", show.legend = FALSE) +

scale_colour_manual(values = c("blue", "red"),
labels = c("high (> 70%)", "low (< 55%)")) +

scale_fill_manual(values = c("dodgerblue", "firebrick1"),
labels = c("high (> 70%)", "low (< 55%)")) +

scale_size_continuous(range = c(3, 11)) +

theme_bw(base_size = 20) +
theme(panel.grid = element_blank(),

panel.border = element_rect(colour = "black"),
axis.title = element_text(colour = "black", face = "bold"),
axis.text = element_text(colour = "black"),
axis.ticks = element_line(colour = "black", size = 0.5)) +

theme(legend.title = element_text(size = 16),
legend.text = element_text(size = 14),
legend.position = c(0.95, 0.05),
legend.justification = c(0.95, 0.05),
legend.background = element_rect(colour = "black", size = 0.5),
legend.key = element_rect(fill = NA)) +

guides(size = FALSE, fill = FALSE,
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colour = guide_legend(override.aes = list(fill = NA), reverse = TRUE)) +

annotate("text", x = min(variables$island.size + 1),
y = 10^max(predict(sar.high.55, interval = "confidence")),
hjust = 0, vjust = 1, colour = "red", size = 6,
parse = T, label = as.character(expression(italic(z)*"-value = 0.747"))) +

annotate("text", x = min(variables$island.size + 1),
y = 10^max(predict(sar.high.55, interval = "confidence")),
hjust = 0, vjust = 3.5, colour = "blue", size = 6,
parse = T, label = as.character(expression(italic(z)*"-value = 0.311")))

#fig.3

FIGURE 3 Divergent species-area relationships for understorey insectivorous birds surveyed at 33 forest islands surrounded by
either low (r2adj = 0.598, p < 0.001, n = 15) or high (r2adj = 0.547, p < 0.001, n = 18) habitat amounts. Circle sizes scale to
the landscape-scale habitat amount, with smaller and larger circles representing islands surrounded by either low or high habitat
amounts, respectively. Note the different z-values for these two landscape scenarios (p = 0.009) and the base 10 logarithmic
scales along both axes.

Sensitivity analysis

The z-value at landscapes isolated by low habitat amounts (< 55%) is statistically higher than that at landscapes connected by
high habitat amounts (> 70%). Such a difference could be attributed to the selected cut-off (55%) to distinguish low from high
habitat amounts. To test whether the difference in z-values is sensitive to that, we reran the z-value test using different cut-offs
for habitat amount.

Cut-offs: 54%, 50%, 48.5%, 45%, 43.1%, 30%

# Classify the habitat amount into low or high using different cut-offs
variables$ha.cat.54 = ifelse(variables$habitat.amount < 54, "low", "high") # 54%
variables$ha.cat.50 = ifelse(variables$habitat.amount < 50, "low", "high") # 50%
variables$ha.cat.48.5 = ifelse(variables$habitat.amount < 48.5, "low", "high") # 48.5%
variables$ha.cat.45 = ifelse(variables$habitat.amount < 45, "low", "high") # 45%
variables$ha.cat.43.1 = ifelse(variables$habitat.amount < 43.1, "low", "high") # 43.1%
variables$ha.cat.30 = ifelse(variables$habitat.amount < 30, "low", "high") # 30%

Cut-off of 54%

# SAR for forest islands surrounded by low habitat amount (SAR low)
sar.low.54 = lm(log10(richness + 1) ~ log10(island.size + 1), data = subset(variables,

variables$ha.cat.54 == "low"))

# Z-value of the SAR low
summary(sar.low.54)$coefficients[2, 1]

## [1] 0.7731002
# Is the SAR low significant?
summary(sar.low.54)$coefficients[2, 4] < 0.05

## [1] TRUE
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# SAR for forest islands surrounded by high habitat amount (SAR high)
sar.high.54 = lm(log10(richness + 1) ~ log10(island.size + 1), data = subset(variables,

variables$ha.cat.54 == "high"))

# Z-value of the SAR high
summary(sar.high.54)$coefficients[2, 1]

## [1] 0.332675
# Is the SAR high significant?
summary(sar.high.54)$coefficients[2, 4] < 0.05

## [1] TRUE
# Compare the z-values
sar.ancova.54 = lm(log10(richness + 1) ~ log10(island.size + 1) * ha.cat.54,

data = variables)

# Are the z-values significantly different?
anova(sar.ancova.54)[3, 5] < 0.05

## [1] TRUE

Summary of the results for the cut-off of 54%

• SAR low is significant
• SAR high is significant
• Z-values are different

Cut-off of 50%

# SAR for forest islands surrounded by low habitat amount (SAR low)
sar.low.50 = lm(log10(richness + 1) ~ log10(island.size + 1), data = subset(variables,

variables$ha.cat.50 == "low"))

# Z-value of the SAR low
summary(sar.low.50)$coefficients[2, 1]

## [1] 0.9007251
# Is the SAR low significant?
summary(sar.low.50)$coefficients[2, 4] < 0.05

## [1] TRUE
# SAR for forest islands surrounded by high habitat amount (SAR high)
sar.high.50 = lm(log10(richness + 1) ~ log10(island.size + 1), data = subset(variables,

variables$ha.cat.50 == "high"))

# Z-value of the SAR high
summary(sar.high.50)$coefficients[2, 1]

## [1] 0.3200293
# Is the SAR high significant?
summary(sar.high.50)$coefficients[2, 4] < 0.05

## [1] TRUE
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# Compare the z-values
sar.ancova.50 = lm(log10(richness + 1) ~ log10(island.size + 1) * ha.cat.50,

data = variables)

# Are the z-values significantly different?
anova(sar.ancova.50)[3, 5] < 0.05

## [1] TRUE

Summary of the results for the cut-off of 50%

• SAR low is significant
• SAR high is significant
• Z-values are different

Cut-off of 48.5%

# SAR for forest islands surrounded by low habitat amount (SAR low)
sar.low.48.5 = lm(log10(richness + 1) ~ log10(island.size + 1), data = subset(variables,

variables$ha.cat.48.5 == "low"))

# Z-value of the SAR low
summary(sar.low.48.5)$coefficients[2, 1]

## [1] 0.8350526
# Is the SAR low significant?
summary(sar.low.48.5)$coefficients[2, 4] < 0.05

## [1] TRUE
# SAR for forest islands surrounded by high habitat amount (SAR high)
sar.high.48.5 = lm(log10(richness + 1) ~ log10(island.size + 1), data = subset(variables,

variables$ha.cat.48.5 == "high"))

# Z-value of the SAR high
summary(sar.high.48.5)$coefficients[2, 1]

## [1] 0.2847645
# Is the SAR high significant?
summary(sar.high.48.5)$coefficients[2, 4] < 0.05

## [1] TRUE
# Compare the z-values
sar.ancova.48.5 = lm(log10(richness + 1) ~ log10(island.size + 1) * ha.cat.48.5,

data = variables)

# Are the z-values significantly different?
anova(sar.ancova.48.5)[3, 5] < 0.05

## [1] TRUE

Summary of the results for the cut-off of 48.5%

• SAR low is significant
• SAR high is significant
• Z-values are different
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Cut-off of 45%

# SAR for forest islands surrounded by low habitat amount (SAR low)
sar.low.45 = lm(log10(richness + 1) ~ log10(island.size + 1), data = subset(variables,

variables$ha.cat.45 == "low"))

# Z-value of the SAR low
summary(sar.low.45)$coefficients[2, 1]

## [1] 0.598169
# Is the SAR low significant?
summary(sar.low.45)$coefficients[2, 4] < 0.05

## [1] FALSE
# SAR for forest islands surrounded by high habitat amount (SAR high)
sar.high.45 = lm(log10(richness + 1) ~ log10(island.size + 1), data = subset(variables,

variables$ha.cat.45 == "high"))

# Z-value of the SAR high
summary(sar.high.45)$coefficients[2, 1]

## [1] 0.245553
# Is the SAR high significant?
summary(sar.high.45)$coefficients[2, 4] < 0.05

## [1] TRUE
# Compare the z-values
sar.ancova.45 = lm(log10(richness + 1) ~ log10(island.size + 1) * ha.cat.45,

data = variables)

# Are the z-values significantly different?
anova(sar.ancova.45)[3, 5] < 0.05

## [1] FALSE

Summary of the results for the cut-off of 45%

• SAR low is not significant
• SAR high is significant
• Z-values are not different

Cut-off of 43.1%

# SAR for forest islands surrounded by low habitat amount (SAR low)
sar.low.43.1 = lm(log10(richness + 1) ~ log10(island.size + 1), data = subset(variables,

variables$ha.cat.43.1 == "low"))

# Z-value of the SAR low
summary(sar.low.43.1)$coefficients[2, 1]

## [1] 0.6280358
# Is the SAR low significant?
summary(sar.low.43.1)$coefficients[2, 4] < 0.05

## [1] FALSE
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# SAR for forest islands surrounded by high habitat amount (SAR high)
sar.high.43.1 = lm(log10(richness + 1) ~ log10(island.size + 1), data = subset(variables,

variables$ha.cat.43.1 == "high"))

# Z-value of the SAR high
summary(sar.high.43.1)$coefficients[2, 1]

## [1] 0.2560844
# Is the SAR high significant?
summary(sar.high.43.1)$coefficients[2, 4] < 0.05

## [1] TRUE
# Compare the z-values
sar.ancova.43.1 = lm(log10(richness + 1) ~ log10(island.size + 1) * ha.cat.43.1,

data = variables)

# Are the z-values significantly different?
anova(sar.ancova.43.1)[3, 5] < 0.05

## [1] FALSE

Summary of the results for the cut-off of 43.1%

• SAR low is not significant
• SAR high is significant
• Z-values are not different

Cut-off of 30%

# SAR for forest islands surrounded by low habitat amount (SAR low)
sar.low.30 = lm(log10(richness + 1) ~ log10(island.size + 1), data = subset(variables,

variables$ha.cat.30 == "low"))

# Z-value of the SAR low
summary(sar.low.30)$coefficients[2, 1]

## [1] 0.584008
# Is the SAR low significant?
summary(sar.low.30)$coefficients[2, 4] < 0.05

## [1] FALSE
# SAR for forest islands surrounded by high habitat amount (SAR high)
sar.high.30 = lm(log10(richness + 1) ~ log10(island.size + 1), data = subset(variables,

variables$ha.cat.30 == "high"))

# Z-value of the SAR high
summary(sar.high.30)$coefficients[2, 1]

## [1] 0.2705981
# Is the SAR high significant?
summary(sar.high.30)$coefficients[2, 4] < 0.05

## [1] TRUE
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# Compare the z-values
sar.ancova.30 = lm(log10(richness + 1) ~ log10(island.size + 1) * ha.cat.30,

data = variables)

# Are the z-values significantly different?
anova(sar.ancova.30)[3, 5] < 0.05

## [1] FALSE

Summary of the results for the cut-off of 30%

• SAR low is not significant
• SAR high is significant
• Z-values are not different

Test 3: Species accumulation curves (SACs)

We compared the cumulative number of species across all 33 surveyed islands ordered according to either increasing (small-to-
large) or decreasing (large-to-small) island sizes, which may lead to three possible outcomes. First, the small-to-large accumu-
lation curve lies below the large-to-small, supporting IBT. Second, the curves overlap, supporting HAH. Third, the small-to-large
accumulation curve lies above the large-to-small, supporting neither IBT nor HAH.

Small-to-large curve

# Cumulative number of species
small.large.richness = specaccum(islands[order(islands$area.ha), names(islands.spp)],

method = "collector")$richness

# Cumulative island size
small.large.size = cumsum(islands[order(islands$area.ha), "area.ha"])

Large-to-small curve

# Cumulative number of species
large.small.richness = specaccum(islands[order(-islands$area.ha), names(islands.spp)],

method = "collector")$richness

# Cumulative island size
large.small.size = cumsum(islands[order(-islands$area.ha), "area.ha"])

# Combine the results of small-to-large with large-to-small curves
curves = data.frame(cum.richness = c(small.large.richness, large.small.richness),

cum.size = c(small.large.size, large.small.size), order = rep(c("small.large",
"large.small"), each = 33))

Figure 4

# Graph comparing small-to-large with large-to-small species accumulation curves
fig.4 =
ggplot(data = curves,

aes(x = cum.size, y = cum.richness,
fill = order, linetype = order)) +
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labs(x = "Cumulative island size (ha)",
y = "Cumulative number of species (n)",
fill = "Island size order") +

scale_x_continuous(breaks = c(0.63, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 7841),
labels = c("0.63", "1,000", "2,000", "3,000", "4,000", "5,000",

"6,000", "7,000", "7,841")) +
scale_y_continuous(breaks = c(0, 10, 20, 30, 40, 50, 59)) +

geom_line(colour = "black", size = 1.5) +
geom_point(shape = 21, colour = "black", size = 5) +

scale_fill_manual(values = c("grey40", "grey80"),
labels = c("Large-to-small", "Small-to-large")) +

scale_linetype_manual(values = c("solid", "dashed")) +

theme_bw(base_size = 20) +
theme(panel.grid = element_blank(),

panel.border = element_rect(colour = "black"),
axis.title = element_text(colour = "black", face = "bold"),
axis.text = element_text(colour = "black"),
axis.ticks = element_line(colour = "black", size = 0.5)) +

theme(legend.title = element_text(size = 16),
legend.text = element_text(size = 14),
legend.position = c(0.95, 0.05),
legend.justification = c(0.95, 0.05),
legend.background = element_rect(colour = "black", size = 0.5),
legend.key = element_rect(fill = NA)) +

guides(fill = guide_legend(override.aes = list(size = 5), reverse = TRUE),
linetype = FALSE)

#fig.4

FIGURE 4 Species accumulation curves of understorey insectivorous birds for islands ordered according to either increasing (light
grey circles, dashed line) or decreasing (dark grey circles, solid line) island sizes.

Test 4: Extrapolation of SAR

We fit a SAR model (see Test 2: Z-values) to all 33 surveyed islands. We further extrapolated the number of species to a
hypothetical island containing the area (+ 1) of all surveyed islands combined (7,874 ha), and compared the total number of
species observed across surveyed islands to the extrapolated value. Compared to the extrapolated value, a lower observed
number of species would support IBT; a statistically equivalent number, HAH; a higher number, neither IBT nor HAH.

# SAR for all 33 surveyed islands
sar = lm(log10(richness + 1) ~ log10(island.size + 1), data = variables)
summary(sar)

##
## Call:
## lm(formula = log10(richness + 1) ~ log10(island.size + 1), data = variables)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.42540 -0.10776 0.02702 0.12345 0.49190
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##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.15465 0.07882 1.962 0.0588 .
## log10(island.size + 1) 0.40736 0.04196 9.708 0.0000000000647 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2179 on 31 degrees of freedom
## Multiple R-squared: 0.7525, Adjusted R-squared: 0.7445
## F-statistic: 94.25 on 1 and 31 DF, p-value: 0.00000000006471
# Calculate the extrapolated value and the respective confidence intervals
extrapolated = 10^predict(sar,

newdata = data.frame(island.size = sum(variables$island.size + 1)),
interval = "confidence")

extrapolated

## fit lwr upr
## 1 55.18854 34.22766 88.98579

Figure 5

# Graph showing the SAR for all 33 surveyed islands and the extrapolated value
fig.5 =
ggplot() +

labs(x = "Island size + 1 (ha)",
y = "Number of species + 1 (n)",
fill = "Number of species") +

scale_x_log10(breaks = c(10, 100, 1000, 5000),
labels = c("10", "100", "1,000", "5,000")) +

scale_y_log10(breaks = c(1, 10, 100)) +
annotation_logticks() +

geom_line(size = 1.5,
aes(x = variables$island.size + 1,

y = 10^predict(sar))) +

geom_line(size = 0.5, linetype = "dashed",
aes(x = variables$island.size + 1,

y = 10^predict(sar, interval = "confidence")[, 2])) +

geom_line(size = 0.5, linetype = "dashed",
aes(x = variables$island.size + 1,

y = 10^predict(sar, interval = "confidence")[, 3])) +

geom_line(size = 1.5, linetype = "dashed",
aes(x = seq(700, sum(variables$island.size + 1), length = 10),

y = 10^predict(sar,
newdata = data.frame(island.size =
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seq(700,
sum(variables$island.size + 1),
length = 10))))) +

geom_line(size = 0.5, linetype = "dashed",
aes(x = seq(1700, sum(variables$island.size + 1), length = 10),

y = 10^predict(sar,
newdata = data.frame(island.size =

seq(1700,
sum(variables$island.size + 1),
length = 10)),

interval = "confidence")[, 2])) +

geom_line(size = 0.5, linetype = "dashed",
aes(x = seq(1700, sum(variables$island.size + 1), length = 10),

y = 10^predict(sar,
newdata = data.frame(island.size =

seq(1700,
sum(variables$island.size + 1),
length = 10)),

interval = "confidence")[, 3])) +

geom_point(shape = 21, colour = "black", size = 5,
data = data.frame(richness = c(variables$richness + 1,

extrapolated[1],
length(islands.spp) + 1),

island.size = c(variables$island.size + 1,
rep(sum(variables$island.size + 1), 2)),

group = c(rep("Observed per island", 33),
"Extrapolated",
"Observed in total")),

aes(x = island.size, y = richness, fill = group)) +

scale_fill_manual(values = c("white", "black", "#999999")) +

theme_bw(base_size = 20) +
theme(panel.grid = element_blank(),

panel.border = element_rect(colour = "black"),
axis.title = element_text(colour = "black", face = "bold"),
axis.text = element_text(colour = "black"),
axis.ticks = element_line(colour = "black", size = 0.5)) +

theme(legend.title = element_text(size = 16),
legend.text = element_text(size = 14),
legend.position = c(0.95, 0.05),
legend.justification = c(0.95, 0.05),
legend.background = element_rect(colour = "black", size = 0.5),
legend.key = element_rect(fill = NA)) +

guides(fill = guide_legend(reverse = TRUE)) +

annotate("text", x = min(variables$island.size + 1), y = 100,
hjust = 0, vjust = 1, size = 6,
parse = T,
label = as.character(expression(italic(r)^{2}*""[adj]*" = 0.744"))) +
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annotate("text", x = min(variables$island.size + 1), y = 100,
hjust = 0, vjust = 3.5, size = 6,
parse = T, label = as.character(expression(italic(z)*"-value = 0.407")))

#fig.5

FIGURE 5 Species-area relationship for understorey insectivorous birds surveyed at 33 forest islands. The white circle shows
the extrapolated number of species (55.2) to a hypothetical island containing the area (+ 1) of all 33 surveyed islands combined
(7,874 ha), whereas the black circle shows the total number of species observed in this study (59 + 1). Dashed lines show the
95% confidence intervals of the predicted line. Note the base 10 logarithmic scales along both axes.

Save the figures

library(gridExtra)

ggsave(fig.s1, file = "figs1.pdf", width = 20, height = 20, units = "cm")
ggsave(grid.arrange(fig.s2a, fig.s2b, ncol = 2),

file = "figs2.pdf", width = 40, height = 20, units = "cm")
ggsave(fig.s3, file = "figs3.pdf", width = 20, height = 20, units = "cm")
ggsave(fig.3, file = "fig3.pdf", width = 20, height = 20, units = "cm")
ggsave(fig.4, file = "fig4.pdf", width = 20, height = 20, units = "cm")
ggsave(fig.5, file = "fig5.pdf", width = 20, height = 20, units = "cm")
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Chapter 4

The role of baseline suitability in
assessing the impacts of land-use
change on biodiversity

c© Neil Palmer (CIAT)

Under review in Biological Conservation as:
Bueno AS, Peres CA (2019) The role of baseline suitability in assessing the impacts
of land-use change on biodiversity.
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4.1 Abstract

We examined changes in species richness from reference sites to impacted sites to
illustrate the extent to which estimated impacts of land-use change on biodiver-
sity can be affected by the degree of baseline suitability (intactness of references
sites) and the species assemblage under consideration. We mist-netted birds at
five continuous Amazonian forest sites and 33 forest islands (0.63-1,699 ha) within
a large hydroelectric reservoir. We then produced a gradient of baseline suitabil-
ity based on forest area of five sets of reference sites, namely continuous forest,
1,000 ha, 500 ha, 250 ha and 100 ha, and contrasted these with all smaller islands
combined considering two types of species assemblages. The first comprised only
species captured at reference sites, whereas the second comprised all species cap-
tured at all sites. We also used a biodiversity complementarity approach to define
the minimum set of forest islands retaining the maximum combined number of
species for the species assemblage occurring both at continuous forest sites and
across all sites. A focus on the baseline species assemblage from the most suit-
able baseline (continuous forest) resulted in an estimated decrease of 67% in species
richness (negative effect) at impacted sites, whereas a focus on the overall species
assemblage and the use of the least suitable baseline (100 ha) as a reference condi-
tion reversed this trend resulting in an estimated increase of 43% (positive effect)
at impacted sites. Furthermore, the solution for the minimum set problem target-
ing only species captured at continuous forest sites resulted in a decrease of 43%
in the number of islands to be protected in relation to the solution targeting the
overall species assemblage. We therefore underline the imperative of consider-
ing the intactness of reference sites to accurately assess the impacts of land-use
change on biodiversity and define mitigation strategies.

Keywords: environmental impact assessment, habitat fragmentation, habitat
loss, insularization, intact forest landscapes, shifting baseline
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4.2 Introduction

Land-use change is the most pervasive threat to terrestrial biodiversity world-
wide, particularly in the tropics where species-rich biotas are more sensitive to
environmental changes (Gardner et al. 2009) that are projected to escalate (Sala
et al. 2000). Therefore, the fate of native biodiversity in human-modified land-
scapes depends on the ability of species to persist in fragmented, degraded, con-
verted and/or regenerated habitats (i.e. modified habitats). Despite the potential
value of structurally degraded forest habitats for biodiversity conservation, such
as selectively logged (Edwards et al., 2012) and secondary forests (Chazdon et
al., 2009), species losses will inevitably occur in modified habitats as primary old-
growth forests are largely irreplaceable for sustaining continuous-forest species
assemblages (Gibson et al., 2011). Thus, evaluating the costs and benefits of con-
servation strategies in human-modified landscapes is an urgent task in prioritis-
ing efforts in the most promising modified habitats available (Banks-Leite et al.,
2014).

A central question in conservation biology is ”What was the condition of
ecosystems before significant human disruption, and how can this knowledge
be used to improve current and future management?” (Sutherland et al., 2009).
Ideally, paleoecological, archaeological, and historical data would be gathered
to assess the impacts of anthropogenic disturbance on biodiversity, thereby sup-
porting conservation planning (Jackson et al., 2001). Since these data are almost
invariably non-existent, relatively intact contemporary baseline (i.e. control) sites
within the same landscape can be employed in a space-for-time substitution (Ew-
ers et al., 2009). However, shifting baselines (i.e. changing biological conditions
induced by past disturbance; Papworth et al. 2009) may obscure the most severe
impacts of land-use change on sensitive species as a result of extinction filters
(Balmford, 1996) and local proliferation of disturbance-adapted species (Morante-
Filho et al., 2015). Therefore, the credibility of environmental impact assessments
largely depends on baseline suitability (Gardner et al., 2009; Ritter et al., 2017),
which herein is defined as the reliability of reference sites in resembling some pre-
disturbance condition. Accordingly, a continuous primary forest covering tens of
thousands of hectares would be a suitable baseline for an adjacent fragmented
landscape (Sigel et al. 2010).

If one focuses only on the species assemblage from reference sites, land-
use change will almost inevitably result in species losses (i.e. decreases in species
richness). Alternatively, a focus on the overall species assemblage may not only
result in species losses, but also in compensatory dynamics whereby any loss of
species exclusively found at reference sites is either compensated (Ewers et al.
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2009) or even surpassed (Humphreys and Kitchener 1982) by any gain of species
restricted to impacted sites (i.e. either no net loss or increase in species richness).
Hence, environmental impact assessments relying on overall species assemblages
are likely to yield optimistic but misleading outcomes (Lövei et al., 2006), which
can misdirect conservation strategies. For instance, the minimum set problem is
a commonly used tool to identify the most cost-effective set of sites (i.e. the max-
imum number of species retained in the fewest number of sites) to concentrate
conservation efforts (Howard et al., 1998). Nevertheless, the possible solutions
for the minimum set problem are target specific (Howard et al., 2000), implying
that a focus on either the species assemblage typical of the baseline or the over-
all species assemblage may result in different solutions. Importantly, such issues
would only be relevant if conservation and restoration programs target protecting
either the ”natural” state or those returning to pre-disturbance conditions (Wiens
and Hobbs 2015), which will become increasingly daunting to achieve given the
rapid development of ‘novel ecosystems’ induced by human activities (Hobbs et
al. 2009).

Here, we use a gradient of baseline suitability and define two types
of species assemblages derived from systematic avifaunal surveys carried out
in continuous forest (control) sites and forest islands within an anthropogenic
archipelago of central Amazonia. We then examine how the degree of baseline
suitability and both types of species assemblages affect the estimated impact of
forest fragmentation on species richness. Furthermore, we compare the solutions
for the minimum set problem targeting either the continuous-forest species as-
semblage derived from only control sites or the overall species assemblage de-
rived from both control sites and forest islands. In doing so, we provide empirical
evidence that environmental impact assessments and conservation strategies can
be severely biased by both the suitability of baseline sites and which set of focal
species are considered.
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4.3 Methods

4.3.1 Study area

This study was carried out within the vast Balbina Hydroelectric Reservoir (here-
after, BHR; 1◦40’ S, 59◦40’ W; Fig. 4.1) and adjacent areas of continuous intact
forest, located in the State of Amazonas, central Brazilian Amazonia. The BHR
spans c. 300,000 ha and was formed by the damming of the Uatumã River in 1987
(Fearnside, 2016), creating over 3,500 forest islands on higher elevation terrain of
the once continuous intact forest (Benchimol and Peres, 2015). To offset the en-
vironmental impacts of the Balbina hydroelectric dam, an area of 940,358 ha was
set-aside on the left bank of the former Uatumã River to create the strictly pro-
tected Uatumã Biological Reserve (IUCN category Ia), the largest of its category
in Brazil. Moreover, the reservoir on the left bank, including all its islands, is also
protected.

Figure 4.1: Location of the study area in central Brazilian Amazonia, indicated by
a solid rectangle containing (b) the Balbina Hydroelectric Reservoir (BHR) land-
scape (water in white, forest in gray), showing the boundaries of the Uatumã
Biological Reserve, a strictly-protected area safeguarding most of this landscape;
(c) larger inset map showing the spatial distribution of the 38 sample sites within
the BHR landscape, including all surveyed islands and continuous forest sites;
and (d) detail of an understory mist-net line (white line) used to sample the avi-
fauna. Reference sites correspond to continuous forest sites and forest islands
larger than c. 100 ha, whereas impacted sites correspond to forest islands smaller
than 55 ha (see Fig. 4.3 and Table S4.1). Photo credit: Eduardo M. Venticinque.

The vegetation is comprised primarily of submontane dense om-
brophilous (terra firme) forest, although seasonally flooded igapó forest formerly
occurred along the margins of the Uatumã River before damming. Forest islands
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at the BHR range in size from 0.2 to 4,878 ha and are surrounded by an inhos-
pitable open-water matrix punctuated by dead tree snags rising above the water
level (Benchimol and Peres, 2015). Both island area and associated edge-mediated
disturbance shape forest structure: smaller islands are species-poor and domi-
nated by pioneer tree species, whereas larger islands are species-rich and contain
a higher dominance of large-seeded canopy tree species (Benchimol and Peres,
2015). According to the Köppen classification, the climate is equatorial fully hu-
mid (Af), with mean annual precipitation and temperature of 2,464 mm and 26.5
◦C, respectively (Alvares et al., 2013).

4.3.2 Sampling design

We selected 38 sample sites, five in continuous forest sites (hereafter, control sites)
and 33 in forest islands (Table S4.1) distributed across an area of over 200,000 ha
(Fig. 4.1). Sample sites were spaced apart by an average distance of 31.1 km
(SD = 17.1 km, range = 1.1-82.6 km). Sixteen forest islands and four control sites
were on the left bank, whereas 17 forest islands and one control site were on the
right bank (Fig. 4.1). Forest area of surveyed islands was calculated in QGIS

software (QGIS Development Team 2016) using a classified image (Collection
2, 2015, Amazon) derived from 30-m resolution LANDSAT imagery downloaded
from the Brazilian Annual Land Use and Land Cover Mapping Project (available
at http://mapbiomas.org). Forest cover was defined as ‘dense forest’ (pixel value
3), because other pixel values effectively represent either heavily degraded forests
or non-forest land cover types. Accordingly, the forest area of surveyed islands
ranged from 0.63 to 1,699 ha.

4.3.3 Avian surveys

Fieldwork was carried out over 12 months from July to December 2015 and 2016.
At each sample site, we surveyed birds using 16 mist nets (12 × 2.5 m, Ecotone
1016/12) set in the understory along a continuous near-linear c. 200-m net-line
whenever possible. In forest islands smaller than 4 ha, we used a cross-shaped
net-line design, thereby ensuring the same sampling effort across all 38 sample
sites. Herein, each mist-net line corresponds to one sample site. Mist nets were
operated from 06:00 to 15:00 h for two days each year, amounting a sampling ef-
fort of 576 net-hours per sample site and 21,888 net-hours in total (16 mist nets ×
9 hours × 2 days × 2 years × 38 sample sites). Since mist nets capture mainly
understory birds and occasionally birds that walk on the ground or that fly above
net level (Karr 1981), our inferences are drawn from a subset of the avifauna. To
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avoid double-counting, we ringed birds with coded aluminum rings and sub-
sequently excluded recaptures. Rings were provided by the Brazilian National
Center for Bird Conservation and Research (CEMAVE) under research permits
SISBIO 49068 and CEMAVE 3984.

4.3.4 Species assemblages

We defined two types of species assemblages based on the species occurrence
across all sample sites (n = 38). The first comprises species captured only at refer-
ence sample sites (hereafter referred to as baseline species assemblage, although we
also use the term continuous-forest species assemblage to refer to the species subset
from control sites). The second comprises all species captured in both reference
sample sites and forest islands (hereafter, overall species assemblage).

4.3.5 Estimated impact of forest fragmentation on species rich-

ness

We used five sets of reference sample sites to represent a gradient of baseline
suitability, which was based on insular forest area (Table S4.2). We reasonably
assumed that the avifauna in control sites was more intact than that in forest
islands and that the avifauna on larger forest islands was more intact than on
smaller ones (Aurélio-Silva et al. 2016). Accordingly, the avifauna of each set
of reference sample sites comprises a different baseline, namely continuous forest,
1,000 ha, 500 ha, 250 ha and 100 ha (Table S4.2). The suitability of each baseline was
inspected by comparing the number of species retained and gained in relation
to the continuous forest baseline, so that the suitability of the continuous forest
baseline was assigned the maximum biodiversity value (Fig. 4.2).

A previous study at the BHR landscape reported that bird species richness
was remarkably reduced in forest islands smaller than 55 ha compared to larger
forest islands of up to c. 1,700 ha (Aurélio-Silva et al., 2016). Therefore, surveyed
islands smaller than 55 ha (n = 18; Table S4.1) were regarded as impacted sites due
to forest fragmentation – the landscape process involving both forest loss and the
breaking apart of forest (Fahrig, 2003).

Having defined the gradient of baseline suitability and the impacted sites,
we compared the species richness of all impacted sites combined to that of each
of the five baseline levels (Fig. 4.3) for both the baseline and the overall species
assemblage. To accomplish this, we used the INEXT package (Hsieh et al., 2016)
in R (R Core Team 2018) to calculate the rarefied number of species based on
equal completeness (i.e. sample coverage) instead of equal size (i.e. number of
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Figure 4.2: Gradient of baseline suitability showing the proportion of bird species
retained and gained in relation to the understory bird assemblage captured in
continuous forest sites (CF). Numbers within bars correspond to the total number
of species in each of the five categories of baseline suitability.
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Figure 4.3: Schematic representation of the comparisons between the number of
species at impacted sites (forest islands smaller than 55 ha) and at reference sites
representing a gradient of baselines suitability, from the most (continuous forest)
to the least suitable (100-ha forest islands).

individuals), because species-rich sites require a greater number of individuals
to be fully characterized than species-poor sites (Chao and Jost 2012). Next, we
calculated the proportional difference in species richness between the impacted
sites combined and each of the five baseline levels to assess to what extent our
estimated impacts of forest fragmentation are affected by the degree of baseline
suitability and the composition of focal species assemblages. Estimated impact
was measured as one minus the proportional difference between impacted and
reference sites, so the higher the value, the more severe the estimated impact.
Accordingly, if reference sites harbor 10 species and impacted sites 4 species, the
estimated impact is 0.6 [1 − (4/10)] or a 60% reduction in species richness.

