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Abstract

An empirical question of long-standing interest is how price promotions affect a brand’s sale

shares in the fast-moving consumer-goods market. We investigated this question with con-

current promotions and sales records of specialty beer brands pooled over Tesco stores in

the UK. Most brands were continuously promoted, rendering infeasible a conventional

approach of establishing impact against an off-promotion sales baseline, and arguing in

favor of a dynamics approach. Moreover, promotion/sales records were volatile without eas-

ily-discernable regularity. Past work conventionally attributed volatility to the impact of exog-

enous random shocks on stable markets, and reasoned that promotions have only an

ephemeral impact on sales shares in stationary mean-reverting stochastic markets, or a

persistent freely-wandering impact in nonstationary markets. We applied new empirical

methods from the applied sciences to uncover an overlooked alternative: ‘systematic persis-

tence’ in which promotional impacts evolve systematically in an endogenously-unstable

market governed by deterministic-nonlinear dynamics. We reconstructed real-world market

dynamics from the Tesco dataset, and detected deterministic-nonlinear market dynamics.

We used reconstructed market dynamics to identify a complex network of systematic inter-

actions between promotions and sales shares among competing brands, and quantified/

characterized the dynamics of these interactions. For the majority of weeks in the study, we

found that: (1) A brand’s promotions drove down own sales shares (a possibility recognized

in the literature), but ‘cannibalized’ sales shares of competing brands (perhaps explaining

why brands were promoted despite a negative marginal impact on own sales shares); and

(2) Competitive interactions between brands owned by the same multinational brewery dif-

fered from those with outside brands. In particular, brands owned by the same brewery

enjoyed a ‘mutually-beneficial’ relationship in which an incremental increase in the sales

share of one marginally increased the sales share of the other. Alternatively, the sales

shares of brands owned by different breweries preyed on each other’s market shares.
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Introduction

We investigate the dynamic impact of a stream of price promotions on a brand’s market share

of sales in the fast-moving consumer-goods market. Price promotions include temporary price

reductions, coupons, rebates, promotion packs with extra content, loyalty discounts with

repeated purchases, or free goods and services contingent on the purchase of something else

(e.g., a ‘two for one special’ or a free bottle of wine with dinner).

At first glance, we might well expect promotions to have a positive impact on a brand’s

sales share; otherwise, why would retailers invest in them? Existing customers should increase

their short-term purchases of the promoted brand in response to lower prices, and their lon-

ger-term purchases due to increased brand loyalty (from receiving benefits beyond their nor-

mal purchase) and an ‘inertia’ effect encouraging repeated purchases. New customers might be

induced to switch from other brands on a trial basis [1]. However, the literature teaches us that

promotions might also have a negative impact by lowering a consumer’s repurchase probabil-

ity when the brand is no longer promoted [2]. Promotions could cause consumers to down-

grade their perceptions of brand quality, focus too heavily on price rather than the brand’s

distinguishing qualities, or lower their price expectations to the promotional level. Moreover,

these positive and negative forces could operate simultaneously [1, 3]. Consequently, the

ambiguous net impact of price promotions on a brand’s sales share must be resolved empiri-

cally from available promotions and sales records, with theory confirmed brick-by-brick from

detected empirical regularities across diverse cases [4].

We investigate the impact of price promotions with concurrent sales and promotions time-

series records of specialty beer brands pooled over all Tesco stores (the largest chain in the

UK). Specialty beers are “typically regular beers brewed to a classic style (such as Porter, Stout,

or Pale Ale) but with some new flavor added” http://www.dummies.com/food-drink/drinks/

beer/types-of-specialty-beers/. This rich data set affords a valuable opportunity to advance

empirical understanding of real-world promotional marketing dynamics. The records cover

104 weeks (February 2009 to January 2011). Weekly sales were provided by scanned purchases

of Tesco ClubCard holders numbering roughly 17 million households in the UK (40% of all

households) (S1 File). ClubCard purchases account for about 80% of total sales. Weekly pro-

motions made by each brand were collected by dunnhumby—a subsidiary of Tesco focused on

consumer data analysis (S2 File). As discussed more extensively below, we converted the rec-

ords to mean-adjusted weekly brand shares of sales and promotions.

The records are plotted in Fig 1 (black curves). We first observe that most brands were con-

tinuously promoted (Fig 1A). Past work commonly evaluated the effectiveness of isolated pro-

motions by comparing sales after a promotion against a prior off-promotion baseline [1]. This

approach works best if promotions are indeed independent events. However, when brands are

continuously promoted, there are reasons to expect in theory and practice that consumer

responses will be linked through time. For example, consumers may stockpile product in

response to an earlier price discount, and thus be taken out of the market for a current promo-

tion [3]. Analysts miscasting a continuous promotional stream as a sequence of independent

events face the daunting—if not impossible—task of establishing an artificial baseline that cuts

off the effectiveness of previous promotions without substantially biasing the results. This

argues for an empirical approach that respects the dynamics of real-world promotional

activity.

We next observe that the promotions and sales records are volatile without easily-discern-

able patterns or regularity (Fig 1A and 1B). Early work conventionally attributed observed

market volatility to exogenous random shocks; and consequently, relied on an array of linear-

stochastic models that restricted the range of empirically-detectable promotional marketing
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dynamics. In particular, these models presumed that markets self-correct as economic agents

re-adjust supply to demand in response to shocks, and thus formulated sales as stationary

mean-reverting stochastic processes. As a result, promotions were restricted to have only an

ephemeral impact because sales would revert to pre-promotional long-term mean perfor-

mance levels (see review by Dekimpe et al., 2005). Distributed-lag models (such as the ‘Koyck’

model) forcibly dampened long-term promotional impacts. These models were justified

empirically on the basis that they provided good fits to the data [5].

Subsequent work worried that empirical evidence supporting ephemeral promotional

impacts was more an artifact of the stationarity modeling restriction than an accurate depic-

tion of real-world market behavior; and consequently, formulated more flexible models allow-

ing for nonstationary sales that randomly evolve (‘freely wander’) in response to promotional

shocks [6]. In particular, linear stochastic autoregressive specifications empirically distin-

guished between stationary and nonstationary sales by determining whether the fitted model’s

autoregressive lag polynomial had a less than unitary root (stationarity), or a unit root (nonsta-

tionarity). A current change in sales was calculated as the weighted sum of promotional-mar-

keting shocks in previous periods, where weights measured the current impact of a unit shock

in a given previous period. This remains a conventional approach for detecting persistent mar-

ket impacts in other applications as well [7].

In limiting market taxonomy to the dichotomy between self-correcting stationary markets

and freely-wandering nonstationary markets, past work foreclosed a third possible explanation

for real-world volatility: Markets may be endogenously unstable (not self-correcting) as eco-

nomic agents are prevented from smoothly re-adjusting supply to demand due, for example,

to financial or institutional constraints. In a series of articles entitled “Big Economic Ideas” [8],

Fig 1. Plots of Tesco weekly promotions and sales records with isolated signals. We improve the performance of NLTS by isolating structured variation (signal) from

unstructured variation (noise) in observed records (black curves) with singular spectrum analysis. Isolated signals (red curves) are dominated by slow-moving trends, a

triplet of lower-frequency oscillations (13, 8.667, and 6.5 weeks), and another triplet of higher-frequency oscillations (5.2, 4.2, and 2.1 weeks).

https://doi.org/10.1371/journal.pone.0221167.g001
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The Economist recommended that “like physicists, [economists] should study instability

instead of assuming that economies naturally self-correct” [9]. Similarly, Galtier (2013) identi-

fied diagnosing whether markets are inherently unstable as the key to evaluating the effective-

ness of various public market interventions to counter threats to food security from food-price

volatility [10]. Acknowledging the possibility of endogenously unstable markets opens the

door to the possibility of ‘systematic persistence’ in which the economic impacts of strategic

(not random) promotions persist and evolve systematically (not freely wander) in accordance

with a complex network of nonlinear state-dependent interactions encoding the history of

moves and countermoves of competing brands.

