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Abstract. The deformation and stability of a two-dimensional inextensible elastic cell in an
inviscid uniform stream are investigated using a conformal mapping method. At low flow speeds
equilibrium solutions are obtained using an asymptotic expansion, and the sequence of critical di-
mensionless pressures identified by Flaherty et al. (1972) for a circular cell exposed to a uniform
transmural pressure is shown to play a crucial role. Below the smallest critical pressure a circular
cell in a weak flow deforms into a near-elliptical shape with its major axis perpendicular to the
flow, and above this critical pressure its major axis is aligned with the flow. At each subsequent
critical pressure the bifurcations produce in alternating sequence cells with either one or two axes
of symmetry. In the former case cells with left-right symmetry and cells with top-bottom symmetry
are found. Equilibria for general flow speeds are calculated numerically, and their linear stability is
analysed. Cells with two degrees of rotational symmetry whose longest chord is perpendicular to the
uniform stream are found to be always stable. Other configurations are found to be stable only for
certain parameter values. The nonlinear evolution of unstable cells subject to a small perturbation
are computed numerically, and parameter values are located for which the cell falls into one of two
distinct regular motions, either flipping over in alternating directions or bulging out to the side, while
being intermittently propelled downstream with the flow.
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1. Introduction. The study of the deformation of an elastic cell in response to
a transmural pressure is a problem of fundamental interest. For a constant transmural
pressure the problem was analysed by Lévy [7], Carrier [3] and Tadjbakhsh & Odeh
[13]. Beyond a threshold pressure an initially circular cell eventually buckles into a
shape with n-fold rotational symmetry. Flaherty et al. [5] extended the analysis to
describe buckled elastic cells with a region of self-contact. Recent interest in the design
and manufacture of inflatable aerofoils in the aviation industry [8, 6], which deform
naturally in reaction to the air flow around them, motivates extending the problem
when the cell is exposed to an ambient flow. A cell exposed to an inviscid flow
experiences a non-constant transmural pressure that is unknown in advance and must
be found simultaneously with the cell shape as part of the solution to the problem.

Here we conduct a fundamental study of the deformation of an inextensible elastic
cell in an inviscid, irrotational uniform stream. The simpler case of a bubble in a
uniform stream has been well studied. Equilibrium states were discussed by Vanden-
Broeck & Keller [15], Shankar [12] and Tanveer [14] for example, and their linear
stability was examined by Nie & Tanveer [9]. The recent study by Blyth & Părău [2]
provided some preliminary insight into the elastic problem. Focusing on cell shapes
which are both left-right symmetric and top-bottom symmetric, they used a linear
expansion for the cell curvature to predict the first order deformation of an initially
circular cell in a weak flow. Guided by these results they computed fully nonlinear
equilibria using a numerical method based on a conformal mapping that is restricted
to cells with a top-bottom cell symmetry.

We use the conformal mapping technique of Shankar [12], with no assumption
of cell symmetry, to develop an asymptotic expansion in the flow speed parameter
that allows corrections to be determined to any order, and we use this to identify
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novel solutions, expanding considerably on the previous results of Blyth & Părău
[2]. We then extend these new solution branches to arbitrary flow speed numerically.
Following Nie & Tanveer’s [9] approach for the bubble problem, we determine the
linear stability of the cell equilibria by formulating and solving an eigenvalue problem
for the linear growth rates under a small amplitude perturbation. We reformulate the
system to allow for an explicit time-stepping method to solve the nonlinear unsteady
evolution of the cell, using Baumgarte stabilisation [1] to preserve the cell perimeter.
We use this time-stepping scheme to verify the linear stability results, as well as to
follow the evolution of a linearly unstable cell into the fully nonlinear regime. We
create a stability map over parameter space to delineate the regions of dominance
of certain linear growth rates, which can be used as a guide to the fully nonlinear
unsteady motion.

The layout of the paper is as follows. In section 2 we formulate the problem and
discuss the conformal mapping method. In section 3 we analyse steady state solutions
via asymptotic and numerical methods. In section 4 we present some unsteady results.
Finally, in section 5 we summarise our findings.

2. Formulation. We consider the deformation of a closed, two dimensional elas-
tic cell placed in an inviscid, incompressible, irrotational fluid flow which is free from
circulation. The cell wall is assumed to be massless and inextensible with constant
thickness, and in the absence of an external pressure the cell is assumed to take
the shape of a circle. The cell is assumed to have some uniform internal pressure
p0(t), whose functional dependence is to be found, and the fluid flow is taken to be
a horizontal uniform stream of speed U and pressure p∞ in the far-field. Gravity is
neglected.

Since the cell wall is massless, there must be a balance between the internal
tension forces and the external pressure forces along an infinitesimal section of the
cell wall. This force balance is given by

(2.1)
∂

∂s
(T (s, t)τ̂ +N(s, t)n̂) + (p0(t)− p(s, t)) n̂ = 0,

where τ̂ and n̂ are unit vectors in the anticlockwise tangential and outward normal
directions respectively, s is the arc-length of the cell wall in the anticlockwise direction,
p(s, t) is the external pressure acting on the cell wall, and N(s, t) and T (s, t) are the
normal and tangential components respectively of the internal tension. Parametrising
the cell wall as the vector η(s, t) = x(s, t)i+ y(s, t)j, we have the relations

(2.2) ηs = τ̂ , τ̂ s = κn̂, n̂s = −κτ̂ ,

where κ = xssys − xsyss is the signed curvature. Splitting (2.1) into tangential and
normal components gives

(2.3) Ts − κN = 0, Ns + κT + p0 − p = 0.

A balancing of moments about an infinitesimal section of the cell wall gives N = Ms,
where M is the bending moment. We will assume the bending moment at any point
is proportional to the difference between the curvature at that point and its resting
curvature. Such an assumption is justified by Pozrikidis [10] for a locally inextensible
cell. This gives the constitutive equation for the bending moment

(2.4) M = −EB(κ− κR),
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where κR is the resting curvature, which is assumed to be constant, and EB is the
bending modulus. According to thin-shell theory, the bending modulus is given by

EB = Eh3

12(1−ν2) , where E is the Young’s modulus of the cell-wall, ν is the Poisson’s

ratio of the cell-wall, and h is the thickness of the cell-wall. The normal component
of the tension is given by N = Ms = −EBκs, which can be substituted into (2.3) to
give

(2.5) Ts + EBκκs = 0, −EBκss + κT + p0 − p = 0.

We note in passing that when EB = 0 equations (2.5) reduce to those for a bubble
with constant surface tension. Integrating, we obtain

(2.6) T = EB

(
σ

`2
− 1

2
κ2

)
, p0 − p = EB

(
κss +

1

2
κ3 − σκ

`2

)
,

where ` is a length scale taken to be the radius of the undeformed cell, and σ(t) is some
dimensionless function of time. As noted by Pozrikidis [10], (2.6) does not correspond
to a constitutive equation for the tension T , but is simply an equilibrium condition.
The function σ(t) is determined implicitly by demanding that the perimeter of the
cell is constant in time, and can be thought of as a Lagrange multiplier to enforce this
constraint.

