AN ANALYSIS OF THE COHERENCE-BASED GENEALOGICAL METHOD USING PHYLOGENETICS

by

ANDREW CHARLES EDMONDSON

A thesis submitted to the University of Birmingham for the degree of DOCTOR OF PHILOSOPHY

> Department of Theology and Religion School of Philosophy, Theology and Religion College of Arts and Law University of Birmingham September 2018

UNIVERSITY^{OF} BIRMINGHAM

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.

Abstract

The *Novum Testamentum Graecum: Editio Critica Maior* is the first major critical edition of the New Testament for a century, aiming to document the New Testament's textual history through its first millennium. To date, two of the six volumes have been published. As part of this project the Institut für neutestamentliche Textforschung in Münster has developed the Coherence-Based Genealogical Method (CBGM), a computer-aided method designed to handle complete sets of textual evidence and to identify their initial text and textual history. The CBGM is widely held to be difficult to understand and its results are treated with scepticism.

Phylogenetics is the study of relationships between groups of organisms and their evolutionary history. Phylogenetics and the CBGM (and wider textual criticism) have many commonalities. This thesis provides a thorough examination of the CBGM using phylogenetics.

Part One documents the literature surrounding the CBGM and includes a worked example of the process. Part Two explores the ECM data for John's Gospel and identifies appropriate methods for applying phylogenetics to it. Part Three compares the results of phylogenetics and the CBGM. It concludes that the CBGM is producing valid results from the data, but could be improved in a number of ways.

Acknowledgements

I am indebted to many people for helping and supporting me during my studies. I have had the privilege of being supervised by two directors of the Institute for Textual Scholarship and Electronic Editing (ITSEE). First I would like to thank my main supervisor Professor David Parker for his immeasurable help and guidance during the last six years, even into his stepped retirement. He has found a perfect balance of giving me autonomy yet not letting me go off track during my research. My thesis is built on David's work editing John's Gospel for the *Novum Testamentum Graecum: Editio Critica Maior*, and could not exist without it. Following David's partial retirement Professor Hugh Houghton took over as director of ITSEE and has also been my co-supervisor for the second half of my research. I am very grateful to Hugh for his many insightful comments on my thesis, and for all the help he has offered me in my time at Birmingham. I would also like to thank Dr Catherine Smith for her help in ITSEE, and for introducing me to BlueBEAR (the University of Birmingham's supercomputer) which radically reduced the time required for my experiments.

I have received expert help from many places during my research. I would particularly like to mention Dr Klaus Wachtel from the Institut für Neutestamentliche Textforschung in Münster. Klaus has discussed the Coherence-Based Genealogical Method (CBGM) many times with me, and has read drafts of my work and provided many valuable comments and corrections. This thesis explores the CBGM partially by making use of phylogenetics, and I am very grateful to Professor Jean-Baptiste Cazier (director of the University of Birmingham's Centre for Computational Biology) and Dr Albert Nobre de Menezes for validating the method, interpreting the results and making many valuable suggestions. Albert introduced me to Fluxus Engineering's *Network* program, which has proved itself to be excellent for analysing my data.

Many thanks go to Rev Dr Lee Rayner, then leader of Malvern Evangelical Church, for introducing me to New Testament Greek and encouraging me to go to Bible College to study Theology where I was taught Greek by Dan Yarnell. Dan's enthusiasm for the Bible, and its Greek text in particular, continues to inspire me. His comment, following a lesson on textual criticism, to the effect that he could see me spending the rest of my career on that topic may well be the reason that I am where I am today.

There are many other people I should thank, but space will not permit. I will nevertheless mention Dr John Owen and Carol Sandys for supporting my research during my time in the Advanced Research Computing team. Thanks also to Jonathan Bell, leader of Churchcentral in Birmingham, for providing opportunities for me to teach people in our church network about the things I have learned during my research.

I could not have completed this research without the support of the scholarship awarded to me by the College of Arts and Law for the second half of my studies.

I'm very grateful to my parents and parents-in-law, who have helped and supported me many, many times during this journey. Finally, and most importantly, I want to thank my wife Karen, who has sacrificed a lot over the last six years. We started this task as a couple, and end it as a family of four.

vi

Table of Contents

Introduction	1

PART ONE

THE COHERENCE-BASED GENEALOGICAL METHOD

Chapter 1: The CBGM	7
Introduction	7
History of the CBGM and the ECM.	7
The Method	10
Texts not Manuscripts	11
Assumptions	12
Terminology	13
Local Stemmata	15
Overview of the Method	15
A Controversial Example: 1 Peter 4:16/24-28	18
Primary Literature	27
Introduction and Genre	27
INTF Publications	28
Chapter 2 – The CBGM in Wider Scholarship	45
Introduction	45
David Parker, the IGNTP and ITSEE	45
Other Authors	51
Chapter 3: CBGM Example	79

Introduction	
Witnesses	79
Collation	80
Pre-genealogical coherence	92
Local stemmata	
Genealogical Coherence and Textual Flow	
Consistency of Results	
The Final Apparatus	
Optimal Substemmata	
Global Stemma	
The Effects of Collation Decisions	131
Correctors	
Phylogenetic Comparison	154
Median-Joining Network	154
Phylogenetic Tree	
INTF's Nine Guidelines	
Conclusions	

PART TWO

PHYLOGENETICS

Chapter 4: Stemmatics and Phylogenetics	
Introduction	
Stemmatics	
Phylogenetics for manuscript studies	

The similarity of Phylogenetics and Manuscript Studies	
The application of Phylogenetics to Manuscript Studies	173
Phylogenetic Software	
Stripey	
SplitsTree	
Mesquite	
MrBayes	
Network (Fluxus Engineering)	
Conclusion	
Chapter 5: Phylogenetics of John 18	201
Introduction	
Methodology	201
Results	
Family 13 (f ⁴³)	
Family 1 (<i>f</i> ⁴)	
A Group of Catena Manuscripts	
Further Groups	217
Chapter 6: Optimising MrBayes	221
Introduction	
The Solution Space	221
Convergence	
Benchmark	
Benchmark Trees	
Branch Probabilities	
Sub-tree: Family 1 (f ¹)	

Sub-tree: Family 13 (f ¹³)	
Other Notable Features	
Conclusion	
Number of Processors	
Introduction	230
Chains	
Runs	
Configuration Options	
Burn-in	
Temperature	
Many Chains and Lower Temperatures	
Conclusion	

PART THREE

ANALYSING THE CBGM

Chapter 7: The CBGM: Connectivity	245
Introduction	245
Data	247
Examples	247
John 2:10/12-20	247
John 7:1/24	253
Percentage versus Rank	
Experiment: John 18	
Introduction and Coherence Tables	

Textual Flow	
Conclusion	271
Chapter 8: The CBGM: The Strength of Textual Flow	
The Strength of Textual Flow is Invisible	
Visible Strength	
Minimum Strength	
Undirected Relationships	
Conclusion	
Chapter 9: The CBGM: Further Criticisms and Improvements	
Introduction	
The Formula for Pre-genealogical Coherence	
Textual Flow is Backwards	
Forced Feedback Loop and Weighing versus Counting	
Correctors and Textual Flow	
Conclusion	
Chapter 10: The CBGM and Phylogenetics	
Introduction	
Phylogenetic Tree	
Median Joining Network	
CBGM	
Optimal Substemmata	
Global Stemma	
Textual Flow Diagrams versus Global Stemmata	
Comparing the Diagrams	
0141 and 821	

The "Non-Majority" Witnesses	
Conclusion	
Chapter 11: Conclusions	
Appendix 1: CBGM Example (Remaining Data)	
Appendix 2: John 2 Phylogenetic Tree from Job 920421	
Appendix 3: NEXUS File of John 2	
Appendix 4: Coherence Data for Chapter 7	
Appendix 5: Chapter 7 John 18 Experiment	
Appendix 6: Optimal Substemmata	
Bibliography	

Introduction

This thesis sets out to explore, analyse and improve the Coherence-Based Genealogical Method (CBGM). This task is approached directly by studying and using the CBGM, and indirectly by exploring the underlying data using phylogenetics. The core idea is that phylogenetics is conceptually similar to the CBGM – they both provide a computer-aided analysis of the evolution of items: texts (CBGM) or species (in Biology) – yet they are independent methods and therefore the results of one may be able to validate the results of the other.

The thesis is arranged in three parts. Part One provides a detailed introduction to the CBGM. Chapter 1 introduces the CBGM, its history and its relationship to the *Novum Testamentum Graecum: Editio Critica Maior* (ECM). Chapter 1 also provides an overview of its primary literature, i.e. that produced by the Institut für neutestamentliche Textforschung (INTF) in Münster, where the CBGM was created and continues to be developed. Chapter 2 sets out a summary of how the CBGM has been received by the wider scholarly community. Chapter 3 is a thorough, step-by-step description of applying the CBGM to John 6:21-24 based on all majuscules and papyri of John's Gospel included in the ECM. Beginning with the task of collating the witnesses and ending with the creation of the global stemma, it allows a transparent and complete understanding of how to use the CBGM for such verses. Chapter 3 also includes a brief comparison of the results of phylogenetic software and the CBGM on this small dataset.

Part Two explores phylogenetics as applied to manuscript traditions, and evaluates various different methods and software. Chapter 4 is an exploration of transcriptions of John from the International Greek New Testament Project (IGNTP), visualising the data and

applying phylogenetics to it. Two phylogenetic software packages are found to be highly valuable, and are applied in detail to the manuscript tradition of the Gospel of John: *MrBayes* and Fluxus Engineering's *Network*.¹ Chapter 5 applies *MrBayes* to the transcriptions of all 1,559 extant Greek manuscripts of John 18, identifying some well known groups and families, and finding some hitherto unknown groups. Chapter 6 is a brief excursus seeking to optimise the use of *MrBayes* for the IGNTP data for John 2, resulting in a reduction of the time required from an average of eleven and a half hours to thirty eight minutes. This is *eighteen times faster*, considering the averages.

Part Three contains the analysis and suggested improvements for the CBGM. Chapter 7 argues that using and showing only the rank for connectivity is insufficient, and it would be better to include a minimum coherence percentage. This is explored by changing the CBGM's output in various ways. Chapter 8 highlights the importance of the strength of textual flow, which is not currently included in standard textual flow diagrams, and discusses alternative display methods and algorithms. Chapter 9 contains a number of shorter criticisms of the CBGM, for example suggesting an alternative and "more objective" algorithm for calculating pre-genealogical coherence. Chapter 10 sets out a detailed comparison of the results of the CBGM and phylogenetic software using the full data from David Parker's work on the ECM of John's Gospel. It concludes that the CBGM and phylogenetics both identify similar groups and structures in the data, using independent methods: therefore the CBGM's results may be treated with confidence.

Much of the research described in this thesis uses my own implementation of the CBGM, written in Python. This software can be found on my GitHub page, <u>https://github.com/edmondac/</u>, or by following the DOIs provided in the references

¹ For *MrBayes* see <u>http://mrbayes.sourceforge.net</u>; Huelsenbeck and Ronquist, 'MRBAYES'; Ronquist and Huelsenbeck, 'MrBayes 3'. For *Network* see http://www.fluxus-engineering.com; Bandelt, Forster, and Rohl, 'Median-Joining Networks for Inferring Intraspecific Phylogenies'.

throughout. All software has bugs, and it would be foolish to claim that this software was any different. However, it has been thoroughly tested and I believe that there are no bugs that could significantly affect the results. Each chapter or section will note the version(s) of the software used, to aid reproducibility.

PART ONE

THE COHERENCE-BASED GENEALOGICAL METHOD

Chapter 1: The CBGM

Introduction

In this chapter I will introduce the Coherence-Based Genealogical Method (CBGM), its history, its relationship to the *Novum Testamentum Graecum: Editio Critica Maior* (ECM) and provide an overview of its primary literature. While publications about the CBGM continue to appear regularly, the need to impose a limit for the purposes of this thesis means that it only considers literature published before 1 January 2018.

History of the CBGM and the ECM

"The ECM represents a new level of scientific research on the text of the Greek New Testament and offers a text newly established on this basis."¹

In 1997 the Institut für neutestamentliche Textforschung (INTF) in Münster published the first instalment (James) of the first volume (IV: Catholic Epistles) of a major new project: *Novum Testamentum Graecum: Editio Critica Maior*, more commonly known as the ECM. Building on years of previous research at the INTF, the ongoing goal of the ECM is to document the New Testament's textual history through its first millennium. In 2000 the INTF published the second instalment (the Letters of Peter), in 2003 the third (the First Letter of John) and in 2005 the fourth (the Second and Third Letter of John, the Letter of Jude). They continued working on the Catholic Epistles, and in 2013 published the second edition of volume IV. In 2017 they published volume III: Acts, after which they will turn to Mark.² The INTF has entered into agreements with other institutions to complete the ECM: the

¹ Holger Strutwolf, Foreword to Aland et al., NA28 (unnumbered page).

² Note that the volume numbers have changed from those anticipated in volume IV, where Acts would have been volume II. They are now defined as follows: I. Synoptic Gospels; II. Gospel of John; III. Acts; IV. Catholic Letters; V. Pauline Letters; VI. John's Apocalypse. See Strutwolf et al., *ECM III (Acts)*, pt 1, 18*.

History of the CBGM and the ECM

International Greek New Testament Project (IGNTP) is editing the Gospel of John and will then move on to Paul's letters.³ The Apocalypse of John is currently being edited by the Institut für Septuaginta- und biblische Textforschung (ISBTF) in Wuppertal⁴.

A major claim of the ECM is that it "provides the full range of resources necessary for scholarly research in establishing the text and reconstructing the history of the New Testament text during its first thousand years."⁵ However, the ECM text is not without its critics, or rather the ECM method and its resulting text has drawn criticism even from some who would traditionally stand by the Nestle-Aland text. The core of this new method is the Coherence-Based Genealogical Method (CBGM).

The CBGM was not used to create the first instalment of the ECM in 1997.⁶ The second instalment in 2000 contained a note that a new method was in use.⁷ By the third instalment in 2003 the CBGM had risen to prominence, and the preface to that instalment cites it by name as being used to "explore the relationship among the witnesses".⁸ For the second edition of volume IV of the ECM in 2013 the CBGM was applied to the combined data for all the Catholic Epistles, resulting in a small number of textual changes. It provided the text for the Catholic Epistles in NA28 (the 28th edition of the Nestle-Aland hand edition of the Greek New Testament) and as such its text and that of its successors will be found on countless bookshelves around the world for decades to come. Likewise, ECM volume III will provide the text for Acts in NA29.⁹

Created by Gerd Mink in Münster, the CBGM's objective is "to establish a

³ The IGNTP is a transatlantic committee overseeing work on critical editions of the Greek New Testament see <u>http://www.igntp.org/</u>. The work on Paul's letters is scheduled to be completed in the 2030s.

⁴ See Kirchliche Hochschule Wuppertal-Bethel, http://www.kiho-wuppertal-bethel.de/.

⁵ Aland et al., ECM IV 2nd ed. (Catholic Letters), 21*.

⁶ See Aland et al., *ECM IV.1 (James)*.

⁷ See Aland et al., *ECM IV.2 (Peter)*.

⁸ Aland et al., *ECM IV.3 (1 John)*, 37*; The preface is reprinted in Aland et al., *ECM IV 2nd ed. (Catholic Letters)*, XV.

⁹ The intention is that this trend will continue and the ECM will eventually provide the entire text for the NA.

comprehensive hypothesis for the genealogical structure of the textual tradition [and] to examine the validity of textual decisions".¹⁰ Creating a stemma and a critical text is not new – Lachmann was doing this in the nineteenth century – but the CBGM now makes a startling claim: "<u>All the evidence is taken into account</u>. Statements about the relationships between copies of the text are based on an evaluation of all variants in all manuscripts that are judged to be useful for editing the text and reconstructing its history."¹¹ This statement is key, in that the CBGM is able to manage the huge amount of data involved in considering the complete textual evidence of large numbers of manuscripts.

In addition to the basic challenge of the volume of the data, the New Testament is also a highly contaminated tradition. Consider two manuscripts X and Y. It is common that there will be places in the text where they differ, attesting readings x^1 and y^1 and it is determined that x^1 developed from y^1 (perhaps as a grammatical correction, for example). At the same time, at another place in the text they might read x^2 and y^2 , yet here it is determined that y^2 developed from x^2 (perhaps mistakenly omitting a word). In other words neither manuscript will simply present itself as the ancestor of the other. Mink describes this phenomenon by saying that "[Textual flow] in both directions can be demonstrated for almost every pair of witnesses."¹²

In Mink's seminal work of 2004, 'Problems of a highly contaminated tradition', he "attempts to show a new way (i) of finding and evaluating the genealogical data that can be used to construct a stemma of such texts, and (ii) of constructing a stemma that reflects all genealogical data."¹³ This new way is the CBGM, and David Parker states that because of it: "We are at last able to make Lachmannian stemmatics workable in complex textual

¹⁰ Mink, 'The Coherence-Based Genealogical Method (CBGM) – Introductory Presentation, 1.0', 9.

¹¹ Spencer, Wachtel, and Howe, 'The Greek Vorlage of the Syra Harclensis', para. 14 (my emphasis).

¹² Mink, 'Contamination, Coherence, and Coincidence in Textual Transmission', 144.

¹³ Mink, 'Problems of a Highly Contaminated Tradition', 13.

traditions."14

One key point of divergence, however, from traditional stemmatics is unavoidable in the face of the levels of contamination present in the New Testament: in a contaminated tradition, the stemma of witnesses is not straightforward. Contamination requires that some witnesses have more than one parent. Indeed, in a tradition with contamination and also many missing manuscripts, the effect of this is magnified.

The Method

Gerd Mink, creator of the CBGM: "I want the consequences of textual decisions for the whole of the textual history to be understood."¹⁵

At the heart of the CBGM is the idea of applying genealogical methods to the individual variant unit not just to the text as a whole, and from that to calculate information about the relationships between texts of manuscripts. As Mink states, "...the CBGM derives genealogical relationships between witnesses from genealogical relationships between their variants. The gist of this method is a way to map genealogical relationships between variants into coherent fields within a global stemma of witnesses."¹⁶ Below is a brief introduction to the terminology and steps of the method.

Peter Head states that "The Coherence-Based Genealogical Method is difficult to summarise briefly..."¹⁷ Stephen Carlson, in his introduction to the CBGM says "Owing to the complexity of the Method, it is very possible that I have not completely understood various aspects of it..."¹⁸ These statements are representative of a widely held view that the CBGM is

¹⁴ Parker, *Textual Scholarship and the Making of the New Testament*, 84. See Chapter 4 for a discussion of Lachmannian Stemmatics.

¹⁵ Mink, 'Editing and Genealogical Studies: The New Testament', 52.

¹⁶ Mink, 'Contamination, Coherence, and Coincidence in Textual Transmission', 150f.

¹⁷ Head, 'Editio Critica Maior: An Introduction and Assessment', 143.

¹⁸ Carlson, 'Coherence-Based Genealogical Method', para. 1.

difficult to understand. With this common response in mind I have supplemented the following information with a full worked example of the CBGM in Chapter 3, aimed at demystifying the method by using simple data.

Texts not Manuscripts

Consider the following facts of the New Testament tradition: there are many missing manuscripts; high levels of contamination are evident; there is frequent uncertainty of manuscript provenance; and a manuscript can only provide an upper limit on the date of its own text. Thus it is not possible to reconstruct the actual history of transmission or the genealogy of the manuscripts.

A crucial difference between traditional stemmata and those produced by the CBGM is that the CBGM considers texts and not manuscripts. A claim of the CBGM is that in reconstructing the history of the first millennium of the text much crucial evidence is provided by manuscripts from the second millennium, where there is evidence in later manuscripts of earlier text forms – potentially even earlier than our earliest extant manuscripts.¹⁹

A second consequence of considering texts not manuscripts is that the stemmata produced by the CBGM do not require the traditional concept of hyparchetypes: "In a conventional stemma, hyparchetypes take the place of lost manuscripts because the stemma is meant to show which manuscripts were copied from which. A stemma that does not try to exhibit relations between manuscripts but between texts can do without hyparchetypes because the aim is to show the pattern of change that has taken place in the tradition as represented by preserved manuscripts."²⁰ Somewhat confusingly, although no better idea presents itself, the stemmata produced by the CBGM still have nodes labelled using

¹⁹ See Mink, 'Contamination, Coherence, and Coincidence in Textual Transmission', 146.

²⁰ Spencer, Wachtel, and Howe, 'The Greek Vorlage of the Syra Harclensis', para. 14.

The Method

manuscript references – because they are the easiest way of referring to the text to which they bear witness.

Wachtel offers an important clarification, that "a textual flow diagram shows a structure that integrates states of text and must not be confused with an outline of actual historical processes or a stemma of manuscripts."²¹ And again "Textual history, according to the CBGM approach, deals with texts carried by manuscripts, not with the manuscript traditions as such. The relative chronology of the textual development is quite independent of the history of manuscripts."²² Despite such statements by members of the INTF over many years, it is not uncommon for other scholars to misunderstand this important premise.²³ This is perhaps unsurprising, when the introduction to ECM volume III contains the following footnote, highlighting the problem nicely: "When the term "manuscript" is used in the following, it means the text transmitted in the manuscript."²⁴ Only those who read that footnote will note the redefinition of the term.

Assumptions

The CBGM is based on four assumptions. Within the bounds of parsimony, the following are asserted to hold true *more often than their opposites*:²⁵

- 1. Scribes attempted to copy faithfully
- 2. Scribes did not invent readings
- 3. Scribes used few sources
- 4. A scribe's sources were closely related

²¹ Wachtel, 'The Coherence Method and History', 1.

²² Ibid., 5.

²³ See Chapter 2, Secondary Literature / Other Authors.

²⁴ Strutwolf et al., ECM III (Acts).1, 28*.

²⁵ See Mink, 'Contamination, Coherence, and Coincidence in Textual Transmission', 153ff.

A further underlying hypothesis of the CBGM is that every variant reading can be said to derive from a reading in other witnesses (including the hypothetical initial text). Existing readings may be combined, shortened, lengthened, changed, deleted and so on. Parsimony dictates that the solution using the fewest parent readings is to be preferred here.

Several years later, the editorial team of ECM Acts wrote a paper expanding these assumptions combined with their experience from Acts into nine guidelines for creating local stemmata. See "INTF Publications" below and Chapter 3 for further details. The guidelines should be read by anyone seeking to apply the CBGM.²⁶

Terminology

The Initial Text (Ausgangstext)

One methodological innovation of Mink and the CBGM is the introduction of the concept of the initial text (or *Ausgangstext* in German – hence its label "A"). The initial text is a hypothetical text from which all extant witnesses are descended. It is likely to be different from the authorial text (if there is such a thing as a single authorial text) and is also different from the idea of a hyparchetype since the CBGM can delve deeper into the textual history than a hyparchetype of the oldest available manuscripts. In Mink's words, "This initial text may be hypothesized as representing the starting point of the tradition at each passage."²⁷

Wachtel offers a useful clarification that "the initial text is neither the same as the archetype nor the authorial text. The archetype marks the beginning of the manuscript tradition, being itself a manuscript now lost... The reconstruction of the initial text can never be more than a hypothesis which may be convincing at most places, while serious doubts

²⁶ See Gäbel et al., 'The CBGM Applied to Variants from Acts: Methodological Background', 3.

²⁷ Mink, 'Editing and Genealogical Studies: The New Testament', 52.

The Method

remain at some."28

Coherence

The idea of coherence is fundamental to the CBGM (hence the name). It comes in three types (pre-genealogical, genealogical and stemmatic) and crucially forms new external criteria for text-critical decisions. Pre-genealogical coherence describes the level of agreement between two witnesses as a percentage reflecting the number of agreements divided by the total number of variant units found in both witnesses.²⁹ It does not have a direction. This simple formula will be discussed further in Chapter 9 and compared to more objective measures. It stands to reason that agreement of readings in closely related witnesses may be assumed to be non-coincidental.

Genealogical coherence combines this coherence percentage with knowledge of the relationships between the variant readings, providing a direction to the coherence. The witness with the most prior readings (as opposed to posterior) becomes a potential ancestor of the other and thus the direction of predominant "textual flow" is discovered.³⁰ Textual flow is the key to the construction of the CBGM's stemmata.

Stemmatic coherence "is found between ancestors and descendants in the global stemma, which presents the simplest hypothesis for which ancestors are necessary to explain the full text of each descendant at every point of variation."³¹

These new external criteria are not introduced in an attempt to diminish the role of traditional criteria. However, as Mink points out: "My intention is to reduce subjective evaluation of readings and witnesses and to strengthen the external criteria. But internal

²⁸ Wachtel, 'The Coherence Method and History', 2.

²⁹ A variant unit is a section of the text where the different manuscripts attest different readings of the text.

³⁰ As well as prior and posterior, some readings are classed as unrelated (e.g. cousins in a family tree).

³¹ Mink, 'The Coherence-Based Genealogical Method (CBGM) – Introductory Presentation, 1.0', 476.

criteria are important now as before. They are not really restrained, but applied in a new methodical environment. The external criteria become more powerful and reliable if we pay close attention to the principle of coherence and to the role each witness plays in the textual flow."³²

Local Stemmata

The idea to create a stemma for each variant unit (a local stemma) is described by Parker as "an essentially simple but brilliant stroke".³³ These local stemma are generally small and easy to understand and are created using traditional text-critical criteria, along with the extra information provided by coherence. As discussed above, genealogical relationships between variant readings are used to derive genealogical relationships between witnesses. Equally important, however, is the opposite concept where already determined coherence values are used to help to determine the relationships between variant readings. Thus if there are two readings (α , β) for a variant unit then not only is the traditional text-critical work undertaken to consider the relationships between the readings (e.g. β probably derives from α because they seem related and it is the *lectio difficilior*) but also the relationships between extant witnesses of each reading are considered. If the witnesses of α are not potential ancestors of witnesses of β then it is considered unlikely that β could derive from α . If, conversely, the witnesses attesting β are potential ancestors of those attesting α then the CBGM suggests that it is more likely that α derives from β , and so this must be considered when making this local stemma.

Overview of the Method

Mink, the creator of the CBGM, states: "The Coherence-Based Genealogical Method

³² Mink, 'Editing and Genealogical Studies: The New Testament', 56.

³³ Parker, An Introduction to New Testament Manuscripts and Their Texts, 169.

The Method

makes no textual decisions. It merely reveals an image of the tradition which emerges from a text-critical philological study of all the variants. The iterative process of the method helps the text-critical philological hypotheses to confirm their plausibility."³⁴ The iterative nature of the CBGM means that later findings are used to reconsider earlier decisions. For example, a local stemma may have made perfect sense when it was created, but once enough such local stemmata are available, and so genealogical coherence data has been calculated, the original local stemma may no longer hold true. It would then have to be changed, which in turn would subtly affect the balance of the genealogical coherence. Enough local changes can flip the prevailing direction of textual flow between witnesses and thus the direction of genealogical coherence. It seems reasonable to assume that the results will stabilise after enough iterations have been completed.

The starting point for the CBGM is to establish as many uncontroversial local stemmata as possible. When constructing a local stemma all the attestations of each reading must be considered. The pre-genealogical coherence of these attesting witnesses is used to inform decisions about the coincidental emergence (or not) of multiple attestations of the same reading. For example, to find two witnesses with very low pre-genealogical coherence (say 75%) that share an otherwise unattested reading suggests that the reading emerged independently twice.³⁵ Alternatively, two witnesses of pre-genealogical coherence 98% sharing a rare reading that could easily have independently emerged (considering traditional text-critical criteria) would nevertheless suggest that the attestation is probably related. As these local stemmata are created the genealogical coherence between witnesses begins to take shape as in each case prior and posterior readings are established.

³⁴ Mink, 'The Coherence-Based Genealogical Method – What Is It About?', para. 21.

³⁵ Note that the average agreement between any given pair of witnesses of the Catholic Epistles is 87.6%. See Mink, 'Contamination, Coherence, and Coincidence in Textual Transmission', 157. Nevertheless, relationships between the text from very early manuscripts (in a much sparser tradition than later evidence) often yield considerably lower coherences than the average.

Genealogical coherence, and the textual flow diagrams that are created using it, are then used to check and revise local stemmata, and to define hitherto undefined local stemmata. Local stemmata will either hold true in the light of textual flow, or not – for example a local stemma is held to be false if no witness attesting a parent reading is an appropriately highly ranked ancestor of witnesses attesting the child reading. See Chapter 3 for a detailed example of defining initial local stemmata, and applying genealogical coherence to define more, and refine existing, local stemmata. This process can now be iterated, until the scholar is satisfied with the local stemmata.

Once such local stemmata have been created work begins on creating the global stemma. Mink highlights a problem, however: "The final task seems to be very easy: all the trees mirroring the connections inherent in the local stemmata must be calculated, and we must select only the tree with the fewest branches. But this is not practicable, for the number of trees reflecting the local stemmata is enormous, so we must reduce the possibilities at the beginning and during the work without cutting off essential ones."³⁶ The reduction of possibilities is achieved by creating an optimal substemma for each witness and then combining all these substemmata into one or more global stemmata. An optimal substemma is a stemma containing the fewest ancestors necessary to explain all the readings in the witness. Each reading is either present in an ancestor, or emerged as a new variant originating from a reading found in an ancestor. Note: a variant is considered "connective" when coincidental emergence is unlikely or coherence is high between witnesses. Connective variants are important when creating an optimal substemma, as they will affect which witnesses need to be included.

Because of contamination, it is sometimes borderline which of a pair of witnesses is

³⁶ Mink, 'Editing and Genealogical Studies: The New Testament', 55f.

The Method

considered the ancestor and which the descendant in a substemma. The overall textual flow is used to decide, but in that case altering the decision of only a handful of variant passages might change the overall decision. Such changes are to be expected in subsequent iterations of the method, and even subsequent editions of the ECM. The difference in the number of prior readings in each of the pair of witnesses is referred to as the strength of the textual flow. See Chapter 8 for suggested improvements concerning the strength of textual flow.

A Controversial Example: 1 Peter 4:16/24-28

The INTF have provided a list of the changes between the NA27 and NA28 texts of the Catholic Letters.³⁷ Peter Head discusses the list and points out a surprising choice for the initial text (*Ausgangstext*) of 1 Peter 4:16/24-28, explored here in detail:³⁸

- *a* ECM, NA28: ... τω μερει τουτω (let him glorify God in *this matter*)
- b NA26, NA27, UBS4: ... τω ονοματι τουτω (let him glorify God by this name)

UBS4 (the fourth edition of the United Bible Societies Greek New Testament) doesn't even mention a textual variant here. NA28 lists the support for *a* as "P 307. 642. 1448. 1735. Byz." (no extant manuscripts earlier than the ninth century) and *b* as " $P72 \approx A B \Psi 5$. 33. 81. 436. 442. 1175. 1243. 1611. 1739. 1852. 2344. 2492. latt sy co; Cyr". Holmes, in the SBLGNT, includes *b* in the text with the following in the apparatus: " $\partial v \delta \mu \alpha \tau t$ WH Treg NIV] $\mu \epsilon \rho \epsilon t$ RP", showing that *b* is preferred by Westcott and Hort, Tregelles and the New International Version (NIV) while *a* is found in Robinson-Pierpont (RP = Byz.) alone.³⁹ The

³⁷ See Wachtel, 'Textual Changes in NA28'.

³⁸ This is an ECM reference where 24 refers to the word number at the start of the variant unit and 28 the word at the end. Head, 'Editio Critica Maior: An Introduction and Assessment', 144.

³⁹ Holmes, The Greek New Testament. SBL Edition, 463 (SBLGNT); For Holmes' abbreviations, see ibid., ixx; Westcott and Hort, The New Testament in the Original Greek (WH); Tregelles, The Greek New Testament, Edited from Ancient Authorities, with Their Various Readings in Full, and the Latin Version of Jerome (Treg); Goodrich and Lukaszewski, A Reader's Greek New Testament (NIV); Robinson and Pierpont, The New Testament in the Original Greek (RP).

ECM editors state that *a* is the harder reading and print it in their critical text, although on the face of it there is a strong case for *b* as harder instead.⁴⁰ The ECM lists three more variants ($\tau\omega$ μερει τουτου; τουτω τω μερει; and τω μερει τουτω η τω ονοματι τουτω) but we need say no more about them as they are all considered posterior to *a* or *b*.

So how has the ECM's committee come to choose such a reading over one with such obvious support from so many "good" manuscripts? Sceptical of this, Head says that if true, this "would be an example where the CBGM allows the critic to recognise the Ausgangstext in one late strand of the manuscript tradition."⁴¹ This ability, of course, is a major claim of the CBGM.

This decision can be interrogated using the "Genealogical Queries" programs (first edition).⁴² First, Figure 1 shows the textual flow diagram for variant *a* created by the "Coherence in Attestations" program with connectivity 10 (average) and setting the initial text to *a* (i.e. the text as printed in the ECM). Coherence is perfect here – i.e. for each witness to variant *a* one of its ten most likely potential ancestors also reads *a*, back to 468 and then the initial text A. In fact, in all but five places in this diagram each witness descends from its highest ranking potential ancestor and even in those five cases the lowest ranked ancestor to appear is third.

Figure 2 shows the textual flow diagram for reading a, with initial text set to b (i.e. the text printed in NA26, NA27, UBS4, ...). This time reading a is shown as having emerged from b twice – in 025 and 2298 with 025 being the reason for every other attestation (via 468). Again there are five instances of a non-first ranked ancestor being required to explain the reading but this time the lowest rank seen is seven for 1735, and in this case the first six

⁴⁰ Mink, 'The Coherence-Based Genealogical Method (CBGM) – Introductory Presentation, 1.0', 218.