4.3.6 Minimum set problem

We used a biodiversity complementarity approach to determine the minimum
number of forest islands (i.e. the ‘solution’ for the minimum set problem) that re-
tained the maximum combined number of species (Howard et al., 1998) for both
the continuous-forest and the overall species assemblage captured across the entire
set of 33 surveyed islands. To do so, we used an algorithm that first selects the
forest island containing the highest number of species and then sequentially se-
lects the forest islands that add the highest number of previously unrepresented
species (Howard et al., 1998). In the event of a tie, the more species-rich island
was selected, and if that tie persisted, we selected the largest island. This proce-
dure was repeated until all species captured in the entire set of 33 forest islands
were represented by at least one individual. We then quantified the differences
between the solutions for the minimum set problem targeting both the continuous-
forest and the overall species assemblage.
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4.4 Results

Considering all 38 sample sites, we captured a total of 2,115 birds representing
130 species, 103 genera, and 38 families. At the five continuous forest control
sites, we captured 614 birds representing 86 species, 71 genera and 30 families;
the number of individuals per control site ranged from 75 to 165 (mean [SD] =
122.8 [37.9]), and the number of species from 28 to 54 (42.8 [10.5]; Table S4.1). At
the 33 forest islands, we captured 1,501 birds representing 109 species, 90 genera
and 35 families; the number of individuals per forest island ranged from 5 to 121
(45.5 [28.3]), and the number of species from 3 to 43 (16.1 [9.72]; Table S4.1).

4.4.1 Estimated impact of forest fragmentation on species rich-

ness

The estimated impact of forest fragmentation on species richness, measured as
the contrast between reference and impacted sites, was affected by both the de-
gree of baseline suitability and the species assemblage under consideration (Fig.
4.4). Accordingly, the estimated impact was gradually reduced as a function of
decreasing baseline suitability. Yet forest fragmentation significantly depressed
the species richness of the baseline species assemblage, regardless of the degree of
baseline suitability (Fig. 4.4; Table S4.3). In contrast, a focus on the overall species
assemblage revealed a negative impact of forest fragmentation only when the most
suitable baseline (continuous forest) was used as the reference condition (Fig. 4.4;
Table S4.3). Furthermore, the overall species richness at impacted sites was signif-
icantly higher than that at the least suitable baseline (100 ha; Fig. 4.4; Table S4.3),
which could be interpreted as a positive effect of forest fragmentation on species
richness. Importantly, these results would not hold true if we had used only a
one-year dataset from either 2015 or 2016 (see Supporting Information), which
indicates that the reliability of environmental impact assessments also depends
on the robustness of biodiversity inventories.
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Figure 4.4: Comparisons between the rarefied number of understory bird species
at reference and impacted sites across a gradient of baseline suitability for two
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number of species were standardized by sample coverage (0.927). Error bars in-
dicate the 95% confidence intervals.
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4.4.2 Minimum set problem

Considering the continuous-forest species assemblage, the solution for the minimum
set problem included 12 forest islands (36.4% of 33 islands; 71.9% of the aggre-
gate area), which harbored 65 out of 86 species (75.6%; Fig. 4.5a). Considering the
overall species assemblage, the solution for the minimum set problem included 21
forest islands (63.3% of 33 islands; 69.7% of the aggregate area), which included
109 out of 130 species (83.8%; Fig. 4.5b). Thus, a focus on the continuous-forest
species assemblage would reduce conservation investments in terms of the number
of forest islands to be protected from 21 to 12, but not in terms of the aggregate
area. Nevertheless, even the entire set of 33 forest islands surveyed failed to in-
clude 21 species that were only represented at continuous forest sites.
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(a) Continuous−forest species assemblage
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(b) Overall species assemblage
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Figure 4.5: Cumulative number of understory bird species occurring on forest
islands considering both the (a) continuous-forest and the (b) overall species as-
semblage. Forest islands are ranked from those adding the largest to the smallest
number of unrepresented species in the entire metacommunity. Dark gray circles
represent forest islands included within the solution of the minimum set prob-
lem: a set of forest islands whose avifauna complement each other and collec-
tively capture the largest number of species within the fewest number of forest
islands. Light gray circles represent forest islands that fail to add new species to
the metacommunity.
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4.5 Discussion

Up to 82% of the world’s forests are degraded to some extent (Watson et al. 2018)
and over 70% lie within 1 km of a forest edge, and are therefore exposed to edge-
mediated disturbance (Haddad et al., 2015). Most remaining forest areas world-
wide could be deemed as ‘shifting baselines’ compared to their once primeval
ecological condition. Accordingly, both the richness and abundance of sensitive
species are expected to decline, whereas those of disturbance-adapted species
are expected to increase, thereby resulting in a shift in community structure (i.e.
changes in species composition and population sizes) with some relict species
populations retained. In particular, this has been shown for birds (Sigel et al.
2006), amphibians and reptiles (Whitfield et al., 2007), and dung beetles (Esco-
bar et al., 2008) at La Selva Biological Station (c. 1,600 ha), an intensively studied
tropical forest reserve in Costa Rica. Such shifts in community structure have
been attributed to forest shrinkage and isolation induced by surrounding land-
use change (Escobar et al., 2008; Sigel et al., 2006), and climate-driven reduction in
microhabitat resources (Whitfield et al., 2007). Some authors have therefore cau-
tioned against the use of La Selva as an ”intact” tropical forest baseline for neigh-
boring modified habitats, given its declining biodiversity conservation value over
35-40 years (Escobar et al., 2008; Sigel et al., 2006). Likewise, avian declines and
extirpations have also been documented over 85 years in the Panamanian forest
reserve of Barro Colorado Island (c. 1,600 ha), the longest and best studied tropi-
cal forest fragment (Robinson, 1999). These two examples of shifting baselines il-
lustrate that isolated tropical forest reserves often fail to preserve ”intact” species
assemblages in the long run (Sigel et al., 2010), even if they are well protected.

Biodiversity comparisons between reference and impacted sites are likely
to be severely biased if reference sites are significantly degraded or reduced in
extent, rather than represented by a relatively suitable baseline of continuous pri-
mary habitat. As a result, shifting baselines reduce the contrast between reference
and impacted sites, leading to unduly optimistic diagnostics of the magnitude of
impacts as we have shown here (Fig. 4.4; Table S4.3). For instance, the amphib-
ian species richness of a c. 250-ha shifting baseline forest reserve in a southern
Costa Rican landscape was not significantly different from that of either country-
side forest elements (e.g. small forest fragments, live fences, hedgerows, riparian
strips) or crop fields and pastures (Mendenhall et al., 2016). In contrast, the am-
phibian species richness of primary forest sites larger than 1 Mha (i.e. suitable
baseline) in northeastern Brazilian Amazonia was higher than that in either sec-
ondary forests or eucalypt plantations retaining a native understory (Barlow et
al., 2007). Apart from the role of suitable baselines to properly assess the scale
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of impacts, the authors of two meta-analyses have either considered sites larger
than 100 ha as ‘minimally altered forests’ (Mendenhall et al., 2016) or have not de-
fined their minimum size (Mendenhall et al., 2014). Nonetheless, forest intactness
(i.e. baseline suitability) depends not only on levels of habitat disturbance (Bar-
low et al., 2016), but also on its overall spatial extent (Potapov et al., 2017), since
protected areas larger than 1 Mha are required to support full complements of
species and landscape-scale ecological processes in tropical forests (Peres, 2005).

We caution against the naı̈ve use of the ”best” locally available reference
sites whenever those are not representative of a suitable baseline (Cardinale et al.,
2018), and emphasize the need to describe in future studies the size and the level
of structural and/or compositional habitat disturbance of reference sites. For ex-
ample, Hannah et al. (2007) found no differences in bird species richness and
composition between fragments (¡ 300 ha) and reference sites (2,500-40,000 ha)
of eucalypt woodlands in Australia. However, these authors acknowledged that
almost their entire study area had been subjected to about 150 years of habitat
disturbance primarily associated with pastoralism, and that the species assem-
blage they sampled likely represented a relatively resilient relict subset of the
once ”intact” species assemblage. In other words, environmental impact assess-
ments should be explicitly interpreted by considering the condition of the base-
line.

Global meta-analyses reporting no net losses in local-scale species richness
over time (Dornelas et al., 2014; Vellend et al., 2013) have been criticised because
their generalities are spatially biased and lack appropriate baselines (Gonzalez
et al., 2016). For instance, most of the data collated by Vellend et al. (2013) were
derived from studies carried out in the United States and Europe (Gonzalez et al.,
2016). In fact, land-use change is not the main threat to biodiversity in northern
temperate ecosystems where most primary habitat has already been lost (Sala et
al. 2000). In the case of Europe, the lack of intact temperate forests is so dramatic
that only the c. 150,000-ha Białowieża Forest in the Polish-Belarussian border re-
mains in near-primeval conditions (Wesołowski, 2007). Collectively, this means
that worldwide claims of no net loss in local species richness are heavily influ-
enced by studies lacking an appropriate baseline (Dornelas et al., 2014; Vellend et
al., 2013).

Given the pace of habitat loss and degradation across the globe, most re-
maining suitable baseline sites will likely become shifting baselines (Watson et
al., 2018), ultimately preventing realistic assessments of the impacts of land-use
change on biodiversity. As previously pointed out, ”what we need are datasets
that have clear baselines that tell us what expected values of biodiversity are”
(Cardinale et al., 2018). We therefore urge prioritizing biodiversity surveys in
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the last remaining undisturbed areas of any biome to establish solid baselines
prior to anthropogenic disturbance (Bobrowiec and Tavares, 2017; Ritter et al.,
2017), especially in the tropics where an unknown but vast number of unde-
scribed species exist, and large forest tracts still remain intact (Watson et al., 2018).
However, wherever suitable baselines are unavailable or located far away from
impacted sites, baseline species assemblages can be coarsely determined using
data from natural history collections (Lister 2011); both formal and gray litera-
ture, and species databases (e.g. Bogoni et al. 2018); species distribution range
maps, interviews with local people, and expert information (e.g. Canale et al.
2012). Alternatively, we recommend environmental impacts to be estimated from
species groups of high conservation concern (e.g. habitat specialists, sensitive to
disturbance, threatened with extinction).

Despite the steady or increasing species richness following anthropogenic
disturbance in some regions (e.g. northern temperate ecosystems), such trends
are often driven by a replacement of sensitive species by disturbance-adapted
species (Tabarelli et al., 2012). Non-random species responses to land-use change
(e.g. patch- and landscape-scale forest loss) has led some researchers to either dis-
entangle the responses of habitat specialists from non-habitat specialists (Lövei et
al., 2006) or apply metrics of compositional changes (Banks-Leite et al., 2012),
since the overall species richness may obscure the effects of habitat conversion
on biodiversity.

Here, we used the number of species at any given baseline that was re-
tained within impacted sites (number of relict species) as a response variable. This
avoids the non-trivial task of assigning species specificity to different habitat
types and the nuisance of including disturbance-adapted species that often pro-
liferates at impacted sites. The number of relict species is still a measure of species
richness, with several advantages: it is simple to collect, intuitive to interpret,
and easy to compare across studies (Banks-Leite et al., 2012). In particular, we
showed a significant difference between reference and impacted sites if the num-
ber of relict species is used as a metric of biodiversity, regardless of the baseline
condition (e.g. continuous forest and larger islands). In contrast, by focusing on
the overall species assemblage, the negative effect of forest fragmentation on species
richness was only apparent if continuous forest sites were defined as the baseline
(Fig. 4.4). A combination of shifting baselines and the inclusion of disturbance-
adapted species from impacted sites can lead to a higher perceived conservation
value for impacted sites than for reference sites, if species richness is used as
a biodiversity metric (Fig. 4.4). For example, Blake and Loiselle (2001) found an
overall higher number of understory bird species (including disturbance-adapted
species) in young second-growth at La Selva, northern Costa Rica, compared to
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neighboring old-growth forest. We reanalysed their data using the number of relict
species as the response variable to compare young second-growth, old second-
growth and old-growth forests at La Selva. In doing so, we found that old-growth
forest retained the highest number of species compared to either age classes of
second-growth forest patches (Fig. S4.1). Essentially, the number of relict species is
a measure of species richness lost from the reference baseline site, which by def-
inition holds the maximum biodiversity value. Therefore, we believe the number
of relict species is a reliable and straightforward biodiversity metric to quantify
the residual conservation value of human-modified habitat patches in anthro-
pogenic landscapes (fig. 6 in Gardner et al. 2009), even when baseline sites that
could be deemed as intact are unavailable. Notwithstanding, other components
of biological diversity (e.g. functional and phylogenetic diversity) should also be
incorporated into environmental impact assessments to inform decision-making
and fine-tune conservation strategies (Moreno et al., 2017).

A cost-effective virtue of focusing on the continuous-forest species assemblage
is that it reduces the conservation effort that could be allocated to highly comple-
mentary priority sites – here represented by the minimum number of forest is-
lands that could be protected to maximize the number of species retained across
the entire landscape – compared to the number of target sites prioritized based
on the overall species assemblage. This can be simply explained by the fact that
the former (continuous-forest) species assemblage is a subset of the latter (over-
all). Furthermore, solutions for the minimum set problem depend on the target
species group (Howard et al., 2000). For example, our smallest surveyed island
(Joaninha, 0.63 ha) was ranked as the fourth most important in the minimum set
selection based on the overall species assemblage, but it was not included in the min-
imum set based on the continuous-forest species assemblage (Fig. 4.5), essentially be-
cause this island failed to retain any species assigned to ‘high’ forest dependency
(sensu BirdLife International 2018). In other words, the number, identity and con-
servation priority of the forest islands included in solution of the minimum set
problem were all affected by which species assemblage was targeted. However,
we underline that even a forest fragment larger than 7,500 ha (the total area of all
33 surveyed islands) failed to sustain the entire avifauna recorded at our contin-
uous forest sites, reinforcing the notion that there is no substitute for large areas
of unbroken primary forest to safeguard primary forest biodiversity (Gibson et
al., 2011; Meyer et al., 2015). Notwithstanding, these outcomes support our claim
that a focus on species assemblages derived from reference sites provides the best
possible impact assessment approach in examining the effects of land-use change
on biodiversity, while also establishing conservation strategies to compensate for
those impacts.
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The magnitude of the impacts of land-use change on biodiversity is mea-
sured as the extent to which impacted sites deviates from an assumed reference
condition (i.e. baseline), with greater deviations leading to higher impact diag-
nostics. The suitability of the baseline is therefore likely to affect the estimated
magnitude of the impacts, thereby resulting in realistic assessments whenever
the baseline is suitable, but unduly optimistic assessments whenever the base-
line was historically degraded. However, genuine optimistic assessments based
on suitable baselines may arise if impacted sites are embedded in biodiversity-
friendly landscapes (e.g. primary forest fragments surrounded by old-growth
secondary forest; Stouffer et al. 2011) and/or the focal species assemblage is
not sensitive to the impact being assessed (e.g. temperate birds are less likely
to be negatively affected by forest fragmentation than tropical birds; Lindell et al.
2007).

Although the issue on shifting baselines has already been raised (Gardner
et al., 2009), here we provide quantitative evidence on the pivotal role of suitable
baselines in deriving reliable assessments of the impacts of land-use change on
biodiversity. Accordingly, defining even well-preserved forest islands as large
as 1,000 ha as a reference condition significantly reduced impact estimates com-
pared to baselines consisting of undisturbed continuous forest, which reinforces
the notion that the most pronounced biodiversity losses occur at the initial phases
of deforestation in relatively intact landscapes (Betts et al. 2017). Since suitable
baselines are regrettably no longer available in most regions worldwide, we em-
phasize the need to consider the size and level of habitat disturbance of compara-
ble reference sites to interpret the outcomes of environmental impact assessments
(Hannah et al., 2007; Ritter et al., 2017). We also showed that a focus on species
assemblages derived from reference sites alone, rather than the overall species
assemblage, has two consequences. First, there was a negative impact of for-
est fragmentation on species richness even when we defined the most degraded
reference sites (100-ha forest islands) as the comparative baseline. Second, allo-
cation of conservation investments could be considerably reduced if one targets
only those species that presumably occupied any given site prior to habitat dis-
turbance, which are likely those of higher conservation concern. We therefore
conclude that environmental impact assessments should focus on species assem-
blages derived from suitable baselines if they are to be reliable.
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4.8 Supporting Information

This supporting information contains:

• Table S4.1

• Table S4.2

• Table S4.3

• Figure S4.1

• R code

Click here to download the R code in .Rmd file format

https://ndownloader.figshare.com/files/15159719


Table S4.1: Description of the 38 sample sites surveyed at the Balbina 

Hydroelectric Reservoir landscape, including 33 forest islands and five 

continuous forest sites, and the species richness and abundance of understory 

forest birds captured therein. 
 

Site name Latitude 

(S) 

Longitude 

(W) 

Forest area 

(ha) 

Richness 

(n) 

Abundance 

(n) 

Joaninha 

Xibé 

Formiga 

André 

Cafundó 

Panema 

Torem 

Pé Torto 

Jiquitaia 

Arrepiado 

Garrafa 

Piquiá 

Abusado 

Coatá 

Palhal 

Neto 

Adeus 

Bacaba 

Relógio 

Sapupara 

Moitá 

Pontal 

Furo de Santa Luzia 

Cipoal 

Jabuti 

Tucumari 

Martelo 

Tristeza 

Beco do Catitu 

Mascote 

Fuzaca 

Porto Seguro 

Gavião-real 

CF Waba 

CF Loreno 

CF Tucumari 

CF Grid-NS2 

CF Grid-NS3 

1°31'22" 

1°28'08" 

1°50'00" 

1°35'05" 

1°30'02" 

1°46'28" 

1°49'46" 

1°45'59" 

1°50'08" 

1°30'54" 

1°35'19" 

1°30'23" 

1°45'44" 

1°29'18" 

1°47'25" 

1°50'29" 

1°52'26" 

1°30'15" 

1°40'55" 

1°41'50" 

1°33'36" 

1°49'52" 

1°44'25" 

1°41'54" 

1°37'34" 

1°35'29" 

1°39'51" 

1°46'03" 

1°44'22" 

1°38'56" 

1°29'33" 

1°46'48" 

1°35'46" 

1°25'44" 

1°50'06" 

1°34'36" 

1°47'41" 

1°47'27" 

59°49'44" 

59°50'11" 

59°25'16" 

59°52'19" 

59°36'37" 

59°41'33" 

59°37'57" 

59°21'49" 

59°35'44" 

59°44'21" 

59°50'08" 

59°47'20" 

59°40'43" 

59°47'13" 

59°26'52" 

59°21'08" 

59°39'45" 

59°49'20" 

59°39'09" 

59°36'45" 
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Table S4.2: Description and number of reference sites used as a ‘baseline 

condition’ to estimate the impacts of forest fragmentation on the number of bird 

species. 
 

Reference sites Sample sites 

(n) 

Forest area 

(ha) 

Richness 

(n) 

Continuous forest 

1,000 ha 

500 ha 

250 ha 

100 ha 

5 

3 

4 

4 

4 

∞ 

942–1,699 

467–668 

199–336 

71–109 

86 

56 

53 

46 

35 
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Table S4.3: Estimated impact of forest fragmentation on species richness 

measured for five reference sites (Fig. 4.3), representing a gradient of baseline 

suitability from the most (continuous forest) to the least suitable (100-ha forest 

islands). Asterisks (*) denote a significant difference in species richness between 

reference and impacted sites. Higher values indicate more severe impacts of 

forest fragmentation on species richness (Fig. 4.4). 
 

Reference sites Species assemblage 

 Baseline Overall 

Continuous forest 

1,000 ha 

500 ha 

250 ha 

100 ha 

0.67* 

0.58* 

0.56* 

0.52* 

0.50* 

0.29* 

0.08 

0.01 

–0.19 

–0.43* 
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Figure S4.1: Comparisons between the rarefied number of understory bird
species in northern Costa Rica across three successional forest types considering
both the overall and the baseline species assemblage. The latter is derived from
the neighboring La Selva Biological Station, whose old-growth forest was used as
the reference site as in the original study (data from Blake and Loiselle 2001). The
graph shows that a focus on the overall species assemblage results in a positive
effect of land-use change (from old-growth forest to young second-growth forest)
on the number of species (as reported in Blake and Loiselle 2001). In contrast, a
focus on the baseline species assemblage results in a negative effect with either
old second-growth or young second-growth forest harboring a more depauper-
ate set species captured at the reference site. Rarefied number of species were
standardized by sample coverage (0.981). Error bars indicate the 95% confidence
intervals.



Supporting Information
The role of baseline suitability in assessing the impacts of land-use change on biodiversity

# Clear workspace and disable scientific notation
remove(list = ls()); options(scipen = 999)

Packages

# Load required packages
library(vegan)
library(iNEXT)
library(ggplot2)
library(gridExtra)

Dataset

We provide the raw data derived from original fieldwork conducted during the project Ecological Impacts of River Damming on
Forest Bird Assemblages in the Brazilian Amazon. Find out more at the project webpage.

Data are available from the KNB repository and should be cited as:

Anderson Saldanha Bueno. 2018. Balbina Understory Bird Data from 2015 to 2016. Knowledge Network for Biocomplexity.
urn:uuid:dbfd1504-2212-422c-8e04-610fb2327b7c.

Import data

• The file balbina_understory_birds_captures.csv contains information on birds captured in the fieldwork.
• The file balbina_understory_birds_taxonomy_traits.csv contains the taxonomy and traits of bird species captured.
• The file balbina_environmental_variables.csv contains environmental variables of sample sites.

# Load the file "balbina_understorey_birds_captures.csv"
birds = read.csv("https://ndownloader.figshare.com/files/15158552")

# Load the file "balbina_understorey_birds_taxonomy_traits.csv"
traits = read.csv("https://ndownloader.figshare.com/files/15158543")

# Load the file "balbina_environmental_variables.csv"
env = read.csv("https://ndownloader.figshare.com/files/15158549", row.names = 1)

Data handling

The raw data are stored in the long table format and include all individuals captured. This means that each bird captured is
represented by a row. However, the analysis performed in this study requires the short table format, where sample sites are in
rows and species are in columns.

# Add a column indicating that each bird captured (row) corresponds to an individual record
birds$occurrence = 1
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# To facilitate sorting, we assigned area values of one order of magnitude
# greater than the largest surveyed island for continuous forest sites
env[is.na(env)] = 1698.84 * 10

The next step is to produce the table in the short format containing both bird and environmental data.

Three datasets will be used:

1. Birds captured in 2015 and 2016 (also referred to as “full”).
2. Birds captured only in 2015 (also referred to as “2015”).
3. Birds captured only in 2016 (also referred to as “2016”).

Birds captured in 2015 and 2016

# Remove recaptures
birds.temp = subset(birds, birds$new.individual != "no")

# Site-by-species abundance matrix
birds.temp.matrix = tapply(birds.temp$occurrence,

list(birds.temp$site, birds.temp$species), sum)
# Species non detected in a given site are real zeros
birds.temp.matrix[is.na(birds.temp.matrix)] = 0

# Order rows by site name
#birds.temp.matrix = birds.temp.matrix[c(1:6, 12, 7:11, 13:38), ]

# Site-by-species abundance matrix with environmental data
# Add environmental data to the site-by-species abundance matrix
# 'balbina.full' stands for the full dataset (i.e. 2015 and 2016 combined)
balbina.full = cbind(birds.temp.matrix, env)
# Order rows by island size (i.e. forest area in hectares)
balbina.full = balbina.full[order(balbina.full$area.ha), ]
# Select the site-by-species abundance matrix and island size
balbina.full = balbina.full[c(1:ncol(birds.temp.matrix),

match("area.ha", names(balbina.full)))]

Species list

# Species frequency (number of sites) and abundance (number of individuals)
spp.list = data.frame(sites = colSums(ifelse(balbina.full[1:(ncol(balbina.full) -

1)] > 0, 1, 0)), individuals = colSums(balbina.full[1:(ncol(balbina.full) -
1)]))

# species taxonomy position of the species in the taxonomic sequence
spp.list$id = traits$id[match(rownames(spp.list), traits$cbro.2015)]
# species name
spp.list$species = rownames(spp.list)
# species family
spp.list$family = traits$family[match(rownames(spp.list), traits$cbro.2015)]

# rearrange the table

Chapter 4 187



spp.list = spp.list[order(spp.list$id), c(5, 4, 1, 2)]
row.names(spp.list) = NULL

spp.list

## family species sites individuals
## 1 Ardeidae Zebrilus_undulatus 1 1
## 2 Accipitridae Leucopternis_melanops 2 2
## 3 Columbidae Leptotila_rufaxilla 20 26
## 4 Columbidae Geotrygon_montana 5 6
## 5 Cuculidae Coccycua_minuta 1 1
## 6 Strigidae Glaucidium_hardyi 3 3
## 7 Trochilidae Glaucis_hirsutus 7 11
## 8 Trochilidae Phaethornis_ruber 15 27
## 9 Trochilidae Phaethornis_bourcieri 8 23
## 10 Trochilidae Phaethornis_superciliosus 15 40
## 11 Trochilidae Campylopterus_largipennis 3 3
## 12 Trochilidae Florisuga_mellivora 3 3
## 13 Trochilidae Thalurania_furcata 23 54
## 14 Trochilidae Amazilia_versicolor 4 5
## 15 Trochilidae Heliothryx_auritus 4 4
## 16 Trogonidae Trogon_viridis 1 1
## 17 Trogonidae Trogon_rufus 3 4
## 18 Alcedinidae Chloroceryle_aenea 3 4
## 19 Alcedinidae Chloroceryle_americana 1 1
## 20 Momotidae Momotus_momota 12 16
## 21 Galbulidae Galbula_albirostris 11 35
## 22 Galbulidae Jacamerops_aureus 1 1
## 23 Bucconidae Bucco_tamatia 1 1
## 24 Bucconidae Bucco_capensis 1 1
## 25 Bucconidae Malacoptila_fusca 3 4
## 26 Bucconidae Monasa_atra 8 14
## 27 Ramphastidae Ramphastos_vitellinus 2 2
## 28 Ramphastidae Pteroglossus_viridis 1 1
## 29 Picidae Veniliornis_cassini 1 2
## 30 Picidae Celeus_elegans 13 15
## 31 Picidae Dryocopus_lineatus 1 1
## 32 Picidae Campephilus_rubricollis 3 3
## 33 Falconidae Micrastur_ruficollis 1 1
## 34 Falconidae Micrastur_gilvicollis 3 4
## 35 Psittacidae Pyrrhura_picta 1 3
## 36 Thamnophilidae Myrmornis_torquata 2 2
## 37 Thamnophilidae Epinecrophylla_gutturalis 5 11
## 38 Thamnophilidae Myrmotherula_axillaris 28 203
## 39 Thamnophilidae Myrmotherula_longipennis 1 7
## 40 Thamnophilidae Myrmotherula_menetriesii 4 5
## 41 Thamnophilidae Isleria_guttata 18 66
## 42 Thamnophilidae Thamnomanes_ardesiacus 7 24
## 43 Thamnophilidae Thamnomanes_caesius 6 25
## 44 Thamnophilidae Thamnophilus_murinus 10 18
## 45 Thamnophilidae Thamnophilus_punctatus 2 3
## 46 Thamnophilidae Thamnophilus_melanothorax 1 1
## 47 Thamnophilidae Cymbilaimus_lineatus 1 1
## 48 Thamnophilidae Myrmoderus_ferrugineus 7 8
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## 49 Thamnophilidae Hylophylax_naevius 3 5
## 50 Thamnophilidae Percnostola_rufifrons 20 69
## 51 Thamnophilidae Cercomacroides_tyrannina 3 10
## 52 Thamnophilidae Hypocnemis_cantator 18 86
## 53 Thamnophilidae Pithys_albifrons 6 33
## 54 Thamnophilidae Willisornis_poecilinotus 12 42
## 55 Thamnophilidae Gymnopithys_rufigula 4 13
## 56 Conopophagidae Conopophaga_aurita 2 6
## 57 Grallariidae Myrmothera_campanisona 1 1
## 58 Formicariidae Formicarius_colma 6 6
## 59 Formicariidae Formicarius_analis 4 4
## 60 Scleruridae Sclerurus_macconnelli 2 5
## 61 Scleruridae Sclerurus_rufigularis 6 6
## 62 Scleruridae Sclerurus_caudacutus 1 1
## 63 Dendrocolaptidae Dendrocincla_fuliginosa 21 58
## 64 Dendrocolaptidae Sittasomus_griseicapillus 2 2
## 65 Dendrocolaptidae Certhiasomus_stictolaemus 7 17
## 66 Dendrocolaptidae Glyphorynchus_spirurus 21 135
## 67 Dendrocolaptidae Xiphorhynchus_pardalotus 26 91
## 68 Dendrocolaptidae Xiphorhynchus_obsoletus 5 8
## 69 Dendrocolaptidae Nasica_longirostris 1 1
## 70 Dendrocolaptidae Dendrocolaptes_certhia 23 47
## 71 Dendrocolaptidae Hylexetastes_perrotii 2 2
## 72 Xenopidae Xenops_minutus 8 13
## 73 Furnariidae Automolus_ochrolaemus 3 3
## 74 Furnariidae Automolus_infuscatus 4 9
## 75 Furnariidae Philydor_erythrocercum 3 4
## 76 Furnariidae Philydor_pyrrhodes 5 12
## 77 Furnariidae Synallaxis_rutilans 1 3
## 78 Pipridae Neopelma_chrysocephalum 1 1
## 79 Pipridae Tyranneutes_virescens 1 2
## 80 Pipridae Ceratopipra_erythrocephala 10 16
## 81 Pipridae Lepidothrix_serena 4 12
## 82 Pipridae Manacus_manacus 3 3
## 83 Pipridae Dixiphia_pipra 30 193
## 84 Onychorhynchidae Onychorhynchus_coronatus 3 7
## 85 Onychorhynchidae Terenotriccus_erythrurus 5 9
## 86 Onychorhynchidae Myiobius_barbatus 8 19
## 87 Tityridae Schiffornis_turdina 6 11
## 88 Cotingidae Lipaugus_vociferans 4 4
## 89 Platyrinchidae Platyrinchus_saturatus 3 5
## 90 Platyrinchidae Platyrinchus_coronatus 6 22
## 91 Platyrinchidae Platyrinchus_platyrhynchos 1 1
## 92 Rhynchocyclidae Mionectes_oleagineus 12 23
## 93 Rhynchocyclidae Mionectes_macconnelli 10 27
## 94 Rhynchocyclidae Corythopis_torquatus 3 6
## 95 Rhynchocyclidae Rhynchocyclus_olivaceus 3 3
## 96 Rhynchocyclidae Tolmomyias_assimilis 1 1
## 97 Rhynchocyclidae Tolmomyias_poliocephalus 2 2
## 98 Rhynchocyclidae Hemitriccus_zosterops 1 1
## 99 Rhynchocyclidae Lophotriccus_vitiosus 1 1
## 100 Rhynchocyclidae Lophotriccus_galeatus 3 3
## 101 Tyrannidae Attila_spadiceus 13 16
## 102 Tyrannidae Ramphotrigon_ruficauda 2 2
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## 103 Tyrannidae Myiarchus_tuberculifer 2 2
## 104 Tyrannidae Myiarchus_ferox 2 3
## 105 Tyrannidae Rhytipterna_simplex 3 3
## 106 Tyrannidae Pitangus_sulphuratus 1 1
## 107 Vireonidae Tunchiornis_ochraceiceps 4 9
## 108 Troglodytidae Troglodytes_musculus 11 89
## 109 Troglodytidae Pheugopedius_coraya 3 4
## 110 Troglodytidae Henicorhina_leucosticta 4 10
## 111 Troglodytidae Cyphorhinus_arada 2 3
## 112 Polioptilidae Ramphocaenus_melanurus 1 1
## 113 Turdidae Catharus_fuscescens 2 2
## 114 Turdidae Turdus_albicollis 19 62
## 115 Passerellidae Ammodramus_humeralis 1 1
## 116 Passerellidae Ammodramus_aurifrons 2 7
## 117 Passerellidae Arremon_taciturnus 2 2
## 118 Icteridae Cacicus_cela 1 1
## 119 Thraupidae Paroaria_gularis 1 2
## 120 Thraupidae Tangara_palmarum 3 8
## 121 Thraupidae Lanio_surinamus 18 45
## 122 Thraupidae Lanio_fulvus 1 1
## 123 Thraupidae Ramphocelus_carbo 7 46
## 124 Thraupidae Cyanerpes_caeruleus 1 2
## 125 Thraupidae Coereba_flaveola 3 3
## 126 Thraupidae Sporophila_castaneiventris 1 4
## 127 Thraupidae Sporophila_angolensis 8 12
## 128 Thraupidae Saltator_maximus 1 2
## 129 Thraupidae Saltator_grossus 2 4
## 130 Cardinalidae Cyanoloxia_rothschildii 5 7

Species list. Bird species captured on the understorey of 33 forest islands and 5 continuous forest sites (n = 38 sites). ‘Sites’
corresponds to the number of sites at which species were captured. ‘Individuals’ corresponds to the number of individuals captured.
Taxonomy follows Piacentini et al. (2015).