Next we consider the flow around the cell. Working in the complex z plane, where
z = x + iy, and introducing the complex potential w(z, t), we demand that the flow
approaches the uniform stream with a finite pressure in the far-field by taking

(2.7) w(z, t)− Uz → 0 as |z| → ∞.
We emphasise that this condition rules out any circulation. Comparing Bernoulli’s
equation between the surface of the cell and the far-field gives

(2.8) ρ<
(
∂w

∂t

)
+

1

2
ρq2 + p =

1

2
ρU2 + p∞,

where ρ is the density of the fluid, q = |∂w/∂z| is the flow speed, and all functions
of space are evaluated on the surface of the cell. Using (2.6) to remove the surface
pressure p, we obtain the governing equation on the surface of the cell

(2.9) ρ<
(
∂w

∂t

)
+

1

2
ρ(q2 − U2) + p0(t)− p∞ − EB

(
κss +

1

2
κ3 − σκ

`2

)
= 0,

where the internal pressure p0 will later be shown to be time-dependent. We then non-
dimensionalise, using the length scale `, the radius of the undeformed cell, and taking
the velocity scale to be

√
EB/(`3ρ) and the time scale to be

√
`5ρ/EB . Equations

(2.7) and (2.9) then become

(2.10) w − αz → 0 as |z| → ∞
and

(2.11) <
(
∂w

∂t

)
+ 1

2 (q2 − α2)− (κss +
1

2
κ3 − σκ)− P = 0,

where all variables are now dimensionless, and

(2.12) α =

√
`3ρU2

EB
, P (t) =

(p∞ − p0(t))`3

EB
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α αa−1(t)

z = z(ζ, t)z-plane ζ-plane

Fig. 1: Definition sketch showing the conformal mapping from the exterior of the
unit circle in the ζ-plane to the exterior of the generally unsteady cell in the physical
z-plane.

are dimensionless quantities relating to the far-field flow speed and the pressure dif-
ference between far-field and the interior of the cell respectively.

The kinematic condition requires that the speed of the fluid in the normal direc-
tion to the cell wall be equal to the normal component of the speed of the cell wall
itself. In dimensionless terms, this can be written as

(2.13) ηt · n̂ = u · n̂,

where u is the fluid velocity. It will be convenient when working with complex notation
to note that if we represent a vector a = (a1, a2), say, as the complex number a =
a1 +ia2, then we can express the dot product a·b as <

(
ab
)
. In complex form, the unit

tangent and normal vectors are τ = ηs and n = −iηs respectively, so the kinematic
condition can be written in complex notation as

(2.14) = (ηtηs) = = (uηs) .

Finally, since the cell wall is assumed to be inextensible, the perimeter must
remain constant in time. Since the length scale has been taken to be the radius of
the undeformed cell, the dimensionless perimeter must be 2π.

2.1. Conformal mapping. It is convenient to consider the cell in the physical
z-plane as the image under a conformal mapping of the unit circle in the complex
ζ-plane, as shown in figure 1. By the Riemann mapping theorem [4], at any point in
time there exists a unique mapping z(ζ, t) from the exterior of the unit circle in the ζ
plane to the exterior of the cell such that z(∞, t) =∞ and zζ(∞, t) = a−1(t) > 0. The
first point fixes the point at infinity, while the second condition fixes the rotational
freedom of the Riemann mapping. The conformal mapping can thus be expanded as
a Laurent series of the form

z(ζ, t) = a−1(t)ζ + a0(t) +

∞∑
n=1

an(t)ζ−n,(2.15)

where a−1 is real and an are complex coefficients. Recalling the far-field condition
(2.10), the complex potential in the ζ-plane, given in terms of the complex potential
in the z-plane by W (ζ, t) ≡ w(z(ζ, t), t), must take the form

W (ζ, t) = αa−1(t)ζ + αa0(t) +

∞∑
n=1

bn(t)ζ−n.(2.16)
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α sin θ

α̃− α cos θ

Fig. 2: Illustration to show how the rotation of a solution for a given α may be used
to construct a new steadily translating solution for α̃.

The partial derivatives of w(z, t) are given in terms of W (ζ, t) and z(ζ, t) by

(2.17) wz(z, t) =
Wζ(ζ, t)

zζ(ζ, t)
, wt(z, t) = Wt(ζ, t)−

Wζ(ζ, t)zt(ζ, t)

zζ(ζ, t)
.

Parametrising the unit circle in the ζ-plane as ζ = eiφ, where 0 ≤ φ < 2π, the cell
wall η(φ, t) = z(eiφ, t) is then given by

(2.18) η(φ, t) = a−1(t)eiφ + a0(t) +

∞∑
n=1

an(t)e−inφ,

and the complex potential on the cell wall Ω(φ, t) ≡W (eiφ, t) is given by

Ω(φ, t) = αa−1(t)eiφ + αa0(t) +

∞∑
n=1

bn(t)e−inφ,(2.19)

with the flow speed on the cell-wall given by q =
∣∣∂w
∂z

∣∣ = |Ωφ/ηφ|. Substituting these
forms into (2.11), we obtain

(2.20) <
(

Ωt −
Ωφ
ηφ
ηt

)
+ 1

2 (q2 − α2)− (κss + 1
2κ

3 − σκ)− P = 0,

where q = |Ωφ/ηφ|. The kinematic condition (2.14) becomes

(2.21) =
(
ηφηt

)
= −=(Ωφ).

The inextensibility condition requires that the perimeter of the cell is 2π, which
can be written as

(2.22)

∫ 2π

0

|ηφ|dφ = 2π.

We note that the area A inside the cell is automatically conserved. Any change
in area would require a point source/sink contribution in the far field, which is ruled
out by condition (2.10). The area conservation can be seen directly by noting that

(2.23)
dA

dt
=

d

dt

∫ 2π

0

xyφ dφ = −
∫ 2π

0

=(ηφηt) dφ,

which vanishes upon substitution of (2.21).
We also note that given a solution to the unsteady problem (2.20–2.22) for a

chosen α, we can construct another unsteady solution for a different α̃ by rotating the
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system clockwise through an arbitrary angle θ and taking a reference frame moving
with velocity V = (α cos θ−α̃,−α sin θ), as is illustrated in figure 2. The new solution
corresponds to the original cell motion with a superimposed steady translation of
velocity −V . This reflects the Galilean invariance of the physical system.

The system contains two forms of energy; the kinetic energy of the external fluid,
and the internal bending energy of the cell. Because of the far-field uniform stream
the kinetic energy of the fluid is infinite. Instead, we consider the system from a
reference frame moving at speed α in the direction of the flow. In this reference frame
the fluid in the far-field is stationary, hence the dimensionless kinetic energy of the
fluid is finite, given by

K =

∫∫
1
2 |u− αi|2 dxdy

=

∫∫
1
2∇ ·

(
<(w − αz)∇(<(w − αz))

)
dx dy

= − 1
2

∫ 2π

0

<(Ω− αη)=(Ωφ − αηφ) dφ,

(2.24)

where the double integral in (2.24) is taken over the region outside the cell. The
dimensionless bending energy of the cell is given by

(2.25) W =

∫ 2π

0

1
2 (κ+ 1)2 |ηφ|dφ,

where the resting cell with curvature κ = −1 has zero bending energy. We note that
the bending energy of the cell depends only on its shape, and not on its speed or
position, and so is independent of reference frame. It is straightforward to show that
the total energy of the system E = K + W is an invariant of the motion. This has a
minimum of E = 0, which corresponds to a circular cell moving at constant speed α
with the flow.