Whether volatility in market records is stochastically or deterministically forced makes a

profound difference in how to reliably assess the dynamic impact of promotions. In a linear-

stochastic world, we look for randomly-drifting interactions among market variables. In a

nonlinear-deterministic world, we look for systematic state-dependent interactions that

depend mechanistically on the levels of market variables over time. Indeed, systematic interac-

tions are implied by the mechanistic nature of empirical questions posed in a survey paper by

Blattberg et al. (1995): Do a brand’s promotions substantially increase its own sales? Do brands

use promotions to cannibalize the sales shares of competing brands in the battle for valuable

shelf space in retail outlets?

Since neither a linearly-stochastic or nonlinear-deterministic world is compelled by theory,

we let the data guide the selection. This reduces the risk that mistaken presumptions one way

or the other distort assessment of real-world impacts of a stream of promotions. We take an

innovative data-diagnostic approach that seeks to reconstruct real-world market dynamics

directly from observed time-series records on sales and promotions. Our approach operates in

the initial inductive window of the classic scientific method in which “[scientists] are presented

with observations and asked to build theories. . .to go backward, to solve for [the system] that

made them” [11]. The discipline of nonlinear dynamics has solved the backward problem of

mathematically reconstructing system dynamics from system output without knowledge of

underlying equations [12]. Nonlinear Time Series Analysis (NLTS) adapts these results to

empirically reverse-engineer real-world system dynamics from observable output data given

that the real-world system is largely unknown [13, 14]. A rich array of NLTS-based methods

has recently emerged in other disciplines that leverages empirically-reconstructed dynamics to

identify and measure dynamic causal interactions in real-world networks [15, 16].

A reverse-engineering approach to empirical economics contrasts with more conventional

model-centric approaches that indirectly simulate market dynamics with models fitted to the

data, and presume that good fits imply real-world correspondence [17, 18]. However, relying

on goodness-of-fit to empirically validate models commits the logical fallacy of ‘affirming the

consequent’: If A, then B; B, therefore A. In the context of model validation: If the model is

true, it provides a good fit; this model provides a good fit, therefore it is true [19]. We can rea-

son that a model providing a poor fit is incorrect, but we cannot presume the opposite because

other models formulated differently also might be parameterized to fit well [20].

We use an NLTS data-diagnostic approach to measure time-dependent marginal impacts

of a brand’s stream of promotions on its own sales share, and those of competitors with the

Tesco dataset.

Materials and methods

Data preprocessing of Tesco sales and promotions records

Data access was made possible as a result of a longstanding relationship between Professor

Andrew Fearne and the data providers, dunnhumby. Now in its fourtheenth year, this
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relationship provides Professor Fearne and his team of researchers with access to the retailer’s

loyalty card data via a web-portal that is managed by dunnhumby, for the purpose of conduct-

ing research.

Promotions were reported in the data set (S2 File) as savings to consumers: S = PR−PP,

where PR is the regular (pre-promotion) unit price and PP is the promotional counterpart. Sav-

ings S were reported directly for simple price cuts. For more sophisticated promotions—such

as any two for £3—the ‘equivalent single promotional price’ was reported (PP = £3/2 = £1.50),

along with the ‘depth of cut’ (DC) measuring the percentage decrease from the regular price

(for example, 3.85%). We computed consumer savings S for these promotions indirectly by

solving for the unreported regular price PR from the definition of DC (S3 File):

DC ¼
PR � PP
PR

) PR ¼
PP

1 � DC
ð1Þ

and substituting it into the consumer savings equation:

S ¼
PP

1 � DC
� Pp ¼ Pp

DC
1 � DC

� �

¼ £1:50ð0:04Þ ¼ £0:06 ð2Þ

The bar chart in Fig 2 plots the category sales and promotions shares of the 25 brands com-

peting in the specialty beer category in declining order of category sales share. We computed a

brand’s category sales share as the fraction of its sales to the category total, both aggregated

over the total record length (104 weeks). We computed promotions shares in the same way.

We limit our investigation to brands with the top nine category sales shares since they exhib-

ited the most continuous sales and promotions over the record length. These brands are listed

in Fig 2 with the variable names used to identify them. Two of the brands (Leffe and Hoegaar-

den) are responsible for five of the nine packaging configurations competing in this category.

For example, there are two different configurations of the Hoegaarden brand: ‘White Beer Bot-

tle’ and White Lager Bottles’. The Leffe and Hoegaarden brands are owned by the same multi-

national brewery (ABInbev), and we will examine whether competition between these brands

differs from their competition with outside brands in the category (e.g., Innis & Gunn).

For each of the nine retained brands, we computed weekly shares of category sales by divid-

ing weekly brand sales by category totals for the week. We computed weekly shares of category

promotions in the same way. We removed the mean (computed over the 104-week record

length) from each computed sales and promotion series. These are the time-series records that

we analyze below, and refer to as ‘sales shares’ and ‘promotion shares’.

Nonlinear time series analysis (NLTS)

We present a sequential framework of methods for implementing NLTS (Fig 3) drawn from

an extensive review of sound empirical practices recommended in the literature [14]. We

introduce the methods in the order that we apply them, and in the depth facilitating discussion

of results. We leave more technical descriptions to cited primary sources. We also identify the

R packages that we used to run NLTS procedures.

Signal processing. The performance of NLTS depends critically on the extent to which

real-world dynamics are embedded into available records, which may be noisy, short and non-

stationary. The noise in records is often attributed to errors in measuring, recording, or pro-

cessing data, and to random environmental shocks [21]. Consequently, we first apply the

Singular Spectrum Analysis (SSA) signal processing method to isolate structured variation

(‘signal’) from unstructured variation (‘noise’) in a record [14, 22, 23]. The signal can be fur-

ther decomposed into a slow-moving trend component and oscillatory components. We
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screen for records with ‘strong’ signals—indicating that structure has greater weight in the

processing than noise—and subsequently test them for deterministic nonlinear dynamics.

SSA proceeds in three stages: In the ‘decomposition’ stage, we construct a trajectory matrix

whose columns are the observed record followed by its forward-delayed copies. We fix the

dimension of the trajectory matrix with the ‘window length’ parameter (L), typically set pro-

portionate to the dominant cycle length in the Fourier power spectrum and less than half of

the record length [22, 24]. We decompose the trajectory matrix into the sum of new matrices

with singular value decomposition. Each new matrix is composed of an ‘eigentriplet’, which is

the product of an eigenvalue, and its corresponding right and left eigenvectors. The eigenvalue

measures the weight in the decomposition attributed to the particular matrix component. In

the ‘grouping’ stage, we turn to diagnostics provided by singular value decomposition to split

the decomposed matrices into groups corresponding to various signal and noise components

of the time series. The cumulative weights attributed to matrices grouped into the signal com-

ponent provides the measure of signal strength. Finally, in the ‘reconstruction’ stage, we trans-

form these matrix groups back into time series vectors with ‘diagonal averaging’ [22].

Stationarity. We next test whether a strong signal is stationary; that is, whether it exhibits

similar dynamic behavior throughout its duration [25] that we can justifiably attempt to recon-

struct as a single dynamic system with NLTS [26]. In particular, we search for ‘change

Fig 2. Description of Tesco dataset. The bar chart plots the category sales and promotions shares for each brand calculated over the entire 104 weeks of

the dataset in declining order of sales shares. We focus on the brands with the largest nine category sales shares since they exhibited the most continuous

sales/promotions records. The Leffe and Hoegaarden brands are both owned by ABInbev.

https://doi.org/10.1371/journal.pone.0221167.g002
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points’—indicating time periods in which abrupt structural changes in dynamic behavior have

occurred—with the Singular Spectrum Transformation (SST) approach [27, 28].