⁴¹ Head, 'Editio Critica Maior: An Introduction and Assessment', 144.

⁴² INTF, "Genealogical Queries" v1 (for the 1st Edition of ECM Vol IV)'.

The Method

most likely potential ancestors of 1735 read b.⁴³ It is worth noting that if the connectivity had been set to 6 rather than 10 then this would be counted as a third emergence of the variant. This numerical ranking system has the potential to be misleading, however, as the percentage difference in coherence between the first (02, 90.365%) and seventh (642, 89.635%) potential ancestors is only 0.73%. Compare this to the difference between the first and second most likely potential ancestors of, say, manuscript 1832: 876 at 98.547% and 424 at 92.586% - a difference of almost 6%. Incidentally, 1832 and 876 read *b*, while 424 reads *a*. The validity of using these rankings versus percentages will be explored in Chapter 7.

⁴³ In the first diagram 1735 is shown immediately below A as its second ranked ancestor.

Chapter 1: The CBGM

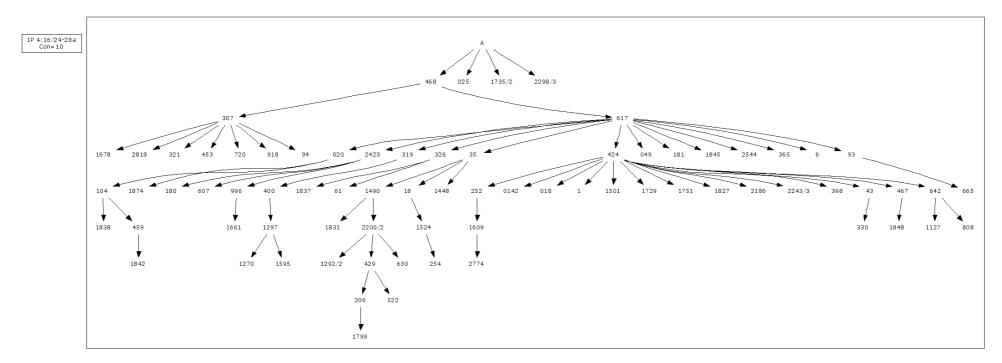


Figure 1: Coherence in Attestations, variant a with initial text a for 1 Pet 4:16/24-28

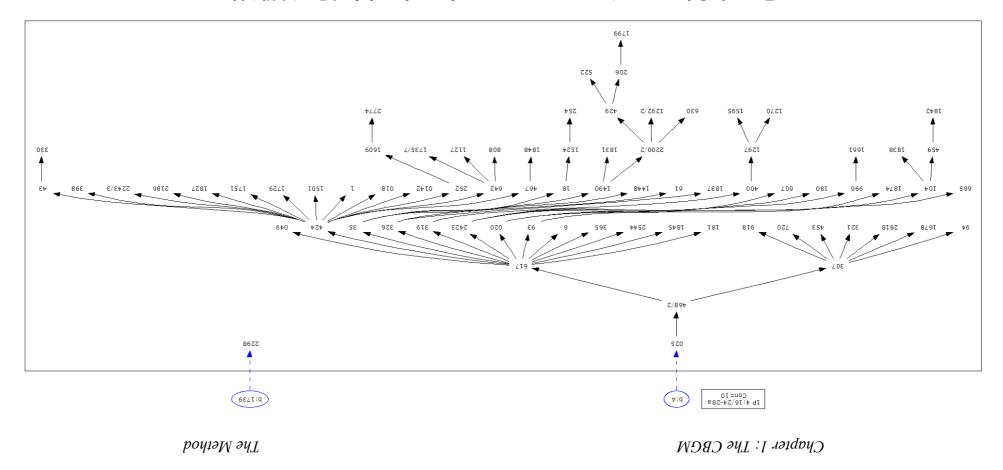


Figure 2: Coherence in Attestations, variant a with initial text b for 1 Pet 4:16/24-28

Figure 3 shows the textual flow diagram for reading *b*, with initial text set to *a*. This time reading *b* is a case of multiple emergence from four different ancestors, all attesting *a*. The question here, then, is how likely does it seem that this fourfold emergence would occur from reading *a* found only in later extant manuscripts, to *b* found in $\mathfrak{P}72$ and other early manuscripts?

Finally, Figure 4 shows the textual flow diagram for reading b, with initial text set to b. Again reading b is a case of fourfold emergence: in the initial text and three further times, all originating from reading a – even though b is asserted to be the initial text. This is the crucial problem for including reading b in the initial text – it must have been changed to a and then changed back to b at least three times in the tradition's history. Note that 2492 only just creeps in with its tenth ranked potential ancestor, otherwise there would be yet another emergence to deal with. It is also worth noting that the three non-initial text emergences form three relatively small groups of manuscripts with the lion's share of witnesses to reading b descending unbroken from the initial text.

The most likely of these scenarios, it was decided by the ECM editors, is the first one: the initial text reads a – and the coherence evidence above does seem to justify this choice. Figure 5 shows the resulting local stemma. Mink states that "The editors of the Editio Critica Maior consider variant a to be the more difficult reading and assume that variant b has developed from variant a. Even if variant b was the original, variant b must have been derived several times from variant a coincidentally. Variant b remains a case of multiple origins."⁴⁴

⁴⁴ Mink, 'Introductory Presentation', 218.

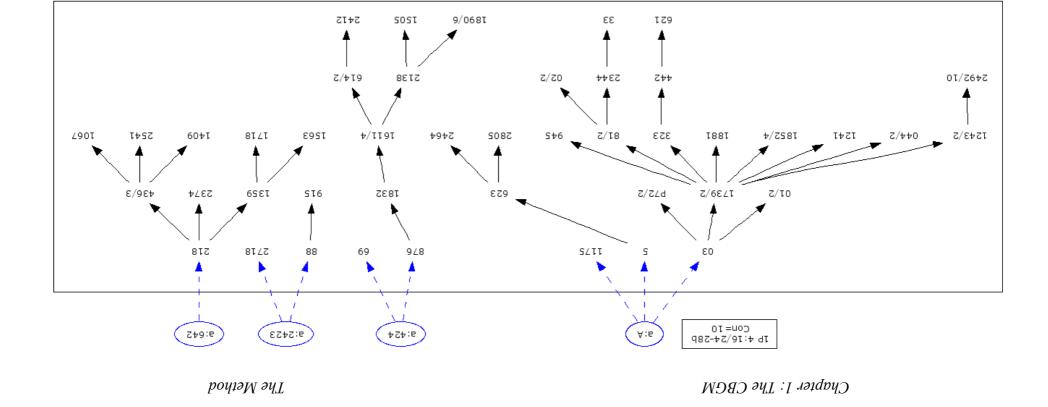


Figure 3: Coherence in Attestations, variant b with initial text a for 1 Pet 4:16/24-28

Chapter 1: The CBGM

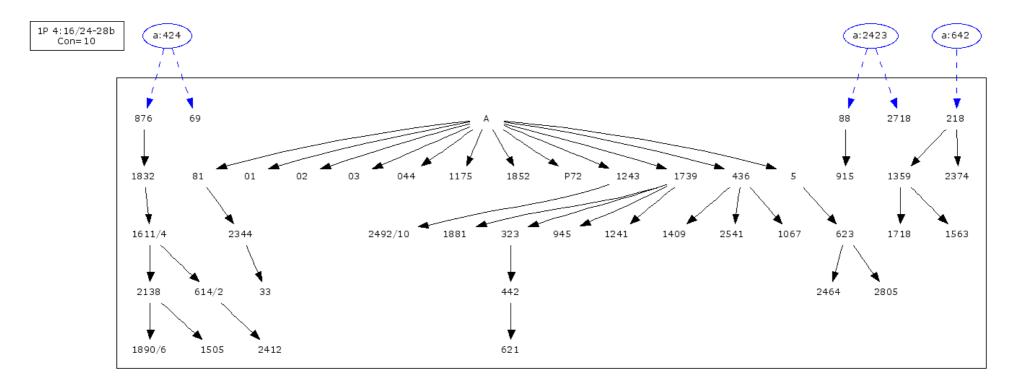


Figure 4: Coherence in Attestations, variant b with initial text b for 1 Pet 4:16/24-28

The Method

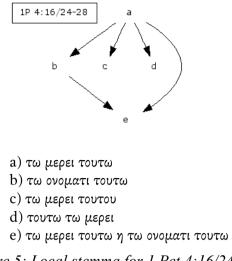


Figure 5: Local stemma for 1 Pet 4:16/24-28

It is hard to argue with the CBGM data here, although perhaps easier to argue with the editors' assertion that reading a is the *lectio difficilior*. Even arguing that b were the most difficult, and showing that it has the "best" and oldest manuscript support, it is hard to accept the resultant story depicted by the textual flow diagrams above (with b as the initial text). Incidentally, for the equivalent of Figure 4 to show perfect coherence (all witnesses to reading b appear in a single tree), it is necessary to increase the connectivity setting to 40 and perfect coherence cannot be achieved at all for Figure 2. Nevertheless, the hypothesis that b is the initial text (as has been asserted in previous NA editions) is not a lost cause. All that is required is for reading a to change (be corrected back?) to b in three manuscripts – descendants of 424, 2423, 642 – each forming a relatively rarely copied tradition.

Introduction and Genre

For the purposes of this chapter, all works on the ECM or CBGM produced by the INTF in Münster are considered primary literature and all others secondary. This section sets out a history of the development of the primary literature concerning the CBGM.

The primary literature does not attempt, it would appear, to introduce the CBGM to non-philologists. On the one hand this might seem reasonable – as who but a philologist would need to apply the CBGM? But the potential impact of the method on the *ongoing* transmission of the text of the Greek New Testament (for example in the NA28, NA29 and so on) has led to a kindling of interest far outside the editorial committees of such editions. Thus the interested, perhaps even concerned, readers find themselves confronted with works in a genre that they are not easily able to digest. This might go some way to explaining the misunderstandings and not uncommon negative reaction to the CBGM from some quarters.⁴⁵

In 2004 Mink published an article "Problems of a highly contaminated tradition: the New Testament – Stemmata of variants as a source of a genealogy for witnesses' in the journal *Studies in Stemmatology II*. Wachtel and Holmes, in their introduction to *The Textual History of the Greek New Testament* refer to this as Mink's "seminal study" and as is implied by this. and citations in several other articles and books, 'Problems of a highly contaminated tradition' is Mink's major publication on the CBGM, its terminology and its use.⁴⁶ Mink puts forward his theory on contamination in the New Testament tradition: that "if contamination occurs, it emerges from those texts which were at the disposal of the scribe, i.e. texts in his

⁴⁵ See Chapter 2. For example, the discussion of Porter, How We Got the New Testament.

⁴⁶ Wachtel and Holmes, The Textual History of the Greek New Testament, 6.

direct environment, i.e. texts which are, for the most part, closely related with each other."⁴⁷ He describes the decision only to include firsthand readings in continuous text in the ECM, therefore "not counting variants by correctors, in marginal text and commentaries."⁴⁸ This decision will be discussed further and challenged in Chapters 3 and 9. He argues that later manuscripts contain evidence of a "very old text, only slightly altered in the course of time" thus introducing the key methodological point of distinguishing between manuscripts and the text to which they bear witness: "It is impossible to find the genealogical relationship between manuscripts if most of them have not survived. It is merely possible to uncover the genealogical structure of the preserved texts. In this context, therefore, the text is the witness and not the manuscript."⁴⁹

The rest of the paper is given over to a description of the method and discussions of cases where a stemma produced by the standard CBGM procedures would be in some way incorrect, incompatible or "false".⁵⁰ Such local stemmata are not uncommon due to the complexity of the data, for example: "usually a number of the variants of the ancestor in a contaminated tradition are posterior to the corresponding variants of the descendant, and a number of the variants of the descendant are prior to those of the ancestor."⁵¹ The detailed discussions of such cases, and the procedure to follow for each, are a major reason why this paper is so often referenced.

INTF Publications

We will now trace the INTF's remaining publications on the CBGM chronologically.

⁴⁷ Mink, 'Problems of a Highly Contaminated Tradition', 14.

⁴⁸ Ibid., 78.

⁴⁹ Ibid., 24.

⁵⁰ For true vs. false, consider the example of the global stemma. It is "true" only if it is compatible with each local stemma, all the coherence data at every place of variation and all non-coincidental emergence of variant readings. See Ibid., 30.

⁵¹ Ibid., 51.

In 1993 Mink published a paper 'Eine umfassende Genealogie der neutestamentlichen Überlieferung' showing some of his early thoughts on the genealogy of the New Testament, contamination and his fledgling method – which he presents "nur in Grundzügen und in vereinfachter Form" ("only in outline and in simplified form"). This paper includes Mink's earliest discussion (of which I am aware) of the need to consider a genealogy of texts and not manuscripts.

In 2000 Mink wrote an article describing the development and use of the CBGM for the letter of James in the ECM: "Editing and genealogical studies: The New Testament" in *Literary and Linguistic Computing*.⁵² There are no examples and little help to the uninitiated reader but this article contains early insights into the development of the CBGM. For example, the need for the middle step of optimal substemmata is explained here: because the gap between the local and global stemmata was too great to be bridged. Interestingly, Mink also explains his frustrations with trying to use the traditional apparatus in the Nestle-Aland edition for computer-aided analysis. This led to the development of the databases and applications that became fundamental to the CBGM and ECM.

Proceedings of a conference in Munster in 2001 (published in 2003) include another early paper by Mink exploring genealogical coherence: "Was verändert sich in der Textkritik durch die Beachtung genealogischer Kohärenz?" This paper was written while the CBGM was in active (early) development. In his conclusion he considers what this method changes, for example that some witnesses will be considered of less importance than before as their posterior nature has now been identified.

The INTF website hosts several resources relating to the ECM and CBGM. The CBGM overview page (dated 2002 but revised later) 'The Coherence-Based Genealogical

⁵² I believe this is the earliest article about the CBGM in English, although the article does not name the method as the CBGM.

Method – What is it about?' is surely intended as the first thing the web user will find regarding the CBGM.⁵³ It sets out (in only fifteen hundred words) the reasons and core concepts of the CBGM but, as is typical of the corpus of work on the CBGM, it is not presented in such a way as to easily introduce the topic.

In 2002 Klaus Wachtel, in collaboration with two biologists from Cambridge (Matthew Spencer and Christopher J. Howe), published a paper comparing the CBGM and the cladistic maximum parsimony (MP) method from evolutionary biology.⁵⁴ They point out that MP is "one of the most popular phylogenetic methods, and has often been used in the study of manuscript traditions".⁵⁵ They set out to compare the methods by looking at a group of manuscripts of the Epistle of James whose Greek text is very similar to their text made by translating the Syriac Harclensis back into Greek. After describing each method and the results gained from both, they set out to make a comparison – but in the end they conclude that the methods produce different results and should be used in different circumstances, or with different goals in mind. For example, MP makes no use of (so doesn't require any) philological reasoning and doesn't try to find an original text – but rather just calculates an overall representation of the relationships between texts. The CBGM, in contrast, exists first to identify the initial text. Wachtel briefly revisited this project in his 2007 paper in *Editing the Bible* (published in 2012), using it to highlight characteristics of the CBGM such as this emphasis on philological input.⁵⁶

In 2004, Spencer, Wachtel and Howe joined forces again to apply the reduced median network method from biology to the Greek textual tradition of James. The reason for this

⁵³ The article on this page is dated as 2002 although at least the bibliography has been updated more recently.

⁵⁴ Essentially, in MP, the smallest tree that explains the data is considered the best tree. Spencer, Wachtel, and Howe, 'The Greek Vorlage of the Syra Harclensis'.

⁵⁵ Ibid., para. 1.

⁵⁶ Wachtel, 'The Coherence-Based Genealogical Method: A New Way to Reconstruct the Text of the Greek New Testament'.

study was that "Many manuscripts of the Greek New Testament are influenced by multiple pathways of textual flow. This makes it difficult to reconstruct a stemma using traditional methods."57 They build on their 2002 paper which, they argue, showed that the kind of stemma produced by MP could not properly represent the relationships between the witnesses. This second paper only refers to the CBGM once by name, but CBGM-core concepts such as textual flow and dealing with a contaminated tradition are present throughout. They argue that the reduced median method allowed them to "represent multiple pathways of transmission, to reconstruct the readings in hypothetical ancestral manuscripts, and to determine whether there are characteristic readings identifying groups of manuscripts." The resultant stemma contained eighty-two real and 8,517 hypothetical manuscripts to represent the textual flow of the tradition. This method can cope with contamination and large numbers of manuscripts (unlike some of the alternatives) and creates a network that, they argue, is consistent with theories about the transmission of the New Testament. No philological reasoning is used and there are restrictions that, at face value, make this method seem inappropriate for the job at hand: for example the method can only cope with binary splits, i.e. each parent has exactly two children. The output of this method is not one single stemma, in the traditional sense, as they argue: "When a text tradition is heavily contaminated, there may be many equally parsimonious trees. The solution is to produce a multi-dimensional network (the median network) that contains all of these trees simultaneously. However, such a network will often be too complex to display, in which case we can reduce its complexity by including only the most likely pathways. The result is known as a reduced median network..."⁵⁸ This then, "is a network in which contamination is explicitly represented."59 They briefly discuss alternative

⁵⁷ Spencer, Wachtel, and Howe, 'Representing Multiple Pathways of Textual Flow in the Greek Manuscripts of the Letter of James Using Reduced Median Networks', 1.

⁵⁸ Ibid., 2f.

⁵⁹ Ibid., 1.

network methods, saying that none is currently suitable for textual criticism but research is ongoing. Nevertheless, "The theoretical advantage of network methods is that they can produce explicit hypothetical descriptions of the history of heavily contaminated text traditions."⁶⁰ See Part Two (Chapters 4, 5 and 6) for information and analysis about using phylogenetics to analyse manuscript traditions.

At the annual meeting of the SNTS (Studiorum Novi Testamenti Societas) in 2005 in Halle, Wachtel and Parker presented a paper introducing the IGNTP/INTF's joint venture to create the ECM volume for John's gospel and also an electronic critical edition of John – using the CBGM. Parker provided an overview and a discussion of the concept of the initial text. Wachtel presented an introduction to the CBGM based on an example from James. He made several important points arguing that the CBGM is a tool under the control of the textual critic and not the other way round, for example: "Philological reasoning has a clear preponderance over stemmatological procedures. At every point it can be determined what the software we use is doing. There is no 'stemmatological black box'."⁶¹ Talking about genealogical coherence and making text-critical decisions, Wachtel highlights the principle that "One can opt against prevalent tendencies where ever one sees good reasons against them. But it is an integrated part of the method that such tendencies cannot be ignored."⁶² He goes on to argue that the CBGM has highlighted that "in many cases we do not know 'wie es wirklich gewesen -- how it was in reality', – that we are dealing with probabilities rather than with a fixed 'Urtext'."⁶³

At the 5th Birmingham Colloquium on the Textual Criticism of the New Testament in 2007 Wachtel presented a paper 'Towards a Redefinition of External Criteria: The Role of

⁶⁰ Ibid., 12.

⁶¹ Wachtel and Parker, 'The Joint IGNTP/INTF Editio Critica Maior of the Gospel of John', 9.

⁶² Ibid.

⁶³ Ibid.

Coherence in Assessing the Origin of Variants.⁷⁶⁴ This paper contains another basic introduction to the CBGM, showing further insight into the start of the process: "passages that don't pose text-critical problems are used to collect evidence that the assessment of genealogical coherence can build on."⁶⁵ He also includes an interesting example from Jude 5, five words that have yielded thirty variants: "εἰδότας ὑμᾶς ἅπαξ πάντα ὅτι Ἰησοῦς".⁶⁶ The ECM prints this text (supported by 03), while NA27 prints "εἰδότας [ὑμᾶς] πάντα ὅτι [δ] κύριος ἅπαξ" (a reading not found in the ECM apparatus although its component readings are present). The discussion focuses on the subject Ἰησοῦς, κύριος or θεος – where the majority of the NA27 editorial committee argued, according to Metzger, that "[despite] the weighty attestation supporting Ἰησοῦς... the reading was difficult to the point of impossibility, and explained its origin in terms of transcriptional oversight".⁶⁷ Wachtel describes the decisionmaking process that led to the ECM reading "and in this case it was the coherence of the attestation that tipped the scale..."⁶⁸ This is an example of a Byzantine NA27 reading being replaced in the ECM with an "older" reading.

Klaus Wachtel presented another introduction to the CBGM in 2007 at the Conference on Editorial Problems in Toronto in his paper 'The Coherence-Based Genealogical Method: A New Way to Reconstruct the Text of the Greek New Testament.' Updated conference proceedings were published in 2012 by SBL as *Editing the Bible: Assessing the Task Past and Present.*⁶⁹ Justifying a key assumption of the CBGM, that "All surviving witnesses are related to each other and there is coherence within the entire tradition", Wachtel points out that in the Catholic Letters, only 39 pairs of manuscripts have less than 80% coherence, most

⁶⁴ This was published in 2008 in Houghton and Parker, *Textual Variation: Theological and Social Tendencies?*65 Wachtel, 'Towards a Redefinition of External Criteria', 113.

⁶⁶ Ibid., 121ff. Wachtel claims 30, yet I count 31 variants in the ECM apparatus.

⁶⁷ Metzger, A Textual Commentary on the Greek New Testament, 657.

⁶⁸ Wachtel, 'Towards a Redefinition of External Criteria', 123.

⁶⁹ See Kloppenborg and Newman, Editing the Bible.

pairs have greater than 85%, all but three pairs have a closest potential ancestor greater than 90%, and those three have greater than 87%.⁷⁰ He goes on to describe the method, includes an example of a local stemma and the philological reasoning used in its creation and shows how it was revised in light of coherence data from the whole of the Catholic Letters.⁷¹ The resulting local stemma is quite different following the revision, although the root is unchanged. He argues that the CBGM process lets the critic keep track of decisions, and also claims that "What we gain is an external criterion for assessing textual variation that is far more discerning that the old text-type model."⁷²

Holger Strutwolf also presented a paper at the Toronto conference, 'Scribal Practices and the Transmission of Biblical Texts: New Insights from the Coherence-Based Genealogical Method.' He begins by saying "The most important task of textual criticism is to reconstruct the original text, or to be more modest: to establish a sound and well-argued hypothesis about the initial text of the transmission of a certain piece of literature that was handed down to posterity via manuscripts."⁷³ His point is that establishing an initial text cannot be done away with in favour solely of a study of the history of the text and therefore the various classical text-critical criteria are needed. These criteria can be seen as attempts to formalise the outputs of scribal behaviour. He goes on to argue that using the data produced by the CBGM for the Catholic Letters it is now possible to consider a manuscript's potential ancestors and so see the scribe's behaviour in a new light: "We can reconstruct the scribal habits much better than was possible before."⁷⁴ He gives several examples, for example in 1 Peter 2:18/32 the longer and smoother reading is the ancestor of a shorter, rougher one.⁷⁵ He

⁷⁰ Wachtel, 'The Coherence-Based Genealogical Method: A New Way to Reconstruct the Text of the Greek New Testament', 129.

⁷¹ See ibid., 131ff.

⁷² Ibid., 136.

⁷³ Strutwolf, 'Scribal Practices and the Transmission of Biblical Texts', 139.

⁷⁴ Ibid., 148.

⁷⁵ Recall this is an ECM reference where 32 refers to the word number at the start of the variant unit.

argues that the scribes were not intending to make a rougher reading but succumbed to a common error; the accidental omission of small words. Therefore, as a result of the CBGM, even the *internal* criteria of textual criticism need re-evaluation – it does not just add extra external criteria. Referring to Hort's famous quotation on "Knowledge of documents" he concludes that "judgement on readings must always be combined with the knowledge of the overall picture of transmission" – something which the CBGM claims to provide.⁷⁶

Then in 2008 Mink presented a lengthy session introducing the CBGM at the colloquium on *The Textual History of the Greek New Testament: Changing Views in Contemporary Research* in Münster. The conference proceedings were published in a book of the same title by SBL in 2011, edited by Wachtel and Holmes. The book contains eight papers, but roughly two thirds of its pages are taken up by this paper by Mink: 'Contamination, coherence, and coincidence in textual transmission: The Coherence-Based Genealogical Method (CBGM) as a complement and corrective to existing approaches.' Jongkind states that "the real reason for the conference was to initiate a discussion of the Coherence Based Genealogical Method.'⁷⁷⁷ He goes on to say that, at that time, this paper was "by far the best introduction to the CBGM available.'⁷⁷⁸ This paper is an extensive introduction to the CBGM, its assumptions, terminology, method and also the "Genealogical Queries" software. For example, there are sections discussing potential ancestors versus stemmatic ancestors, the use of textual flow diagrams etc.. There is an interesting and detailed example of creating an optimal substemmata for a witness, and interrogating the results.⁷⁹ Perhaps attempting to counter some of the mistrust growing about the CBGM, Mink

⁷⁶ Strutwolf, 'Scribal Practices and the Transmission of Biblical Texts', 160. The quote from Hort is: "Knowledge of documents should precede final judgement upon readings", from Westcott and Hort, *The New Testament in the Original Greek, Introduction and Appendix*, 31. (Note, the introduction was written by Hort alone. See ibid 18.)

⁷⁷ Jongkind, 'Review of "The Textual History of the Greek New Testament", Wachtel, Klaus and Michael Holmes Eds.', 147.

⁷⁸ Ibid.

⁷⁹ See Mink, 'Contamination, Coherence, and Coincidence in Textual Transmission', 189ff.

emphasises several times the strong place of philological reasoning within the method. Similarly, in the conclusion of this book, Wachtel states that "The CBGM is not the philosopher's stone that produces a reconstruction of the initial text automatically. Yet it makes visible and evaluates *coherence* – a class of evidence that could not be reliably gathered and surveyed before the adoption of database technology."⁸⁰

The first bibliography entry on the web page 'The Coherence-Based Genealogical Method – What is it about?' (mentioned above as claiming to have been last updated in 2002) is a large presentation from 2008 that provides the first detailed examples of using the CBGM: 'The Coherence-Based Genealogical Method. Introductory Presentation by Gerd Mink. Release 1.0.' This presentation is thorough and very useful for understanding the method. Appropriately for a method with a reputation for being hard to understand, it is several hundred pages long and still refers the reader to Mink's 'Problems of a Highly Contaminated Tradition' where further discussion is required.

The INTF website also hosts the "Genealogical Queries" suite of programs, and a guide to using them (also written in 2008). This guide explains how to use the five modules of "Genealogical Queries" intended for "investigation of genealogical relationships inherent in the New Testament textual tradition" and also how to interpret their results.⁸¹ In addition, it contains brief but important comments on textual flow and a discussion about using connectivity settings to decide on stemmatic ancestors of a witness.

The second edition of the ECM (volume IV) was published by the INTF in 2013. Its introduction contains a description of how all the available manuscripts were collated by the INTF in ninety-eight test passages and many manuscripts were found to witness to the majority text in over ninety percent of the test passages. From these a small number was

⁸⁰ Wachtel and Holmes, The Textual History of the Greek New Testament, 221.

⁸¹ Mink, 'Guide to "Genealogical Queries"", para. 1 (preface).

chosen for inclusion in the edition. In addition, all manuscripts with less than ninety percent agreement were included, making a total of 183. They claim that this "*guarantees* reliably that the critical apparatus contains all the known readings which have appeared in the history of the text from its earliest beginnings through the formation and final establishment of the Byzantine text."⁸² To this they added twenty-one of the 400 Apostolos lectionaries... which "demonstrated once more that the lectionary text in no way represents a tradition independent of the Byzantine text."⁸³ Quotations (and rarely allusions) from all Greek church fathers up to the seventh/eighth centuries were included and two from the ninth/tenth. They included, as quotations, anything where the wording is identical to a known variant from the manuscript tradition. Back-translations of critical editions into Greek were made from Latin, Coptic and Syriac versions, wherever possible. They state that the Armenian, Georgian, Old Church Slavonic, and Ethiopian versions' relationships to the Greek text needed more research before they could similarly be included. They also included some readings not attested by any of the selected Greek manuscripts.⁸⁴

The section 'Notes on the text of the second edition of the Catholic Letters' includes notes on a number of key concepts behind the ECM/CBGM: for example, coherences (pregenealogical and genealogical), potential ancestors, textual flow diagrams etc.⁸⁵ It is by no means, however, an introduction to the CBGM. What it does include is a description of the aims of the ECM and makes some important claims about it. The phrase "initial text" has sparked much scholarly debate, and this section sets out what this means for the ECM: "For the Catholic Letters the aim of our reconstruction is a hypothesis about the respective

⁸² Aland et al., ECM IV 2nd ed. (Catholic Letters), 22* (my emphasis).

⁸³ Ibid.

⁸⁴ Ibid., 29* explains that additional readings were included in the supplement (Part 2) from Aland, Text Und Textwert Der Griechischen Handschriften Des Neuen Testaments; Soden, Die Schriften des Neuen Testaments.

⁸⁵ See Aland et al., ECM IV 2nd ed. (Catholic Letters), 30*ff.

authorial texts.³⁸⁶ They do *not* claim that this initial text will be identical with the authorial text. They relate how, in the 1980s, various techniques were applied to the New Testament tradition, "including cluster analysis, approaches based on graph theory, and formal concept analysis.³⁸⁷ What emerged was an understanding that philological reasoning was a necessary part of any such work and just using statistical methods was not good enough. This, clearly, was a fundamental step in the process that eventually produced the CBGM in its current form. Once the data for James was available, the CBGM was developed and "aimed at developing an overview of the relationships between all witnesses involved".⁸⁸ They highlight an important claim of the CBGM – that this output provides a "comprehensive picture" of the decisions taken by the editors which in turn allows them to challenge their own decisions.⁸⁹ It was not until the third instalment (the First Letter of John) of the ECM that the CBGM was able to be used fully, as the genealogical data for James and the Letters of Peter was not available before publication.⁹⁰ For the second edition, the genealogical data from the whole of the Catholic Letters could be applied to the text of each individual letter and this led to a number of changes against the first edition.

'Notes on the text' also sets out some conclusions of the INTF that have caused scholarly disagreement. One such conclusion is that "In the course of our work on the Catholic Letters it soon became clear that the old text-type terminology is not useful for describing the evidence."⁹¹ They justify this claim by describing the network of interrelationships between manuscripts (both Byzantine and other) that are themselves closely related to the initial text: "we have come to realise that several witnesses containing the

⁸⁶ Ibid., 30*.

⁸⁷ Ibid., 31*.

⁸⁸ Ibid.

⁸⁹ Ibid.

⁹⁰ See ibid., 32*.

⁹¹ Ibid.

Byzantine text in pure form feature high rates of agreement... with the initial text A. This is surprising, because these witnesses support the Byzantine text in nearly all passages where it clearly differs from our reconstruction of the initial text."⁹² In other words, the various traditional text-types are not distinct groups as was previously thought but in fact the reality is much more complex. Their final claim about the CBGM is that it "offers tools which do not impose any bias on the text-critical decision. It rather confronts the editors with the objective data of pre-genealogical coherence and with a summary of all text-critical decisions they have made..."⁹³ This claim will be tested in Chapter 9.

A morning session on "The Genealogical Method" was held at the Annual Meeting of the Society of Biblical Literature, San Diego, 22 November 2014. The introduction and four articles subsequently appeared as a special feature entitled "The Coherence Based Genealogical Method' in the online journal TC, Volume 20 (2015). Here we will discuss the INTF's contribution to the special feature.⁹⁴ The first article is 'The Coherence Method and History' by Klaus Wachtel. In this short paper he offers some useful clarifications about the CBGM's concepts, such as the distinctions between pre-genealogical coherence (objective) and genealogical coherence (subjective, dependent on the editor's decisions); or the nature of the initial text.⁹⁵ See Chapter 2 for an example of the effect on the initial text of altering the underlying collation and Chapter 9 for a suggestion to make pre-genealogical coherence genuinely objective. Wachtel also points out the importance of the distinction between a textual flow diagram and a stemma, namely that textual flow diagrams are "just graphs visualizing the relationships between witnesses and their potential ancestors ranked by

⁹² Ibid., 34*.

⁹³ Ibid., 35*.

⁹⁴ For the remaining contributions see Chapter 2.

⁹⁵ Rather than 'objective', Hüffmeier describes pre-genealogical coherence as "more or less non-subjective" in Hüffmeier, 'The CBGM Applied to Variants from Acts', 1.

percentages of agreement."⁹⁶ His final brief conclusion is also worth noting: "The CBGM is not the tool to use for dating manuscripts or texts."⁹⁷

The second INTF article from SBL 2014 is 'The CBGM Applied to Variants from Acts: Methodological Background', by the editorial team of ECM Acts (Gäbel, Hüffmeier, Mink, Strutwolf, Wachtel). This more narrative article is based on the experience of applying the CBGM to Acts, and again offers some helpful clarifications. For example, the authors set out their argument for the "obvious" supremacy of "a combination of transcriptional probability and coherence analysis" (i.e. the CBGM's approach to textual criticism) over the more traditional use of intrinsic probability, related to "our knowledge about the language and style of the author."⁹⁸ The implication of their point is that the CBGM must produce more consistent (and accurate?) results than traditional textual criticism. The second section of the Acts team's paper then expands the four CBGM assumptions combined with the experience from Acts into nine guidelines for creating local stemmata.⁹⁹ They include, for example: advice on deciding when to include a majority reading in the initial text; and a note that singular readings are normally derivative. See Chapter 3 for a further discussion of these guidelines.