Table S1

# Information to include in the table
table.s1 = data.frame("Site name" = rownames(env[order(env$area.ha), ]),

# Y coordinate (datum WGS 84)
"Latitude" = env[order(env$area.ha), ]$latitude.WGS84,
# X coordinate (datum WGS 84)
"Longitude" = env[order(env$area.ha), ]$longitude.WGS84,
# Forest area in hectares
"Forest area" = env[order(env$area.ha), ]$area.ha,
# Observed number of species
"Richness" = specnumber(balbina.full[1:(ncol(balbina.full)-1)]),
# Total number of individuals captured
"Abundance" = rowSums(balbina.full[1:(ncol(balbina.full)-1)]))

# Order rows by island size
table.s1 = table.s1[order(table.s1$Forest.area, table.s1$Richness), ]
row.names(table.s1) = NULL
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table.s1

## Site.name Latitude Longitude Forest.area Richness Abundance
## 1 Joaninha -1.52272 -59.82891 0.63 10 54
## 2 Xibe -1.46889 -59.83630 0.91 6 9
## 3 Formiga -1.83338 -59.42115 1.54 6 59
## 4 Andre -1.58461 -59.87198 2.08 3 8
## 5 Cafundo -1.50042 -59.61020 2.63 7 10
## 6 Panema -1.77448 -59.69241 3.08 4 5
## 7 Torem -1.82947 -59.63244 3.62 6 20
## 8 Pe_Torto -1.76646 -59.36351 4.98 14 38
## 9 Jiquitaia -1.83569 -59.59568 6.79 10 30
## 10 Arrepiado -1.51512 -59.73919 7.43 6 10
## 11 Garrafa -1.58859 -59.83555 9.42 9 15
## 12 Piquia -1.50647 -59.78897 13.04 20 30
## 13 Abusado -1.76221 -59.67875 13.31 5 29
## 14 Coata -1.48824 -59.78702 16.94 17 33
## 15 Palhal -1.79036 -59.44790 21.37 11 44
## 16 Neto -1.84149 -59.35228 32.87 12 56
## 17 Adeus -1.87378 -59.66240 50.08 12 26
## 18 Bacaba -1.50413 -59.82236 53.35 11 22
## 19 Relogio -1.68189 -59.65259 70.55 18 70
## 20 Sapupara -1.69713 -59.61263 77.80 12 32
## 21 Moita -1.55987 -59.89247 91.30 13 27
## 22 Pontal -1.83105 -59.68658 108.76 20 49
## 23 Furo_de_Santa_Luzia -1.74040 -59.44206 198.52 30 79
## 24 Cipoal -1.69830 -59.78477 217.63 23 71
## 25 Jabuti -1.62625 -59.75667 232.49 22 58
## 26 Tucumari -1.59151 -59.42986 336.02 24 63
## 27 Martelo -1.66407 -59.71429 466.60 15 39
## 28 Tristeza -1.76752 -59.75447 499.91 31 90
## 29 Beco_do_Catitu -1.73954 -59.70500 638.66 27 74
## 30 Mascote -1.64884 -59.83285 668.03 30 77
## 31 Fuzaca -1.49238 -59.85987 941.71 43 121
## 32 Porto_Seguro -1.78009 -59.51723 1350.56 26 85
## 33 Gaviao_real -1.59599 -59.63279 1698.84 27 68
## 34 CF_Waba -1.42884 -59.90534 16988.40 28 75
## 35 CF_Loreno -1.83490 -59.71799 16988.40 40 105
## 36 CF_Tucumari -1.57660 -59.38594 16988.40 40 111
## 37 CF_Grid_NS3 -1.79088 -59.25671 16988.40 52 165
## 38 CF_Grid_NS2 -1.79480 -59.26587 16988.40 54 158

Table S1. Description of the 38 sample sites surveyed at the Balbina Hydroelectric Reservoir landscape, including 33 forest
islands and five continuous forest sites, and the species richness and abundance of understory forest birds captured therein.

Species assemblages: 2015 and 2016

We defined two types of species assemblages based on the species occurrence across all sample sites (n = 38). The first
comprises species captured only at reference sample sites (hereafter referred to as baseline species assemblage, although
we also use the term continuous-forest species assemblage to refer to the species subset from control sites). The second
comprises all species captured in both reference sample sites and forest islands (hereafter, overall species assemblage).
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spp.full.all = names(balbina.full[1:(ncol(balbina.full) - 1)]) # all sample sites (n = 38)
# Continuous forest sites (n = 5)
spp.full.control = names(balbina.full[34:38, 1:(ncol(balbina.full) - 1)][colSums(balbina.full[34:38,

1:(ncol(balbina.full) - 1)]) > 0])
# 1000-ha forest islands (n = 3)
spp.full.1000 = names(balbina.full[31:33, 1:(ncol(balbina.full) - 1)][colSums(balbina.full[31:33,

1:(ncol(balbina.full) - 1)]) > 0])
# 500-ha forest islands (n = 4)
spp.full.500 = names(balbina.full[27:30, 1:(ncol(balbina.full) - 1)][colSums(balbina.full[27:30,

1:(ncol(balbina.full) - 1)]) > 0])
# 250-ha forest islands (n = 4)
spp.full.250 = names(balbina.full[23:26, 1:(ncol(balbina.full) - 1)][colSums(balbina.full[23:26,

1:(ncol(balbina.full) - 1)]) > 0])
# 100-ha forest islands (n = 4)
spp.full.100 = names(balbina.full[19:22, 1:(ncol(balbina.full) - 1)][colSums(balbina.full[19:22,

1:(ncol(balbina.full) - 1)]) > 0])
# Forest islands smaller than 55 ha (n = 18)
spp.full.impact = names(balbina.full[1:18, 1:(ncol(balbina.full) - 1)][colSums(balbina.full[1:18,

1:(ncol(balbina.full) - 1)]) > 0])

Baseline suitability

The suitability of each baseline was inspected by comparing the number of species retained and gained in relation to the continuous
forest baseline, so that the suitability of the continuous forest baseline was assigned the maximum biodiversity value.

1,000-ha forest islands

# Number of species from continuous forest sites ('continuous-forest species
# assemblage') captured on 1,000-ha islands (i.e. species retained)
specnumber(colSums(balbina.full[31:33, spp.full.control]))

# Total number of species ('overall species assemblage') captured on
# 1,000-ha islands
specnumber(colSums(balbina.full[31:33, spp.full.all]))

# Number of species gained (i.e. absent in continuous forest sites)
56 - 45

## [1] 11

500-ha forest islands

specnumber(colSums(balbina.full[27:30, spp.full.control]))
specnumber(colSums(balbina.full[27:30, spp.full.all]))

53 - 39

## [1] 14
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250-ha forest islands

specnumber(colSums(balbina.full[23:26, spp.full.control]))
specnumber(colSums(balbina.full[23:26, spp.full.all]))

46 - 37

## [1] 9

100-ha forest islands

specnumber(colSums(balbina.full[19:22, spp.full.control]))
specnumber(colSums(balbina.full[19:22, spp.full.all]))

35 - 29

## [1] 6
# Data preparation to produce a graph to represent the gradient of baseline suitability
retained = c(86, 45, 39, 37, 29)
gained = c(0, 11, 14, 9, 6)
total = retained + gained

bas.suit = data.frame(spp = c(retained, gained),
baseline = rep(1:5, 2),
group = c("r","r","r","r","r","a","a","a","a","a"))

Figure 2

# Graph of baseline suitability
fig2 =
ggplot(data = bas.suit, aes(x = baseline, y = spp/86, fill = group)) +

geom_bar(stat = "identity", width = 0.75, colour = "black") +

geom_text(aes(label = c(86, 45, 39, 37, 29, "", 11, 14, 9, 6)),
colour = "white", size = 6.8,
position = position_stack(vjust = 0.5)) +

labs(x = "Baseline suitability",
y = "Proportion of species") +

scale_x_continuous(breaks = 1:5,
labels = c("CF","1,000 ha","500 ha","250 ha","100 ha")) +

scale_y_continuous(breaks = c(0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
labels = c("0.0","0.2","0.4","0.6","0.8","1.0")) +

scale_fill_manual(values = c("grey70", "grey30"),
labels = c("Species gained", "Species retained")) +

theme_bw(base_size = 20) +
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theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_rect(colour = "black"),
axis.ticks = element_line(colour = "black", size = 0.5),
axis.title = element_text(face = "bold"),
axis.text = element_text(colour = "black")) +

theme(legend.title = element_blank(),
legend.text = element_text(size = 14),
legend.justification = c(0.99, 0.99),
legend.position = c(0.99, 0.99),
legend.key.size = unit(0.75, "cm")) +

guides(fill = guide_legend(reverse = TRUE))

ggsave(fig2, file = "fig2.pdf", width = 20, height = 20, units = "cm")

#fig2

Figure 2. Gradient of baseline suitability showing the number of bird species retained and gained in relation to the understory
bird assemblage captured in continuous forest sites (CF).

Surveyed islands smaller than 55 ha (n = 18; Table S1) were regarded as impacted sites due to forest fragmentation.

Rarefied number of species

Having defined the gradient of baseline suitability and the impacted sites, we compared the species richness of all impacted
sites combined to that of each of the five baseline levels (Fig. 3) for both the baseline and the overall species assemblage. To
accomplish this, we used the INEXT package (Hsieh et al. 2016) in R (R Core Team 2018) to calculate the rarefied number of
species based on equal completeness (i.e. sample coverage) instead of equal size (i.e. number of individuals), because species-
rich sites require a greater number of individuals to be fully characterized than species-poor sites (Chao and Jost 2012).

Data preparation

# Continuous forest sites
# "b" stands for "baseline species assemblage"
comm.full.cf.b = colSums(balbina.full[34:38, 1:(ncol(balbina.full)-1)])
# "io" stands for "impacted sites" and "overall species assemblage"
comm.full.cf.io = colSums(balbina.full[1:18, 1:(ncol(balbina.full)-1)])

# "ib" stands for "impacted sites" and "baseline species assemblage"
comm.full.cf.ib = colSums(balbina.full[1:18, 1:(ncol(balbina.full)-1)])
comm.full.cf.ib[-c(which(match(names(comm.full.cf.ib), spp.full.control) != "NA"))] = 0

# 1000-ha forest islands
comm.full.1000.b = colSums(balbina.full[31:33, 1:(ncol(balbina.full)-1)])
comm.full.1000.io = colSums(balbina.full[1:18, 1:(ncol(balbina.full)-1)])

comm.full.1000.ib = colSums(balbina.full[1:18, 1:(ncol(balbina.full)-1)])
comm.full.1000.ib[-c(which(match(names(comm.full.1000.ib), spp.full.1000) != "NA"))] = 0

# 500-ha forest islands
comm.full.500.b = colSums(balbina.full[27:30, 1:(ncol(balbina.full)-1)])
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comm.full.500.io = colSums(balbina.full[1:18, 1:(ncol(balbina.full)-1)])

comm.full.500.ib = colSums(balbina.full[1:18, 1:(ncol(balbina.full)-1)])
comm.full.500.ib[-c(which(match(names(comm.full.500.ib), spp.full.500) != "NA"))] = 0

# 250-ha forest islands
comm.full.250.b = colSums(balbina.full[23:26, 1:(ncol(balbina.full)-1)])
comm.full.250.io = colSums(balbina.full[1:18, 1:(ncol(balbina.full)-1)])

comm.full.250.ib = colSums(balbina.full[1:18, 1:(ncol(balbina.full)-1)])
comm.full.250.ib[-c(which(match(names(comm.full.250.ib), spp.full.250) != "NA"))] = 0

# 100-ha forest islands
comm.full.100.b = colSums(balbina.full[19:22, 1:(ncol(balbina.full)-1)])
comm.full.100.io = colSums(balbina.full[1:18, 1:(ncol(balbina.full)-1)])

comm.full.100.ib = colSums(balbina.full[1:18, 1:(ncol(balbina.full)-1)])
comm.full.100.ib[-c(which(match(names(comm.full.100.ib), spp.full.100) != "NA"))] = 0

# Combine data in a data frame
comm.full = data.frame(comm.full.cf.b, comm.full.cf.io, comm.full.cf.ib,

comm.full.1000.b, comm.full.1000.io, comm.full.1000.ib,
comm.full.500.b, comm.full.500.io, comm.full.500.ib,
comm.full.250.b, comm.full.250.io, comm.full.250.ib,
comm.full.100.b, comm.full.100.io, comm.full.100.ib)

Calculation of the rarefied number of species

# Rarefied number of species standardized by sample coverage (0.927)
# "SC" stands for "sample coverage"
diversity.SC.full = estimateD(comm.full, datatype = "abundance", base = "coverage",

level = NULL, conf = 0.95) # includes q = 0, 1, 2
# includes only q = 0
richness.SC.full = subset(diversity.SC.full, diversity.SC.full$order == "0")

richness.SC.full$baseline = rep(c("a.control", "b.1000", "c.500", "d.250", "e.100"), each = 3)
richness.SC.full$assemblage = rep(c("a.baseline", "b.impact.overall", "c.impact.baseline"), 5)

colnames(richness.SC.full) = c("site", "individuals", "method", "q", "coverage",
"richness", "lowerCI", "upperCI", "baseline", "assemblage")

rownames(richness.SC.full) = 1:nrow(richness.SC.full)

Figure 4

fig4 =
ggplot(data = richness.SC.full, aes(x = baseline, y = richness, fill = assemblage)) +

labs(x = "Baseline suitability", y = "Rarefied number of species") +

scale_x_discrete(breaks = c("a.control", "b.1000", "c.500", "d.250", "e.100"),
labels = c("CF","1,000 ha","500 ha","250 ha","100 ha")) +
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scale_y_continuous(limits = c(0, 80), breaks = seq(0, 80, 10)) +

scale_fill_manual(values = c("grey30", "grey70", "white"),
labels = c("Reference sites",

"Impacted sites: overall species assemblage",
"Impacted sites: baseline species assemblage")) +

geom_bar(colour = "black", stat = "identity",
width = 0.75, position = position_dodge()) +

geom_errorbar(aes(ymin = lowerCI, ymax = upperCI),
width = 0.2, position = position_dodge(0.75)) +

theme_bw(base_size = 20) +
theme(panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),
panel.border = element_rect(colour = "black"),
axis.ticks = element_line(colour = "black", size = 0.5),
axis.title = element_text(face = "bold"),
axis.text = element_text(colour = "black")) +

theme(legend.title = element_blank(),
legend.text = element_text(size = 14),
legend.justification = c(0.99, 0.99),
legend.position = c(0.99, 0.99),
legend.key.size = unit(0.75, "cm"))

ggsave(fig4, file = "fig4.pdf", width = 20, height = 20, units = "cm")

#fig4

Figure 4. Comparisons between the rarefied number of understory bird species at reference and impacted sites across a gradient
of baseline suitability for two types of species assemblages. The bar plot shows the contrast between reference and impacted
sites from the most (CF - continuous forest) to the least suitable baselines (100-ha forest islands), thereby affecting the estimated
impact of forest fragmentation on species richness of both types of species assemblages. Rarefied number of species were
standardized by sample coverage (0.927). Error bars indicate the 95% confidence intervals.

Estimated impact of forest fragmentation on species richness

We calculated the proportional difference in species richness between the impacted sites combined and each of the five baseline
levels to assess to what extent our estimated impacts of forest fragmentation are affected by the degree of baseline suitability
and the composition of focal species assemblages. Estimated impact was measured as one minus the proportional difference
between impacted and reference sites, so the higher the value, the more severe the estimated impact. Accordingly, if reference
sites harbor 10 species and impacted sites 4 species, the estimated impact is 0.6 [1 - (4/10)] or a 60% reduction in species
richness.

# Continuous forest sites
# "io" stands for "impacted sites" and "overall species assemblage"
impact.cf.io = 1 - (richness.SC.full[2, "richness"] / richness.SC.full[1, "richness"])
# "ib" stands for "impacted sites" and "baseline species assemblage"
impact.cf.ib = 1 - (richness.SC.full[3, "richness"] / richness.SC.full[1, "richness"])

# 1000-ha forest islands
impact.1000.io = 1 - (richness.SC.full[5, "richness"] / richness.SC.full[4, "richness"])
impact.1000.ib = 1 - (richness.SC.full[6, "richness"] / richness.SC.full[4, "richness"])
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# 500-ha forest islands
impact.500.io = 1 - (richness.SC.full[8, "richness"] / richness.SC.full[7, "richness"])
impact.500.ib = 1 - (richness.SC.full[9, "richness"] / richness.SC.full[7, "richness"])

# 250-ha forest islands
impact.250.io = 1 - (richness.SC.full[11, "richness"] / richness.SC.full[10, "richness"])
impact.250.ib = 1 - (richness.SC.full[12, "richness"] / richness.SC.full[10, "richness"])

# 100-ha forest islands
impact.100.io = 1 - (richness.SC.full[14, "richness"] / richness.SC.full[13, "richness"])
impact.100.ib = 1 - (richness.SC.full[15, "richness"] / richness.SC.full[13, "richness"])

Table S3

table.s3 = as.data.frame(cbind(
round(rbind(impact.cf.ib, impact.1000.ib, impact.500.ib,

impact.250.ib, impact.100.ib), 2),
round(rbind(impact.cf.io, impact.1000.io, impact.500.io,

impact.250.io, impact.100.io), 2)))

table.s3$V1 = c("0.67*", "0.58*", "0.56*", "0.52*", "0.50*")
table.s3$V2 = c("0.29*", "0.08", "0.01", "-0.19", "-0.43*")

table.s3$Reference_sites = c("Continuous forest", "1,000 ha", "500 ha", "250 ha", "100 ha")
colnames(table.s3) = c("Baseline species assemblage",

"Overall species assemblage",
"Reference sites")

rownames(table.s3) = NULL
table.s3 = table.s3[c(3, 1, 2)]

table.s3

## Reference sites Baseline species assemblage Overall species assemblage
## 1 Continuous forest 0.67* 0.29*
## 2 1,000 ha 0.58* 0.08
## 3 500 ha 0.56* 0.01
## 4 250 ha 0.52* -0.19
## 5 100 ha 0.50* -0.43*

Table S3. Estimated impact of forest fragmentation on species richness measured for five reference sites (Fig. 3), representing
a gradient of baseline suitability from the most (continuous forest) to the least suitable (100-ha forest islands).

Asterisks (*) denote a significant difference in species richness between reference and impacted sites. Higher values indicate
more severe impacts of forest fragmentation on species richness (Fig. 4).

Minimum set problem

We used a biodiversity complementarity approach to determine the minimum number of forest islands (i.e. the ‘solution’ for the
minimum set problem) that retained the maximum combined number of species (Howard et al. 1998) for both the continuous-
forest and the overall species assemblage captured across the entire set of 33 surveyed islands. To do so, we used an algorithm
(function minimum.set) that first selects the forest island containing the highest number of species and then sequentially selects
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the forest islands that add the highest number of previously unrepresented species (Howard et al. 1998). In the event of a tie,
the more species-rich island was selected, and if that tie persisted, we selected the largest island. This procedure was repeated
until all species captured in the entire set of 33 forest islands were represented by at least one individual. We then quantified the
differences between the solutions for the minimum set problem targeting both the continuous-forest and the overall species
assemblage.

The function minimum.set was kindly developed by Cristian Dambros for the purpose of this study.

# Load the function "minimum.set"
source("https://raw.githubusercontent.com/csdambros/R-functions/master/minimum.set")

Solutions for the minimum set problem

# Data frame including only islands
islands = balbina.full[1:33, ]

# continuous-forest species assemblage
# Species subset from control sites (i.e. continuous forest)

ms.t = data.frame(minimum.set(islands[spp.full.control]))
names(ms.t) = sub("\\.", " ", names(ms.t))

ms.t$richness = rowSums(ms.t[spp.full.control])
ms.t$add = c(max(ms.t$richness), diff(as.vector(
specaccum(ms.t[spp.full.control], method = "collector")$richness)))

ms.t$psr = rowSums(ms.t[spp.full.control])/length(spp.full.control)*100
ms.t$psr.cum = specaccum(ms.t[spp.full.control],

method = "collector")$richness/length(spp.full.control)*100
ms.t$minimum.set = "yes"
ms.t[as.numeric(which(grepl(max(ms.t$psr.cum),

ms.t$psr.cum))[1]+1):nrow(ms.t),]$minimum.set = "no"
ms.t$rank = 1:nrow(ms.t)

# Overall species assemblage
# All species

ms.f = data.frame(minimum.set(islands[spp.full.all]))
names(ms.f) = sub("\\.", " ", names(ms.f))

ms.f$richness = rowSums(ms.f[spp.full.all])
ms.f$add = c(max(ms.f$richness), diff(as.vector(
specaccum(ms.f[spp.full.all], method = "collector")$richness)))

ms.f$psr = rowSums(ms.f[spp.full.all])/length(spp.full.all)*100
ms.f$psr.cum = specaccum(ms.f[spp.full.all],

method = "collector")$richness/length(spp.full.all)*100
ms.f$minimum.set = "yes"
ms.f[as.numeric(which(grepl(max(ms.f$psr.cum),

ms.f$psr.cum))[1]+1):nrow(ms.f),]$minimum.set = "no"
ms.f$rank = 1:nrow(ms.f)
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Figure 5

# continuous-forest species assemblage
ms.t.graph =
ggplot(data = ms.t,

aes(x = rank, y = psr.cum, fill = minimum.set, size = psr)) +

labs(x = "Islands, ranked by conservation priority",
y = "Cumulative number of species (%)",
fill = "Minimum set",
size = "Number of\nspecies (n)") +

scale_x_continuous(breaks = 1:length(ms.t$rank),
labels = c("Fuzaca", "Furo", "Tristeza", "Pontal", "Tucumari",

"Porto", "Gavião-real", "Jabuti", "Piquiá", "Adeus",
"Neto", "Pé Torto", "Mascote", "Beco", "Cipoal",
"Relógio", "Coatá", "Martelo", "Moitá", "Sapupara",
"Bacaba", "Cafundó", "Palhal", "Jiquitaia", "Arrepiado",
"Garrafa", "Abusado", "Xibé", "André", "Joaninha",
"Panema", "Torem", "Formiga")) +

scale_y_continuous(limits = c(0, 100),
breaks = c(0, 25, 50, 75, 100)) +

scale_fill_manual(values = c("grey70", "grey30"),
labels = c("no (n = 21)","yes (n = 12)")) +

scale_size_continuous(range = c(2, 9),
breaks = c(10, 20, 30)) +

geom_point(shape = 21, colour = "black") +

theme_bw(base_size = 20) +
theme(panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),
panel.border = element_rect(colour = "black"),
axis.ticks = element_line(colour = "black", size = 0.5),
axis.title = element_text(face = "bold"),
axis.text = element_text(colour = "black"),
axis.text.x = element_text(angle = 90, vjust = 0.275, hjust = 1, size = 12)) +

theme(legend.title = element_text(size = 12, face = "bold"),
legend.text = element_text(size = 14),
legend.justification = c(0.95, 0.05), legend.position = c(0.95, 0.05)) +

guides(fill = guide_legend(reverse = TRUE,
order = 2, override.aes = list(size = c(5.5,5.5))),

size = guide_legend(order = 1)) +

annotate("text", x = 1, y = 100, label = "(a) Continuous-forest species assemblage",
hjust = "left", vjust = "top", fontface = "bold", size = 6)

# Overall species assemblage
ms.f.graph =
ggplot(data = ms.f,

aes(x = rank, y = psr.cum, fill = minimum.set, size = psr)) +
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labs(x = "Islands, ranked by conservation priority",
y = "",
fill = "Minimum set",
size = "Number of\nspecies (n)") +

scale_x_continuous(breaks = 1:length(ms.f$rank),
labels = c("Fuzaca", "Tristeza", "Furo", "Joaninha", "Pontal",

"Gavião-real", "Coatá", "Pé Torto", "Tucumari",
"Cipoal", "Porto", "Piquiá", "Neto", "Adeus",
"Sapupara", "Palhal", "Bacaba", "Jiquitaia",
"Garrafa", "Xibé", "Panema", "Mascote", "Beco",
"Jabuti", "Relógio", "Martelo", "Moitá", "Cafundó",
"Formiga", "Torem", "Arrepiado", "Abusado", "André")) +

scale_y_continuous(limits = c(0, 100),
breaks = c(0, 25, 50, 75, 100)) +

scale_fill_manual(values = c("grey70", "grey30"),
labels = c("no (n = 12)","yes (n = 21)")) +

scale_size_continuous(range = c(2, 9),
breaks = c(10, 20, 30)) +

geom_point(shape = 21, colour = "black") +

theme_bw(base_size = 20) +
theme(panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),
panel.border = element_rect(colour = "black"),
axis.ticks = element_line(colour = "black", size = 0.5),
axis.title = element_text(face = "bold"),
axis.text = element_text(colour = "black"),
axis.text.x = element_text(angle = 90, vjust = 0.275, hjust = 1, size = 12)) +

theme(legend.title = element_text(size = 12, face = "bold"),
legend.text = element_text(size = 14),
legend.justification = c(0.95, 0.05), legend.position = c(0.95, 0.05)) +

guides(fill = guide_legend(reverse = TRUE,
order = 2, override.aes = list(size = c(5.5,5.5))),

size = guide_legend(order = 1)) +

annotate("text", x = 1, y = 100, label = "(b) Overall species assemblage",
hjust = "left", vjust = "top", fontface = "bold", size = 6)

# Combine and save the graphs
ggsave(grid.arrange(ms.t.graph, ms.f.graph, ncol = 2),

file = "fig5.pdf", h = 20, w = 40, units = "cm")

Figure S1

Blake and Loiselle (2001) found an overall higher number of understory bird species (including disturbance-adapted species) in
young second-growth at La Selva, northern Costa Rica, compared to neighboring old-growth forest. We reanalysed their data
using the number of relict species (see main text for definition) as the response variable to compare young second-growth, old
second-growth and old-growth forests at La Selva. In doing so, we found that old-growth forest retained the highest number of
species compared to either age classes of second-growth forest patches.
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Import data

We used data from Appendix 1 in Blake and Loiselle (2001).

blake = read.csv("https://ndownloader.figshare.com/files/15158546", row.names = 1)

Data preparation

In Appendix 1, Blake and Loiselle (2001) reported the percentage of totals for species captured in mist nets or recorded during
point counts in young second-growth (YSG), old second-growth (OSG), and old-growth forest (OGF) at La Selva Biological Station.

We extracted only the relevant information (mist-net data) and converted percentage of totals to number of captures. To do so,
we used the total number of individuals captured per successional forest type as reported in Table 1 Blake and Loiselle (2001):
4526 in YSG, 1463 in OSG and 4030 in OGF.

# Extract only the relevant information
blake = blake[2:4]

# Rename the columns
colnames(blake) = c("YSG", "OSG", "OGF")

# Exclude species not captured in mist nets
blake = blake[rowSums(blake) > 0, ]

# Convert percentage of totals to number of captures
blake$YSG = round(blake$YSG * 4526 / 100)
blake$OSG = round(blake$OSG * 1463 / 100)
blake$OGF = round(blake$OGF * 4030 / 100)

# Create a table only with species captured in OGF (i.e. the baseline)
# "bas" stands for "baseline"
blake.bas = blake[blake$OGF > 0, ]

Calculation of the rarefied number of species

# Calculate the rarefied number of species standardized by sample coverage (0.981)
# (overall species assemblage)
diversity.SC.blake = estimateD(blake, datatype = "abundance", base = "coverage",

level = 0.981, conf = 0.95) # includes q = 0, 1, 2
# includes only q = 0
richness.SC.blake = subset(diversity.SC.blake, diversity.SC.blake$order == "0")

colnames(richness.SC.blake) = c("site", "individuals", "method", "q", "coverage",
"richness", "lowerCI", "upperCI")

rownames(richness.SC.blake) = 1:nrow(richness.SC.blake)

# Calculate the rarefied number of species standardized by sample coverage (0.981)
# (baseline species assemblage)
diversity.SC.blake.bas = estimateD(blake.bas, datatype = "abundance", base = "coverage",

level = 0.981, conf = 0.95) # includes q = 0, 1, 2
# includes only q = 0
richness.SC.blake.bas = subset(diversity.SC.blake.bas, diversity.SC.blake.bas$order == "0")
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colnames(richness.SC.blake.bas) = c("site", "individuals", "method", "q", "coverage",
"richness", "lowerCI", "upperCI")

rownames(richness.SC.blake.bas) = 1:nrow(richness.SC.blake.bas)

# Combine results in a data frame
blake.values = rbind(richness.SC.blake[6:8],

richness.SC.blake.bas[6:8])

blake.values$forest = rep(c("c.YSG", "b.OSG", "a.OGF"), 2)
blake.values$assemblage = rep(c("a.overall", "b.baseline"), each = 3)

colnames(blake.values) = c("richness", "lowerCI", "upperCI", "forest", "assemblage")
rownames(blake.values) = 1:nrow(blake.values)

blake.values

## richness lowerCI upperCI forest assemblage
## 1 124.292 118.867 129.718 c.YSG a.overall
## 2 95.248 87.272 103.223 b.OSG a.overall
## 3 77.683 74.619 80.747 a.OGF a.overall
## 4 55.339 53.302 57.376 c.YSG b.baseline
## 5 63.259 59.278 67.239 b.OSG b.baseline
## 6 77.683 74.545 80.820 a.OGF b.baseline

Figure S1

figs1 =
ggplot(data = blake.values, aes(x = assemblage, y = richness, fill = forest)) +

labs(x = "Species assemblage",
y = "Rarefied number of species") +

scale_x_discrete(breaks = c("a.overall", "b.baseline"),
labels = c("Overall", "Baseline")) +

scale_y_continuous(limits = c(0, 130),
breaks = c(0, 25, 50, 75, 100, 125)) +

scale_fill_manual(values = c("grey30", "grey70", "white"),
labels = c("Old-growth forest",

"Old second-growth forest",
"Young second-growth forest")) +

geom_bar(colour = "black", stat = "identity",
width = 0.75, position = position_dodge()) +

geom_errorbar(aes(ymin = lowerCI, ymax = upperCI),
width = 0.2, position = position_dodge(0.75)) +

theme_bw(base_size = 20) +
theme(panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),
panel.border = element_rect(colour = "black"),
axis.ticks = element_line(colour = "black", size = 0.5),
axis.title = element_text(face = "bold"),
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axis.text = element_text(colour = "black")) +
theme(legend.title = element_blank(),

legend.text = element_text(size = 14),
legend.justification = c(0.99, 0.99),
legend.position = c(0.99, 0.99),
legend.key.size = unit(0.75, "cm"))

ggsave(figs1, file = "figs1.pdf", width = 20, height = 20, units = "cm")

#figs1

Figure S1. Comparisons between the rarefied number of understory bird species in northern Costa Rica across three successional
forest types considering both the overall and the baseline species assemblage. The latter is derived from the neighboring La Selva
Biological Station, whose old-growth forest was used as the reference site as in the original study (data from Blake and Loiselle
2001). The graph shows that a focus on the overall species assemblage results in a positive effect of land-use change (from
old-growth forest to young second-growth forest) on the number of species (as reported in Blake and Loiselle 2001). In contrast,
a focus on the baseline species assemblage results in a negative effect with either old second-growth or young second-growth
forest harboring a more depauperate set species captured at the reference site. Rarefied number of species were standardized
by sample coverage (0.981). Error bars indicate the 95% confidence intervals.

