
1 
 

 

Structurally-consistent estimation of use and non-values for landscape-wide 

environmental change 

 

Authors: Brett Day1,*, Ian Bateman1, Amy Binner1, Silvia Ferrini1,2,3 and Carlo Fezzi1,4 

 

1 Land Environment Economics & Policy Institute, Department of Economics, University of Exeter, 

Exeter, EX4 4PU, UK 

2 Centre for Social and Economic Research on the Global Environment, School of Environmental 

Sciences, University of East Anglia, Norwich, NR4 7TJ, UK 

3 University of Siena, Department of Political Science and International, Italy 

4 Department of Economics and Management, University of Trento, Via Vigilio Inama, 5, 38122, 

Trento, Italy 

* Corresponding Author: brett.day@exeter.ac.uk Tel: +44 (0)1932 723178. 

 

 

 

 

 

Abstract 

We address the problem of estimating the use and nonuse value derived from a landscape-wide 

programme of environmental change. Working in the random utility framework, we develop a 

structural model that describes both demand for recreational trips to the landscape’s quality-

differentiated natural areas and preferences over different landscape-wide patterns of 

environmental quality elicited in a choice experiment. The structural coherence of the model 

ensures that the parameters of the preference function can be simultaneously estimated from the 

combination of revealed and stated preference data. We explore the properties of the model in a 

Monte Carlo experiment and then apply it to a study of preferences for changes in the ecological 

quality of rivers in northern England. This implementation reveals plausible estimates of the use 
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and nonuse parameters of the model and provides insights into the distance decay in those two 

different forms of value. 

 

 

 

 

 

Keywords: random utility models; nonuse utility; structural modelling; water quality; recreation; 

travel cost model; choice experiment 

 



3 
 

1. Introduction  

The problem addressed by this paper concerns the appraisal of programmes or policies 

whose environmental impacts are not constrained to a particular site but which have widespread 

yet spatially-differentiated impacts across a landscape. Our motivating example concerns a 

programme designed to improve the ecological status of a region’s rivers1, a change that delivers 

benefit flows not only through improved recreational experiences at riverside sites but also, 

potentially, through increased nonuse value.  

Valuing a programme that delivers a simultaneous change in the quality of natural areas 

across a landscape presents a significantly more complex challenge than the single-site appraisal 

problem. With respect to recreational use, perhaps, the most significant of those challenges is in 

understanding how individuals assess the value of a landscape offering a multiplicity of 

recreational opportunities. In the recreational demand literature, that problem is most frequently 

approached through adoption of the discrete choice travel cost (TC) method, a revealed 

preference (RP) approach that derives estimates of value from examination of recreational choice 

behaviour. Discrete choice TC modelling is theoretically underpinned by the random utility 

maximisation (RUM) model (McFadden, 1973) which formally defines the structure of 

individuals’ preferences and the process through which individuals choose which of the set of 

quality-differentiated recreational destinations to visit. Armed with estimates of the preference 

function derived from a clear structural model of behaviour, TC analysts can explore the potential 

welfare consequences that might arise should environmental quality change in a variety of 

different ways across any number of sites in a landscape. 

While the discrete-choice TC model has many advantages it also has shortcomings. One 

obvious shortcoming is that the technique is unable to estimate value derived from nonuse. 

Moreover, reliance on observed behaviour may result in problems of identification, for example, 

when the range of current qualities fails to cover that to be evaluated under the proposed 

                                                             
1 Other similar programmes include agri-environment schemes that deliver regional changes in 

agricultural landscapes, air quality regulations that tighten controls over regional air pollution sources 

and hazardous waste clean-up programs that rehabilitate an array of contaminated locations. 
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programme. An alternative method that addresses both those shortcomings is provided by stated 

preference (SP) methods of valuation. 

In theory, an SP approach could generate data that would allow identification of both use 

and nonuse values for any desired pattern of environmental quality change. Realising that 

outcome is, of course, more difficult. One problem concerns how to convey to respondents the 

complex spatial reality of the landscape within which hypothetical changes in environmental 

quality occur. As we discuss further in Section 2, here we champion the use of visual spatial choice 

experiments (VSCEs), an SP elicitation method in which respondents are asked to choose between 

policy options presented to them in the form of maps displaying the environmental quality 

delivered by a policy at each location in the landscape. This use of spatial visualisation provides 

a mechanism whereby complex differences in the spatial organisation of supply under different 

policy options can be conveyed to respondents in a simple and accessible manner.  

A second complexity, concerns analysis of responses to SP exercises like the VSCE. The 

particular difficulty here is that the preferences underpinning those responses reflect value in use 

and nonuse and are shaped by the substitution possibilities afforded by the diversity of natural 

areas present in a landscape. As we describe in Section 2, to date, the analysis of SP data has failed 

to convincingly address these complexities. Analysts have tended to forego the formality of 

structural modelling relying instead on highly reduced-form specifications which confound use 

and nonuse value and address issues of spatial location and substitution through estimation of 

‘distance-decay’ parameters and broad indices of substitute availability and quality. 

The core contribution of this paper is to propose an estimation strategy that directly 

addresses these issues. In Section 3 we describe a formulation for the preference function that 

captures both use and nonuse values. Moreover we show how within the RUM framework, that 

specification can be developed into a coherent structural model of choice behaviour that not only 

describes respondents’ observed recreational activity but also their choices in a VSCE exercise. 

Indeed, one significant advantage of our approach is that it results in econometric specifications 

for both observed recreational behaviour and VSCE responses that are derived from the same 

structural model. This common derivation has the added benefit of allowing RP and SP data to 
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simultaneously inform estimation of the same structural parameters.  

As we describe in Section 4, deriving our econometric specification from a structural 

model, results in a preference function that is nonlinear in the structural parameters. Moreover, 

unlike most previous applications of the RUM approach, our structurally-derived model results 

in error terms that are sums of independent logistic variates. Given these complexities, in Section 

5, we present the results of a Monte Carlo experiment in which we explore the circumstances 

under which the model can successfully recover estimates of the preference parameters. Finally, 

in Section 6, we estimate the model in the context of a real data set collected in a large scale survey 

carried out across Northern England. This implementation reveals intuitively plausible estimates 

of the use and nonuse parameters of the model and provides interesting insights into the distance 

decay in those two different forms of value. 

As we describe in detail in the next section, our paper makes contributions to a number 

of literatures. Primarily, it makes a contribution to the field of structural econometric modelling 

in environmental economics (Timmins and Schlenker, 2009). As far as the authors are aware, we 

provide the first attempt to underpin the analysis of non-market valuation data for landscapes of 

quality-differentiated sites with a coherent structural description of use and nonuse value. In that 

way, our approach builds on the structurally-coherent model developed by Eom and Larson 

(2006) to explore use and nonuse values in the single site setting. Moreover, in providing a new 

approach to the simultaneous analysis of TC and CE data, our work makes a novel contribution to 

the literature on the combined analysis of RP and SP data (Whitehead et al., 2008). Our paper is 

also of interest to the field of discrete choice modelling, presenting as it does a RUM specification 

not previously explored in the literature. Finally, our research contributes to SP research by 

showing how issues of distance decay, substitute location and quality as well as use and nonuse 

value can be coherently addressed through utility-theoretic modelling of preferences. 

2. Literature Review and Contribution 

There is a long history of applying SP methods to the problem of valuing spatially-explicit 

environmental quality change. Early applications used the contingent valuation method and 

focused on valuing environmental quality change at some particular location (Davis and Knetsch, 
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1966; Oster, 1977). The same problem has since been examined through application of the choice 

experiment (CE) method, an approach that allows analysts to derive a richer description of values 

for different dimensions of quality change at the focus location (e.g. Boxall et al., 1996; Hanley et 

al., 1998). More recently, SP methods have been applied in efforts to value more complex patterns 

of landscape-wide environmental change (e.g. Brouwer et al., 2010; Meyerhoff et al., 2014). 

In stark contrast to the structural coherence of the RUM model underpinning discrete 

choice TC modelling, analysis of responses to SP studies has almost universally adopted extreme 

reduced-form descriptions of preferences. In those studies, preferences are described as a simple, 

often linear, value function relating willingness to pay (WTP) to the level of environmental quality 

change and a variety of qualifiers. While many analysts include amongst those qualifiers 

measures of the distance from a respondent’s home to the site of the environmental change (e.g. 

Bateman et al., 2006; Concu, 2007; Hanley et al., 2003; Sutherland and Walsh, 1985), few use the 

trip expenditure measure that is so central to the structural model of recreational-value 

formation used in TC analysis2. One possible justification for using a distance rather than travel 

cost measure is that SP surveys capture value flows derived both in use and nonuse. While, all 

else equal, use values must fall with increasing distance as a consequence of the rising costs of 

access, the same expectation is not self-evident for nonuse values (Bateman et al., 2006). Indeed, 

the empirical evidence for distance decay in nonuse values is mixed and based almost entirely on 

studies that have compared values expressed by those that currently use the resource (users) 

with those that currently do not (nonusers). Hanley et al. (2003), for example, find that values for 

users decay more rapidly than those for nonusers while Bateman et al. (2006) find no distance 

decay for nonusers in one study and comparable levels of distance decay for users and nonusers 

in another. Of course, values of users and nonusers should not be conflated with use values and 

nonuse values; for a start, it would be unreasonable to assume that current users of a resource do 

not also hold nonuse values. Indeed, Cummings and Harrison (1995) argue that a shortcoming of 

SP methods is that they fail to provide an operationally meaningful mechanism by which use and 

                                                             
2 Though some authors have used travel time, a close correlate of travel cost (e.g. Jørgensen et al., 2013; 

Taylor and Longo, 2010) . 
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nonuse values can be separately identified.  

A central contribution of our paper is to present a method of analysis that overcomes the 

Cummings and Harrison (1995) critique. As we describe shortly, our method derives from a clear 

structural representation of preferences for use and nonuse that progresses to a method of 

estimation that allows for separate identification of distance decay effects from use and nonuse. 

In line with the structural model, use value is assumed to decay with the costs of access while we 

use a flexible functional form to investigate whether and how nonuse value decays with distance. 

Even less structurally convincing than the treatment of distance is the way in which SP 

studies have addressed the issue of substitutes. Indeed, many SP studies simply ignore the issue 

altogether (amongst many others; Birol et al., 2006; Doherty et al., 2014; Hanley et al., 2003; 

Stithou et al., 2013). Where attempts have been made to control for substitute availability those 

controls tend to have been included in the model specification in ways that bear little resemblance 

to any formal model of recreational demand behaviour. Often that means including some 

aggregate measure of the quantity or density of environmental assets in the vicinity of a 

respondent’s home (e.g. De Valck et al., 2017; Pate and Loomis, 1997; Yao et al., 2014) or the 

proximity of the nearest substitute (e.g. Caudill et al., 2011; Söderberg and Barton, 2014). 

Of course, the influence of substitutes on values is not only determined by the proximity 

of alternative sites but also by their quality. While the discrete choice TC model explicitly 

incorporates the quality of each substitute into its description of recreational demand behaviour, 

the question of substitute quality has, until recently, received little attention in the SP literature. 