SST is implemented by applying SSA in a sliding window through the signal. We first select

the ‘change-point window’ that partitions the signal into past and future series of equal length

centered around a given reference time. There are no precise rules for setting the width of the

non-overlapping windows. Past studies recommend running SST for wide intervals of window

widths to ascertain whether results remain stable [27]. We perform SSA on the past and future

series, and compute a ‘change-point score’ (CP-score) indicating the extent to which the SSA

Fig 3. A framework for reconstructing real-world market dynamics from observed time-series records with NLTS.

We implement Nonlinear Time Series Analysis (NLTS) with a sequential framework based on an extensive review of

sound empirical practices recommended in the literature.

https://doi.org/10.1371/journal.pone.0221167.g003

Nonlinear dynamics of promotional marketing

PLOS ONE | https://doi.org/10.1371/journal.pone.0221167 September 18, 2019 7 / 28

https://doi.org/10.1371/journal.pone.0221167.g003
https://doi.org/10.1371/journal.pone.0221167


decomposition substantially changes [27]. We then increment the reference time and re-com-

pute the CP-score. The result is a curve of CP-scores across time periods within the sliding

windows.

We test the statistical significance of the CP-scores along this curve by bootstrapping an

upper 95% confidence levels using randomized surrogate data vectors [27]. CP-scores falling

below confidence levels are not statistically significant, and consequently do not represent

structural shifts. Since we use surrogate data testing throughout the paper, we discuss it in the

following section, and detail its application to CP-scores at that point.

Surrogate data testing. Surrogate data testing proceeds in three steps [29, 30]. First, we

generate an ensemble of surrogate data vectors that destroy temporal structure in the signal,

while maintaining shared statistical properties providing stochastic explanations for the behav-

ior of a ‘discriminating statistic’ (such as the CP-score) computed from observed data. The

simplest surrogate data vectors—IID (identically and independently distributed) surrogates—

are constructed by shuffling the signal multiple times to destroy its serial structure. Statistically

speaking, IID surrogates result from random draws without replacement from the same proba-

bility distribution as the observed time series. However, in practice, surrogates are generated

to construct more complex stochastic processes. The most commonly used—amplitude-

adjusted Fourier transform (AAFT) surrogates—are constructed as a linear-stochastic random

variable. We generate AAFT surrogates in testing for statistical significance throughout the

paper. Next, we compute the selected discriminating statistic for the observed data and each

surrogate data vector.

Finally, we apply nonparametric rank order statistics to test whether the discriminating sta-

tistic computed from observed data is significantly different from the those computed from

the surrogate ensemble [30]. We generate S = (2k/α)−1 surrogates for a two-tailed test and S =

(k/α)−1 for a single-tailed test—where α is probability of a ‘false positive’ (i.e., rejecting a true

null hypothesis), and k determines the number of surrogates with larger k values providing

more sensitive tests. The discriminating statistic computed from the observed data is statisti-

cally significant if it falls within the extreme ranges of surrogate measurements ranked in

descending order; that is, among the k largest (smallest) for an upper-tailed (lower-tailed) test.

We use the surrogate data method to test whether CP-scores computed from sales/promo-

tions signals are statistically significant; and consequently, that the corresponding signals are

nonstationary. We compute CP-score curves for each surrogate data vector, and rank the

array of surrogate CP-scores in descending order for each time period within the sliding win-

dows. Running an upper-tailed test, the CP-scores computed from the data are significant if

they rest above an upper 95% confidence limit composed of the lowest of the k largest surro-

gate CP-scores for each time period. A signal is deemed to be nonstationary if its CP-score

curve rests above the upper 95% confidence limit. NLTS requires stationary signals, so we

screen nonstationary signals from further analysis.

Phase space reconstruction. The cornerstone of NLTS is phase space reconstruction,

which is a mathematically rigorous method for reverse-engineering real-world system dynam-

ics from observed data. Phase space is the graphical portrayal of deterministic system dynamics

[31]. Phase space coordinates are provided by the system variables, and each multidimensional

point records the levels (states) of system variables at a point in time. Phase space trajectories

connecting these points depict the co-evolution of system variables from given initial states. If

system dynamics are ‘dissipative’, these trajectories are bounded within a low-dimensional

subset of phase space, and forever evolve along an ‘attractor’ in this subspace—a geometric

structure with noticeable regularity [32]. Dissipative dynamics are ‘dimension reducing’—an

especially useful modeling property since long-term system dynamics can be investigated with

Nonlinear dynamics of promotional marketing
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relatively few degrees of freedom regardless of the complexity or dimensionality of the system

generating the data [33].

We illustrate phase-space dynamics with data on snowshoe hare and lynx populations col-

lected by the Hudson Bay Company in Canada from 1845 to 1935 [34]. The time-series plots

show that the populations cycle through time (Fig 4A), and the phase-space portrait (obtained

by plotting lynx against hares at each point in time) shows that the populations co-evolve

along classic predator-prey cycles constituting the attractor for the system (Fig 4B). A large

lynx population overconsumes available hares and eventually crashes for want of prey. Hares

recover until pressed again by the recovering lynx population, and so on.

Phase space was limited as an empirical tool for recovering real-world dynamics from data

because early practitioners assumed that they required time series records on all system vari-

ables. Obviously, one cannot hope to identify or measure all of the variables interacting in real-

world dynamic systems. However, a major breakthrough in empirical dynamics occurred

when mathematicians proved that phase space dynamics could be reconstructed from even a

single variable by using its delayed copies as surrogates for unobserved variables [35]. An intui-

tive explanation is that each variable in an interdependent dynamic system encodes the history

of its systematic interactions with the other variables. Returning to the Hudson Bay Company

data, recall that we constructed the original predator-prey attractor using both the lynx and

hare population records (Fig 4B). Now we reconstruct a shadow version of this attractor with

only one of the variables and its one-period forward-delayed copy serving as a surrogate for

the omitted variable (time-delay embedding). The shadow attractor reconstructed from only

the lynx (hare) population is shown in the leftward (rightward) plot in Fig 4C. The green lines

emphasize that the shadow attractors correspond one-to-one with the original attractor, and

thus correspond one-to-one with each other [15].

Takens (1980) formally proved that time-delay embedding provides a 1–1 mapping of sys-

tem dynamics from the original phase space (constructed with all system variables) to the

reconstructed shadow phase space so long as the latter has sufficient dimensions to contain the

original attractor (at least two dimensions in the Hudson Bay Company example). In general

application, we construct an embedded data matrix, M, with the observed time series in the

first column followed by other columns storing its forward-delayed copies. For example, we

embed the first ten observations of the S3 record in Fig 5A. In the first column of M, S3 is

unlagged; in the second column, S3 is forward-lagged by two periods; and in the third column,

S3 is forward-lagged by four periods. Observations in the gray rectangle are lost to the for-

ward-lagging process. The rows of M are multidimensional points on a reconstructed

attractor. For example, the first point on the attractor is P1 = (-0.04, -0.05, -0.07). The geomet-

ric representation of the reconstructed attractor is a scatterplot of all rows of M (Fig 5B).

The embedding process requires selection of three parameters: the ‘embedding delay’

(number of periods separating delayed copies), the ‘Theiler window’ (correction for serial cor-

relation), and the ‘embedding dimension’ (number of columns in the embedded data matrix,

M). The search for embedding parameters is aided by statistical rules-of-thumb designed to

select values reconstructing attractors with the clearest resolution [13, 36].