Estimated impact using one-year data

We examined whether the estimated impacts of forest fragmentation on species richness using two-year data (2015 and 2016)
differ from those using one-year data from either 2015 or 2016.

Birds captured only in 2015

# Extract only data from 2015
birds.temp = birds[grep("2015", birds$date), ]

# Remove recaptures
birds.temp = subset(birds.temp, birds.temp$new.individual != "Recaptures")
birds.temp = subset(birds.temp, birds.temp$id != 376 &

birds.temp$id != 409 &
birds.temp$id != 600 &
birds.temp$id != 773 &
birds.temp$id != 822 &
birds.temp$id != 829)

# Site-by-species abundance matrix
birds.temp.matrix = tapply(birds.temp$occurrence,

list(birds.temp$site, birds.temp$species), sum)
# Species non detected in a given site are real zeros
birds.temp.matrix[is.na(birds.temp.matrix)] = 0

# Remove species that were not captured in 2015
birds.temp.matrix = birds.temp.matrix[, colSums(birds.temp.matrix) > 0]

# Order rows by site name
#birds.temp.matrix = birds.temp.matrix[c(1:6, 12, 7:11, 13:38), ]
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# Site-by-species abundance matrix with environmental data
# Add environmental data to the site-by-species abundance matrix
# 'balbina.2015' stands for the data collected only in 2015
balbina.2015 = cbind(birds.temp.matrix, env)
# Order rows by island size (i.e. forest area in hectares)
balbina.2015 = balbina.2015[order(balbina.2015$area.ha), ]
# Select the site-by-species abundance matrix and island size
balbina.2015 = balbina.2015[c(1:ncol(birds.temp.matrix),

match("area.ha", names(balbina.2015)))]

Species assemblages: 2015

spp.2015.all = names(balbina.2015[1:(ncol(balbina.2015) - 1)]) # all sample sites (n = 38)
# Continuous forest sites (n = 5)
spp.2015.control = names(balbina.2015[34:38, 1:(ncol(balbina.2015) - 1)][colSums(balbina.2015[34:38,

1:(ncol(balbina.2015) - 1)]) > 0])
# 1000-ha forest islands (n = 3)
spp.2015.1000 = names(balbina.2015[31:33, 1:(ncol(balbina.2015) - 1)][colSums(balbina.2015[31:33,

1:(ncol(balbina.2015) - 1)]) > 0])
# 500-ha forest islands (n = 4)
spp.2015.500 = names(balbina.2015[27:30, 1:(ncol(balbina.2015) - 1)][colSums(balbina.2015[27:30,

1:(ncol(balbina.2015) - 1)]) > 0])
# 250-ha forest islands (n = 4)
spp.2015.250 = names(balbina.2015[23:26, 1:(ncol(balbina.2015) - 1)][colSums(balbina.2015[23:26,

1:(ncol(balbina.2015) - 1)]) > 0])
# 100-ha forest islands (n = 4)
spp.2015.100 = names(balbina.2015[19:22, 1:(ncol(balbina.2015) - 1)][colSums(balbina.2015[19:22,

1:(ncol(balbina.2015) - 1)]) > 0])
# Forest islands smaller than 55 ha (n = 18)
spp.2015.impact = names(balbina.2015[1:18, 1:(ncol(balbina.2015) - 1)][colSums(balbina.2015[1:18,

1:(ncol(balbina.2015) - 1)]) > 0])

Data preparation: 2015

# Continuous forest sites
# "b" stands for "baseline species assemblage"
comm.2015.cf.b = colSums(balbina.2015[34:38, 1:(ncol(balbina.2015)-1)])
# "io" stands for "impacted sites" and "overall species assemblage"
comm.2015.cf.io = colSums(balbina.2015[1:18, 1:(ncol(balbina.2015)-1)])

# "ib" stands for "impacted sites" and "baseline species assemblage"
comm.2015.cf.ib = colSums(balbina.2015[1:18, 1:(ncol(balbina.2015)-1)])
comm.2015.cf.ib[-c(which(match(names(comm.2015.cf.ib), spp.2015.control) != "NA"))] = 0

# 1000-ha forest islands
comm.2015.1000.b = colSums(balbina.2015[31:33, 1:(ncol(balbina.2015)-1)])
comm.2015.1000.io = colSums(balbina.2015[1:18, 1:(ncol(balbina.2015)-1)])

comm.2015.1000.ib = colSums(balbina.2015[1:18, 1:(ncol(balbina.2015)-1)])
comm.2015.1000.ib[-c(which(match(names(comm.2015.1000.ib), spp.2015.1000) != "NA"))] = 0
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# 500-ha forest islands
comm.2015.500.b = colSums(balbina.2015[27:30, 1:(ncol(balbina.2015)-1)])
comm.2015.500.io = colSums(balbina.2015[1:18, 1:(ncol(balbina.2015)-1)])

comm.2015.500.ib = colSums(balbina.2015[1:18, 1:(ncol(balbina.2015)-1)])
comm.2015.500.ib[-c(which(match(names(comm.2015.500.ib), spp.2015.500) != "NA"))] = 0

# 250-ha forest islands
comm.2015.250.b = colSums(balbina.2015[23:26, 1:(ncol(balbina.2015)-1)])
comm.2015.250.io = colSums(balbina.2015[1:18, 1:(ncol(balbina.2015)-1)])

comm.2015.250.ib = colSums(balbina.2015[1:18, 1:(ncol(balbina.2015)-1)])
comm.2015.250.ib[-c(which(match(names(comm.2015.250.ib), spp.2015.250) != "NA"))] = 0

# 100-ha forest islands
comm.2015.100.b = colSums(balbina.2015[19:22, 1:(ncol(balbina.2015)-1)])
comm.2015.100.io = colSums(balbina.2015[1:18, 1:(ncol(balbina.2015)-1)])

comm.2015.100.ib = colSums(balbina.2015[1:18, 1:(ncol(balbina.2015)-1)])
comm.2015.100.ib[-c(which(match(names(comm.2015.100.ib), spp.2015.100) != "NA"))] = 0

# Combine data in a data frame
comm.2015 = data.frame(comm.2015.cf.b, comm.2015.cf.io, comm.2015.cf.ib,

comm.2015.1000.b, comm.2015.1000.io, comm.2015.1000.ib,
comm.2015.500.b, comm.2015.500.io, comm.2015.500.ib,
comm.2015.250.b, comm.2015.250.io, comm.2015.250.ib,
comm.2015.100.b, comm.2015.100.io, comm.2015.100.ib)

Calculation of the rarefied number of species: 2015

# Rarefied number of species standardized by sample coverage (0.898)
# "SC" stands for "sample coverage"
diversity.SC.2015 = estimateD(comm.2015, datatype = "abundance", base = "coverage",

level = NULL, conf = 0.95) # includes q = 0, 1, 2
# includes only q = 0
richness.SC.2015 = subset(diversity.SC.2015, diversity.SC.2015$order == "0")

richness.SC.2015$baseline = rep(c("a.control", "b.1000", "c.500", "d.250", "e.100"), each = 3)
richness.SC.2015$assemblage = rep(c("a.baseline", "b.impact.overall", "c.impact.baseline"), 5)

colnames(richness.SC.2015) = c("site", "individuals", "method", "q", "coverage",
"richness", "lowerCI", "upperCI", "baseline", "assemblage")

rownames(richness.SC.2015) = 1:nrow(richness.SC.2015)

richness.obs.2015 = as.data.frame(colSums(ifelse(comm.2015 >= 1, 1, 0)))

richness.obs.2015$baseline = rep(c("a.control", "b.1000", "c.500", "d.250", "e.100"), each = 3)
richness.obs.2015$assemblage = rep(c("a.baseline", "b.impact.overall", "c.impact.baseline"), 5)

colnames(richness.obs.2015) = c("richness", "baseline", "assemblage")
rownames(richness.obs.2015) = 1:nrow(richness.obs.2015)
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Figure: 2015

fig.2015 =
ggplot(data = richness.SC.2015, aes(x = baseline, y = richness, fill = assemblage)) +

labs(x = "Baseline suitability", y = "Rarefied number of species") +

scale_x_discrete(breaks = c("a.control", "b.1000", "c.500", "d.250", "e.100"),
labels = c("CF","1,000 ha","500 ha","250 ha","100 ha")) +

scale_y_continuous(limits = c(0, 80), breaks = seq(0, 80, 10)) +

scale_fill_manual(values = c("grey30", "grey70", "white"),
labels = c("Reference sites",

"Impacted sites: overall species assemblage",
"Impacted sites: baseline species assemblage")) +

geom_bar(colour = "black", stat = "identity",
width = 0.75, position = position_dodge()) +

geom_errorbar(aes(ymin = lowerCI, ymax = upperCI),
width = 0.2, position = position_dodge(0.75)) +

theme_bw(base_size = 20) +
theme(panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),
panel.border = element_rect(colour = "black"),
axis.ticks = element_line(colour = "black", size = 0.5),
axis.title = element_text(face = "bold"),
axis.text = element_text(colour = "black")) +

theme(legend.title = element_blank(),
legend.text = element_text(size = 14),
legend.justification = c(0.99, 0.99),
legend.position = c(0.99, 0.99),
legend.key.size = unit(0.75, "cm"))

ggsave(fig.2015, file = "fig.2015.pdf", width = 20, height = 20, units = "cm")

#fig.2015

Birds captured only in 2016

# Extract only data from 2016
birds.temp = birds[grep("2016", birds$date), ]

# Remove recaptures
birds.temp = subset(birds.temp, birds.temp$new.individual != "Recaptures")
birds.temp = subset(birds.temp, birds.temp$id != 1647 &

birds.temp$id != 1776 &
birds.temp$id != 2007 &
birds.temp$id != 2052 &
birds.temp$id != 2132 &
birds.temp$id != 2439)
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# Site-by-species abundance matrix
birds.temp.matrix = tapply(birds.temp$occurrence,

list(birds.temp$site, birds.temp$species), sum)
# Species non detected in a given site are real zeros
birds.temp.matrix[is.na(birds.temp.matrix)] = 0

# Remove species that were not captured in 2016
birds.temp.matrix = birds.temp.matrix[, colSums(birds.temp.matrix) > 0]

# Order rows by site name
#birds.temp.matrix = birds.temp.matrix[c(1:6, 12, 7:11, 13:38), ]

# Site-by-species abundance matrix with environmental data
# Add environmental data to the site-by-species abundance matrix
# 'balbina.2016' stands for the data collected only in 2016
balbina.2016 = cbind(birds.temp.matrix, env)
# Order rows by island size (i.e. forest area in hectares)
balbina.2016 = balbina.2016[order(balbina.2016$area.ha), ]
# Select the site-by-species abundance matrix and island size
balbina.2016 = balbina.2016[c(1:ncol(birds.temp.matrix),

match("area.ha", names(balbina.2016)))]

Species assemblages: 2016

spp.2016.all = names(balbina.2016[1:(ncol(balbina.2016) - 1)]) # all sample sites (n = 38)
# Continuous forest sites (n = 5)
spp.2016.control = names(balbina.2016[34:38, 1:(ncol(balbina.2016) - 1)][colSums(balbina.2016[34:38,

1:(ncol(balbina.2016) - 1)]) > 0])
# 1000-ha forest islands (n = 3)
spp.2016.1000 = names(balbina.2016[31:33, 1:(ncol(balbina.2016) - 1)][colSums(balbina.2016[31:33,

1:(ncol(balbina.2016) - 1)]) > 0])
# 500-ha forest islands (n = 4)
spp.2016.500 = names(balbina.2016[27:30, 1:(ncol(balbina.2016) - 1)][colSums(balbina.2016[27:30,

1:(ncol(balbina.2016) - 1)]) > 0])
# 250-ha forest islands (n = 4)
spp.2016.250 = names(balbina.2016[23:26, 1:(ncol(balbina.2016) - 1)][colSums(balbina.2016[23:26,

1:(ncol(balbina.2016) - 1)]) > 0])
# 100-ha forest islands (n = 4)
spp.2016.100 = names(balbina.2016[19:22, 1:(ncol(balbina.2016) - 1)][colSums(balbina.2016[19:22,

1:(ncol(balbina.2016) - 1)]) > 0])
# Forest islands smaller than 55 ha (n = 18)
spp.2016.impact = names(balbina.2016[1:18, 1:(ncol(balbina.2016) - 1)][colSums(balbina.2016[1:18,

1:(ncol(balbina.2016) - 1)]) > 0])

Data preparation: 2016

# Continuous forest sites
# "b" stands for "baseline species assemblage"
comm.2016.cf.b = colSums(balbina.2016[34:38, 1:(ncol(balbina.2016)-1)])
# "io" stands for "impacted sites" and "overall species assemblage"
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comm.2016.cf.io = colSums(balbina.2016[1:18, 1:(ncol(balbina.2016)-1)])

# "ib" stands for "impacted sites" and "baseline species assemblage"
comm.2016.cf.ib = colSums(balbina.2016[1:18, 1:(ncol(balbina.2016)-1)])
comm.2016.cf.ib[-c(which(match(names(comm.2016.cf.ib), spp.2016.control) != "NA"))] = 0

# 1000-ha forest islands
comm.2016.1000.b = colSums(balbina.2016[31:33, 1:(ncol(balbina.2016)-1)])
comm.2016.1000.io = colSums(balbina.2016[1:18, 1:(ncol(balbina.2016)-1)])

comm.2016.1000.ib = colSums(balbina.2016[1:18, 1:(ncol(balbina.2016)-1)])
comm.2016.1000.ib[-c(which(match(names(comm.2016.1000.ib), spp.2016.1000) != "NA"))] = 0

# 500-ha forest islands
comm.2016.500.b = colSums(balbina.2016[27:30, 1:(ncol(balbina.2016)-1)])
comm.2016.500.io = colSums(balbina.2016[1:18, 1:(ncol(balbina.2016)-1)])

comm.2016.500.ib = colSums(balbina.2016[1:18, 1:(ncol(balbina.2016)-1)])
comm.2016.500.ib[-c(which(match(names(comm.2016.500.ib), spp.2016.500) != "NA"))] = 0

# 250-ha forest islands
comm.2016.250.b = colSums(balbina.2016[23:26, 1:(ncol(balbina.2016)-1)])
comm.2016.250.io = colSums(balbina.2016[1:18, 1:(ncol(balbina.2016)-1)])

comm.2016.250.ib = colSums(balbina.2016[1:18, 1:(ncol(balbina.2016)-1)])
comm.2016.250.ib[-c(which(match(names(comm.2016.250.ib), spp.2016.250) != "NA"))] = 0

# 100-ha forest islands
comm.2016.100.b = colSums(balbina.2016[19:22, 1:(ncol(balbina.2016)-1)])
comm.2016.100.io = colSums(balbina.2016[1:18, 1:(ncol(balbina.2016)-1)])

comm.2016.100.ib = colSums(balbina.2016[1:18, 1:(ncol(balbina.2016)-1)])
comm.2016.100.ib[-c(which(match(names(comm.2016.100.ib), spp.2016.100) != "NA"))] = 0

# Combine data in a data frame
comm.2016 = data.frame(comm.2016.cf.b, comm.2016.cf.io, comm.2016.cf.ib,

comm.2016.1000.b, comm.2016.1000.io, comm.2016.1000.ib,
comm.2016.500.b, comm.2016.500.io, comm.2016.500.ib,
comm.2016.250.b, comm.2016.250.io, comm.2016.250.ib,
comm.2016.100.b, comm.2016.100.io, comm.2016.100.ib)

Calculation of the rarefied number of species: 2016

# Rarefied number of species standardized by sample coverage (0.868)
# "SC" stands for "sample coverage"
diversity.SC.2016 = estimateD(comm.2016, datatype = "abundance", base = "coverage",

level = NULL, conf = 0.95) # includes q = 0, 1, 2
# includes only q = 0
richness.SC.2016 = subset(diversity.SC.2016, diversity.SC.2016$order == "0")

richness.SC.2016$baseline = rep(c("a.control", "b.1000", "c.500", "d.250", "e.100"), each = 3)
richness.SC.2016$assemblage = rep(c("a.baseline", "b.impact.overall", "c.impact.baseline"), 5)
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colnames(richness.SC.2016) = c("site", "individuals", "method", "q", "coverage",
"richness", "lowerCI", "upperCI", "baseline", "assemblage")

rownames(richness.SC.2016) = 1:nrow(richness.SC.2016)

richness.obs.2016 = as.data.frame(colSums(ifelse(comm.2016 >= 1, 1, 0)))

richness.obs.2016$baseline = rep(c("a.control", "b.1000", "c.500", "d.250", "e.100"), each = 3)
richness.obs.2016$assemblage = rep(c("a.baseline", "b.impact.overall", "c.impact.baseline"), 5)

colnames(richness.obs.2016) = c("richness", "baseline", "assemblage")
rownames(richness.obs.2016) = 1:nrow(richness.obs.2016)

Figure: 2016

fig.2016 =
ggplot(data = richness.SC.2016, aes(x = baseline, y = richness, fill = assemblage)) +

labs(x = "Baseline suitability", y = "Rarefied number of species") +

scale_x_discrete(breaks = c("a.control", "b.1000", "c.500", "d.250", "e.100"),
labels = c("CF","1,000 ha","500 ha","250 ha","100 ha")) +

scale_y_continuous(limits = c(0, 80), breaks = seq(0, 80, 10)) +

scale_fill_manual(values = c("grey30", "grey70", "white"),
labels = c("Reference sites",

"Impacted sites: overall species assemblage",
"Impacted sites: baseline species assemblage")) +

geom_bar(colour = "black", stat = "identity",
width = 0.75, position = position_dodge()) +

geom_errorbar(aes(ymin = lowerCI, ymax = upperCI),
width = 0.2, position = position_dodge(0.75)) +

theme_bw(base_size = 20) +
theme(panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),
panel.border = element_rect(colour = "black"),
axis.ticks = element_line(colour = "black", size = 0.5),
axis.title = element_text(face = "bold"),
axis.text = element_text(colour = "black")) +

theme(legend.title = element_blank(),
legend.text = element_text(size = 14),
legend.justification = c(0.99, 0.99),
legend.position = c(0.99, 0.99),
legend.key.size = unit(0.75, "cm"))

ggsave(fig.2016, file = "fig.2016.pdf", width = 20, height = 20, units = "cm")

#fig.2016
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Interpretation of the results using one-year data

The results from the two-year dataset were different to those from either 2015 or 2016. Such contrasting results likely arose due
to poor characterization of sample sites within a one-year survey given the smaller number of captures. The number of captures
was 1,264 in 2015; 1,179 in 2016; and 2,115 in both years combined. (Recall that we have excluded recaptures, so individuals
captured in 2015 and 2016 were not double-counted to tally the total of both years.) Overall, this indicates that the reliability of
environmental impact assessments also depends on the robustness of biodiversity inventories.
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Chapter 5

Sampling design may obscure
species-area relationships in
landscape-scale field studies

For almost 100 years, the species-area relationship has proved to be a timeless topic in
ecology. Plot from Gleason (1922).

Accepted upon major revision in Ecography as:
Bueno AS, Masseli GS, Kaefer IL, Peres CA (2019) Sampling design may obscure
species-area relationships in landscape-scale field studies.
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5.1 Abstract

We investigated (1) the role of area per se in explaining anuran species richness on
reservoir forest islands, after controlling for several confounding factors. We also
assessed (2) how sampling design affects the inferential power of island species-
area relationships (ISARs) aiming to (3) provide guidelines to yield reliable esti-
mates of area-induced species losses in patchy systems. We surveyed anurans
with autonomous recording units at 151 plots located on 74 islands and four
continuous forest sites at the Balbina Hydroelectric Reservoir landscape, central
Brazilian Amazonia. We applied semi-log ISAR models to assess the effect of
sampling design on the fit and slope of species-area curves. To do so, we subsam-
pled our surveyed islands following both a (i) stratified and (ii) non-stratified
random selection of 5, 10, 15, 20 and 25 islands covering (i) the full range in is-
land size (0.45-1,699 ha) and (ii) only islands smaller than 100 ha, respectively.
We also compiled 25 datasets from the literature to assess the generality of our
findings. Island size explained c. half of the variation in species richness. The
fit and slope of species-area curves were affected mainly by the range in island
size considered, and to a very small extent by the number of islands surveyed.
In our literature review, all datasets covering a range of patch sizes larger than
300 ha yielded a positive ISAR, whereas the number of patches alone did not af-
fect the detection of ISARs. We conclude that (1) area per se plays a major role
in explaining anuran species richness on forest islands within an Amazonian an-
thropogenic archipelago; (2) the inferential power of island species-area relation-
ships is severely degraded by sub-optimal sampling designs; (3) at least 10 habitat
patches spanning three orders of magnitude in size should be surveyed to yield
reliable species-area estimates in patchy systems.

Keywords: Amazonia, amphibians, environmental gradients, frogs, habitat
fragmentation, hydroelectric dam, insularization, island biogeography theory,
species-area relationship, tropical forest
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5.2 Introduction

The species-area relationship (SAR) is the earliest and best-documented pattern
in spatial ecology (Rosenzweig 1995, Tjørve et al. 2018). The “obvious fact that
the larger the area taken the greater the number of species” (Arrhenius 1921) has
led to a number of refinements to understand such a pattern. Many mathemat-
ical models (Tjørve 2003, Triantis et al. 2012) in tandem with several types of
sampling schemes (Scheiner 2003) and concurrent underlying mechanisms have
been invoked to explain SARs (Hill et al. 1994).

SAR models were firstly developed in the 1920s for contiguous areas (i.e.
mainland SAR; Arrhenius 1921, Gleason 1922). Accordingly, larger areas are more
species-rich because they have more individuals and contain a wider spectrum
of habitats (Rosenzweig 1995). Thus, given a random abundance distribution,
the larger number of individuals recorded over larger areas should imply more
species (i.e. sampling effect; Hill et al. 1994). Meanwhile, the greater variety
of habitats encompassed by larger areas supports species restricted to specific
habitats and those requiring a combination thereof (i.e. habitat diversity effect;
Connor and McCoy 2001).

Subsequently, Wilson (1961) showed that the rate of species loss as a func-
tion of area reduction is higher for archipelagos (i.e. island SAR) than for contigu-
ous areas. This occurs because the number of species on islands is also mediated
by the dynamic of extinction and colonisation as postulated in the Island Biogeog-
raphy Theory (MacArthur and Wilson 1963, 1967), a paradigm also attributed to
E. G. Munroe in 1948 (Tjørve et al. 2018). Accordingly, larger islands have larger
population sizes resulting in lower extinction rates (i.e. area effect), and islands
closer to a mainland source of species experience higher immigration rates (i.e.
distance effect). Less isolated larger islands are therefore more species-rich than
more isolated smaller islands (fig. 5 in MacArthur and Wilson 1963).

Since any reduction in island area depresses species richness more than a
similar reduction in contiguous areas, mainland and island SAR can be seen as
extremes of a continuum that is determined by the “islandness” (i.e. functional
connectivity) of surveyed areas (Rosenzweig 1995). Such a property is arguably
mediated by the dispersal ability of any given species group and the hostility of
the intervening matrix in patchy systems (Bueno and Peres 2019). For example,
in a forest archipelago induced by a hydroelectric dam in French Guiana, raptors
were more prone to move between islands by traversing the water matrix than
small mammals (Cosson et al. 1999), so the same archipelago is more function-
ally connected for raptors than for small mammals. Meanwhile, forest fragments
surrounded by cattle pastures (i.e. less hostile matrix; Lees and Peres 2008) expe-
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rience lower rates of bird species loss as a function of area reduction than forest is-
lands within a hydroelectric reservoir (i.e. more hostile matrix; Bueno et al. 2018).
Collectively, this means that islands and mainland areas will converge in their
SARs at lower levels of landscape “islandness”. Moreover, matrix type (Kennedy
et al. 2010), history of disturbance (e.g. clear-cut or burned forests; Stouffer and
Bierregaard, 1995), time since habitat patch isolation (Jones et al. 2016), and di-
rect human disturbance (e.g. hunting pressure; Canale et al. 2012) all mediate the
number of species in habitat remnants embedded in human-modified landscapes.

Even though positive SARs appear to be ubiquitous (Connor and McCoy
2001), some studies have found a non-significant or even negative relationship
(Lövei et al. 2006), with smaller patches harbouring more species than larger
ones. Such unexpected results can emerge for several reasons. First, surveyed
patches often span a modest size range (Watling and Donnelly 2008, Lion et al.
2014) and are, therefore, exposed to the ‘small island effect’ (Wang et al. 2018),
where a modest variation in patch size does not affect species richness (Lomolino
and Weiser 2001). Second, few patches are surveyed, thereby reducing SAR
model fits (Triantis et al. 2012). Finally, the species assemblage under considera-
tion includes both habitat (e.g. forest dwellers) and non-habitat affiliated species
(e.g. matrix dwellers), resulting in compensatory dynamics whereby any loss of
the former is either compensated for (Russildi et al. 2016) or exceeded (Lövei et
al. 2006) by any gain of the latter.

Here, we investigated (1) the role of area per se in explaining anuran
species richness on Amazonian forest islands induced by river damming, after
controlling for several confounding factors (Table 5.1). We also assessed (2) how
sampling design affects the inferential power of island species-area relationships
(type IV curve sensu Scheiner 2003) aiming to (3) provide guidelines to yield reli-
able estimates of area-induced species losses in patchy systems. We took advan-
tage of passive acoustic monitoring (Deichmann et al. 2018) to survey anurans at
a large number of forest islands (n = 74) covering a wide size range (0.45-1,699
ha) within the Balbina Hydroelectric Reservoir in central Brazilian Amazonia.
We used anurans as a model group because each species has a distinct, simple,
and relatively stereotyped vocalisation, thereby permitting reliable species iden-
tification even in megadiverse regions (Marques et al. 2013, Ribeiro et al. 2017).
Moreover, anurans generally show pronounced site fidelity and limited dispersal
ability (Smith and Green 2005), allowing us to largely control for distance effects
(Palmeirim et al. 2017). As a vast ‘real-world’ experimental landscape, the Bal-
bina forest archipelago is a unique setting to examine habitat area per se effects on
species assemblages because (1) it provides over 3,500 replicated forest islands
varying widely in size (Benchimol and Peres 2015a); (2) all forest islands were
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created simultaneously 28 years ago (Fearnside 2016), having therefore been sub-
jected to an uniform and relatively long relaxation time; (3) the open-water matrix
is equally hostile; (4) forest islands span similar elevations, are restricted to up-
land forest and lack perennial streams, ultimately reducing habitat diversity; (5)
adjacent control sites in undisturbed continuous primary forest are widely avail-
able; and the (6) de facto protection from any human disturbance covering most
of the archipelago.

Table 5.1: Confounding factors affecting area per se effects on species richness and
how they were controlled for in this study. Note that, as an observational study
exploiting a natural field experiment, confounding factors could not be entirely
removed but were minimised to a large extent.

Factor How the factor was controlled for

Sampling effect We used the rarefied number of species as
our response variable, rather than the observed
number of species.

Habitat diversity effect Forest islands resulted from the rise of the reser-
voir floodwaters. Because lowlands are invari-
ably flooded, only upland areas lacking streams
persist in any one isolate.

Distance effect We focused on anurans because they show high
site fidelity and limited dispersal ability. Also,
the hostility of the open-water matrix further
hampers anurans from moving across forest is-
lands.

Matrix, history, time
since isolation, direct
human disturbance

All forest island islands are surrounded by a
lentic-water matrix and were created at the same
time (1987). The study region has a low human
population density and negligible direct anthro-
pogenic impact, and most islands are within a
large strictly-protected area.

Species assemblage Only forest species were recorded across sur-
veyed sites – i.e. species with “Forest - Subtrop-
ical/Tropical Moist Lowland” listed as a “Suit-
able” habitat according to IUCN (2018).
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5.3 Methods

5.3.1 Study area

This study was carried out within the vast Balbina Hydroelectric Reservoir (BHR)
and adjacent areas of continuous forest, located in central Brazilian Amazonia
(1◦40’ S, 59◦40’ W; Fig. 5.1). The BHR was formed in 1987 by the damming of the
Uatumã River, a tributary of the Amazon River, and covers an area of c. 300,000 ha
(Fearnside 2016). The aftermath of dam construction created over 3,500 islands
(Benchimol and Peres 2015a) derived from former hilltops of the once primary
continuous forest. To offset the environmental impacts of the dam, 938,720 ha
were set aside as the Uatumã Biological Reserve (IUCN category Ia; Fig. 5.1b), the
largest biological reserve in Brazil. Moreover, the left bank of the former Uatumã
River, including all islands, has also been effectively protected (Fig. 5.1b).

Figure 5.1: (a) Location of the study area in central Brazilian Amazonia, indicated
by a solid rectangle containing (b) the Balbina Hydroelectric Reservoir (BHR)
landscape, showing the boundaries of the Uatumã Biological Reserve, a strictly-
protected area safeguarding most of this landscape; (c) larger inset map showing
the spatial distribution of the 151 survey plots on 74 forest islands and in four con-
tinuous forest sites. Photographs represent the BHR landscape (credit: Eduardo
M. Venticinque) and the forest interior of a surveyed island (credit: ASB).

The vegetation is characterised by submontane dense ombrophilous (terra
firme) forest, although seasonally flooded igapó forest formerly occurred along the
margins of the Uatumã River before damming. Islands span a wide range in size
(0.2-4,878 ha; Benchimol and Peres 2015), virtually all of which lack perennial
streams because lowland areas were submerged following the rise of floodwa-
ters. Forest structure in larger islands resembles that of the continuous forest with
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a higher dominance of large-seeded and canopy tree species, whereas smaller is-
lands are dominated by pioneer tree species due to unavoidable edge-mediated
forest disturbance (Benchimol and Peres 2015a). According to the Köppen classi-
fication, the climate is equatorial fully humid (Af), with mean annual precipita-
tion and temperature of 2,464 mm and 26.5 ◦C, respectively (Alvares et al. 2013).

5.3.2 Sampling design

We surveyed 151 plots located on 78 sites, including 74 islands and four con-
tinuous forest sites (Fig. 5.1c). We attempted to survey a similar number of
plots in riparian (i.e. along streams) and non-riparian habitats (i.e. away from
streams) within continuous forest, and all available riparian habitats on islands,
but only two islands had streams. Accordingly, we surveyed 13 riparian and 10
non-riparian plots in continuous forest, and 4 riparian and 124 non-riparian plots
on islands (Fig. 5.1c). The number of plots per survey site was defined accord-
ing to island size and presence of streams and varied from 4 to 10 in continuous
forest sites and from 1 to 7 on islands (Fig. 5.1c; Table S5.1). The overall study
meta-landscape encompassed 253,951 ha in which plots were spaced apart by an
average distance of 32.63 km (SD = 18.83 km; range = 0.19-84.60 km; Fig. 5.1c).

5.3.3 Frog surveys

We surveyed anurans from July to December 2015 using autonomous record-
ing units (ARUs) developed by the Automated Remote Biodiversity Monitoring
Network (ARBIMON, <https://www.sieve-analytics.com>). Each ARU con-
sists of an LG smartphone enclosed within a waterproof case with an external
connector linked to an omnidirectional microphone. At each of the 151 plots,
we deployed one ARU attached to a tree trunk 1.5 m above ground with the
microphone pointing downward. ARUs were left unattended at each plot for
five consecutive days and programmed to record 1 min in every 5-min inter-
val using the ARBIMON Touch application. All recordings are archived at the
ARBIMON II web platform and are freely available at <https://arbimon.sieve-
analytics.com/project/balbina>.

We selected a subset of 62 1-min recordings per plot (n = 151) to identify all
anuran species occurring therein, totalling 9,362 1-min recordings. These record-
ings were derived from the following schedule: the first 1-min recording segment
every 10 min over a 5-hour period (from 17:00 to 22:01) during sample days 2 and
4. Anuran species were identified by GSM who inspected all the recordings both
aurally and visually using the ARBIMON II Visualizer tool. Species identifica-
tions were validated thereafter by ILK as a procedure to ensure accuracy. Dur-
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ing this validation procedure, species records had to be either readily identified
by hearing or inspecting the sonograms to be included in the analysis. Species
records were discarded if they could not readily identified and/or if clearly audi-
ble sonogram acquisitions were inadequate (e.g. faint vocalisations too far away
from the microphone).