Part of the problem has been in finding methods to present respondents with descriptions of 

complex spatial patterns of quality-differentiated substitute locations. Recently, a growing 

number of studies have sought to address those difficulties by depicting the context of substitutes 

and their qualities on colour-coded and annotated maps (e.g. Brouwer et al., 2010; Kataria et al., 

2012; Schaafsma and Brouwer, 2013; Söderberg and Barton, 2014)3. The particular map-based 

                                                             
e3 A number of these map-based SP studies stem from the same EU-funded project (Aquamoney) which 

sought evidence on the value of landscape-wide water quality improvement in order to inform 

implementation of the EU’s Water Framework Directive. Indeed, the empirical case study we describe subsequently is part 

of that same effort.  
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SP elicitation method we explore in this paper is similar to that used by Horne et al. (2005) and 

Meyerhoff et al. (2014). In those studies, respondents are presented with a selection of maps each 

illustrating a different spatial pattern of quality change and each associated with some particular 

cost. Respondents are asked to identify which costly pattern of quality change is their most 

preferred. We describe this form of CE as a visual spatial choice experiment (VSCE). By way of 

illustration, Figure 1, depicts a VSCE choice task from the empirical application that we 

investigate in Sections 6 and 7 of this paper. In this application, respondents are given a choice 

between two states of the world which differ in terms of the spatial pattern of river water quality 

and a coercive cost borne by their household. 

[INSERT FIGURE 1 AROUND HERE] 

Map-based presentations like the VCSE allow SP studies to elicit preferences for complex 

landscape-wide patterns of environmental change, explicitly presenting respondents with 

information on the quality and location of substitutes upon which they may condition their 

responses. How those responses should be modelled to properly reflect respondents’ decision 

processes, however, remains an open question in the SP literature. Perhaps the most complete 

representation of substitute quality and location in that literature is that provided by Meyerhoff 

et al. (2014) who adopt a reduced-form specification in which distance decay parameters are 

estimated specific to each level of quality change at each site, though that focus on identifying 

site-specific parameters inhibits effective transfer of value estimates outside the study area. 

The central contribution of this paper is to build an econometric specification for the 

analysis of VSCE data that is derived from a coherent structural model of preferences for 

landscape-wide environmental quality change. In that pursuit, our starting point is the RUM 

model used in discrete-choice TC studies to describe the preferences that drive recreational 

choices over substitute, quality-differentiated sites. Accordingly, our work has parallels to the 

contingent behaviour literature (e.g. Adamowicz et al., 1994; Christie et al., 2007; Englin and 

Cameron, 1996; Whitehead et al., 2000) which combines observed recreational behaviour with 

SP data recording how respondents report they would behave if the qualities or availability of 

recreation sites were to change. Since the SP and RP data are assumed to be driven by the same 
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choice process, the same structural modelling can be applied directly to the combined data 

allowing both types of data to inform identification of the parameters of the model. Our work 

extends that same estimation strategy to SP data derived from a VSCE exercise thereby 

contributing to efforts in the field of non-market valuation to combine RP and SP data in model 

estimation stretching back at least as far as Cameron (1992) and Adamowicz et al. (1994).  

Contingent behaviour studies are limited to identifying information on preferences for 

recreational use. The method we outline is for application to VSCE data that contains expressions 

of preferences reflecting not only use values, but also values from nonuse. Accordingly, our model 

of responses to VSCE exercises has to incorporate a structural description for nonuse utility into 

the preference specification. In recovering preferences for environmental quality in both use and 

nonuse, our work is comparable to that of Eom and Larson (2006). Those authors explore the 

decomposition of total value into use and nonuse value in the context of valuing a single 

recreational site. Indeed, they begin with a particular specification of the Marshallian trip-

demand function for that site and integrate back to reveal the form of the quasi-expenditure 

function, interpreting the constant of integration as the source of nonuse value. In a sense, the 

approach we develop in this paper can be considered as the discrete choice counterpart to the 

continuous demand model developed by Eom and Larson (2006) and one that moves away from 

the focus on a single site to consider the complexities of environmental valuation in the context 

of a landscape of quality-differentiated sites4.  

Of course, it would be possible to develop a demand system analogue to Eom and Larson's 

single equation model with nonuse values entering through the constant of integration. 

Remaining in ‘product space’ in which each site is treated as a separate good within the demand 

system, however, raises a number of complexities particularly when the landscape is endowed with a 

large number of such sites. In such cases, problems of parameter dimensionality quickly arise with, for 

                                                             
4 Note that Eom and Larson (2006) acknowledge that the river basin which forms the subject of their 

investigation, consists of a variety of different sites, visits to six of which are elicited in their survey. 

Rather than estimating a system of demand equations for these substitute sites, Eom and Larson (2006) 

choose to focus on estimating the value for a “typical site”, defining the level of demand for that typical 

site as the number of visits a respondent takes to their most frequently visited site. 
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example, the number of cross-price elasticity terms rising quadratically with the number of sites. Those 

complexities may be confounded by data issues, for example, demand functions may be difficult to identify 

when households typically make few or no visits to each different site. Moreover, data often contains 

limited or no variation in each site’s environmental quality making it infeasible to identify own- and cross-

quality terms. A final difficulty with analysing demand in product space is that it returns specific estimates 

for the particular set of study sites, but does not provide a ready method for transferring those findings to 

explore the values generated by new sites or by alternative landscapes with a different set of sites. 

In contrast, the discrete-choice approach that we adopt in this paper, models demand in 

‘characteristic space’ rather than ‘product space’. That approach assumes that a site can be 

described as a bundle of physical characteristics including its environmental qualities and that 

households have preferences over bundles of characteristics of sites, and not for sites per se. 

Moreover, in one choice period households take at most one trip, choosing where to visit from 

the set of quality-differentiated recreation sites. This discrete-choice approach solves most of the 

problems associated with estimating demand systems in product space. First, it deals naturally 

with data in which households demand few or no trips to each site. Second, the number of 

parameters is limited by the number of characteristics and does not rise with the number of sites. 

Third, the approach explicitly embraces substitution possibilities naturally capturing both cross-

price and cross-quality effects. Finally, the approach lends itself to transfer exercises that look to 

value the introduction of new sites into the landscape or to explore values generated by other 

landscapes with different spatial patterns of quality-differentiated sites. 

3.  The Structural Model 

The data we wish to interrogate reports on the preferences of a sample of individuals 

indexed 𝑖 = 1,2, … , 𝑁, living in a region endowed with an assortment of natural areas, indexed 

𝑗 = 1,2, … , 𝐽. The welfare that an individual realises from those natural areas during time period 

𝑡 arises as a result of the qualities that those areas exhibit; our particular interest being their 

environmental qualities. Qualities differ across natural areas and may differ across time periods, 

though are assumed to remain constant for the duration of any one period. The qualities of natural 

areas can also differ across possible states of the world, 𝑠 = 0,1, … , 𝑆. The reality of the current 

state of the world is indicated 𝑠 = 0 and the 𝑆 alternative states of the world are those constructed 
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to describe the qualities of natural areas for the purposes of a non-market valuation exercise. The 

qualities of natural area 𝑗, under scenario 𝑠 is given by the vector 𝒒𝑗,𝑠, where for simplicity of 

notation we have assumed that quality remains constant across time. 

Natural areas can be used for outdoor recreation, though to enjoy the recreational 

experience offered by natural area 𝑗, an individual must make the round trip to that location. We 

indicate the consumption levels of those trips by the vector 𝒙𝑖,𝑡,𝑠 =  (𝑥𝑖,1,𝑡,𝑠, 𝑥𝑖,2,𝑡,𝑠, … , 𝑥𝑖,𝐽,𝑡,𝑠) and 

take those to be goods whose purchase prices (comprising the costs of travel and the opportunity 

cost of travel time) are identified by the price vector 𝒑𝑖 =  (𝑝𝑖,1, 𝑝𝑖,2, … , 𝑝𝑖,𝐽).  

Individuals might also gain utility from natural areas without having to purchase any 

complementary market goods; perhaps simply from knowing that such natural areas exist or that 

others may benefit from their existence.5 Again we assume that utility derived in this way arises 

as a consequence of the qualities of a natural area.6 Following evidence from the SP literature 

(Bateman et al., 2006; Schaafsma et al., 2012) we allow for the possibility that the nonuse value 

derived from a natural area with particular qualities may differ with distance to an individual’s 

home and identify those distances by the vector 𝒅𝑖 =  (𝑑𝑖,1, 𝑑𝑖,2, … , 𝑑𝑖,𝐽).7 

Our structural model starts with the assumption that the direct utility function takes the 

following separable form: 

𝑈(𝑈𝑢𝑠𝑒(𝒙𝑖,𝑡,𝑠, 𝒒1,𝑠, … , 𝒒𝐽,𝑠 ), 𝑈𝑛𝑜𝑛𝑢𝑠𝑒(𝒒1,𝑠, … , 𝒒𝐽,𝑠, 𝒅𝑖 ), 𝑧𝑖,𝑡,𝑠 )      (∀ 𝑖, 𝑡, 𝑠). (1)  

Thus utility flows from three sources; from the sub-utility function, 𝑈𝑢𝑠𝑒(∙), in which the 

environmental quality of sites is combined with travel in order to deliver recreational use values, 

from the sub-utility function, 𝑈𝑛𝑜𝑛𝑢𝑠𝑒(∙), that delivers nonuse value simply through 

                                                             
5 For simplicity of notation, we assume that all natural areas are accessible. Individuals may gain nonuse 

utility from sites even if they are not accessible for recreation, a fact that analysts might exploit in 

attempts to identify the separate contribution of environmental quality to utility in use and nonuse.  

6 The qualities which deliver value in nonuse could potentially differ from those offering value in use. Our 

notation assumes, therefore, that the vector 𝒒𝑗,𝑠 is a comprehensive list of utility-relevant quality 

attributes, but that the contribution which a particular quality element makes to value in use or nonuse 

may be zero. 

7 In our empirical application we take those distances to be straight line measures. 



12 
 

environmental quality and from other consumption captured by the composite good, 𝑧𝑖,𝑡,𝑠. We 

assume that utility is increasing in all three of those arguments. Moreover, we assume that 𝑈𝑢𝑠𝑒(∙) 

exhibits weak complementarity such that the utility from use derived from the qualities of a 

natural area falls to zero when consumption of trips to that site is zero; that is to say, 

𝜕𝑈𝑢𝑠𝑒 𝜕𝒒𝑗,𝑠⁄ = 𝟎 when 𝑥𝑗,𝑡,𝑠 = 0. We also assume that preferences are strongly separable over 

time.  

If the choice period is reduced to a length of time such that in each period, 𝑡, an individual 

can make at most one recreational trip, then an individual’s consumption decision amounts to 

solving the discrete choice problem given by (Phaneuf and von Haefen, 2009); 

max
𝒙𝑖,𝑡,𝑠,𝑧𝑖,𝑡,𝑠

  𝑈(𝑈𝑢𝑠𝑒(𝒙𝑖,𝑡,𝑠, 𝒒1,𝑠, … , 𝒒𝐽,𝑠 ), 𝑈𝑛𝑜𝑛𝑢𝑠𝑒(𝒒1,𝑠, … , 𝒒𝐽,𝑠, 𝒅𝑖 ), 𝑧𝑖,𝑡,𝑠 ) 

𝑠. 𝑡. 𝑦𝑖,𝑡 = 𝒑𝑖
′𝒙𝑖,𝑡,𝑠 + 𝑧

𝑥𝑗,𝑡,𝑠 ∈ {0, 1}

𝑥𝑗,𝑡,𝑠𝑥𝑘,𝑡,𝑠 = 0 (∀ 𝑘 ≠ 𝑗)

                        (∀ 𝑖, 𝑡, 𝑠) 
(2)  

The conditional indirect utility function that arises from (2) takes the form; 

𝑢𝑖,𝑡,𝑠|𝑗 = 𝑢(𝑢𝑢𝑠𝑒(𝒒𝑗,𝑠), 𝑢𝑛𝑜𝑛𝑢𝑠𝑒(𝒒1,𝑠, … , 𝒒𝐽,𝑠, 𝒅𝑖 ), 𝑦𝑖,𝑡 − 𝑝𝑖,𝑗  )       (∀ 𝑖, 𝑡, 𝑠) (3)  

Observe that our assumptions regarding weak complementarity, imply that an individual 

only derives use utility from the qualities of the natural area that they choose to visit in choice 

period 𝑡. In contrast, during that period individuals derive nonuse utility from the qualities of all 

natural areas. Our model of recreational behaviour is completed through the rational choice rule; 

choose to visit 𝑗 in period 𝑡 if:    𝑢𝑖,𝑡,𝑠|𝑗 > {𝑢𝑖,𝑡,𝑠|𝑘}
∀ 𝑘≠𝑗

       (∀ 𝑖, 𝑡, 𝑠) (4)  

Over the course of a year we assume that individuals face 𝑡 = 1,2, … , 𝑇 recreational choice 

periods of equal length and that in each period individuals follow (4) in determining their 

recreational choice behaviour. Accordingly our model follows the tradition of repeated discrete 

choice models as per Morey et al. (1993). 