The third INTF SBL 2014 paper is Wachtel's 'Constructing Local Stemmata for the ECM of Acts: Examples.' These examples show that the Acts team has formalised a way of working that applies genealogical coherence (GC) and transcriptional probability (TP) separately for each variant unit and lists their findings as such. Then the results of GC and TP are compared. Helpfully, the guidelines from the previous paper are indexed against each example. This potentially highly valuable resource is hindered by appearing too much like a

99 See "Assumptions" above.

⁹⁶ Wachtel, 'The Coherence Method and History', 6.

⁹⁷ Ibid.

⁹⁸ They say it is "obvious", and I agree. Gäbel et al., 'The CBGM Applied to Variants from Acts: Methodological Background', 2.

handout and we are left wishing we had the text of the presentation alongside it. Wachtel had presented preliminary versions of these two papers ('Methodological Background' and 'Examples') at the sixty ninth General Meeting of the SNTS (Studiorum Novi Testamenti Societas) in Szeged the same year, in a talk entitled 'Constructing Local Stemmata for the Editio Critica Maior of Acts.'

The fourth and final INTF SBL 2014 paper is 'The CBGM Applied to Variants from Acts', by Hüffmeier. In contrast to Wachtel's paper of examples, Hüffmeier has turned her presentation into a stand-alone paper including a much fuller explanation of each of her examples.¹⁰⁰ This paper, again, makes frequent reference to the guidelines in the 'Methodological Background' paper from the same SBL session. These guidelines and the PC (pre-genealogical coherence), GC, TP notation have clearly become central to the working practices of the editorial team of Acts. She ends with a comment pointing to the core iterative nature of the CBGM: "Perhaps at the end of phase 2 we will have gained enough additional material to enable us in phase 3 to revise our decisions."¹⁰¹

Wachtel presented at the DiXiT convention in 2016, in the 'Digital Scholarly Editing and Textual Criticism' workshop. His talk was entitled 'Towards a Global Stemma of the Greek New Testament Textual Tradition: Methodological Approach', the slides of which are available online, constituting a straightforward overview of the CBGM.¹⁰² The DiXiT presentations were then published in 2017 in the form of "extended abstracts" in *Advances in Digital Scholarly Editing: Papers presented at the DiXiT conferences in The Hague, Cologne, and Antwerp*, edited by Boot et al., where Wachtel's paper became called 'A Stemmatological Approach in Editing the Greek New Testament: The Coherence-Based

¹⁰⁰ Hüffmeier's first example takes almost three pages to discuss Acts 13:14/33 compared to Wachtel's paper which fits two or three examples on each page.

¹⁰¹ Hüffmeier, 'The CBGM Applied to Variants from Acts', 12.

¹⁰² Wachtel, 'Towards a Global Stemma'.

Genealogical Method.¹⁰³ In this paper Wachtel briefly introduces the problem of contamination and proposes the CBGM as its solution: "...the NT tradition is highly, some say hopelessly, contaminated. However, the Coherence-Based Genealogical Method... does offer a remedy against contamination. The remedy is the result of an analysis and interpretation of coherence which is the feature of the NT tradition balancing contamination or mixture."¹⁰⁴ In his description of the method, he emphases an important point, in the form of a rule: "Do not try to reconstruct the manuscript tradition but focus on the states of text preserved in the manuscripts."¹⁰⁵ It may be useful to print such a statement on the CBGM's packaging, so to speak, as this difference between the CBGM's results and real manuscript copying relationships have caused significant confusion and suspicion from other scholars, as will be seen in Chapter 2.

In 2017 the INTF published volume III of the ECM: Acts, the introduction of which briefly explains the CBGM process as applied to Acts. There is also a textual commentary describing all variant units where the ECM Acts text differs from NA28 – something that was long promised for volume IV but never materialised. The existence of this textual commentary for volume III is very welcome. The INTF is working with the Cologne Center for eHumanities (CCeH) to create a new user interface for the CBGM, to replace the existing "Genealogical Queries". It has been released in the final phase of producing the ECM of Acts.¹⁰⁶ It has many advantages over the old system, and over time is likely to incorporate several of the recommendations made in this thesis.

The Acts team describe, at a high level, that they divided the definition of local

¹⁰³ See Wachtel, 'A Stemmatological Approach in Editing the Greek New Testament'.

¹⁰⁴ Ibid., 2.

¹⁰⁵ Ibid., 4.

¹⁰⁶ See INTF and Cologne Center for eHumanities, "Genealogical Queries" Phase 4 (for ECM Vol III)'; Strutwolf et al., *ECM III (Acts)*.

stemmata into three phases.¹⁰⁷ In phase one they identified important witnesses – namely the witnesses closest to the NA28 text and witnesses supporting the Western text. "The editorial team paid particular attention to these witnesses, or rather to the variants transmitted by them, in the first phase of work on the local stemmata."¹⁰⁸ They defined local stemmata using these important witnesses and also pre-genealogical coherence (to indicate coherence of attestations and multiple emergence of variants). They state that "In the first phase of constructing local stemmata for all variant passages, the larger number of A-related witnesses and pre-genealogical coherence provided far more sophisticated external criteria than have hitherto been available in eclectic textual criticism."¹⁰⁹ At this stage they either agreed with the NA28 or left the initial text undefined. In phase two they refined the local stemmata using genealogical coherence, using the new "Genealogical Queries" software, and in particular textual flow diagrams, as expected. They then iterated over the local stemmata in a third phase, again using genealogical coherence. It was only at this stage that the Acts team's initial text diverged from NA28.

It is important to note that the Acts team's decision not to diverge from NA28 in phase one is not a core part of the CBGM as defined in the prior literature. Indeed, Parker has not applied the CBGM in this way in his in-progress ECM edition of John. In the first iteration of defining local stemmata Parker used traditional text-critical criteria, along with pregenealogical coherence to define local stemmata and did not restrict himself to following NA28 for the initial text. The Acts team's approach and Parker's approach are both correct, according to the CBGM's literature and analysis described in the current thesis.

At SBL 2017, Wachtel gave a paper entitled 'Reconstructing the Initial Text of Acts:

¹⁰⁷ See Strutwolf et al., ECM III (Acts), 28*-30*.

¹⁰⁸ Ibid., 28*f.

¹⁰⁹ Ibid., 29*.

Principles and Criteria', where he compared the CBGM with conventional reasoned eclecticism. He used the new CCeH user interface for the first significant time to create the diagrams for his presentation. He concluded with "Five Principles of NT Textual Criticism in Light of the CBGM".¹¹⁰ They range from a rejection of text types (not news, for those familiar with the CBGM) to a strong statement in favour of majority variants: "We should not hesitate to opt for a majority variant if it[s] read[ing i]s less common or even more difficult than an early rival."¹¹¹ This is likely to be another cause of contention with more traditional textual critics.

¹¹⁰ Wachtel, 'Reconstructing the Initial Text of Acts: Principles and Criteria', 25. 111 Ibid.

Chapter 2 – The CBGM in Wider Scholarship

Introduction

This chapter sets out a summary of how the CBGM has been received in wider scholarship, i.e. outside the INTF in Münster. First, publications by the INTF's close collaborators David Parker, the International Greek New Testament Project (IGNTP) and the Institute for Textual Scholarship and Electronic Editing (ITSEE) are discussed, followed by the wide ranging opinions of other scholars. As in Chapter 1, this thesis only considers literature published before 1 January 2018.

David Parker, the IGNTP and ITSEE

David Parker is Executive Editor for the ECM of the Gospel of John entrusted to the IGNTP. As such, he works closely with the INTF, as do his colleagues at ITSEE, which he founded in 2005 to work on digital editions. Wallace states: "David Parker is probably Great Britain's best NT textual critic today. What he says helps to define the discipline."¹ As befits this description, Parker has contributed significantly to the literature surrounding the CBGM. Contributions by Parker, the IGNTP and ITSEE to the literature on the CBGM could conceivably have been included in the primary literature in Chapter 1, due to their authors' close working relationship with the INTF. Nevertheless, I have designated them as "secondary" literature partly for convenience, and partly because Parker's use of the CBGM has been somewhat independent of the INTF's implementation, up to 2018.

In the early 2000s Parker wrote a paper 'Through a Screen Darkly: Digital Texts and the New Testament' for the JSNT.² At this time the IGNTP and the INTF were already

¹ Wallace, 'Challenges in New Testament Textual Criticism for the Twenty-First Century', 82.

² Parker, 'Through a Screen Darkly'. Published in 2003, this was before the CBGM rose to prominence, and it

David Parker, the IGNTP and ITSEE

collaborating on "shared methods and standards in making digital transcriptions."³ Parker writes about the changes brought about by the use of modern computer technology, which is "changing for ever the relationship between the scholar, the text which the scholar is studying, and the text which the scholar is creating."⁴ He points out the importance of *not* just accepting "hugely detailed statistical analyses of manuscript relationships" unless accompanied by traditional methods such as "codicological and palaeographical evidence, historical information, proper philological scholarship, and common sense."⁵ He warns against the danger of textual critics not being properly prepared and informed about such emerging methods, claiming that "the current revolution is as significant as that brought about by the Complutensian Polyglot and Erasmus's Novum Instrumentum. It is to be hoped that it will be received with less confusion."⁶ In the following years, and perhaps with these concerns in mind, Parker has written at length about this emerging discipline.

In 2008 a supplement to Novum Testamentum was published: *Jesus, Paul, and Early Christianity Studies in Honour of Henk Jan de Jonge.* This book contains a paper by Parker called 'Making Editions of the New Testament Today' in which Parker again discusses modern technological advances for textual criticism. He again sets out the importance of using computers appropriately, for example: "the blind decisions of a computer are the worst possible way of making a critical text. Indeed, the critical text by its very nature represents everything that a computer can never achieve"; and "The computer is not a substitute for critical thinking... The computer is a means of [doing text-critical work] much more effectively and, having done it, to present the results to the public in a useful manner."⁷ This

is not mentioned in his paper.

³ Ibid., 397.

⁴ Ibid., 395.

⁵ Ibid., 397.

⁶ Ibid., 402.

⁷ Parker, 'Making Editions of the New Testament Today', 349; 361.

Chapter 2 – The CBGM in Wider Scholarship

more positive quote is representative of Parker's viewpoint, and, discussing the CBGM, he argues that it allows editors to be more "in control of their material, and more self-critical, than has ever been possible before."⁸ He describes the CBGM as essential for editors "in controlling and monitoring their own editorial activity."⁹

Also in 2008, Cambridge published what is described on the back cover as the "first major English-language introduction to the earliest manuscripts of the New Testament to appear for over forty years": Parker's *An Introduction to the New Testament Manuscripts and their Texts*.¹⁰ This comprehensive introduction contains a section charting "Two Hundred Years of Textual Criticism" in which Parker takes the reader from Lachmann through to the CBGM.¹¹ Parker highlights some problems from twentieth century textual criticism (for example methods that ignored all singular readings, or those too wedded to traditional text types). He also outlines three major problems that have made it impossible to apply Lachmannian stemmatics to the New Testament and then goes on to compare them with those faced by geneticists:

- 1. Contamination in a stemma of manuscripts is like genetic cross-mutation
- 2. Coincidental emergence of readings is like independent mutations
- 3. Later-reverted variant readings are like a mutation undoing another mutation's change.

These similarities have meant that phylogenetic methods and software developed by geneticists can be adapted and used by textual critics. Parker then argues that the CBGM overcomes all three problems (contamination, coincidental emergence and reversion).

Parker highlights Mink's idea of creating local stemmata for each variant unit,

⁸ Ibid., 357.

⁹ Ibid.

¹⁰ Parker, An Introduction to New Testament Manuscripts and Their Texts, back cover.

¹¹ Ibid., 159ff.

David Parker, the IGNTP and ITSEE

describing it as "brilliant".¹² He briefly outlines the CBGM's steps and makes an interesting aside: "in a tradition with none of the three problems which have dogged traditional stemmatology, every local stemma should be identical."¹³ However, these three problems are widespread in the New Testament, and each local stemma must therefore be considered individually. This is, perhaps, one of the best ways to explain the size of the problem facing textual critics. Even though the CBGM is seen as complicated, none of the literature, from the INTF or ITSEE, quite prepares the reader for the magnitude of the task of actually applying the CBGM to even a small text, which will become clear in Chapter 3.

Parker repeats an idea often found in the CBGM's primary literature, namely that the CBGM is not wedded to any particular text-critical criteria and these local stemmatic choices "may be made on any grounds."¹⁴ This widely made point, however, is only true within certain constraints, as will be shown below. For example Gurry has pointed out that it is not suitable for use by thoroughgoing eclectics, and unnecessary for those favouring Byzantine priority.¹⁵

Hugh Houghton wrote a paper outlining 'Recent Developments in New Testament Textual Criticism' in 2011.¹⁶ When discussing the ECM, he discusses Wasserman's edition of Jude compared to that of the ECM: Wasserman's edition is based on all 560 continuous-text Greek manuscripts, compared to the ECM's 140, and "brought to light numerous new readings as well as further support for poorly-attested variants."¹⁷ See Chapter 7 for an experiment including all the extant manuscripts of John 18 in the CBGM. Houghton

16 In 2017 Houghton succeeded Parker as director of ITSEE.

¹² Ibid., 169.

¹³ Ibid., 170.

¹⁴ Ibid., 169; See, for example, Mink, 'Contamination, Coherence, and Coincidence in Textual Transmission', 142.

¹⁵ See Gurry, A Critical Examination of the Coherence-Based Genealogical Method, 101ff.

¹⁷ Houghton, 'Recent Developments in New Testament Textual Criticism', 2; See Wasserman, *The Epistle of Jude*.

Chapter 2 – The CBGM in Wider Scholarship

highlights a key point for the application of the CBGM: at first, local stemmata must be made for those cases where there is no problem. Only with that body of evidence can more difficult cases be tackled. Houghton, too, argues that the editor is in control of the method, and not vice versa. He also argues that the conclusions drawn from the ECM and CBGM are not only making traditional text types redundant, but also other relatively recent methods such as the Claremont Profile Method.

In 2012 Parker's 2011 Lyell Lecture series was published by Oxford as *Textual Scholarship and the Making of the New Testament*. These lectures are built upon the idea that "the scribe has been forgotten, and as a result we have come to misunderstand what the [New Testament] is."¹⁸ In the third lecture (entitled "Understanding How Manuscripts Are Related") Parker describes the CBGM (referring to it as the "Münster Method").¹⁹ He again shows that old theories built on the use of singular readings have been shown to be flawed by such modern methods. He makes an interesting point about texts as dealt with by the CBGM: a text leading to contamination (for example) no longer has to be found in a manuscript, but could equally well exist in a scribe's memory. As such a written text and a memorised one can both be considered as texts to be analysed when considering a tradition's transmission.²⁰

In the fourth lecture he points out that the ECM is still choosing manuscripts using test passages. This fact sheds light on the claim by Wachtel et al. that the CBGM's results are "based on an evaluation of all variants in all manuscripts *that are judged to be useful* for editing the text and reconstructing its history."²¹ Test passages are the mechanism, it may be inferred, by which a manuscript's usefulness is judged. This is pragmatic, yet feels unsatisfactory. Consider Wasserman's experiment described above using all 560 manuscripts

¹⁸ Parker, Textual Scholarship and the Making of the New Testament, 2.

¹⁹ Ibid., 84ff.

²⁰ See ibid., 97f.

²¹ Spencer, Wachtel, and Howe, 'The Greek Vorlage of the Syra Harclensis', para. 14 (my emphasis).

David Parker, the IGNTP and ITSEE

of Jude, and the new readings they contained. It has to be hoped that, in time, it will be possible to include all readings from all witnesses at the start of the process, before excluding the many whose readings are all found elsewhere.

In 2013 Parker presented a paper at the Byzantine Studies Symposium at the University of North Carolina at Greensboro, entitled 'New Testament Textual Traditions in Byzantium.' The conference proceedings were published in 2016.²² In it he discusses the Byzantine text, or rather the text as it was used and developed in the Byzantine empire, and the methods in use today in wider textual scholarship. He (again) points out that text types have had their day: "the vague concept of incompatible text-types has been replaced by a methodology [i.e. the CBGM] that reconstructs the textual flow of the tradition... [this reveals] that the tradition is as broad as it is long: there are as many differences in the catholic letters between the two fourth-century codices Vaticanus and Sinaiticus as there are between the reconstructed critical text and a typical Byzantine witness."²³ Here Parker's implication is that the CBGM has been accepted, text-types are gone, and the CBGM is a standard tool for modern textual criticism.

Houghton and Smith's 2016 paper 'Digital Editing and the Greek New Testament' describes the process by which the ECM is being made, and includes a brief description of the CBGM.²⁴ This paper offers insights into the many steps involved in creating a critical edition using digital means, from selecting manuscripts, through transcription, regularisation and collation, to printing the critical text and apparatus. They also highlight that the CBGM has

²² See Parker, 'New Testament Textual Traditions in Byzantium'.

²³ Ibid., 28.

²⁴ See Houghton and Smith, 'Digital Editing and the Greek New Testament', 121–22.

"sounded the death knell" for geographical text-types.²⁵

Other Authors

"Problems arise here in abundance... We are introduced to a novel theory of stemmata studies soon to overwhelm most areas of New Testament critical study: The Coherence-Based Genealogical Method."²⁶

The CBGM has been met with varying levels of concern and even alarm by scholars more distant from the INTF or ITSEE. The quote above is from Sutton's review in 2014 of the NA28, which includes extended remarks on the CBGM. His review is aimed at non-text-critical readers, and so is a useful window into the CBGM's wider reception. He suggests that using stemmata (at all) will lessen the time given to studying the manuscripts themselves – which is a useful reminder for text critics although risks throwing the baby out with the bath water. He goes on to say "The methods in practice now among New Testament critics lag behind other fields of ancient studies by about seventy-five years" - although he neglects to explain how he has arrived at this conclusion.²⁷ He then (with no irony) argues that "the same or better results could have been derived from theories used by editors of previous editions [of the NA]".²⁸ This is generally, however, a thoughtful review coming down firmly against the CBGM, perhaps more because the CBGM is not sufficiently explained in the primary literature than because the reviewer has found real flaws with it. Consider, for example, what Sutton says when discussing the NA28 text: "Is there an article or essay which provides a sensible reason behind the alteration of Ja. 2: 3? I am unable to appreciate the logic of it all."²⁹

²⁵ Ibid., 122.

²⁶ Sutton, 'CAVEAT EMPTOR. Remarks on the Nestle/Aland Novum Testamentum Graece', 10.

²⁷ Ibid., 11. For information about why modern textual scholars are doing the things they do, see, for example, Parker, 'New Testament Textual Traditions in Byzantium', 27f.

²⁸ Sutton, 'CAVEAT EMPTOR. Remarks on the Nestle/Aland Novum Testamentum Graece', 11.

²⁹ Ibid., 12.

Other Authors

We will now proceed chronologically through publications from other authors. In 2006 Paul Foster wrote a report for JSNT on a conference in Edinburgh on recent developments in textual criticism. The sessions were led by Holger Strutwolf and Klaus Wachtel, beginning with a session on the CBGM by Wachtel. With the exception of Foster's report, it would appear that these sessions were not published and therefore are not included in the primary literature above. Foster's paper must be considered as his interpretation of the sessions rather than Strutwolf's or Wachtel's. Oddly, Foster translates Ausgangstext as "base text" (rather than "initial text") although his explanation seems sound.³⁰ He reports that Wachtel seemed confident that the Ausgangstext and original text are virtually identical. Assuming that Wachtel's explanation is in keeping with his argument in other places, Foster misinterprets Wachtel as saving that missing manuscripts and contamination mean no global stemma can be produced. While this is true for a stemma of manuscripts, the CBGM does claim to be able to produce a global stemma of states of text. Foster's description of pregenealogical coherence talks of "grouping manuscripts together" and "coherence between a subset of manuscripts" - again suggesting that he may have misunderstood the method.³¹ This is not about groups or subsets, but about coherence relationships between pairs of manuscripts intended to find which may be potential ancestor or descendant. Further confusion follows, for example "On pre-genealogical grounds it may have already been determined that text A is prior to the state of text represented by B. In this case A is viewed as the ancestor for B."32 Pre-genealogical coherence is undirected and so Foster's statement cannot be true. Interestingly, Foster reports Wachtel (once again) as being "keen to emphasize" that the CBGM is not a "black box".³³ The second session was a plea by Strutwolf to abandon the idea

³⁰ Foster, 'Recent Developments and Future Directions in New Testament Textual Criticism: Report on a Conference at the University of Edinburgh', 229.

³¹ Ibid., 230.

³² Ibid., 231.

³³ Ibid.

of local text-types, using examples generated by the CBGM to justify his argument. There followed an introduction to the digital NA28 and a question and answer session.

In 2009, Stephen Carlson (Duke University, North Carolina) posted to his blog a short introduction to the CBGM that he had produced for a seminar. He states that the CBGM was made to counter the inherent circular reasoning that "witnesses are good because of their good readings, but readings are good because of their good witnesses"³⁴. He explains the CBGM well (Wachtel replied to the post with a comment calling it an "excellent summary of the CBGM"), including some key points often overlooked – for example that uncontroversial local stemmata are drawn up first thus creating a pool of trustworthy genealogical coherence data.³⁵ Concluding, he describes the CBGM as "more rigorous and precise about evaluating external evidence than the heuristic rules of thumb currently employed in reasoned eclecticism."³⁶ He goes on to point out that the CBGM has yet to be applied much outside of the Catholic letters and that "its operation is still poorly understood outside of Muenster... It is still very much an unproven method; time will have to tell as more people gain experience with it."³⁷⁷

In 2010, Peter Head of Tyndale House, Cambridge published an article in the Tyndale Bulletin, entitled: 'Editio critica maior: an introduction and assessment.' In this paper he gives a useful overview of the ECM, followed by a discussion of some of its more controversial features and textual decisions. He discusses the CBGM in principle but does not engage with the methodology *per se* due to its complexity. He is generally positive about the ECM, but more circumspect about the way the CBGM is sometimes used to support traditionally

³⁴ Carlson, 'Coherence-Based Genealogical Method', para. 3.

³⁵ See <u>http://hypotyposeis.org/weblog/2009/12/coherence-based-genealogical-method.html#comment-186</u> [Accessed 6th March 2018] for Wachtel's comment replying to Carlson, 'Coherence-Based Genealogical Method'.

³⁶ Ibid., para. 11.

³⁷ Ibid.

Other Authors

unsupported textual decisions.³⁸ Perhaps crucially, Head seems unconvinced that a CBGMonly approach will yield a better text than that of, for example, NA27 where a committee made up of members with different approaches made the decisions.

Also in 2010, Larry Hurtado visited the INTF as part of a funding review. After the "informative" visit he states that "[It] now seems to me that the basic aim and the fundamental concept are not that different from what Hort proposed and offered (1881). But computing technology now makes it possible to take a MUCH larger body of manuscript data into account."³⁹ This highlights two simple yet important points about the CBGM: first it is not a major step away from traditional textual criticism (as some seem to think). Secondly – and this is useful as an explanation of the CBGM's somewhat negative reception in wider scholarship – the primary literature does not explain the method very accessibly when compared to a face-to-face explanation from the INTF team.

In 2012 Carlson completed his PhD at Duke University, North Carolina. His thesis is entitled 'The Text of Galatians and Its History' and documents his use of cladistic methods to create a stemma for Galatians. Carlson's thesis was published in 2015 under the same title and only "lightly revised".⁴⁰ The section on the CBGM is clearly based on his 2009 work and it is, perhaps, interesting to consider some of the changes. In his thesis in 2012 he added a comment that "[the CBGM's] practitioners see this method as an advance over the use of text-type[s] and categories that dominated the twentieth century."⁴¹ He also adds a footnote saying that the CBGM is "incompatible with a purely documentary approach, such as the majority-text method."⁴² This seems in contradiction with the INTF's assertion that the CBGM is

³⁸ See "Controversy" above,

³⁹ Hurtado, 'Muenster', para. 1.

⁴⁰ Carlson, The Text of Galatians (Book), VII.

⁴¹ Carlson, 'The Text of Galatians (Thesis)', 54.

⁴² Ibid., 55.

Chapter 2 – The CBGM in Wider Scholarship

methodologically agnostic (a meta-method).⁴³ He includes a completely new paragraph here showing the differences between stemmata produced by the CBGM and classical stemmata, for example the lack of hyparchetypes. He appears to confuse textual flow diagrams with the global stemma (a confusion that seems to happen a lot in this field). His concluding paragraph has been extensively changed with the removal of any concerns about lack of widespread testing and instead a comment that the CBGM's initial text "may reflect the authorial text better [than using traditional methods], and this benefits those who are interested in the text as it was composed by an author within its historical context."⁴⁴ He then states that because the CBGM creates a stemma of states of text and not of manuscripts then this is *not* a reconstruction of the tradition's history and so of less interest to historians. Indeed, Carlson states that does not convey the textual state of any lost exemplar other than the initial text."⁴⁵ This argument seems to be lacking in nuance: surely some textual history could be learned from the textual flow diagrams (albeit by applying some detective methods).

In 2013 Dirk Jongkind wrote four book reviews in JSNT, one of which was of *The Textual History of the Greek New Testament* (eds. Wachtel and Holmes). He describes the book as "the reference point for further evaluation of the CBGM".⁴⁶ Then at SBL 2013 in Baltimore he presented a paper entitled 'On the Weighing and Counting of Variants: The Coherence Based Genealogical Method, Potential Ancestors, and Statistical Significance.' This paper is significant as it is the first to offer detailed criticisms of the CBGM. Jongkind, as is now typical when scholars outside the INTF discuss the CBGM, begins by saying "[the

⁴³ See, for example, Mink, 'Contamination, Coherence, and Coincidence in Textual Transmission', 142. Note that Gurry agrees with Carlson's view, see Gurry, *A Critical Examination of the Coherence-Based Genealogical Method*, 101ff.

⁴⁴ Carlson, 'The Text of Galatians (Thesis)', 58.

⁴⁵ Ibid., 72.

⁴⁶ Jongkind, 'Review of "The Textual History of the Greek New Testament", Wachtel, Klaus and Michael Holmes Eds.'

Other Authors

CBGM] is not easy to understand and, even when understood, is not easily replicable in the classroom or department. Therefore the following contribution is offered with the caveat that the author may be mistaken in the two or three question marks that are put next to the CBGM.³⁴⁷ He then goes on to set out two main objections: The CBGM attempts a more detailed analysis than the data allows; and the CBGM "will misrepresent some important historical scenarios.³⁴⁸ Before these, however, he raises the question of how pre-genealogical coherence is calculated (the number of variant units in which the two witnesses agree divided by the number of variant units where they are both extant – as a percentage). He points out this means that the pre-genealogical coherence between any two manuscripts is contingent on the extant tradition – and, although he does not say so, how it has been collated. This will be discussed further in Chapter 9 and compared to more objective measures.

Jongkind compares two witnesses (33 and 2344) in 1 Peter and makes his own analysis. He makes only a few different decisions from the CBGM's authors, but this results in a reversal of the predominant textual flow. He points out that if the boundaries are moved between variant units then the final counts of difference or similarity change. He gives an example of two variant units that he argues should be counted as only one. Therefore, he concludes, the data is subjective and not solid enough to provide a base for quantitative analysis. See Chapter 3 for an example of the impact of changing the collation.

He also challenges the CBGM's use of only original firsthand readings. While acknowledging that this is methodologically consistent, he argues that this "only introduces the appearance of objectivity by suspending judgement and knowledge of the manuscript."⁴⁹ Here Jongkind is somewhat mistaken, as the CBGM actually uses the text as it left the scribe,

⁴⁷ Jongkind, 'On the Weighing and Counting of Variants', 1.

⁴⁸ Ibid., 2.

⁴⁹ Ibid., 6.

Chapter 2 – The CBGM in Wider Scholarship

including any firsthand corrections. This is not made clear in the documentation, but has been personally clarified to me by Klaus Wachtel when he reviewed an early draft of Chapter 3 of this thesis.⁵⁰ This is totally at odds with Mink's position: "The reason for disregarding corrections generally is that the basic data used for the ECM do not differentiate between immediate correctors of the first hand... and other corrections."⁵¹ It seems likely that Wachtel's ongoing use of the CBGM has moved on from Mink's earlier position. The inclusion or exclusion of correctors is discussed further in Chapters 3 and 9. It is important to note that, as of 2017, Parker (when using the CBGM for the ECM of John's Gospel) takes this further and includes scriptorium corrections where possible, and this approach has also now been adopted by the INTF.⁵²

Mink states that "A higher proportion of prior variants indicates an older text."⁵³ Jongkind challenges this argument (citing Eldon Epp's analysis) specifically for cases where the number of prior and posterior readings are close.⁵⁴ Jongkind also quotes Mink as naming the difference between prior and posterior readings the "stability value", but Jongkind says "the implications of this instability are not discussed".⁵⁵ Mink indeed talks about strength and stability of textual flow in a number of papers but it is unclear how such strength and stability values affect the CBGM's output.⁵⁶ As an example, Jongkind argues, using statistical methods, that the CBGM's textual flow diagram for 1 John 4:4/6a contains eight (out of seventy-three) suspect relationships, many of which occupy key locations in the textual flow

⁵⁰ Personal email from Klaus Wachtel, 8 December 2014.

⁵¹ See Gurry, *A Critical Examination of the Coherence-Based Genealogical Method*, 202. Gurry quotes here from Mink's unpublished response paper from the meeting in January 2014 where the INTF invited Dirk Jongkind and other scholars (including Gurry) to discuss Jongkind's recent SBL paper criticising the CBGM.

⁵² That scriptorium corrections are now being included by the INTF was confirmed to me in a personal conversation with Klaus Wachtel in January 2018.

⁵³ Mink, 'The Coherence-Based Genealogical Method (CBGM) – Introductory Presentation, 1.0', 110.

⁵⁴ See Epp, 'Textual Clusters'.

⁵⁵ Mink, 'Problems of a Highly Contaminated Tradition', 56; Jongkind, 'On the Weighing and Counting of Variants', 8.

⁵⁶ For their definitions see Mink, 'Problems of a Highly Contaminated Tradition', 57.

Other Authors

diagram. He suggests that his method of evaluating the strength of textual flow provides a stronger basis for concluding that one text is older than another. For further discussion of strength and stability of textual flow see Chapter 9. Discussing the consequences of his argument for the creation of textual flow diagrams and the global stemma and the conclusions on which they are built, Jongkind argues that "these conclusions cannot always be sustained by the nature of the actual data."⁵⁷

Jongkind's second (and more serious) major objection is that the CBGM will "misrepresent some historical scenarios" where a single text exerts influence at multiple stages in a stemma.⁵⁸ He gives an artificial example of five manuscripts A-1-2-3 and R, where R is a copy of A and drip-feeds its readings into 1, 2 and 3 as they are copied from one another. In this example the CBGM concludes that the stemma is a linear A-1-2-3-R – and Jongkind concludes that the CBGM is at fault. It does seem, however, that the CBGM has made a perfectly reasonable decision based on the evidence at hand – unless there is also some non-textual evidence available showing that R had this persistent influence. Jongkind argues that this kind of influence "must have happened frequently" in reality and he therefore casts doubt on the CBGM's ability to chart "the correct development of texts" in the New Testament.⁵⁹ Jongkind claims that the CBGM decision to work with texts and not manuscripts invalidates the CBGM's claim as representing the history of transmission of the New Testament: "The text flow becomes the object of study, which is in essence an artificial continuum of witnesses in which they are positioned on the basis of their proportion of prior readings."⁶⁰

Nevertheless, his final conclusion in this paper is important, given that it is a simple

⁵⁷ Jongkind, 'On the Weighing and Counting of Variants', 13.

⁵⁸ Ibid.

⁵⁹ Ibid., 15 and 16.

⁶⁰ Ibid., 16.

fact that could counter much of the anti-CBGM sentiment that abounds: "[In] the end, the Editio Critica Maior of the Catholic Epistles is a text produced by scholars; not by a method, but with the help of a method."⁶¹

In 2013 Elliott wrote a review of the ECM for JTS 64.1. He points out the comprehensiveness of the ECM by the example that it has 750 variant units in James, whereas the United Bible Society's edition has only twenty-three. He names the CBGM as being the methodology behind the primary line of text and calls it "home-spun".⁶² He welcomes the publication of the second edition and its related "Genealogical Queries" online programs, saying "we have our chance now to assess [the CBGM's] effectiveness as a text critic's tool in practice."⁶³ Unfortunately, he takes hold of the list of the CBGM's highly ranked witnesses in the ECM (those with A as their first-ranked potential ancestor) and seems to treat them as a new set of "good" manuscripts, questioning why readings were chosen that go against the majority of these witnesses.⁶⁴ This points to a misunderstanding, or perhaps merely a wishful simplification of the CBGM's concepts.

Also in JTS 64.1, Elliott wrote an article on NA28 entitled 'A new edition of Nestle– Aland, Greek New Testament.' This paper includes a section on the Catholic Epistles (the only section with textual differences compared to NA27). Discussing the CBGM's use, he argues that the ECM's editors treat manuscripts as "mere bearers of the tradition" - and while he is pointing out that a later manuscript may carry an early text his language suggests that he thinks the editors have discarded much useful data by taking this approach.⁶⁵ Again he says "particular manuscript support is of no significance when CBGM is applied", but here surely Elliott is mistaken since local stemmata are created using standard text-critical methods *plus*

- 63 Ibid., 637.
- 64 See ibid., 638.

⁶¹ Ibid., 18.

⁶² Elliott, 'Review of "Novum Testamentum Graecum: Editio Critica Maior", INTF (ed.)', 636.