2.2. The steady system. For steady flow, the system given by (2.20)–(2.22)
reduces to

1
2 (q2 − α2)− (κss + 1

2κ
3 − σκ)− P = 0,(2.26)

=(Ωφ) = 0,(2.27) ∫ 2π

0

∣∣∣∣dηdφ

∣∣∣∣dφ = 2π,(2.28)

where here the pressure difference P is taken to be a parameter. Noting that the
choice of a0 simply corresponds to a translation of the cell in the ζ-plane, we are free
to choose a0 = 0 without loss of generality. We can then rewrite z(ζ) and η(φ) as

(2.29) z(ζ) = a−1

(
ζ +

∞∑
n=1

an
ζn

)
, η(φ) = a−1

(
eiφ +

∞∑
n=1

ane
−inφ

)
,

where the coefficients an have now been rescaled by the real coefficient a−1. The
constant a−1 can be determined in terms of the mapping coefficients an by enforcing
(2.28),

(2.30) 2π =

∫ 2π

0

∣∣∣∣dηdφ

∣∣∣∣dφ = a−1

∫ 2π

0

∣∣∣∣∣eiφ −
∞∑
n=1

nane
−inφ

∣∣∣∣∣dφ,
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giving

(2.31) a−1 =
2π∫ 2π

0
|eiφ −∑∞n=1 nane

−inφ|dφ
.

The kinematic condition (2.27) ensures that the cell wall is a streamline. In terms
of the complex potential (2.19), this can be written as b1 = αa−1, bn = 0 for n ≥ 2,
reducing the complex potential to

(2.32) W (ζ) = αa−1

(
ζ +

1

ζ

)
, Ω(φ) = 2αa−1 cosφ,

a uniform flow around the unit circle in the ζ-plane. It is clear from (2.26) and (2.32)
that the problem is invariant under the transformation α 7→ −α; physically this simply
corresponds to reversing the flow direction.

We now have a mapping from the flow in the ζ-plane to the z-plane that satisfies
both the kinematic condition (2.27) and the perimeter normalisation (2.28), thus
reducing the problem to solving (2.26) in terms of the mapping coefficients an, a
nonlinear algebraic equation.

The numerical method used to compute nonlinear steady solutions is based on
that presented by Tanveer [14], which was used to compute solutions to the problem
of a bubble with surface tension in a uniform flow. We note that since the Fourier
series representation of η(φ) in (2.29) represents a smooth periodic function of φ,
the coefficients an(t) tend to zero faster than any power of n, which means we have
spectral convergence (see Theorem 9.5.3 in [11]). We truncate the mapping function
to N terms, setting an = 0 for n > N . We then split up the coefficients of the
mapping function an into real and imaginary parts, giving 2N real variables, where
a−1 is taken as a function of an using (2.31). The parameters α and P are fixed, while
σ is to be found as part of the solution, giving 2N + 1 unknowns. We can then obtain
expressions for κ, κss and q for this truncated mapping as functions of φ in terms
of the mapping coefficients an, where all derivatives are found analytically. We then
evaluate (2.26) at 2N + 1 equally spaced collocation points φi = 2π(i− 1)/(2N + 1),
for i = 1, . . . , 2N + 1, giving 2N + 1 equations to solve for the 2N + 1 variables. The
Jacobian of this system is found analytically, and Newton’s method is used to find a
numerical solution. For the results shown in this section, we generally take N = 200,
although values as high as N = 2000 are required for certain solutions. To check the
accuracy of the results we recall that, for any given mapping function, we can find
the absolute error in satisfying (2.26) analytically along the entire cell, not just at
the 2N + 1 collocation points used in Newton’s method. So we can verify the validity
of our results by sampling (2.26) at a much larger number of points, say 1000N , and
confirm this error remains small. All results in this work have a maximum absolute
error less than 10−10. For the initial guess for Newton’s method, we use the small α
asymptotic results presented below to reach the desired solution branch. By slowly
varying the parameters α and P , we can then explore the full nonlinear solution space.

2.3. Nonlinear time-evolution. The time-dependent system is given by equa-
tions (2.20), (2.21) and (2.22). This set of equations implicitly governs the evolution
in time of an initial flow state. Although this implicit system can be solved numeri-
cally, it is convenient to work with a more explicit form. We make use of the method
by [9], used to obtain an explicit system for the unsteady motion of a bubble in a
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uniform stream. We start by rewriting the kinematic condition (2.21) in the form

(2.33) −<
(

iΩφ
|ηφ|2

)
= <

(
iηt
ηφ

)
= <

(
zt
ζzζ

)∣∣∣∣
ζ=eiφ

.

Since zt/ζzζ is analytic in |ζ| > 1, it can be represented as a Laurent expansion about
ζ = 0 with only negative powers. Evaluating this expansion at ζ = eiφ, it can be
shown that

(2.34) ηt = iηφ<
(

iΩφ
|ηφ|2

)
− ηφH

(
−<

(
iΩφ
|ηφ|2

))
,

where H is the Hilbert transform. Since Ωt−Ωφηt/ηφ = (Wt −Wζzt/zζ)|ζ=eiφ where

Wt −Wζzt/zζ is analytic in |ζ| > 1, (2.20) can be rewritten as

Ωt =
Ωφ
ηφ
ηt − 1

2 (q2 − α2) + (κss + 1
2κ

3) + P

+ iH
(

1
2q

2 − κss − 1
2κ

3
)
− σ(κ− iH (κ)).

(2.35)

We now have explicit expressions for ηt and Ωt, with P (t) and σ(t) still to be deter-
mined. The value of P can be determined, up to a linear dependency on σ, by noting
that the mean value of Ωt−Ωφηt/ηφ around the cell wall is zero, hence P (t) must be
taken to be

(2.36) P =
1

2π

∫ 2π

0

[
1
2 (q2 − α2)− (κss + 1

2κ
3 − σκ)

]
dφ.

To determine the value of σ(t), we need to consider the inextensibility condition

(2.37) L(t) =

∫ 2π

0

∣∣∣∣∂η∂φ
∣∣∣∣dφ = 2π,

where L(t) is the perimeter of the cell. The value of σ only indirectly affects the value
of L(t), but recalling the vector relations ηφ = |ηφ|τ , τφ = κ|ηφ|n, as well as the
kinematic condition on the boundary ηt · n = =(Ωφ)/|ηφ|, we have

(2.38)
∂

∂t

∣∣∣∣∂η∂φ
∣∣∣∣ = ηφt · τ =

∂

∂φ
(ηt · τ )− κ|ηφ|ηt · n =

∂

∂φ
(ηt · τ )− κ= (Ωφ) ,

and so we obtain

(2.39) L′(t) =
∂

∂t

∫ 2π

0

|ηφ|dφ =

∫ 2π

0

κφ= (Ω) dφ,

and

(2.40) L′′(t) =

∫ 2π

0

[κφ=(Ωt)− κt=(Ωφ)] dφ,

where =(Ωt) is given explicitly by

(2.41) =(Ωt) = =
(

Ωφ
ηφ
ηt

)
+H

(
1
2q

2 − κss − 1
2κ

3
)

+ σH (κ) .
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We can thus fix the value of L′′(t) with an appropriate choice of σ(t) by taking

(2.42) σ =
L′′(t)−

∫ 2π

0

[
κφ=

(
Ωφ

ηφ
ηt

)
+ κφH

(
1
2q

2 − κss − 1
2κ

3
)
− κt=(Ωφ)

]
dφ∫ 2π

0
κφH (κ) dφ

.