The research we describe subsequently involves a VSCE exercise in which respondents 

are asked to consider alternative states of the world in which the qualities of the natural areas 

differ from those experienced in the current state of the world (𝑠 = 0). The quality changes 
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described in each alternative state of the world (𝑠 = 1, 2, … , 𝑆) cannot be achieved without cost, 

a cost to which individuals must contribute through a hypothetical coercive annual charge 𝐶𝑠. 

Since the year is divided into 𝑇 equally-sized choice periods indexed 𝑡 = 1, 2, … , 𝑇 we assume that 

the annual payment can be equivalently expressed as a series of per period payments; 𝑐𝑠 =  𝐶𝑠 𝑇⁄ .  

Preferences for these different states of the world have the same fundamental structure, though 

the conditional indirect utility function (3) must be modified to include the hypothetical payment; 

𝑢𝑖,𝑡,𝑠|𝑗 = 𝑢(𝑢𝑢𝑠𝑒(𝒒𝑗,𝑠), 𝑢𝑛𝑜𝑛𝑢𝑠𝑒(𝒒1,𝑠, … , 𝒒𝐽,𝑠, 𝒅𝑖 ), 𝑦𝑖,𝑡 − 𝑝𝑖,𝑗 − 𝑐𝑠 )       (∀ 𝑖, 𝑡, 𝑠) (5)  

which reduces to (3) in the current state of the world since 𝑐0 = 0; 

In a typical hypothetical choice task, individuals are presented with a set of scenarios, 𝕤, 

drawn from the 𝑆 scenarios constructed for the VSCE. Respondents are asked to indicate which 

scenario is their most preferred. According to our model, to make that choice, respondents must 

first solve the site visitation problem (4) for each time period such that their declared preference 

over hypothetical scenarios should be made according to the choice rule;  

choose 𝑠 if:    ∑ max
𝑗

(𝑢𝑖,𝑡,𝑠|𝑗)

𝑇

𝑡=1

> {∑ max
𝑗

(𝑢𝑖,𝑡,𝑟|𝑗)

𝑇

𝑡=1

}

∀ 𝑟≠𝑠

            (𝑠, 𝑟 ∈ 𝕤)  (6)  

where the summation over the 𝑇 time periods in a year follows from our assumption of inter-

temporal additive separability of the utility function. 

4.  The Econometric Model 

We develop our econometric model by first specifying a functional form for the 

conditional indirect utility function (4). For econometric convenience we make the assumption 

of additive separability; 

𝑢𝑖,𝑡,𝑠|𝑗 = 𝑣𝑖,𝑡,𝑠|𝑗
𝑢𝑠𝑒 + 𝑣𝑖,𝑡,𝑠

𝑛𝑜𝑛𝑢𝑠𝑒 + 𝑣𝑖,𝑡,𝑠|𝑗
𝑜𝑡ℎ𝑒𝑟 + 𝜀𝑖,𝑗,𝑡,𝑠

= 𝑣𝑖,𝑡,𝑠|𝑗 + 𝜀𝑖,𝑗,𝑡,𝑠                                                 (𝑗 = 1, 2, … , 𝐽 + 1 and ∀𝑖, 𝑡, 𝑠) 
(7)  

Where 𝜀𝑖,𝑗,𝑡,𝑠 is an econometric error term introduced to capture the divergence between our 

model of conditional indirect utility (𝑣𝑖,𝑡,𝑠|𝑗
𝑢𝑠𝑒 + 𝑣𝑖,𝑡,𝑠

𝑛𝑜𝑛−𝑢𝑠𝑒 + 𝑣𝑖,𝑡,𝑠|𝑗
𝑜𝑡ℎ𝑒𝑟) and the individual’s 
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experienced utility (𝑢𝑖,𝑡,𝑠|𝑗).  As we elaborate below 𝑣𝑖,𝑡,𝑠|𝑗
𝑜𝑡ℎ𝑒𝑟 is a composite good expressed as 

expenditure on other goods conditional on choice of 𝑗. Moreover, we treat 𝜀𝑖,𝑗,𝑡,𝑠 as a compound 

error comprising an element reflecting the numerous unmodelled influences on use utility, 𝜖𝑖,𝑗,𝑡,𝑠
𝑢𝑠𝑒 , 

and an element reflecting the numerous unmodelled influences on nonuse utility, 𝜖𝑖,𝑡,𝑠
𝑛𝑜𝑛𝑢𝑠𝑒 , such 

that; 

𝜀𝑖,𝑗,𝑡,𝑠 = 𝜖𝑖,𝑗,𝑡,𝑠
𝑢𝑠𝑒 + 𝜖𝑖,𝑡,𝑠

𝑛𝑜𝑛𝑢𝑠𝑒          (𝑗 = 1, 2, … , 𝐽 + 1 𝑎𝑛𝑑 ∀𝑖, 𝑡, 𝑠) (8)  

Notice that since individuals derive nonuse utility from the 𝐽 environmental areas independent 

of their recreation activity, the nonuse error component is not dependent on their choice of which 

site to visit. Moreover we specify; 

𝑣𝑖,𝑡,𝑠|𝑗
𝑢𝑠𝑒 = 𝛼𝑖,𝑗,𝑡 +  𝒒𝑗,𝑠𝜷𝑖      (𝑗 = 1, 2, … , 𝐽 and ∀ 𝑖, 𝑡, 𝑠) (9)  

where 𝛼𝑖,𝑗,𝑡 is a site-specific utility element and  𝜷𝑖  is the vector of coefficients describing the 

marginal use utilities of site qualities. Of course, in any choice period an individual may choose 

not to make a recreational trip to a natural area. We give that option the index 𝐽 + 1, and specify 

the use utility from choosing that option as; 

𝑣𝑖,𝑡|𝐽+1
𝑢𝑠𝑒 = 𝛼𝑖,𝐽+1,𝑡      (∀𝑖, 𝑡) (10)  

Observe that since this option does not involve visiting one of the 𝐽 natural areas, the use 

utility associated with choosing this option does not change across scenarios. We gather the 

parameters of the use element of individual 𝑖’s utility into the vector 𝜽𝒊
𝒖𝒔𝒆 = [𝛼𝑖,1,𝑡 … 𝛼𝑖,𝐽+1,𝑡 𝜷𝑖]; 

Our model of the nonuse utility element of the preference function is given by; 

𝑣𝑖,𝑡,𝑠
𝑛𝑜𝑛𝑢𝑠𝑒 = ∑(𝑑𝑖,𝑗 + 1)

𝜆𝑖  (𝑎𝑖,𝑗,𝑡 + 𝒒𝑗,𝑠𝒃𝒊)

𝐽

𝑗=1

     (∀ 𝑖, 𝑡, 𝑠) (11)  

where 𝑑𝑖,𝑗 is the distance from individual 𝑖’s home to area 𝑗, 𝑎𝑖,𝑗,𝑡 is an area-specific element 

contributing to nonuse utility, 𝒃𝑖 is the vector of coefficients on site qualities and 𝜆𝑖 is a parameter 

that establishes the rate of  distance decay in nonuse utility.  Notice from (11) that nonuse utility 

is specified as a distance-weighted sum across the nonuse utility provided by each individual 
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natural area. The use of summation imposes the assumption that no substitution or 

complementarity relationships exist between sites in delivering nonuse value. The power 

function used to describe that distance weighting, nests a number of plausible specifications: for 

example, 𝜆𝑖 = 0 suggests that nonuse utility does not decline with distance, while 𝜆𝑖 =  −1 

suggests that the nonuse utility declines inversely with distance. Again we use the notation 

𝜽𝒊
𝒏𝒐𝒏𝒖𝒔𝒆 = [𝑎𝑖,1,𝑡 … 𝑎𝑖,𝐽,𝑡  𝒃𝑖 𝜆𝑖] to denote parameters of the nonuse element of utility. 

Finally we assume a simple linear form for utility from other consumption, such that 

conditional on travelling to 𝑗 

𝑣𝑖,𝑡,𝑠|𝑗
𝑜𝑡ℎ𝑒𝑟 = 𝛾𝑖(𝑦𝑖,𝑡 − 𝑝𝑖,𝑗 − 𝑐𝑠)      (𝑗 = 1, 2, … , 𝐽 + 1 and ∀ 𝑖, 𝑡, 𝑠). (12)  

We imagine a dataset, like that of the empirical exercise we describe subsequently, in 

which a sample of respondents provide both RP and SP data. The RP data details the visits each 

respondent made to the different natural areas over the course of the last year. The SP data is 

collected from a series of hypothetical choice tasks that, as described earlier, ask respondents to 

choose between quality-differentiated states of the world. Our objective is to build an 

econometric model that is derived from the coherent behavioural model described in equations 

(4) and (6) such that the parameters of the structural equations in equations (9), (10), (11) and 

(12) can be estimated simultaneously from both RP and SP data. 

Our econometric model proceeds through building a likelihood in the manner of the 

standard RUM model. As a result of the error term 𝜀𝑖,𝑗,𝑡,𝑠, probabilistic behavioural equations 

replace the deterministic choices envisaged by (4) and (6). As such, our econometric model of the 

probability of observing individual 𝑖 choosing to visit site 𝑗 in period 𝑡 can be written as; 

𝑃𝑖,𝑗,𝑡,0(𝜽𝒊
𝒖𝒔𝒆, 𝛾𝑖) = 𝑃𝑟𝑜𝑏[𝑢𝑖,𝑡,0|𝑗 > 𝑢𝑖,𝑡,0|𝑘   ∀ 𝑗 ≠ 𝑘 ]   

= 𝑃𝑟𝑜𝑏[𝑣𝑖,𝑡,0|𝑗
𝑢𝑠𝑒 + 𝑣𝑖,𝑡,0

𝑛𝑜𝑛𝑢𝑠𝑒 + 𝑣𝑖,𝑡,0|𝑗
𝑜𝑡ℎ𝑒𝑟 + 𝜖𝑖,𝑗,𝑡,0

𝑢𝑠𝑒 + 𝜖𝑖,𝑡,0
𝑛𝑜𝑛𝑢𝑠𝑒

> 𝑣𝑖,𝑡,0|𝑘
𝑢𝑠𝑒 + 𝑣𝑖,𝑡,0

𝑛𝑜𝑛−𝑢𝑠𝑒 + 𝑣𝑖,𝑡,0|𝑘
𝑜𝑡ℎ𝑒𝑟 + 𝜖𝑖,𝑘,𝑡,0

𝑢𝑠𝑒 + 𝜖𝑖,𝑡,0
𝑛𝑜𝑛𝑢𝑠𝑒    ∀ 𝑘 ≠ 𝑗 ]  

= 𝑃𝑟𝑜𝑏[𝑣𝑖,𝑡,0|𝑘
𝑢𝑠𝑒 + 𝑣𝑖,𝑡,0|𝑘

𝑜𝑡ℎ𝑒𝑟 − 𝑣𝑖,𝑡,0|𝑗
𝑢𝑠𝑒 − 𝑣𝑖,𝑡,0|𝑗

𝑜𝑡ℎ𝑒𝑟  > 𝜖𝑖,𝑗,𝑡,0
𝑢𝑠𝑒 − 𝜖𝑖,𝑘,𝑡,0

𝑢𝑠𝑒     ∀ 𝑘 ≠ 𝑗 ] 

(13)  

Since individuals derive the same level of nonuse value independent of their choice of which area 
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to visit, the nonuse element of modelled utility nets out of line 3 of equation (13). 8  It follows, that 

the parameters determining values through nonuse cannot be estimated from discrete-choice 

data on recreational behaviour. In a similar vein, the differencing of errors, ensures that elements 

that relate to unmodelled influences on nonuse utility also net out of the errors in equation (13).  