⁶⁵ Elliott, 'A New Edition of Nestle-Aland, Greek New Testament', 57.

the new external criteria of coherence.⁶⁶ He poses a question which implies that he believes this method is flawed: "It remains to be seen what the editors do when at some stage they take a manuscript's date into account. What changes will they make if they see that there is a consistent preference for the textual flow between two manuscripts running from x to y if manuscript x is younger than manuscript y?" He pleads for the publication of the promised companion textual commentary to NA28.⁶⁷

Again in 2013 a second edition was published of The Text of the New Testament in Contemporary Research: Essays on the Status Quaestionis, edited by Bart Ehrman and Michael Holmes. This revised edition of the 1995 volume contains updates to, and sometimes replacements of, the original articles. It hopes to "provide informed discussions of the current state of knowledge with respect to a wide range of important text-critical topics..." and contains twenty-eight articles in over 800 pages.⁶⁸ Thomas Geer contributes chapter 19: 'Analyzing and Categorizing New Testament Greek Manuscripts.' He begins by discussing Colwell and his legacy, for example the Claremont Profile Method. He then moves on to talk about new avenues, including the CBGM, where he states (surprisingly) that "[the] whole process is admittedly driven by the concern to eliminate MSS of the late Byzantine tradition from consideration in publishing a major critical edition of the Greek NT."69 He criticises the continued use of test passages for selecting manuscripts for inclusion. Again, somewhat surprisingly, he claims that "The [CBGM] is a splendid tool to assist in mapping the history of the transmission of the text. Because it necessarily works from a limited number of variant readings in order to keep the stemmata manageable, it may nevertheless not be the best instrument for estimating the degree of relationship among MSS."70

⁶⁶ Ibid., 59.

⁶⁷ Ibid., 57.68 Ehrman and Holmes, *The Text of the New Testament in Contemporary Research*, ix.

⁶⁹ Racine and Geer, 'Analyzing and Categorizing New Testament Greek Manuscripts', 505.

⁷⁰ Ibid., 507.

Chapter 20 of the same book is by Eldon Jay Epp: 'Textual Clusters:Their Past and Future in New Testament Textual Criticism.' He briefly considers the CBGM and its impact on textual clusters / text types and in this critique he raises a concern that the CBGM is all about counting and not weighing variants. Epp, however, goes on to say that "apparently, however, this is not the case."⁷¹ Then, beginning with the expected caveat "Many will admit that the functioning of the CBGM is not always easily grasped..." he goes on to give a concise and clear (if very brief) description of the method, describing the creation of local stemmata as "simply NT textual criticism as all of us practise it."⁷²

Chapter 21 is by Tommy Wasserman: 'Criteria for Evaluating Readings in New Testament Textual Criticism.' Again we find the CBGM has a bearing on the topic, and Wasserman includes examples from the Catholic letters. He argues that "The main advantage of the CBGM is that it allows scholars with their different emphases on criteria to correlate their textual decisions in a single variation unit with the decisions throughout a whole book or corpus."⁷³ He offers three potential criticisms of the CBGM: first, he suggests that in other New Testament books in which there is a strong "Western" group of witnesses, the tradition may not be sufficiently coherent for the CBGM to produce "valid results".⁷⁴ Secondly, discussing pre-genealogical coherence, he states that "scholars may have different opinions about the assessment of the character of the textual witnesses in the initial stages."⁷⁵ Finally, he joins the argument that the use of test passages to exclude witnesses could present a problem.

Stanley Porter published a monograph in 2013, *How We Got the New Testament*. In a book divided into three similar-length sections, Porter describes the New Testament's text, its

75 Ibid.

⁷¹ Epp, 'Textual Clusters', 550.

⁷² Ibid.

⁷³ Wasserman, 'Criteria for Evaluating Readings in New Testament Textual Criticism', 605.

⁷⁴ Ibid., 606.

transmission and its translation. The book is based on the Hayward lecture series delivered by Porter in 2008 at Acadia Divinity College in Wolfville, Nova Scotia. He addresses the question of the goal of textual criticism, the history of the text and hot topics such as those raised by Bart Ehrman's recent theories. He briefly discusses the CBGM a number of times, stating problems he has identified with the method. Interestingly, he refers to it as "scientific" but complains that it is explicitly based on assumptions.⁷⁶ When first mentioning the CBGM, he takes the time to point out that it is "not the same as the Alands' local-genealogical method".⁷⁷ He is correct about that, of course, but it is not clear why he feels the need to offer such a clarification – although this perhaps highlights a problem with Porter's critique of the CBGM: he has preconceived notions about the terminology, and Mink uses it differently. Elliott, reviewing this book, says "The new-fangled coherence-based genealogical methodology is viewed cautiously" correctly indicating Porter's opinion of the CBGM and offering an intriguing insight into Elliott's.⁷⁸ After complaining that the CBGM needs significant resources (databases and the like) to be useful and is therefore, he implies, currently not usable for external scholars, Porter states "There is also the difficulty with what is meant by "coherence" (is it merely statistical?)..."79 He is sure this is a problem with the CBGM, and the reason is exposed, perhaps, while he is discussing text-types: "The issue is perhaps not coherence, which indicates the cognitive process of appropriation, so much as cohesion, the textual indices that create a text and hold it together."80 In other words, Porter has a particular understanding of "coherence" - and it is not the CBGM's definition (i.e. the level of agreement between two witnesses expressed as a percentage). Porter also dislikes the ambiguity present in Mink's definition of the "initial text". He cites Mink as saying the

⁷⁶ Porter, *How We Got the New Testament*, 32 (footnote 74). He uses quotation marks around the word "scientific" but does not explicitly explain why.

⁷⁷ Ibid., 32.

⁷⁸ Elliott, 'Review of "How We Got the New Testament: Text, Transmission, Translation." Porter, S.E.', 672.

⁷⁹ Porter, How We Got the New Testament, 59.

⁸⁰ Ibid., 60.

"initial text" could be authorial, or a redactor's text, or the archetype of the tradition. Porter says "[this] is part of the ambiguity of the method" but in fact Mink, Wachtel, et al. have left little room for ambiguity.⁸¹ To be fair to Porter, some key material has been published since he delivered the lectures – although it was available before his book was published. His final criticism of the CBGM is that it does not accept that different variants may have different significance. He fails to explain this criticism, simply stating it in a footnote and hinting at it in parentheses in his text, saying: "[the CBGM] allows all variants in all extant manuscripts to be recorded (without differentiation of variants)..."⁸² This is probably linked to his concerns about the statistical nature of coherence in the CBGM – and there is a valid question surrounding the allocation of the status "(best) potential ancestor" based on a percentage.

Also in 2013, Ryan Wettlaufer published a book entitled *No Longer Written: The Use of Conjectural Emendation in the Restoration of the Text of the New Testament, the Epistle of James As a Case Study*. In an excursus he uses the CBGM to investigate the extent of manuscript loss in the New Testament – citing it as a mechanism for calculating this more empirically than has hitherto been possible. Interestingly, in his introduction, he states that the CBGM's emphasis on texts and not manuscripts is not new, although it has never been consistently applied before. He cites Metzger as arguing that the date of the text of a manuscript is far more important than the date of the manuscript itself. Indeed, Metzger, in 1964, went on to say that a minuscule (say 1739) could bear a more important (older?) text than some majuscules – and this is strikingly similar to the reasoning given by the CBGM's authors for the inclusion of second-millennium manuscripts in the ECM.⁸³ Houghton and Smith provide further insight into this by saying: "Given the trend towards uniformity in the

⁸¹ Ibid., 33; See, for example, Mink, 'Editing and Genealogical Studies: The New Testament', 52; Wachtel, 'The Coherence Method and History', 2.

⁸² Porter, *How We Got the New Testament*, 33 (continued footnote 74); ibid., 32. Concerning the significance of different variants see the discussion on Alexanderson below,

⁸³ See Metzger, The Text of the New Testament. Its Transmission, Corruption, and Restoration, 209.

textual tradition of the Greek New Testament, witnesses which deviate from the norm are more likely to preserve earlier forms of text, regardless of the age of the document."⁸⁴

In 2014 Bengt Alexanderson published a book entitled *Problems in the New Testament: Old Manuscripts and Papyri, the New Genealogical Method (CBGM) and the Editio Critica Maior (ECM).* In this book he sets out his position on textual criticism and it is clear that he stands quite far from Münster: he does not agree with Barbara Aland's opinions on old papyri and their text, and he lambastes the CBGM. For example in his introduction he describes his third chapter as: "... a fairly thorough discussion of the Coherence-Based Genealogical Method (CBGM) which has been fundamental to establishing the text of the Editio Critica Maior of the New Testament. *The method is found to be of no or little value.* This is serious, considering the fact that this very ambitious new edition will in all probability have an impact on future work on the New Testament and generally on editing classical and medieval texts."⁸⁵ He is correct, that a seriously faulty CBGM could lead to a ECM of greatly diminished value. Sadly his book is replete with misunderstandings – sometimes because he disagrees with the terminology and sometimes because he has simply missed an important point. There is not space here to engage with all the issues in this book, but several key ones will be addressed below.

It is perhaps fair, however, to begin with a positive point. His criticism of the iterative process by which earlier decisions are revisited in the light of the emerging textual flow is not without merit.⁸⁶ That the feedback loop could become forced and self-fulfilling is a genuine concern. See Chapter 9 for a fuller discussion of this.

He explains his comment about "little or no value" by saying "One reason is that it is

⁸⁴ Houghton and Smith, 'Digital Editing and the Greek New Testament', 112.

⁸⁵ Alexanderson, 'Problems in the New Testament: Old Manuscripts and Papyri, the New Genealogical Method (CBGM) and the Editio Critica Maior (ECM)', 3 (my emphasis).

⁸⁶ Ibid., 82.

footed on a faulty use of statistics, giving the same weight to accidental changes as to deliberate ones, another that the ideas of how one reading develops into another are often highly improbable, a third that the method consistently undervalues interpolation.³⁷⁸⁷ He frequently picks up the point about accidental changes, for example "I prefer not to pay attention to what I regard as such variants as show no relationships because they may appear anywhere unintentionally... My point is that what may be unintentional should be considered unintentional.³⁸⁸ He does admit that "Taking a reading as intentional or unintentional is of course a matter of personal judgement and personal experience of texts.³⁸⁹

Similarly, when discussing contamination, he states "We shall see many times that the CBGM prefers coincidence (multiple emergence), in my opinion too much so."⁹⁰ Now, the CBGM uses all non-regularised variation to rule on coincidence (multiple emergence) but Alexanderson thinks that unintentional changes (i.e. coincidental ones) should be ignored – and so he takes an orthogonal approach. He cares about intent, to the extent where only intentional scribal changes (i.e. not mistakes) matter to him, and by implication they are the only ones that can carry significant genealogical information.⁹¹ An important counter to this argument comes from Andrews, documenting an unrelated experiment using artificial texts. She concludes that philologists are not good at determining which variants are genealogically significant, and "that 'insignificant' variation is really not that insignificant at all."⁹² See Chapter 9 for a discussion of applying weights to variant units.

Alexanderson's brief discussion of prior and posterior variants is superficial and seems to indicate that he does not understand that the CBGM includes methods for dealing

⁸⁷ Ibid., 8.

⁸⁸ Ibid., 45.

⁸⁹ Ibid., 47.

⁹⁰ Ibid., 62.

⁹¹ See ibid., 62–64.

⁹² Andrews, 'Analysis of Variation Significance in Artificial Traditions Using Stemmaweb', 538.

with contamination, coincidental agreement etc. In fact, since this is one of the CBGM's big claims (that it can cope with contamination better than other approaches) Alexanderson seems to have missed something significant here.⁹³

In contrast to Wettlaufer, Alexanderson appears to have completely missed the importance of texts versus manuscripts. Many of his arguments are built on the idea that the stemmata, textual flow diagrams etc. created by the CBGM are intended to show a real manuscript to manuscript genealogy. They are not – they are intended to show a likely textual flow. For example, "The fundamental idea of the CBGM concerning ancestors and descendants is on the whole misleading. To simplify somewhat: Manuscript A may to 55% have a more original text than manuscript B and to 45% a less original one. To the CBGM this means that A is the ancestor of B, that there is flow from A to B, but the same manuscript is in fact both ancestor and descendant, both father and son."⁹⁴ Alexanderson has evidently not understood the CBGM's approach to combating contamination at all.

Similarly, when discussing the CBGM's use of statistics, he says "What is a 'reading', a 'variant', a 'passage', a 'place of variation'? From a practical point of view, I think that these terms all mean the same thing, and I think they do so to the CBGM."⁹⁵ However, in reality, there is a distinct difference between, for example, a variant and a reading. An orthographic reading or a nonsense reading will not be treated as a variant, and will therefore be excluded from the CBGM's data.

He dislikes the idea of applying phylogenetics to texts (by extension from this comment): "A very dangerous simile is that of the sequences of variants being compared to DNA chains. This sounds very scientific, but all mammals have two biological parents, no

⁹³ See Alexanderson, 'Problems in the New Testament: Old Manuscripts and Papyri, the New Genealogical Method (CBGM) and the Editio Critica Maior (ECM)', 61–62.

⁹⁴ Ibid., 69.

⁹⁵ Ibid., 64.

more, no less, whereas the document may have many parents, none of them biological."⁹⁶ Parker, in his review of Alexanderson's book, points out that this is "a false analogy, since the better comparison than with mammals is with the development of the 'flu' virus."⁹⁷ Parker also highlights many of Alexanderson's misunderstandings regarding the CBGM.

Interestingly, Alexanderson (while talking about the ECM, but seemingly commenting on all modern textual criticism and methods) says: "The oldest witnesses are unreliable, the method is faulty. We are on a slippery ground indeed. Our knowledge of the Greek language is unsatisfactory; so is our knowledge of the life and traditions of early Christian congregations; we do not know much about copying in antiquity and in the Middle Ages. What we have is un[s]atisfactory knowledge and a highly fallible judgement."⁹⁸ It seems he doubts much of modern textual criticism's ability to do its job – and I would expect that many textual scholars would take serious issue with his comments (in this quote and elsewhere in the book). When considering the ECM, he states that "It is in fact astonishing that using a poor method, the result is as good as it is".⁹⁹ It is interesting that Alexanderson does not appear to have considered that, therefore, perhaps the CBGM is not actually as flawed as he thinks. Alexanderson states that "I do not think that the CBGM can be rescued."¹⁰⁰ In contrast, Parker ends his review by saying: "[The CBGM] certainly deserves to be properly tried and tested and this review concludes with a challenge to those who condemn it: try using it to make a text, and only then decide whether it works or not."¹⁰¹

2014 also saw publication of Texts and Traditions. Essays in Honour of J. Keith

⁹⁶ Ibid., 70.

⁹⁷ Parker, 'Review of Alexanderson, Problems in the New Testament: Old Manuscripts and Papyri, the New Genealogical Method (CBGM) and the Editio Critica Maior (ECM)', 2.

⁹⁸ Alexanderson, 'Problems in the New Testament: Old Manuscripts and Papyri, the New Genealogical Method (CBGM) and the Editio Critica Maior (ECM)', 9.

⁹⁹ Ibid., 8.

¹⁰⁰ Ibid., 141.

¹⁰¹ Parker, 'Review of Alexanderson, Problems in the New Testament: Old Manuscripts and Papyri, the New Genealogical Method (CBGM) and the Editio Critica Maior (ECM)', 4.

Elliott, edited by Doble and Kloha. The ECM and CBGM make only one notable appearance in this *Festschrift*, in Epp's essay 'In the Beginning was the New Testament Text, but Which Text?' Epp discusses at length the concept and terms "Ausgangstext" and "initial text". He points out that the text had no single beginning but it is instead "highly multiple and multileveled", and notes Elliott's proposal of the plural term *Ausgangstexte*.¹⁰² An important point is that unlike the "newly minted" German term, the English term "initial text" seems to imply an equivalence with the original text and it is necessary to consider how the term will be understood by readers rather than simply to seek to define it *in vacuo*.¹⁰³ He concludes that the ambiguity of the terms makes it difficult to know how it will be understood, and instead welcomes the "teachable moments" created by the ongoing discussions.

The SBL session on the CBGM in 2014 saw, in addition to the papers from the INTF, contributions from Wasserman and Jongkind and responses from Carlson and Morrill.¹⁰⁴ Wasserman and Carlson's papers were published with the INTF's in the special feature entitled 'The Coherence Based Genealogical Method' in the online journal *TC*, Volume 20 (2015). Jongkind declined to have his paper published in *TC* and although it has not subsequently been published anywhere, he briefly shared it publicly in the following week with the caveat that it was not ready for publication.¹⁰⁵ Morrill chose not to publish his response paper as Jongkind had not published his, and it is not available.

Wasserman's paper, 'Historical and Philological Correlations and the CBGM as Applied to Mark 1:1', is an attempt to analyse Mark 1:1 using the CBGM's techniques – but

¹⁰² Epp, 'In the Beginning Was the New Testament Text, but Which Text?', 60.

 ¹⁰³ Ibid., 68. Epp interestingly notes the similar words Ausgangspunkt: starting point; Ausgangsfrage: initial question; Ausgangskapital: original investment; Ausgangsmaterial: source material, or original material; Ausgangssprache: source language; Ausgangsstellung: initial or starting position.

¹⁰⁴ See Chapter 1 for the INTF's papers.

¹⁰⁵ See TC Editors, 'Special Feature: The Coherence-Based Genealogical Method. Editorial Introduction.' Jongkind's post (no longer available) sharing the paper states: "it needs some work, but take it as it is for now."

without the supporting CBGM data (pre-genealogical coherence data is not yet available for Mark). He has some interesting insights. He discusses counting and weighing variants and hails the definition of a variant as connective or not to be an important example of weighing.

A brief excursus into a work by Fee in 1993 is helpful here. Fee discusses types of variation and their weighing in 'On the Types, Classification, and Presentation of Textual Variation'. He points out that orthographical variation is normally irrelevant – and indeed the CBGM is normally applied after such variants have been regularised away, along with nonsense readings (another category listed by Fee).¹⁰⁶ Fee defines the weighing of variants as "a classification which considers the degree (or lack of it) of the possible genetic significance of agreements in variation."¹⁰⁷ A non-connective variant in which two distantly-related witnesses agree, "multiple emergence" in the CBGM's parlance, is neatly described by Fee (before the CBGM existed) as "a non-genetic accidental agreement in variation between two MSS which are not otherwise closely related".¹⁰⁸

So Wasserman's statement about connectivity being an important example of weighing is supported by Fee's definitions. To expand on Fee's definition, in light of Wasserman's statement, we may say that agreement in a variant between two otherwise distantly-related witnesses is an example of multiple, accidental emergence if the variant is not connective; and an example of contamination if the variant is connective.

There is an important corollary to this, it seems to me, regarding the definition and reevaluation of local stemmata for connective variants in the CBGM: such a local stemma which does not agree with the textual flow of witnesses must nevertheless be allowed to remain. Thus a genuine genetic relationship between two otherwise unrelated witnesses would

106 See Fee, 'On the Types, Classification, and Presentation of Textual Variation', 66f.

107 Ibid., 67.

¹⁰⁸ Ibid.

be encoded in the data. Yet this connectivity setting is not encoded into the data at all for future use – i.e. no numerical "weight" is assigned that can have an effect on the statistics. A connective variant has exactly the same weight, in statistical terms, as any other variant yet this local stemma is allowed to be defined contrary to the textual flow (and thus exerts its "weight" on the process). See Chapter 3, section "Textual Flow and Consistency" for an example of textual flow and optimal substemmata in a situation where the source of a reading is only found in non-ancestor witnesses.

Later Wasserman discusses singular readings, and argues that there should be an option to ignore them when using the CBGM. He correctly points out that singular readings (in particular in the case of Codex Sinaiticus, 01) "potentially distort the genealogical analysis."¹⁰⁹ He argues that the CBGM should include an option to exclude singular readings. Now, it is true that including singular readings can dramatically lower the coherence percentage between two witnesses, but surely that is nevertheless a true representation of the data. Combine this with the arbitrary nature of singular readings and I am unconvinced by this idea, since a discovery of just one more witness attesting the reading makes it no longer singular. Witnesses are still being found in libraries, archaeological digs, private collections etc. with enough regularity to make this a real possibility. Drawing a line between a singular reading (attested by one witness) and a non-singular reading (attested by perhaps just two witnesses) is an arbitrary decision based simply on a fluke of history.

Wasserman notes Wachtel's paper from SNTS 2014 saying "Wachtel reports that there are 7,638 variant passages in Acts among the included witnesses in the ECM of Acts. In the first stage, decisions were made in no less than 7,213 passages (ca. 94%) based on pregenealogical evidence, whereas merely 425 passages (ca. 6%) were left to the second phase

¹⁰⁹ Wasserman, 'Historical and Philological Correlations and the CBGM as Applied to Mark 1:1', 5.

where genealogical evidence will be taken into account."¹¹⁰ This is a very welcome statistic, and implies that 94% of the local stemmata in Acts were decided using only objective statistical data and (presumably) traditional text-critical reasoning – a statistic that may help to sway those who view the CBGM with suspicion.¹¹¹ Indeed Wasserman's final conclusion is "the traditionally accepted philological principles of textual criticism and the dominant view of the textual history of the New Testament exert considerable control in the application of the [CBGM]."

Carlson's response to this SBL session is published alongside the other papers as 'Comments on the Coherence-Based Genealogical Method.' In his introduction he refers to the concern among wider scholarship regarding the CBGM, and that it "could create a priesthood within a priesthood, where only those behind the curtain are privy to its mysteries."¹¹² He goes on to say that the INTF has been attempting to "lift the veil on the CBGM" and is helping others in their work relating to it.¹¹³ This SBL session is a case in point. He comments on the CBGM's ability to find early readings in late manuscripts, comparing it to his own work on Galatians.¹¹⁴ He explains (with more clarity than perhaps the INTF) the difference of considering the text of a manuscript (as a potential ancestor) and the manuscript itself. For example a text (from a later manuscript) may have an early place in a textual flow diagram, but that does not mean that every reading in the manuscript is early.

¹¹⁰ Wachtel's paper is not generally available, but was a preliminary version of two papers presented at SBL 2014 (See Chapter 1, and Gäbel et al., 'The CBGM Applied to Variants from Acts: Methodological Background'; Wachtel, 'Constructing Local Stemmata for the ECM of Acts: Examples'.). Wasserman cites it as Klaus Wachtel, "Constructing Local Stemmata for the Editio Critica Maior of Acts" (paper presented at the 69th General Meeting of Studiorum Novi Testamenti Societas in Szeged, 8 August 2014)". See Wasserman, 'Historical and Philological Correlations and the CBGM as Applied to Mark 1:1', 11.

¹¹¹ See the INTF's papers from SBL 2014 in Chapter 1 regarding the objectivity of pre-genealogical coherence. Namely, G\u00e4bel et al., 'The CBGM Applied to Variants from Acts: Methodological Background'; H\u00fcffmeier, 'The CBGM Applied to Variants from Acts'; Wachtel, 'Constructing Local Stemmata for the ECM of Acts: Examples'.

¹¹² Carlson, 'Comments on the Coherence-Based Genealogical Method', 1.

¹¹³ Ibid.

¹¹⁴ See Carlson, 'The Text of Galatians (Thesis)'; Carlson, The Text of Galatians (Book).

Carlson's wider argument is that the CBGM is primarily useful for creating an initial text, but considerably less useful for understanding the history of the text (at least without much more interpretive work).¹¹⁵

Dirk Jongkind's SBL 2014 paper 'On the Nature and Limitations of the Coherence Based Genealogical Method' should be treated with care, as he declared it not ready for publication and so may not reflect his considered opinions. It is an updated version of his paper from the previous SBL, following which he visited the INTF for an "extended discussion" of it.¹¹⁶ The crux of his argument (in continuity with his 2013 paper) is that the CBGM at least implies, by its name, assumptions and terminology, that it is modelling the historical development of the text in the manuscript tradition. Yet this is not what the CBGM claims, and instead the textual flow diagrams produced do not represent manuscript history. Rather the nodes represent disembodied texts and not the manuscripts from which they came (and Jongkind acknowledges this, although argues that the CBGM's documentation fails to make this point as strongly as required). Jongkind again (following on from 2013) sets out some imagined historical scenarios that the CBGM would misrepresent, in a section entitled "Why the CBGM does not lead to an adequate hypothesis of the overall development of the text."¹¹⁷ He argues from situations where a small number of changes (in the collation, or local stemmata etc.) will change the result: a decision based on weak evidence that is then used as the basis for another decision is dubious science. The strength of textual flow must be considered, and perhaps should be shown on textual flow diagrams. This idea will be explored in Chapter 9. Carlson, in his comments on the SBL session, says that "Dirk's thought experiment needs to be extended or recrafted to find scenarios where it would adversely affect

¹¹⁵ See Carlson, 'Comments on the Coherence-Based Genealogical Method', 2.

¹¹⁶ Jongkind, 'On the Nature and Limitations of the Coherence Based Genealogical Method.', 1.

¹¹⁷ Ibid., 6.

the reconstruction of the initial text. After all the CBGM is about the initial text."¹¹⁸ If this comment represents the wider reception of Jongkind's paper then perhaps that is why he chose not to publish it. Jongkind, however, makes an important point, which is that the CBGM does claim to create a comprehensive hypothesis of the development of the text, and is not simply interested in the initial text. He does devote a section of his paper to explaining how the CBGM does a good job of establishing the initial text.

In 2015 Wasserman published a paper 'The Coherence Based Genealogical Method as a Tool for Explaining Textual Changes in the Greek New Testament' in *Novum Testamentum*. Unusually, Wasserman is a scholar who is not set against the CBGM, and indeed one who considers it useful "not only in the reconstruction of an initial text... corresponding to the classic goal of textual criticism, but also in order to survey the subsequent development of the text."¹¹⁹ Wasserman points out that the CBGM can be seen as an improvement on the "long-established local-genealogical method", and that the CBGM serves to add control and consistency to this method.¹²⁰ He warns the reader that "It is important to note that there is no philological reasoning behind a textual flow diagram as such in a given variation-unit. The particular diagram simply displays possible sources of a given variant according to the underlying database of potential ancestors and on the condition defined by the connectivity option. This option, however, can be set at different tolerance levels by the text critic on philological grounds."¹²¹ See Chapter 7 for a further discussion of connectivity. Wasserman's warnings are doubtless written in the context of (and to attempt to counter) the widespread misunderstandings of the CBGM. He continues with examples where he uses the CBGM to

¹¹⁸ Carlson, 'Comments on the Coherence-Based Genealogical Method', 2.

¹¹⁹ Wasserman, 'The Coherence Based Genealogical Method as a Tool for Explaining Textual Changes in the Greek New Testament', 209f.

¹²⁰ Ibid., 208.

¹²¹ Ibid., 209.

refute some of Ehrman's famous arguments concerning orthodox corruption.¹²² Wasserman's usage of the CBGM is correct, I believe, and his conclusions are persuasive.

Another rare case of a book that discusses the CBGM in some detail yet seems positively inclined towards it is Lin's 2016 work The Erotic Life of Manuscripts. This is an engaging book contrasting the work and history of biologists with that of textual scholars. As an appendix it includes an interesting transcript of an interview in 2011 between Lin, Wachtel and Mink. This meeting took place before the publication of Wachtel and Holmes' book The Textual History of the Greek New Testament. Changing Views in Contemporary Research which contains, of course, Mink's important contribution 'Contamination, coherence, and coincidence in textual transmission: The Coherence-Based Genealogical Method (CBGM) as a complement and corrective to existing approaches.' Lin's conclusion contains an interesting statement: "What makes CBGM so intriguing... is that it embraces the overarching trends in biology since the seventeenth century despite its practitioners' distancing themselves from biologists and their methods."123 Her arguments showing the CBGM's similarity to phylogenetics are well made, and the interview in her appendix shows Wachtel's views clearly enough. Jongkind's review is worth quoting here giving, as it does, both a sense of Lin's tone and an insight into Jongkind's own views of the CBGM: "she seems to have accepted the foundation myth as promulgated in the early days of the CBGM as if the method is the best new thing since sliced bread. Despite this, warmly recommended to anyone with an interest in the field."124

In 2017 Stanley Porter, with Andrew Pitts, published a book entitled Fundamentals of

New Testament Textual Criticism. Instead of describing its treatment of the CBGM in detail, it

¹²² See Ehrman, The Orthodox Corruption of Scripture: The Effect of Early Christological Controversies on the Text of the New Testament.

¹²³ Lin, The Erotic Life of Manuscripts, 152.

¹²⁴ Jongkind, 'Review of "The Erotic Life of Manuscripts: New Testament Textual Criticism and the Biological Sciences", Yii-Jan Lin', 118.

is sufficient to quote from Carlson's review: "The major methodological advance of this edition, the Coherence-Based Genealogical Method, is misclassified as a stemmatic method and its workings are not explained but summarily attacked in a footnote (p. 90, n. 1). Since this method is the basis for the current and future critical editions of the New Testament, students are hardly well served."¹²⁵ It is evident that Porter's opinion of the CBGM has not improved since his 2013 publication.

2017 saw the publication of two key books on the CBGM, both involving Peter Gurry. Gurry's Cambridge PhD thesis was published in October 2017 as *A Critical Examination of the Coherence-Based Genealogical Method in New Testament Textual Criticism*, in Brill's New Testament Tools, Studies and Documents series. A month later, together with Tommy Wasserman, he published *A new approach to textual criticism: an introduction to the coherence-based genealogical method*. In order to preserve the independence of this thesis I am not going to engage with these two books throughout (although occasional references will be made where factual differences are at stake), but will consider them here as a fitting end to this chapter.

Gurry's monograph sets out to provide "a sustained study of the [CBGM]" based on the only data available; namely that for the Catholic Epistles in the ECM.¹²⁶ Gurry asserts that the only people using the CBGM for the New Testament are the ECM's editors.¹²⁷ This is true (at least the only major users), with the exception of the current thesis. His summary of the reception of the CBGM is consistent with that presented above, albeit shorter. He includes one author not included above, namely Timo Flink. Flink's doctoral dissertation on Atticism includes a relatively short section building on Wasserman's work on Jude in which he

¹²⁵ Carlson, 'Fundamentals of New Testament Textual Criticism. By Stanley E. Porter and Andrew W. Pitts.', 270.

¹²⁶ Gurry, A Critical Examination of the Coherence-Based Genealogical Method, 1.

¹²⁷ See ibid., 2.

engages with the CBGM.¹²⁸ Gurry sums up Flink's use of the CBGM as "idiosyncratic and flawed at a key point."¹²⁹ Gurry sets out a good introduction to the CBGM as used in the Catholic Epistles demonstrating his accurate grasp of the method. He then goes on, in part two, to examine methodological questions such as the nature of the initial text, and he broadly rejects CBGM's claim to be a "meta method" as it is not suitable for use by thoroughgoing eclectics, and unnecessary for those favouring Byzantine priority.¹³⁰ He uses the CBGM's ability to suggest coincidental agreement in variant units (i.e. multiple emergence) to explore scribal habits in James, and encourages others to do this as an alternative to using singular readings in this cause.

In part three of his book, Gurry turns to the more problematic claim that the CBGM can represent the history of the manuscript tradition – something that Jongkind and Carlson have also criticised.¹³¹ First Gurry tests this using the Harklean Group and its relationship to the later Byzantine text, concluding that the CBGM "can be useful for answering historical questions", and shows how to do so with regard to these witnesses.¹³² He then discusses the question of which variant readings should be included, considering "meaningful singular readings, orthographica, nonsense readings, and corrections", and makes various suggestions.¹³³ Gurry goes on to list a number of limitations and suggestions where the CBGM may be improved – overlapping in only one small place with the current thesis's Chapter 8 discussing the display of the strength of textual flow. Gurry concludes that "The CBGM is a valuable tool for reconstructing the text of the [N]ew Testament and for studying

¹²⁸ See Wasserman, The Epistle of Jude.

¹²⁹ Gurry, A Critical Examination of the Coherence-Based Genealogical Method, 25.

¹³⁰ See ibid., 101ff.

¹³¹ See, for example, Jongkind, 'On the Weighing and Counting of Variants'; Jongkind, 'On the Nature and Limitations of the Coherence Based Genealogical Method.'; Carlson, *The Text of Galatians (Book)*; Carlson, 'Comments on the Coherence-Based Genealogical Method'.

¹³² Gurry, A Critical Examination of the Coherence-Based Genealogical Method, 179.

¹³³ Ibid., 205.

its textual history."134

Gurry and Wasserman's book is a long-needed "accessible, student-friendly user's guide to the CBGM".¹³⁵ They successfully argue that "it is crucial that serious students of the New Testament understand the method's origins, procedures, application, and results."¹³⁶ Their book is to be highly recommended to anyone interesting in *using* the CBGM, and will also be useful to those seeking to engage critically with the method (although this book is explicitly not a "critical examination or test of the method").¹³⁷ They explain why someone should want to understand the method, and set out some of the more significant changes it has brought to the wider world of textual criticism – including some of the changes found in recent versions of the Nestle-Aland edition and the conclusive rejection of the concept of text-types (which had been central to the discipline for two centuries).¹³⁸ These changes illuminate the controversy surrounding the CBGM. They explain pre-genealogical coherence and how to use it and similarly genealogical coherence, textual flow diagrams and the global stemma (including its construction). The book is rooted entirely in the INTF's implementation of the CBGM, with instructions on which settings to choose in that interface.¹³⁹

Gurry and Wasserman point out something that has long concerned me about the current use of the CBGM, namely that it still uses only a small portion of the available data – a selection of only Greek manuscripts, only as they left their scribes.¹⁴⁰ See Chapter 9 for a further discussion of the inclusion of correctors' texts. The problems of including more (all?) manuscripts are the practical question of transcribing them all, and also that including so

¹³⁴ Ibid., 221.