A natural choice would be to set L′′(t) = 0 with initial conditions L(0) = 2π, L′(0) =
0, which satisfies the inextensibility condition L(t) = 2π. However, such a choice is
not numerically stable; a small error in L′′(t) results in quadratic growth of L(t). To
avoid this, we use the Baumgarte stabilisation method [1] by setting

(2.43) L′′(t) = −2γL′(t)− γ2(L(t)− 2π),

where γ is some large positive constant. This condition is analytically equivalent to
L(t) = 2π with the initial conditions L(0) = 2π, L′(0) = 0, but results in a numerically
stable system.

To compute the time evolution of unsteady solutions, we truncate the mapping
(2.15) by setting an = bn = 0 for n > N , where N is a chosen truncation value, and
evaluate equations (2.34) and (2.35) at some M equally spaced collocation points φi to
obtain ηt and Ωt. The Hilbert transform appearing in (2.34) and (2.35) is computed
in Fourier space by using the well-known result

H
(
einφ

)
= −i sgn(n)einφ for n 6= 0.

The values a′n(t) and b′n(t) can then be obtained by a Fourier transform, reducing
the problem to a system of 2N + 2 ODEs for the variables a−1, a0, an, bn, where
n = 1 . . . N . The system is then solved in MATLAB using the function ode113, which
uses an Adams-Bashforth-Moulton method. To ensure the validity of the results over
the time-scales considered, the truncation levels were taken at N = 50, N = 60 and
N = 70 and it was confirmed that the results converge as N is increased. At each
time-step, the number of collocation points was set at both M = 128 and M = 256
and compared to ensure the values of a′n(t) and b′n(t) did not vary by more than 10−8.
Recalling from §2.1 that the perimeter and area inside the cell and the total energy E
are all conserved quantities of the system, we can use the numerical deviation of these
quantities to give an indication of the scale of the numerical error. The stabilisation
factor γ is taken to be 104 for all computations, which keeps the absolute error of
the perimeter to within 10−6. This is found to be the biggest source of error in the
computations, but is sufficient for small-time computations and qualitative study of
long-time behaviour.

2.4. Linear Stability. To study the linear stability of the steady solutions, we
introduce a small perturbation to both the cell boundary and the flow itself, writing
η(φ, t) = ηs(φ) + η̂(φ, t), Ω(φ, t) = Ωs(φ) + Ω̂(φ, t), σ(t) = σs + σ̂(t), P = P s +
P̂ (t), where superscript s indicates the steady solution, and hats indicate small time-
dependent perturbations. Substituting these perturbations into the time-dependent
system (2.20)–(2.22), we obtain the linearised system

(2.44) =
(
η̂t η

s
φ

)
= −=(Ω̂φ),

(2.45) <
(

Ω̂t −
Ωsφ
ηsφ
η̂t

)
= 2
<(Ω̂φΩ

s

φ)

|ηsφ|2
−2
|Ωsφ|2
|ηsφ|4

<(η̂φη
s
φ)+κ̂ss+

3
2 (κs)2κ̂−σsκ̂−σ̂κs+P̂ ,
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(2.46)

∫ 2π

0

κs=
(

Ω̂φt

)
dφ = 0.

The mapping coefficients for the perturbed flow can be written as an(t) = asn + ân(t),

bn(t) = bsn+ b̂n(t). We then truncate the perturbed mapping functions at âN and b̂N ,
and split the mapping coefficients into real and imaginary parts. Noting that a−1, P
and σ are real, we have 4N + 5 unknowns, corresponding to â−1, P̂ , σ̂, and the real
and imaginary parts of ân and b̂n. We evaluate (2.44) and (2.45) at 2N + 2 equally
spaced collocation points φi, which together with (2.46) gives 4N + 5 equations for
the 4N + 5 unknowns. These equations can then be written as the linear system

(2.47) AX ′ = BX,

where X(t) contains the 4N + 5 unknowns, and A and B are (4N + 5) × (4N + 5)
matrices whose elements are known explicitly in terms of asn, bsn, σs. Seeking normal
mode solutions of the form X(t) = X0e

λt, we obtain the generalised eigenvalue
problem λAX0 = BX0, which we solve numerically using the in-built Matlab eig

function. Since the matricesA andB are real, the eigenvalues λmust come in complex
conjugate pairs {λ, λ}, with corresponding eigenvectors {v,v}. These eigenvectors
are in general complex, but real solutions to (2.47) can be constructed by taking
X = r

(
v exp(λt+ ik) + v exp(λt− ik)

)
, where r and k are freely chosen real numbers

corresponding to the magnitude and phase-shift of the perturbation respectively. A
steady solution is said to be spectrally stable if <(λ) ≤ 0 for all eigenvalues λ, and
unstable otherwise.

The steady solution at (α+ α̂, P ) can be considered a perturbation of the steady
solution at (α, P ) which has a different cell shape and correspondingly a different flow.
Also, we know from §2.1 that a steady solution at some α + α̂ can be considered a
steadily translating solution at α, where the direction of the translation can be freely
chosen. Hence for a steady solution at (α, P ) there always exist perturbations of the
form η̂(φ, t) = (a + bi)t + C1(φ), Ω̂(φ, t) = C2(φ), where a and b are freely chosen
constants, and C1(φ) and C2(φ) are associated with the change in shape and the
corresponding flow change respectively. With reference to (2.47) these perturbations
can be expressed as a linear combination of the two perturbations X1 = v1t + w1

and X2 = v2t + w2, where v1 corresponds to a perturbation of <(a0) only and is
a horizontal translation, and v2 corresponds to a perturbation of =(a0) only and is
a vertical translation. Substituting these expressions into the linear system (2.47),
we obtain Bvn = 0, Bwn = Avn for n = 1, 2. So the two linearly independent vn
are eigenvectors, with generalised eigenvectors wn of rank 2, corresponding to a zero
eigenvalue. The steady solution at (α, P + P̂ ) can also be considered a perturbation
of the steady solution at (α, P ), which has a different shape and correspondingly
a different flow. Since this perturbation is time-independent, it also corresponds to
an eigenvector with zero eigenvalue. We conclude that (2.47) has a zero eigenvalue
with three linearly independent eigenvectors and two linearly independent generalised
eigenvectors of rank 2, which implies algebraic multiplicity five and geometric multi-
plicity three. This agrees with the results obtained numerically.

Since the full system (2.20)-(2.22) is invariant under the transform η(φ, t) →
−η(π − φ,−t), Ω(φ, t) → −Ω(π − φ,−t), if a steady solution has eigenvalue λ then
its reflection about a vertical axis is another steady solution with eigenvalue −λ.
Furthermore, if the steady solution is left-right symmetric its eigenvalues will appear
as quadruples {λ, λ,−λ,−λ} and in this case stability can only occur if <(λ) = 0 for
all eigenvalues λ.
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Fig. 3: Sketch showing the classification of the steady solutions in relation to those at
α = 0. The arrows illustrate a continuous path taken to reach a particular cell type.
The cells in a static fluid at α = 0 are also shown.