Probabilities for responses to the VCSE can be developed in a similar manner. In 

particular, in a VSCE with 𝑀 exercises indexed 𝑚 = 1,2, … , 𝑀, the  probability that individual 𝑖 

chooses option 𝑠 from the choice set 𝕤𝑚 amounts to; 

𝑃𝑖,𝑠,𝑚(𝜽𝒊
𝒖𝒔𝒆, 𝜽𝒊

𝒏𝒐𝒏−𝒖𝒔𝒆, 𝛾𝑖) = 𝑃𝑟𝑜𝑏 [∑ max
𝑗

(𝑢𝑖,𝑡,𝑠|𝑗)

𝑇

𝑡=1

> {∑ max
𝑗

(𝑢𝑖,𝑡,𝑟|𝑗)

𝑇

𝑡=1

}

∀ 𝑟≠𝑠

]

= 𝑃𝑟𝑜𝑏 [∑ max
𝑗

(𝑣𝑖,𝑡,𝑠|𝑗 + 𝜀𝑖,𝑗,𝑡,𝑠)

𝑇

𝑡=1

> {∑ max
𝑗

(𝑣𝑖,𝑡,𝑟|𝑗 + 𝜀𝑖,𝑗,𝑡,𝑟)

𝑇

𝑡=1

}

∀ 𝑟≠𝑠

 ]

= 𝑃𝑟𝑜𝑏 [∑ max
𝑗

(𝑣𝑖,𝑡,𝑠|𝑗
𝑢𝑠𝑒 + 𝑣𝑖,𝑡,𝑠|𝑗

𝑜𝑡ℎ𝑒𝑟 + 𝜖𝑖,𝑗,𝑡,𝑠
𝑢𝑠𝑒 ) + 𝑣𝑖,𝑡,𝑠

𝑛𝑜𝑛𝑢𝑠𝑒 + 𝜖𝑖,𝑡,𝑠
𝑛𝑜𝑛𝑢𝑠𝑒

𝑇

𝑡=1

> {∑ max
𝑗

(𝑣𝑖,𝑡,𝑟|𝑗
𝑢𝑠𝑒 + 𝑣𝑖,𝑡,𝑟|𝑗

𝑜𝑡ℎ𝑒𝑟 + 𝜖𝑖,𝑗,𝑡,𝑟
𝑢𝑠𝑒 ) + 𝑣𝑖,𝑡,𝑟

𝑛𝑜𝑛𝑢𝑠𝑒 + 𝜖𝑖,𝑡,𝑟
𝑛𝑜𝑛𝑢𝑠𝑒

𝑇

𝑡=1

}

∀ 𝑟≠𝑠

 ]      

(𝑠, 𝑟 ∈ 𝕤𝑚)  

(14)  

where the modelled and non-modelled elements of nonuse utility can be taken out of the 

maximisation problem in the third equation since their magnitudes are, by definition, 

independent of the choice of recreation activity. 

The nature of the probabilities in (13) and (14) are determined by the assumptions the 

analyst makes regarding the distribution of the error terms. For our purposes, we make specific 

structural assumptions that facilitate closed forms for both probability expressions.  

Our first assumption, common to many analyses of discrete choices, is that that the use-

utility error components are independent draws from a Type I Extreme Value distribution with 

location parameter zero and scale parameter 𝜎𝑅𝑃 (i. e.  𝜖𝑖,𝑗,𝑡,𝑠
𝑢𝑠𝑒 ~ 𝐼𝐼𝐷 𝐸𝑉(0, 𝜎𝑅𝑃) ∀ 𝑖, 𝑗, 𝑡, 𝑠). Here the  

                                                             
8 Since income, 𝑦𝑡,𝑖, remains constant across choice options, the term 𝛾𝑖𝑦𝑡,𝑖  from equation (12) also drops 

out of equation (13) as is true of all RUM applications assuming constant marginal utility of income. 
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𝑅𝑃 superscript reflects the fact that the scale of this error distribution will be revealed by the 

observed recreational behaviour data. Of course, the scale of utility is not determined from such 

data such that we apply the standard normalisation setting 𝜎𝑅𝑃 to a value of 1. Under that 

assumption, (13) can be solved to give an expression for the probability of observing a particular 

recreational choice that takes the familiar multinomial logit (MNL) form;  

𝑃𝑖,𝑗,𝑡,0(𝜽𝒊
𝒖𝒔𝒆, 𝛾𝑖) =

𝑒𝑣𝑖,𝑡,0|𝑗
𝑢𝑠𝑒 +𝑣𝑖,𝑡,0|𝑗

𝑜𝑡ℎ𝑒𝑟

∑ 𝑒𝑣𝑖,𝑡,0|𝑘
𝑢𝑠𝑒 +𝑣𝑖,𝑡,0|𝑘

𝑜𝑡ℎ𝑒𝑟𝐽+1
𝑘=0

     (∀𝑖, 𝑗, 𝑡) (15)  

A somewhat more difficult econometric challenge is posed by the probability of SP choices 

(14). A first complexity arises in handling the expression max
𝑗

(𝑣𝑖,𝑡,𝑠|𝑗
𝑢𝑠𝑒 + 𝑣𝑖,𝑡,𝑠|𝑗

𝑜𝑡ℎ𝑒𝑟 + 𝜖𝑖,𝑗,𝑡,𝑠
𝑢𝑠𝑒 ), which 

describes the use utility a respondent derives by solving the site-visitation problem and choosing 

which natural area to visit in time period 𝑡 under state of the world 𝑠. Notice that from the 

analyst’s point of view the presence of the error component 𝜖𝑖,𝑗,𝑡,𝑠
𝑢𝑠𝑒  results in this maximum use 

utility being a random variate. 

Of course, in a VCSE respondents choose between states of the world but do not provide 

details of that anticipated recreational behaviour. Accordingly, it is not possible to simply replace 

the maximisation expression with the utility of the particular site solving that maximisation 

problem. One way to proceed, follows from the observation that the set of arguments to the 

visitation problem are, by assumption, independent Type I Extreme Value variates with equal 

variance. It follows from properties of that distribution that an individual’s maximum use utility 

in state of the world 𝑠 must also be an extreme value variate;  

max
𝑗∈1,..,𝐽+1

𝑣𝑖,𝑡,𝑠|𝑗
𝑢𝑠𝑒 + 𝑣𝑖,𝑡,𝑠|𝑗

𝑜𝑡ℎ𝑒𝑟 + 𝜖𝑖,𝑗,𝑡,𝑠
𝑢𝑠𝑒  ~ 𝐸𝑉 ( ln ∑ 𝑒𝑣𝑖,𝑡,𝑠|𝑗

𝑢𝑠𝑒 +𝑣𝑖,𝑡,𝑠|𝑗
𝑜𝑡ℎ𝑒𝑟𝐽+1

𝑗=1 , 1)    (∀𝑖, 𝑡, 𝑠). (16)  

The distribution in (16) can equally be written as ln ∑ 𝑒𝑣𝑖,𝑡,𝑠|𝑗
𝑢𝑠𝑒 +𝑣𝑖,𝑡,𝑠|𝑗

𝑜𝑡ℎ𝑒𝑟𝐽+1
𝑗=1 + 𝜖𝑖,𝑡,𝑠

𝑚𝑎𝑥 𝑢𝑠𝑒, where 𝜖𝑖,𝑡,𝑠
𝑚𝑎𝑥 𝑢𝑠𝑒 

is a standard Type I Extreme Value variate and the maximum use value from the set of sites is 

summarised in the form of a so called logexpsum term. Accordingly, our specification allows us to 

write the utility enjoyed by individual 𝑖 in period 𝑡 in state of the world 𝑠 as; 
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𝑢𝑖,𝑡,𝑠 =  ln ∑ 𝑒𝑣𝑖,𝑡,𝑠|𝑗
𝑢𝑠𝑒 +𝑣𝑖,𝑡,𝑠|𝑗

𝑜𝑡ℎ𝑒𝑟

𝐽+1

𝑗=1

+ 𝜖𝑖,𝑡,𝑠
𝑚𝑎𝑥 𝑢𝑠𝑒 + 𝑣𝑖,𝑡,𝑠

𝑛𝑜𝑛𝑢𝑠𝑒 + 𝜖𝑖,𝑡,𝑠
𝑛𝑜𝑛𝑢𝑠𝑒      (∀𝑖, 𝑡, 𝑠) (17)  

where, as a consequence of (16), the error term 𝜖𝑖,𝑡,𝑠
𝑚𝑎𝑥 𝑢𝑠𝑒 is a standard Type I EV variate. 

To proceed we need to make assumptions regarding the nonuse-utility error components, 

𝜖𝑖,𝑡,𝑠
𝑛𝑜𝑛𝑢𝑠𝑒. First we assume these to be independent of 𝜖𝑖,𝑡,𝑠

𝑚𝑎𝑥 𝑢𝑠𝑒 . Second we assume these are 

independent draws from a distribution in the family of conjugate distributions to the extreme 

value. Following Cardell, (1997) we denote this distribution as 𝐶(1 𝜎𝑠
𝑆𝑃⁄ , 1). It follows that the 

distribution of the compound error  𝜖𝑖,𝑡,𝑠
𝑚𝑎𝑥 𝑢𝑠𝑒 + 𝜖𝑖,𝑡,𝑠

𝑛𝑜𝑛𝑢𝑠𝑒 is itself distributed as a Type1 Extreme 

Value variate with mean zero and scale 𝜎𝑠
𝑆𝑃. Since we have no reason to suspect that the error 

scales differ across scenarios, we impose the normalisation 𝜎𝑠
𝑆𝑃 = 𝜎𝑆𝑃 for all 𝑠 = 1, 2, … , 𝑆. It 

follows that (17) can be rewritten as: 

𝑢𝑖,𝑡,𝑠 =  
1

𝜎𝑆𝑃
ln ∑ 𝑒𝑣𝑖,𝑡,𝑠|𝑗

𝑢𝑠𝑒 +𝑣𝑖,𝑡,𝑠|𝑗
𝑜𝑡ℎ𝑒𝑟

𝐽+1

𝑗=1

+ 𝑣𝑖,𝑡,𝑠
𝑛𝑜𝑛𝑢𝑠𝑒 𝜎𝑆𝑃⁄ + 𝜖𝑖,𝑡,𝑠        (∀𝑖, 𝑡, 𝑠) (18)  

where 𝜖𝑖,𝑡,𝑠 =  ( 𝜖𝑖,𝑡,𝑠
𝑚𝑎𝑥 𝑢𝑠𝑒 + 𝜖𝑖,𝑡,𝑠

𝑛𝑜𝑛𝑢𝑠𝑒) 𝜎𝑆𝑃⁄  is distributed as an IID standard Type I EV variate.9 

Of course, the VSCE scenarios are framed as choices made over the duration of one year 

such that the final step in deriving the econometric specification for the utility derived from a 

particular choice experiment scenario is to sum over all periods; 