The embedding delay is conventionally selected as the lag giving the first minimum of the

average mutual information function—a probabilistic measure of how a time series relates to

successively delayed copies of itself. This is thought to introduce a delay that is not too short

for system dynamics to evolve, but not so long that it skips over important dynamic structure

[36]. The Theiler window can be estimated as the lag giving the first minimum in the autocor-

relation function [25]. Time series observations within the window are not used in estimating

the embedding dimension because they reflect proximity in time rather than the attractor’s

geometric structure [37]. Finally, once the embedding delay and Theiler window are estimated,

Nonlinear dynamics of promotional marketing
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Fig 4. Time-delay embedding method of phase space reconstruction. (a) As an illustration, we reconstruct a phase space attractor from time series records on hare

and lynx populations [34]; (b) The original phase-space attractor results from scatter plotting the observed populations at each point in time; (c) Using ‘time-delay

embedding’, a ‘shadow’ attractor can be reconstructed from the perspective of only one of the populations by using its forward lagged copy as a surrogate for the omitted

population. Original phase space dynamics map 1–1 to the reconstructed shadow phase space dynamics so long as reconstructed spaces have sufficient dimensions to

contain the original attractor [12]. Since reconstructed attractors map 1–1 with the original attractor, they map 1–1 with each other. This provides the basis for the

‘convergent cross mapping’ method of detecting causality in complex dynamic systems [15].

https://doi.org/10.1371/journal.pone.0221167.g004

Fig 5. The embedded data matrix and reconstructed phase space. (a) The time-delay method of phase space reconstructed is implemented by constructing an

‘embedded data matrix’,M, with the observed time series in the first column followed by columns storing its forward-delayed copies. For example, we embed the first

ten observations of the S3 record, where observations in the gray rectangle are lost to the forward-lagging process; (b) The scatter plotted rows of M are

multidimensional points on a reconstructed attractor.

https://doi.org/10.1371/journal.pone.0221167.g005
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the embedding dimension is conventionally selected with the false nearest neighbors test [36].

An attractor is initially reconstructed in two dimensions, and distances between points on the

attractor are computed. This exercise is repeated in three dimensions, and the percentage of

points growing farther apart from two to three dimensions (false nearest neighbors) is com-

puted. If the percentage of false nearest neighbors is below a selected tolerance level, then two

dimensions is judged to be sufficient to contain the reconstructed attractor; otherwise, the test

proceeds to the next higher dimension. An attractor reconstructed in too few dimensions does

not have space to fully express itself, while one constructed in too many loses geometric clarity.

In practice, we are not limited to using only one observed variable to reconstruct phase

space. Takens’ theorem has been generalized to ensure that original phase space dynamics are

also preserved in reconstructions using different combinations of system variables and their

delayed copies [38]. This is a very useful result in empirical practice because it allows us to

reconstruct a real-world attractor from multiple perspectives depending on data availability

and research objective.

Surrogate data testing provides a statistical safeguard against mistaking apparent geometric

regularity in a reconstructed attractor for deterministic nonlinear dynamic structure [29, 30].

We reconstruct attractors from the observed record and each surrogate data vector. AAFT sur-

rogates (discussed above)—the most popular surrogates in practice—are generated to test the

hypothesis that an empirical attractor is reconstructed from a linear-stochastic random

variable.

Conventional discriminating statistics used to compare hallmark characteristics of nonlin-

ear dynamic behavior in the observed and surrogate attractors include an attractor’s ‘fractal

dimension’, the ‘maximum Lyapunov exponent’ measuring an attractor’s sensitivity to initial

conditions (i.e., whether trajectories on the attractor exponentially diverge over time), an

attractor’s short-term nonlinear predictive skill, and an entropy complexity measure, such as

‘permutation entropy’ [39]. We selected permutation entropy as the discriminating statistic

because we could calculate it most reliability given the short duration of the time-series records

in our case study. Permutation entropy modifies the classic Shannon H measure of the infor-

mation contained in a time series for application to finite noisy data [40]. When H = 0, the

time series is perfectly predictable from past values. H achieves a maximum value when time

series observations are independent and identically distributed. Consequently, large values of

H indicate more random behavior.

Convergent cross mapping. The next question is whether the attractors reconstructed

from the different perspectives of multiple observed signals reconstruct the same real-world

dynamic. If so, then the corresponding signals are deemed to causally interact in the same real-

world dynamic system. Convergent cross mapping (CCM) was developed to answer this type

of question [15]. The logic underlying CCM is that, if variables X and Y interact in the same

dynamic system, then attractors reconstructed from delayed copies of X (MX) and delayed cop-

ies of Y (MY) map 1–1 to the original attractor (M), and consequently map 1–1 to each other

(as depicted in Fig 4B and 4C). CCM tests whether a 1–1 mapping exists between MX and MY

by measuring the skill with which one attractor can be used to cross-predict values on the

other. For example, the notation XxmapY indicates that MX is used to cross-predict Y. This

asks whether Y’s dynamics are embedded into X’s long-term dynamics (MX); in other words,

whether Y forces X.

Sugihara et al. (2012) perform cross mapping with a simplex-projection algorithm. We

illustrate this with the cross mapping S3xmapS3P in Fig 6A, where S3 is called the ‘library’ vari-

able and S3P the target variable. We first reconstruct the attractors MS3 and MS3P using S3 and

S3P and two of their forward-delayed copies as phase-space coordinates, respectively. In this

illustration, we fix a single reference point on MS3 at week 26 (P26). More generally, CCM is
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run over a sampling of points on the attractor. We next identify the m+1 nearest neighboring

points to the reference point, where m = 3 is the embedding dimension of MS3. To locate near-

est neighbors, we compute Euclidean distances between the multidimensional points on MS3

(i.e., between the reference point and the other rows of the corresponding embedded data

matrix). In general, the Euclidean distance between two tridimensional points P(p1,p2,p3) and

Q(q1,q2,q3) is:

kP � Qk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp1 � q1Þ
2
þ ðp2 � q2Þ

2
þ ðp3 � q3Þ

2

q

ð3Þ

Fig 6. Convergent cross mapping. (a) Convergent Cross Mapping (CCM) operates with a ‘simplex-projection’ algorithm [15]. We illustrate this with the cross mapping

S3xmapS3P. We reconstruct the attractorsMS3 and MS3P using S3 and S3P and two of their forward-delayed copies as phase-space coordinates, respectively, and fix a

single reference point (P26) on MS3 at week 26 (left plot). We next identify the reference point’s m+1 nearest neighboring points, wherem = 3 is the embedding

dimension of MS3. These neighboring points (P80, P79, P35, and P25) form a simplex around the reference point on MS3 that is projected onto MS3P by transferring the

time coordinates of the reference point and nearest neighbors fromMS3 to MS3P (right plot). If there is a 1–1 mapping from MS3 to MS3P, then these points will be

nearest neighbors on MS3P as well, and their weighted average will skillfully predict the corresponding reference point on MS3P (P26). This is repeated for a sampling of

reference points on theMS3. Cross prediction skill is measure with the correlation coefficient between reference points on MS3P and their predicted values; (b) Predictive

skill should converge as the number of points used to constructMS3 (the ‘library’) increases. The figure shows the skill with which MS3 cross predicts other variables in

the dataset. Convergent correlation coefficients closer to one reflect stronger causal interactions; (c) Statistically significant cross mappings must rest above upper 95%

confidence bounds constructed with surrogate data; and (d) To distinguish causal interaction from synchronized behavior, cross mappings run at backward and

forward delays must perform best at nonpositive delays as in the figure.

https://doi.org/10.1371/journal.pone.0221167.g006
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The nearest m+1 = 4 neighbors to reference point P26 on MS3 are P80, P79, P35, and P25 (Fig

6A, left plot). These neighbors form a simplex around the reference point on MS3 that is pro-

jected onto MS3P by transferring the time coordinates of the reference point and nearest neigh-

bors from MS3 to MS3P (Fig 6A, right plot). If there is a 1–1 mapping from MS3 to MS3P, then

these points will be nearest neighbors on MS3P as well.