3. Steady state analysis. In this section we discuss steady solutions obtained
both analytically and numerically, and determine their linear stability. As shown in
§2.2 the steady solutions are governed by

(3.1) 1
2 (q2 − α2)− (κss +

1

2
κ3 − σκ)− P = 0,

where the cell wall and complex potential along the cell wall are given by

(3.2) η(φ) = a−1

(
eiφ +

∞∑
n=1

ane
−inφ

)
, Ω(φ) = 2αa−1 cosφ,

where a−1 is given by (2.31).
To describe the behaviour of the steady solutions as the parameters α and P vary,

it is useful to label the solutions in terms of those found at α = 0. The case of α = 0,
an elastic cell in a stationary fluid, is well studied, notably by Flaherty et al. [5], who
showed that as well as a circular cell solution, there exist buckled mode-k solutions
bifurcating from the circular solution at critical pressures P = k2 − 1 for k ≥ 2.

Since cell orientation matters when α is non-zero, we will use the terms horizon-
tally aligned and vertically aligned to refer to cells whose longest axis is parallel and
perpendicular to the flow direction respectively.

For α = 0 and P < 3, there is only the circular solution. We label as type 1 those
solutions that can be obtained by continuously varying P and α from the circular
state at α = 0, P < 3. This is illustrated in figure 3a by following one of the arrows
from α = 0. Note that since (α, P ) = (0, 3) is a bifurcation point, we exclude the
possibility of passing through this point in this definition. By numerically following
a particular type 1 branch to α = 0 and P > 3, we find that we obtain the vertically
aligned buckled mode-2 solution, which must therefore also be of type 1.

For α = 0 and 3 < P < 8, there exist both a buckled mode-2 solution and
a circular solution. In the absence of a flow, these mode-2 solutions can take any
orientation. However, as α is increased from zero only the horizontally and vertically
aligned cells persist. We have already seen that the vertically aligned mode-2 cells are
of type 1. We label as type 2a or type 2b any solution which has both top-bottom and
left-right symmetry and which, on following a continuous path in the α− P plane to
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Fig. 4: Streamline plots for solutions at α = 1 for the type 1 (left) and type 2a (right)
solutions at P = 2 and P = 4 respectively.

a point α = 0 with 3 < P < 15, arrives at the circular state or the horizontal mode-2
solution respectively, as shown in figure 3b. By numerically following a particular type
2a branch to α = 0 and P > 15, we find that we obtain the buckled mode-4 solution,
which must therefore also be of type 2a. The other orientation of the buckled mode-4
solution, as well as the circular solution at P > 15, form solution branches separate
from those previously defined, and will not be considered in the present work.

For α = 0 and 8 < P < 15, as well as the circular and mode-2 solutions there also
exists a buckled mode-3 solution. As α is increased, we find that four orientations of
this mode-3 solution persist: the two left-right symmetric orientations, and the two
top-bottom symmetric orientations. Due to the symmetry of the problem, the two
left-right symmetric orientations are top-bottom reflections of each other, and the two
top-bottom symmetric orientations are left-right reflections of each other. We label
as type 3a any solution with top-bottom symmetry and left-right asymmetry which,
on following a continuous path in the α − P plane to a point α = 0 with P > 8,
arrives at a buckled mode-3 solution, as shown in figure 3c. Similarly we label as type
3b any solution which has left-right symmetry and top-bottom asymmetry which, on
following a continuous path in the α− P plane to a point α = 0 with P > 8, arrives
at a buckled mode-3 solution.

For α = 0 and P > 15 there exist mode-4 buckled solutions, and in general for
P > k2− 1 there exist mode-l solutions for all l ≤ k. In this work we focus mainly on
the type 1, 2a, 2b, 3a and 3b cases as defined above. Solutions stemming from higher
mode buckled solutions can however be studied using the same techniques.

3.1. Small α analysis. We now seek asymptotic expansions for α � 1 for
solution branches stemming from the unit circle at α = 0. Since (3.1) is invariant
under the transformation α 7→ −α, we expand the unknowns in powers of α2 as

a−1 = 1 + α2a−1,1 + α4a−1,2 + · · · ,(3.3)

an = α2an,1 + α4an,2 + · · · (n ≥ 1),(3.4)

σ = 1
2 − P + α2σ1 + α4σ2 + · · · ,(3.5)

where a−1 = 1, an = 0, σ = 1
2 − P is the circular solution at α = 0. We then
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substitute these expressions into (2.31), (3.1) and (3.2), which can be solved at each
order α2m to obtain the values of a−1,m, an,m and σm. Note that although the results
in this section are only shown to O(α2), the method can be used to obtain results
to any order. These can then be compared to the numerical results to confirm their
accuracy.

At O(α2), we find that (2.31) gives a−1,1 = 0, and (3.1) gives

1
2 − σ1 − cos 2φ

+

∞∑
n=2

(n2 − 1)(P − n2 + 1)
{
<(an−1,1) cosnφ+ =(an−1,1) sinnφ

}
= 0.

(3.6)

So σ1 = 1
2 , and comparing coefficients of cos 2φ and sin 2φ in (3.6) we find that a1,1

is real and satisfies

(3.7) 3(P − 3)a1,1 = 1.

For P = 3, (3.7) clearly has no solutions. However Blyth & Părău [2] found that
solutions can be found by taking an expansion in α2/3. Following this approach here
we find that

(3.8) η(φ) = eiφ − 2

9
3
√

12α2/3e−iφ +O(α4/3)

so that, ignoring the O(α4/3) correction, the cell is an ellipse with its major axis
aligned perpendicular to the flow. This corresponds to a type 1 solution, and agrees
with that found by Blyth & Părău [2].

Henceforth we assume that P 6= 3. Comparing coefficients of cosnφ and sinnφ
in (3.6), we have

(P − n2 + 1)an−1,1 = 0 for n ≥ 3.(3.9)

So if P 6= k2 − 1 for all k ≥ 3 we must have an,1 = 0 for n ≥ 2 in which case

(3.10) η(φ) = eiφ +
α2

3(P − 3)
e−iφ +O(α4),

which is approximately an ellipse. For P < 3, the cell is aligned perpendicular to the
flow, which corresponds to a type 1 solution. For P > 3, the cell is aligned parallel
with the flow, corresponding to a type 2a solution. Figure 4 shows the streamlines
for both of these solutions calculated numerically by solving the full problem using
the method described in section 3.2. Considering higher order terms, we find that
at O(α4), this solution has a singularity at P = 15, and in general at O(α2m) a
singularity occurs at P = 4m2 − 1 for integer m ≥ 2. However, unlike at P = 3,
expansions at these critical pressures can be constructed involving only even integer
powers and so a cusp in the energy curve is not expected.