𝑢𝑖,𝑠 =  ∑
1

𝜎𝑆𝑃
ln ∑ 𝑒

(𝑣𝑖,𝑡,𝑠|𝑗
𝑢𝑠𝑒 +𝑣𝑖,𝑡,𝑠|𝑗

𝑜𝑡ℎ𝑒𝑟)

𝐽+1

𝑗=1

𝑇

𝑡=1

+ ∑ 𝑣𝑖,𝑡,𝑠
𝑛𝑜𝑛−𝑢𝑠𝑒 𝜎𝑆𝑃⁄

𝑇

𝑡=1

+ ∑ 𝜖𝑖.𝑡.𝑠

𝑇

𝑡=1

 

= 𝑣𝑖,𝑠 + ∑ 𝜖𝑖,𝑡,𝑠

𝑇

𝑡=1

                                                               (∀𝑖, 𝑠)         

(19)  

                                                             
9 An anonymous referee suggested that the expression in (18) might be arrived at through an alternative 
story. Following Rust (1987), that story assumes that individuals choosing in a VCSE do not yet know their 
𝜖𝑖,𝑗,𝑡,𝑠

𝑢𝑠𝑒 ’s for future trip options, but rather make their decision based on the expectation of utility from such 

trips. In that case (17) might be written with the Euler-Mascheroni constant replacing the random term  
𝜖𝑖,𝑡,𝑠

𝑚𝑎𝑥 𝑢𝑠𝑒 . Assuming that 𝜖𝑖,𝑡,𝑠
𝑛𝑜𝑛−𝑢𝑠𝑒  ~ 𝐼𝐼𝐷 𝐸𝑉(0, 𝜎𝑆𝑃) would give an expression equivalent to (18).  
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In the VSCE we describe subsequently individuals are presented with a series of tasks, 

𝑚 = 1, 2, … , 𝑀 each of which asks them to state a preference over two particular scenarios, 𝑠 and 

𝑟, such that the choice set 𝕤𝑚 has only two members.  Accordingly, substituting (19) into (14) 

reveals the probability of observing individual 𝑖 choosing option 𝑠 in choice task 𝑚, to be;  

𝑃𝑖,𝑠,𝑚(𝜽𝒊
𝒖𝒔𝒆, 𝜽𝒊

𝒏𝒐𝒏𝒖𝒔𝒆, 𝛾𝑖 , 𝜎𝑆𝑃) = 𝑃𝑟𝑜𝑏[𝑢𝑖,𝑠,𝑚 > 𝑢𝑖,𝑟,𝑚] 

= 𝑃𝑟𝑜𝑏 [𝑣𝑖,𝑠 + ∑ 𝜖𝑖,𝑡,𝑠,𝑚

𝑇

𝑡=1

> 𝑣𝑖,𝑟 + ∑ 𝜖𝑖,𝑡,𝑟,𝑚

𝑇

𝑡=1

] 

= 𝑃𝑟𝑜𝑏 [𝑣𝑖,𝑠 − 𝑣𝑖,𝑟 > ∑(𝜖𝑖,𝑡,𝑟,𝑚 − 𝜖𝑖,𝑡,s,𝑚)

𝑇

𝑡=1

]  

= 𝑃𝑟𝑜𝑏 [𝑣𝑖,𝑠 − 𝑣𝑖,𝑟 > ∑ 𝜀𝑖,𝑡,𝑚

𝑇

𝑡=1

]            ( ∀𝑖, 𝑚 and 𝑠, 𝑟 ∈ 𝕤𝑚) 

(20)  

where, from a property of the Type I Extreme Value distribution, 𝜀𝑖,𝑡,𝑚~𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(0,1). Observe 

that in differencing the utilities across the two scenarios any additive elements that are constant 

across scenarios are removed. For that reason, the data provides no means of identifying the area-

specific nonuse utility elements 𝑎𝑖,𝑗,𝑡.  

To evaluate the probability in (20) we use a result from George and Mudholkar (1983) 

that shows how, as a convolution of standard logistic variates, the distribution of ∑ 𝜀𝑖,𝑡,𝑚
𝑇
𝑡=1  can 

be very closely approximated according to;  

∑ 𝜀𝑖,𝑡,𝑚

𝑇

𝑡=1

~ 𝑡5𝑇+4 (0, 𝜋 (
15𝑇 + 12

5𝑇2 + 2𝑇
)

−
1
2

)              (∀𝑖, 𝑚) (21)  

where 𝑡5𝑇+4(∙) is Student’s t distribution with 5𝑇 + 4 degrees of freedom. 

To complete our econometric specification, we note that our independence assumptions 

allow us to write the likelihood of observing individual 𝑖’s recreational visit and SP choices as; 
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𝐿𝑖(𝜽𝑖) = ∏ ∏ 𝑃𝑖,𝑗,𝑡(𝜽𝑖
𝑢𝑠𝑒 , 𝛾𝑖)𝑌𝑖,𝑗,𝑡

𝑗𝑡

 ∏ ∏ 𝑃𝑖,𝑠,𝑚(𝜽𝑖
𝑢𝑠𝑒 , 𝜽𝑖

𝑛𝑜𝑛𝑢𝑠𝑒 , 𝛾𝑖)𝑌𝑖,𝑠,𝑚

𝑠∈𝕤𝑚𝑚

 (22)  

Where 𝜽𝑖 =  [𝜽𝑖
𝑢𝑠𝑒 𝜽𝑖

𝑛𝑜𝑛−𝑢𝑠𝑒 𝛾𝑖 𝜎𝑆𝑃] is a vector gathering together all the parameters of the 

behavioural model. 𝑌𝑖,𝑗,𝑡 records visit choices such that 𝑌𝑖,𝑗,𝑡 = 1 if individual 𝑖 chose to visit site 𝑗 

in choice period 𝑡 and 𝑌𝑖,𝑗,𝑡 = 0 otherwise. And, 𝑌𝑖,𝑠,𝑚 records SP choices where 𝑌𝑖,𝑠,𝑚 = 1 if 

individual 𝑖 chose 𝑠 from the set of scenarios presented to them in choice task 𝑚 and  𝑌𝑖,𝑠,𝑚 = 0 

otherwise. 

Since our data are not sufficiently rich to allow estimation of a parameter vector (𝜽𝑖)  for 

each respondent, in our empirical application we adopt a random parameters specification 

(Revelt and Train, 1998; Train, 1998). Accordingly, we assume that each respondent’s preference 

parameters are drawn from the population distribution of preference parameters, 𝑓(𝜽|𝛀) which 

is specified up to some unknown set of parameters 𝛀 which must also be estimated from the data. 

As detailed in Section 7, to maintain tractability we further assume that certain of the preference 

parameter distributions are degenerate constraining those parameters to be equal across all 

individuals.  

The log likelihood for estimation is given by: 

ln 𝐿(𝜽, 𝛀) = ∑ ln ∫ 𝐿𝑖(𝜽) 𝑓(𝜽|𝛀) 𝑑𝜽

𝑁

𝑖=1

. (23)  

Optimising (23) over the parameters of the model provides maximum likelihood estimates of 

both use and nonuse parameters of the preference function.  

5.  Monte Carlo Analysis 

Use-utility parameters can, of course, be estimated directly from RP data using (15).  By 

combining RP data with SP data, the proposed estimation strategy offers two possible benefits; 

(i) improved information from which to identify use-utility parameters and (ii) additional 

information from which to identify nonuse-utility parameters. A key remaining question 

concerns the circumstances under which those informational benefits are likely to be realised. 
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To address that question, we undertake a Monte Carlo analysis that mimics features of the 

real-world application we analyse subsequently. Our Monte Carlo environment comprises a 

randomly located sample of 500 individuals who enjoy utility flows from three rivers that 

traverse a hypothetical landscape. The level of utility flow from a river location to an individual 

is determined by its proximity and the ecological status of the river at that location, the latter 

ranging on a four-point quality scale; bad, poor, good or excellent. Moreover, for simplicity, we 

assume simulated individuals hold identical preference parameters (that is; 𝜷𝑖 = 𝜷, 𝒃𝑖 = 𝒃, 𝛾𝑖 =

𝛾, 𝜆𝑖 = 𝜆,  ∀𝑖), such that the utility function used in the Monte Carlo analysis is given by; 

𝑢𝑖,𝑡,𝑠|𝑗 =  𝒒𝑗,𝑠𝜷 + ∑ 𝑑𝑖,𝑘
𝜆 𝒒𝑘,𝑠𝒃

𝐽

𝑘=1

+ 𝛾(𝑦𝑖 − 𝑝𝑘,𝑖 − 𝑐𝑠) + 𝜀𝑖,𝑗,𝑡,𝑠   (𝑗 = 1, … , 𝐽 and ∀𝑖, 𝑡, 𝑠) 

𝑢𝑖,𝑡,𝑠|𝐽+1 =  𝛼𝐽+1 + ∑ 𝑑𝑖,𝑘
𝜆 𝒒𝑘,𝑠𝒃

𝐽

𝑘=1

+ 𝛾(𝑦𝑖 − 𝑐𝑠) + 𝜀𝑖,𝐽+1,𝑡,𝑠    (∀𝑖, 𝑡, 𝑠) 

(24)  

where 𝜀𝑖,𝑗,𝑡,𝑠 are independent draws of a standard Type 1 Extreme Value variate. 

In this hypothetical world individuals enjoy a flow of nonuse utility from river locations 

while also gaining use utility from recreational trips taken to those river locations. For each Monte 

Carlo iteration we construct a simulated RP dataset recording patterns of trip-taking activity for 

each individual over a year and a simulated SP dataset detailing their responses to a VSCE exercise 

consisting of 12 choice tasks. Full details of the Monte Carlo design are provided in the Appendix.  

Our first experiment explores the contribution that SP data from a VSCE can make to the 

identification of use-utility parameters. As motivation, consider the situation where an analyst 

wishes to use a VSCE in order to identify values associated with environmental qualities beyond 

the range observed in the current state of the world. The primary concern here is that without 

supporting RP data, information from the VSCE becomes the only source of identification for use-

utility parameters associated with these extended quality levels. In our Monte Carlo environment, 

we generate a current state of the world in which river quality is limited to the bad, poor and good 

categories. As such, the RP data provides no information regarding how greatly individuals value 

excellent water quality for recreational use. In contrast, the VSCE includes hypothetical scenarios 

in which river stretches are ascribed excellent quality. Our Monte Carlo experiment examines the 
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degree to which the proposed estimator can use preferences revealed in the VSCE exercise to 

tease out the implied value placed on excellent water quality both in nonuse but also use. 

To understand better the conditions under which the estimator may struggle in 

identifying use-utility parameters from SP data, recall from (18) that the contribution of use to 

the utility of a scenario (s) presented as a VSCE choice option is captured by the so-called 

logsumexp term; ln (∑ 𝑒
(𝑣𝑖,𝑡,𝑠|𝑗

𝑢𝑠𝑒 +𝑣𝑖,𝑡,𝑠|𝑗
𝑜𝑡ℎ𝑒𝑟)𝐽

𝑗=1 + 𝑒
(𝛼𝐽+1+𝑣𝑖,𝑡|𝑗+1

𝑜𝑡ℎ𝑒𝑟 )
). This term comprises two elements. 

The first element includes the 𝑣𝑖,𝑡,𝑠|𝑗
𝑢𝑠𝑒  terms which contain the use-utility parameters relating to 

the qualities of the 𝐽 recreational sites. The second element, captures the use utility of the outside 

good, 𝐽 + 1. Since this latter element remains constant, differences in the magnitude of the 

logsumexp term across VSCE choice options result solely from how they differ in the qualities of 

sites. Notice that the two elements of the logsumexp term are summed in a log operation. 