5.3.4 Response variable

Before accounting for differences in sampling effort (i.e. number of 1-min record-
ings) across survey sites, we inspected the degree to which the observed num-
ber of species was correlated with sampling effort. We then calculated the rar-
efied number of anuran species using sampling-unit-based incidence data with
1,000 bootstrap replicates using the INEXT package (Hsieh et al. 2016) within
the R software (R Core Team 2018). To accomplish this, we created a species-by-
sampling-unit matrix per survey site, in which each species (row) was assigned
as present (1) or absent (0) and each sampling unit (column) corresponded to a
1-min recording. We standardised the sampling effort to the statistical mode, the
most frequent number of 1-min recordings across survey sites (n = 62). We did
so because INEXT calculates both the interpolated and extrapolated number of
species. Accordingly, we used the interpolated, observed and extrapolated num-
ber of species for sites allocated a sampling effort above (n = 33), equal to (n =
43) and below (n = 2) the statistical mode, respectively (all of which hereafter re-
ferred to as the rarefied number of species). We also used INEXT to calculate the
sample coverage to assess whether survey sites were sufficiently inventoried on
the basis of 62 1-min recordings.

5.3.5 Predictor variable

Island size corresponds to the total insular forest cover and was calculated in
QGIS software (QGIS Development Team 2016) using a classified image (Collec-
tion 2, 2015, Amazon) derived from 30-m resolution Landsat imagery downloaded
from the Brazilian Annual Land Use and Land Cover Mapping Project (available
at <http://mapbiomas.org>). Forest cover was defined as ‘dense forest’ (pixel
value 3), because other pixel values effectively represent either heavily degraded
forests or non-forest land cover types. Accordingly, the size of our 74 surveyed
islands ranged from 0.45 to 1,699 ha (Table S5.1).
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5.3.6 Island species-area relationships

To depict island species-area relationships (ISARs), we used the exponential
equation (semi-log model; Gleason, 1922) to fit simple linear regression models
as follows:

S = z× log10(A) + c,

where S = rarefied number of anuran species, z = regression slope, A = island size
(ha), c = regression intercept. In this equation, z indicates the rate of species loss
as a function of island size reduction, whereas c indicates the carrying capacity
per unit area (Triantis et al. 2012). Despite the fact that ISARs can be fitted with
dozens of alternative models (Triantis et al. 2012), the semi-log model was chosen
because it is widely used (Tjørve 2003), easy to interpret, and allows the inclusion
of sites at which no species was recorded (S = 0; Table S5.1).

To assess the degree to which shortening the range in island size changes
the fit (r2) and the slope (z) of the ISAR for anurans at the BHR landscape, we first
classified the survey islands into five size categories: very small (< 4 ha, n = 23),
small (4-20 ha, n = 20), medium sized (20-100 ha, n = 17), large (100-400 ha, n = 7),
very large (> 400 ha, n = 7). We then fitted semi-log models to islands classified
as (1) very small + small + medium sized + large + very large (n = 74); (2) very
small + small + medium sized + large (n = 67); (3) very small + small + medium
sized (n = 60); (4) very small + small (n = 43); and (5) very small (n = 23).

5.3.7 Tradeoff between replication power and extent of the gra-

dient

Ideally, biodiversity surveys should include many sites covering a wide varia-
tion along any given gradient. However, logistical, financial or landscape (e.g.
few and small habitat patches remaining) constraints, or combinations thereof,
prevent attempts to adopt an ideal sampling design. With this in mind, we inves-
tigated the role of island-scale replication and the range in island size in detecting
a positive ISAR for anurans at the BHR landscape. To do so, we subsampled our
surveyed islands (n = 74) following both a stratified and non-stratified random
selection of 5, 10, 15, 20 and 25 islands. In the stratified random selection, an
equal number of islands belonging to each size category (see above) was selected
to cover the full range in island size (0.45-1,699 ha). Accordingly, for 5, 10, 15, 20,
25 islands selected, each island size category was represented by 1, 2, 3, 4, and 5
islands, respectively. In the non-stratified random selection, subsets of 5, 10, 15,
20 and 25 islands smaller than 100 ha (n = 60) were selected, thereby covering a
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short range in island size.
We also carried out a literature review (see the R code in the Supporting In-

formation; Appendix S5.1) focused on both tropical and temperate anuran stud-
ies worldwide to assess (1) how prevalent positive ISARs are at a global scale, and
(2) the role of the number of patches and range in patch size (largest minus the
smallest) in detecting ISARs. Herein, the term ‘patch’ is used to encompass both
‘fragment’ and ‘island’. Since results may be affected by the analytical approach
employed (Bueno et al. 2018), we reanalysed data from each study based on our
literature review using the semi-log model as described above. Note that for the
global analysis, the response variable is the observed number of anuran species.

5.3.8 Data deposition

Data will be available from the KNB Repository, and are currently accessible
through the links provided in the Supporting Information.

5.4 Results

Considering all 151 plots at 78 survey sites, we recorded 37 anuran species repre-
senting 18 genera and nine families (Table S5.2). The most ubiquitous species was
Ameerega trivittata (n = 54 sites), whereas five species were only recorded at one
site (Table S5.2). At the four continuous forest sites (n = 23 plots), we recorded 27
species from 15 genera and eight families; the number of species per continuous
forest site ranged from 13 to 20 (mean ± SD = 15.75 ± 3.10; Table S5.1). On the 74
islands (n = 128 plots), we recorded 34 species from 18 genera and nine families,
and the number of species per island ranged from 0 to 21 (6.12± 4.46; Table S5.1).

5.4.1 Species richness and sampling effort

The observed number of species was strongly and positively correlated with sam-
pling effort (i.e. number of 1-min recordings; r = 0.82; Fig. 5.2a). However, the
observed and rarefied number of species standardised to 62 1-min recordings
were also strongly and positively correlated (r = 0.98; Fig. 5.2b). Therefore, high
levels of local species packing was not artificially inflated by higher sampling ef-
fort, and sample coverage was adequate, exceeding 90% at 75 survey sites (Fig.
5.2c), indicating that a sampling effort per site of 62 1-min recordings was overall
sufficient.



Chapter 5 221

●

●

●

●●●●●●

●●●●●●

●●●●●●●●●●●

●●●

●●●●●

●

●●●●●

●

●●●

●

● ●

●

●

●●●

●

●●

●●

●

●

● ●

●●

●●

●●

● ●●●

●●

●

●

● ●

●
r = 0.82

(a)0

5

10

15

20

62 124 186 248 310 434 614
Sampling effort

O
bs

er
ve

d 
nu

m
be

r 
of

 s
pe

ci
es

●

●●●●●●●

●●●●●●

●●●●●●●●●●●●●

●●

●

●●●●●

●●●●●●●

●

●

● ●●●●●

●●●●●

●●● ●●●

● ●

●

●●

●●

●

●●

●

●

●

●

● ●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

r = 0.98

(b)0

5

10

15

20

0 5 10 15
Rarefied number of species

O
bs

er
ve

d 
nu

m
be

r 
of

 s
pe

ci
es

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●
●●●●●

●
●●●●●●●●

●

●

●

●●
●●

●

●●●
●
●
●●●●

●

●
●●●●

●●●
●
●●

●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● (c)0.5

0.6

0.7

0.8

0.9

1.0

1 10 20 30 40 50 60 70 78
Site code

S
am

pl
e 

co
ve

ra
ge

●

●

●

●●●●●●

●●●●●●

●●●●●●●●●●●

●●●

●●●●●

●

●●●●●

●

●●●

●

● ●

●

●

●●●

●

●●

●●

●

●

● ●

●●

●●

●●

● ●●●

●●

●

●

● ●

●
r = 0.82

(a)0

5

10

15

20

62 124 186 248 310 434 614
Sampling effort

O
bs

er
ve

d 
nu

m
be

r 
of

 s
pe

ci
es

●

●●●●●●●

●●●●●●

●●●●●●●●●●●●●

●●

●

●●●●●

●●●●●●●

●

●

● ●●●●●

●●●●●

●●● ●●●

● ●

●

●●

●●

●

●●

●

●

●

●

● ●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

r = 0.98

(b)0

5

10

15

20

0 5 10 15
Rarefied number of species

O
bs

er
ve

d 
nu

m
be

r 
of

 s
pe

ci
es

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●
●●●●●

●
●●●●●●●●

●

●

●

●●
●●

●

●●●
●
●
●●●●

●

●
●●●●

●●●
●
●●

●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● (c)0.5

0.6

0.7

0.8

0.9

1.0

1 10 20 30 40 50 60 70 78
Site code

S
am

pl
e 

co
ve

ra
ge

Figure 5.2: Correlation between (a) observed numbers of species and sampling
effort, measured as the number of 1-min recordings per survey site; and (b) ob-
served and rarefied number of species. (c) Sample coverage for 62 1-min record-
ings per survey site (see Table S5.1 for site codes). The open circle in (b) and (c)
represents a small forest island where no anuran species was detected, so neither
the rarefied number of species nor the sample coverage could be calculated.

5.4.2 Anuran species-area relationships at Balbina

Island size explained c. half of the variation (r2 = 0.49) in the rarefied number of
species considering all 74 islands (Fig. 5.3). Regression slopes were flattened, and
model fits dramatically reduced as the range in island size was narrowed down,
leading to a non-significant species-area relationship for islands smaller than 4 ha
(p = 0.90; Fig. 5.3). Importantly, the similar rarefied number of species calculated
for very large islands (> 400 ha) and continuous forest sites (Fig. 5.3) suggests
that a further increase in island size would not imply more species, as long as the
sampling effort is standardised.
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Figure 5.3: Anuran species-area relationships on forest islands surveyed at the
Balbina Hydroelectric Reservoir landscape across five sets of islands (indicated
by grey dashed lines and colour circles). The regression line for islands smaller
than 4 ha (n = 23) is represented in red; up to 20 ha (n = 43) in orange; up to
100 ha (n = 60) in purple; up to 400 ha (n = 67) in blue; and up to 1,699 ha in
green (n = 74). Continuous forest sites (CF, black circles) were not included in the
regression fits. Note that model fits (r2) and regression slopes tend to be reduced
as the range in island size is narrowed down, thereby decreasing the estimated
impact and the explanatory power of forest shrinkage on the rarefied number of
species. Islands larger than 400 ha yielded similar values of species richness as
continuous forest sites, indicating that, by controlling for sampling effort, further
increases in the range of island size would not necessarily increase the number of
species detected on islands.
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For the stratified random selection of islands covering the full range in is-
land size (0.45-1,699 ha), positive ISARs always held true for 15, 20 or 25 islands
selected, usually for 10 islands, but only sometimes for 5 islands (Fig. 5.4). Slope
deviances, measured as the degree to which the angle of a regression line devi-
ates from that derived from all 74 islands, approximated one (i.e. no deviance) on
average (Fig. 5.4a), while model fits (r2) were increased to about 62% on average
(Fig. 5.4c), regardless of the number of islands (5 to 25) selected. In none of the
cases, ISARs were significantly negative.

For the non-stratified random selection of islands covering the short range
in island size (< 100 ha), positive ISARs failed to hold true in the vast majority of
cases, regardless of replication power; i.e. the number of islands selected (5 to 25;
Fig. 5.4). Slope deviances were reduced in 35% to 65% on average (Fig. 5.4b),
while model fits (r2) were reduced to about 8% on average (Fig. 5.4d), regardless
of the number of islands (5 to 25) selected. In none of the cases, ISARs were
significantly negative.
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Figure 5.4: Results of anuran species-area relationships (SARs) derived from ran-
dom sampling of 74 forest islands (see Fig. 5.3) surveyed at the Balbina Hydro-
electric Reservoir landscape (see Methods: Tradeoff between replication power and
extent of the gradient for further clarification). Each dot corresponds to a single
SAR. Slope deviance was measured as the degree to which the angle of a regres-
sion line deviates from that derived from all 74 islands (green line in Fig. 5.3):
1.0 indicates no deviance (i.e. same slope), and values smaller and larger than
1.0 indicate lower and higher slopes, respectively. Red circles and red lines show
means and standard deviations. Box-and-whisker plots show median (at notch),
lower and upper quartiles and 1.5 × interquartile ranges. Note that plots on the
same row (a and b; c and d) are on the same scale to allow direct comparisons.
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5.4.3 Prevalence of island species-area relationships for anurans

worldwide

We compiled 25 datasets from 23 anuran studies in fragmented landscapes rep-
resenting 12 countries worldwide (Fig. 5.5). Our reanalysis of the original data
using the semi-log model revealed a positive ISAR for 18 datasets (mean r2

adj ±
SD = 0.45 ± 0.32) and a non-significant ISAR for seven datasets (Fig. 5.6). In
none of the cases, ISARs were significantly negative. Remarkably, all 17 datasets
that spanned a range in patch size (largest minus the smallest) larger than 300
ha yielded a positive ISAR, but the number of patches alone, which was widely
variable (5 to 24), did not affect the detection of ISARs (Fig. 5.6).
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Figure 5.5: Location of the 25 datasets (blue circles) included in our analytical
review of the prevalence of island species-area relationships for anurans world-
wide.
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Figure 5.6: Prevalence of island species-area relationships (ISARs) derived from
25 anuran datasets worldwide (see Fig. 5.5), showing how the number of habitat
patches surveyed and the range in patch size (largest minus the smallest) affect
the significance and fit of ISAR models. Blue and grey circles indicate positive
and non-significant relationships, respectively. Circle sizes are proportional to the
magnitude of r2-values. All studies covering a sufficiently wide range in patch
size (¿ 300 ha; dashed vertical grey line) resulted in positive ISAR semi-log mod-
els.

5.5 Discussion

Our results indicate that habitat area per se plays a major role in explaining anu-
ran species richness on forest islands induced by a large hydroelectric dam in
lowland Amazonia. However, the fit and the slope of the island species-area re-
lationship (ISAR) derived from the semi-log model [S ∼ log10(A)] were affected
mainly by the range in island size considered, and to a very small extent by the
number of islands surveyed. Hence, reported failures in detecting positive IS-
ARs (e.g. Watling and Donnelly 2008, Lion et al. 2014) could be attributed to a
sub-optimal sampling design, rather than an inherent absence of area effects on
species richness.
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5.5.1 Effect of area per se on species richness

Area represents a supra-variable

Habitat patch size or forest remnant area can explain virtually the entire varia-
tion (r = 0.99) of anuran species richness across Amazonian terra firme forest frag-
ments, but this does not necessarily imply that area per se is the only underlying
mechanism driving ISARs (Zimmerman and Bierregaard 1986). Because larger
areas usually accommodate more individuals and more habitats, more species
are expected to be recorded therein due to both the (1) sampling effect and (2)
habitat diversity effect (Rosenzweig 1995). Accordingly, once these two effects
are controlled for, ISARs tend to become weaker (lower fit and slope), relegating
area per se to a lesser role in explaining overall species richness. Since the sam-
pling effect is purely governed by the laws of probability, it should be refuted
before ecological processes can be examined (Hill et al. 1994). These authors
reported a strong fit (r2 = 0.80 in a second-order polynomial regression) of the
ISAR for birds in forest fragments in Ghana, which was largely attributed (r2 =
0.16-0.37) to a sampling effect. Likewise, the shallow slope of the ISAR (log-log
model) for birds in an anthropogenic forest archipelago in China was attributed
to the low habitat diversity among islands, which were dominated by Masson
pine (Yu et al. 2012).

Controlling for the sampling effect

Since poorly standardised sampling effort in biodiversity inventories is likely to
produce misleading results, one should compare species richness among sites
using either individual-based (abundance data) or sample-based (presence-absence
data in a given sample) rarefaction curves (Gotelli and Colwell 2001). Here, we
used a sample-based rarefaction procedure because of the nature of passive acous-
tic monitoring data, in which individuals recorded in consecutive samples (1-min
recordings) are not independent. Accordingly, a rarefaction procedure (Hsieh et
al. 2016) based on species incidence in 1-min recordings (samples) was used to di-
vorce the sampling effect from the area effect. Meanwhile, we assessed the degree
to which a standardised sampling effort of 62 1-min recordings yielded sufficient
sampling effort to quantify the number of anuran species across survey sites. The
fact that sampling effort was standardised to calculate species richness and that
sample coverage was over 90% in virtually all surveyed sites (Fig. 5.2) provide
robust support for an area effect that is independent of sampling effect.
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Controlling for habitat diversity

In Amazonian terra firme forests, habitat diversity in terms of vegetation struc-
ture is associated with hydrological features of the terrain including elevation
(Castilho et al. 2006), below-ground vertical distance to the water table (Schietti
et al. 2014) and horizontal distance to perennial streams (Drucker et al. 2008).
Both elevation and distance from streams – two variables that are typically cor-
related - have been shown to shape anuran assemblages in continuous forest ad-
jacent to our study landscape (Condrati 2009). Accordingly, low-elevation sites
near streams are more species-rich and harbour a distinct anuran species compo-
sition compared to high-elevation sites far away from streams (Condrati 2009).
However, our forest islands are, by definition, upland remnants induced by the
flooding of lowland areas in the once continuous forest, thereby lacking perennial
streams. Therefore, within-island habitat diversity associated with area is greatly
reduced, therefore providing evidence of an area effect that is independent of
habitat diversity.

The mechanisms underlying ecological patterns can only be properly in-
ferred from field experiments, despite their limitations in isolating co-varying
mechanisms (McGarigal and Cushman 2002). As a mensurative experiment
(sensu McGarigal and Cushman 2002), the relationship between island size and
habitat diversity could not be entirely removed. For example, one key feature
of how habitat structure affects anuran assemblages is the presence of breeding
sites (Hillers et al. 2008, Bickford et al. 2010), so a higher species richness at
larger habitat patches (i.e. fragments or islands) often results from higher di-
versity of breeding sites (Almeida-Gomes and Rocha 2015, Almeida-Gomes et al.
2016). In Amazonian terra firme forests, peccary wallows, which are used by some
species as a breeding site (Zimmerman and Bierregaard 1986), are unlikely to be
found on islands smaller than 100 ha where the occupancy probability of pecca-
ries is much lower (Benchimol and Peres 2015b), thereby decreasing the number
of breeding sites. Moreover, the number of anuran reproductive modes (sensu
Haddad and Prado 2005) – a proxy for breeding sites – was positively related to
log-transformed island size (r2 = 0.45, Fig. S5.1), but not to the same extent as re-
ported for in Atlantic Forest fragments of southeastern Brazil (r2 = 0.87; Almeida-
Gomes and Rocha 2015). Therefore, the effect of area per se on species richness
was significant but probably weaker than that estimated in general (r2 = 0.49 con-
sidering all 74 islands; Fig. 5.3).
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Stranded on islands

The dynamics of local extinction and colonisation mediates the number of species
on islands at any given time. According to the Island Biogeography Theory
(MacArthur and Wilson 1963, 1967), extinction rates are determined by island
size (area effect) and immigration rates by island isolation (distance effect). Con-
currently, extinction rates may also be determined by island isolation (rescue ef-
fect; Brown and Kodric-Brown 1977) and immigration rates by island size (target
effect; Lomolino 1990). Since three of these four effects result in variable coloni-
sation rates, only the area effect would remain operational if species colonisation
events are hampered. Given the pronounced site fidelity and limited dispersal
ability of anuran species (Smith and Green 2005), coupled with the hostility of
an often vast water matrix, we believe that island colonisation rates at Balbina
are at best minimal (Jones et al. 2016, Palmeirim et al. 2017). Not surprisingly,
the number of anuran species on forest islands within a hydroelectric reservoir
in eastern Brazilian Amazonia was positively related to island size, regardless of
island isolation (Lima et al. 2015). In other words, anurans are likely stranded on
islands and local extinctions, if any, are rarely if ever rescued by new immigrants.
At present, however, such assertion lacks empirical evidence, which could be de-
rived from long-term studies aided by passive acoustic monitoring (Deichmann
et al. 2018).

In fragmented landscapes, species composition in habitat patches is com-
prised of relict species (that were present before fragmentation), matrix-derived
species and inter-patch dispersers (Watson 2002). The relative contribution of
these groups depends on the type of matrix surrounding habitat patches. On the
one hand, species richness in forest fragments embedded in terrestrial matrices
is the result of (1) loss of relict species (Stouffer and Bierregaard 1995), (2) influx
of matrix-derived species (Lövei et al. 2006) and (3) colonisation of inter-patch
disperses following matrix regeneration (Stouffer et al. 2009). On the other hand,
on land-bridge forest islands induced by hydroelectric dams, there are no matrix-
derived species and the colonisation of inter-patch disperses is largely prohibitive
in the case of anurans. Therefore, we can only surmise that anuran assemblages
inhabiting our forest islands largely consist of a subset of relict species whose fate
is determined by the area effect, with larger islands generally experiencing both
lower and slower extinction rates than smaller islands (Jones et al. 2016).
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5.5.2 The form of island species-area relationships

Regardless of the underlying mechanisms, larger areas tend to harbour more
species. Combining data from two extensive syntheses on island species-area
relationships (Triantis et al. 2012, Matthews et al. 2016), there were 584 out of 808
cases of significant ISARs (log-log model) and highly variable fits (r2) and slopes
(z) among those relationships that were significant. Many factors could account
for such a variation in significance and model parameters (fit and slope). For
example, the patch:matrix contrast (Kennedy et al. 2010), disturbance severity
(Stouffer and Bierregaard 1995), relaxation time (Robinson 1999) and accessibil-
ity for hunters (Canale et al. 2012) can all affect the number of species in habitat
patches, thereby modulating ISARs. Furthermore, the influx of matrix-derived
species into habitat patches may either attenuate (Matthews et al. 2014) or even
reverse (Lövei et al. 2006) the estimated impact of patch size on species richness.
However, at the Balbina forest archipelago, all of these confounding factors were
controlled for (Table 5.1), allowing us to depict unbiased patterns of ISARs for
anurans in an Amazonian fragmented landscape.

The form of ISARs is also affected by issues of sampling design. At Bal-
bina, both the model fit and the regression slope of the ISAR were reduced as the
largest islands were progressively removed from the analysis (Fig. 5.3), thereby
jeopardising inferences on area-driven anuran species losses. Thus, the truncated
size range of habitat patches surveyed in any give study is likely the main reason
for the lack of a significant ISAR for anurans in Neotropical forests in Brazil (n
= 23 fragments, range = 1.71-27.41 ha; Lion et al. 2014) and Bolivia (n = 24 frag-
ments, range = 0.6-8.5 ha; Watling and Donnelly 2008). Accordingly, species rich-
ness below a certain threshold can vary independently of area because smaller
patches are more susceptible to environmental stochasticity (i.e. the small island
effect; Lomolino and Weiser 2001). Although not necessarily ubiquitous (Wang
et al. 2016), the small island effect was detected for anurans in an anthropogenic
forest archipelago in China under a threshold of c. 40 ha (n = 23 islands, range
= 0.59-1,289 ha; (Wang et al. 2018). Likewise, the ISAR for anurans at Balbina
was either non-significant or yielded a very weak inferential power (r2 6 0.09)
considering only islands smaller than 100 ha.

Two studies in the Brazilian Atlantic Forest illustrate the role of sampling
design in detecting ISARs for anurans. In the first (Almeida-Gomes and Rocha
2014), the authors surveyed 12 patches ranging from 4.7 to 272 ha and failed to
detect a significant ISAR. In the second (Almeida-Gomes et al. 2016), they sur-
veyed 21 patches ranging from 1.9 to 619 ha and subsequently detected a signifi-
cant ISAR. These authors then concluded that failures to detect ISARs should be
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attributed to an insufficient number of patches and range in patch size. However,
our results suggest that the number of patches is not as critical as the range in
patch size (Fig. 5.4). At Balbina, 10 islands covering the full range in island size
(0.45-1,699 ha) yielded similar ISARs (in terms of model fit and regression slope)
compared to 15, 20 or 25 islands. Conversely, the vast majority of ISARs were
not significant regardless of the number of islands (5 to 25) if only a short range
in island size (< 100 ha) had been sampled. Such a pattern was corroborated in
our global review, which revealed that all datasets yielding a significant ISAR
spanned a meaningful range in patch size larger than 300 ha, whereas all but one
dataset covering a shorter range (< 300 ha) yielded non-significant ISARs (Fig.
5.6). Given the realities of field studies, the sampling tradeoff between number
of sample replicates and extent of the gradient covered should therefore favour
the latter to derive more reliable inferential relationships (Eigenbrod et al. 2011,
Kreyling et al. 2018). This is in fact good news for field investigators who often
face severely limited human, time and/or financial resources and can only survey
a small number of sites.

5.6 Conclusions

We conclude that (1) habitat area per se plays a major role in explaining anuran
species richness on Amazonian forest islands within one of the largest anthro-
pogenic archipelagos on Earth; (2) the inferential power of island species-area re-
lationships is clearly weakened by sub-optimal sampling designs; and (3) at least
10 habitat patches spanning three orders of magnitude in size should be surveyed
to yield reliable estimates of area-driven species losses in patchy systems.
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35. Lövei, G. L. et al. 2006. The influence of matrix and edges on species rich-
ness patterns of ground beetles (Coleoptera: Carabidae) in habitat islands.
- Glob. Ecol. Biogeogr. 15: 283–289.

36. MacArthur, R. H. and Wilson, E. O. 1963. An equilibrium theory of insular
zoogeography. - Evolution (N. Y). 17: 373–387.

37. MacArthur, R. H. and Wilson, E. O. 1967. The Theory of Island Biogeogra-
phy. - Princeton University Press.

38. Marques, T. A. et al. 2013. Estimating animal population density using
passive acoustics. - Biol. Rev. 88: 287–309.

39. Matthews, T. J. et al. 2014. Habitat fragmentation and the species-area re-
lationship: a focus on total species richness obscures the impact of habitat
loss on habitat specialists. - Divers. Distrib. 20: 1136–1146.



Chapter 5 235

40. Matthews, T. J. et al. 2016. On the form of species-area relationships in
habitat islands and true islands. - Glob. Ecol. Biogeogr. 25: 847–858.

41. McGarigal, K. and Cushman, S. A. 2002. Comparative evaluation of exper-
imental approaches to the study of habitat fragmentation effects. - Ecol.
Appl. 12: 335–345.

42. Palmeirim, A. F. et al. 2017. Non-random lizard extinctions in land-bridge
Amazonian forest islands after 28 years of isolation. - Biol. Conserv. 214:
55–65.

43. QGIS Development Team 2016. QGIS Geographic Information System.
Open Source Geospatial Foundation Project. Version 2.14.22. URL
¡http://qgis.osgeo.org¿

44. R Core Team 2018. R: A language and environment for statistical comput-
ing. Version 3.5.1. R Foundation for Statistical Computing, Vienna, Austria.
URL ¡https://www.R-project.org¿

45. Ribeiro, J. W. et al. 2017. Passive acoustic monitoring as a complementary
strategy to assess biodiversity in the Brazilian Amazonia. - Biodivers. Con-
serv. 26: 2999–3002.

46. Robinson, W. D. 1999. Long-term changes in the avifauna of Barro Colorado
Island, Panama, a tropical forest isolate. - Conserv. Biol. 13: 85–97.

47. Rosenzweig, M. L. 1995. Species Diversity in Space and Time. - Cambridge
University Press.

48. Russildi, G. et al. 2016. Species- and community-level responses to habitat
spatial changes in fragmented rainforests: assessing compensatory dynam-
ics in amphibians and reptiles. - Biodivers. Conserv. 25: 375–392.

49. Scheiner, S. M. 2003. Six types of species-area curves. - Glob. Ecol. Biogeogr.
12: 441–447.

50. Schietti, J. et al. 2014. Vertical distance from drainage drives floristic compo-
sition changes in an Amazonian rainforest. - Plant Ecol. Divers. 7: 241–253.

51. Smith, M. A. and Green, D. M. 2005. Dispersal and the metapopulation
paradigm in amphibian ecology and conservation: are all amphibian popu-
lations metapopulations? - Ecography. 28: 110–128.

52. Stouffer, P. C. and Bierregaard, R. O. 1995. Use of Amazonian forest frag-
ments by understory insectivorous birds. - Ecology 76: 2429–2445.



236 Chapter 5

53. Stouffer, P. C. et al. 2009. Twenty years of understorey bird extinctions
from Amazonian rain forest fragments: consistent trends and landscape-
mediated dynamics. - Divers. Distrib. 15: 88–97.

54. Tjørve, E. 2003. Shapes and functions of species-area curves: a review of
possible models. - J. Biogeogr. 30: 827–835.

55. Tjørve, E. et al. 2018. Great theories of species diversity in space and why
they were forgotten: The beginnings of a spatial ecology and the Nordic
early 20th-century botanists. - J. Biogeogr. 45: 530–540.

56. Triantis, K. A. et al. 2012. The island species-area relationship: biology and
statistics. - J. Biogeogr. 39: 215–231.

57. Wang, Y. et al. 2016. On empty islands and the small-island effect. - Glob.
Ecol. Biogeogr. 25: 1333–1345.

58. Wang, Y. et al. 2018. The small-island effect in amphibian assemblages on
subtropical land-bridge islands of an inundated lake. - Curr. Zool. 64:
303–309.

59. Watling, J. I. and Donnelly, M. A. 2008. Species richness and composition of
amphibians and reptiles in a fragmented forest landscape in northeastern
Bolivia. - Basic Appl. Ecol. 9: 523–532.

60. Watson, D. M. 2002. A conceptual framework for studying species compo-
sition in fragments, islands and other patchy ecosystems. - J. Biogeogr. 29:
823–834.

61. Wilson, E. O. 1961. The nature of the taxon cycle in the Melanesian ant
fauna. - Am. Nat. 95: 169–193.

62. Yu, M. et al. 2012. Richness and composition of plants and birds on
land-bridge islands: effects of island attributes and differential responses
of species groups. - J. Biogeogr. 39: 1124–1133.

63. Zimmerman, B. L. and Bierregaard, R. O. 1986. Relevance of the equilibrium
theory of island biogeography and species-area relations to conservation
with a case from Amazonia. - J. Biogeogr. 13: 133.



Chapter 5 237

5.8 Supporting Information

This supporting information contains:

• Table S5.1

• Table S5.2

• Figure S5.1

• Appendix S5.1

• R code

Click here to download the R code in .Rmd file format

https://ndownloader.figshare.com/files/15655124


Table S5.1: Description of the 78 sites surveyed at the Balbina Hydroelectric 

Reservoir landscape, including 74 forest islands and four continuous forest (CF) 

sites. ‘Sampling effort’ corresponds to the number of 1-min recordings.  
 