¹³⁵ Wasserman and Gurry, A New Approach to Textual Criticism, 15.

¹³⁶ Ibid., 121.

¹³⁷ Ibid., 15.

¹³⁸ Ibid., 10. Here Gurry and Wasserman state that the CBGM is itself a replacement for text types and they wonder whether the community will accept that.

¹³⁹ See INTF, "Genealogical Queries" v1 (for the 1st Edition of ECM Vol IV)'; INTF, "Genealogical Queries" v2 (for the 2nd Edition of ECM Vol IV)'; Mink, 'Guide to "Genealogical Queries"'.

¹⁴⁰ See the discussion above regarding Wasserman, 'Historical and Philological Correlations and the CBGM as Applied to Mark 1:1'.

many extremely similar Byzantine (and other) manuscripts would risk the editor missing important details amid the morass of similarity. See Chapter 7 for an experiment including all the extant manuscripts of John 18 in the CBGM. Wasserman and Gurry highlight a serious gap: "What scholars and student[s] most need now is a version of the CBGM that allows them to edit the local stemmata and create their own database of genealogical data."¹⁴¹ My Open Source implementation of the CBGM, created for this thesis, allows just that.¹⁴²

¹⁴¹ Wasserman and Gurry, A New Approach to Textual Criticism, 119.

¹⁴² See https://doi.org/10.5281/zenodo.1296287 or https://github.com/edmondac/CBGM

Chapter 3: CBGM Example

John 6:21-24 (Papyri and Majuscules)

Introduction

The best way to understand the CBGM is to work through an example. What follows here is aimed, primarily, at introducing the method and not at creating a critical edition of the four verses in question: John 6:21-24. Beginning with the task of collating the witnesses, this example is presented in minute detail, allowing a transparent and thorough understanding of how to use the CBGM for such verses. Klaus Wachtel kindly reviewed a draft of this chapter and, along with many other helpful comments, argued for some different collation decisions. I have used his input to analyse the effect on the CBGM's results of making different collation decisions – including a resultant change to the initial text. There is also a brief excursus on the CBGM's decision to exclude non-firsthand correctors, considering the text of 01. I then compare the CBGM's results with those of phylogenetic software with positive results. The coherence tables and stemmata in this chapter were created using my own implementation of the CBGM.¹

Witnesses

There are 30 extant papyri and majuscules witnessing to this passage included in the ECM edition of John²: \$\partial 28\$, \$\partial 75\$, 01, 02, 03, 05, 07, 09, 011, 013, 017, 019, 021, 022, 028, 030, 031, 032, 034, 036, 037, 038, 039, 044, 045, 047, 063, 091, 0141 and 0211. \$\partial 28\$ is

¹ See <u>https://github.com/edmondac/CBGM</u> or <u>https://doi.org/10.5281/zenodo.1296287</u>. The analysis in this chapter was carried out in 2015 and 2016. As my implementation of the CBGM developed I encountered a number of bugs and problems that required the chapter be re-written. The final version of the software used was "beta1", see <u>https://github.com/edmondac/CBGM/releases/tag/beta1</u>.

² Correct as of July 2015. The ECM edition of John is being worked on by the IGNTP.

Witnesses

fragmentary and only extant in parts of verses 21 and 22. 091 is only extant in nine folios but includes v23-24 and half of v22.

Collation

Before starting the CBGM proper, it is necessary to collate the witnesses. The following representation is based on the ECM's layout. The goal here is to define the variant units for use in the CBGM. It should be noted, at this point, that the CBGM is not interested in simple errors or orthographical readings but only those readings that could conceivably make sense in the context. Words without variation are not included in any variant unit because of Wachtel's rule of thumb for defining variant units: "As short as possible and as long as necessary"³.

As a base text let us take a form of the *Textus Receptus (TR)* with each word given an even numbered address. In the ECM the running text is given even numbered addresses with the odd numbers being used for additions in other witnesses. Word numbers appear after a slash, e.g. John 6:21/2. The *TR* is a good choice, generally, as a base text as it tends to include the longer form of most texts. Hence additions to it will typically be small. If 03 were chosen, for example, as a base text instead, then v22 would contain a long addition as a single odd-numbered word which would better be represented as several variant units.

²¹ηθελον ουν λαβειν αυτον εις το πλοιον και ευθεως το πλοιον εγενετο επι της γης εις ην υπηγον ²²τη επαυριον ο οχλος ο εστηκως περαν της θαλασσης ιδων οτι πλοιαριον αλλο ουκ ην εκει ει μη εν εκεινο εις ο ενεβησαν οι μαθηται αυτου και οτι ου συνεισηλθε τοις μαθηταις αυτου ο ιησους εις το πλοιαριον αλλα μονοι οι μαθηται αυτου απηλθον ²³αλλα ηλθεν πλοιαρια εκ τιβεριαδος εγγυς του τοπου

³ Klaus Wachtel, personal email December 2014.

οπου εφαγον τον αρτον ευχαριστησαντος του κυριου ²⁴οτε ουν ειδεν ο οχλος οτι ιησους ουκ εστιν εκει ουδε οι μαθηται αυτου ενεβησαν αυτοι εις τα πλοια και ηλθον εις καπερναουμ ζητουντες τον ιησουν.

We will now regularise the text of all the witnesses and collate them. The output of this exercise is a list of variant units and attestations. First we consider John 6:21/2-14: " $\eta \theta \epsilon \lambda o \ o \upsilon \lambda \alpha \beta \epsilon \upsilon \ \alpha \upsilon \tau o \upsilon \epsilon \iota \varsigma \ \tau \sigma \ \pi \lambda o \iota o \upsilon$ ". In John 6:21/2, 01 reads $\eta \lambda \theta o \upsilon$ where the rest of the witnesses attest $\eta \theta \epsilon \lambda o \upsilon$.⁴ This is the first variant unit. In word 6, 01's reading $\lambda \alpha \beta \iota \upsilon$ may be regularised as an orthographical variant of $\lambda \alpha \beta \epsilon \iota \upsilon$, and 032's error reading $\beta \alpha \lambda \iota \upsilon$ may be too. Three witnesses (05, 032 and 044) transpose words 6 and 8, giving a second variant unit. 063 spells $\pi \lambda o \iota o \upsilon$ as $\pi \lambda \upsilon o \upsilon$, which can be regularised. Thus there are two variant units here, 21/2 and 21/6-8 – as shown in Table 1. All variant units will be highlighted in grey. Any words in white, therefore, are constant across all the manuscripts, post-regularisation.

ηθελον	ουν	λαβειν	αυτον	εις	το	πλοιον
2	4	6	8	10	12	14
b ηλθον		b αυτον λαβειν				

Table 1: Variant units John 6:21/2 and 21/6-8

Next we consider John 6:21/16-36: " $\kappa \alpha i$ ευθεως το πλοιον εγενετο επι της γης εις ην υπηγον". In John 6:21/18 021's ευθεος may be regularised as orthographic. In word 22, 063 continues spelling πλοιον as πλυον, and also spells εγενετο as εγενετω – both of which are regularised. Words 20-24 are reordered by several witnesses creating the first variant unit here, with 05 introducing a further variation with εγενηθη instead of εγενετο. In words 28-30, 01 and 0211 read the accusative rather than the genitive. $\mathfrak{P}75$ here could support either

⁴ $\mathfrak{P}28$ is lacunose after the first two letters, but that is enough to support the reading $\eta\theta\epsilon\lambda\sigma\nu$. 091 is lacunose in this whole verse.

Collation

reading as only the first eta is extant – and the simplest way to treat this is to consider $\mathfrak{P75}$ as lacunose for this variant unit. 019 and 038 both read \mathfrak{v} for $\eta \mathfrak{v}$ – which must be an error and so can be regularised. There are further orthographic readings for $\mathfrak{v}\pi\eta\gamma\sigma\mathfrak{v}$, with 0211 reading $\mathfrak{v}\pi\mathfrak{v}\rho\mathfrak{v}$ and 063 $\mathfrak{v}\pi\eta\gamma\omega\mathfrak{v}$. 01, however, has a genuine variant reading here: $\mathfrak{v}\pi\eta\mathfrak{v}\tau\eta\sigma\mathfrak{e}\mathfrak{v}$. These variant units are shown in Table 2.

και	ευθεως	το	πλοιον	εγενετο	επι	της	γης	εις	ην	υπηγον
16	18	20	22	24	26	28	30	32	34	36
		b εγενετο το πλοιον			b τη	ν γην			b υπηντησεν	
		c το	πλοιον ε	γενηθη						

Table 2: Variant units John 6:21/20-24, 21/28-30 and 21/36

Now we turn to John 6:22/2-18: " $\tau \eta \ \epsilon \pi \alpha \upsilon \rho \iota \circ \circ \circ \lambda \circ \circ \circ \epsilon \sigma \tau \eta \kappa \omega \varsigma \ \pi \epsilon \rho \alpha v \ \tau \eta \varsigma \ \theta \alpha \lambda \alpha \sigma \sigma \eta \varsigma$ ". In John 6:22/2, 019 mistakenly wrote $\tau \iota$ which can be regularised. 0211 inserted $\tau \epsilon$ in word 3, which is the first variant unit in this verse. In word 10, 038 and 045 omit the article. In word 12, 01 reads $\epsilon \sigma \tau \omega \varsigma$ instead of $\epsilon \sigma \tau \eta \kappa \omega \varsigma$. Here $\mathfrak{P}28$ could support either reading – so will be considered lacunose (which it is in the following words). 03's $\pi \epsilon \rho \alpha$ is regularised to $\pi \epsilon \rho \alpha \nu$ in word 14. The resulting three variant units are shown in Table 3.

τη		επαυριον	0	οχλος	0	εστηκως	περαν	της	θαλασσης
2	3	4	6	8	10	12	14	16	18
	b τε				b om	b εστως			

Table 3: Variant units John 6:22/3, 22/10 and 22/12

Next is John 6:22/20-38: " $i\delta\omega\nu$ ort $\pi\lambda$ otaptov $a\lambda\lambda$ o oux $\eta\nu$ exet et $\mu\eta$ ev". John 6:22/20 presents several variations, all of which are possible and so cannot be regularised: 07, 09, 011, 013, 017, 021, 028, 030, 031, 034, 036, 039, 044, 045, 047, 063 and 0141 attest $i\delta\omega\nu$; $\mathfrak{P}75$, 02, 03 and 038 attest ei $\delta\nu$; 01 and 05 attest ei $\delta\epsilon\nu$; $\mathfrak{P}28$ reads $i\delta\epsilon\nu$ which is regularised to ei $\delta\epsilon\nu$;

and 0211 reads $\varepsilon_i \delta \omega_{\varsigma}$, yet another valid reading. Two readings present problems: 037 reads $\varepsilon_i \delta \omega_{\nu}$ and 019, 022 and 032 attest $\iota \delta \omega_{\nu}$. Now $\varepsilon_i \delta \omega_{\nu}$ and $\iota \delta \omega_{\nu}$ are invalid in themselves – but it is not clear how to regularise them. Both words could be regularised to either $\varepsilon_i \delta \omega_{\nu}$ or to $\iota \delta \omega_{\nu}$. In an edition, the manuscripts could be recorded as providing support for either reading, but for the CBGM we need a single record of attestation. So they must be recorded as if they were lacunose in this location (i.e. unable to support any single reading). In word 30, 0211 reads $\varepsilon_i \nu$ instead of η_{ν} , which can be regularised. Similarly, in 34, 063 reads η instead of ε_i . There are no other variant units in this section.

ιδων	οτι	πλοιαριον	αλλο	ουκ	ην	εκει	ει	μη	εν
20	22	24	26	28	30	32	34	36	38
b ειδον									
ς ειδεν									
d ειδως									

Table 4: Variant unit John 6:22/20

We now consider John 6:22/40-52: " \varkappa εινο εις ο ενεβησαν οι μαθηται αυτου". $\mathfrak{P28}$ is lacunose from this point on and 091 has not yet begun. The passage John 6:22/40-52 is missing entirely from $\mathfrak{P75}$, 02, 03, 019, 022, 032, 044 and 063. This can simply be represented as an overlapping variant unit. In word 40, 01 misspells εκεινο as κεινο, which is therefore regularised.⁵ 036, 039 and 045 have an error reading εκεινω which is also regularised. In addition to the witnesses missing the whole phrase, 05 and 0211 omit this word.⁶ Similarly, word 42 is omitted by 034. 037 and 047 read ανεβησαν in word 46. 01 reads του ιησου in word 52, and 05 simply ιησου.

⁵ This word is a simple variant unit here. However, if we consider other witnesses here (minuscules, lectionaries, correctors etc.) we would find that exervo is sometimes used to replace εv in word 38. So we would have to combine those units. But for our dataset, they are safe to remain separate.

⁶ Note that in the attestations for this variant unit, only 063 and 0211 will support the omission *of the word from this phrase*. That is because the witnesses that omit the whole phrase cannot provide support for this word or its individual omission and are therefore recorded as lacunose.

Collation

εκεινο	εις	0	ενεβησαν	οι	μαθηται	αυτου	
40	42	44	46	48	50	52	
b om	b om		b ανεβησαν			b του ιησου	
						с ιησου	

Table 5: Variant units John 6:22/40, 22/42, 22/46 and 22/52.

εκεινο	εις	0	ενεβησαν	οι	μαθηται	αυτου
40	42	44	46	48	50	52
			b <i>om</i>			

 Table 6: Overlapping variant unit John 6:22/40-52

The next section is John 6:22/54-76: " $\kappa \alpha i$ ori ou συνεισηλθε τοις μαθηταις αυτου ο ιησους εις το πλοιαριον". 02 and 019 attest o instead of ou for word 58, but this is an error and is regularised. 091 is now extant, beginning half way through the word συνεισηλθεν. Its movable nu is shared with other witnesses and can be regularised to συνεισηλθε. Similarly, 011, 019, 038 and 0211 spell word 60 συνησηλθεν, which is also regularised. 01, however, uniquely attests συνεληλυθι – which is a rare form (of συνερχομαι as opposed to συνεισερχομαι) and is thus the first variant unit here. 02 inserts a (clarifying) ο ιησους as word 61 despite there already being one at words 68-70, creating another variant unit. In words 62-66 01 simply reads αυτοις, making a further variant unit. 034 omits words 68-70. 05 has mistakenly missed the epsilon off word 72, but this can be regularised. Finally, P_75 , 01, 02, 03, 05, 017, 019, 022, 032, 044, 091, 0141 and 0211 read πλοιον for word 76 (and 031 is lacunose here). 063 is consistent, spelling the last word πλυαριον, which is regularised as before.

και οτι ου	συνεισηλθε		τοις	μαθηταις	αυτου	0	ιησους	εις	το	πλοιαριον
54 56 58	60	61	62	64	66	68	70	72	74	76
	b συνεληλυθι b o			b αυτοις		b	om			b πλοιον

Table 7: Variant units John 6:22/60, 22/61, 22/62-66, 22/68-70 and 22/76.

Now to John 6:22/78-88: " $\alpha\lambda\lambda\alpha$ μονοι οι μαθηται αυτου απηλθον". In word 80, 05 and 047 read μονον which is a valid form and is therefore included, even if it is grammatically incorrect. 01 misses out the final word, 038 attests εισηλθον, and 031 is once again lacunose.

αλλα	μονοι	οι	μαθηται	αυτου	απηλθον
78	80	82	84	86	88
	b μονον				b εισηλθον
					c om

Table 8: Variant units John 6:22/80 and 22/88.

Next is John 6:23/2-10: "alla nlber ploiapia ex tibepiadoc". 022 adds the word kai at the start. 031 is lacunose until word 4. 01 and 05 omit word 2. All but \$\$75, 01, 03, 05, 019 and 091 add $\delta \varepsilon$ as word 3. Words 4-6 have many readings: most witnesses attest $\eta \lambda \theta \varepsilon \nu$ πλοιαρια (including 030 and 034 which have no movable nus and are regularised, and 063 which continues to spell $\pi\lambda_{0i}$ apia with an upsilon); $\mathfrak{P}75$, 03 and 032 read $\eta\lambda\theta_{ev}\pi\lambda_{0i}$; 021, 022, 036, 047 and 091 read nhov $\pi\lambda$ oiapia; this is transposed in 017 as $\pi\lambda$ oiapia nhov; 044 reads $\pi\lambda oi\alpha$ $\eta\lambda\theta ev$, 019 simply reads $\pi\lambda oi\alpha pi\alpha$ and 0141 attests just $\pi\lambda oi\alpha$. Then there are two very different readings: 01 reads $\epsilon \pi \epsilon \lambda \theta \circ \tau \omega \nu$ ouv $\tau \omega \nu \pi \lambda \circ \omega \nu$; and 05 reads $\alpha \lambda \lambda \omega \nu \pi \lambda \circ \alpha \rho \epsilon \omega \nu$ ελθοντων. We will regularise πλοιαρειων to πλοιαριων. 03, 022 and 032 add της before τιβεριαδος and 031 is again lacunose. 017 and 030 spell word 10 as τηβεριαδος and 063 as $\tau_{i}\beta_{\epsilon}\rho_{1}\alpha\delta_{0}\sigma_{2}$ – both of which are regularised as they clearly refer to the same place. Then 0141 adds $\eta\lambda\theta\epsilon\nu$ at the end (presumably in place of word 4) and 019 similarly adds $\eta\lambda\theta\epsilon\nu$. 01 and 05's shared omission of word 2 and unusual readings for words 4-6 warrant an overlapping unit. The choice of location for $\eta\lambda\theta\sigma\nu/\eta\lambda\theta\epsilon\nu$ as word 4, 6 or 11 means that the best solution is to have a single variant unit for words 4-10⁷, with 01 and 05 overlapping words 2-10. These

⁷ There is no need to continue to refer to "word 11" now, as the unit 4-10 will cover it.

Collation

variant units are shown in Table 9.

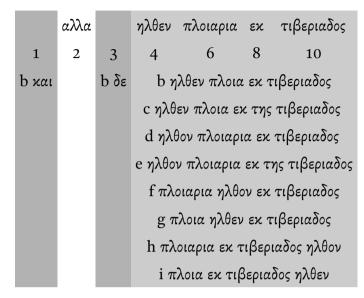


Table 9: Variant units John 6:23/1, 23/3, 23/4-10

αλλα	ηλθεν	πλοιαρια	εκ	τιβεριαδος						
2	4	6	8	10						
b επελθοντων ουν των πλοιων εκ τιβεριαδος										
c αλλων πλοιαριων ελθοντων εκ τιβεριαδος										

Table 10: Overlapping variant unit John 6:23/2-6

We turn to John 6:23/14-26: "εγγυς του τοπου οπου εφαγον τον αρτον ευχαριστησαντος του κυριου". 032 omits words 12-16. 01 reads εγγυς ουσης here. 063 misspells εγγυς as εγγεις but this can be regularised. In word 16, 031 (which is extant once again) agrees with the majority of witnesses and reads τοπου. This results in a simple variant unit for words 12-16. 01 inserts και before εφαγον and omits the article in word 22, where 031 becomes lacunose once more. As might be expected, there is some orthographic variation in word 26, with 021 reading ευχαριστισαντος and 038 reading ευχαρηστησαντος – but both can be regularised. 031 appears halfway through the word offering no variation. 05 and 091, however, omit the entire phrase (26-30). 02 has a variant reading (θεου) for word 30, but this can all be represented as a single variant unit 26-30 as shown in Table 11.

εγγυς	του	τοπου	οπου	εφαγον	τον	αρτον	ευχαριστησαντος	του	κυριου
12	14	16	18	20	22	24	26	28	30
b εγγυς ουσης			b και εφ	αγον		b ευχαριστησαν	τος το	ου θεου	
c om						c on	1		

Table 11: Variant units John 6:23/12-16, 23/20-22, 23/26-30

In verse 24, 01 has some unique readings. We consider the first half of the verse, John 16:24/2-28: " $\sigma\tau\epsilon$ ouv ειδεν ο οχλος στι ιησους ουκ εστιν εκει ουδε οι μαθηται αυτου". For words 2-10, 01 reads και ιδοντες instead of στε ουν ειδεν ο οχλος. For words 14-20 it reads ουκ ην εκει ο ιησους instead of ιησους ουκ εστιν εκει. These are best expressed as two overlapping variants. Word 6 exhibits not unexpected variation, with 013 reading ειπεν, 02, 017, 019, 022, 039, 044, 063, 091 and 0211 reading ιδεν (which can be regularised to ειδεν) and 030 reading εγνω. 063 is damaged in parts of verse 24 (12-14, 20-32, 38-42) and is largely unreadable – although is readable enough in places to provide some support, for example for the *a* reading in words 2-10 and 14-20. 038 adds the article before ιησους (a reading supported by 01), 013 omits ιησους and 031 is once again lacunose.⁸ After word 18, 091 is lacunose. 01 omits word 28, having returned to the norm in the previous words.

οτε	ουν	ειδεν	0	οχλος	οτι	ιησους	ουκ	εστιν	εκει	ουδε	οι	μαθηται	αυτου
2	4	6	8	10	12	14	16	18	20	22	24	26	28
		b ειπεν				b ο ιησους							b om
		ς εγνω				c <i>om</i>							

Table 12: Variant units John 6:24/6, 24/14 and 24/28

⁸ It would be possible to define two variant units here: one for the added article, and one for the omission of ιησους. Both approaches are valid collations, but would lead to subtly different coherence data later. The effect of collation decisions is explored later in this chapter.

οτε	ουν	ειδεν	0	οχλος						
2	4	6	8	10						
b και ιδοντες										

Table 13: Overlapping variant unit John 6:24/2-10

ιησους	ουκ	εστιν	εχει
14	16	18	20
b or	א אע	εκει ο	ιησους

Table 14: Overlapping variant unit John 6:24/14-20

We must tackle the remaining half of verse 24 in two parts. First John 6:24/30-38: " $\epsilon\nu\epsilon\beta\eta\sigma\alpha\nu$ $\alpha\nu\tauoi$ $\epsiloni\varsigma$ $\tau\alpha$ $\pi\lambdaoi\alpha$ ". These few words prove surprisingly difficult to collate due to two witnesses: 05 and 0211. 05 here reads $\epsilon\lambda\alpha\beta\sigma\nu$ $\epsilon\alpha\nu\tauoi\varsigma$ $\pi\lambdaoi\alpha\rhoi\alpha$ – which is best expressed as an overlapping unit for the whole phrase (30-38). 0211 here reads $\tau\sigma\tau\epsilon$ $\kappa\alphai$ $\alpha\nu\tauoi$ $\epsilon\nu\epsilon\beta\epsiloni\sigma\alpha\nu$ $\epsiloni\varsigma$ $\tau\alpha$ $\pi\lambdaoi\alpha$ – uniquely adding $\tau\sigma\tau\epsilon$ and changing the word order of $\kappa\alphai$ $\alpha\nu\tauoi$ $\epsilon\nu\epsilon\beta\epsiloni\sigma\alpha\nu$ (some other witnesses also add $\kappa\alpha i$ as word 31). This too works best as an overlapping variant (30-32). This is an excellent example of how overlapping units and normal units interact, as follows:

In word 30 ($\varepsilon \nu \varepsilon \beta \eta \sigma \alpha \nu$) $\mathfrak{P75}$, 01 and 019 read $\alpha \nu \varepsilon \beta \eta \sigma \alpha \nu$. 0211 reads $\varepsilon \nu \varepsilon \beta \varepsilon \varepsilon \alpha \nu$ (out of order) but this is regularised to $\varepsilon \nu \varepsilon \beta \eta \sigma \alpha \nu$ and thus 0211 provides support to the base text here. This can be counter intuitive as 0211 does not read either variant *in word 30*, but later. This is best explained by considering each variant unit as representing a question. Unit 30 is about variations in the word $\varepsilon \nu \varepsilon \beta \eta \sigma \alpha \nu$ while the overlapping unit 30-32 is really about word order: $\alpha \nu \tau \sigma \iota \varepsilon \varepsilon \varepsilon \beta \eta \sigma \alpha \nu \alpha \upsilon \tau \sigma \iota$, even though it also includes $\tau \sigma \tau \varepsilon \kappa \alpha \iota$ at the start. $\tau \sigma \tau \varepsilon$ is a unique addition in 0211 and so is easily subsumed into this unit. $\kappa \alpha \iota$ is added here by 0211 and also by 030 and 036 as word 31. Therefore 0211 will support the addition of $\kappa \alpha \iota$ in

the variant unit for word 31 even though it has the word out of place (as this unit represents the question "is $\kappa \alpha i$ included in this phrase?") A further unit represents the omission of word 32 by 01 and 028.

Now 05 here ($\varepsilon \lambda \alpha \beta \omega \varepsilon \alpha \omega \tau \omega \sigma \pi \lambda \omega \alpha \rho \alpha$) is the only witness to omit $\varepsilon \omega$ and the article, and the only witness to attest this beginning to the phrase. This could be split into further variant units. In several of those cases the attestations would simply bisect the witnesses into 05 and everything else. But it is simpler and clearer to keep the whole phrase together. One problem with apparatuses is that they can make it difficult to determine what an individual witness reads over several words and this overlapping unit avoids that problem. However, splitting it up would create a variant unit for every word and therefore would change the pregenealogical coherence. Such decisions taken at this stage will have consequences later, but they are hard to identify now.

01 has the singular $\tau \sigma \pi \lambda \sigma \sigma \sigma$ in words 36 to 38, rather than the plural. So word 36 is a variant unit in which most witnesses attest $\tau \alpha$, 01 $\tau \sigma$ and 05 is considered lacunose because its reading is covered by an overlapping unit and it is unable to support either $\tau \alpha$ or $\tau \sigma$ here. This is also true of units 24/30, 24/31, 24/32 and 24/30-32. In word 38, $\mathfrak{P}75$, 03, 019, 022, 032 and 044 read $\pi \lambda \sigma \sigma \sigma \sigma$ (supported by 05 from the overlapping unit) instead of $\pi \lambda \sigma \sigma$ (or 01's $\pi \lambda \sigma \sigma \sigma$). This support by 05 in word 38 is the reason that 24/36 and 24/38 exist as separate units, otherwise they could be combined into a single unit. 063 is briefly readable for words 34 and 36 and supports the base text in both cases. These all add up to the seven variant units shown in Table 15, Table 16 and Table 17.

ενεβησαν		αυτοι	εις	τα	πλοια
30	31	32	34	36	38
b αναβησαν	b και	b om		b το	b πλοιον
					ς πλοιαρια

Table 15: Variant units John 6:24/30, 24/31, 24/32, 24/36 and 24/38

ενεβησαν αυτοι εις τα πλοια 30 32 34 36 38 b ελαβον εαυτοις πλοιαρια

Table 16: Overlapping variant unit John 6:24/30-36

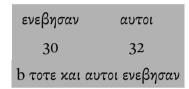


Table 17: Overlapping variant unit John 6:24/30-32

Finally we consider John 6:24/40-52: " $\kappa \alpha i \eta \lambda \theta o v \epsilon i \varsigma \kappa \alpha \pi \epsilon \rho v \alpha o u \mu \zeta \eta \tau o u v \tau \epsilon \varsigma \tau o v i \eta \sigma o u v$ ". Unexpectedly after the last few sections, these words exhibit little variation. The first variation is purely orthographic in nature with different spellings of $\kappa \alpha \pi \epsilon \rho v \alpha o u \mu$ ($\kappa \alpha \varphi \alpha \rho v \alpha o u \mu$ and $\kappa \alpha \pi \alpha \rho v \alpha o u \mu$) which are regularised. The following word also has an orthographic regularisation, $\zeta \eta \tau o u v \tau \alpha i \varsigma$ for $\zeta \eta \tau o u v \tau \epsilon \varsigma$. The only real variant unit is in words 50-52 where 017 reads $\alpha u \tau o v$ instead of $\tau o v i \eta \sigma o u v$.

και	ηλθον	εις	καπερναουμ	ζητουντες	τον	ιησουν	
40	42	44	46	46 48		52	
					b αυτον		

Table 18: Variant unit John 6:24/50-52

The complete set of variant units and manuscript attestations is summarised in Table 19. The first letter in the second column represents the reading in the first variant unit, the second the second etc. A lacuna is represented by a question mark. As can be seen, there is a

lot of variation, with only three witnesses attesting exactly the same (regularised) text throughout: 07, 09 and 039 – all of which read the base text in all but one variant unit (John 6:23/3, addition of $\delta\epsilon$). 031 agrees with the base text everywhere it is extant.

P28	a????aa?c?????????????????????????????
P75	aab?aaaab?b???aaaabaaaaabaaaaaaaaaaaaa
01	baabbaabcaaaabbababacab??bbab?bbbabaacbca
02	aabaaaaab?b???abaabaaaabaaabaaaaaaaaaa
03	aabaaaaab?b???aaaabaaaaaaaaaaaaaaaaaaa
05	abcaaaaacbaaacaaaabbaac??aacaaaaa??b???ba
07, 09, 039	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
011	aabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
013	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
017	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
019	aabaaaaa??b???aaaabaaaaahaaaaaaaaabaaaaba
021	aaaaaaaaaaaaaaaaaaaaabdaaaaaaaaaaaaaaaa
022	aabaaaaa??b???aaaabaababeaaaaaaaaaaaaaa
028	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
030	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
031	aaaaaaaaaaaaaaa???a?aaaaaaa??aaaaaaaaa
032	abbaaaaa??b???aaaabaaaabccaaaaaaaaaaaaa
034	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
036	aaaaaaaaaaaaaaaaaaaabdaaaaaaaaaaaaaaaaa
037	aaaaaaaa?aaabaaaaaaaaaaaaaaaaaaaaaaaaa
038	aaaaaababaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
044	abbaaaaaa?b???aaaabaaaabgaaaaaaaaaaaaaa
045	aaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
047	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
063	aaaaaaaa?b???aaaaaaaaabaaaaaaaa???????a?a
091	?????????????aaaabaaaadaacaaaa?????????
0141	aabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
0211	aaababaadbaaaaaaaabaaaabaaaaaaaaaaaaaaa

Table 19: Summary of attestations in John 6:21-24

P28 is so fragmentary, and only differs from the base text in one variant unit (in which it agrees with 05), that it will be excluded from this point. Similarly, because the CBGM is interested in texts and not manuscripts, there is no benefit in keeping 09 and 039 (which read the same as 07). So the list of 27 witnesses to use from now on is: P75, 01, 02,

03, 05, 07, 011, 013, 017, 019, 021, 022, 028, 030, 031, 032, 034, 036, 037, 038, 044, 045, 047, 063, 091, 0141 and 0211.

Pre-genealogical coherence

Pre-genealogical coherence data is now available. For example, pre-genealogical coherence for 047 is shown in Table 20.⁹ Recall that a high value for pre-genealogical coherence argues in favour of a genealogical relationship between the two witnesses and consequently argues against multiple emergence of a variant. Conversely, a low value for pre-genealogical coherence argues in favour of multiple emergence.

W2	NR	PERC1	EQ	PASS
021	1	95.122	39	41
037	2	95.000	38	40
036	3	92.683	38	41
07		92.683	38	41
031	5	91.429	32	35
011	6	90.244	37	41
028		90.244	37	41
045		90.244	37	41
063	9	89.655	26	29
013	10	87.805	36	41
0141		87.805	36	41
017		87.805	36	41
030		87.805	36	41
034		87.805	36	41
038	15	82.927	34	41
044	16	81.081	30	37
022	17	80.556	29	36
02	18	78.378	29	37
03		78.378	29	37
019	20	77.778	28	36
032		77.778	28	36
091		77.778	14	18
0211	23	75.610	31	41
P75	24	75.000	27	36
05	25	67.647	23	34
01	26	39.474	15	38

Table 20: Pre-genealogical coherence for W1=047

⁹ The headings are defined as follows: W2 – the witness to compare to 047 (W1); NR – the rank, or position in the table; PERC1 – the pre-genealogical coherence percentage; EQ – the number of variant units in which the two witnesses agree; PASS – the number of variant units in which the two witnesses are both extant.

Local stemmata

We now consider the variant units in turn, trying first to create uncontroversial local stemmata and using pre-genealogical coherence data where applicable. Supporting witnesses are shown for each reading in the table following the discussion of the variant unit, with an ellipsis indicating support from all otherwise unmentioned witnesses. Only a selection of local stemmata are included here. For the rest please see Appendix 1.

John 6:21/2

Here 01 uniquely reads $\eta\lambda\theta\sigma\nu$ which seems a straightforward copying error from $\eta\theta\epsilon\lambda\sigma\nu$. The local stemma is shown in Table 21. This " $a \rightarrow b$ " local stemma will be typical of the simple ones that can be created at this stage of the process.

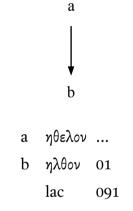


Table 21: Local stemma for John 6:21/2

John 6:21/6-8

John 6:21/6-8 is not straightforward and the creation of the local stemma will be deferred. The readings are shown in Table 22.

? b а

a λαβειν αυτον ... b αυτον λαβειν 05, 032, 044 lac 091 Table 22: Local stemma for John 6:21/6-8

John 6:21/20-24

Here we have three variant readings. The first two are purely about word order. In other situations considering other instances of the construction in question in John is valuable. However, there is little to be gained in this instance. For example, in John 7:43, witnesses are similarly divided between $\varepsilon\gamma\varepsilon\nu\varepsilon\tau\sigma$ $\varepsilon\nu$ $\tau\omega$ $o\chi\lambda\omega$ and $\varepsilon\nu$ $\tau\omega$ $o\chi\lambda\omega$ $\varepsilon\gamma\varepsilon\nu\varepsilon\tau\sigma$. Again, this decision will be deferred until more evidence is available. However, the third reading here is easier to analyse. Codex Bezae has a tendency to change words to improve the text, and $\varepsilon\gamma\varepsilon\nu\varepsilon\tau\sigma$ to $\varepsilon\gamma\varepsilon\nu\eta\theta\eta$ is such an improvement. Thus it seems clear that it descends from reading *a*. The partial local stemma is shown in Table 23.