Sugihara et al. (2012) establish this by seeing how well the reference point on MS3P (P26)

can be predicted with a locally-weighted average of the nearest neighboring points transferred

from MS3:

dP26jMS3 ¼
Xmþ1

i¼1
wiPnnðtiÞ ð4Þ

where Pnn(ti) is the nearest neighbor in the ith week. The nearest neighbors closest to the refer-

ence point on MS3 (P26) receive the greatest weight (wi) according to:

wi ¼ ui=
X

uj i; j ¼ 1; . . . ;mþ 1 ð5Þ

where

ui ¼ exp
� kP26 � PnnðtiÞk
kP26 � Pclosestnn k

� �

ð6Þ

and Pclosestnn is the closest neighboring point. The goodness-of-fit between the reference point on

MS3P (P26) and its predicted value dP26 can be measured with the Pearson correlation coeffi-

cient (ρ).

The cross-mapped predictions for a sampling of reference points on the attractor must pass

three tests before being accepted as representing a real-world causal interaction. The first is a

convergence test demanding that the simplex-projection prediction algorithm (Eqs 4–6)

becomes more skillful as the portion of the record for S3 used to reconstruct MS3 (the library)

increases in length; in other words, as the structural information in MS3 increases. This occurs

if ρ converges closer to an acceptable level as library size increases. As an example, we show

convergence curves derived by using S3 (i.e.,MS3) to cross map the other variables testing posi-

tive for nonlinear dynamics (Fig 6B). Causal interactions are stronger the further the curves

are away from the origin. We see that S3 is driven most strongly by its own weekly promotions

share (S3P), providing preliminary evidence that own promotions have a sustained impact.

We also see that S3 is driven by the weekly sales and promotions shares of competing brands

(S1 and S1P, respectively). If, for example, we set a convergence threshold of ρ = 0.33 for the

cross-mapping curves in Fig 6B, we conclude that S3P, S1P, S1, S8, S2, and S9 pass the test;

while S5, S4, S9P, S8P, S7P, and S4P fail.

Second, we test each cross mapping for statistical significance. In particular, we test the null

hypothesis that a cross mapping S3xmapS3P, for example, cross predicts with more skill than

when S3 (the library variable) is replaced with surrogate library vectors. We run the cross map-

ping for each of S = (k/α)−1 AAFT library surrogates, and in an upper-tailed test, reject the

null hypothesis only if S3 cross predicts with a larger ρ than the kth largest surrogate ρ for each

library in the convergence plot. In Fig 6C, we observe that S3xmapS3P is statistically significant

since the convergence plot (black curve) rests above the upper 95% confidence curve (red

curve) for each library.

Finally, we follow methods developed by Ye et al. (2015) to further screen statistically signif-

icant cross mappings for false positives in which synchronized behavior is confused for causal

interaction. Non-interactive variables may falsely appear to interact when they are synchro-

nized to the same external variable, for example, when two unrelated environment variables
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are synchronized to identical climatic or seasonal forces. In Fig 6D, we show the results of run-

ning the cross mapping S3xmapS3P (using the entire time series for S3 as the library) over a

spectrum of negative and positive delayed responses between the driving variable (S3P) and

the response variable (S3) to identify the delay for which CCM performs best. Ye et al. (2015)

show that CCM performs best for a non-positive delay in the true causal direction. The cross

mapping passes this test since CCM performs best at a zero delay, denoting instantaneous

interaction between the two variables.

Characterizing the nature of interactions with the S-mapping method. We use the

S-Mapping method [16] to measure the strength of, and characterize, interactions identified

with CCM: Are detected interactions mutually-beneficial (symbiotic), mutually-detrimental

(competitive), cannibalistic (predator-prey); and how do these interactions vary with time?

The S-mapping method computes a matrix of interactions among state variables as a dynamic

system evolves along a phase space attractor. Similar to CCM, it operates with a simplex-projec-

tion algorithm. In this case, all the points on the attractor are projected forward one period

except for the reference point, and the simplex is fitted with a locally-weighted multivariate linear

regression scheme. As this is repeated for successive reference points along the attractor, the fit-

ted lines collectively begin to map out the curvature of phase space, and the estimated regression

coefficients measure slopes in the direction of each coordinate variable at each point [41]. When

the S-mapping procedure is completed, we have a matrix whose rows are interactions measuring

the marginal response of a selected response variable to incremental changes in itself and the

other variables at each point on the attractor. The columns of this interaction matrix give the

time series of each interaction. For example, if we construct an attractor using S1, S3P, and S3 as

phase-space coordinates; select S3 as the response variable; define the library as the 50th through

70th points on the attractor; then the format of the interaction matrix is:

@S3

@S1
ðP51Þ

@S3

@S3P
ðP51Þ

@S3

@S3
ðP51Þ

@S3

@S1
ðP52Þ

@S3

@S3P
ðP52Þ

@S3

@S3
ðP52Þ

. . . . . . . . .

. . . . . . . . .

@S3

@S1
ðP70Þ

@S3

@S3P
ðP70Þ

@S3

@S3
ðP70Þ

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

ð7Þ

The data inputted into the locally-weighted regression scheme that generates Eq 7 are

shown in Fig 7A. The dependent variable is the response variable advanced one period, S3(t

+1), with the row of data corresponding to the reference point (P52 in this example) deleted.

The independent variables are the multidimensional points on the attractor manifold. These

data are imported into a weighted linear regression in which observations corresponding to

nearer neigboring points are weighted more heavily according to:

wk ¼ exp
� ykpk � prefk

�d
; �d ¼

1

n

Xn

k¼1
kpk � p

refk ð8Þ

where there are k = 1,. . ., n points on the attractor receiving weights (reference point pref is

omitted), and pk is the kth point on the attractor. The parameter θ�0 is set by the user, and

determines how strongly the regression is weighted to the localized neighborhood around the

reference point. If θ = 0, the regression reduces to a VAR model with constant coefficients, so

that location does not matter on the attractor. Consequently, if θ is set too small, the temporal

variability of interactions is biased downward. Large values of θ give greater weight to nearby
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points, making the S-map more sensitive to observational error. Supplementary material to

Deyle et al. (2015) discuss strategies for setting θ. Fig 7B shows the matrix of interactions calcu-

lated for this example (θ = 10). The rows are interactions across variables for each point on the

attractor. The columns are the time series for each interaction, which are plotted in Fig 7C.

Computational packages. We used R 3.4.1 and the following packages to run NLTS pro-

cedures in this paper: Rssa 0.13–1 (singular spectrum analysis) [42]; tseriesChaos 0.1–13 (phase

space reconstruction and surrogate data analysis) [43]; fractal 2.0–1 (compute AAFT surro-

gates) [44]; fields 9.6 (compute distance matrix) [45]; igraph 1.0.1 (plot network diagrams)

[46]; rEDM 0.6.9 (convergent cross mapping) [47]. The code used to compute interaction coef-

ficients with S-maps can be downloaded from supplementary materials to [16]. Remaining

code is detailed in [14], and can be downloaded from http://www.dista.unibo.it/~bittelli/. We

used Origin 2018b graphics software for three-dimensional plotting [48].

Results

Signal processing

We plot signals isolated from the sales and promotions time-series records in Fig 1 (red

curves). While the plotted signals visually reproduce much of the structural variation in several

of the corresponding records, the objective is not to obtain a perfect match (since observed

Fig 7. The S-mapping method of quantifying causal interactions. The S-mapping method [16] relies on a locally-weighted multivariate linear regression scheme to

map out the curvature of a reconstructed attractor. This is used to compute directional derivatives that quantify marginal changes in a selected response variable to

incremental changes in the others. In this example, we reconstruct an attractor with signals for S1, S3, and S3P, and take S3 as the response variable. (a) These signals are

inputted into the locally-weighted regression scheme at a given reference point (struck out in gray); (b) Columns of this matrix are estimated regression coefficients and

measure the interactions between S3 and the other variables; and (c) The interactions are plotted through time.

https://doi.org/10.1371/journal.pone.0221167.g007
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records contain noise). All of the isolated signals show strong overall strength (exceeding at

least 50 percent), except for promotions of Erdinger Weissbier Lager Bottle 500ml (S5P),

which we delete from further NLTS analysis (Table 1). Overall, the retained signals are domi-

nated by slow-moving trends, a triplet of lower-frequency oscillations (13, 8.667, and 6.5

weeks), and another triplet of higher-frequency oscillations (5.2, 4.2, and 2.1 weeks).