Site code Island size 

(ha) 

Number of 

recorders 

Sampling 

effort 

Observed 

richness 

Rarefied 

richness 

Sampling 

completeness 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

0.45 

0.45 

0.63 

0.63 

0.63 

0.72 

0.91 

0.91 

1.27 

1.36 

1.45 

1.54 

1.81 

1.99 

2.08 

2.08 

2.08 

2.26 

2.63 

3.08 

3.53 

3.53 

3.62 

4.17 

4.98 

5.43 

5.61 

6.79 

6.88 

7.43 

8.15 

8.15 

8.42 

8.78 

9.42 

11.96 

13.04 

13.22 

13.31 

15.67 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

62 

62 

62 

59 

62 

62 

62 

62 

62 

62 

62 

62 

62 

62 

62 

62 

62 

62 

62 

62 

62 

62 

62 

62 

62 

62 

62 

62 

62 

62 

62 

62 

62 

62 

62 

62 

62 

60 

62 

62 

5 

1 

2 

4 

0 

5 

3 

9 

1 

2 

2 

7 

3 

3 

2 

4 

9 

1 

7 

3 

1 

3 

3 

4 

3 

2 

4 

1 

3 

5 

7 

7 

5 

3 

6 

5 

7 

3 

9 

2 

5.000 

1.000 

2.000 

4.000 

NA 

5.000 

3.000 

9.000 

1.000 

2.000 

2.000 

7.000 

3.000 

3.000 

2.000 

4.000 

9.000 

1.000 

7.000 

3.000 

1.000 

3.000 

3.000 

4.000 

3.000 

2.000 

4.000 

1.000 

3.000 

5.000 

7.000 

7.000 

5.000 

3.000 

6.000 

5.000 

7.000 

3.000 

9.000 

2.000 

1.000 

1.000 

1.000 

1.000 

NA 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

0.508 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

0.980 

1.000 

1.000 

1.000 

1.000 

1.000 

0.988 

1.000 

1.000 

1.000 
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Site code Island size 

(ha) 

Number of 

recorders 

Sampling 

effort 

Observed 

richness 

Rarefied 

richness 

Sampling 

completeness 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

16.94 

17.57 

17.66 

21.37 

22.01 

29.62 

32.78 

32.87 

35.60 

35.87 

38.94 

39.12 

39.67 

39.94 

50.08 

52.71 

53.35 

70.55 

77.80 

91.30 

108.76 

171.73 

198.52 

217.63 

230.70 

232.49 

336.02 

466.60 

499.91 

638.66 

668.03 

941.71 

1350.56 

1698.84 

CF 

CF 

CF 

CF 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

3 

3 

3 

3 

3 

3 

3 

3 

3 

4 

5 

7 

4 

4 

4 

10 

5 

4 

4 

62 

62 

62 

62 

62 

124 

124 

124 

93 

124 

124 

124 

124 

124 

124 

124 

118 

124 

124 

186 

186 

186 

132 

186 

186 

186 

186 

186 

248 

310 

434 

248 

248 

248 

614 

310 

248 

248 

10 

8 

3 

3 

1 

8 

4 

1 

5 

5 

3 

4 

7 

9 

7 

4 

5 

8 

10 

8 

11 

12 

8 

13 

9 

11 

9 

12 

13 

18 

18 

16 

21 

13 

20 

14 

13 

16 

10.000 

8.000 

3.000 

3.000 

1.000 

7.253 

3.251 

0.752 

4.996 

4.924 

3.000 

3.927 

5.756 

8.250 

6.249 

3.000 

3.827 

7.490 

9.456 

7.999 

10.483 

10.401 

7.011 

10.618 

8.421 

10.432 

8.382 

11.034 

11.069 

15.095 

13.491 

11.685 

16.494 

10.998 

13.355 

12.219 

11.419 

12.676 

1.000 

1.000 

1.000 

1.000 

1.000 

0.972 

0.928 

0.504 

0.999 

0.991 

1.000 

0.992 

0.948 

0.988 

0.986 

0.982 

0.966 

0.984 

0.993 

1.000 

0.987 

0.986 

0.936 

0.977 

0.993 

0.989 

0.990 

0.986 

0.970 

0.975 

0.976 

0.958 

0.969 

0.969 

0.937 

0.975 

0.969 

0.962 
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Table S5.2: Anuran species recorded across 78 surveyed sites at the Balbina 

Hydroelectric Reservoir landscape, including 74 forest islands and four 

continuous forest sites. ‘Sites’ corresponds to the number of sites at which species 

were captured. Species reproductive modes were assigned according to Haddad 

and Prado (2005). Taxonomy follows Frost et al. (2019). 
 

Family Species Sites Reproductive 

mode 

Craugastoridae 

 

 

Bufonidae 

 

 

 

Ceratophryidae 

Aromobatidae 

Dendrobatidae 

 

Hylidae 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Leptodactylidae 

 

 

 

 

 

Microhylidae 

 

 

Phyllomedusidae 

 

Pristimantis fenestratus 

Pristimantis ockendeni 

Pristimantis zimmermanae 

Atelopus hoogmoedi 

Rhaebo guttatus 

Rhinella marina 

Rhinella merianae 

Ceratophrys cornuta 

Anomaloglossus stepheni 

Ameerega hahneli 

Ameerega trivittata 

Boana boans 

Boana calcarata 

Boana cinerascens 

Boana lanciformis 

Boana fasciata 

Dendropsophus brevifrons 

Dendropsophus minusculus 

Dendropsophus parviceps 

Osteocephalus buckleyi 

Osteocephalus oophagus 

Osteocephalus taurinus 

Trachycephalus coriaceus 

Trachycephalus resinifictrix 

Scinax garbei 

Scinax ruber 

Adenomera andreae 

Adenomera hylaedactyla 

Leptodactylus knudseni 

Leptodactylus longirostris 

Leptodactylus pentadactylus 

Leptodactylus stenodema 

Chiasmocleis shudikarensis 

Elachistocleis bicolor 

Synapturanus mirandaribeiroi 

Phyllomedusa tarsius 

Phyllomedusa vaillantii 

10 

18 

46 

15 

1 

2 

2 

6 

28 

12 

54 

34 

19 

24 

5 

3 

39 

45 

8 

1 

12 

6 

4 

2 

1 

4 

35 

12 

7 

1 

14 

5 

9 

21 

8 

1 

2 

23 

23 

23 

1 

1 

1 

1 

1 

21 

20 

20 

4 

1 

1 

1 

1 

24 

1 

1 

2 

6 

1 

1 

26 

1 

1 

32 

32 

13 

13 

13 

13 

1 

1 

23 

24 

24 
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Figure S5.1: Relationship between the number of reproductive modes repre-
sented by at least one anuran species and island size across 74 forest islands (grey
circles) surveyed at the Balbina Hydroelectric Reservoir landscape. Continuous
forest sites (CF, black circles) were not included in the linear fit.
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10. Herrera, J. B. 2011. Efeitos da heterogeneidade do ambiente, área e variáveis
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Atlântica. MSc Thesis. Universidade Federal da Bahia, Brazil.

11. Hillers, A. et al. 2008. Effects of forest fragmentation and habitat degrada-
tion on west African leaf-litter frogs. - Conserv. Biol. 22: 762–772.
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Supporting Information
Sampling design may obscure species-area relationships in landscape-scale field studies

# Clear workspace and disable scientific notation
remove(list = ls()); options(scipen = 999)

Packages

# Load required packages
library(vegan)
library(dplyr)
library(ggplot2)
library(gridExtra)
library(iNEXT)

Dataset

Data are available from the KNB repository and should be cited as:

Anderson Saldanha Bueno. 2019. Balbina Frog Data, 2015. Knowledge Network for Biocomplexity.
urn:uuid:fb6c7193-eca5-41ba-89dd-146c31c9dbe0.

Import data

# Fieldwork data derived from autonomous recordings units
rawdata = read.csv("https://ndownloader.figshare.com/files/15158558")
# Remove "Malfunctioning" recordings
rawdata = subset(rawdata, rawdata$species != "Malfunctioning")
# Remove the level "Malfunctioning" from "rawdata$species"
rawdata$species = droplevels(rawdata$species)
# Add a column indicating that each record corresponds to one detection
rawdata$occurrence = 1

# Site area (hectares)
area = read.csv("https://ndownloader.figshare.com/files/15158564")
rownames(area) = area$site
area = area[-1]

# Reproductive modes
traits = read.csv("https://ndownloader.figshare.com/files/15158561")
# Add a column with the reproductive of each species
rawdata$rep.mod = traits$reproductive_mode[match(rawdata$species, traits$species)]

# Site-by-reproductive mode matrix
rep.mod = tapply(rawdata$occurrence, list(rawdata$site, rawdata$rep.mod), sum)
# Species non detected in a given site are real zeros
rep.mod[is.na(rep.mod)] = 0
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# Coordinates of the surveyed plots (n = 151)
coordinates = read.csv("https://ndownloader.figshare.com/files/15158555", row.names = 1)

Figure S1

# Data to draw the graph
rm.area = data.frame(rm = specnumber(rep.mod), area = area$area)

# Relationship between reproductive modes and island size
# Include only forest islands
summary(lm(rm ~ log10(area), data = rm.area[-c(47:50), ]))

##
## Call:
## lm(formula = rm ~ log10(area), data = rm.area[-c(47:50), ])
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8047 -1.1534 -0.0975 1.0647 4.8068
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.2618 0.3216 7.032 0.0000000009647 ***
## log10(area) 1.6765 0.2163 7.751 0.0000000000447 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.699 on 72 degrees of freedom
## Multiple R-squared: 0.4549, Adjusted R-squared: 0.4473
## F-statistic: 60.08 on 1 and 72 DF, p-value: 0.0000000000447
# Draw the graph of the relationship between reproductive modes and island size
graph.rm.isl =
ggplot(aes(x = area, y = rm),

# Include only forest islands
data = rm.area[order(rm.area$area, rm.area$rm), ][-c(75:78), ]) +

labs(x = "Island size (ha)",
y = "Number of reproductive modes") +

scale_x_log10(breaks = c(1, 10, 100, 1000),
labels = c("1", "10", "100", "1,000")) +

scale_y_continuous(limits = c(0, 11),
breaks = seq(0, 10, 2)) +

annotation_logticks(base = 10, sides = "b") +

geom_smooth(method = "lm", colour = "black") +
geom_point(shape = 21, size = 4, colour = "black", fill = "#999999") +

theme_classic(base_size = 20) +
theme(axis.title = element_text(colour = "black", face = "bold"),

axis.text = element_text(colour = "black"),
axis.ticks = element_line(size = 0.5, colour = "black"),
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axis.line = element_line(size = 0.5)) +

annotate("text", x = min(rm.area$area), y = max(rm.area$rm),
hjust = 0, vjust = 1, fontface = "bold", size = 6,
parse = T, label = as.character(expression(italic(r)^{2}*""[adj]*" = 0.45")))

# Draw the graph for continuous forest sites
graph.rm.cf =
ggplot() +

scale_x_discrete(labels = c("16988.4" = "CF")) +
scale_y_continuous(limits = c(min(rm.area$rm), max(rm.area$rm))) +

geom_point(shape = 21, size = 4, colour = "black", fill = "black",
aes(x = as.factor(area), y = rm),
# Include only continuous forest sites
data = subset(rm.area, rm.area$area > 2000)) +

theme_classic(base_size = 20) +
theme(axis.title.x = element_text(colour = "white", face = "bold"),

axis.text.x = element_text(colour = "black"),
axis.ticks.x = element_line(size = 0.5, colour = "black"),
axis.line.x = element_line(size = 0.5),
axis.title.y = element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank(),
axis.line.y = element_blank())

# Combine and save the graphs
ggsave(grid.arrange(graph.rm.isl, graph.rm.cf, ncol = 2, widths = c(5, 1)),

file = "figs1.pdf", width = 20, height = 20, units = "cm")

# Display the graphs
#grid.arrange(graph.rm.isl, graph.rm.cf, ncol = 2, widths = c(5, 1))

Frog data

# Create site-by-species matrix for 78 sites
frogs = as.data.frame(tapply(rawdata$occurrence,

list(rawdata$site, rawdata$species), sum))
# Species not detected in a site are real zeros
frogs[is.na(frogs)] = 0
# Remove the column "None"
frogs = frogs[-which(colnames(frogs) == "None")]

Number of species

The number of species recorded depends on the sampling effort – here measured as the number of 1-min recordings. Thus, the
number of species increases with sampling effort until the asymptote of the species accumulation curve is reached. Since the
sampling effort among sites was different (the larger the site area, the higher the number of recording stations and by extension of
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1-min recordings), we calculated the rarefied number of species (to standardise sampling effort) as well as sample coverage
to determine how close the observed number of species was to the “true”/estimated number of species.

We standardised the sampling effort to the most frequent number of 1-min recordings across surveyed sites (i.e. statistical mode;
n = 62). We did so because the iNEXT package (Hsieh, Ma, & Chao, 2016) calculates both the interpolated and extrapolated
number of species. Accordingly, we used the interpolated, observed and extrapolated number of species for sites with a
sampling effort above (n = 33), equal to (n = 43) and below (n = 2) the statistical mode, respectively (hereafter, we refer to them
all as the rarefied number of species). Still in the iNEXT package, we calculated sample coverage to assess whether surveyed
sites were satisfactorily inventoried with 62 1-min recordings.

# Calculate the sampling effort (i.e. number of 1-min recordings) of each site (n = 78)
effort = as.vector(colSums(table(unique(rawdata[c("recording", "site", "occurrence")]))))
sort(effort) # sort sampling effort from the lowest to the highest

## [1] 59 60 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62
## [18] 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62
## [35] 62 62 62 62 62 62 62 62 62 62 62 93 118 124 124 124 124
## [52] 124 124 124 124 124 124 124 124 132 186 186 186 186 186 186 186 186
## [69] 248 248 248 248 248 248 310 310 434 614
# Standardised sampling effort (i.e. statistical mode)
effort.mode = as.numeric(names(which(table(effort) == max(table(effort)))))
effort.mode

## [1] 62

Rarefied number of species

Data preparation

# Create recording-by-species matrices
frogs.recording = as.data.frame(tapply(rawdata$occurrence,

list(rawdata$recording, rawdata$species), sum))
# Species not detected in a recording are real zeros
frogs.recording[is.na(frogs.recording)] = 0
# Remove the column "None"
frogs.recording = frogs.recording[-which(colnames(frogs.recording) == "None")]

# Create a recording-by-species matrix per site (n = 78)
# This format (matrices stored in a list object) is required
# to calculted the rarefied number of species per site using incidence
# (i.e. presence-absence) data
inext.site = split(frogs.recording, rawdata$site[match(rownames(frogs.recording),

rawdata$recording)])

# Transpose the data frames stored in the list objec
# This step creates species-by-sampling-unit matrices (i.e. species-by-recording matrices)
inext.site = lapply(inext.site, function(z) {t(z)})

# Remove sites where no species was recorded
inext.site = inext.site[-which(lapply(inext.site, sum) == 0)] # 1 site removed (#74)
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Calculation of the rarefied number of species

# Rarefied number of species per site standardised to 62 recordings
richness.site = matrix(nrow = 77, ncol = 5)
for (i in 1:77){

# Remove site "Toquinho" (#74) where no species was recorded
richness.site[i, 1] = rownames(frogs)[-74][i]
richness.site[i, 2:5] = as.numeric(iNEXT(inext.site[[i]], q = 0,

datatype = "incidence_raw", # iNEXT::iNEXT()
endpoint = effort.mode, knot = effort.mode,
nboot = 1000)$iNextEst[effort.mode, 4:7])

}

# Add site "Toquinho" (#74)
richness.site = rbind(richness.site, cbind("Toquinho", "0", "0", "0", "NA"))

# Order table by site names
richness.site = rbind(richness.site[1:73, ],

cbind("Toquinho", "0", "0", "0", "NA"),
richness.site[74:77, ])

# Check if the site "Toquinho" was placed back in the right row (#74)
richness.site[74, 1] == "Toquinho"

# Finish the data frame
# Name rows according to site names
rownames(richness.site) = richness.site[, 1]
# Remove the column "site"
richness.site = richness.site[, -1]
# Rename columns
colnames(richness.site) = c("richness", "lowerCI", "upperCI", "coverage")
# Convert the matrix "richness.site" into a data frame
richness.site = as.data.frame(richness.site)

# Convert factor data into numeric data
richness.site$richness = as.numeric(as.character(richness.site$richness))
# Convert factor data into numeric data
richness.site$lowerCI = as.numeric(as.character(richness.site$lowerCI))
# Convert factor data into numeric data
richness.site$upperCI = as.numeric(as.character(richness.site$upperCI))
# Convert factor data into numeric data
richness.site$coverage = as.numeric(as.character(richness.site$coverage))

Correlation between observed number of species and sampling effort

# Pearson's product-moment correlation between
# observed number of species and sampling effort
cor.test(specnumber(frogs), effort, method = "pearson")

##
## Pearson's product-moment correlation
##
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## data: specnumber(frogs) and effort
## t = 12.452, df = 76, p-value < 0.00000000000000022
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.7296882 0.8811067
## sample estimates:
## cor
## 0.819199

Figure 2a

# Data to draw the graph
obs.effort = data.frame(obs = specnumber(frogs), effort = effort)

# Draw the graph of the correlation between
# observed number of species and sampling effort
graph.obs.effort =
ggplot(aes(x = effort, y = obs),

data = obs.effort[order(obs.effort$effort, obs.effort$obs), ]) +

labs(x = "Sampling effort",
y = "Observed number of species") +

scale_x_continuous(breaks = c(62, 124, 186, 248, 310, 434, 614)) +

geom_point(shape = 21, size = 4, colour = "black", fill = "#999999") +

theme_bw(base_size = 20) +
theme(panel.grid = element_blank(),

panel.border = element_rect(colour = "black"),
axis.title = element_text(colour = "black", face = "bold"),
axis.text = element_text(colour = "black"),
axis.ticks = element_line(colour = "black", size = 0.5)) +

annotate("text", x = min(obs.effort$effort), y = max(obs.effort$obs),
hjust = 0, vjust = 1, fontface = "bold", size = 8,
parse = T, label = as.character(expression(italic(r)*" = 0.82"))) +

annotate("text", x = Inf, y = -Inf,
hjust = 1.3, vjust = -1, fontface = "bold", size = 10, label = "(a)")

#graph.obs.effort

Correlation between observed and rarefied number of species

# Pearson's product-moment correlation between observed and rarefied number of species
cor.test(specnumber(frogs), richness.site$richness, method = "pearson")

##
## Pearson's product-moment correlation
##
## data: specnumber(frogs) and richness.site$richness
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## t = 47.348, df = 76, p-value < 0.00000000000000022
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.9741280 0.9894553
## sample estimates:
## cor
## 0.9834688

Figure 2b

# Data to draw the graph
# The rarefied number of speices for the site "Toquinho" was assigned to 0 (zero)
obs.raref = data.frame(obs = specnumber(frogs), raref = richness.site$richness)

# Draw the graph of the correlation between observed and rarefied number of species
graph.obs.raref =
ggplot(aes(x = raref, y = obs),

data = obs.raref[order(obs.raref$raref, obs.raref$obs), ]) +

labs(x = "Rarefied number of species",
y = "Observed number of species") +

geom_point(shape = 21, size = 4, colour = "black", fill = "#999999") +
geom_point(shape = 21, size = 4, colour = "black", fill = "white",

aes(x = 0, y = 0)) +

theme_bw(base_size = 20) +
theme(panel.grid = element_blank(),

panel.border = element_rect(colour = "black"),
axis.title = element_text(colour = "black", face = "bold"),
axis.text = element_text(colour = "black"),
axis.ticks = element_line(colour = "black", size = 0.5)) +

annotate("text", x = min(obs.raref$raref), y = max(obs.raref$obs),
hjust = 0, vjust = 1, fontface = "bold", size = 8,
parse = T, label = as.character(expression(italic(r)*" = 0.98"))) +

annotate("text", x = Inf, y = -Inf,
hjust = 1.3, vjust = -1, fontface = "bold", size = 10, label = "(b)")

#graph.obs.raref

Sample coverage

Figure 2c

# Data to draw the graph
coverage = data.frame(site = NA, coverage = richness.site[4])
# Order the data frame according to site size
coverage = coverage[order(area$area), ]
# Add site number
coverage$site = 1:nrow(coverage)
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# Draw the graph showing sample coverage per site
graph.coverage =
ggplot(aes(x = site, y = coverage),

data = coverage) +

labs(x = "Site code",
y = "Sample coverage") + # sample coverage in 62 1-min recordings

scale_x_continuous(breaks = c(1, 10, 20, 30, 40, 50, 60, 70, 78)) +
scale_y_continuous(limits = c(0.5, 1)) +

geom_point(shape = 21, size = 4, colour = "black", fill = "#999999") +
geom_point(shape = 21, size = 4, colour = "black", fill = "white",

aes(x = 5, y = 0.5)) +

theme_bw(base_size = 20) +
theme(panel.grid = element_blank(),

panel.border = element_rect(colour = "black"),
axis.title = element_text(colour = "black", face = "bold"),
axis.text = element_text(colour = "black"),
axis.ticks = element_line(colour = "black", size = 0.5)) +

annotate("text", x = Inf, y = -Inf,
hjust = 1.3, vjust = -1, fontface = "bold", size = 10, label = "(c)")

#graph.coverage

Combine graphs

Figure 2

# Combine and save the graphs
ggsave(grid.arrange(graph.obs.effort, graph.obs.raref, graph.coverage, ncol = 3),

file = "fig2.pdf", width = 17*3, height = 17, units = "cm")

Sample coverage was above 90% for 75 out of 78 sites, indicating that our sampling effort was overall satisfactory.

Table S1

Site attributes

tables1 = data.frame(Island.size = area$area, # forest area in hectares
Recorders = area$recorders, # number of recording stations
Effort = effort, # number of 1-min recordings
S.observed = specnumber(frogs),
S.rarefied = richness.site$richness,
# lower bound of the 95% confidence intervals
S.rarefied.lowerCI = richness.site$lowerCI,
# upper bound of the 95% confidence intervals
S.rarefied.upperCI = richness.site$upperCI,
Coverage = richness.site$coverage)
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# Order table by site area
tables1 = tables1[order(tables1$Island.size), ]
# Number surveyed sites (the numbers match those of Fig. 2c)
tables1$Site.code = 1:nrow(tables1)
# Move "site.code" to the first column
tables1 = tables1[, c(9, 1:8)]
rownames(tables1) = NULL

tables1$Island.size[tables1$Island.size == 16988.40] = "Continuous forest"

#tables1

Table S2

List of frog species recorded across all 151 plots in 78 surveyed sites and the number of sites occupied per species. Taxonomy
follows Frost (2018).

• Because of taxonomic revision, Boana fasciata is no longer considered present in Brazil according to Frost (2018). However,
the species present in Brazil (i.e. Boana aff. fasciata) has not yet been assign to a new taxon. Therefore, we held the
name Boana fasciata.

• Leptodactylus knudseni and L. pentadactylus are hardly distinguished through vocalisation by both hearing and inspecting
sonograms. In the fieldwork data (available online at KNB repository), we assigned Leptodactylus knudseni pentadactylus
whenever our best guess was Leptodactylus knudseni, and Leptodactylus pentadactylus knudseni whenever our best
guess was L. pentadactylus. Thus, we acknowledge that one species maybe the other in some instances.

tables2 = names(frogs)

# Rename two species
tables2[tables2 == "Leptodactylus knudseni pentadactylus"] = "Leptodactylus knudseni"
tables2[tables2 == "Leptodactylus pentadactylus knudseni"] = "Leptodactylus pentadactylus"

# Split genus and specific epithet into separete columns
tables2 = data.frame(do.call(rbind, strsplit(as.character(tables2), " ", fixed = TRUE)))

# Species family
families = c("Leptodactylidae", "Leptodactylidae", "Dendrobatidae", "Dendrobatidae",

"Aromobatidae", "Bufonidae", "Hylidae", "Hylidae", "Hylidae",
"Hylidae", "Hylidae", "Ceratophryidae", "Microhylidae", "Hylidae",
"Hylidae", "Hylidae", "Microhylidae", "Leptodactylidae", "Leptodactylidae",
"Leptodactylidae", "Leptodactylidae", "Hylidae", "Hylidae", "Hylidae",
"Phyllomedusidae", "Phyllomedusidae", "Craugastoridae", "Craugastoridae",
"Craugastoridae", "Bufonidae", "Bufonidae", "Bufonidae", "Hylidae",
"Hylidae", "Microhylidae", "Hylidae", "Hylidae")

# Taxonomic sequence
id = c(860, 867, 333, 337, 326, 153, 401, 407, 409, 436, 428, 251, 971,

498, 526, 534, 980, 895, 901, 911, 923, 572, 578, 581, 1077, 1079,
89, 99, 114, 193, 221, 223, 695, 717, 999, 601, 610)

# Species reproductive modes
spp.rep.mod = c(32, 32, 20, 20, 21, 1, 4, 1, 1, 1, 1, 1, 1, 24, 1, 1, 1,

13, 13, 13, 13, 2, 6, 1, 24, 24, 23, 23, 23, 1, 1, 1, 1, 1, 23, 1, 26)
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# Species list and number of sites where each species was recorded
tables2 = data.frame(id = id,

Family = families,
Species = as.character(paste(tables2$X1, tables2$X2, sep = " ")),
Sites = cbind(colSums(decostand(frogs, method = "pa"))),
Reproductive.mode = spp.rep.mod)

tables2 = tables2[order(tables2$id), ] # order table according to the taxonomic sequence
tables2 = tables2[-1] # remove column "id"
rownames(tables2) = 1:nrow(tables2) # number the rows sequentially

#tables2

Species-area relationships (ISAR)

# Data to create ISAR models and draw the graph
sar = data.frame(richness = richness.site$richness, area)
# Order table by site area followed by species richness
sar = sar[order(sar$area, sar$richness), ]

# Create a column with site size category
sar$class[sar$area < 4] = "very_small" # up to 4.00 ha = very small
sar$class[sar$area > 4 & sar$area <= 20 ] = "small" # 4.01 - 20.00 ha = small
sar$class[sar$area > 20 & sar$area <= 100 ] = "medium" # 20.01 - 100.00 ha = medium
sar$class[sar$area > 100 & sar$area <= 400 ] = "large" # 100.01 - 400.00 = large
sar$class[sar$area > 400 & sar$area < 2000 ] = "very_large" # > 400.01 = very large
sar$class[sar$area > 2000 ] = "continuous" # continuous forest sites

# Create a column with an unique number per site
sar$id = 1:nrow(sar)

ISAR – semi-log models

# ISAR models
sar.74 = lm(richness ~ log10(area), data = subset(sar, sar$area < 2000))
sar.67 = lm(richness ~ log10(area), data = subset(sar, sar$area <= 400))
sar.60 = lm(richness ~ log10(area), data = subset(sar, sar$area <= 100))
sar.43 = lm(richness ~ log10(area), data = subset(sar, sar$area <= 20))
sar.23 = lm(richness ~ log10(area), data = subset(sar, sar$area < 4))

# ISAR results
sar.results = rbind(
c(sar.74$coefficients[2], confint(sar.74)[2],
confint(sar.74)[4], summary(sar.74)$adj.r.squared),

c(sar.67$coefficients[2], confint(sar.67)[2],
confint(sar.67)[4], summary(sar.67)$adj.r.squared),

c(sar.60$coefficients[2], confint(sar.60)[2],
confint(sar.60)[4], summary(sar.60)$adj.r.squared),

c(sar.43$coefficients[2], confint(sar.43)[2],
confint(sar.43)[4], summary(sar.43)$adj.r.squared),
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c(sar.23$coefficients[2], confint(sar.23)[2],
confint(sar.23)[4], summary(sar.23)$adj.r.squared))

# Convert the matrix "sar.results" in to a data frame
sar.results = as.data.frame(sar.results)
# Name the columns
colnames(sar.results) = c("slope", "lowerCI", "upperCI", "r2")

sar.results

## slope lowerCI upperCI r2
## 1 2.8364991 2.17011698 3.502881 0.49305716
## 2 2.0359273 1.23228702 2.839568 0.27151241
## 3 1.3001936 0.31134217 2.289045 0.09129034
## 4 1.6885078 0.09017261 3.286843 0.07797120
## 5 0.2327528 -3.67518220 4.140688 -0.04685428
# Draw the graph for forest islands
graph.sar =
ggplot() +

labs(x = "Island size (ha)",
y = "Rarefied number of species") +

scale_x_log10(limits = c(0.4, NA),
breaks = c(1, 10, 100, 1000),
labels = c("1", "10", "100", "1,000")) +

scale_y_continuous(limits = c(min(sar$richness), max(sar$richness))) +
annotation_logticks(base = 10, sides = "b") +

geom_vline(xintercept = 4, alpha = 0.2, linetype = "dashed") +
geom_vline(xintercept = 20, alpha = 0.2, linetype = "dashed") +
geom_vline(xintercept = 100, alpha = 0.2, linetype = "dashed") +
geom_vline(xintercept = 400, alpha = 0.2, linetype = "dashed") +

geom_smooth(size = 1, method = "lm", colour = "#4daf4a", se = FALSE,
aes(x = area, y = richness),
data = subset(sar, sar$area < 2000)) +

geom_smooth(size = 1, method = "lm", colour = "dodgerblue", se = FALSE,
aes(x = area, y = richness),
data = subset(sar, sar$area <= 400)) +

geom_smooth(size = 1, method = "lm", colour = "#984ea3", se = FALSE,
aes(x = area, y = richness),
data = subset(sar, sar$area <= 100)) +

geom_smooth(size = 1, method = "lm", colour = "#ff7f00", se = FALSE,
aes(x = area, y = richness),
data = subset(sar, sar$area <= 20)) +

geom_smooth(size = 1, method = "lm", colour = "#e41a1c", se = FALSE,
aes(x = area, y = richness),
data = subset(sar, sar$area < 4)) +

geom_point(shape = 21, size = 4, colour = "black", fill = "#e41a1c",
aes(x = area, y = richness),
data = subset(sar, sar$class == "very_small")) +
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geom_point(shape = 21, size = 4, colour = "black", fill = "#ff7f00",
aes(x = area, y = richness),
data = subset(sar, sar$class == "small")) +

geom_point(shape = 21, size = 4, colour = "black", fill = "#984ea3",
aes(x = area, y = richness),
data = subset(sar, sar$class == "medium")) +

geom_point(shape = 21, size = 4, colour = "black", fill = "dodgerblue",
aes(x = area, y = richness),
data = subset(sar, sar$class == "large")) +

geom_point(shape = 21, size = 4, colour = "black", fill = "#4daf4a",
aes(x = area, y = richness),
data = subset(sar, sar$class == "very_large")) +

theme_classic(base_size = 20) +
theme(axis.title = element_text(colour = "black", face = "bold"),

axis.text = element_text(colour = "black"),
axis.ticks = element_line(size = 0.5, colour = "black"),
axis.line = element_line(size = 0.5)) +

annotate("text", x = 0.4, y = max(sar$richness),
hjust = 0, vjust = 0, fontface = "bold", size = 4.5,
parse = T, label = as.character(expression(bolditalic(r)^{2}*""[adj]))) +

annotate("text", x = 0.4, y = max(sar$richness) - 1,
hjust = 0, vjust = 0, size = 4.5, colour = "#4daf4a",
label = round(sar.results$r2[1], 2)) +

annotate("text", x = 0.4, y = max(sar$richness) - 2,
hjust = 0, vjust = 0, size = 4.5, colour = "dodgerblue",
label = round(sar.results$r2[2], 2)) +

annotate("text", x = 0.4, y = max(sar$richness) - 3,
hjust = 0, vjust = 0, size = 4.5, colour = "#984ea3",
label = round(sar.results$r2[3], 2)) +

annotate("text", x = 0.4, y = max(sar$richness) - 4,
hjust = 0, vjust = 0, size = 4.5, colour = "#ff7f00",
label = round(sar.results$r2[4], 2)) +

annotate("text", x = 0.4, y = max(sar$richness) - 5,
hjust = 0, vjust = 0, size = 4.5, colour = "#e41a1c",
label = round(sar.results$r2[5], 2)) +

annotate("text", x = min(sar$area) + 0.9, y = max(sar$richness),
hjust = 0, vjust = 0, fontface = "bold", size = 4.5,
parse = T, label = as.character(expression(bold(Slope)^{}*""[]))) +

annotate("text", x = min(sar$area) + 0.9, y = max(sar$richness) - 1,
hjust = 0, vjust = 0, size = 4.5, colour = "#4daf4a",
label = round(sar.results$slope[1], 2)) +

annotate("text", x = min(sar$area) + 0.9, y = max(sar$richness) - 2,
hjust = 0, vjust = 0, size = 4.5, colour = "dodgerblue",
label = round(sar.results$slope[2], 2)) +

annotate("text", x = min(sar$area) + 0.9, y = max(sar$richness) - 3,
hjust = 0, vjust = 0, size = 4.5, colour = "#984ea3",
label = paste(round(sar.results$slope[3], 2), "0", sep = "")) +

annotate("text", x = min(sar$area) + 0.9, y = max(sar$richness) - 4,
hjust = 0, vjust = 0, size = 4.5, colour = "#ff7f00",
label = round(sar.results$slope[4], 2)) +
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annotate("text", x = min(sar$area) + 0.9, y = max(sar$richness) - 5,
hjust = 0, vjust = 0, size = 4.5, colour = "#e41a1c",
label = round(sar.results$slope[5], 2))

# Draw the graph for continuous forest sites
graph.cf =
ggplot() +

scale_x_discrete(labels = c("16988.4" = "CF")) +
scale_y_continuous(limits = c(min(sar$richness), max(sar$richness))) +

geom_point(shape = 21, size = 4, colour = "black", fill = "black",
aes(x = as.factor(area), y = richness),
data = subset(sar, sar$class == "continuous")) +

theme_classic(base_size = 20) +
theme(axis.title.x = element_text(colour = "white", face = "bold"),

axis.text.x = element_text(colour = "black"),
axis.ticks.x = element_line(size = 0.5, colour = "black"),
axis.line.x = element_line(size = 0.5),
axis.title.y = element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank(),
axis.line.y = element_blank())