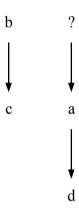


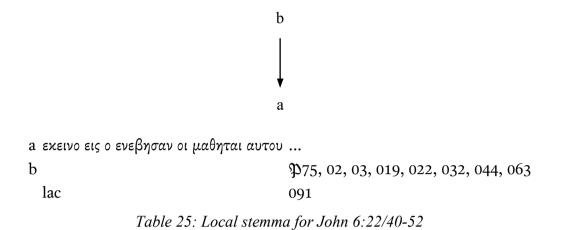
Table 23: Local stemma for John 6:21/20-24

John 6:22/20

The variations in John 6:22/20 present something of a challenge. Reading b ($\varepsilon\iota\delta\sigma\nu$) provides a simple reading but the following clauses do not flow easily. This is quite a typical Johannine construction with different statements assembled next to one another but not well

integrated into a convincing whole. Reading $a(\iota\delta\omega\nu)$ appears to improve the text by removing a finite verb and making a large section parenthetical.¹⁰ Reading $c(\epsilon\iota\delta\epsilon\nu)$ is an improvement on $\epsilon\iota\delta\sigma\nu$ as $o\chi\lambda o\varsigma$ is a collective noun. Reading $d(\epsilon\iota\delta\omega\varsigma)$ seems like an improvement on $\iota\delta\omega\nu$. The only remaining question is whether a is derived from b or c but this decision must be deferred until genealogical coherence data is available. The partial local stemma is shown in Table 24.


```
a i\delta\omega\nu 07, 011, 013, 017, 021, 028, 030, 031, 034, 036, 044, 045, 047, 063, 0141
b \epsilon i\delta\sigma\nu P75, 02, 03, 038
c \epsilon i\delta\epsilon\nu 01, 05
d \epsilon i\delta\omega\varsigma 0211
lac 019, 022, 032, 037, 091
```

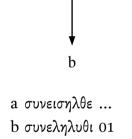

Table 24: Partial local stemma for John 6:22/20

John 6:22/40-52

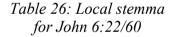
¹⁰ This parenthetical section could potentially continue all the way to verse 24 when the crowd board the boats.

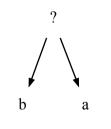
Local stemmata

will leave the labels alone. There are a number of variations in the added phrase which are detailed in Appendix 1.



John 6:22/60


In John 22:60 all but 01 read συνεισηλθε (aorist of συνεισερχομαι) and 01 reads συνεληλυθι (perfect of συνερχομαι). This is a very rare form – indeed this is the only occurrence of the word in any manuscript of John included in the ECM. The ca corrector of 01 changed it to συνεισηλθεν.¹¹ It seems impossible to imagine this being the original, and so we create the local stemma in Table 26.¹²


John 6:22/62-66

Once again, 01 here has a unique reading. This time, however, it is a simple reading that has much to recommend it as a forebear of the text attested by all the other witnesses:

а

а τοις μαθηταις αυτου ... b αυτοις 01 *Table 27: Local stemma for John 6:22/62-66*

¹¹ A correction originating in a revision of the text in the fifth to seventh centuries.

¹² This ties in with the CBGM maxim that singular readings are normally derivative. See the "Nine Guidelines" later in this chapter.

αυτοις is more primitive than τοις μαθηταις αυτου. Why would a scribe change to the more primitive form, especially when it adds some ambiguity (crowd or disciples)? On the face of the readings alone reading *b* therefore seems to be prior. But with only one witness supporting it (and a peculiar one in these verses) would that really be a legitimate choice? NA27 does not even mention the variant but simply reads τοις μαθηταις αυτου. The decision will be deferred for now¹³. The local stemma is shown in Table 27.

John 6:22/80

This variant unit affords us an opportunity to use pre-genealogical coherence. Here 05 and 047 both read the grammatically incorrect form $\mu ovov$ (accusative singular) instead of $\mu ovot$ (nominative plural). Pregenealogical coherence allows us to explore the question of whether this is a case of multiple emergence. Pregenealogical coherence data is shown for 05 in Table 28 and for 047 in Table 20 on page 92. 047 is 05's joint tenth closest relative (but with only 67.647% coherence) yet in the other direction 05 is 047's *twenty-fifth* closest (with the same 67.647% coherence). This is an example of the importance of considering the percentage and not just the rank in these CBGM tables. See Chapter 7 for a discussion of this issue. These coherence values suggest that it is unlikely that these witnesses are related.

W2 NR PERC1 EO PASS

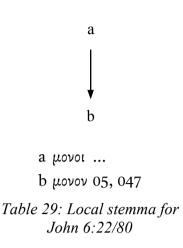
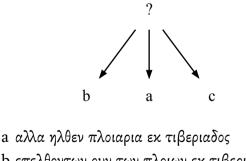

** 2	111	IERCI	ĿŲ	IAN
091	1	87.500	14	16
044	2	76.667	23	30
019	3	75.862	22	29
032		75.862	22	29
03	5	73.333	22	30
022	6	72.414	21	29
P75		72.414	21	29
0141	8	70.588	24	34
063	9	69.231	18	26
011	10	67.647	23	34
017		67.647	23	34
021		67.647	23	34
0211		67.647	23	34
028		67.647	23	34
036		67.647	23	34
047		67.647	23	34
07		67.647	23	34
037	18	66.667	22	33
02		66.667	20	30
031	20	65.517	19	29
030	21	64.706	22	34
045		64.706	22	34
013	23	61.765	21	34
034		61.765	21	34
038	25	58.824	20	34
01	26	33.333	11	33

Table 28: Pre-genealogical coherence for W1=05

¹³ This would be a place to consider non-Greek evidence. If there were early Latin or Syriac witnesses attesting this shorter form then it would have more credence than a single Greek witness.


Local stemmata

This in turn implies that this variant reading is a case of multiple emergence. Both manuscripts are uncials with no spaces, so the scribe would have had to write AAAAMONONONONONONONAOHTAI changing only one letter from AAAAMONOIONAOHTAI – which does seem like an easy enough mistake to happen more than once. The local stemma is shown in Table 29.

John 6:23/2-10

The overlapping variant unit John 6:23/2-10 contains the unique genitive absolute readings attested by 01 and 05. $\varepsilon \pi \tau_1 \beta \varepsilon \rho_1 \alpha \delta_{05}$ is included in this overlapping unit in order to make the next unit (6:23/4-10) simpler. There is no variation in these two words and 01 and 05 have little or nothing to say on the relevant questions in that unit, such as "where should $\eta \lambda \theta_{0\nu}$ go?" 05's reading is also attested by some early Latin and Syriac witnesses, implying that it is a very early form.¹⁴ Nevertheless, no local stemma is yet apparent. The readings are shown in Table 30.

b επελθοντων ουν των πλοιων εκ τιβεριαδος 01
c αλλων πλοιαριων ελθοντων εκ τιβεριαδος 05
Table 30: Local stemma for overlapping unit John 6:23/2-10

¹⁴ NA27 lists support for this reading as "D (b j r¹) sy^c"

John 6:23/4-10

This variant unit has more variation than any other in this dataset. All witnesses in this variant unit contain a variant on $\eta\lambda\theta\sigma\nu$ (in one of three locations) and a variant on $\pi\lambda\sigma\alpha\rho\alpha$ and some include the article before $\tau\iota\beta\epsilon\rho\iota\alpha\delta\sigma\varsigma$.¹⁵ At this stage it is difficult to create a local stemma, so this will be deferred until genealogical coherence data is available. The readings are shown in Table 31.

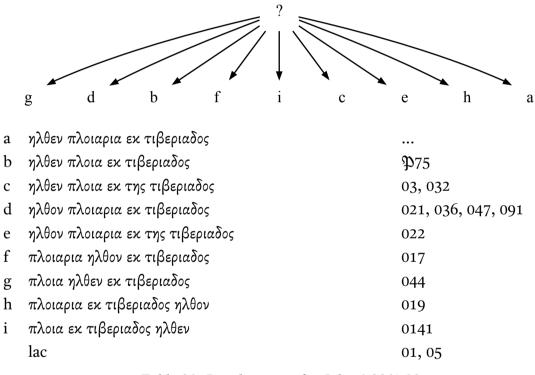



Table 31: Local stemma for John 6:23/4-10

¹⁵ All witnesses appear here apart from 01 and 05, which are covered by the overlapping unit John 6:23/2-10.

John 6:23/26-30

02's reading ευχαριστησαντος του θεου is evidently a mistake in John 6:23/26-30 and must derive from the *a* reading. 05 and 091 omit the phrase and this omission has a claim to being original. It is certainly very early, being attested by some old Latin and Syriac witnesses – the text making sense and being simpler.¹⁶ Table 28 above shows the pre-genealogical coherence for 05. Notably, 091 is 05's closest relative with 87.5%

α ευχαριστησαντος του θεου 02
 c 05, 091
 Table 32: Partial local stemma for John 6:23/26-30

coherence. This strongly suggests that this omission is *not* a case of multiple emergence. But whether the omission is prior or posterior to reading *a* cannot be conclusively decided at this point. The partial local stemma is shown in Table 32.

John 6:24/30-32

John 6:24/30-32 is an overlapping unit created for 0211's unique reading. This is primarily a change in word order, with an extra $\tau \sigma \tau \varepsilon$ at the start. If we were to have constructed a single variant unit for words 30-32 (instead of this overlapping unit and a μ b a ενεβησαν αυτοι ... b τοτε και αυτοι ενεβησαν 0211 lac 05, 063, 091 Table 33: Local stemma for John 6:24/30-32

individual variant units for words 30, 31 and 32) then 0211's reading here would derive from 030 and 036's $\varepsilon\nu\varepsilon\beta\eta\sigma\alpha\nu$ xat $\alpha\nu\tau\sigma\iota$. However, in this case it is derived from the *a* reading of

¹⁶ NA27 lists support for this reading as "D 091 pc a e sy^{s,c}".

this overlapping unit. It should be noted that either way of dividing the units would have resulted in the genealogical relationship being legitimately encoded, although yielding subtly different statistical data. The local stemma is shown in Table 33.

John 6:24/36 and 38

In John 6:24/36 and 24/38 01 has the crowd getting into a single boat which is problematic and seems to be a mistake originating from a somewhat confused scribe.¹⁷ These few verses are unusually complex, and many scribes seem to have wrestled with the text trying to make more sense of it. The rest of the witnesses disagree about whether the plural boats are small or just "boats". The first local stemma is shown in Table 34 but the second cannot be completed yet. Its partial local stemma is shown in Table 35.

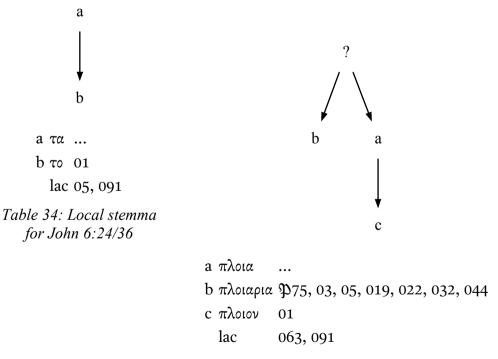
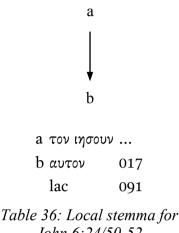



Table 35: Incomplete local stemma for John 6:24/38

¹⁷ While 01 has omitted the word οχλος at the start of the verse. οχλος is still the subject at this point, carried over from earlier.

John 6:24/50-52

The final variant unit is John 6:24/50-52. Here most witnesses read TOV in TOV but 017 alone reads the stylistically better (there is no need for the second mention of Jesus in the verse, as it is unambiguous that the disciples were seeking him and not someone else) and simpler, and thus posterior, $\alpha \nu \tau 0 \nu$.¹⁸ As such the local stemma can be constructed and is shown in Table 36.

John 6:24/50-52

Genealogical Coherence and Textual Flow

Now that all readings have been collated and regularised, and local stemmata created, a prototype initial text "A" becomes available (defined in twenty-eight variant units at this stage). Also genealogical coherence data can be calculated and the local stemmata can be reevaluated as a result. It is important to note that the differences between the number of prior and posterior variants will be small in this example, as there are only 41 variant units. Differences of only one or two between the values would normally cause some doubt but for the sake of this example we will consider any difference as indicating a meaningful and stable textual flow. Genealogical coherence data can be presented in the form of a table of potential ancestors. For example see Table 37.¹⁹

^{18 017} alone attests it in this dataset. Actually this reading is shared with a number of minuscules and at least one lectionary manuscript.

¹⁹ The headings are defined as follows: W2 – the witness to compare to 02 (W1); NR – the rank, or position in the table; D – Whether the relationship is directed or not; **PERC1** – the pre-genealogical coherence percentage; EQ - the number of variant units in which the two witnesses agree; PASS - the number of variant units in which the two witnesses are both extant; W1<W2 and W2>W2 - the number of prior and posterior readings in W2 respectively; UNCL - the number of variant units where the relationship between the readings attested by the two witnesses is undefined; NOREL - the number of variant units where there is no ancestral relationship between the readings attested by the two witnesses. Prior and posterior counts are recorded in the two columns labelled "W1<W2" and "W1>W2". To remember which column is which, consider the greater than or less than sign as an arrow head in a stemma. Thus "W1<W2" is where W2 is

W2	NK	D	PERCI	EQ	PASS	wi <w2< th=""><th>W1 > W2</th><th>UNCL</th></w2<>	W1 > W2	UNCL
А	1		92.000	23	25	2		
03	2		86.486	32	37	3		2
0141			86.486	32	37	2	1	2
011		-	86.486	32	37	2	2	1
037		-	86.111	31	36	2	2	1
022	4		86.111	31	36	2	1	2
031	5		83.871	26	31	2	1	2
07		-	83.784	31	37	2	2	2
044	6		83.784	31	37	2		4
P75	7		83.333	30	36	3	1	2
032			83.333	30	36	2	1	3
019			83.333	30	36	3	1	2
063	10		82.759	24	29	2	1	2
021		-	81.081	30	37	2	2	3
017		-	81.081	30	37	2	2	3
091	11		77.778	14	18	2		2

W2 NR D PERC1 EQ PASS W1<W2 W1>W2 UNCL NOREL

Table 37: Potential ancestors with W1=02

A simple algorithm taking the highest ranked potential ancestor (within a set connectivity / ranking) sharing a witness' reading if such an ancestor exists, or otherwise the highest ranked potential ancestor(s) attesting the parent reading(s), allows the creation of textual flow diagrams. Since the number of witnesses is small, the reading to which each attests can be included in its label and the whole tradition represented in a single diagram for each variant unit. This would not be possible with larger datasets, but it simplifies visualisation here. The witnesses are also colour-coded by reading, again to aid visualisation. As with the CBGM's standard textual flow diagrams, the rank of the potential ancestor is shown after a slash in the descendent where it is not the first-ranked ancestor. For example see Figure 6 for the textual flow diagram of John 6:24/30 with absolute connectivity. "Absolute connectivity" means any potential ancestor is acceptable in the tree – so even a twentieth ranked ancestor would be allowed. Note that all witnesses in this diagram are connected to either their best or second best potential ancestor (depicted by /2 in the tree) apart from 01

before W1 in the stemma, pointing down to its descendent – and it is therefore the count of prior readings in W2.

Genealogical Coherence and Textual Flow

which descends from its 11th best potential ancestor $\mathfrak{P75}$. So this tree would look the same if connectivity were set to eleven, but different if it were set to ten.



Figure 6: Textual flow diagram for John 6:24/30 with absolute connectivity

This textual flow diagram highlights three things: first variant *b* is a case of multiple emergence (which is perfectly believable as it is a change of $\varepsilon v \varepsilon \beta \eta \sigma a v$ to $\alpha v \varepsilon \beta \eta \sigma a v$); and secondly witness 03 is disconnected from the rest of the flow.²⁰ The second point might normally be a cause for concern, but at this point 03 has no potential ancestors, and so textual flow will always show it separately. 091 also has no potential ancestors at this stage and neither does A. A is not expected to have ancestors, but 03 and 091 should have. This is likely to be resolved by defining further local stemmata. Note that 05, 063 and 091 are lacunose in this variant unit and so do not appear in this diagram.

Now genealogical coherence (potential ancestors) and textual flow can be considered for all unresolved variant units, of which there are fourteen. Again, only a subset of decisions is recorded here with the remainder included in Appendix 1.

John 6:23/4-10

The readings for this unit are shown in Table 38. Above we deferred any decisions about this local stemma until later – but now we must grasp the nettle.

²⁰ Thus the textual flow diagram is not a "tree", but is technically called a "forest". This normally shows that the coherence is *not* perfect and must be investigated.

а	ηλθεν πλοιαρια εκ τιβεριαδος	
b	ηλθεν πλοια εκ τιβεριαδος	P75
c	ηλθεν πλοια εκ της τιβεριαδος	03, 032
d	ηλθον πλοιαρια εκ τιβεριαδος	021, 036, 047, 091
e	ηλθον πλοιαρια εκ της τιβεριαδος	022
f	πλοιαρια ηλθον εκ τιβεριαδος	017
g	πλοια ηλθεν εκ τιβεριαδος	044
h	πλοιαρια εκ τιβεριαδος ηλθον	019
i	πλοια εκ τιβεριαδος ηλθεν	0141
	lac	01, 05

Table 38: Readings for John 6:23/4-10

First we consider $\pi\lambda o\iota \alpha$ versus $\pi\lambda o\iota \alpha \rho\iota \alpha$. This word, in one form or another, appears six times in this passage. The first three have no variation, reading $\pi\lambda o\iota o\nu$ (21/14), $\pi\lambda o\iota o\nu$ (21/22) and $\pi\lambda o\iota \alpha \rho\iota o\nu$ (22/24). Then in 22/76 the attestation is split between $\pi\lambda o\iota \alpha \rho\iota o\nu$ and $\pi\lambda o\iota o\nu$. The boat in question here is the same one as in 22/24 with $\pi\lambda o\iota o\nu$ being the initial text, having been changed in some witnesses by assimilation (see above). Now the boats in 23/6 are the same boats that the crowd board in 24/38 – but there is no consistency as to which word is used; indeed most witnesses say "small boats" in one place and just "boats" in the other. The strongest argument in 23/6, however, is the contrary of 22/24. Here it seems likely that the initial text reads $\pi\lambda o\iota \alpha \rho\iota \alpha$ (adding to the drive to assimilate in 22/24) and a handful of witnesses that did not make that assimilation then make a separate assimilation to $\pi\lambda o\iota \alpha$ by following their reading of $\pi\lambda o\iota o\nu$ in 22/24.²¹

Now considering those readings in 23/4-10 attesting $\pi\lambda oia$, it is then a simple matter to surmise that *b* comes from *a*, and *c* comes from *b* (the addition of the article). Reading *i* clearly comes from *g* (this is consistent with the potential ancestors of 0141 in Table 39). Reading *g* could come from *b* or *h*, but 044's potential ancestors do not contain 019 (see

^{21 \$\}pi75, 01, 02, 03, 05, 017, 019, 022, 032, 044, 091, 0141 and 0211 resisted the urge to assimilate in 22/24. Only \$\pi75, 03, 032, 044 and 0141 then attest the assimilation in 23/6.

Genealogical Coherence and Textual Flow

Table 40) and even though $\mathcal{P}75$ is an undirected relative this is the only remaining possibility (and this will now introduce a direction) – and so *g* is derived from *b*.

Turning to the readings attesting $\pi\lambda o_i \alpha \rho_i \alpha$, we hypothesise that reading *d* comes from *a*. Thus 036 and 047 both follow their first potential ancestor 021. 091 is more troublesome as it has no potential ancestors, but this is simply resolved by the hypothesis that *a* is the initial text. If this proves impossible, then we will reconsider 091. It might seem obvious that reading *e* is derived from *d*, but the potential ancestors of 022 (Table 41) strongly suggest that it comes from *a* or *c* instead – and *a* is perfectly acceptable from a text-critical perspective. The same argument for 017 implies that *f* comes from *a* via 017's highest ranked potential ancestor 031. In exactly the same way *h* can be seen to be derived from *a*.

031		-	94.286	33	35			2
044	1		89.189	33	37	1		3
022		-	88.889	32	36	1	1	2
А	2		88.000	22	25	2		1
03	3		86.486	32	37	2		3
063		-	86.207	25	29	1	1	2
032		-	86.111	31	36	1	1	3
019	4		86.111	31	36	2	1	2
P75	5		83.333	30	36	2	1	3
091			83.333	15	18	1		2

W2 NR D PERC1 EQ PASS W1<W2 W1>W2 UNCL NOREL

Table 39: Potential ancestors with W1=0141

After defining this local stemma 03 still has no potential ancestors (see Table 42). But it does have undirected genealogical relationships with A, 75 and 091. The unclear and "no relation" variant units referred to in the table are as follows: NOREL with A in John 6:23/4-10; UNCL with 091 in John 6:23/26-30; and NOREL with 091 in John 6:23/4-10. So solving this variant unit is key.

VV Z	INK	ν	LEVLI	ЕŲ	газэ	VV 1 ~ VV 2	W1/W2	U.
А	1		92.000	23	25	1		1
03	2		89.189	33	37	1		3
019		-	88.889	32	36	1	1	2
₽ 75		-	86.111	31	36	1	1	3
091	3		83.333	15	18	1		2

W2 NR D PERC1 EQ PASS W1<W2 W1>W2 UNCL NOREL

Table 40: Potential ancestors with W1=044

W2 NR D PERC1 EQ PASS W1<W2 W1>W2 UNCL NOREL

044 1	91.667	33 36	1		2
03	91.667	33 36	2		1
А	91.667	22 24	2		
032	- 88.889	32 36	1	1	2
019 4	88.889	32 36	2	1	1
0141	- 88.889	32 36	1	1	2
P75 5	88.571	31 35	2	1	1
063	- 85.714	24 28	1	1	2
091 6	77.778	14 18	2		2

Table 41: Potential ancestors with W1=022

W2 NR D PERC1 EQ PASS W1<W2 W1>W2 UNCL NOREL

А	-	96.154	25	26				1
P75	-	94.444	34	36	1	1		
091	-	88.889	16	18			1	1
		т. 1. 1. <i>1</i> .	, , , , , , , , , , , , , , , , , , ,	<i>,</i> , .	,		 71 02	

Table 42: Potential ancestors with W1=03

Above we surmised that reading c (03) came from b ($\mathfrak{P75}$) by a simple addition of the article, and that b came from a (changing $\pi\lambda o_{1}a_{p1}a$ to $\pi\lambda o_{1}a_{1}$). It is not unreasonable to allow c to be derived directly from a in this case, since $\pi\lambda o_{1}a_{p1}a$ and $\pi\lambda o_{1}a$ have been so confused here. And thus 03 gains a potential ancestor in A. All these hypotheses will be checked for consistency later. The new textual flow diagram is shown in Figure 7 and the local stemma in Table 43.

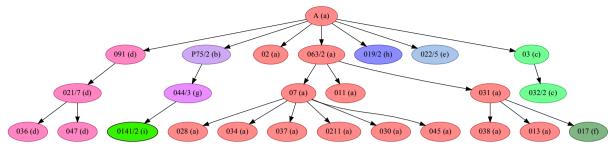


Figure 7: Textual flow diagram for John 6:23/4-10 with reading c derived from a

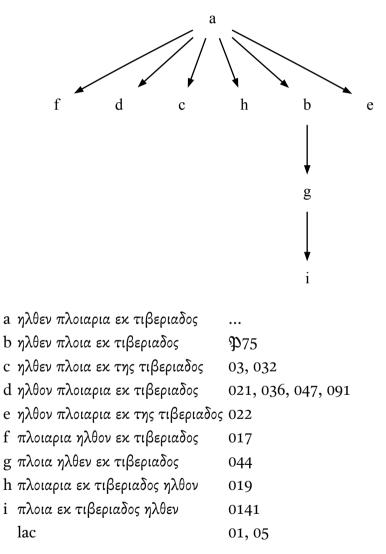


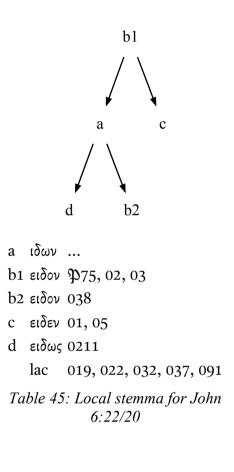
Table 43: Local stemma for John 6:23/4-10

John 6:22/20

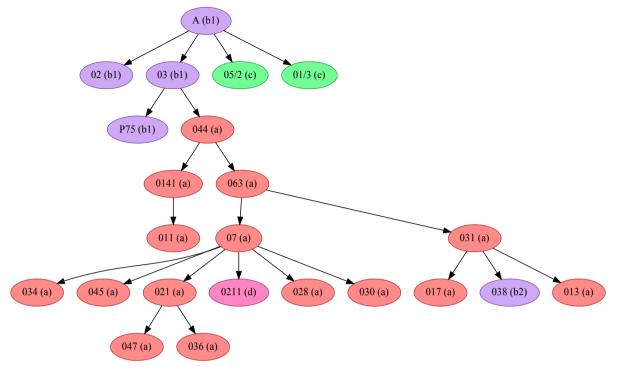
This variant unit provides an interesting challenge: relating $\iota \delta \omega \nu$ (*a*), $\epsilon \iota \delta \upsilon \nu$ (*b*), $\epsilon \iota \delta \epsilon \nu$ (*c*) and $\epsilon \iota \delta \omega \varsigma$ (*d*). We have previously identified that reading *b* is the initial text, with *c* coming from b and d coming from a. The attestation for b is problematic, however, as 038 is not closely related to any other witness attesting reading b. Potential ancestors for 038 are shown in Table 44.

VV Z	NK D	PERCI	ЕŲ	PASS	WI~WZ	W 1 ~ W 2	UNCL	NOR
031	1	94.286	33	35	1		1	
045	2	92.683	38	41	2		1	
07	3	90.244	37	41	3		1	
037	4	90.000	36	40	3	1		
028	5	87.805	36	41	3	1	1	
021		87.805	36	41	3	1	1	
013		87.805	36	41	2	1	1	1
011		87.805	36	41	3		2	
063	9	86.207	25	29	3		1	
036	10	85.366	35	41	3	2	1	
034		85.366	35	41	3	2	1	
030		85.366	35	41	3	1	2	
047	-	82.927	34	41	3	3	1	
017	13	82.927	34	41	4	2	1	
0141		82.927	34	41	4		2	1
02	15	78.378	29	37	5	2	1	
А	16	76.923	20	26	6			
03	17	75.676	28	37	6	1	2	
0211	18	75.610	31	41	4	3	2	1
022	19	75.000	27	36	5	2	2	
044	20	72.973	27	37	5		4	1
P75	21	72.222	26	36	6	2	2	
032		72.222	26	36	5	2	3	
019		72.222	26	36	6	2	2	
091	24	66.667	12	18	4	1	1	
05	-	58.824	20	34	4	4	5	1

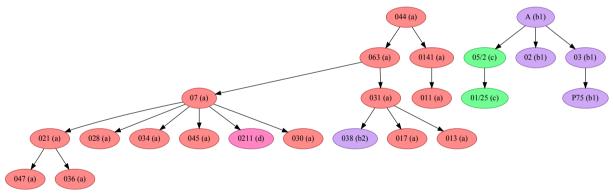
W2 NR D PERC1 EQ PASS W1<W2 W1>W2 UNCL NOREL


Table 44: Potential ancestors with W1=038

The first witness not to attest a is ranked 16 (A) with a much lower percentage agreement than most of the witnesses above it. We are forced to conclude that reading b is a case of multiple emergence and we must split it into two readings: b1 and b2. Reading b2 must be derived from a - a case of a reversed variation. Also witnesses 01 and 05 are simply not related in this dataset (05 is 01's twenty-fifth highest ranked potential ancestor out of

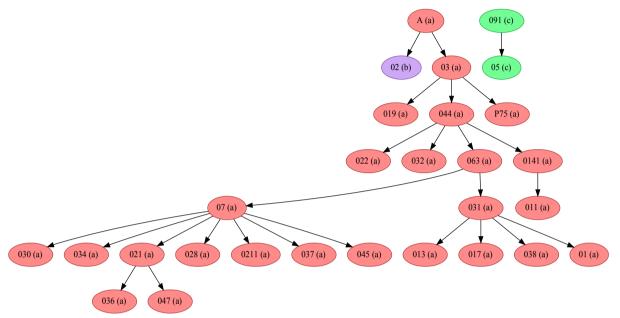

Genealogical Coherence and Textual Flow

twenty-seven, with an agreement of only 33.3%) and so reading *c* must also be a case of multiple emergence but there is no need to split the reading here as it is always derived from *b1*.

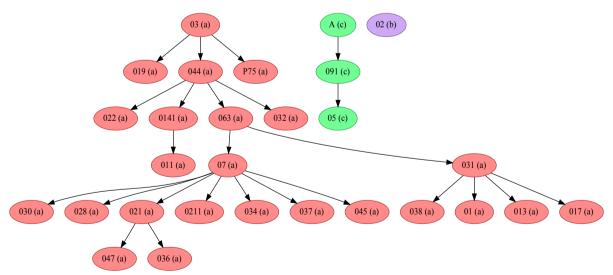

The only question remaining is whether *a* is derived from *c* or *b1*. This can be answered simply by considering textual flow diagrams for the two hypotheses. Figure 8 shows the textual flow diagram for John 6:22/20 with $b1 \rightarrow a$ and connectivity=3.²² This is consistent with the analyses above and all witnesses are connected (albeit with multiple emergence for *a*, *b1* and *b2*, and *c*). Figure 9 shows the same data but with $c \rightarrow a$ and absolute connectivity (i.e. more lenient). In this case the relationships cannot be resolved and we have a forest not a tree, showing that this hypothesis is false. Thus the local stemma can be created – see Table 45.

²² This diagram is the same for any connectivity setting between 2 and 24. At connectivity 25 01 descends from 05. But multiple-emergence is perfectly believable for reading *c*, so connectivity 2 is fine.

Figure 8: Textual flow diagram for John 6:22/20 with b1 \rightarrow *a and connectivity=3*


Figure 9: Textual flow diagram for John 6:22/20 with $c \rightarrow a$ *and connectivity=499*

John 6:23/26-30


This variant unit can also be solved by considering hypothetical textual flow diagrams, this time all with absolute (=499) connectivity (in other words any potential ancestor is acceptable). A hypothesis that cannot create a single tree with absolute connectivity is almost certainly false. We already know that $a \rightarrow b$. So is reading c (om) the initial text, or does it derive from a or b? Figure 10 shows that c cannot derive from b – as the

Genealogical Coherence and Textual Flow

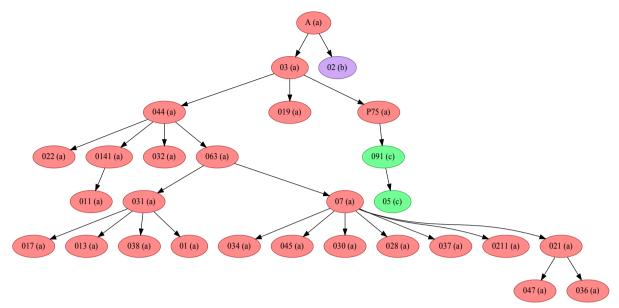

textual flow diagram is a forest. So all that remains is to decide which of a or c is the initial text. The two hypotheses are shown in Figure 11 and Figure 12, and the latter is clearly the only viable solution. The completed local stemma is shown in Table 46.

Figure 10: Textual flow diagram for John 6:23/26-30 with initial text a and $b \rightarrow c$

Figure 11: Textual flow diagram for John 6:23/26-30 with initial text c and c \rightarrow *a*

Figure 12: Textual flow diagram for John 6:23/26-30 with initial text a and $a \rightarrow c$

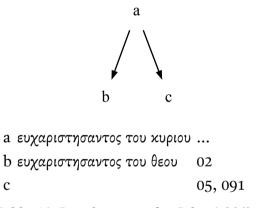
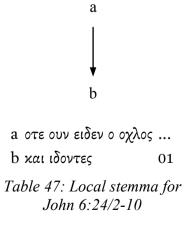
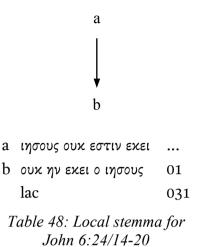



Table 46: Local stemma for John 6:23/26-30

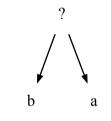
John 6:24/2-10

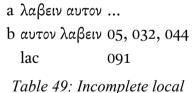
For John 6:24/2-10 the situation is more difficult as the CBGM cannot help. The choice is which of a and b is the initial text, yet the textual flow is perfect in either scenario. However, it is hard to believe that the single witness 01 (which is an outlier and usually posterior in this dataset) attests the initial text against uniformity in all others.²³ Table


²³ Again, see the "Nine Guidelines" later which state that a singular reading is normally derivative.

Genealogical Coherence and Textual Flow

47 shows the local stemma.


John 6:24/14-20


Exactly the same argument holds for this variant unit – again where 01 has a unique reading. See Table 48 for the local stemma.