Accordingly, the same quality differences across two options in a VSCE choice task delivers a 

bigger difference in the logsumexp terms of those options when the use-utility of the outside good 

is small compared to when it is large. Since our ability to recover use-utility parameters of quality 

from VSCE data depends on the size of the signal provide by differences in the logsumexp term 

relative to the noise created by the error term (see (20)), it follows that identification will become 

increasingly difficult the greater the use-utility associated with the outside good.  

The key findings of our first Monte Carlo experiment are summarised in Figure 2, with the 

detailed outcomes reported in the Appendix. Figure 2 plots out the distribution of parameter 

estimates from 500 iterations of the Monte Carlo experiment. The distributions in the left hand 

panel relate to the use-utility parameter for good water quality with true value 0.3, while those 

in the right hand panel relate to the use-utility parameter for excellent water quality with true 

value 0.5. In both graphs, distributions are plotted from experiments run with different values of 

𝛼𝐽+1, the outside good utility parameter; specifically values of 3, 5, and 7.  

[INSERT FIGURE 1 AROUND HERE] 

Recall that the use-utility parameter for good water quality is identified from both RP and 

SP data and we see that all three parameter distributions are centred on the true parameter. 

Moreover, in line with expectations, the tightest distribution of parameter estimates is observed 
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when use utility for the outside good is small (s.d. 0.050) and the most dispersed when use utility 

for the outside good is large (s.d. 0.088). In contrast, excellent water quality is not observed in the 

current state of the world such that the use-utility parameter for that water quality is identified 

only from choices made in the VSCE. Again the pattern of results follows our expectations. At a 

relatively small value for the use-utility of the outside good, the distribution of the parameter 

estimates is centred on its true value with a reasonably tight dispersion (s.d. 0.128). Importantly, 

the Monte Carlo experiment confirms that the proposed estimation strategy using VSCE data to 

supplement RP data allows for estimation of use-utility parameters from qualities outside the 

range of current experience. As the magnitude of use-utility for the outside good increases to the 

medium value, however, the estimator encounters increasing difficulty tying down the value of 

the parameter (s.d. 3.126). Indeed, at the large value for use-utility of the outside good, the 

information provided by the VSCE data is so limited that the parameter is all but unidentified. 

Our second key concern with the combined-data estimation strategy concerns the model’s 

ability to return estimates of nonuse utility parameters. Put crudely, the estimation strategy for 

disentangling nonuse values is to observe the degree to which choices in the VSCE differ from the 

choices that would be expected if determined solely by use value. Of course, the degree to which 

choices will be influenced by nonuse considerations will depend on the relative size of the nonuse 

component of utility to the use component of utility. If the nonuse component is relatively large, 

then the SP data from the VSCE should provide good identification of the nonuse parameters. In 

contrast, if the nonuse component is relatively small, then identification may be difficult.  

Three different sets of parameters were chosen for the Monte Carlo analysis which 

differed only in the size of the preference parameters determining the nonuse value derived from 

water qualities. To determine the size of those parameters we selected one scenario at random 

and evaluated the average gain in welfare that would be realised by the simulated individuals if 

all rivers were improved up to the excellent water quality level.10 As shown in Table I, we chose 

values for the nonuse parameters that resulted in the nonuse element of this average welfare gain 

                                                             
10 The randomly chosen scenario had 2 river lengths of excellent quality, four of good quality, three of 

poor quality but no bad quality river lengths. 
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being twice as large as the use element (“Large”), roughly equal to the use element (“Equal”) and 

half the size of the use element (“Small”). 

[INSERT TABLE I ABOUT HERE] 

Again full details of the Monte Carlo experiment are provided in the Appendix while here 

Figure 3 provides a summary of the findings for two quantities of interest. First, the left hand 

panel plots out the distribution of the distance-decay parameter for nonuse utility (𝜆) estimated 

when nonuse utility is ‘Large’, ‘Equal’ and ‘Small’. In all three cases those distributions are centred 

on the true parameter value of -1. At the same time, as the relative size of the nonuse utility 

element declines the precision with which the distance-decay parameter is estimated also 

declines. A more detailed examination of the data shows that in the ‘Equal’ and ‘Small’ treatments 

a number of estimates of the distance decay parameter take on large negative values indicating 

that the estimator has difficulties identifying nonuse parameters for some realisations of the data. 

In those cases, we can assume that the nonuse elements of utility make little difference to the 

choices made in the VSCE. Accordingly, the estimator tends towards a distance-decay parameter 

that, in effect, discounts nonuse utility to zero. 

[INSERT FIGURE 2 AROUND HERE] 

The right hand panel of Figure 3 shows the distributions of estimates of the average 

welfare gain realised by the sample from improving all rivers to excellent water quality from the 

levels exhibited in the baseline scenario. Observe that in all three cases the simulations are 

centred on their true values with a similar level of precision being realised in all three treatments 

(‘Large’ s.d. 10.48; ‘Medium’ s.d. 12.64; ‘Small’ s.d. 10.11). It appears that the same decline in 

precision observed for the nonuse-utility parameters does not translate into declining precision 

of welfare estimates. That observation is being driven by the balancing of two effects; a decline in 

the precision of estimation of welfare from nonuse being paralleled by that nonuse welfare 

constituting an increasingly small element of overall welfare. 

Now imagine that rather than the structural model combining RP and SP, an analyst had 

decided to use an approach that employed only the data from a VSCE. To maintain relative 

comparability, suppose that the approach adopted was to estimate a utility function that assumed 
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the value derived from a choice experiment scenario could be approximated as the weighted sum 

of river qualities across the M river stretches in that scenario according to; 

𝑢𝑖,𝑡,𝑠 =  ∑ (𝑑𝑖,𝑚 + 1)
𝜆0  𝒒𝑚,𝑠𝒃𝟎

𝑀

𝑚=1

+ 𝛾0(𝐼𝑖 − 𝑝𝑠 𝑇⁄ ) + 𝜀𝑖,𝑗,𝑡,𝑠         (∀𝑖, 𝑡, 𝑠)    (25)  

Notice that (25) is simply our specification of the nonuse elements of the utility function. 

In applying (25) to data in which choices are made according to both use and nonuse 

considerations, however, we might expect the water quality parameters, 𝒃𝟎, to pick up the 

combined effect of water quality on both use and nonuse. Likewise, the distance-decay parameter, 

𝜆0, will pick up not only the effect of distance on nonuse utility but also the effect of travel costs 

on use utility. The question we wish to answer is whether (25) provides a sufficiently close 

approximation to the full structural model that the added complexity of estimating the full 

structural model might be considered an unnecessary luxury. Table II summarizes a third Monte 

Carlo experiment used to explore that question. 

[INSERT TABLE II ABOUT HERE] 

The Monte Carlo analyses reported in Table II use exactly the same simulations as those 

underpinning Figure 3. Observe that for all three treatments, the parameters on the quality 

variables and the distance decay show the bias that would be expected if the parameters were 

picking up elements relating to use utility as well as to nonuse utility. More importantly observe 

that the welfare estimates shown in the final row of Table II are systematically biased upwards 

with the size of bias in terms of standard deviations from the true value increasing from 1.31 for 

the ‘Large’ treatment, to 1.89 for the ‘Equal’ treatment, to 2.29 for the ‘Small’ treatment. We 

conclude that relying on a reduced-form approximation may result in significant errors in the 

calculation of welfare effects. Our Monte Carlo analysis lends support to the idea that econometric 

models should be carefully constructed to reflect the underlying structure of preferences. 

6.  Empirical Case Study 

The data motiving this research arose from a valuation exercise carried out in northern 

England in 2008 examining the benefits of improving the ecological status of rivers. As shown in 
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Figure 4: Study area and location of residence of sampleFigure 4, the study focused on a 70km 

square region mostly contained within the county of Yorkshire and traversed by three major 

rivers, the Aire, the Wharfe and the Calder. 

[INSERT FIGURE 4 AROUND HERE] 

Randomly sampling respondents from the study area to complete the valuation survey 

would have resulted in a dataset that was dominated by households from the Bradford-Leeds 

conurbation that sits at the heart of the region. A fundamental requirement for this research, 

however, was to ensure a sample that exhibited diversity with regards to spatial proximity to 

rivers of different qualities. To achieve that objective, surveying locations were chosen that 

evenly sampled the spatial extent of the study area (see Figure 4). Between 40 and 100 at-home 

interviews were conducted in each sampling location giving a total sample size of 1,805.  

The survey instrument collected data on household socioeconomics, details of 

recreational use of river sites and asked respondents to complete a VSCE exercise focused on river 

water quality. Of the 1,805 households interviewed, some surveys were incomplete or lacked 

crucial information, such that the final dataset consisted of the recreational activity for 1,794 

households with 1,708 of those also providing a complete set of responses to the VSCE. 

Respondents were chosen as the adult in the household with responsibility for paying the 

household water bill. Identifying that individual as the Household Representative Person (HRP) 

allowed the analysis shown in Table III in which the sample’s socioeconomic characteristics are 

compared to those recorded for the broader Yorkshire region in the 2011 census.  

[INSERT TABLE III AROUND HERE] 

Given the sampling strategy, it is not surprising that the sample over-represents suburban 

areas. Likewise retired households are more prevalent in the sample than the wider region, while 

full-time employed and small households are less prevalent. The final columns of Table III provide 

statistical confirmation that the sample is not representative of the region. As a consequence, a 

raking procedure was used to calculate sampling weights that matched the sample distribution 

of socioeconomic characteristics to their population equivalents. Using those weights in the 

subsequent regression analyses ensures valid inference with regards to the regional population. 
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The survey was explicitly designed to capture large quantities of spatially explicit data 

from respondents through a custom-built computer aided personal interview (CAPI). During the 

interview, respondents were shown an interactive map indicating the respondent’s home 

location and the surrounding rivers within an area the same size as the full survey area.  

The first section of the survey collected data for application of the travel cost method. 

First, respondents indicated on the map the river locations that they had visited for recreation 

over the course of the last 12 months and recorded how many times they had visited each of those 

sites. Details of the total number of all outdoor recreation trips taken in the last 12 months was 

also collected. Amongst respondents in the sample 18% made no recreational trips to a river site 

in the previous year, 27% made 1 to 5 trips to a river site, 12% made 6 to 10 trips, with the 

remaining 33% making more than 10 trips a year. The distribution of those trips across the study 

area is shown in Figure 5. 

[INSERT FIGURE 5 AROUND HERE] 

Respondents to the survey were asked to consider the level of river water quality that 

they experienced at recreational sites and introduced to a categorisation of water quality focused 

on the ecological status of rivers. The categorisation was developed with hydrological and 

ecological experts following the procedure described in Hime et al. (2009) and identified four 

levels of quality that moved from bad to poor to good to excellent with each level being associated 

with a quality colour; red, yellow, green and blue respectively. Each level was illustrated with an 

artist’s impression of the typical appearance of the water, the river banks and bed, and the plant 

and animal species that might typically be associated with each ecological quality level. The 

illustrations also indicated the sorts of recreational activity that might be associated with each 

quality level, including wildlife watching, boating, swimming and coarse and game fishing. 

In the second part of the survey, respondents participated in a VSCE. The VSCE 

concentrated on the main rivers in the study area; the Aire, the Wharfe and the Calder. To 

construct the choice experiment those rivers were divided into nine river lengths of equal extent. 

To construct a scenario to describe a future possible state of the world, each river length was 

ascribed a particular water quality and that quality illustrated on a map by colouring river lengths 
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with their ascribed quality colour. Each scenario was associated with a cost motivated as an 

annual increase in the household water bills payable by each household in the Yorkshire region. 