Figure 3

# Combine and save the graphs
ggsave(grid.arrange(graph.sar, graph.cf, ncol = 2, widths = c(5, 1)),

file = "fig3.pdf", width = 20, height = 20, units = "cm")

# Display the graphs
#grid.arrange(graph.sar, graph.cf, ncol = 2, widths = c(5, 1))

Stratified random selection (full range)

# Exclude continuous forest sites as they will not be used to produce species-area curves
sar.isl = sar[-c(75:78), ]

##############################
############# 25 #############
##############################

# Generate and save 100 random numbers
# sample(1:.Machine$integer.max, 100) # This command generated the following values
seed.full.25 = c(983130207, 383464058, 2017550925, 324031272, 1355246268,

1466882829, 135869051, 2003688700, 670295328, 917206259, 1510315544,
464385672, 1143533469, 1377184171, 272370526, 68508786, 865409067,
572626257, 216861211, 1525481127, 1817804462, 1005149655, 844395643,
115244292, 1577066482, 1362947697, 142092602, 299929719, 1392054026,
1763778950, 1370019851, 1185576929, 606262959, 639263150, 1622779910,
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98441430, 1390362571, 670120600, 949563928, 186954742, 1574383261,
986984798, 667612850, 1258974800, 512876766, 1427057290, 1651618970,
219655950, 820545953, 387449755, 478465250, 853418124, 850681705, 273795464,
364350513, 490331164, 1124787011, 21106045, 721221771, 2100270184,
1759723902, 918280273, 886231669, 397522777, 696864331, 1907841509,
696786153, 2097466496, 833093004, 1191889090, 2048925380, 642337978,
2067077169, 971378045, 872419266, 424610369, 2001795318, 214703074,
77460136, 1199542182, 25340488, 709315005, 508980850, 364845407, 674333206,
748936353, 633356058, 120463230, 1498777378, 220758228, 883591132,
796722650, 1119550301, 1328061235, 475824336, 687856599, 1846199925,
233731714, 145666729, 470558232)

# Select 25 islands 100 times
sample.full.25 = matrix(nrow = 25, ncol = 100)

for (i in 1:100) {
set.seed(seed.full.25[i])
sample.full.25[, i] = data.frame(sar.isl %>% group_by(class) %>% sample_n(size = 5))$id

}

sample.full.25 = as.data.frame(sample.full.25) # convert the matrix into a data frame

# ISAR for each subset of 25 sites (n = 100)
slope.full.25 = r2.full.25 = p.full.25 = c()

for (i in 1:100) {
slope.full.25[i] = lm(richness ~ log10(area),

# Regression slope
data = sar.isl[sample.full.25[, i], ])$coefficients[2]

r2.full.25[i] = summary(lm(richness ~ log10(area),
# Model fit (r2)
data = sar.isl[sample.full.25[, i], ]))$adj.r.squared

p.full.25[i] = summary(lm(richness ~ log10(area),
# p-value
data = sar.isl[sample.full.25[, i], ]))$coefficients[8]

}

# Store results in a data frame
sar.full.25 = data.frame(slope = slope.full.25,

r2 = r2.full.25, p = p.full.25, n.isl = 25)

##############################
############# 20 #############
##############################

# Generate and save 100 random numbers
# sample(1:.Machine$integer.max, 100) # This command generated the following values
seed.full.20 = c(1528803611, 1565203937, 1378459504, 1974162804, 1485726889,

1722217419, 1083945832, 309442241, 2135586820, 904398258, 630425221,
1571984846, 1881240840, 93071931, 1709954502, 1003892181, 242471852,
374885596, 1471200150, 694386905, 1523256789, 1959936107, 102932741,
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1517589256, 2065922824, 1584981789, 815772258, 1290188023, 1479248051,
1003253307, 1738192827, 1249221035, 592567972, 4847476, 241637366,
856766312, 1250916602, 2097921953, 371046614, 1778211159, 732954012,
2025770722, 1314949296, 357269182, 1399243432, 1255779923, 4390814,
1154419746, 291235419, 1054835586, 980654265, 1066732189, 994545268,
1009814846, 1894401743, 244382523, 766067747, 253772578, 1454223960,
1007622885, 999021627, 1380324380, 1774930409, 214573555, 1492109997,
1015109461, 747951269, 467889625, 785792844, 1613356238, 1152406342,
780090909, 1582859756, 243340419, 955561798, 942675456, 1967585248,
2116004579, 710299037, 1773143935, 360606364, 622966034, 1925227232,
1285169228, 176215505, 572024367, 1009649767, 1424840105, 2053775408,
690646673, 528845198, 398899374, 1986016719, 1228361023, 83457039,
984747662, 578408909, 700617890, 1037532108, 776063694)

# Select 20 islands 100 times
sample.full.20 = matrix(nrow = 20, ncol = 100)

for (i in 1:100) {
set.seed(seed.full.20[i])
sample.full.20[, i] = data.frame(sar.isl %>% group_by(class) %>% sample_n(size = 4))$id

}

sample.full.20 = as.data.frame(sample.full.20) # convert the matrix into a data frame

# ISAR for each subset of 20 sites (n = 100)
slope.full.20 = r2.full.20 = p.full.20 = c()

for (i in 1:100) {
slope.full.20[i] = lm(richness ~ log10(area),

# Regression slope
data = sar.isl[sample.full.20[, i], ])$coefficients[2]

r2.full.20[i] = summary(lm(richness ~ log10(area),
# Model fit (r2)
data = sar.isl[sample.full.20[, i], ]))$adj.r.squared

p.full.20[i] = summary(lm(richness ~ log10(area),
# p-value
data = sar.isl[sample.full.20[, i], ]))$coefficients[8]

}

# Store results in a data frame
sar.full.20 = data.frame(slope = slope.full.20,

r2 = r2.full.20, p = p.full.20, n.isl = 20)

##############################
############# 15 #############
##############################

# Generate and save 100 random numbers
# sample(1:.Machine$integer.max, 100) # This command generated the following values
seed.full.15 = c(1032401521, 673699241, 1139750126, 142050191, 368795250,

704181501, 663119545, 1012593324, 1282130941, 510145834, 1521414786,
542345656, 99629308, 760242161, 156335171, 1443509149, 602490744, 1365239361,
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279730440, 182891111, 1948787162, 1446143351, 582764462, 211891494,
264602481, 720226263, 1152228529, 535122942, 501508315, 1423455275,
1938960957, 915067793, 1363188482, 516054131, 1718048524, 1558759182,
1074540444, 1961880847, 197450330, 1958961253, 1987503820, 1470673232,
872996307, 998258619, 24518139, 2035293581, 341314754, 659447199, 1505443998,
286454269, 804362813, 945106698, 2003549731, 1365988459, 1213480577,
1326706029, 550594977, 699060407, 1998830047, 56226447, 1142154175,
668901331, 2063475684, 643829539, 945402271, 2124625018, 1690827344,
948726833, 456447170, 866335614, 1032176747, 1794769238, 1958945420,
2079412266, 1827338298, 645632015, 905251202, 1532502124, 1411979196,
1184782471, 725942691, 1212558348, 1930511492, 921147012, 1364134716,
1878989525, 721655347, 10415448, 125429553, 1711864830, 1294311706,
484985294, 1710229680, 1927940813, 156218122, 543966632, 1557837957,
245772028, 1153814762, 739406449)

# Select 15 islands 100 times
sample.full.15 = matrix(nrow = 15, ncol = 100)

for (i in 1:100) {
set.seed(seed.full.15[i])
sample.full.15[, i] = data.frame(sar.isl %>% group_by(class) %>% sample_n(size = 3))$id

}

sample.full.15 = as.data.frame(sample.full.15) # convert the matrix into a data frame

# ISAR for each subset of 15 sites (n = 100)
slope.full.15 = r2.full.15 = p.full.15 = c()

for (i in 1:100) {
slope.full.15[i] = lm(richness ~ log10(area),

# Regression slope
data = sar.isl[sample.full.15[, i], ])$coefficients[2]

r2.full.15[i] = summary(lm(richness ~ log10(area),
# Model fit (r2)
data = sar.isl[sample.full.15[, i], ]))$adj.r.squared

p.full.15[i] = summary(lm(richness ~ log10(area),
# p-value
data = sar.isl[sample.full.15[, i], ]))$coefficients[8]

}

# Store results in a data frame
sar.full.15 = data.frame(slope = slope.full.15,

r2 = r2.full.15, p = p.full.15, n.isl = 15)

##############################
############# 10 #############
##############################

# Generate and save 100 random numbers
# sample(1:.Machine$integer.max, 100) # This command generated the following values
seed.full.10 = c(1836448795, 1602227588, 1258488269, 566114368, 1776020126,

894391246, 939975163, 83309568, 507790578, 1992867076, 71644900, 1168011998,
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2207129, 617292461, 1404656791, 1491500252, 283127481, 1486520641,
4151586, 350243671, 1600104000, 636115113, 2087365855, 944554374, 613956427,
195147222, 1653167479, 203780141, 1135993341, 429403506, 1752383166,
1965071688, 1334116186, 1253729813, 773317255, 2101729052, 2093757280,
1932699623, 128678624, 1034608016, 2073892305, 121390581, 1391591900,
747430867, 906679344, 435651795, 1774937385, 2029771941, 59277239,
2128512526, 2008467108, 192065477, 853393523, 960774878, 1438757988,
1804104337, 1527600430, 108492762, 1115622710, 289274517, 179332826,
1910766374, 626250152, 1642845096, 502806666, 1562003476, 1781175387,
809230528, 490314009, 1402021001, 368756102, 732395523, 84496965, 352270870,
375811602, 1971730604, 146631313, 2060064172, 1198951728, 1563389336,
1726472535, 1674206838, 475363694, 1517318119, 1865912176, 303053240,
1361078265, 267293077, 171185485, 44395409, 143330223, 921602179, 2060765949,
92596341, 2131167233, 683355650, 728572135, 987009280, 389601379, 1214888602)

# Select 10 islands 100 times
sample.full.10 = matrix(nrow = 10, ncol = 100)

for (i in 1:100) {
set.seed(seed.full.10[i])
sample.full.10[, i] = data.frame(sar.isl %>% group_by(class) %>% sample_n(size = 2))$id

}

sample.full.10 = as.data.frame(sample.full.10) # convert the matrix into a data frame

# ISAR for each subset of 10 sites (n = 100)
slope.full.10 = r2.full.10 = p.full.10 = c()

for (i in 1:100) {
slope.full.10[i] = lm(richness ~ log10(area),

# Regression slope
data = sar.isl[sample.full.10[, i], ])$coefficients[2]

r2.full.10[i] = summary(lm(richness ~ log10(area),
# Model fit (r2)
data = sar.isl[sample.full.10[, i], ]))$adj.r.squared

p.full.10[i] = summary(lm(richness ~ log10(area),
# p-value
data = sar.isl[sample.full.10[, i], ]))$coefficients[8]

}

# Store results in a data frame
sar.full.10 = data.frame(slope = slope.full.10,

r2 = r2.full.10, p = p.full.10, n.isl = 10)

##############################
############# 5 ##############
##############################

# Generate and save 100 random numbers
# sample(1:.Machine$integer.max, 100) # This command generated the following values
seed.full.5 = c(156379320, 1690806060, 1629423097, 1414352733, 1676991359,

976730569, 1863137538, 1725172610, 1245716941, 2144377928, 1892644476,
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902300213, 744495280, 1713546279, 1774310168, 1851413986, 553780345,
1405284858, 108015246, 1673947428, 2097155812, 1056236678, 1721697030,
2049545505, 603117198, 947333476, 2122239900, 1440513547, 1927913765,
454943762, 290176211, 1153586770, 1180513862, 1453353980, 1040440908,
1536727835, 941783144, 11760277, 1505622231, 787314459, 1802471460,
792349783, 608428158, 1074061213, 1162948024, 424745217, 1828967737,
1108684111, 603935622, 1659622245, 68119010, 125836783, 756516015,
265540766, 1278239777, 336513225, 1804560728, 2138761109, 478843279,
951316917, 1179275132, 710946839, 1149044041, 887556158, 462340394,
406182211, 2039798191, 1659142329, 178380253, 1751210418, 781822530,
991432089, 1517513217, 252335960, 977309456, 264568238, 1563478621,
1169537062, 1679809152, 7449048, 708562664, 1081425022, 842892613,
1489221701, 965928975, 964844400, 503102680, 1179685632, 846189621,
570467263, 813254137, 209997858, 1093310310, 723541863, 192976009,
252496991, 1843360057, 493987252, 1851015650, 1690781569)

# Select 5 islands 100 times
sample.full.5 = matrix(nrow = 5, ncol = 100)

for (i in 1:100) {
set.seed(seed.full.5[i])
sample.full.5[, i] = data.frame(sar.isl %>% group_by(class) %>% sample_n(size = 1))$id

}

sample.full.5 = as.data.frame(sample.full.5) # convert the matrix into a data frame

# ISAR for each subset of 5 sites (n = 100)
slope.full.5 = r2.full.5 = p.full.5 = c()

for (i in 1:100) {
slope.full.5[i] = lm(richness ~ log10(area),

# Regression slope
data = sar.isl[sample.full.5[, i], ])$coefficients[2]

r2.full.5[i] = summary(lm(richness ~ log10(area),
# Model fit (r2)
data = sar.isl[sample.full.5[, i], ]))$adj.r.squared

p.full.5[i] = summary(lm(richness ~ log10(area),
# p-value
data = sar.isl[sample.full.5[, i], ]))$coefficients[8]

}

# Store results in a data frame
sar.full.5 = data.frame(slope = slope.full.5,

r2 = r2.full.5, p = p.full.5, n.isl = 5)

##############################
############ All #############
##############################

# Combine the results
sar.full = rbind(sar.full.25, sar.full.20, sar.full.15, sar.full.10, sar.full.5)
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# Indicate the direction of the relationship
sar.full$dir = NA
sar.full$dir[sar.full$p > 0.05] = "non-significant"
sar.full$dir[sar.full$p < 0.05 & sar.full$slope > 0] = "positive"
sar.full$dir[sar.full$p < 0.05 & sar.full$slope < 0] = "negative"

# Colour code
sar.full$col = NA
sar.full$col[sar.full$p > 0.05] = "black"
sar.full$col[sar.full$p < 0.05 & sar.full$slope > 0] = "dodgerblue"
sar.full$col[sar.full$p < 0.05 & sar.full$slope < 0] = "#e41a1c"

# Function to produce summary statistics (mean and +/- sd)
data_summary = function(z) {
m <- mean(z)
ymin <- m-sd(z)
ymax <- m+sd(z)
return(c(y = m, ymin = ymin, ymax = ymax))

}

Figure 4a

box.full.slope =
ggplot(aes(x = as.factor(n.isl),

y = (atan(sar.full$slope) * 180 / pi) /
(atan(sar.74$coefficients[2]) * 180 / pi)),

data = sar.full) +

ggtitle("Full range of island size (0.45-1,699 ha)") +

labs(x = "",
y = "Slope deviance",
colour = expression(bold(Effect))) +

scale_y_continuous(limits = c(-1.2, 1.2)) +

scale_colour_manual(values = c("#999999", "dodgerblue")) +

geom_boxplot(fatten = NULL, outlier.shape = NA, notch = TRUE) +
geom_jitter(shape = 19, size = 2, aes(colour = sar.full$dir),

alpha = 0.25, width = 0.25, height = 0) +

stat_summary(fun.data = data_summary, colour = "#e41a1c", size = 1) +

theme_bw(base_size = 20) +
theme(panel.grid = element_blank(),

panel.border = element_rect(colour = "black"),
axis.title = element_text(colour = "black", face = "bold"),
axis.text = element_text(colour = "black"),
axis.ticks = element_line(colour = "black", size = 0.5)) +

theme(plot.title = element_text(size = 20, face = "bold", hjust = 0.5)) +
theme(legend.title = element_text(size = 16),
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legend.text = element_text(size = 14),
legend.position = c(0.05, 0.05),
legend.justification = c(0.05, 0.05),
legend.background = element_rect(colour = NULL),
legend.key = element_rect(fill = NA)) +

guides(colour = guide_legend(override.aes = list(size = 5),
reverse = TRUE, order = 1)) +

annotate("text", x = "5", y = 1.2,
hjust = 1.2, vjust = 0, size = 6, colour = "dodgerblue",
label = table(subset(sar.full, sar.full$n.isl == 5)$dir)[2]) +

annotate("text", x = "5", y = 1.2,
hjust = -0.2, vjust = 0, size = 6, colour = "black",
label = table(subset(sar.full, sar.full$n.isl == 5)$dir)[1]) +

annotate("text", x = "10", y = 1.2,
hjust = 1.2, vjust = 0, size = 6, colour = "dodgerblue",
label = table(subset(sar.full, sar.full$n.isl == 10)$dir)[2]) +

annotate("text", x = "10", y = 1.2,
hjust = -0.2, vjust = 0, size = 6, colour = "black",
label = table(subset(sar.full, sar.full$n.isl == 10)$dir)[1]) +

annotate("text", x = "15", y = 1.2,
hjust = 0.5, vjust = 0, size = 6, colour = "dodgerblue",
label = table(subset(sar.full, sar.full$n.isl == 15)$dir)[1]) +

annotate("text", x = "20", y = 1.2,
hjust = 0.5, vjust = 0, size = 6, colour = "dodgerblue",
label = table(subset(sar.full, sar.full$n.isl == 20)$dir)[1]) +

annotate("text", x = "25", y = 1.2,
hjust = 0.5, vjust = 0, size = 6, colour = "dodgerblue",
label = table(subset(sar.full, sar.full$n.isl == 25)$dir)[1]) +

annotate("text", x = Inf, y = -Inf,
hjust = 1.3, vjust = -1, fontface = "bold", size = 10, label = "(a)")

#box.full.slope

Figure 4c

box.full.r2 =
ggplot(aes(x = as.factor(n.isl),

y = r2),
data = sar.full) +

ggtitle("") +

labs(x = "Number of islands",
y = (expression(bolditalic(r)^{2}*""[adj]*""))) +

scale_y_continuous(limits = c(-0.35, 1),
breaks = seq(-0.2, 1, 0.2)) +
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geom_boxplot(fatten = NULL, outlier.shape = NA, notch = TRUE) +
geom_jitter(shape = 19, size = 2, colour = sar.full$col,

alpha = 0.25, width = 0.25, height = 0) +

stat_summary(fun.data = data_summary, colour = "#e41a1c", size = 1) +

theme_bw(base_size = 20) +
theme(panel.grid = element_blank(),

panel.border = element_rect(colour = "black"),
axis.title = element_text(colour = "black", face = "bold"),
axis.text = element_text(colour = "black"),
axis.ticks = element_line(colour = "black", size = 0.5)) +

theme(plot.title = element_text(hjust = 0.5)) +

annotate("text", x = Inf, y = -Inf,
hjust = 1.3, vjust = -1, fontface = "bold", size = 10, label = "(c)")

#box.full.r2

Non-stratified random selection (short range)

##############################
############# 25 #############
##############################

# Generate and save 100 random numbers
# sample(1:.Machine$integer.max, 100) # This command generated the following values
seed.short.25 = c(546470929, 1854569192, 472457862, 1519942303, 895556555,

1919452227, 1930033853, 2063048861, 895797531, 671426628, 689697640,
293680556, 1933282389, 1821079978, 1498918864, 1394247354, 153968628,
271206201, 92592477, 2081273213, 188826510, 698750039, 947001660, 1773674421,
1410373373, 2104025889, 1143083811, 1033814086, 1769894669, 872329229,
1163073271, 1148528459, 560434502, 1224909623, 1031145262, 582656922,
308392546, 67389807, 263459132, 391259468, 1576323070, 1212875871,
2070690239, 633301053, 1672178552, 2073513731, 56937991, 1549026011,
1198479649, 525813008, 151116584, 197262112, 1051865805, 1207593570,
452395609, 728516306, 366933408, 1457426627, 1353714277, 2100197408,
1818641172, 1132032800, 2046009994, 1110071781, 623413129, 985610257,
344982842, 1741372437, 213322852, 132985715, 319609380, 1389669427,
1940295069, 1497755854, 758207049, 1601760415, 2143143284, 1661429508,
1548933504, 1475819423, 955483790, 3214408, 622301579, 235955175, 741148058,
637739887, 1904814664, 330630631, 687650001, 1881465793, 1563203045,
730846447, 916417468, 88085882, 1532756237, 1813116892, 1486690846,
611013103, 21024891, 1152909322)

# Select 25 islands 100 times
sample.short.25 = matrix(nrow = 25, ncol = 100)

for (i in 1:100) {
set.seed(seed.short.25[i])
sample.short.25[, i] = sample(subset(sar.isl, sar.isl$area < 100)$id, 25)

}
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sample.short.25 = as.data.frame(sample.short.25) # convert the matrix into a data frame

# ISAR for each subset of 25 sites (n = 100)
slope.short.25 = r2.short.25 = p.short.25 = c()

for (i in 1:100) {
slope.short.25[i] = lm(richness ~ log10(area),

# Regression slope
data = sar.isl[sample.short.25[, i], ])$coefficients[2]

r2.short.25[i] = summary(lm(richness ~ log10(area),
# Model fit (r2)
data = sar.isl[sample.short.25[, i], ]))$adj.r.squared

p.short.25[i] = summary(lm(richness ~ log10(area),
# p-value
data = sar.isl[sample.short.25[, i], ]))$coefficients[8]

}

# Store results in a data frame
sar.short.25 = data.frame(slope = slope.short.25,

r2 = r2.short.25, p = p.short.25, n.isl = 25)

##############################
############# 20 #############
##############################

# Generate and save 100 random numbers
# sample(1:.Machine$integer.max, 100) # This command generated the following values
seed.short.20 = c(666307173, 769548065, 537021976, 279055760, 62172685,

1367337426, 957009295, 1989292791, 1853230961, 1911443969, 1261353721,
1027415282, 241034004, 161718608, 1275703625, 2111439781, 1700598712,
1592916179, 43374530, 232151158, 209340666, 1085935855, 285882049,
2091206380, 1682878078, 859603848, 1697635446, 1635861806, 1022456555,
2024697679, 2101397481, 1344500639, 1822426816, 1311649218, 543324895,
2087581645, 526123100, 1680050699, 566775562, 345167024, 1602664518,
64968048, 1639855157, 1241354938, 1485552218, 1861526072, 612335669,
1633123308, 1459100985, 1158121107, 580497679, 306604827, 1332928838,
286243345, 2141373777, 2037212311, 1506619446, 521308150, 1420686872,
338641856, 260635652, 1252933919, 15446332, 2052072612, 241882135,
807303067, 393868183, 1032293094, 1926166158, 909554276, 1742475855,
663146752, 1736829215, 423988712, 180014558, 844018892, 1480232952,
1405965368, 313990093, 1332559669, 347747447, 436081704, 1530297586,
447891509, 1992335844, 881663723, 533522389, 1968307086, 719892721,
87469310, 1778822274, 1736369187, 2082516166, 979182080, 1413199227,
489656294, 49916018, 1372516049, 1458701386, 302606507)

# Select 20 islands 100 times
sample.short.20 = matrix(nrow = 20, ncol = 100)

for (i in 1:100) {
set.seed(seed.short.20[i])
sample.short.20[, i] = sample(subset(sar.isl, sar.isl$area < 100)$id, 20)

}
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sample.short.20 = as.data.frame(sample.short.20) # convert the matrix into a data frame

# ISAR for each subset of 20 sites (n = 100)
slope.short.20 = r2.short.20 = p.short.20 = c()

for (i in 1:100) {
slope.short.20[i] = lm(richness ~ log10(area),

# Regression slope
data = sar.isl[sample.short.20[, i], ])$coefficients[2]

r2.short.20[i] = summary(lm(richness ~ log10(area),
# Model fit (r2)
data = sar.isl[sample.short.20[, i], ]))$adj.r.squared

p.short.20[i] = summary(lm(richness ~ log10(area),
# p-value
data = sar.isl[sample.short.20[, i], ]))$coefficients[8]

}

# Store results in a data frame
sar.short.20 = data.frame(slope = slope.short.20,

r2 = r2.short.20, p = p.short.20, n.isl = 20)

##############################
############# 15 #############
##############################

# Generate and save 100 random numbers
# sample(1:.Machine$integer.max, 100) # This command generated the following values
seed.short.15 = c(1797233886, 1477817566, 1812472833, 282658037, 159644218,

1058820179, 30092270, 1430848344, 1802764155, 1546478896, 498495623,
1573434690, 450846291, 1393940053, 653030952, 261493363, 1890241833,
982501422, 1746246577, 1405205347, 1995988109, 120882561, 1747207129,
327387968, 2020831209, 1331284056, 1745849496, 1292633655, 203322744,
41782417, 37050654, 2067894056, 635559297, 479796905, 145114616, 291741248,
184365873, 71118960, 2124533111, 534668116, 1357261360, 1113033225,
1044605132, 813411959, 1743315622, 1255166571, 341128038, 781834300,
233647969, 1726759231, 706151582, 1130525245, 1875316554, 1415337554,
137326230, 217638676, 1906033574, 2146460365, 466812727, 113915874,
24889785, 1401542266, 660202450, 314097483, 779164117, 1082807616,
1390074298, 1416012482, 1012072300, 2025426536, 536217283, 2101306655,
18189273, 1811934711, 1312938722, 854283991, 1818428581, 505361758,
240179728, 935751634, 1969290289, 840928766, 781350302, 698273657,
278682066, 1923288556, 200496280, 8906851, 1251617670, 419489047, 707522070,
2117554166, 94965522, 1283543567, 1167658624, 160287416, 487054397,
1478979793, 28832598, 704526487)

# Select 15 islands 100 times
sample.short.15 = matrix(nrow = 15, ncol = 100)

for (i in 1:100) {
set.seed(seed.short.15[i])
sample.short.15[, i] = sample(subset(sar.isl, sar.isl$area < 100)$id, 15)

}
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sample.short.15 = as.data.frame(sample.short.15) # convert the matrix into a data frame

# ISAR for each subset of 15 sites (n = 100)
slope.short.15 = r2.short.15 = p.short.15 = c()

for (i in 1:100) {
slope.short.15[i] = lm(richness ~ log10(area),

# Regression slope
data = sar.isl[sample.short.15[, i], ])$coefficients[2]

r2.short.15[i] = summary(lm(richness ~ log10(area),
# Model fit (r2)
data = sar.isl[sample.short.15[, i], ]))$adj.r.squared

p.short.15[i] = summary(lm(richness ~ log10(area),
# p-value
data = sar.isl[sample.short.15[, i], ]))$coefficients[8]

}

# Store results in a data frame
sar.short.15 = data.frame(slope = slope.short.15,

r2 = r2.short.15, p = p.short.15, n.isl = 15)

##############################
############# 10 #############
##############################

# Generate and save 100 random numbers
# sample(1:.Machine$integer.max, 100) # This command generated the following values
seed.short.10 = c(1490864286, 2047178273, 1728145608, 281818095, 2087499922,

564366804, 224610476, 1411050063, 281673670, 49572642, 1132043984,
555201282, 716813516, 1280508556, 1589730837, 1534601435, 146351227,
514405340, 1698506167, 1554576283, 318444025, 2093255895, 783318015,
2013258027, 168402407, 576605944, 657233474, 1584910838, 1318819952,
1820689937, 1249616156, 904786729, 1332431854, 812038017, 1885297493,
1187631930, 928731614, 1051752178, 1138261024, 108586588, 1343434796,
839610588, 2063078918, 1104421074, 759849601, 1713214309, 1858689334,
450407697, 313256126, 1457307133, 1009155087, 505753525, 335191415,
848433713, 1526577160, 2093789644, 386663266, 684043014, 2010058334,
767706419, 1800026661, 735429860, 552159751, 1774679058, 2071490816,
114035331, 1362076937, 452982224, 88437574, 824344601, 1771460610,
85404261, 1045361323, 133918837, 1955817682, 1861748225, 1024056941,
1068930095, 855334022, 618819368, 282124553, 131763589, 1642882943,
1585028290, 1376992579, 133003909, 1692076196, 258150875, 791640343,
392187150, 828995879, 761964529, 1665508994, 720215031, 1482990698,
774879948, 1187796754, 288976470, 925947713, 1968126902)

# Select 10 islands 100 times
sample.short.10 = matrix(nrow = 10, ncol = 100)

for (i in 1:100) {
set.seed(seed.short.10[i])
sample.short.10[, i] = sample(subset(sar.isl, sar.isl$area < 100)$id, 10)

}
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sample.short.10 = as.data.frame(sample.short.10) # convert the matrix into a data frame

# ISAR for each subset of 10 sites (n = 100)
slope.short.10 = r2.short.10 = p.short.10 = c()

for (i in 1:100) {
slope.short.10[i] = lm(richness ~ log10(area),

# Regression slope
data = sar.isl[sample.short.10[, i], ])$coefficients[2]

r2.short.10[i] = summary(lm(richness ~ log10(area),
# Model fit (r2)
data = sar.isl[sample.short.10[, i], ]))$adj.r.squared

p.short.10[i] = summary(lm(richness ~ log10(area),
# p-value
data = sar.isl[sample.short.10[, i], ]))$coefficients[8]

}

# Store results in a data frame
sar.short.10 = data.frame(slope = slope.short.10,

r2 = r2.short.10, p = p.short.10, n.isl = 10)

##############################
############# 5 ##############
##############################

# Generate and save 100 random numbers
# sample(1:.Machine$integer.max, 100) # This command generated the following values
seed.short.5 = c(1818899806, 572588167, 1792177407, 1659406357, 961103864,

1530683178, 1134007730, 937830870, 1066204421, 1804204256, 503063391,
1748500366, 474255682, 1214858577, 1348666140, 852326043, 1085653185,
1412958084, 337382050, 1819034604, 347289743, 1832647990, 185514679,
1223109694, 1973347031, 1800567392, 552920802, 830448278, 373898856,
424348329, 235826459, 1805765409, 2046082354, 746323328, 1748767641,
1189739601, 923159733, 1850158210, 1356612017, 1053329651, 1474626586,
1300879879, 2122733924, 2083408007, 536239387, 706011796, 1637424859,
657349614, 11260282, 17681210, 342174539, 1576634915, 1796853954, 1786492628,
495993392, 896512922, 676915201, 532818466, 826704236, 662021449, 954280518,
262499102, 1067107507, 318192681, 674273262, 1473103292, 481573782,
2077582954, 1927740882, 801457600, 1996286074, 1030628649, 408608466,
706757404, 927495176, 296551639, 875969451, 725602398, 265102155, 514037893,
948860582, 758135234, 1709858334, 1720550012, 847904281, 842872595,
620195336, 1792612878, 286096883, 490370245, 2094825162, 2078260721,
1757203739, 1944745230, 1532469947, 1698773672, 753595436, 437582555,
1745664625, 867798478)

# Select 5 islands 100 times
sample.short.5 = matrix(nrow = 5, ncol = 100)

for (i in 1:100) {
set.seed(seed.short.5[i])
sample.short.5[, i] = sample(subset(sar.isl, sar.isl$area < 100)$id, 5)

}
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sample.short.5 = as.data.frame(sample.short.5) # convert the matrix into a data frame

# ISAR for each subset of 5 sites (n = 100)
slope.short.5 = r2.short.5 = p.short.5 = c()

for (i in 1:100) {
slope.short.5[i] = lm(richness ~ log10(area),

# Regression slope
data = sar.isl[sample.short.5[, i], ])$coefficients[2]

r2.short.5[i] = summary(lm(richness ~ log10(area),
# Model fit (r2)
data = sar.isl[sample.short.5[, i], ]))$adj.r.squared

p.short.5[i] = summary(lm(richness ~ log10(area),
# p-value
data = sar.isl[sample.short.5[, i], ]))$coefficients[8]

}

# Store results in a data frame
sar.short.5 = data.frame(slope = slope.short.5,

r2 = r2.short.5, p = p.short.5, n.isl = 5)

##############################
############ All #############
##############################

# Combine the results
sar.short = rbind(sar.short.25, sar.short.20, sar.short.15, sar.short.10, sar.short.5)

# Indicate the direction of the relationship
sar.short$dir = NA
sar.short$dir[sar.short$p > 0.05] = "non-significant"
sar.short$dir[sar.short$p < 0.05 & sar.short$slope > 0] = "positive"
sar.short$dir[sar.short$p < 0.05 & sar.short$slope < 0] = "negative"