Stationarity testing

In applying SST to test for stationarity in strong sales and promotions signals, we set window

width to 50 weeks (i.e., 25 weeks on either side of a reference point), which allowed for stable

signal processing. Given that the length of the signals is 104 weeks, this created five windows.

We constructed upper point-by-point 95% limits with 99 AAFT surrogate data vectors (k = 5).

The change-point score plots (black curves) visually rest well below the upper confidence levels

(red curves) for all sales signals except for S2, and all promotions signals except for S1P, S2P,

and S3P (Fig 8). Of these exceptions, only the change-point score for S2P was computed to

numerically exceed the confidence level. Consequently, we deem S2P to be nonstationary, and

do not analyze it for deterministic nonlinear structure.

Phase space reconstruction

The estimated embedding parameters used to reconstruct phase space attractors from the sta-

tionary sales and promotions signals in the Tesco dataset are reported in Table 2. Most of the

embedding dimensions range from two to four, with only one (S4P) reaching six. This is our

first indication that the dynamics driving these signals might be low-dimensional. In Fig 9, we

Table 1. Signal processing of weekly category sales and promotions shares.

Cycle Lengths Weeks

Sales Records ID Signal

Strength

Trend 2.1 4.2 5.2 6.5 8.7 13

Leffe Blonde Lager Bottles 1320 ml S1 87% 53% 15% 8% 11%

Hoegaarden White Beer Bottle 750ml S2 80% 24% 5% 8% 20% 12% 11%

Hoegaarden White Lager Bottles 1320ml S3 82% 11% 16% 55%

Duvel Belgian Beer Bottle 330ml S4 81% 32% 17% 32%

Erdinger Weissbier Lager Bottle 500ml S5 73% 62% 11%

Leffe Brune Lager Bottle 750ml S6 58% 10% 23% 25%

Innis & Gunn Oak Aged Beer 330ml S7 64% 50% 14%

Leffe Blonde Bier 330ml S8 95% 56% 9% 4% 26%

Innis & Gunn Original Oak Aged Beer 750ml S9 72% 20% 31% 21%

Promotions Records

Leffe Blonde Lager Bottles 1320 ml S1P 76% 22% 26% 28%

Hoegaarden White Beer Bottle 750ml S2P 82% 39% 22% 21%

Hoegaarden White Lager Bottles 1320ml S3P 76% 15% 32% 18% 11%

Duvel Belgian Beer Bottle 330ml S4P 56% 6% 13% 15% 22%

Erdinger Weissbier Lager Bottle 500ml S5P Deleted from NLTS due to weak signal

Leffe Brune Lager Bottle 750ml S6P 90% 65% 8% 17%

Innis & Gunn Oak Aged Beer 330ml S7P 70% 43% 16% 11%

Leffe Blonde Bier 330ml S8P 86% 30% 9% 23% 24%

Innis & Gunn Original Oak Aged Beer 750ml S9P 56% 16% 21% 19%

https://doi.org/10.1371/journal.pone.0221167.t001
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reconstruct a potential real-world attractor from the perspective of each signal. Several of these

perspectives exhibit strong geometric regularity with a combination of low and high frequency

oscillations detected in signal processing—another indication of deterministic nonlinear

dynamics that we test with surrogate data.

We tested the null hypothesis that visual regularity in each reconstructed attractor in Fig 9

is more likely fortuitously mimicked by linear-stochastic dynamics, with the alternative being

that untested dynamic structures (such as nonlinear deterministic dynamics) remain possibili-

ties. We ran a lower-tailed test with 199 AAFT surrogates and an α = 0.05 significance level to

reject the null hypothesis only if permutation entropy computed from the signal falls within

the lower extreme surrogate values.

We summarize the results of surrogate data testing in Table 3. The first column shows the

signals tested, the second column its identification index, the third column the permutation

entropy measured from the corresponding reconstructed attractor, and the fourth column the

permutation entropy above which the null hypothesis of linear-stochastic dynamics is

accepted. The fifth column indicates whether the null hypothesis was accepted. We accept the

null hypothesis for the attractors reconstructed from the S4, S6, and S7 sales signals; and the

S4P, S6P, S7P, and S9P promotions signals. These attractors were most likely generated by lin-

ear-stochastic dynamics, and we screen the corresponding signals from further NLTS diagnos-

tics. Alternatively, we reject the null hypothesis for attractors reconstructed from the S1, S2,

S3, S5, S8, and S9 sales signals, and the S1P, S3P, and S8P promotions signals. We cannot rule

out the possibility that these signals were generated by real-world deterministic nonlinear

dynamics.

Convergent cross mapping

We can visualize the causal interactions detected with convergent cross mapping (CCM) in a

‘community interaction diagram’ (Fig 10). The nodes represent sales and promotions signals

Fig 8. Results of nonlinear stationarity testing. We apply singular spectrum transformation [27] to test signals for stationarity required by NLTS. Change-point scores

(black curves) rest below upper point-by-point 95% limits (red curves) constructed with surrogate data indicating for (a) sales records and (b) promotion records except

for S2P. This indicates that S2P is nonstationary due to a significant change point in its dynamic structure, and we delete it from further NLTS diagnostics.

https://doi.org/10.1371/journal.pone.0221167.g008
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screened for stationarity and nonlinear deterministic dynamic behavior. Arrows between

nodes indicate that the signals interact in the same reconstructed real-world market system,

and the direction of interaction. The strength of the interaction is given by the fractions near

each arrow head, which are the convergent correlation coefficients for each cross mapping

(Fig 11, black curves). For example, the convergent correlation coefficient is 0.81 for the cross

mapping S3xmapS3P, which indicates that S3P drives S3. We include interactions in the dia-

gram associated with CCM curves exhibiting convergent correlations exceeding 0.33 (the

strength of interactions increases as convergent correlations approach 1), and resting at or

above 95% confidence levels (Fig 11, red curves). In addition, we include interactions whose

cross mappings pass delayed (extended) CCM tests to rule out non-causal synchronous behav-

ior, as demonstrated by delayed CCM curves with peaks at nonpositive delays (Fig 12).

The community interaction diagram (Fig 10) begins to shed valuable light on empirical

questions raised in the literature outlined above: Do a brand’s promotions substantially

increase sales? Do brands use promotions to cannibalize the sales shares of competing brands?

Given the nature of the Tesco dataset, we additionally consider whether this behavior changes

between brands owned by different multinational breweries. A prerequisite for responding to

these questions is that the underlying interactions are detected in the first place, and the com-

munity interaction diagram provides empirical evidence of this. We focus on the area of the

diagram (shaded red) containing bilateral interactions between the 1st (Leffe Blonde Lager Bot-

tles 4X330 1320ml) and 3rd (Hoegaarden White Lager Bottles 4X330 1320ml) leading brand

configurations in category sales shares. Both brands are owned by ABInbev. The red-shaded

area also includes interactions between these ABInbev brands and the 9th largest sales-share

brand (Innis & Gunn Original Oak Aged Beer 750ml), which is not owned by ABInbev.

Table 2. Embedding parameters.