In general if P = k2 − 1 for some k ≥ 3, then (3.7) requires a1,1 = 1/(3P − 9),
and (3.9) requires an−1,1 = 0 for n ≥ 3 with n 6= k, but ak−1,1 is as yet unknown. In
fact ak−1,1 can only be determined by considering higher order terms in α. This can
be done by continuing in the same vein as before; however, it is more informative to
note that the expansion for the curvature takes the form

(3.11) κ = −1−
(

(k2 − 1)
(
Cr1 cos kφ+ Ci1 sin kφ

)
+

cos 2φ

k2 − 4

)
α2+κ2(φ)α4+O(α6),
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−2 −1 0 1 2
−2

−1

0

1

2
y

x

−2 −1 0 1 2
−2

−1

0

1

2

y

x

Fig. 5: Streamline plots for the type 3a (left) and type 3b (right) solutions at α = 1,
P = 10.

where Cr1 = <(ak−1,1), Ci1 = =(ak−1,1) and κ2(φ) is as yet unknown. Substituting
into (3.1) and considering the O(α4) terms, we obtain

(3.12) κ′′2 +k2κ2 = − (4k2 − 1) cos 4φ

12(k2 − 4)2
− 1

2 (k−1)(k−3) (Cr1 cos kφ+ Ci1 sin kφ)+· · · ,

where a prime indicates a derivative in φ and all of the terms on the right hand side
which cannot cause a resonance have been omitted for brevity. Resonances cannot be
permitted since we demand solutions which are periodic in φ. Therefore for k ≥ 5,
we must have Cr1 = Ci1 = 0 and the cell shape is given by (3.10). For k = 4 we must
have Cr1 = −7/288 and Ci1 = 0, so that the cell shape is

(3.13) η(φ) = eiφ +
α2

36

(
e−iφ − 7

8
e−3iφ

)
+O(α4).

For k = 3, the resonant terms vanish, so Cr1 and Ci1 remain undetermined. We
will have to go to higher order to determine these constants. So taking k = 3, we
proceed as before, and find that to remove the resonances at O(α6) we must have

Cr1
(
C2
r1 + C2

i1 − 201
102400

)
= 0, Ci1

(
C2
r1 + C2

i1 − 201
102400

)
= 0,(3.14)

and to remove the resonances at O(α8) we must have

201
102400Ci2 − 2Ci1Cr1Cr2 − 29

1152Ci1C
2
r1

+ 241
16384000Ci1 − 29

1152C
3
i1 − 3C2

i1Ci2 − C2
r1Ci2 = 0,

(3.15)

201
102400Cr2 − 2Ci1Cr1Ci2 − 29

1152C
2
i1Cr1

− 4879
16384000Cr1 − 29

1152C
3
r1 − 3C2

r1Cr2 − C2
i1Cr2 = 0,

(3.16)

where a2,1 = Cr1 + Ci1i and a2,2 = Cr2 + Ci2i are the components of a2 at O(α2)
and O(α4) respectively. This gives us a set of four simultaneous equations for the
four variables {<(a2,1),=(a2,1),<(a2,2),=(a2,2)}, which has five solutions. The first
of these solutions,

{0, 0, 0, 0},
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The crosses in panel (b) correspond to the asymptotic solution (3.8).

is the same as that predicted for the general case of P 6= k2− 1, the type 2a solution.
The second and third solutions,

{±
√

201
320 , 0,∓ 68263

246988800 ,=(a2,2)},

represent top-bottom symmetric, left-right asymmetric solutions, with one being a
left-right reflection of the other. This is the type 3a solution. Note that =(a2,2) is left
undetermined here. The cell-shape is given by

(3.17) η(φ) = eiφ +
α2

15
e−iφ ±

√
201

320
α2e−2iφ +O(α4).

The fourth and fifth solutions,

{0,±
√

201
320 ,<(a2,2),∓ 6823

246988800},

represent left-right symmetric, top-bottom asymmetric solutions, with one being a
top-bottom reflection of the other. Here <(a2,2) is undetermined. This is the type 3b
solution. The cell-shape is given by

(3.18) η(φ) = eiφ +
α2

15
e−iφ ± i

√
201

320
α2e−2iφ +O(α4).

Figure 5 shows the streamlines for these solutions computed using the numerical
method discussed in section 3.2. We see that both type 3 cells have the same shape
to O(α2) but with different orientations. However, the fact that <(a2,2) for the top-
bottom symmetric solution is different to =(a2,2) for the left-right symmetric solution
means that both types 3 cells have different shapes to O(α4).

3.2. Numerical results. We now consider numerically computed solutions to
the steady problem. A useful measure for characterising a cell is the dimensionless
bending energy W defined by (2.25). Figure 6 shows the numerically computed bend-
ing energy against α for P near 3, as well as the analytical results from §3.1 for P = 3.
These solutions were described by Blyth & Părău [2], but are included here for com-
pleteness. For P < 3, we find only type 1 solutions, the vertically aligned top-bottom
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Fig. 7: The bending energy W near α = 0 for (a) P = 7.9, (b) P = 8 and (c) P = 8.1.
The solid line indicates type 2a solutions, the dashed line indicates type 3a solutions,
and the dash-dot line indicates type 3b solutions.

and left-right symmetric cell shapes. These solution branches have W = 0 at α = 0,
which corresponds to the circular solution. As P is increased to 3 we see that the
energy curve develops a cusp, as predicted by the expansion (3.8). In fact we find
excellent agreement between the analytical results and the numerical results. As P is
increased above 3, a loop appears in the energy curve underneath the type 1 solution
branch, with the lower and upper portions of the loop corresponding to the type 2a
and 2b solutions respectively. At α = 0, the type 2a solution has W = 0 correspond-
ing to the circular solution, while the type 1 and type 2b solutions have some W > 0
corresponding to the buckled mode-2 solution. As predicted by the analytical results,
we find a similar behaviour at P = n2 − 1 for even integer n ≥ 4. As P is increased
through this value, the energy curve with W = 0 at α = 0 rises up, crossing α = 0
at the buckled mode-n shape. A loop appears underneath this branch which crosses
α = 0 both at the unit circle solution and at the buckled mode-n solution.

Figure 7 shows the numerically computed bending energy against α for P near
8. As predicted by the analytic results we see that for P = 8 there are three solution
branches: the type 2a symmetric solution, and the asymmetric type 3a and type
3b solutions. There also exist type 1 and type 2b solutions at P = 8, but these
have self-intersecting cell profiles, which are non-physical and hence are not shown.
The numerically computed values of the bending energy were compared to those
obtained analytically, and were found to have excellent agreement for all three solution
branches. As P is increased, the type 3a and type 3b branches have W > 0 at α = 0,
corresponding to the mode-3 buckled cell. But for P < 8, the type 3a and type 3b
branches do not cross α = 0 and instead bifurcate nonlinearly from the type 2a branch
at some critical values of α 6= 0 which in general are different.