Unresolved variant units

The following five variant units remain either partially or fully unresolved. The remaining question in two is simply one of word order where multiple emergence would not pose a problem (John 6:21/6-8, Table 49 and John 6:21/20-24, Table 50):

stemma for John 6:21/6-8

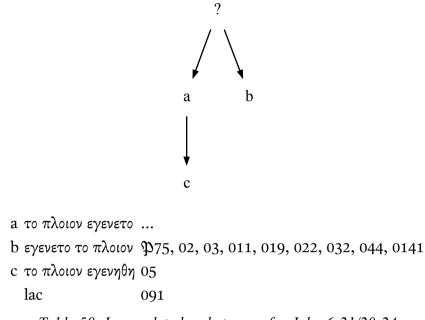
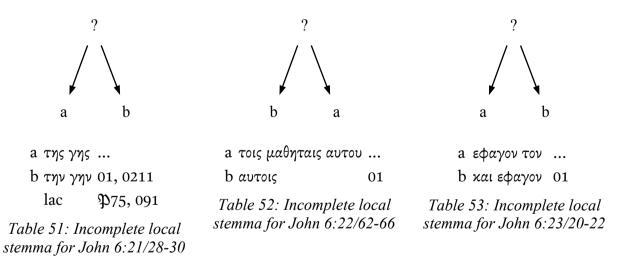



Table 50: Incomplete local stemma for John 6:21/20-24

The final three unresolved variant units present equally believable hypothetical textual flow diagrams in either possible resolution; see Table 51, Table 52 and Table 53.

Consistency of Results

Now that the local stemmata have been defined (as far as possible) it is worth checking whether there are any contradictions in the decisions. We exclude the unresolved variant units above from this process, as they cannot create connected textual flow diagrams. There are thirty-six resolved variant units. Coherent textual flow diagrams can be created for the majority of these with connectivity 1 or 2. John 6:22/20 requires connectivity 10 for witness 01. John 6:22/40 requires connectivity 9 for 05. John 6:22/76 requires connectivity 7 for 0211. 23/4-10 requires connectivity 8 for 021.

One variant unit, however, creates a disconnected textual flow diagram even at absolute connectivity: John 6:22/52 (see Figure 13), with 05 separate from the rest of the witnesses. The label "OL_PARENT" in this diagram is a device that acts like the initial text but is not the same thing as the initial text (which here is lacunose).²⁴ This indicates that the reading directly descending from it is the ancestral reading for this overlapping unit. This is purely an algorithmic device of my own making, and will make no appearance in the final edition. We must revisit the decisions made in that unit now.

²⁴ This is the only way to represent, in this dataset, a kind of initial text for this variant unit without implying that the actual initial text attests a reading here. The ranking of "-1" is there to emphasise that this is a hypothetical witness. To exclude this possibility would place a restriction on such variant units that does not exist for those where the initial text is not lacunose. No extant witness can serve in this role here since the two witnesses that occur beneath it (0141 and 031) have undirected genealogical coherence – and thus neither can serve as ancestor to the other.

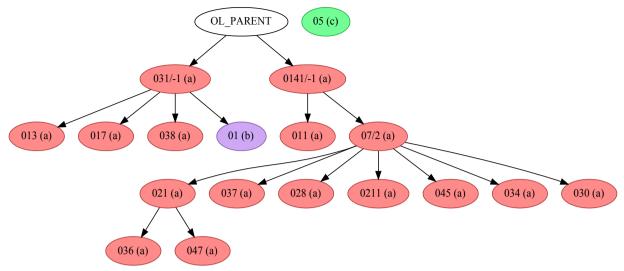


Figure 13: Textual flow diagram for John 6:22/52

Earlier we decided that 05's reading c ($\alpha \nu \tau \sigma \nu$ $\nu \eta \sigma \sigma \nu$) was derived from both the majority reading a ($\alpha \nu \tau \sigma \nu$) and 01's b ($\tau \sigma \nu \iota \eta \sigma \sigma \nu$). 05's potential ancestors are shown in Table 54. 0141 is the highest ranked potential ancestor (ninth) to read anything in this variant unit. 01 is not a potential ancestor of 05 – which is the cause of the problem here. So, if the previous decision is now shown to be incompatible with the textual flow, then we must consider alternatives. 05 is 01's twenty-fifth highest (third lowest) ranked potential ancestor, suggesting that any relationship between the two manuscripts (and their readings) is very unlikely. Therefore we are forced to conclude that b and c must derive from a. This allows a textual flow diagram with perfect coherence at connectivity 9 (see Figure 14). The new local stemma is shown in Table 55.

W2	NR D	PERC1	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NORE</th></w2<>	W1>W2	UNCL	NORE
091	1	87.500	14	16	2			
044	2	76.667	23	30	5		1	1
032	3	75.862	22	29	5	1	1	
019		75.862	22	29	5		2	
03	5	73.333	22	30	6		2	
P75	6	72.414	21	29	6		2	
022		72.414	21	29	5	1	2	
А	8	72.000	18	25	7			
0141	9	70.588	24	34	6		2	2
063	10	69.231	18	26	5	1	1	1
07	11	67.647	23	34	7	1	1	2
047		67.647	23	34	6	2	1	2
036		67.647	23	34	7	1	1	2
028		67.647	23	34	7	1	1	2
0211		67.647	23	34	6	1	2	2
021		67.647	23	34	7	1	1	2
017		67.647	23	34	7	1	1	2
011		67.647	23	34	6	1	2	2
037	19	66.667	22	33	7	2	1	1
02		66.667	20	30	6	1	2	1
031	21	65.517	19	29	7		1	2
045	22	64.706	22	34	7	2	1	2
030		64.706	22	34	7	2	1	2
034	24	61.765	21	34	7	3	1	2
013		61.765	21	34	7	3	1	2
038	26	58.824	20	34	7	4	1	2

EL

Table 54: Potential ancestors with W1=05

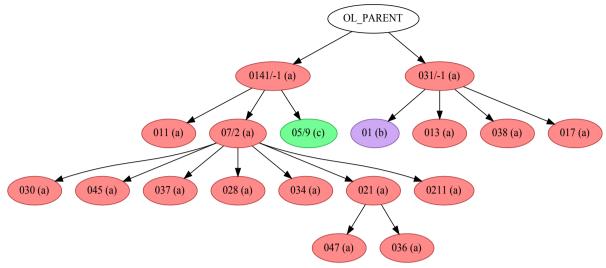
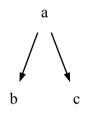
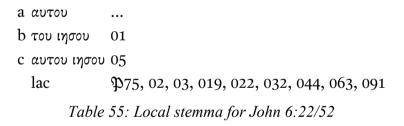




Figure 14: Textual flow diagram for John 6:22/52

Patterns and important witnesses

Rather like the CBGM of the catholic epistles, a few witnesses emerge as often holding key places in the textual flow. In this case they are: 03 and under it 044; 063 (where it is extant) and under that 07 and 031; and sometimes 0141. As an example consider the textual flow diagrams below:

Consistency of Results

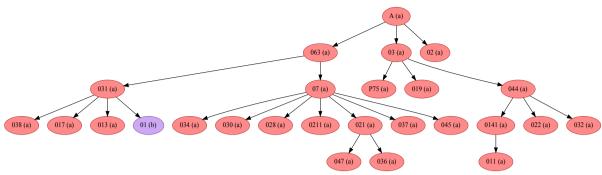


Figure 15: Textual flow diagram for John 6:24/36

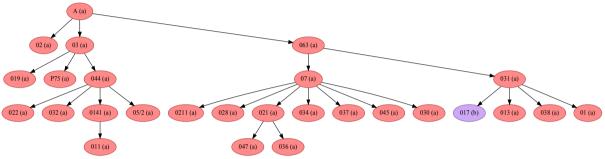


Figure 16: Textual flow diagram for John 6:24/50-52

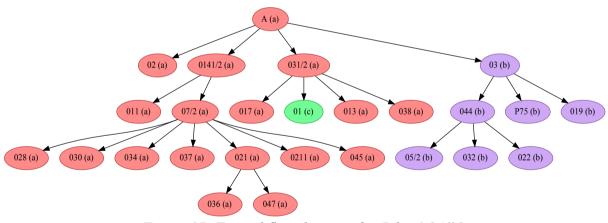


Figure 17: Textual flow diagram for John 6:24/38

The Final Apparatus

We have now (as far as is possible) established our initial text. It is as follows, with both possible readings shown in places of uncertainty. Underneath the initial text is a full positive apparatus, similar in style to that used by the ECM. For the only time in this chapter I have relabelled the readings since the ECM would always have reading *a* as the initial text in its apparatus. Some variant units required changing for the purposes of the apparatus, for example 23/1, 23/3, 23/2-10 and 23/4-10 are represented here simply as 23/2 and 23/4-10.

Unlike the ECM, however, I have not modified the word numbers (for example 22/38 is followed by 22/54 since the chosen base text contained a later insertion).

21 ηθελον	ουν	λαβειν αυτον λ	αυτον Ιαβειν	εις το	πλοιον	και ευί	θεως	το πλ εγενε	ιοιον εγ ετο το τ	νενετο τλοιον	επι	της την	γης γην	εις ην υτ	τηγον
2	4	6	8	10 12	14	16	18	20	22	24	26	28	30	32 34	36
2 b ηλθον							20	-24 c า	ο πλοιον	εγενηθι	1			36 b υπην	τησεν
	019,		2, 028,	030, 03	31, 032,	034,	2:	1/28-30	021 037	, 022, , 038, 0 γην 01,	028, 44, 0	030, 45, 04	031,	1, 013, 017 032, 034 93, 0141	
- 21/6-8 a	091 λαβε 017, 036,		1, 022, 045,04	028, 03 7, 063, 0	30, 031,	034,		21/36	5 a υπη 019 036 021	γον \$7. , 021, , 037,	022, 038,	028,	030,	7, 011, 013 031, 032 047, 063,	034,
21/20-24 a	030, 063, εγεν	λοιον εγενε , 031, 034 , 0211 ετο το πλ , 032, 044,	4, 036, 010v P7	037, 03	38, 045,	047,				·					
c -	το π. 091	λοιον εγενι	ηθη 05												

The Final Apparatus

2		4	6	8	10	12	14	16	18		20) 22		24		26	28	30	3	2 34	4 3	6385
3	b '	τε			10 t	ο om. 12 b εα	τως			20	b c d	ιδων ειδεν ειδως										
												40-52	c	εx εx εx εx	εινο εινο εινο εινο 5 ο ει	εις ο ο ενε εις ο νεβηα	ενεβ βησ ανεβ ταν ο	Βησαν αν οι μ	οι μ μαθ οι μ ητα	ιαθη ηται μαθη ι αυτ	ται αυτ ται του	του ιησ ου αυτου
22/3	a	019), 021	, 022	2, 028	03, 05, 0 8, 030, 0 9, 047, 00	31, 032,	034,			22/4		bε	εκειν	0 ELG	; ο ε	νεβη	σαν ο	πμ	αθητ	αι	944, 06 αυτου (031, 03
	b	τε	0211												045			,21, (20	, •5	•, •	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	-	09	1										сe	εκειν	ο εις	ο εν	εβησ	αν οι	μαθ	θηται	τοι	ιησου
22/10	a	019	9, 021	, 022	2, 028	3, 05, 0 8, 030, 0 9, 0141, 0	31, 032,						e e			• •		οι μαθ σαν οι	•			034 utou 03
	b	om	. 038	, 045											ενεβ	ησαν	οιμ	ιαθητα	πα	υτου	021	11
	-	09	1															ιαθητι				
22/12	a	019	9, 021	, 022	2, 028	03, 05, 0 8, 030, 0 9, 047, 00	31, 032,	034,	036,				- ()91	·							
	b	εστ	ως 01																			
	-	09	1																			
22/20		ιδω		011,	013,	038 017, 02 , 047, 00			031,													
	c	ειδ	εν 01,	05																		
	d	ειδ	ως 02:	11																		
	-	019	9, 022	, 032	2, 037	, 091																

22 τη επαυριον ο οχλος ο εστηκως περαν της θαλασσης ειδον οτι πλοιαριον αλλο ουκ ην εκει ει μη εν και

οτι ου σ	υνεισηλ	λθε τοις μ	ιαθηταις α αυτοις	ιυτου	0	ιησοι	ος εις	το	πλοι	ον αλλα	μονο	οιοιβ	ιαθητα	ιι αυτοι	υ απηλθ
56 58	60	62	64	66	68	70	72	74	76	78	80	82	84	86	88
60 b συνε	ληλυθι				68-7	70 b (om.	7	76 a	πλοιαριο	ν			88	b εισηλί c om.
	61	b ο ιησους									80 b	μον	עט		
22/60	017, 034,	ισηλθε \$75 019, 021, 036, 037, 0141, 0211	022, 028,	030,	031,	032,		22/7		πλοιον 9 044, 09 πλοιαρια 036, 03	1,014 ον 07,	1,02	11 , 013, (021, 02	
	b συνε	ληλυθι 01							-	031					
22/61	019, 036,	P75, 01, 0 021, 022, 037, 038,	028, 030,	031,	032,	034,		22/8	60 a		2, 02	8, 03	0, 031,		34, 036,
	b o ino	1,0211							b	μονον Ο	5, 047				
22/62-66	а тоіς 011, 031,	μαθηταις αι 013, 017, 032, 034, 063, 091, 0	019, 021, 036, 037,	022,	028,	030,		22/8	b	044, 04 εισηλθοι	1, 02 5, 047	2, 02	8, 030,		34, 036,
	b αυτο	οις 01								om. 01					
22/68-70	017,	τους \$P75, 0 019, 021, 037, 038,	022, 028,	030,	031,	032,			-	031					

The Final Apparatus

23 αλ	\α ηλθε	ν πλοιαρι	α εκ τ	ιβεριαδο	ς εγγυς	του	τοπου	οπου	εφι και	αγα ι ες	ον τον φαγον	αρτον
2	4	6	8	10	12	14	16	18	2	20	22	24
c x d a	ελλα δε και αλλα ελλων om.	δε			12-16	b c	εγγυς ου om.	σης				
2	e f g	ηλθεν πλοι. ηλθεν πλοι. ηλθον πλοι ηλθον πλοι πλοιαρια η πλοια ηλθε πλοιαρια επ πλοια εκ τι επελθοντων	α εκ τη αρια εκ αρια εκ λθον εκ ν εκ τιβ κ τιβεριαδι ν ουν το	ς τιβεριαδ τιβεριαδο της τιβερ τιβεριαδο Βεριαδος αδος ηλθο ος ηλθεν ων πλοιων	ς ιαδος ς ν εκ τιβερι	αδος	; 01					
	 b αλλα 032, 0141 c και α d αλλα e om. - 031 		011, 01 037, 03	3, 017, 0 8, 044, 04	5, 047, 0	963,				b c	011, 0 030, 0 045, 04 εγγυς 0 0m. 03 εφαγον 013, 0 031, 0	9 τον \$\$75, 02, 03, 05, 07, 0 117, 019, 021, 022, 028, 0 32, 034, 036, 037, 038, 0
~ <i>J/</i> T 10	028, b ηλθε c ηλθε d ηλθο e ηλθο f πλοια g πλοια h πλοια j επελ	 γ πλοιαρία (33), (31), (3) γ πλοια εκ τ γ πλοιαρία ε γ πλοίαρια ε γ π	034, 03 ιβεριαδ ης τιβε εκ τιβερ εκ της τ τκ τιβερ ιβεριαδ οριαδος δος ηλθ των πλα	7, 038, 04 ος Φ75 ριαδος 03, νιαδος 021 ιβεριαδος νιαδος 017 ος 044 ηλθον 019 εν 0141 ριων εκ τιβ	032 , 036, 04 022 βεριαδος ()211 7, 0				b	045, 04 και εφο	47, 063, 091, 0141, 0211 αγου 01

ευχαριστησαντος του κυριου 2	24 οτε ουν ειδεν α	ο οχλος οτι ιησους ουκ εστι	ν εκει ουδε οι μαθηται αυτου

26		28	30	2	4	6	8	10	12	14	16	18	20	22	24	26	28	
	26-30 b ευχαριστησαντος του θεου c om. 2-10 b οτε ουν ειπεν ο οχλος c οτε ουν εγνω ο οχλος d και ιδοντες									14-20	c	ο ιησο	τιν εκε υς ουκ ε • εκει ο	στιν			28 b c	om.
23/26-30	a		13, 017, 019 034, 036,	9, 02	1, 022	2, 028	8, 0	30,	2	4/14-20	a	011, 034,	017, 0	19,	021,	022,	02, 03, 028, 03 047, 06	0, 032,
		ευχαριστησ om. 05, 09	-	εου (02								στιν εκε υς ουκ		-	ι 038		
24/2-10	b	οτε ουν ειδ 011, 017, 034, 036, 091, 0141, οτε ουν ειπα οτε ουν εγν	019, 021, 037, 038, 0211 εν ο οχλος 0	022 044 13	, 028,	031	, 0	32,		24/28	- a	031 αυτου 019, 036, 0	021, 0 037, 03	02, 0 22, 1	03, (028,	05, 07, 030,	011, 01 031, 03 7, 0141,	2, 034,
		οτε σον εγν και ιδοντες	76 -	30								om. () 063, ()						

ενεβησαν αυτοι εις τα πλοια και ηλθον εις καπερναουμ ζητουντες τον ιησουν

30	32	2 34 36	38	40	42	44	46	48	50	52
30-38	c c d a e t f c g a	νεβησαν αυ ινεβησαν αι νεβησαν κα οτε και αυτ ινεβησαν εις νεβησαν εις λαβον εαυτ	υτοι εις 11 αυτο τοι ενε 5 το ητ 5 τα πλ	ς τα πλ η εις τα βησαν τλοιον λοια	ιοιαρια α πλοια εις τα	: x			50-52	b αυτον
30-38	b c d f g	021, 028, 0141	030, (υτοι ει υτοι ε αι αυτ τοι ενε ις το η	031, 0 ς τα π ις τα π οι εις τ εβησαι πλοιον λοια 0	34, 03 λοιαρια λοιαρι τα πλοι ν εις τα 01 28	6, 037, 2 03, 02 2 P75, 2 030,	036		24/50-5	 52 a τον ιησουν \$75, 01, 02, 03, 05, 07, 011, 013, 019, 021, 022, 028, 030, 031, 032, 034, 036, 037, 038, 044, 045, 047, 063, 0141, 0211 b αυτον 017 - 091

- 063, 091

Optimal Substemmata

Now we move on to the creation of optimal substemmata for each witness. It is worth recalling Mink's note about these ancestors: "Stemmatic ancestors are those which fit the rule for constructing optimal substemmata. They must not be confused with the historical exemplars of the descendant which normally are lost."²⁵ "The rule...", here, is that stemmatic ancestors are the necessary subset of all potential ancestors (those other witnesses that have more prior readings than posterior) required to explain all the readings in our witness. There can be many possible combinations of potential ancestors for a given witness.²⁶ The *optimal* substemma for that witness will contain the smallest number of necessary ancestors that explain all its readings – either by agreement or by the ancestor's reading being prior.

Table 56 shows the potential ancestors of 063 and their possible combinations are shown in Table 57 using the same table structure as in the CBGM presentation. Each combination where "Offen" is zero fully explains the readings in 063 and so we must choose the "best" combination. Mink states: "... a larger number of variants explained by agreement seems to be preferable. Yet, the larger number may result from more coincidental agreements or, more importantly, a larger combination which may contain less closely related ancestors that cause such agreements."²⁷ He also states: "If at a place of variation a descendant corresponds only to a witness of lesser coherence, the nature of the variant must be used to verify whether the variant in question actually links the two witnesses, or whether the correspondence of variants is only a matter of coincidence."²⁸ In other words, direct agreement is better, unless it requires the inclusion of a prohibitively distant relation.

²⁵ Mink, 'The Coherence-Based Genealogical Method (CBGM) – Introductory Presentation, 1.0', 133.

²⁶ The number of combinations is the size of the power set of potential ancestors (minus 1, the empty set). So if a witness has 15 potential ancestors, then the number of possible combinations is $|P(15)| - 1 = 2^{15} - 1 = 32,767$. Yet for 2 potential ancestors the number of combinations is just 3.

²⁷ Mink, 'The Coherence-Based Genealogical Method (CBGM) - Introductory Presentation, 1.0', 509.

²⁸ Mink, 'Problems of a Highly Contaminated Tradition', 30.

		ILINCI	ĽŲ	1 100	11 - 11 4	111-114	Unch	110
А	1	87.500	21	24	3			
044	2	86.207	25	29	1		2	1
0141	-	86.207	25	29	1	1	1	1
019	3	85.714	24	28	2	1	1	
03	4	82.759	24	29	3	1	1	
02	-	82.759	24	29	2	2	1	
P75	5	82.143	23	28	3	1	1	
091	-	76.471	13	17	2	2		

W2 NR D PERC1 EQ PASS W1<W2 W1>W2 UNCL NOREL

Table 56: Potential ancestors with W1=063

In general, the smallest combination is best and so {A} alone is the first combination from Table 57 to consider because we want minimum "Offen" (unexplained by this combination) and the smallest number of witnesses (in "Vorf"/"Vorfanz"). {A} explains 21 variants by direct agreement, and three by posteriority – namely 22/20 (variants on $\iota\delta\omega\nu$), 22/76 ($\pi\lambda o\iota\alpha\rho\iota\sigma\nu$ versus $\pi\lambda o\iota\sigma\nu$) and 23/3 (addition of $\delta\epsilon$). When combined with 019, 03 or $\mathfrak{P}75$ it explains the variants in the same way. However, combination {A, 044} (the first row in the table) explains all but 22/76 by direct agreement. A is 063's first ranked potential ancestor, with 87.5% coherence, and 044 is second with 86.207%. Now 22/20 and 23/3 are not highly connective variants, and so it could be argued that the contribution made by 044 is

not valuable enough to include. However, since its coherence is nearly as high as A it seems good to include it – and minimise the number of variants needing to be explained by posteriority. Figure 18 shows the optimal substemma for 063.

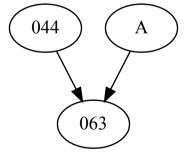


Figure 18: Optimal substemma for 063

Vorf	Vorfanz	Stellen	Post	Fragl	Offen	Hinweis
A, 044	2	23	1	5	0	<<
A, 044, 019	3	23	1	5	0	<<
A, 044, 03	3	23	1	5	0	<<
A, 044, P 75	3	23	1	5	0	<<
A, 044, 019, 03	4	23	1	5	0	<<
A, 044, 019, P 75	4	23	1	5	0	<<
A, 044, 03, P 75	4	23	1	5	0	<<
A, 044, 019, 03, P75	5	23	1	5	0	<<
044	1	22	1	5	1	
044, 019	2	22	1	5	1	
044, 03	2	22	1	5	1	
044, P 75	2	22	1	5	1	
044, 019, 03	3	22	1	5	1	
044, 019, P 75	3	22	1	5	1	
044, 03, P 75	3	22	1	5	1	
044, 019, 03, P 75	4	22	1	5	1	
А	1	21	3	5	0	<<
A, 019	2	21	3	5	0	
A, 03	2	21	3	5	0	
A, P75	2	21	3	5	0	
A, 019, 03	3	21	3	5	0	
A, 019, P 75	3	21	3	5	0	
A, 03, P 75	3	21	3	5	0	
A, 019, 03, P 75	4	21	3	5	0	
03	1	20	3	5	1	
P75	1	20	3	5	1	
019, 03	2	20	3	5	1	
019, P 75	2	20	3	5	1	
03, P75	2	20	3	5	1	
019, 03, P 75	3	20	3	5	1	
019	1	20	2	5	2	

Table 57: Combinations of ancestors for 063²⁹

²⁹ Definition of headings: Vorf – combinations; Vorfanz – the number of ancestors in combination; Stellen – the number of variants explained by agreement with an ancestor (table sorted by this); Post – the number of variants explained by direct posterity (i.e. one ancestor has the parent reading); Fragl – the number of cases of unknown source of variant (i.e. incomplete local stemma); Offen – the number of cases not explained by this combination; Hinweis – pointer "<<", indicating the best combination of ancestors compared with other combinations which are equal in number of ancestors. See Mink, 'The Coherence-Based Genealogical Method (CBGM) – Introductory Presentation, 1.0', 504.</p>

Working out the optimal substemmata can be very easy, or more difficult. For example, Table 58 shows Vorf Vorfanz StellenPostFraglOffenHinweisA130250<<</td>Table 58: Combinations of ancestors for 03

that there is only one possible combination of ancestors for 03, namely $\{A\}$ (for A is 03's only potential ancestor) which explains all 03's readings.

Others are only slightly more complex, like 031 whose combinations of ancestors are shown in Table 59. 063 is 031's closest ancestor, but does not

Vorf	Vorfanz	Stellen	Post	Fragl	Offen	Hinweis
063, A	2	25	1	5	4	<<
А	1	24	2	5	4	<<
063	1	18	1	5	11	

Table 59: Combinations of ancestors for 031

explain eleven of 031's variant units (either by agreement or direct posteriority). Unfortunately, no combination explains all 031's readings, as none of its ancestors contain the large addition John 6:22/42-52 (and its constituent four smaller units), which is attested by 031. {A} explains twenty-four by agreement and two by posteriority. Here all that is needed is to determine whether 063 should be added to A in order to explain John 6:22/20 by agreement rather than posterity. 031's potential ancestors are shown in Table 60. 063 is 031's closest ancestor and so it seems prudent (switching the order for clarity) to require 063 and include A to explain the variant units that 063 cannot. Therefore {063, A} is the best combination of ancestors – even though it cannot explain everything. The hypothesis, then, is that 031 represents the genesis of the addition in John 6:22/40-52 although in reality this almost certainly occurred in a manuscript now lost.

** 2	1111	ν	IERCI	ĿУ	IADD	11 - 11 2	11 1- 11 4	UNCL	110
07		-	100.000	35	35				
011		-	97.143	34	35			1	
063	1		95.833	23	24	1			
0141		-	94.286	33	35			1	1
А	2		92.308	24	26	2			
044		-	83.871	26	31	1	1	2	1
03		-	83.871	26	31	2	2	1	
02		-	83.871	26	31	2	2	1	

W2 NR D PERC1 EQ PASS W1<W2 W1>W2 UNCL NOREL

Table 60: Potential ancestors with W1=031

Some witnesses have very large lists of possible combinations. 01, for example, has 134,217,728. Nevertheless, an algorithm that compares the shortest combinations first means that we can be confident that we will find the best combination of ancestors even if we only generate the first, say, 100,000 for analysis. 01 has two combinations of ancestors that best explain its readings: {028, 038, $\mathfrak{P}75$, 05}, {028, 038, 019, 05}. But these both require that 05 be included – which is 01's twenty-fifth closest ancestor with only 33.3% coherence. However, there is a single combination of size three {028, 038, $\mathfrak{P}75$ } that explains only one more reading by posteriority, namely John 6:22/20.³⁰ This is a change from $\mathfrak{e}\iota\delta \nu$ to $\mathfrak{e}\iota\delta \mathfrak{e}\nu$ – which is far better than having to include such a distant relative as 05. We could repeat this step and remove 038 thus explaining one further reading by posteriority. 038 is 01's third ranked potential ancestor and normally this might be enough to keep it – but the percentage agreement is only 44.737. The variant in question is the addition of the article before $\iota\eta\sigma\sigma\upsilon\varsigma$ in John 6:24/14 and as such we will accept an explanation by posteriority here too. So 01's optimal substemma consists of just {028, $\mathfrak{P}75$ }.

^{30 028, 038, \$\$75} are the second, joint third and joint tenth closest potential ancestors respectively.

Global Stemma

Including those in Appendix 1, the optimal substemmata have all been created, and the global stemma can be drawn. It is shown in Figure 19. The dashed lines represent those places where it was impossible to choose between different optimal substemmata.

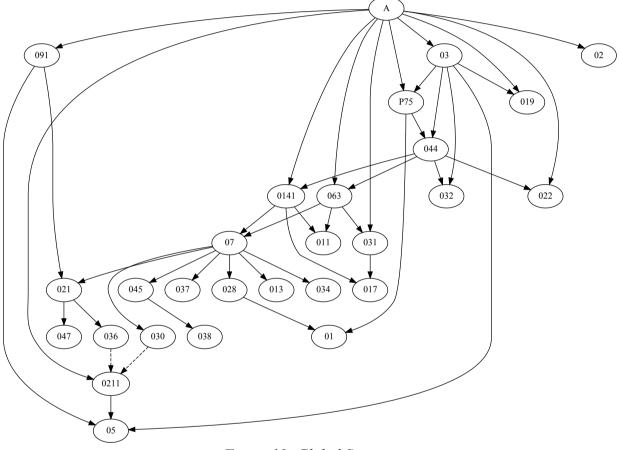


Figure 19: Global Stemma

The Effects of Collation Decisions

Klaus Wachtel kindly reviewed a draft of this chapter and, along with many other helpful comments, argued for some different collation decisions. In this section I will explore how the various stages of the CBGM would have been different if I had made those decisions in the first place. Specifically, Wachtel's suggestions involve my decisions regarding some of

The Effects of Collation Decisions

the overlapping variant units in v23 and v24. These changes make no difference to the witnesses that are considered too fragmentary or were previously identical (with respect to their readings in the defined variant units) and so p28, 09 and 039 are still excluded.

John 6:23/2-10

In v23 I defined variant units for words 2-10 and also 4-10. Wachtel argues for a single variant unit for words 2-10 with no overlaps. This converts my four variant units 23/1, 23/3, 23/2-10 and 23/4-10 into one variant unit, as shown in Table 61. 031 is partially lacunose in such a way as it could support several readings – and therefore 031 must also be considered as totally lacunose for this variant unit.

а	αλλα ηλθεν πλοιαρια εκ τιβεριαδος	No witnesses
b	αλλα ηλθεν πλοια εκ της τιβεριαδος	03
c	αλλα ηλθεν πλοια εκ τιβεριαδος	P75
d	αλλα πλοιαρια εκ τιβεριαδος	019
e	αλλα ηλθον πλοιαρια εκ τιβεριαδος	091
f	αλλα δε ηλθεν πλοιαρια εκ τιβεριαδος	••••
g	αλλα δε ηλθεν πλοια εκ της τιβεριαδος	032
h	αλλα δε πλοια εκ τιβεριαδος	0141
i	αλλα δε ηλθον πλοιαρια εκ τιβεριαδος	021, 036, 047
j	αλλα δε πλοιαρια ηλθον εκ τιβεριαδος	017
k	αλλα δε πλοια ηλθεν εκ τιβεριαδος	044
1	και αλλα δε ηλθον πλοιαρια εκ της τιβεριαδος	022
m	αλλων πλοιαριων ελθοντων εκ τιβεριαδος	05
n	επελθοντων ουν των πλοιων εκ τιβεριαδος	01
	lac	031
,		

Table 61: Readings for the new variant unit John 6:23/2-10

The first notable feature of Table 61 is the "No witnesses" for reading *a*. This highlights an intriguing fact about critical editions: the text they show as their running line may never have been contained in a real manuscript. The running line here is the *Textus Receptus*, and it is not difficult to imagine no papyri or majuscules attesting it. However,

when it is broken into smaller parts (as in my collation earlier) each part is attested to by one witness or another. So considering small variant units hides this fact about critical texts.

The numerical differences of note here are that we now have a single variant unit instead of four; and this unit has fourteen different readings as opposed to a maximum of nine in my collation. This section already contained the most difficult variant units to collate and the most difficult local stemmata to create – to some extent due to the large number of different readings in John 6:23/4-10. The task is now even harder. It is necessary now to consider the changes between $\eta\lambda\theta\epsilon\nu$ and $\eta\lambda\theta\sigma\nu$. Since both are legitimate forms and differ in only one letter, it seems reasonable to give changes in this word less weight than others and thus allow it to change between otherwise dependant readings. Otherwise, applying the same arguments as above for constructing the local stemma we see the following:

- The addition of $\delta \varepsilon: a \to f, b \to g, c \to h$ (including the omission of $\eta \lambda \theta \varepsilon \nu$), $e \to i$;
- The change from $\pi \lambda oi a \rho i a$ to $\pi \lambda o i a$: $a \to c, j \to k$ (including $\eta \lambda \theta \varepsilon \nu \to \eta \lambda \theta o \nu$);
- The addition of $\tau\eta\varsigma: c \to b, i \to l$ (including the addition of $\kappa\alpha\iota$);
- The change from $\eta\lambda\theta\sigma\nu\pi\lambda\sigma_{i}\alpha\rightarrow\pi\lambda\sigma_{i}\alpha\sigma_{i}\alpha$, $i\rightarrow j$;
- Omission of $\eta \lambda \theta \circ \nu$: *a* or $e \rightarrow d$;
- The genitive absolutes attested to by 01 and 05 (which we noted above are surely unrelated due to their very low pre-genealogical coherence) are so different from the rest of the readings that it is difficult to define a relationship. The only realistic choice is to say their readings here stem from the initial text (*a*), diverging very early from the rest of the tradition.

Now, since reading *a* is not attested by any of our witnesses, it is logical that we try to avoid a conjecture and thus avoid it being the initial text. Even including it as an intermediate

The Effects of Collation Decisions

stage might affect genealogical relationships, and so we will now collapse it out of the local stemma and let reading *e* take its place: for reading *e* differs from *a* only inasmuch as it reads $\eta\lambda\theta\sigma\nu$ and not $\eta\lambda\theta\varepsilon\nu$. The local stemma is shown in Table 62.