Sales Records ID delaya dimensionb

Leffe Blonde Lager Bottles 1320 ml S1 3 3

Hoegaarden White Beer Bottle 750ml S2 4 3

Hoegaarden White Lager Bottles 1320ml S3 2 3

Duvel Belgian Beer Bottle 330ml S4 3 3

Erdinger Weissbier Lager Bottle 500ml S5 5 2

Leffe Brune Lager Bottle 750ml S6 2 3

Innis & Gunn Oak Aged Beer 330ml S7 1 3

Leffe Blonde Bier 330ml S8 3 3

Innis & Gunn Original Oak Aged Beer 750ml S9 3 3

Promotions Records

Leffe Blonde Lager Bottles 1320 ml S1P 2 4

Hoegaarden White Beer Bottle 750ml S2P

Hoegaarden White Lager Bottles 1320ml S3P 2 4

Duvel Belgian Beer Bottle 330ml S4P 2 6

Leffe Brune Lager Bottle 750ml S6P 4 3

Innis & Gunn Oak Aged Beer 330ml S7P 2 2

Leffe Blonde Bier 330ml S8P 1 2

Innis & Gunn Original Oak Aged Beer 750ml S9P 2 4

a Embedding delay estimated with mutual information function
b Embedding dimension estimated with false-nearest-neighbors test. Shaded rows indicate records for which these

statistics could not be calculated. These records were deleted from further analysis.

https://doi.org/10.1371/journal.pone.0221167.t002
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Fig 9. Attractors reconstructed from Tesco dataset. We successfully reconstructed low-dimensional shadow attractors from the perspectives of stationary (a) sale and

(b) promotion signals. Several of the attractors exhibit striking geometric regularity characterized by oscillatory behavior detected in signal processing.

https://doi.org/10.1371/journal.pone.0221167.g009

Table 3. Surrogate data testing.

Discriminating Statistic

Sales Records ID Entropya Surr(low)b H0c

Leffe Blonde Lager Bottles 1320 ml S1 0.789 0.803 reject

Hoegaarden White Beer Bottle 750ml S2 0.85 0.86 reject

Hoegaarden White Lager Bottles 1320ml S3 0.79 0.8 reject

Duvel Belgian Beer Bottle 330ml S4 0.84 0.84 accept

Erdinger Weissbier Lager Bottle 500ml S5 0.66 0.74 reject

Leffe Brune Lager Bottle 750ml S6 0.9 0.87 accept

Innis & Gunn Oak Aged Beer 330ml S7 0.87 0.85 accept

Leffe Blonde Bier 330ml S8 0.63 75 reject

Innis & Gunn Original Oak Aged Beer 750ml S9 0.81 0.82 reject

Promotions Records

Leffe Blonde Lager Bottles 1320 ml S1P 0.79 0.81 reject

Hoegaarden White Lager Bottles 1320ml S3P 0.78 0.81 reject

Duvel Belgian Beer Bottle 330ml S4P 0.9 0.9 accept

Leffe Brune Lager Bottle 750ml S6P 0.86 0.85 accept

Innis & Gunn Oak Aged Beer 330ml S7P 0.85 0.85 accept

Leffe Blonde Bier 330ml S8P 0.83 0.88 reject

Innis & Gunn Original Oak Aged Beer 750ml S9P 0.81 0.81 accept

a Permutation entropy taken from the empirically-reconstructed attractor for a record
b The lower bound on entropies measured for 199 AAFT surrogates (α = 0.05)
c If the entropy measurement for the empirically-reconstructed attractor does not fall below the surrogate lower bound, we accept the null hypothesis of linear stochastic

dynamics. Otherwise, untested dynamic structures (such as nonlinear deterministic dynamics) remain possibilities. We do not attempt to reconstruct nonlinear

dynamics from signals for which the null hypothesis is accepted, and delete them from further analysis.

https://doi.org/10.1371/journal.pone.0221167.t003
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Quantifying causal interactions with S-mapping

To quantify these interactions with S-mapping, we constructed an empirical attractor manifold

with the variables S1, S1P, S3, S3P, and S9 serving as phase space coordinates. The computed

partial derivatives quantifying each interaction over time are the black curves with areas

shaded black between the curves and the zero-axis to highlight weeks when the interaction is

positive or negative (Fig 13). Since computed partial derivatives are volatile time series, we

applied singular spectrum analysis to isolate signals measuring systematic interactive behavior

(shaded red).

The partial-derivative signals are mostly either positive or negative for the majority of

weeks in the POR. We characterize this regularity and its importance with two measures: (1)

the percentage of weeks that each partial-derivative signal is mostly positive/negative; and (2)

Fig 10. Community interaction diagram. We summarize causal interactions detected with CCM in a community interaction diagram whose nodes are sales and

promotions signals screened for stationarity and nonlinear deterministic dynamic behavior. Arrows between nodes indicate the direction of interaction. The strength of

the interaction is given by the fractions near each arrow head, which are the convergent correlation coefficients for each cross mapping. We focus on the area of the

diagram (shaded red) containing bilateral interactions between ABInbev brand configurations Leffe Blonde Lager Bottles 4X330 1320ml and Hoegaarden White Lager

Bottles 4X330 1320ml; and between these ABInbev configurations and the Innis & Gunn Original Oak Aged Beer 750ml configuration, which is not owned by ABInbev.

https://doi.org/10.1371/journal.pone.0221167.g010
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the relative magnitude of positive/negative areas to total area between the curve and the zero-

axis. We report these measures in the headings to each plot. For example, ’@S1/@S1P (Negative:

0.87, 0.97)’ reports that this partial derivative is negative 87% of the weeks, and that the nega-

tive area comprises 97% of the total area (Fig 13A, leftward plot).

We first investigate the bilateral interaction between a brand’s promotions and its own sales

shares (Fig 13A) for the case of the top selling brand configuration in the category (Leffe

Blonde Lager Bottles 4X330 1320ml). We observe that @S1P/@S1 was positive 71% of the

weeks, indicating that an incremental increase in the configuration’s weekly market share (S1)

most often marginally increased its decision to promote (S1P). The paired interaction, @S1/

@S1P, was negative 87% of the weeks, indicating that an incremental increase in promotions

most often drove down marginal sales shares. Taking an ecological interpretation, the

Fig 11. Convergent cross mapping (CCM) results. This figure reports CCM results underlying the causal interactions summarized in the community interaction

diagram (Fig 10). We include interactions in the diagram associated with CCM curves (black curves) exhibiting convergent correlations exceeding 0.33 (the strength of

interactions increases as convergent correlations approach 1), and resting at or above 95% confidence levels (red curves).

https://doi.org/10.1371/journal.pone.0221167.g011
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configuration’s promotions (S1P) preyed on its sales shares (S1). Turning to the third top sell-

ing brand configuration in the category (Hoegaarden White Lager Bottles 4X330 1320ml), we

observe the same predatory behavior of promotions on own sales shares when examining the

paired interactions, @S3P/@S3 and @S3/@S3P.

We next examine the impact of a brand’s promotions on the sales shares of competitors

(Fig 13B). Considering first the ABInbev brands (Leffe and Hoegaarden), we observe that each

brand’s promotions cannibalized the sales shares of the other in most weeks. Hoegaarden’s

decision to promote (S3P) had a mostly negative marginal impact on Leffe’s sales shares (S1)

since @S1/@S3P was negative 73% of the weeks; while an incremental increase in Leffe’s sales

shares marginally increased Hoegaarden’s promotions since @S3P/@S1 was positive in 73% of

the weeks. We observe even stronger evidence of similar cannibalistic behavior of Leffe pro-

motions on Hoegaarden sales shares since @S3/@S1P was negative 81% of the weeks and @S1P/

@S3 was positive 88% of the weeks. The latter partial derivative, @S1P/@S3, tells us that, in most

Fig 12. Delayed (Extended) CCM results. We screened for interactions whose cross mappings pass delayed (extended) CCM tests to rule out non-causal

synchronous behavior, as demonstrated by delayed CCM curves with peaks at nonpositive delays in the figure.

https://doi.org/10.1371/journal.pone.0221167.g012
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weeks, Leffe’s marginally increased its promotions (S1P) in response to an incremental

increase in Hoegaarden’s sales share (S3). In striking constrast, the marginal response of Leffe’s

promotions to an incremental increase in the sales share of non-ABInbev brand Innis & Gunn

(the 9th top selling brand in the category), @S1P/@S9, was negative in 88% of the weeks (Fig

13B, rightward plot).