The bifurcation structure can be seen in more detail in Figure 8, which shows the
numerically computed bending energies against P for steady solutions with α = 0 and
α = 2. The solid lines represent both the circular and buckled solutions for α = 0. For
α = 0 the steady problem given by (3.1) and (3.2) is rotationally invariant around the
origin, and hence the solid lines can be rotated around the P -axis to obtain surfaces
of revolution. When α 6= 0 the rotational invariance is broken by the flow direction
and this creates the imperfections in the bifurcation structure seen in Figure 8. The
broken curves either side of the solid branch emanating from P = 3 correspond to
different orientations of the buckled cell, with the branch on the left corresponding to
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Fig. 8: The bending energy W against P for steady solutions. The solid line indicates
the solutions for α = 0, and the dashed line indicates the solutions for α = 2. The
labels indicate the classification of the α = 2 solution branches.

type 1 cells and the branch on the right corresponding to either type 2a (lower part of
the branch) or 2b cells (upper part of the branch). The local structure of the solution
branches around P = 8 is different; in this case the branch that emanates from
P = 8 for α = 0 divides into two and each of these new branches appear as nonlinear
bifurcations from a separate branch. In general the local bifurcation structure at the
critical points P = n2 − 1 depends on the parity of n: for n odd the behaviour is
qualitatively similar to that seen at P = 8 in Figure 8, and for n even the behaviour
is similar to that seen near P = 3 and P = 15 in Figure 8.

Figure 9a shows the properties of the type 1 solutions in the α− P plane. These
solutions are both top-bottom and left-right symmetric and aligned perpendicular to
the flow, as predicted by the linear theory. For P < 3, the solutions tend to the circular
solution as α→ 0, while for P > 3 they tend to the vertically aligned buckled mode-2
solution. As α is increased, the cell pinches together until at some critical value αc
it self-intersects. Solutions for α > αc are considered unphysical and hence are not
considered further. The critical value αc decreases to αc = 0 as P is increased to
P = 5.247, with no physically acceptable type 1 solutions beyond this point. These
physically meaningful type 1 cells are linearly stable over the region shown in the
figure; in fact we have not found any cases for which they are unstable. As P → −∞
with P/α2 = O(1), we obtain the problem for a bubble with constant surface tension
in a uniform flow. Nie & Tanveer [9] showed that such solutions are stable for all
values of P/α2 = (p∞ − p0)/(ρU2). The bubble self-intersects at P/α2

c = −0.273, so
α2
c ∼ −3.66P as P → −∞.

Figure 9b shows the behaviour of the type 2a solutions in the α−P plane. These
solutions are both top-bottom and left-right symmetric, and aligned parallel to the
flow. As predicted by the analytical results, these solutions only exist for P > 3. At
α = 0 the type 2a cells are circular for P < 15 and buckled mode-4 shapes for P > 15.
Physically acceptable solutions only exist if P exceeds a certain value which depends
on α. The type 2a solutions are generally unstable, although there is a large region
of stability around α = 2.8, P = 6.

Figure 9c shows the behaviour of the type 2b solutions in the α−P plane. These
solutions are both top-bottom and left-right symmetric, are aligned parallel to the
flow, and only exist for P > 3. The boundary between the region where solutions
exist and the region where solutions do not exist is identical to the one for type 2a
solutions, and on this boundary the type 2a and 2b solutions are identical. The type
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Fig. 9: Properties of the solutions in the α-P plane. The cell shapes shown in panel
(a) from left to right correspond to (α, P ) = (2,−6), (6,−6) and (9,−6) and in panel
(b) from left to right correspond to (α, P ) = (1.5, 6) and (4, 8).

2b solutions are unstable except within a very small region of the α− P plane.
Figure 9d shows the behaviour of the top-bottom symmetric left-right asymmetric

type 3a solutions in the α−P plane. These solutions exist above the broken line in the
figure. Below this line the cells are type 2a solutions which are left-right, top-bottom
symmetric, as shown in figure 9b. The type 3a solutions are stable only in a limited
region of the α− P plane.

For type 3b solutions, we find that even for cases where the cells are moderately
deformed, although the mapping coefficients an decay exponentially with n the decay
rate is very small, and consequently a large truncation level N is required. This makes
the computations for both the equilibrium cells and their stability infeasible for even
relatively small values of α and P .

4. Unsteady results. In this section we present simulations of the full unsteady
nonlinear equations (2.20)-(2.22). The simulations are used to validate the linear
stability results of §2.4 and to describe the evolution of unstable steady solutions of
§3 subjected to a small initial perturbation.

Figures 10 and 11 show =(a1) against time for a steady solution perturbed by a
stable or unstable eigenvector respectively, for both the linear theory and the nonlinear
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α = 2, P = 0 which is perturbed at t = 0 by the stable eigenvector with eigenvalue
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Fig. 11: Results of a time-dependent simulation for an unstable steady type 2b solution
at α = 2, P = 5 which is perturbed at t = 0 by the unstable eigenvector with
eigenvalue λ = 0.978, scaled by setting =(b̂1) = −10−6. The solid line shows the
numerical calculation and the crosses show the eigenvector.

computations. We see that in the stable case the linear theory agrees very well with
the nonlinear results for the whole time period considered, and in the unstable case
the linear theory agrees well with the nonlinear results until the perturbation becomes
too large, after which the evolution becomes fully nonlinear.

The nonlinear time-stepping method can also be used to study the behaviour of
the unstable cells as the perturbations become large and nonlinear effects become
significant. For near-circular cells whose area is almost π, the constant area and
constant perimeter constraints severely restrict the deformation of the cell, causing
it to remain near-circular, with the cell motion consisting of small oscillations of the
cell wall. For initial conditions corresponding to more deformed steady solutions the
unsteady evolution of the cell depends on the number of unstable eigenvectors obtained
from the linear stability analysis from §2.4: if there is a single unstable eigenvector,
simulations started from initial conditions with different random perturbations will
be dominated by the unstable eigenvector in the early stages and lead to nonlinear
motions which are qualitatively similar; if there are multiple unstable eigenvectors
however, a random initial perturbation will lead to a less predictable motion due to
nonlinear interactions of these eigenvectors.

Figure 12 shows the number of unstable eigenvalues for the type 2a cells in the
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Fig. 12: Map showing the number of unstable eigenvalues for type 2a steady solutions
in different regions of the α− P plane where physical solutions exist. On the dashed
and dot-dashed lines there is a repeated zero eigenvalue, corresponding to bifurcations
of type 3b and type 3a cells from the type 2a cells. On the dotted line there is a pair
of repeated real eigenvalues for α < 1.05 and a pair of repeated imaginary eigenvalues
for α > 1.05. The dotted line meets the dashed line at α = 1.05, P = 7.95, marked by
a cross in the map. (A) and (B) mark the two distinct regions with a single unstable
eigenvalue.

α− P plane. We note that in general all unstable eigenvalues are distinct and hence
have algebraic and geometric multiplicity 1. There are two regions in which the type
2a cell has a single unstable eigenvalue, labelled region A and region B. In region A,
the unstable eigenvector rotates the cell, with the direction of rotation determined by
the sign of the perturbation. The typical motion of a cell in this region subjected to a
small perturbation is sketched in figure 13a. A movie showing a simulation for this cell
cycle can be found in the Supplementary Material. As the motion becomes dominated
by the unstable eigenvector, the cell rapidly flips over, moving downstream as it does
so before holding its position in a near-steady state. It then flips in the opposite
direction, again being carried downstream before returning to a near-steady state.
The whole cycle is then essentially repeated. However, the motion is not periodic
and there are irregular small amplitude oscillations superimposed on the cell wall.
We ran a number of simulations in region A and confirmed this general behaviour.
This motion is found to also be typical of the unstable type 2b cells, which only
ever have a single unstable eigenvalue. Figure 14 shows the horizontal and vertical
components of the velocity of the centroid of the cell for a simulation of a specific type
2a cell at α = 2, P = 6 perturbed by its single unstable eigenvector at t = 0. The
crosses in the figure show where each frame in the cell cycle in figure 13a occurs. The
recurring pattern of cell motion is clearly visible, with the small amplitude oscillations
appearing as small irregular bumps in the curve. The alternating direction in which
the cell flips can be seen in the vertical component of the centroid velocity, while the
horizontal component shows the downstream motion while the cell is flipping.