Finally, a choice task was constructed by pairing two scenarios, as illustrated in Figure 1.  Using a 

fractional factorial design, 60 choice tasks were constructed and divided into five blocks of 12 

tasks. In the VSCE each respondent was presented with a particular block of VSCE question and, 

therefore, provided answers to 12 choice tasks 

The recreational river sites available in the study region were identified using a GIS to find 

locations where the river could be accessed either by walking or driving and confirming those 

locations using aerial photographs. In total, 531 recreational sites were identified along the study 

rivers (𝐽 = 531). Information on the environmental characteristics of the recreational sites was 

identified in the GIS using Ordnance Survey’s MasterMap and the Centre for Ecology and 

Hydrology’s LandCover Map 2007. These provided details of the predominant land use around 

each of the recreational sites, which were grouped into four broad categories including woodland, 

farmland, grassland, and urban. The current water quality at each of the recreational sites was 

calculated from Environment Agency long-term water quality monitoring data and categorised 

on the four-point ecological status scale.  

Of the 531 recreational sites, 286 had been visited by the sample of respondents (see 

Figure 5). Since some respondents visited a river site every day in the year, the recreational choice 

period was established as one day giving 𝑇 = 365. Travel costs to recreational sites (𝑡𝑐𝑖,𝑗) were 

calculated in the GIS with the cost of time valued at a third of the imputed household hourly after 

tax income.  

In order to evaluate nonuse utility the 9 river lengths defined for the purposes of the 

choice experiment were each further divided into 9 river stretches giving a total of 81 river 

stretches each of which was a little under 3km in length. Nonuse utility was assumed to be derived 

from water quality across this set of 81 river stretches.11 Distance to each river stretch from each 

respondent’s home (𝑑𝑖,𝑚) was measured in the GIS  

                                                             
11 Notice that this differs slightly from the development in (11) of Section 4 where for notational 
convenience it was assumed that nonuse value was derived from the same set of sites as delivered use 
value. 
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7. Results 

Using the data collected from the study described in the previous section, we estimate 

three different models; (i) a simple travel cost model recovering estimates of use-utility 

parameters from just the RP data (ii) a mis-specified model capturing reduced-form parameters 

that combine use and nonuse utility estimated from just the SP data (as per our third Monte Carlo 

experiment) and (iii) the full structural model that combines RP and SP data to disentangle use 

and nonuse parameters. 

In these models the qualities of river sites in the use-utility element, 𝒒𝑗,𝑠, consist of a set 

of dummy variables capturing ecological status (with bad status being the baseline), a set of 

dummy variables capturing the predominant land use at the site (with farmland being the 

baseline) and a variable measuring population density in the local area of the site. Likewise, our 

vector of qualities for the river stretches delivering nonuse utility, 𝒒𝑚,𝑠, consists only of a set of 

dummy variables indicating the ecological status of each stretch. All other features of rivers are 

assumed to stay constant across scenarios and hence difference out of the estimating equations. 

In addition, our empirical application attempts to capture heterogeneity in preferences. 

To begin with we allow the utility of the no-trip option to be expressed as a constant  𝛼𝐽+1 

modified by a linear combination of socioeconomic regressors including HRP age and working 

status, household size, income, presence of children and a dummy for urban residence. For other 

elements, heterogeneity is allowed through adoption of a random parameters specification. In 

particular, we assume that the marginal utility of money parameter is drawn from a log normal 

distribution , 𝛾𝑖~𝐿𝑁(𝛾, 𝜎𝛾
2). Likewise we allow the distance-decay parameter and the utility of 

outdoor trips to non-river sites to be draws from normal distributions; specifically, 𝜆𝑖~𝑁(𝜆, 𝜎𝜆
2) 

and 𝛼𝐽+1,𝑖~𝑁 (𝛼𝐽+1, 𝜎𝛼𝐽+1
2 ). In contrast, we constrain the use and nonuse taste parameters for 

river quality to be constant across individuals; that is to say, 𝜷𝑖 = 𝜷 (∀𝑖) and 𝒃𝑖 = 𝒃 (∀𝑖). Finally, 

we constrain the parameters on the site-specific element of use utility to be constant across 

households but allow for unobserved differences in quality across sites, comparing two different 

model specifications. The first we describe as a random effects specification in which unobserved 

site-specific quality elements are modelled as draws from a normal distribution; 𝛼𝑗,𝑖,𝑡 =
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𝛼𝑗~𝑁(𝛼, 𝜎𝛼
2) (∀𝑗, 𝑖, 𝑡). The second specification, ascribes each site to its geographically defined 

sub-basin (using the UK government’s WFD classification of sub-basins) and includes a series of 

24 dummy variables. We describe that as a fixed effects specification. 

Since the models contain random parameters, we use simulated maximum likelihood to 

recover parameter estimates. Regression results for the various models are reported in Error! 

Reference source not found..  

[INSERT TABLE IV ABOUT HERE] 

Focusing first on the parameter estimates from our full structural model using combined 

RP and SP data we observe that a comparison across fixed effects and random effects 

specifications shows the models to be qualitatively similar both in terms of parameter sign, 

magnitude and significance. The random effects estimator, however, dominates in terms of the 

log-likelihood for a substantially more parsimonious specification such that our discussion 

focuses particularly on findings from that specification. Within that model we find that the 

parameters are all plausibly signed and in the main statistically significant at the usual levels of 

confidence. Most importantly, given the focus of the study, we find that the parameters on 

ecological status progress in the expected order for both use and nonuse utility with excellent 

quality being preferred to good quality being preferred to poor quality being preferred to bad 

quality. In the case of use utility, however, only the excellent water quality parameter proves to 

be significant at the 95% confidence level. 

Comparing the parameters on river quality for nonuse utility to those for use utility 

reveals the latter to be an order of magnitude larger. Of course, that might be expected given the 

two measure quite different quantities. In the case of use utility, the parameters measure the extra 

utility a household would realise if they were to experience that water quality (compared to the 

base case bad quality) when making a day visit to a river site. In the case of nonuse utility, the 

parameters measure the additional flow of nonuse utility over the baseline that a household 

would realise from a river stretch of that water quality located next to their home, each day of the 

year. Our subsequent welfare analysis provides insights as to how these differences in parameter 

magnitude translate into differences in annual flows of utility from use and nonuse. 
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The other parameter estimate worthy of closer scrutiny is the distance-decay parameter 

on nonuse utility. Error! Reference source not found. shows this to be significantly different 

from zero indicating that the nonuse utility a household enjoys from a river declines with the 

distance that river is from their home. Indeed, the parameter value of −1.18 suggests that the rate 

of decline to be somewhat greater than the inverse of distance. Indeed a river stretch at 10km 

distance is valued at only 7% of the value of a river stretch at 1km distance with that figure falling 

to 3% at a distance of 20km. 

Considering next the travel cost model, we note again the similarity of the parameter 

estimates and use the same model fit and parsimony argument to justify focusing attention on the 

Random Effects specification. Comparing this travel cost model to the combined data model, 

observe from Error! Reference source not found. that the outside good utility and other 

recreation utility parameters are relatively large, a finding that our Monte Carlo analysis suggests 

will limit the contribution that the SP data can make to the estimation of use-utility parameters. 

Indeed, the estimated parameters support that contention; we observe that the use-utility 

parameters from the combined data model are mostly similar in sign and magnitude to the 

parameters estimated on the travel cost model.12 In other words, in this case study the majority 

of the work in identifying the use-utility parameters is being done by the RP data. 

That observation carries over into a comparison of the combined data model with the mis-

specified model using just SP data where again we observe very similar parameter estimates for 

the nonuse taste parameters for river water quality. The mis-specification in the SP data model 

is, however, evident in the cost parameter and distance decay parameters. Compared to the 

combined data model we see that the mean of the distribution of the former to suggest a 

significantly larger marginal utility of money while the mean of the latter suggests a less 

significant rate of decay in utility with distance.  

Taking the estimated parameters from the two random effects models and the SP data 

model, it is possible to carry out a welfare analysis exploring the average welfare gains that would 

                                                             
12 In addition, as per the Monte Carlo experiment reported in the Appendix, we attempted to estimate a 
hypothetical bias parameter capturing a possible tendency to overestimate the volume of use of river 
recreation sites in an SP exercise. In line with the Monte Carlo findings, the size of the outside good utility 
element meant that the hypothetical bias parameter could not be unidentified in this case. 
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be realised in our sample if all rivers in the region were improved from their current ecological 

status to excellent ecological status. The results of that analysis are presented in Table V where 

the standard errors of the welfare estimates have been estimated parametrically using the 

Krinsky-Robb resampling procedure. 

[INSERT TABLE V ABOUT HERE] 

From Table V we see that the combined data model suggests an annual welfare flow from 

the improvement in river water quality amounting to £20.77 (std. err. £2.39). That quantity can 

be further broken down into a flow derived in nonuse of £17.79 (std. err. £2.38) and a flow 

derived from use £3.04 (std. err. £0.97). Accordingly, our data suggest that the values of 

improvements in ecological status are gained mainly from nonuse utility which are 5.8 times 

larger than those gained from increases in use utility. 

Comparing the welfare estimates from the combined model to that from the travel cost 

model shows that both return similar estimates of welfare gains reflecting our earlier observation 

that in this case study the use utility parameters are identified mainly from information in the RP 

data. In contrast to our MC analysis, we also find that the mis-specified model based on just SP 

data returns a welfare estimate that while being a little lower on average from that returned by 

the combined data model is statistically indistinguishable from the latter. Of course, given the 

large differences in the cost and distance decay parameters of the two models, there is no 

guarantee that that similarity would hold for welfare analyses using the two models applied to 

very different landscapes with different distributions of quality-differentiated natural areas. 

8. Concluding Remarks 

The central contribution of this paper is to build an econometric specification for the 

analysis of VSCE data that is derived from a coherent structural model of preferences for 

landscape-wide environmental quality change. The functional form of the econometric 

specification of the preference function describing choice behaviour in a VSCE is highly nonlinear 

which stands in stark contrast to standard practice in the field of choice modelling. Indeed, 

analysts have come to increasingly depend on linear specifications of preference functions that 

are amenable to estimation using the mixed logit model. Often that modelling choice is justified 
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through appeal to the results of McFadden and Train (2000) who show that any RUM model can 

be approximated to any degree of accuracy by a mixed logit with appropriate choice of variables 

and mixing distribution. That reliance on linear preference functions has been questioned by 

(Andersen et al., 2012) and this paper lends weight to that criticism. In particular, our Monte Carlo 

analysis shows how a reduced form model (admittedly without random coefficients) fails to 

accurately predict welfare changes. Indeed, our research suggests that there may be good reasons 

to be suspicious of welfare calculations emanating from models using reduced-form 

specifications of the preference function especially when, as in the case studied in this paper, 

there is good reason to believe that the true preference function is highly non-linear. 

In the context of our study, another important justification for basing our econometric 

specification on a structurally-coherent model of preferences results from our use of both RP and 

SP data in estimation. Evidently, any theoretically consistent attempt at joint estimation must 

clearly identify which parameters of the preference function are informed on by the two different 

data sources (Eom and Larson, 2006). In our case, the behavioural data reflect just on the 

parameters determining use value and the hypothetical choice data on those determining both 

use and nonuse value. Those differences fall naturally out of our derivation of the econometric 

models for the two different forms of data from the same structural description of preferences.  

A final justification for the importance of structural modelling results from the 

requirement for benefits transfer. The use of reduced-form specifications that confound use and 

nonuse values or inadequately describes substitution relationships inhibit effective transfer of 

the value estimates outside the study area to locations exhibiting different spatial patterns of 

quality-differentiated substitutes. 