# Colour code
sar.short$col = NA
sar.short$col[sar.short$p > 0.05] = "black"
sar.short$col[sar.short$p < 0.05 & sar.short$slope > 0] = "dodgerblue"
sar.short$col[sar.short$p < 0.05 & sar.short$slope < 0] = "#e41a1c"

Figure 4b

box.short.slope =
ggplot(aes(x = as.factor(n.isl),

y = (atan(sar.short$slope) * 180 / pi) /
(atan(sar.74$coefficients[2]) * 180 / pi)),

data = sar.short) +

ggtitle("Short range of island size (< 100 ha)") +

labs(x = "",
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y = "") +

scale_y_continuous(limits = c(-1.2, 1.2)) +

geom_boxplot(fatten = NULL, outlier.shape = NA, notch = TRUE) +
geom_jitter(shape = 19, size = 2, colour = sar.short$col,

alpha = 0.25, width = 0.25, height = 0) +

stat_summary(fun.data = data_summary, colour = "#e41a1c", size = 1) +

theme_bw(base_size = 20) +
theme(panel.grid = element_blank(),

panel.border = element_rect(colour = "black"),
axis.title = element_text(colour = "black", face = "bold"),
axis.text = element_text(colour = "black"),
axis.ticks = element_line(colour = "black", size = 0.5)) +

theme(plot.title = element_text(size = 20, face = "bold", hjust = 0.5)) +

annotate("text", x = "5", y = 1.2,
hjust = 1.2, vjust = -0, size = 6, colour = "dodgerblue",
label = table(subset(sar.short, sar.short$n.isl == 5)$dir)[2]) +

annotate("text", x = "5", y = 1.2,
hjust = -0.2, vjust = 0, size = 6, colour = "black",
label = table(subset(sar.short, sar.short$n.isl == 5)$dir)[1]) +

annotate("text", x = "10", y = 1.2,
hjust = 1.2, vjust = 0, size = 6, colour = "dodgerblue",
label = table(subset(sar.short, sar.short$n.isl == 10)$dir)[2]) +

annotate("text", x = "10", y = 1.2,
hjust = -0.2, vjust = 0, size = 6, colour = "black",
label = table(subset(sar.short, sar.short$n.isl == 10)$dir)[1]) +

annotate("text", x = "15", y = 1.2,
hjust = 1.2, vjust = 0, size = 6, colour = "dodgerblue",
label = table(subset(sar.short, sar.short$n.isl == 15)$dir)[2]) +

annotate("text", x = "15", y = 1.2,
hjust = -0.2, vjust = 0, size = 6, colour = "black",
label = table(subset(sar.short, sar.short$n.isl == 15)$dir)[1]) +

annotate("text", x = "20", y = 1.2,
hjust = 1.2, vjust = 0, size = 6, colour = "dodgerblue",
label = table(subset(sar.short, sar.short$n.isl == 20)$dir)[2]) +

annotate("text", x = "20", y = 1.2,
hjust = -0.2, vjust = 0, size = 6, colour = "black",
label = table(subset(sar.short, sar.short$n.isl == 20)$dir)[1]) +

annotate("text", x = "25", y = 1.2,
hjust = 1.2, vjust = 0, size = 6, colour = "dodgerblue",
label = table(subset(sar.short, sar.short$n.isl == 25)$dir)[2]) +

annotate("text", x = "25", y = 1.2,
hjust = -0.2, vjust = 0, size = 6, colour = "black",
label = table(subset(sar.short, sar.short$n.isl == 25)$dir)[1]) +

annotate("text", x = Inf, y = -Inf,
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hjust = 1.3, vjust = -1, fontface = "bold", size = 10, label = "(b)")

#box.short.slope

Figure 4d

box.short.r2 =
ggplot(aes(x = as.factor(n.isl),

y = r2),
data = sar.short) +

ggtitle("") +

labs(x = "Number of islands",
y = "") +

scale_y_continuous(limits = c(-0.35, 1),
breaks = seq(-0.2, 1, 0.2)) +

geom_boxplot(fatten = NULL, outlier.shape = NA, notch = TRUE) +
geom_jitter(shape = 19, size = 2, colour = sar.short$col,

alpha = 0.25, width = 0.25, height = 0) +

stat_summary(fun.data = data_summary, colour = "#e41a1c", size = 1) +

theme_bw(base_size = 20) +
theme(panel.grid = element_blank(),

panel.border = element_rect(colour = "black"),
axis.title = element_text(colour = "black", face = "bold"),
axis.text = element_text(colour = "black"),
axis.ticks = element_line(colour = "black", size = 0.5)) +

theme(plot.title = element_text(hjust = 0.5)) +

annotate("text", x = Inf, y = -Inf,
hjust = 1.3, vjust = -1, fontface = "bold", size = 10, label = "(d)")

#box.short.r2

Combine graphs

Figure 4

# Combine and save the graphs
ggsave(grid.arrange(box.full.slope, box.short.slope, box.full.r2, box.short.r2,

nrow = 2, ncol = 2),
filename = "fig4.pdf", width = 17*2, height = 17*2, units = "cm")
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Literaure review

We carried out a literature review focused on tropical and temperate frog studies worldwide to assess (1) how prevalent positive
ISARs are at a global scale, and (2) the role of the number of patches and range in patch size in detecting ISARs.

Our literature review involved four steps as follows:

1. We searched for data (patch size and observed number of frog species) in all studies listed in Table 1 in Almeida-Gomes,
Vieira, Rocha, Metzger, & De Coster (2016) and in Table S1 in Palmeirim, Vieira, & Peres (2017).

2. We updated the search carried out by Almeida-Gomes, Vieira, Rocha, Metzger, & De Coster (2016) in Web of Science to
include additional studies published since their compilation cut-off in 2015. We searched for the same keywords they used
– (fragment size* AND amphibia*) OR (fragment size* AND anura*) OR (fragment size* AND frog*) OR (patch size* AND
amphibia*) OR (patch size* AND anura*) OR (patch size* AND frog*). These search terms (in Topic on 29 August 2018)
resulted in 101 hits.

3. We searched for the keywords ((“species-area relation*” OR “species-area curve*”) AND (amphibia* OR anura* OR frog*)
OR (nestedness AND amphibia*) OR (nestedness AND anura*) OR (nestedness AND frog*)) OR ((“nested subset*” AND
amphibia*) OR (“nested subset*” AND anura*) OR (“nested subset*” AND frog*) OR (“nested species” AND amphibia*)
OR (“nested species” AND anura*) OR (“nested species” AND frog*)) in Topic using the Web of Science database on 29
August 2018 (Timespan: All years). This search resulted in 109 hits.

4. We also screened the titles in the reference list of two recent global syntheses on species-area relationships (Matthews,
Guilhaumon, Triantis, Borregaard, & Whittaker, 2016) and vertebrate species responses to habitat fragmentation (Keinath
et al., 2017).

Island species-area relationships across studies

Despite of being an expected pattern, the positive island species-area relationship (ISAR) has not held true in some studies (for
amphibians, see Almeida-Gomes, Vieira, Rocha, Metzger, & De Coster (2016); for reptiles, see Lion, Garda, Santana, & Fonseca
(2016)). Different than these authors, who presented a summary of the results (negative, non-significant, positive) reported in the
previous studies, we reanalysed data from the literaure using the logarithmic exponential equation (semi-log model) proposed by
Gleason (1922).

S = z × log10(A) + c

where S = number of species, z = regression slope, A = site area (ha), c = regression intercept.

We used the semi-log model to depict the species-area relationships because it allows the inclusion of sites with S = 0.

Import data compiled from the literature

# Study attributes
studies = read.csv("https://ndownloader.figshare.com/files/15158570")

# Import data of each study (site area and species richness)
sar.lit = read.csv("https://ndownloader.figshare.com/files/15158567")

# Create a list object to store each study separately
sar.list = list()

for (i in 1:length(unique(sar.lit$studyID))) { # number of studies
sar.list[[i]] = subset(sar.lit, sar.lit$studyID == unique(sar.lit$studyID)[[i]])

}
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Location of the studies

Figure 5

# Draw the map
map =
ggplot() +

labs(x = "Longitude", y = "Latitude") +

borders("world", colour = "#808080", fill = "#808080") +

geom_point(data = studies,
aes(x = longitude, y = latitude),
shape = 21, colour = "black", fill = "dodgerblue", size = 4)

# Save the map
ggsave(map, file = "fig5.pdf", width = 30, height = 20, units = "cm")

# Display the map
#map

ISAR – semi-log models

# Fit the semi-log model to each dataset and save the results
semilog.out = matrix(nrow = length(sar.list), ncol = 9)

for (i in 1:length(sar.list)) {
semilog.out[i, 1] = unique(sar.list[[i]]$studyID)
semilog.out[i, 2] = as.character(unique(sar.list[[i]]$reference))
semilog.out[i, 3] = lm(richness ~ log10(area),

data = sar.list[[i]])$coefficients[1] # regression intercept
semilog.out[i, 4] = lm(richness ~ log10(area),

data = sar.list[[i]])$coefficients[2] # regression slope
semilog.out[i, 5] = summary(lm(richness ~ log10(area),

data = sar.list[[i]]))$adj.r.squared # model fit (r2)
semilog.out[i, 6] = summary(lm(richness ~ log10(area),

data = sar.list[[i]]))$coefficients[8] # p-value
semilog.out[i, 7] = nrow(sar.list[[i]])
semilog.out[i, 8] = max(sar.list[[i]]$area) - min(sar.list[[i]]$area)
semilog.out[i, 9] = max(sar.list[[i]]$richness)

}

# Finish the data frame
# Name columns
colnames(semilog.out) = c("studyID", "reference", "intercept", "slope", "r2", "p",

"n", "range", "smax")
# Convert the matrix "semilog.out" into a data frame
semilog.out = as.data.frame(semilog.out)

# Convert factor data into numeric data
semilog.out$intercept = as.numeric(as.character(semilog.out$intercept))
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# Convert factor data into numeric data
semilog.out$slope = as.numeric(as.character(semilog.out$slope))
# Convert factor data into numeric data
semilog.out$r2 = as.numeric(as.character(semilog.out$r2))
# Convert factor data into numeric data
semilog.out$p = as.numeric(as.character(semilog.out$p))
# Convert factor data into integer data
semilog.out$n = as.integer(as.character(semilog.out$n))
# Convert factor data into numeric data
semilog.out$range = as.numeric(as.character(semilog.out$range))
# Convert factor data into integer data
semilog.out$smax = as.integer(as.character(semilog.out$smax))

# Indicate the direction of the relationship
semilog.out$dir = NA
semilog.out$dir[semilog.out$p > 0.05] = "non-significant"
semilog.out$dir[semilog.out$p < 0.05 & semilog.out$slope > 0] = "positive"
semilog.out$dir[semilog.out$p < 0.05 & semilog.out$slope < 0] = "negative"

Figure 6

# Draw the graph summarising the results across all 25 datasets
# (number of patches vs. range in size)
graph.semilog =
ggplot(aes(x = range, y = n,

fill = as.factor(dir), size = r2),
data = semilog.out) +

labs(x = "Range in patch size (ha)",
y = "Number of patches",
fill = expression(bold(Effect)),
size = expression(bolditalic(r)^{2}*""[adj])) +

scale_x_log10(breaks = c(1, 10, 100, 300, 1000, 10000, 100000),
labels = c("1", "10", "100", "300", "1,000", "10,000", "100,000")) +

scale_y_continuous(limits = c(5, 25)) +
annotation_logticks(base = 10, sides = "b") +

scale_fill_manual(values = c("#999999", "dodgerblue")) +
scale_size_continuous(range = c(3, 11)) +

geom_vline(xintercept = 300, size = 0.5, alpha = 0.2, linetype = "dashed") +
geom_hline(yintercept = 15, size = 0.5, alpha = 0.2, linetype = "dashed") +
geom_point(shape = 21, colour = "black") +

theme_bw(base_size = 20) +
theme(panel.grid = element_blank(),

panel.border = element_rect(colour = "black"),
axis.title = element_text(colour = "black", face = "bold"),
axis.text = element_text(colour = "black"),
axis.ticks = element_line(colour = "black", size = 0.5)) +

theme(legend.title = element_text(size = 16),
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legend.text = element_text(size = 14),
legend.justification = "top",
legend.background = element_rect(colour = NULL),
legend.key = element_rect(fill = NA)) +

guides(fill = guide_legend(override.aes = list(size = 5),
reverse = TRUE, order = 1)) +

annotate("text", x = 7.82, y = 25,
hjust = 0.05, vjust = 0, size = 4.5, label = "Many patches, narrow range") +

annotate("text", x = 7.82, y = 14,
hjust = 0.05, vjust = 0, size = 4.5, label = "Few patches, narrow range") +

annotate("text", x = 400, y = 25,
hjust = 0, vjust = 0, size = 4.5, label = "Many patches, broad range") +

annotate("text", x = 400, y = 14,
hjust = 0, vjust = 0, size = 4.5, label = "Few patches, broad range")

# Save the graph
ggsave(graph.semilog, file = "fig6.pdf", width = 25, height = 20, units = "cm")

# Display the graph
#graph.semilog
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Chapter 6

General discussion

Habitat fragmentation is a long tangled tale (Fahrig 2019). A topic-based search
for all articles and reviews in Web of Science (1945-2018) using the terms ”habitat
fragmentation” OR ”forest fragmentation” resulted in 11,373 hits. Despite this
impressive number of publications and a growing interest in the topic over the
years (Fig. 6.1), a consensus on the impacts of habitat fragmentation on biodi-
versity is yet to be reached (Fahrig 2017; Fletcher et al. 2018; Fahrig et al. 2019;
Miller-Rushing et al. 2019). Below, I show how the findings of the four data chap-
ters that form the body of this thesis shed light on habitat fragmentation research,
particularly in the tropics.

A primary reason for such a lack of consensus in the direction (positive,
neutral or negative) of habitat fragmentation effects on biodiversity rests on the
fact that habitat fragmentation leads to two distinct but interrelated processes:
habitat loss (any reduction in available habitat) and habitat fragmentation per se
(the subdivision of habitat or the creation of a number of smaller and more iso-
lated habitat patches). While habitat loss is both a patch- and landscape-scale
process – and undoubted a major threat to biodiversity –, habitat fragmentation
per se is, by definition, a landscape-scale process (Fahrig 2003). Therefore, when
the number of species in variable-sized habitat patches (i.e. the species-area re-
lationship) is invoked to assess how habitat fragmentation affects biodiversity
(Matthews et al. 2014), only the effects of patch-scale habitat loss are actually as-
sessed. Moreover, habitat fragmentation has been used as a broad umbrella term
for many patterns and processes that accompany landscape change, such as habi-
tat patch shrinkage and increasing isolation (Fletcher et al. 2018), bringing about
widespread usage of vague and/or ambiguous terms (Lindenmayer & Fischer
2007).
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Figure 6.1: Number of articles and reviews on ”habitat fragmentation” or ”forest
fragmentation” published from 1981 to 2018 based on a topic search in Web of
Science.

In Chapter 2, the effect of habitat fragmentation induced by a hydroelectric
dam (i.e. forest insularization) on community-level avifauna was assessed both
at the patch and landscape scales. For the patch-scale analysis, I applied species-
area relationships (SARs) and, as expected, found that the larger the forest island,
the larger the number of bird species therein (Fig. 2.2). Thus, patch-scale habi-
tat loss impaired the full complement of avifaunal species inhabiting forest is-
lands. For the landscape-scale analysis, I first extrapolated the number of species
to a hypothetical island with the combined area of all surveyed islands based on
those SARs. Next, I compared the extrapolated value (alpha diversity) with the
gamma diversity inventoried across the entire set of surveyed islands (Yaacobi et
al. 2007). Contrary to my expectation, I did not find any apparent effect of habitat
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fragmentation per se on the number of bird species at the landscape scale, since
the alpha diversity extrapolated to the hypothetical largest island was statisti-
cally the same as the gamma diversity (Fig. 2.2). In other words, neither several
small islands nor a single large island could be deemed as the best conservation
strategy to safeguard the overall insular avifauna. Collectively, this means that
patch-scale patterns cannot be extrapolated to whole landscapes (Fahrig 2019) or
what may hold true within habitat patches does not necessarily hold true in the
entire landscape (e.g. species losses).

The lack of convergence between the effects of patch-scale habitat loss and
habitat fragmentation per se on species richness is due to the nested subset pat-
tern of species composition. Consider two identical forest archipelagos (A and B),
where the only difference is the species identities across islands. In archipelago
A, the islands are perfectly nested such that all species on the largest island are
also present on the smaller islands. In archipelago B, the islands are perfectly
anti-nested such that no species is found on more than one island. Thus, alpha
diversity of each island is the same in both A and B, but gamma diversity is
much higher in B, resulting in a negative impact of forest fragmentation per se
in archipelago A but a positive impact in archipelago B. In the case of the Tu-
curuı́ Hydroelectric Reservoir landscape, the avifauna was neither nested nor
anti-nested, which explains the neutral effect of forest fragmentation on species
richness, despite the clearly negative impact of patch-level habitat loss (Fig. 2.2).

Although difficult to quantify as non-significant results do not necessarily
imply a lack of effect, neutral effects of habitat fragmentation per se on biodiver-
sity are arguably more common than both positive and negative effects combined
(Fahrig 2017). If this is the case, the amount of remaining habitat plays a pivotal
role in explaining species distribution patterns in fragmented landscapes, rele-
gating the spatial arrangement (i.e. size and isolation) of habitat remnants to
a minor role. This idea led to the development of the habitat amount hypoth-
esis (HAH; Fahrig 2013), which challenges the application of island biogeogra-
phy theory (IBT; MacArthur & Wilson 1963, 1967) to terrestrial systems of habitat
patches (see Haila 2002; Laurance 2008). According to the IBT, size and isolation
(i.e. distance from the mainland source of immigrants) of oceanic islands are the
two predictor variables of species richness therein, so islands behave as discrete
spatial units. Conversely, the HAH posits that habitat patches are not discrete
spatial units, and the habitat surrounding any given patch is the primary source
of immigrants (Fahrig 2013). As a result, the HAH replaces two predictor vari-
ables, patch size and isolation, with a single predictor variable, habitat amount
across the landscape.
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In Chapter 3, bearing in mind the contrast between discrete (oceanic is-
lands) and semi-contiguous spatial units (habitat patches) as the extremes of a
continuum, I explored the degree to which either IBT or HAH were the most ap-
propriate frameworks to explain patterns of species richness on forest islands
within one of the world’s largest hydroelectric reservoirs. In her publication on
the HAH, Fahrig (2013) stated: “Although I focus here exclusively on habitat
patches, the ideas I present may also apply to [...] islands within lakes”. How-
ever, that speculation was yet to be confirmed.

I proposed a conceptual framework (Fig. 3.7) to test the hypothesis that
the gradient of landscape functional connectivity – a combination of matrix per-
meability and species dispersal ability – would determine whether either IBT or
HAH, or both, provide the most appropriate framework to assess the effects of
habitat fragmentation on biodiversity (Fig. 3.7). Using primary (fieldwork) and
secondary data (literature), I corroborated my hypothesis. Accordingly, increas-
ing support for IBT should be expected for a species assemblage with low dis-
persal ability in patches surrounded by an impermeable matrix (Fig. 3.7c). Con-
versely, increasing support for HAH should be expected for a species assemblage
in which high dispersal ability is prevalent, and habitat patches are surrounded
by a permeable matrix (Fig. 3.7b). Under the intermediate scenarios, the most ap-
propriate theoretical framework would depend on the relative contributions of
matrix permeability and species dispersal ability. For instance, support for HAH
should be expected if species successfully move among patches even if they are
surrounded by a relatively impermeable matrix (Fig. 3.7a), whereas support for
IBT should be expected if species fail to move among patches even if they are sur-
rounded by a relatively permeable matrix (Fig. 3.7d). Thus, the most appropriate
worldview in fragmentation ecology (IBT or HAH) is not only context-dependent
but also dynamic as various processes leading to matrix habitat amelioration or
degradation come about.

To accurately assess the impacts of habitat fragmentation – or any other
type of anthropogenic stressor – on biodiversity, one should determine both the
direction and magnitude of such impacts. Because ‘impact’ is essentially a rel-
ative measure, it is imperative to know the condition of ecosystems before sig-
nificant human disruption occurs, which implies a comparison between control
and impacted sites. This can be done employing three study designs: before-after,
control-impact, and before-after-control-impact (Green 1979). In habitat fragmen-
tation research, it is most common to employ a control-impact study design using
the largest available habitat patch as a control site (“unfragmented landscape”) to
compare with smaller habitat patches (“fragmented landscape”) (e.g. Daily et al.
2001; Uehara-Prado et al. 2007). However, the size of control sites can be rather
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variable. For example, while Daily et al. (2001) used a 227-ha forest patch as a
control site, Uehara-Prado et al. (2007) used a forest block larger than 10,000 ha.

In Chapter 4, I investigated the role of the size of control sites in assess-
ing the impact of forest fragmentation on bird species richness. Given that larger
control sites resemble pre-disturbance conditions to a larger extent than smaller
control sites (Fig. 4.2), I hypothesised that for the same set of impacted sites
(forest island smaller than 55 ha), the perceived (estimated) impact of forest frag-
mentation on bird species richness would be lowered by downsizing the control
sites (Fig. 4.3). By corroborating this hypothesis, I provided quantitative evidence
of widespread concerns raised by several tropical community ecologists: many
of our ”large” and ”undisturbed” control sites are not anywhere nearly extensive
enough to retain intact communities, and their use as control sites underestimates
the impacts of anthropogenic stressors on biodiversity (Robinson 1999; Sigel et al.
2006; Escobar et al. 2008; Gardner et al. 2009; Meyer et al. 2015). Likewise, I high-
lighted the perils of using inappropriate control sites in comparative biodiversity
studies, as often seen in the modern ecological literature.

Robust environmental impact assessments also depend on the suitability
of the study design: (1) controlling for confounding factors (Ewers & Didham
2006) and (2) a sufficient number of sample units (3) spanning an ample range
of the environmental gradient of interest (Kreyling et al. 2018). Not surprisingly,
differences in study designs may lead to contrasting results in the literature (Lion
et al. 2014; Almeida-Gomes et al. 2016) even for pervasive ecological patterns
like the iconic species-area relationship (Rosenzweig 1995).

Despite a plethora of studies on species-area relationships (Matthews et
al. 2016), the area per se effect on species richness is rarely, if ever, assessed in
landscape-scale field studies. The fact that area correlates with the number of
both individuals and habitat types masks the area per se effect, whenever sam-
pling (Hill et al. 1994) and habitat diversity (Connor & McCoy 2001) effects are
not controlled for. Moreover, matrix type (Kennedy et al. 2010), history of distur-
bance (e.g. clear-cut or burned forests; Stouffer & Bierregaard 1995), time since
habitat patch isolation (Jones et al. 2016), and direct human disturbance (e.g.
hunting pressure; Canale et al. 2012) all mediate the number of species in original
habitat remnants embedded within human-modified landscapes, thereby modu-
lating species-area relationships.

As a vast ‘real-world’ experimental landscape, the Balbina Hydroelectric
Reservoir landscape is a unique setting to examine habitat area per se effects (Table
5.1) on species assemblages because (1) it provides over 3,500 replicated forest
islands varying widely in size (Benchimol & Peres 2015); (2) all forest islands
were created simultaneously c. 30 years ago (Fearnside 2016), and were therefore
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subjected to an uniform and relatively long relaxation time; (3) the open-water
matrix is equally hostile; (4) forest islands span similar elevations, are restricted
to upland forest and lack perennial streams, ultimately reducing habitat diversity
(Drucker et al. 2008; Schietti et al. 2014); (5) adjacent control sites in undisturbed
continuous primary forest are widely available; and the (6) de facto protection
from any human disturbance (from Brazil’s largest Biological Reserve) has been
ensured in islands spanning most of the archipelago since the time of reservoir
formation.

In Chapter 5, I took advantage of autonomous recording units, which al-
lows one to survey multiple sites at the same time, to obtain a large number of
sample units spanning an ample range of the island size gradient. In doing so, I
present the most extensive and best replicated fragmentation ecology study ever
conducted to date on tropical anurans, in terms of the number of islands surveyed
(n = 74), the range in island size (0.45-1,699 ha), and overall sampling effort (9,362
1-min recordings inspected aurally and visually). I also compiled 25 datasets
from the literature to assess the generality of other field-based findings.

The results indicated that area per se has a strong effect on anuran species
richness, but that sub-optimal sampling designs may weaken or mask our under-
standing of area effects (Figs. 5.3, 5.4, 5.6). To avoid such a constraint, at least 10
habitat patches spanning three orders of magnitude in size should be surveyed
to yield reliable estimates of area-induced species losses, rendering our results
of general interest for those interested in applying species-area relationships to
real-world landscape-scale conservation problems, regardless of the taxonomic
groups and type of patchy systems.

Altogether, the findings from the four data chapters indicate several key
recommendations to habitat fragmentation research:

• Habitat fragmentation is a landscape-scale process, and its effects on biodi-
versity should be assessed at the scale of entire landscapes.

• The most appropriate guiding framework for biodiversity studies in frag-
mented landscapes depends on the functional connectivity among habitat
remnants for the group of organisms of interest.

• Environmental impact assessments should focus on species assemblages
derived from suitable control sites, if they are to be defined as reliable.

• Sub-optimal sampling designs jeopardise inferences on area-driven species
losses.
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Chapter 7

Conclusions

Research is an exercise in the right asking questions and coming up with robust
answers. Following up from the body of this doctoral dissertation, I present be-
low the key questions and conclusions from each data chapter (Chapters 2 to 5).

Chapter 2: Ecological traits modulate bird species responses to

forest fragmentation in an Amazonian anthropogenic archipelago

1. Do habitat generalists show a less steep decline in species richness as a func-
tion of diminishing island size compared to forest specialists?

Yes, they do. Thus, local extinction rates of forest specialists on land–bridge
islands are underestimated if habitat generalists are included in the species
pool, because this functional group is less impacted by island area reduction
than forest specialists.

2. Does forest fragmentation per se exacerbate or reduce the impact of forest
loss on species richness for the overall species pool, forest specialists and
habitat generalists?

Forest fragmentation per se does not necessarily exacerbate the impact of
forest loss on species richness.

3. Which suite of morpho-ecological traits best explains species rates of overall
island occupancy within the forest archipelago?

Rare species, especially those with low natural local abundance, are the
most extinction-prone in fragmented landscapes.
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4. How divergent are observed and detectability-corrected estimates of island
occupancy for rarely detected species?

Detectability-corrected estimates of island occupancy can be much higher
than observed estimates for species with low detection probability, ulti-
mately limiting the use of occupancy models for rare or otherwise elusive
species.

• Take-home message 1: Forest islands within hydroelectric reservoirs are
expected to typically harbour depauperate avian assemblages, mostly con-
sisting of naturally abundant and habitat generalist species.

• Take-home message 2: Species occupancy modelling is not a ‘magic bullet’
that can be used indiscriminately, particularly in community-wide studies.
Both research aims and species detectability should be carefully considered
before using occupancy modelling.

Chapter 3: Patch-scale biodiversity retention in fragmented land-

scapes: Reconciling the habitat amount hypothesis with the is-

land biogeography theory

1. Which is the most appropriate theoretical framework – Island Biogeog-
raphy Theory (IBT) or Habitat Amount Hypothesis (HAH) – to explain
patterns of species richness of understorey insectivorous birds on human-
induced forest islands?

The species richness of understorey insectivorous birds on forest islands is
best explained by an island effect, which is consistent with the IBT. In other
words, island size was a stronger predictor of species richness than habitat
amount surrounding sample sites.

• Take-home message: The most appropriate theoretical framework – IBT
or HAH – to explain patterns of species richness in fragmented landscapes
depends on the degree of matrix permeability and species dispersal ability.
Accordingly, low functional connectivity approximates to IBT, whereas high
functional connectivity approximates to HAH.
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Chapter 4: The role of baseline suitability in assessing the im-

pacts of land-use change on biodiversity

1. Does the baseline intactness change the estimated impact of forest fragmen-
tation on species richness?

The higher the baseline intactness, the higher the estimated impact. This ef-
fectively means that the use of degraded baselines in environmental impact
assessments may lead to over-optimistic estimates of the original impact,
thereby masking the true rate of species loss induced by forest fragmenta-
tion.

2. Is the estimated impact of forest fragmentation on species richness lower
for the overall species assemblage compared to that for the baseline species
assemblage?

Yes, it is. The use of the overall species assemblage further masks estimates
of the most severe impacts of forest fragmentation on species, particularly
those of higher conservation concern.

3. How different are the solutions for the minimum set problem targeting ei-
ther the overall or the baseline species assemblage?

Allocation of conservation investments (i.e. the number of sites to be pro-
tected) could be considerably reduced if one targets only those species that
presumably occupied any given site prior to land-use change.

• Take-home message: Environmental impact assessments and conservation
strategies can be severely biased by both the intactness of baseline sites and
which set of focal species are considered, both of which can lead to severe
underestimates of the effect size of the impact being assessed.



292 Chapter 7

Chapter 5: Sampling design may obscure species-area relation-

ships in landscape-scale field studies

1. What is the role of habitat area per se in explaining anuran species richness
on Amazonian forest islands induced by river damming?

Habitat area per se plays a decisive role in explaining anuran species rich-
ness on Amazonian forest islands within a hydroelectric reservoir.

2. How does sampling design affect the inferential power of island species-
area relationships (ISAR) in the ‘real world’?

The fit and the slope of ISARs were affected to a large extent by the range in
island size and to a much lesser extent by the number of islands surveyed.
Remarkably, the lower the range in island size, the lower both the fit and
the slope of ISARs.

3. What would be a suitable sampling design to depict ISARs?

It is recommended that at least ten habitat patches spanning three orders
of magnitude in size should be surveyed before reliable estimates of area-
driven species losses in patchy landscapes can be derived.

• Take-home message: Habitat area plays a pivotal role well beyond that
of sampling design and habitat diversity effects in explaining frog species
richness on tropical forest islands. However, the inferential power of island
species-area relationships is only reliable if derived from a suitable sam-
pling design in the first place.



That’s all folks!


	Introduction
	The thesis topic
	What is this thesis not about?
	What is this thesis about?

	Behind the scene
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5

	References

	Ecological traits modulate bird species responses to forest fragmentation in an Amazonian anthropogenic archipelago
	Abstract
	Introduction
	Methods
	Study area
	Avian surveys
	Species traits
	Island and landscape metrics
	Species–area relationships and forest fragmentation effect
	Species vulnerability to forest fragmentation
	Species traits and vulnerability to forest fragmentation

	Results
	Species–area relationships and forest fragmentation effect
	Trait-based vulnerability to forest fragmentation
	Observed versus detectability-corrected estimates of island occupancy

	Discussion
	Species–area relationships and forest fragmentation effect
	Trait-based vulnerability to forest fragmentation
	Observed versus detectability-corrected estimates of island occupancy

	Conclusions
	Acknowledgements
	References
	Supporting Information

	Patch-scale biodiversity retention in fragmented landscapes: Reconciling the habitat amount hypothesis with the island biogeography theory
	Abstract
	Introduction
	Methods
	Study area
	Sampling design
	Response variable and species group
	Predictor variables
	Data analysis

	Results
	Scale of effect
	IBT versus HAH

	Discussion
	Moving beyond: a conceptual framework to assess the role of patch size and habitat amount in explaining species responses to habitat fragmentation

	Conclusions
	Acknowledgments
	References
	Supporting Information

	The role of baseline suitability in assessing the impacts of land-use change on biodiversity
	Abstract
	Introduction
	Methods
	Study area
	Sampling design
	Avian surveys
	Species assemblages
	Estimated impact of forest fragmentation on species richness
	Minimum set problem

	Results
	Estimated impact of forest fragmentation on species richness
	Minimum set problem

	Discussion
	Acknowledgments
	References
	Supporting Information

	Sampling design may obscure species-area relationships in landscape-scale field studies
	Abstract
	Introduction
	Methods
	Study area
	Sampling design
	Frog surveys
	Response variable
	Predictor variable
	Island species-area relationships
	Tradeoff between replication power and extent of the gradient
	Data deposition

	Results
	Species richness and sampling effort
	Anuran species-area relationships at Balbina
	Prevalence of island species-area relationships for anurans worldwide

	Discussion
	Effect of area per se on species richness
	The form of island species-area relationships

	Conclusions
	References
	Supporting Information

	General discussion
	References

	Conclusions