The typical motion of a cell in region B from figure 12 subjected to a small per-
turbation is shown in figure 13b. A movie showing a simulation for this cell cycle can
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(a) Typical cell motion in region A

(b) Typical cell motion in region B

Fig. 13: Sketch demonstrating the nonlinear unsteady motion typical of cells in (a)
region A and (b) region B identified in figure 12 subjected to a small initial pertur-
bation, with the leftmost cells depicting initial conditions.

be found in the Supplementary Material. As the motion becomes dominated by the
unstable eigenvector, the cell bulges out to resemble a type 3a shape before returning
to a near-steady state. During this bulging motion, the cell undergoes intermittent
bursts of downstream acceleration, while in between holding its position in a near-
steady state. The cell repeats this motion, switching the side to which it bulges in
an unpredictable way, with irregular small-amplitude oscillations occurring along the
cell wall. We carried out a number of simulations in region B and confirmed this
general behaviour. The resemblance to type 3a cells can be explained by noting that
the unstable eigenvector corresponds to the eigenvalue associated with the bifurcation
from type 2a cells to type 3a cells on the dot-dashed line in figure 12. The down-
stream motion of the unsteady cells can be explained by use of an energy argument.
The bending energy and centroid velocity for a simulation of a specific type 2a cell
at α = 2.5, P = 8 perturbed by its single unstable eigenvector at t = 0, are shown in
figure 15. Since this initial perturbation is top-bottom symmetric, the cell retains this
symmetry throughout the motion, and therefore the centroid velocity is always in the
horizontal direction. We see that during the bursts of downstream motion, the bend-
ing energy of the cell increases, with a corresponding decrease in the kinetic energy
of the flow (2.24). We also see that when the bending energy dips below its initial
value, there is a corresponding negative centroid velocity. Since the minimum kinetic
energy of the flow corresponds to a cell rigidly translating downstream at speed α, a
decrease of kinetic energy generally corresponds to a downstream cell motion.

5. Summary. We have studied an inextensible two-dimensional elastic cell in
a uniform flow, with the focus on determining equilibrium states and their stability.
Using a conformal mapping approach suggested by Shankar [12] and Tanveer [14]
we have computed fully nonlinear equilibria numerically and analysed their stability
via an eigenvalue computation as well as time-dependent simulations. We have also
used the conformal mapping approach to construct asymptotic approximations valid
in the presence of weak flow and confirmed excellent agreement with the numerical
computations.

In a study devoted to steady equilibrium solutions, Blyth & Părău [2] used a
linearized small-α analysis to demonstrate that a circular cell in a static fluid will
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Fig. 14: The horizontal and vertical components of the centroid velocity during the
evolution of the unstable type 2a steady solution at α = 2, P = 6 (region A in
figure 12) which is perturbed at t = 0 by the unstable eigenvector, with eigenvalue

λ = 1.3048, scaled by setting =(b̂1) = −10−6. The dotted line corresponds to the
steady solution. The crosses indicate the first five points at which the cell resembles
each of the five cells shown in figure 13a. A movie showing the cell shape throughout
this simulation can be found in the Supplementary Material.

deform into an elliptical-type shape with its major axis oriented either horizontally
aligned with the uniform stream or at ninety degrees to it, depending on whether P
exceeds or is below three. This corresponds to the first buckling pressure stated by
Flaherty et al. [5] for a cell in a stationary fluid. Blyth & Părău’s [2] analysis was
based on a curvature expansion to first order in α that required knowledge only of
the leading order flow around the undeformed cell, and cannot provide details of the
first order correction to the flow-field. In the present work we have taken a more
natural approach and used a conformal mapping method to enable an expansion in α
to be taken to arbitrary order. In doing so we have illuminated parts of the solution
space that were missed by Blyth & Părău [2], notably a sequence of critical pressures,
that also correspond to those identified by Flaherty et al. [5], namely P = k2 − 1 for
integer k ≥ 2, at which further bifurcations are encountered. For example, we have
shown for the first time that steady cell shapes with left-right asymmetry and cells
with top-bottom asymmetry in the presence of a uniform flow are possible.

We have focused on solutions bifurcating from the first two critical pressures,
namely P = 3 and P = 8 and mapped out the steady solution space in each case. We
also carried out a linear stability analysis of the steady solutions and compared the
results favourably with time-dependent numerical computations of the full nonlinear
system. We found that the horizontally aligned symmetric cells, which exist for P <
5.247, are linearly stable for all parameter values that we considered. The vertically
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Fig. 15: The bending energy and horizontal centroid velocity during the evolution of
the unstable type 2a steady solution at α = 2.5, P = 8 (region B in figure 12) which
is perturbed at t = 0 by the unstable eigenvector with eigenvalue λ = 3.7155 scaled
by setting =(b̂1) = −10−4. The dotted line corresponds to the steady solution. This
motion is top-bottom symmetric, so the centroid velocity has no vertical component.
A movie showing the actual cell shape throughout this simulation can be found in the
Supplementary Material.

aligned symmetric cells, which exist for P > 3, were found to be generally unstable,
although we identified some values of the parameters for which these cells were stable.
The solutions with a left-right asymmetry were also found to be stable only in a limited
region of the parameter space. Finally, we computed the nonlinear time-evolution of
the unstable cells subject to a small initial perturbation, and identified regions in
which they fall into one of two distinct regular motions, either a flipping motion or
a bulging motion, with small irregular oscillations superimposed on the larger scale
regular motions. In the flipping motion, the cell flips between near-steady states, with
the direction of rotation alternating, but the cell always travelling downstream while
flipping. In the bulging motion, the cell bulges out to one side to resemble a top-
bottom symmetric mode-3 shape, before returning to a near-steady solution, again
travelling downstream during the deformation. In this case the side to which the cell
bulges switches in an unpredictable manner.

The conformal mapping approach, which as we have discussed was chosen to
facilitate analytic results, proved to be ill-suited for obtaining type 3b solutions. Al-
ternative methods, such as a boundary integral method, may be more appropriate
in resolving these solutions. Our analysis of the unsteady dynamics of the system
focused on assessing the stability of steady solutions. It would be interesting to per-
form a more extensive analysis of the unsteady system. Our preliminary calculations
have revealed cases where the approximate maximal Lyapunov exponent is positive,
indicative of chaos. This motivates further exploration to delineate the regions where
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the system is chaotic, and to find periodic or quasiperiodic orbits.
With practical applications in mind, for example the inflatable aerofoils mentioned

in the Introduction, it would be desirable to extend the current work to include
a trailing edge corner with circulation around the cell producing lift. The present
results can then be used as a useful guide to understand the structure of the solution
space in this case and allow us to identify equilibrium cell shapes that resemble a
traditional aerofoil or have the required aerodynamic capabilities. This is the subject
of our ongoing work.
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