We further found that incremental increases in the sales shares of ABInbev brands Leffe

(S1) and Hoegaarden (S3) marginally increased the sales shares of the other in most weeks (Fig

13C, leftward two plots). The marginal impact of Hoegaarden on top seller Leffe was especially

strong since @S1/@S3was positive 100% of the weeks. Ecologically speaking, the sales shares of

ABInbev brands coevolved in a mutually-beneficial or symbiotic relationship. In another

marked contrast, 9th-largest selling non-ABInbev brand Innis & Gunn tended to prey on the

sales shares of 3rd-largest selling Hoegaarden (Fig 13C, rightward plots). An incremental

increase in Innis & Gunn’s sales shares (S9) marginally decreased the sales share of Hoegaar-

den (S3) 77% of the weeks; while an incremental increase in Hoegaarden sales shares margin-

ally increased Innis & Gunn’s sales shares about half of the weeks.

Fig 13. Quantified interactions. We embedded an empirical attractor with phase space coordinates provided by S1, S1P, S3, S3P, and S9, and applied S-mapping to

compute partial derivatives quantifying interactions among these variables over time (black curves). The areas between the curves and the zero-axis are shaded black to

highlight weeks when interactions are positive or negative. We next isolated the systematic components (signals) of the computed derivatives with singular spectrum

analysis (shaded red). Since partial-derivative signals are mostly either positive or negative for the majority of weeks in the POR, we characterize them by: (1) the

percentage of weeks that each partial-derivative signal is mostly positive/negative; and (2) the relative magnitude of positive/negative areas to total area between the

curve and the zero-axis. These measures are reported in the headings to each plot. For example, ’@S1/@S1P (Negative: 0.87, 0.97)’ indicates that the partial derivative is

negative 87% of the weeks, and that the negative area comprises 97% of the total area. The partial derivative signals indicate that: (a) A brand’s promotions preyed on its

own sales shares (an outcome documented in the literature); (b) A brand’s promotions generated the offsetting benefit of cannibalizing sales shares of competing

brands; and (c) The sales shares of ABInbev brands (S1 and S3) were mutually-beneficial, but the sales share of S3 was preyed on by the outside brand owned by a

different brewery (S9).

https://doi.org/10.1371/journal.pone.0221167.g013
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Discussion

In making sense of these results, we emphasize that NLTS provides positive analysis of behav-

ior that ‘actually happened’. Comparing this to what ‘should have happened’ had brands

behaved ‘rationally’ in the judgement of the researcher may well be inaccurate without direct

knowledge of their internal business objectives—like shooting an arrow without seeing the tar-

get. Moreover, brands realizing undesireable outcomes might have reasonably anticipated

something better, and avoided the behavior in hindsight. We are limited to speculating a few

of many possible explanations for why brands engaged in apparently puzzling behavior uncov-

ered by NLTS diagnostics.

The first puzzling question is why brands would promote when, in most weeks, promotions

preyed on their own market shares. One possibility is that brands reasonably anticipated the

opposite outcome (i.e., that promotions would marginally increase their own market shares),

but these expectations were not met possibly because promotions caused consumers to down-

grade their perceptions of brand quality or lower their price expectations to the promotional

level, and that these responses overwhelmed an increase in brand loyalty or an inertia repur-

chasing effect in most weeks. Another possibility is that brands invested in promotions to can-

nibalize the sales shares of close competitors, which turned out to be the case in most weeks

even between brands owned by the same multinational brewery. This intra-brewery brand

competition offers some empirical evidence that the international beer market was contestable

despite being dominated by a few large multinational breweries [49].

But this begs the next puzzling question: Why did this intra-brewery brand competition

exist given evidence that intra-brewery sales shares were strongly mutually beneficial? A post

hoc rationalization for this perplexing behavior is not obvious. ABInbev might benefit by

using this informtion to rethink the promotion strategies of its internal brands in the specialty

beer market.

Conclusion

In this paper, we applied a novel empirical approach—Nonlinear Time Series Analysis (NLTS)—

to reconstruct real-world market dynamics concealed in volatile observed time-series records,

and used this information to respond to key empirical questions raised in the literature regarding

how price promotions and sales shares among competing brands systematically interact over

time. We first tackled the essential preliminary question of whether these interactions are system-

atic in our dataset in the first place; in particular, whether the data conceal random interactions

exogenously forced by linear-stochastic real-world market dynamics, or deterministic interac-

tions endogenously forced by real-world nonlinear market dynamics. We found that market

dynamics reconstructed from the Tesco dataset are largely deterministic, low-dimensional, and

nonlinear.

Borrowing new methods from ecosystem dynamics used to investigate interspecies interac-

tions, we next detected real-world interactions among the promotions and sales of brands, and

characterized the nature of detected interactions over time by computing partial derivatives

measuring the marginal response of one market variable to an incremental change in another.

We uncovered evidence that a brand’s promotions preyed on its own sales shares (an outcome

documented in the literature), but generated the offsetting benefit of cannibalizing sales shares

of competing brands. We also found evidence that interactions between brands owned by the

same multinational brewery differed from their interactions with outside brands. In particular,

the sales shares of brands owned by the same brewery were mutually beneficial; whereas the

sales shares of brands owned by different breweries preyed on each other’s market shares.
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In general, NLTS opens a new window on analyzing complex time series records by illumi-

nating otherwise concealed information: Is observed volatility generated by exogenous shocks

to a self-correcting system or endogenous unstable dynamic behavior that is not self-correct-

ing? This distinction—recognized increasingly as pivotal in managing and regulating real-

world dynamic systems—is imperceptible to the naked eye, and to exploratory empirical

approaches presuming stochastic forcing.

There are important caveats to applying NLTS, especially to short and noisy time-series rec-

ords encountered in practice. First, we cannot reasonably expect to reconstruct the complex

folding and fractal patterns of a real-world attractor [50]. We must lower our expectations to

reconstruct a sampling or skeleton of the real-world attractor [51]. Second, these methods can

fall short of reconstructing even a skeleton attractor for several reasons. Most obviously, a low-

dimensional nonlinear real-world attractor may not exist. Or, the data may be insufficiently

informative to reconstruct the real-world attractor even if it does exist. For example, the time

series might only sample transitory dynamics heading toward the attractor. However, we do

not know any of this until we have tested the data for it.

Supporting information

S1 File. Raw sales data. This spreadsheed contains raw data on sales of specialty beer brands

provided by scanned purchases of Tesco ClubCard in the UK. These data are available to sub-

scribers by dunnhumby (a subsidiary of Tesco) via a web-portal. Coauthor Andrew Fearne

was provided original access to these data pursuant to a longstanding research relationship

with dunnhumby.

(XLSX)

S2 File. Raw promotions data. This spreadsheet contains raw data on promotions of specialty

beer brands collected by dunnhumby, which makes these data available to subscribers via a

web-portal. Coauthor Andrew Fearne was provided original access to these data pursuant to a

longstanding research relationship with dunnhumby.

(XLS)

S3 File. Promotions put into equivalent monetary value. Promotions were reported in S2

File as savings to consumers: S = PR—PP, where PR is the regular (pre-promotion) unit price

and PP is the promotional counterpart. Savings were reported directly for simple price cuts.

For more sophisticated promotions—such as any two for £3—the ‘equivalent single promo-

tional price’ was reported (PP = £3/2 = £1.50), along with the ‘depth of cut’ (DC) measuring

the percentage decrease from the regular price (for example, 3.85%). In S3 File, we computed

consumer savings for these promotions indirectly by solving for the unreported regular price

from the definition of DC: DC = (PR—PP)/PR -> PR = PP/(1—DC), and substituting it into

the consumer savings equation: S = PP/(1—DC)—PP = £1.50(0.04) = £0.06.

(XLS)
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