With regards to the findings of the empirical exercise, a number of results stand out. First, 

while it has long been established that utility from the use of a natural resource declines with 

distance from an individual’s home our research provides evidence to show that the same is true 

of utility from nonuse. Indeed, we find that nonuse values for the ecological quality of rivers 

decline at a rate approximately equal to the inverse of distance. Our research, therefore, supports 

the speculation of Bateman et al. (2006) that there may be a cultural identity or ‘ownership’ 
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dimension to nonuse values that precipitates distance decay in those values. Those speculations 

were based on the empirical findings of distance decay in the expressions of value made by 

nonusers of a resource (Bateman et al., 2005; Hanley et al., 2003). As far as we are aware, our 

empirical findings are the first to identify distance decay in nonuse values themselves.  

Our empirical application also reveals that value flows from river quality attributes differ 

in use and nonuse. Our empirical estimates suggest that nonuse utility may be a significant 

component of the welfare gains that arise from improving the ecological status of rivers. 

Accordingly, ignoring nonuse values may significantly understate the welfare gains that might 

arise from landscape-wide programmes of river quality improvement. 
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Figure 1: Typical Task from the Visual Spatial Choice Experiment 

 

  

 

Figure 2: Distribution of use-utility water quality parameters from Monte Carlo 
experiments differing in the size of the outside good utility parameter (α) 

 

Good Water Quality (𝛽2) Excellent Water Quality(𝛽3) 
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Figure 3: Distribution of nonuse-utility distance decay parameter and welfare estimates 
for improvement to excellent water quality from Monte Carlo experiments differing in 

the relative size of nonuse utility 
 

 

Figure 4: Study area and location of residence of sample 

  

Welfare Value of Quality Improvement Nonuse Distance Decay (𝜆) 
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Figure 5: River sites visited by the sample 

 
  



41 
 

Table I: Monte Carlo Simulation Treatments 

MC Simulation 
Treatment Name 

Nonuse Parameters  
Average Welfare Change from 

Improvement of all Rivers to Excellent 
Quality 

Poor 
Quality 

(𝑏1) 

Good 
Quality (𝑏2) 

Excellent 
Quality 

(𝑏3) 
 

Nonuse 
Element 

Use 
Element 

Ratio of Use 
to Nonuse 
Element 

Large 2 6 10  104.3 46.9 2.22 

Equal 1 3 5  52.1 46.9 1.11 

Small .5 1.5 2.5  26.1 46.9 0.56 

 
 

 

 

Table II: Summary of Monte Carlo simulations for mis-specified model applied to stated 
preference data 

Parameters 

Nonuse: Large  Nonuse: Equal  Nonuse: Small 

True 
Mean 
(sd) 

 True 
Mean 
(sd) 

 True 
Mean 
 (sd) 

Cost (𝛾) -0.1 
-0.101 
(0.006) 

 -0.1 
-0.102 
(0.006) 

 -0.1 
-0.1023 
(0.006) 

Poor Quality (𝑏1) 2 
4.953 

(0.785) 
 1 

3.541 
(0.763) 

 0.5 
2.809 

(0,736) 

Good Quality (𝑏2) 6 
15.152 
(1.337) 

 3 
11.049 
(1.175) 

 1.5 
8.941 

(1.037) 

Excellent Quality (𝑏3) 10 
26.435 
(2.131) 

 5 
19.666 
(1.791) 

 2.5 
16.211 
(1.572) 

Distance Decay (𝜆) -1 
-1.169 
(0.028) 

 -1 
-1.195 
(0.033) 

 -1 
-1.214 
(0.037) 

Welfare 151.22 
166.08 
(11.35) 

 99.08 
115.38 
(8.623) 

 72.99 
90.30 

(7.538) 
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Table III: Comparison of Sample and Population Characteristics 

Characteristics 
Yorkshire 

Region 
Sample 

Pearson 𝝌𝟐 
stat 

p-value 

Age of HRP     

<35 18.4% 23.4%   

35 to 54 38.4% 32.1%   

55 to 64 17.0% 17.5%   

>65 26.3% 27.0% 43.91 <0.001*** 

Household Size     

Small (1 or 2) 65.7% 57.7%   

Medium (3 to 5) 31.9% 38.5%   

Big (>5) 2.4% 3.8% 56.81 <0.001*** 

Children     

Yes 28.7% 35.5%   

No 71.3% 64.5% 40.98 <0.001*** 

Employment of HRP     

Part time 9.3% 13.5%   

Full time 41.7% 25.6%   

Self employed 10.1% 7.6%   

Unemployed 3.5% 3.6%   

Student 2.0% 3.7%   

Retired 26.2% 33.2%   

Looking after Home 1.8% 8.5%   

Other 1.5% 0.6%   

Sick 3.9% 3.6% 693.59 <0.001*** 

Residence     

Metropolitan 54.1% 58.5%   

Town 29.7% 22.0%   

Suburb 10.1% 16.6%   

Rural 6.1% 3.0% 144.63 <0.001*** 

Total Households 2,186,513 1,794   

Notes: Statistics report the probability that the sample could have been drawn at random from the 
Yorkshire region population. 
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Table IV: Parameter Estimates 

Parameter 

Parameter Estimates (std.err.) 

Combined Data 
Model 

Revealed Preference 
Model Stated 

Preference 
Model Random 

Effects 
Fixed 

Effects† 
Random 
Effects 

Fixed 
Effects† 

Use & Nonuse Utility Parameters      

Cost (𝛾𝑖~𝐿𝑁(𝛾, 𝜎𝛾
2))      

 Location of Distribution (𝛾) 
-1.398*** 
(0.074) 

-0.983*** 
(0.076) 

-1.410*** 
(0.081) 

-1.033*** 
(0.083) 

-0.255*** 
(0.062) 

 Scale of Distribution (𝜎𝛾) 
1.433*** 
(0.075) 

1.586*** 
(0.082) 

1.485*** 
(0.071) 

1.534*** 
(0.094) 

2.054*** 
(0.058) 

Use Utility Parameters      

Recreational Trip Type:      

No Trip  (𝛼𝐽+1)      

 Constant 
5.445*** 
(0.461) 

4.219*** 
(0.829) 

6.587*** 
(0.575) 

4.204** 
(1.851) 

- 

 Age 
-0.003 
(0.012) 

0.028 
(0.025) 

-0.019 
(0.015) 

0.025 
(0.037) 

- 

 Age Squared 
0.325*** 
(0.124) 

0.041 
(0.278) 

0.412** 
(0.169) 

0.095 
(0.434) 

- 

 Household Size 
0.039*** 
(0.003) 

0.049*** 
(0.004) 

-0.029*** 
(0.004) 

0.041*** 
(0.010) 

- 

 Children 
0.713*** 
(0.047) 

0.637*** 
(0.074) 

0.667*** 
(0.042) 

0.593*** 
(0.071) 

- 

 ln(Income) 
0.072 

(0.111) 
0.309* 
(0.173) 

0.034 
(0.100) 

0.326 
(0.283) 

- 

 Urban residence 
0.963*** 
(0.108) 

0.727*** 
(0.206) 

1.021*** 
(0.113) 

0.919 
(1.079) 

- 

 Working (base case) 0 0 0 0 - 

 Employed 
0.461*** 
(0.153) 

0.584** 
(0.235) 

0.513*** 
(0.152) 

0.763** 
(0.368) 

- 

 Retired 
-0.265 
(0.231) 

0.253 
(0.304) 

-0.049 
(0.248) 

0.317 
(0.745) 

- 

Other Trip (𝛼𝐽+2,𝑖~𝑁 (𝛼𝐽+2, 𝜎𝛼𝐽+2
2 ))  -  -  

 Location of Distribution (𝛼𝐽+2) 
5.388*** 
(0.383) 

4.542*** 
(0.526) 

5.981*** 
(0.472) 

4.856*** 
(0.639) 

- 

 Scale of Distribution (𝜎𝛼𝐽+2
) 

2.459*** 
(0.058) 

3.251*** 
(0.131) 

2.454*** 
(0.065) 

3.184*** 
(0.192) 

- 

River Trip (𝛼𝑗~𝑁(𝛼, 𝜎𝛼
2))  -    

 Location of Distribution (𝛼) 0 0 0 0 - 
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 Scale of Distribution (𝜎𝛼) 
3.146*** 
(0.127) 

0.000*** 
(0.000) 

3.151*** 
(0.120) 

0.000*** 
(0.000) 

- 

River Site Qualities:  -    

Ecological Status: Bad (𝛽0) 0 0 0 0 - 

Ecological Status: Poor (𝛽1) 
0.205 

(0.261) 
0.219 

(0.363) 
0.399 

(0.434) 
0.279 

(0.427) 
- 

Ecological Status: Good (𝛽2) 
0.213 

(0.245) 
0.480 

(0.474) 
0.509 

(0.465) 
0.767 

(0.600) 
- 

Ecological Status: Excellent (𝛽3) 
0.774** 
(0.321) 

0.735* 
(0.400) 

1.194*** 
(0.407) 

0.938** 
(0.418) 

- 

Land Use: Farmland (𝛽4) 0 0 0 0 - 

Land Use: Urban (𝛽5) 
0.561* 
(0.287) 

0.729*** 
(0.267) 

0.580** 
(0.281) 

0.745*** 
(0.266) 

- 

Land Use: Grassland (𝛽6) 
0.413* 
(0.250) 

0.358 
(0.253) 

0.408* 
(0.248) 

0.364 
(0.253) 

- 

Land Use: Woodland (𝛽7) 
0.786*** 
(0.260) 

0.860*** 
(0.247) 

0.732*** 
(0.257) 

0.863*** 
(0.246) 

- 

Population Density (𝛽8) 
-0.300*** 
(0.088) 

-0.236*** 
(0.079) 

-0.319*** 
(0.090) 

-0.236*** 
(0.080) 

- 

Nonuse Utility Parameters      

River Site Qualities:      

Ecological Status: Bad (𝑏0) 0 0 - - 0 

Ecological Status: Poor (𝑏1) 
0.029*** 
(0.007) 

0.031*** 
(0.006) 

- - 
0.027*** 
(0.002) 

Ecological Status: Good (𝑏2) 
0.053*** 
(0.013) 

0.059*** 
(0.009) 

- - 
0.053*** 
(0.003) 

Ecological Status: Excellent (𝑏3) 
0.065*** 
(0.016) 

0.070*** 
(0.011) 

- - 
0.065*** 
(0.004) 

Distance Decay: (𝜆𝑖~𝑁(𝜆, 𝜎𝜆
2))      

 Location of Distribution (𝜆) 
-1.176*** 
(0.050) 

-1.102*** 
(0.043) 

- - 
-0.876*** 
(0.024) 

 Scale of Distribution (𝜎𝜆) 
0.419*** 
(0.025) 

0.596*** 
(0.058) 

- - 
0.340*** 
(0.015) 

      

Relative Scale of CE (𝜎𝑆𝑃) 
1.651*** 
(0.411) 

1.457*** 
(0.272) 

- - - 

Log Likelihood  -296,768 -320,509 -284,923 -309,424 -9,014 

N 1,794 1,794 1,794 1,794 1,708 

† Fixed effect model contains 24 additional dummy variables identifying the location of recreational sites in 
river sub-basins. 
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Table V: Welfare Analysis of Sample Valuation of Improvement of all Rivers to Excellent 
Quality 

Model 

Mean Welfare Measures  

(£2008 per household per year) 

Median Mean 
Std. Err. 
of Mean  

95% Confidence 
Interval 

Combined Data Model 20.39 20.77 2.39 16.46 25.65 

Use-Utility 3.02 3.04 0.97 1.18 4.95 

Nonuse Utility  17.39 17.73 2.38 13.67 22.90 

Revealed Preference  3.17 3.22 0.84 1.69 5.08 

Stated Preference Model 19.10 19.23 1.43 16.70 22.28 

 

  

 