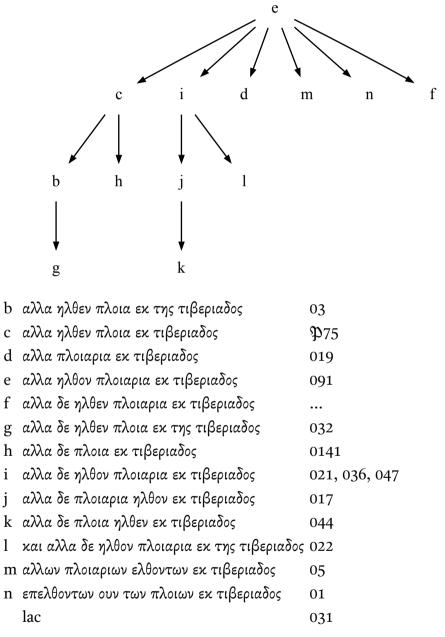
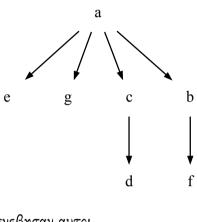


Table 62: Local stemma for the new variant unit John 6:23/2-10

John 6:24/30-32

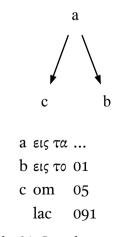
Here Wachtel suggests creating a single variant unit of 24/30-32. This has the effect of

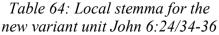
eliminating my variant units 24/30, 24/31, 24/32 and 24/30-38. Again, this reduces the number of variant units by introducing a significantly more complex unit. Here 091 is lacunose and 063 is sufficiently lacunose to offer no help.


Once again using the arguments from when we constructed the original local stemmata (see the tables in Appendix 1 and Table 33 above), we can say that:

- ενεβησαν \rightarrow ανεβησαν: $a \rightarrow g, b \rightarrow f;$
- Addition of $\kappa \alpha : a \rightarrow c$;
- Omission of autor: $a \rightarrow b$;
- Addition of $\tau \circ \tau \varepsilon$ and change of word order: $c \rightarrow d;$
- 05's unusual reading *e* is best derived from *a*.

The resulting local stemma is shown in Table 63.


John 6:24/34-36


Removal of the previous overlapping unit 24/30-38 means that we must replace 24/36 with a new unit 24/34-36 to accommodate 05's omission. Here it can simply be said that readings b and c both derive from a (since 05 and 01 are unrelated). The local stemma is shown in Table 64. The total number of variant units is now 34 as opposed to 41.

а	ενεβησαν αυτοι	•••
b	ενεβησαν	028
c	ενεβησαν και αυτοι	030, 036
d	τοτε και αυτοι ενεβησαν	0211
e	ελαβον εαυτοις	05
f	ανεβησαν	01
g	ανεβησαν αυτοι	P75, 019
	lac	063, 091

Table 63: Local stemma for the new variant unit John 6:24/30-32

The Effects of Collation Decisions

Pre-genealogical Coherence

Pre-genealogical coherence data will be different with this new collation. The question is whether this will make a *significant* difference. Consider the pre-genealogical coherence for 02: old collation in Table 65 and new collation in Table 66. There are a number of notable changes. For example 022 has been promoted from joint fifth to third place, and p75 from joint tenth to sixth. The very top and bottom of the tables is essentially unchanged, in this case.

We used pre-genealogical coherence to help determine the local stemmata of John 6:22/80, where 05 and 047 were being considered to determine whether a reading was a case of multiple emergence. Previously 047 was 05's joint tenth closest relative (with 67.647% coherence) and 05 was 047's twenty-fifth closest (with the same 67.647% coherence). Now 047 is 05's joint twelfth closest relative (with 62.857% coherence) and 05 is 047's twenty-sixth closest (with the same 62.857% coherence). So the decision is unchanged.

Pre-genealogical coherence data was also used in John 6:23/26-30, where we decided that 05 and 091's close relationship implied that their shared reading was not a case of multiple emergence. 05 and 091 are still very closely related (with 87.500% coherence) and again, this decision is unchanged.

In John 6:24/30 pre-genealogical coherence was considered briefly, before the variant was determined as having little connectivity – i.e. multiple emergence of that unit was easily conceivable. This unit no longer exists in our new collation.

So in this dataset, the change in pre-genealogical coherence has not created any difficulties. But it is easy to imagine a scenario in which decisions that were justified by one collation could be challenged by another. This highlights the importance of collating

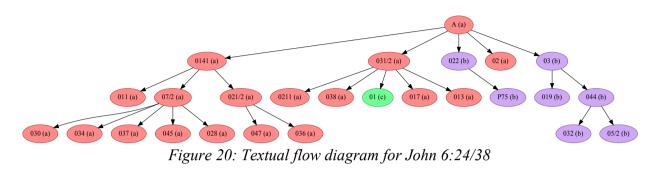
136

carefully, and also adds weight to the CBGM's claim that it will show what the user has critically defined rather than merely creating a mechanistic result.

W2	NR	PERC1	EQ	PASS	W2	NR	PERC1	EQ	PASS
А	1	90.625	29	32	А	1	88.462	23	26
03	2	86.486	32	37	03	2	87.097	27	31
0141		86.486	32	37	022	3	86.667	26	30
011		86.486	32	37	0141	4	83.871	26	31
037	5	86.111	31	36	011		83.871	26	31
022		86.111	31	36	P75	6	83.333	25	30
031	7	83.871	26	31	037		83.333	25	30
07	8	83.784	31	37	019		83.333	25	30
044		83.784	31	37	063	9	80.769	21	26
P75	10	83.333	30	36	031		80.769	21	26
032		83.333	30	36	07	11	80.645	25	31
019		83.333	30	36	044		80.645	25	31
063	13	82.759	24	29	032	13	80.000	24	30
045	14	81.081	30	37	091		80.000	12	15
034		81.081	30	37	045	15	77.419	24	31
028		81.081	30	37	034		77.419	24	31
021		81.081	30	37	028		77.419	24	31
017		81.081	30	37	021		77.419	24	31
047	19	78.378	29	37	017		77.419	24	31
036		78.378	29	37	047	20	74.194	23	31
030		78.378	29	37	036		74.194	23	31
013		78.378	29	37	030		74.194	23	31
091	23	77.778	14	18	0211		74.194	23	31
038	24	75.676	28	37	013		74.194	23	31
0211		75.676	28	37	038	25	70.968	22	31
05	26	66.667	20	30	05	26	61.290	19	31
01	27	32.353	11	34	01	27	26.667	8	30

 Table 65: Pre-genealogical coherence with

 W1=02 (old collation)


Table 66: Pre-genealogical coherence withW1=02 (new collation)

Textual Flow and Consistency

Genealogical coherence data will have changed just as pre-genealogical coherence data did. When checking the consistency of all our decisions above we found that all our variant units had perfect coherence with connectivity of 8 or less. Now, two units have potential problems:

The Effects of Collation Decisions

First, in John 6:24/38 reading b is now a case of multiple emergence (see Figure 20). This is not hard to believe however, in context, since $\pi\lambda o_1\alpha$ (a) and $\pi\lambda o_1\alpha p_1\alpha$ (b) are so confused in this passage.

Second, and more problematic, is John 6:23/2-10 (our new complicated variant unit). Its textual flow diagram (with absolute connectivity) is shown in Figure 21. This shows disconnected textual flow, and therefore suggests the local stemma is wrong. The diagram shows that reading f is a case of multiple emergence, and readings b, k and l have no viable parents.

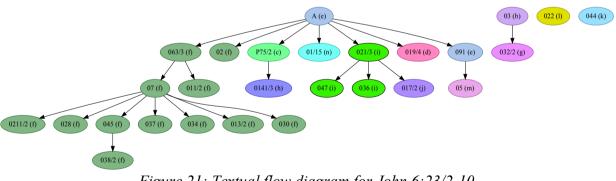


Figure 21: Textual flow diagram for John 6:23/2-10

Table 62 on page 134 shows the readings and local stemma we constructed for John 6:23/2-10. We will consider the readings individually. First we consider reading f, one of several readings including an added $\delta \epsilon$. While $\alpha \lambda \lambda \alpha \delta \epsilon$ is unusual in John's Gospel this does not seem like a connective variant and so multiple emergence is acceptable.³¹

Next we turn to reading b - 03's addition of $\tau\eta\varsigma$ to reading c. Table 67 shows the 31 See discussion of John 6:23/3 above.

potential ancestors for 03 – namely A alone (reading e). $\mathfrak{P}75$ attests reading c, but has an undirected genealogical relationship with 03. All that would be required for this relationship to become directed (recall our criteria for this example of allowing weak textual flow to be meaningful) is for one more variant unit to show flow from \$\pi75\$ to 03; making \$\pi75\$ a potential ancestor of 03 and thus supporting the argument that b descends from c. In the table, the W1>W2 entry is for this variant unit, where the W1<W2 entry is for John 6:24/30-32 where 03 reads evebnoav and $\mathfrak{P}75$ the posterior form avebnoav (see Table 63 above). But what is to be done? These are the only two places (in the new collation) where these manuscripts disagree. In a larger corpus it would be hoped that another manuscript attesting the desired reading might come to the rescue with a stronger textual flow. But in this case should we change the decision on this unit or the other? The easiest answer would be if reading b here could derive from reading e – and therefore from 03's only available potential ancestor – but that would require three separate modifications to the reading: $\eta\lambda\theta\sigma\nu$ to $\eta\lambda\theta\epsilon\nu$; πλοιαρια to πλοια; and the addition of της. That is too hard to accept, and so we turn to Mink's advice on what to do in these circumstances, when prior variants are not found in potential ancestors.³²

W2	NR	D	PERC1	EQ	PASS	READING	W1 <w2< th=""><th>W1>W2 UNCL</th><th>NOREL</th></w2<>	W1>W2 UNCL	NOREL
022		-	96.667	29	30	1			1
P75		-	93.333	28	30	c	1	1	
А	1		92.308	24	26	e	2		
091		-	86.667	13	15	e	1	1	

Table 67: Potential ancestors with W1=03 showing their reading in John 6:23/2-10

In Mink's seminal paper of 2004 'Problems of a highly contaminated tradition' he addresses the problem of what to do if the source variant of a reading is only found in non-ancestors. He describes exactly our problem: "If the tradition is dense and every witness has a

³² See Mink, 'Problems of a Highly Contaminated Tradition', 59–63.

The Effects of Collation Decisions

series of closely related potential ancestors, it will be easy to find the prior variants among them which explain the posterior variants in a descendant. Generally speaking, this is also true for a less dense tradition, but in such a tradition the prior variant which corresponds to a posterior one may only occur in one witness, which is not a potential ancestor."³³ The solution is to introduce an "intermediary node" which contains only this variant unit.³⁴ Note that this is distinctly not a hyparchetype, as it is not a hypothetical witness but instead simply represents the fact that $\mathfrak{P}75$ contains a reading which is the source of a variant in 03 – even though $\mathfrak{P}75$ is not a potential ancestor of 03. This is a way of encoding the presence of contamination where no extant witnesses can show the development of the text in this place. It is important to note that this new witness (called "03< $\mathfrak{P}75$ ") highlights the existence of this contamination without implying that it must have happened in this exact place in the stemma.

In tables of potential ancestors, this intermediary node shows up in one of three places. For p75 it has undirected genealogical coherence with 100% pre-genealogical coherence. For all other witnesses (apart from 03) it has undirected genealogical coherence with 0% pre-genealogical coherence. For 03 it appears as a potential ancestor

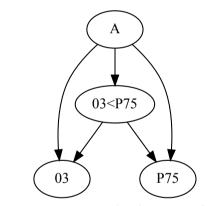


Figure 22: Optimal substemma for 03

but with 0% pre-genealogical coherence (see Table 68). This basically makes it a potential ancestor of last resort for 03. To highlight how this works, the optimal substemma of 03 is shown in Figure 22.

³³ Ibid., 59.

³⁴ Ibid., 60.

W2	NR	D	PERC1	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<>	W1>W2	UNCL	NOREL
022		-	96.667	29	30				1
P75		-	93.333	28	30	1	1		
А	1		92.308	24	26	1			
03 <p75< td=""><td>2</td><td></td><td>0.000</td><td></td><td>1</td><td>1</td><td></td><td></td><td></td></p75<>	2		0.000		1	1			

Table 68: Potential ancestors with W1=03 including 03 < p75

John 6:23/2-10's reading k is apparently straightforward from a text-critical perspective. 044 reads $\alpha\lambda\lambda\alpha$ $\delta\varepsilon$ $\pi\lambda oi\alpha$ $\eta\lambda\theta\varepsilon\nu \ \varepsilon\kappa \ \tau i\beta\varepsilon\rho i\alpha\delta o\varsigma$, which seemingly descends from 017's reading $\alpha\lambda\lambda\alpha$ $\delta\varepsilon$ $\pi\lambda oi\alpha\rho i\alpha$ $\eta\lambda\theta o\nu \ \varepsilon\kappa \ \tau i\beta\varepsilon\rho i\alpha\delta o\varsigma$. However, as can be seen from Table 69, not only do 044 and 017 have undirected genealogical coherence, they are also relatively distantly related. If 044 were to descend from readings b or e then the coherence data would be supportive. It is plausible that k could descend from e – with two words being swapped and the addition of $\delta\varepsilon$ – and so we will accept this hypothesis. If we had more witnesses available then perhaps reading j would be a potential ancestor. That would seem better, but our hypothesis is acceptable for now. Following this decision, 017 disappears from the table of potential ancestors for 044.

W2	NR	D	PERC1	EQ	PASS	READING	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<>	W1>W2	UNCL	NOREL
022		-	93.333	28	30	1			1	1
03	1		90.323	28	31	b	1		1	1
А	2		88.462	23	26	e	2			1
0141		-	87.097	27	31	h	1	1	1	1
¥75		-	86.667	26	30	c	1	1	1	1
031		-	84.615	22	26		1	1	2	
02		-	80.645	25	31	f	2	2	1	1
017		-	80.645	25	31	j	2	2	2	
03 <p75< td=""><td>5</td><td>-</td><td>0.000</td><td></td><td>1</td><td>c</td><td></td><td></td><td></td><td>1</td></p75<>	5	-	0.000		1	c				1

Table 69: Potential ancestors with W1=044 showing readings from John 6:23/2-10

Finally, we must consider variant l, attested to by 022. Table 70 shows that 022 has only one potential ancestor: A. So could l be descended from the initial text e, witnessed to by 091? Reading e is alla yldov π loiapia ex $\tau_1\beta$ epiados, and l is xai alla de yldov π loiapia ex

The Effects of Collation Decisions

της τιβεριαδος. In other words, *l* would be a trio of additions: $x\alpha_i$, δε and της. This is the only variant to include $x\alpha_i$, and so that part is not genealogically informative. We have already accepted that δε was added independently in several witnesses, and the addition of the article could likewise have emerged multiple times. So, while not perhaps ideal, it is believable that *l* emerged from *e* as far as the CBGM goes.³⁵ If this scenario was less plausible, then we would have had to resort to another intermediary node. The new local stemma for John 6:23/2-10 is shown in Table 71.

W2	NR	D	PERC1	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<>	W1>W2	UNCL	NOREL
03		-	96.667	29	30				1
044		-	93.333	28	30			1	1
А	1		92.000	23	25	1			1
0141		-	90.000	27	30	1	1		1
031		-	88.000	22	25	1	1	1	
021		-	83.333	25	30	2	2	1	
03 <p75< td=""><td></td><td>-</td><td>0.000</td><td></td><td>1</td><td></td><td></td><td></td><td>1</td></p75<>		-	0.000		1				1

Table 70: Potential ancestors with W1=022

³⁵ This is one situation where it seems highly likely that the CBGM does not represent reality. It is probable that witnesses have been lost that would have better explained the evolution of this variant unit – but without them this is the best we can do.

Chapter 3: CBGM Example

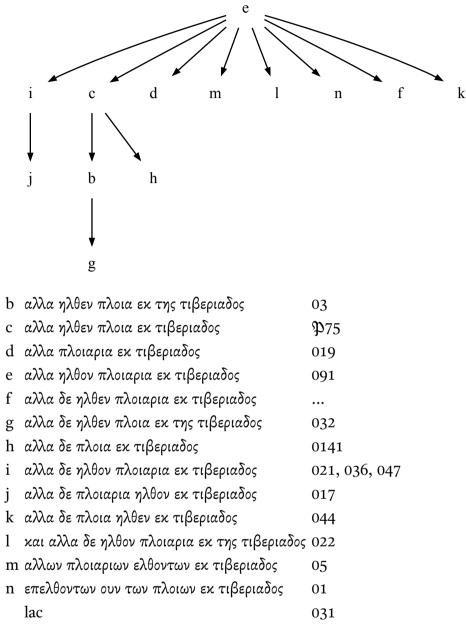


Table 71: Updated local stemma for the new variant unit John 6:23/2-10

Optimal Substemmata and the Global Stemma

The potential ancestors have changed for a number of witnesses with this new collation, and as such the optimal substemmata are also likely to change. Consider $\mathfrak{P75}$: Table 72 shows the potential ancestors in the old collation, and Table 73 in the new collation. Its optimal substemma previously consisted of {03, A} but now 03 is not even a potential ancestor. Table 74 shows the new possible combinations of ancestors for $\mathfrak{P75}$. The decision comes down to {A} or {022, A} – and is effectively a question of how connective is the variant unit John 6:24/38. There is probably *some* genealogical meaning in this unit ($\pi\lambda oi\alpha$ versus $\pi\lambda oi\alpha pi\alpha$) and so it seems best to choose {022, A}.

Following precisely the same arguments as in the main section above, the optimal substemmata can be defined. The best combinations of ancestors are the same as before, with the following exceptions: 01 {028, A}; 03 {A, 03<p75}; 07 {063, 0141}; 017 {021, 0141}; 019 {03, A} or {022, A}; 021 {063, 0141, A}; 022 {A}; 030 {07, 036}; 032 {03}; 044 {03, A}; 0141 {A, p75}; and 0211 {A, 030}. The new global stemma is shown next to the old one for comparison in Figure 23. Perhaps the only significant change is the promotion of 022 from a leaf node in the old global stemma to an important ancestor of p75 (and then through 0141 it is an ancestor of most of the extant witnesses). The other changes mostly fall into the category of an edge moving up or down one level in the hierarchy.

1 1

W2 NR D PERC1 EQ PASS W1<W2 W1>W2 UNCL NOREL

019	- 97.143	34 35				
03 1	94.444	34 36	1			
A 2	90.625	29 32	3			
02	- 83.333	30 36	3	3		
037	- 80.000	28 35	3	3	1	
031 3	80.000	24 30	3	2	1	

Table 72: Potential ancestors with W1= p75 in the (old collation)

W2 NR D PERCI EQ PASS WI <w2 wi="">W2 UNCL NUR</w2>	W2	NR D PERC1 EQ PASS W1 <w2 w1="">W2 UNCL NORE</w2>
---	----	---

03 <p75< th=""><th></th><th>-</th><th>100.000</th><th>1</th><th>1</th><th></th><th></th><th></th><th></th></p75<>		-	100.000	1	1				
019		-	96.552	28	29				1
03		-	93.333	28	30	1	1		
022	1		93.103	27	29	1			1
А	2		88.462	23	26	3			
044		-	86.667	26	30	1	1	1	1
091		-	86.667	13	15	1	1		
032		-	86.207	25	29	1	1	1	1
02		-	83.333	25	30	2	2		1
031		-	80.000	20	25	2	2	1	
037		-	79.310	23	29	2	2	1	1

*Table 73: Potential ancestors with W1=*p75 *in the (new collation)*

022, 4	A 2	24	2	4	0	<<
А	1	23	3	4	0	<<
022	1	23	1	4	2	<<

Table 74: Combinations of ancestors for \$\$75

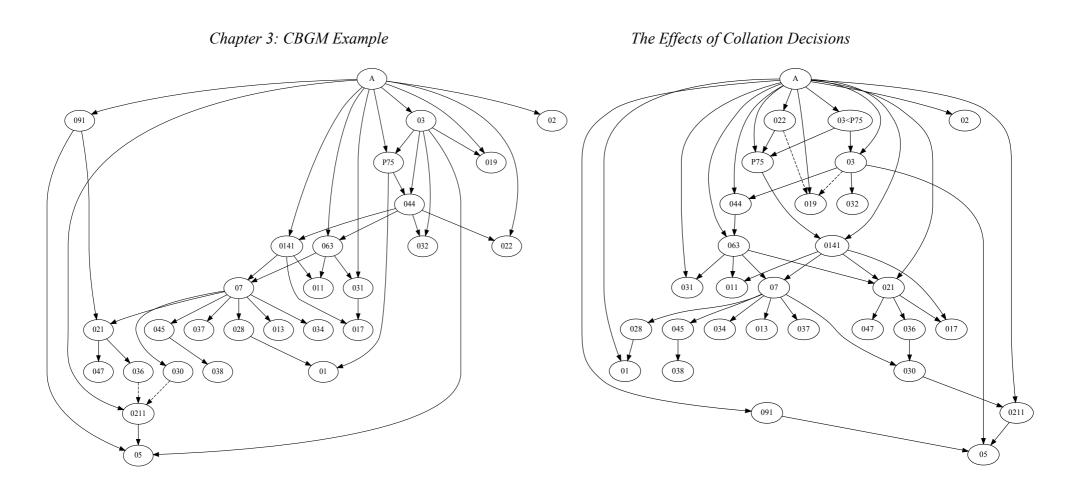


Figure 23: Old and new global stemmata

Initial Text

Finally we will take the initial text as derived from the original decisions and compare it with that derived from Wachtel's changes. The only change to the initial text is John 6:23/4 where $\eta\lambda\theta\epsilon\nu$ now becomes $\eta\lambda\theta\sigma\nu$. While this is singularly undramatic, it is nevertheless important to note that changing the collation has led to a change in the initial text.

Correctors

The INTF's standard way of applying the CBGM is to take the text of the manuscript as it left the firsthand – including any corrections the firsthand made. The inclusion of firsthand corrections is logical, in the sense that this was the form of text as it left the scribe, even if it is not always as it left the scriptorium if a supervisor made corrections.³⁶ Yet some manuscripts have a rich history of correction, and in some cases these corrections would have significant genealogical value. Consider a heavily corrected manuscript being used as an exemplar for another. If these corrections were not to be included in the CBGM then valuable source readings for local stemmata might not be present. The contrary argument to this would be that another manuscript probably (hopefully?) carries any important readings in its firsthand.

As an example, take the fourth-century manuscript Codex Sinaiticus (01) which is famous as being the most heavily corrected New Testament manuscript.³⁷ In the original collation (not the one with Wachtel's changes) we have seen that 01 has a number of strange and unique readings. In fifteen variant units it has a unique reading, and in several others it shares a reading with only one or two other witnesses. As such it has low pre-genealogical

³⁶ This was true in 2015. As of 2017 Wachtel has adopted Parker's policy of including selected scriptorium corrections.

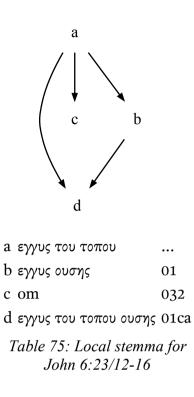
³⁷ See Parker, Codex Sinaiticus, 79; 'Codex Sinaiticus: Experience the Oldest Bible. The Transcription.'

coherence with all other witnesses.³⁸ Yet only three of the unique readings remain in the ultimate form of text attested to by 01, after its correctors have done their work. John 6:22/88 was modified by corrector "S1" in the scriptorium.³⁹ A further nine variant units were corrected to read our initial text by corrector "ca" who operated somewhere between the fifth and seventh centuries.⁴⁰ In two more units "ca" corrected the text towards but not exactly to our initial text.⁴¹ In fact, "ca" worked so thoroughly that if we consider the text as it left his hand (thus incorporating corrections from S1 and ca) as a witness in its own right then a remarkable picture emerges.

Table 76 shows that 01ca is most closely related to A (86.667%), then 03 (85.714%) – and most distantly related to 01 (52.941%). Having completed the local stemmata above and thus defined the initial text where possible, we can also consider pre-genealogical coherence data for A (see Table 77) - which shows that 01ca is A's fifteenth closest relation (compared with 01 the twenty-eighth) and is only 7% behind its closest (03 with 93.75% coherence).

Genealogical coherence data also has some surprises. Table 78 shows that 01ca is now 01's highest ranked potential ancestor – a situation that is definitely wrong from a manuscript perspective, but intriguing from a text perspective. Was corrector "ca" making corrections based on a manuscript that was a real ancestor of 01? This "backwards" textual flow is commonplace in the CBGM. See Chapter 9 for a discussion of this phenomenon.

³⁸ Its closest relative is 031 with 48.485% coherence.


³⁹ S1's corrections were part of the manuscripts production process, but it is not always possible to tell who made the correction – the firsthand or another scriptorium corrector.

⁴⁰ John 6:21/36, 22/52 (actually he deleted the large addition 22/40-52), 22/60, 22/62-66, 24/2-10, 24/14-20, 24/28, 24/36 and 24/38.

⁴¹ John 6:23/12-16 and 23/20-22

Correctors

John 6:23/12-16 presents a problem. We can say, for certain, that the local stemma should be as shown in Table 75 (from a manuscript copying perspective). But this is unable to create a coherent textual flow – because 01 is not a potential ancestor of 01ca. Indeed, we have just shown that 01ca is the best potential ancestor of 01. In fact, if we had a copy of the corrected text of 01 (but did not know its history) then we might think it was an ancestor of 01 rather than the other way around. It might seem that we are therefore left to choose between an impossible textual flow (as far as the CBGM is

concerned) and a false local stemma (as far as manuscript history is concerned). However, this can be resolved by the introduction of another intermediary node "01ca<01" that is lacunose apart from John 6:23/12-16 where it agrees with $01.^{42}$

The new optimal substemma for 01 needs only {01ca, 028} (explaining two more readings by posteriority compared to {01ca, 028, 038, $\mathfrak{P75}$ }, namely the addition of an article and changing $\alpha\nu\epsilon\beta\eta\sigma\alpha\nu$ to $\epsilon\nu\epsilon\beta\eta\sigma\alpha\nu$). The new global stemma is shown in Figure 24. See Chapter 9 for a further discussion of the inclusion or exclusion of correctors in the CBGM.

⁴² Mink, 'Problems of a Highly Contaminated Tradition', 60.

W2	NR	PERC1	EQ	PASS	W2	NR	PERC1	EQ	PASS
А	1	86.667	26	30	03	1	93.750	30	32
03	2	85.714	30	35	031	2	92.308	24	26
032	3	85.294	29	34	P75	3	90.625	29	32
022		85.294	29	34	02		90.625	29	32
019		85.294	29	34	037	5	90.323	28	31
044	6	82.857	29	35	019		90.323	28	31
P75	7	82.353	28	34	07	7	87.500	28	32
037		82.353	28	34	044		87.500	28	32
063	9	81.481	22	27	0141		87.500	28	32
07	10	80.000	28	35	011		87.500	28	32
021		80.000	28	35	063		87.500	21	24
017		80.000	28	35	091		87.500	14	16
0141		80.000	28	35	032	13	87.097	27	31
031		80.000	24	30	022		87.097	27	31
047	15	77.143	27	35	01ca	15	86.667	26	30
045		77.143	27	35	045	16	84.375	27	32
036		77.143	27	35	034		84.375	27	32
034		77.143	27	35	028		84.375	27	32
028		77.143	27	35	021		84.375	27	32
02		77.143	27	35	017		84.375	27	32
011		77.143	27	35	047	21	81.250	26	32
091	22	75.000	12	16	036		81.250	26	32
030	23	74.286	26	35	030		81.250	26	32
013		74.286	26	35	0211		81.250	26	32
038	25	71.429	25	35	013		81.250	26	32
0211		71.429	25	35	038	26	78.125	25	32
05	27	70.000	21	30	05	27	72.000	18	25
01	28	52.941	18	34	01	28	41.379	12	29

Table 76: Pre-genealogical coherence with W1 = 01ca

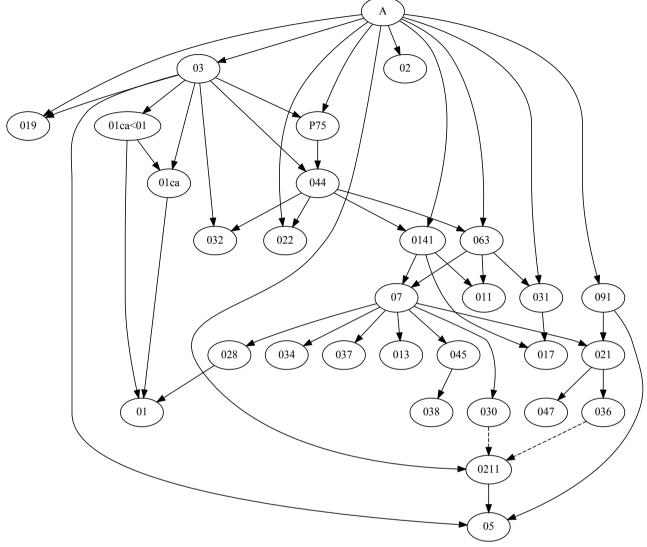
Table 77: Pre-genealogical coherence with Wl = A

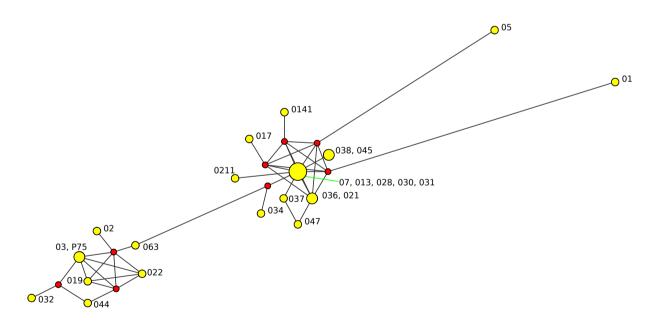
W2	NR D	PERC1	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NORE</th></w2<>	W1>W2	UNCL	NORE
01ca	1	52.941	18	34	13		2	1
031	2	48.485	16	33	12		3	2
028	3	47.368	18	38	14	1	3	2
07	4	44.737	17	38	15	1	3	2
038		44.737	17	38	13	2	3	3
021		44.737	17	38	15	1	3	2
017		44.737	17	38	15	1	3	2
0141		44.737	17	38	15		4	2
013		44.737	17	38	14	1	3	3
037	10	43.243	16	37	15	2	3	1
¥75	11	42.424	14	33	14		3	2
019		42.424	14	33	13		4	2
045	13	42.105	16	38	15	2	3	2
036		42.105	16	38	15	2	3	2
030		42.105	16	38	15	2	3	2
011		42.105	16	38	15	1	4	2
А	17	41.379	12	29	16			1
047	18	39.474	15	38	15	3	3	2
034		39.474	15	38	15	3	3	2
0211		39.474	15	38	15	4	2	2
063	21	38.462	10	26	10	1	3	2
03	22	38.235	13	34	15		4	2
032	23	36.364	12	33	14		5	2
022		36.364	12	33	14	1	4	2
044	25	35.294	12	34	14		5	3
05	26	33.333	11	33	9	5	4	4
091		33.333	5	15	6	1	2	1
02	28	32.353	11	34	16	2	4	1
	-	r., 1.1. 70	. n.	4			1_01	

EL

Table 78: Potential ancestors with W1=01

Chapter 3: CBGM Example




Figure 24: Global stemma including 01ca

Phylogenetic Comparison

Now that the global stemma has been created let us briefly compare it to the output from two different phylogenetic programs.

Median-Joining Network

This median-joining network was created for this data set at the point where we began to create local stemmata.⁴³ The median-joining network is shown in Figure 25. Note that any variant unit where a witness has a gap or lacuna is excluded – and hence several witnesses appear as identical when they are actually slightly different. Also 091 has been excluded as it is too lacunose and would dramatically reduce the data used to create the network.

Figure 25: Median-joining network for John 6:21-24

It is interesting to note the two distinct clusters of witnesses. These groups are also present in the global stemma (Figure 19 on page 131) – where they are also linked by 063 and 07 (although in the network 07, 013, 030, 031 and 028 are all identical). The distance between $\overline{43}$ For a detailed description of the creation of a median-joining network from this kind of data see Chapter 5.

the groups is not discernible in the global stemma. This is an example of the different strengths and weaknesses of the two approaches.

Phylogenetic Tree

Figure 26 shows the resulting tree from applying *MrBayes* (Metropolis-coupled Markov chain Monte Carlo analysis on BlueBEAR) to this dataset – again at the point where we began to create local stemmata.⁴⁴

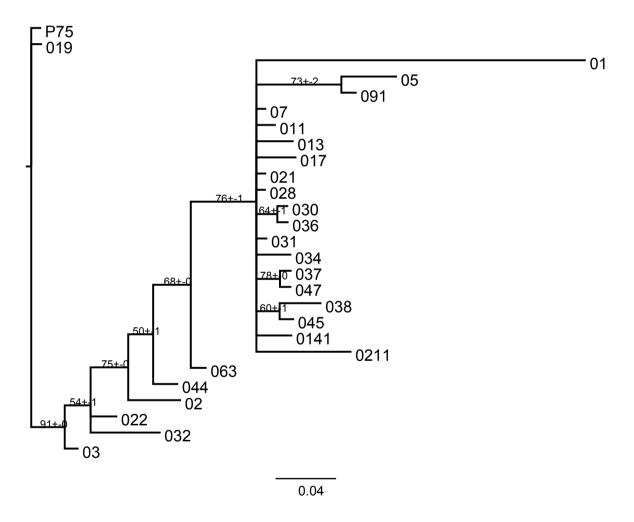


Figure 26: MrBayes tree for John 6:21-24

Again, many similar features are discernible from this tree and the global stemma. But different ones stand out when compared to the median-joining network. For example, here the

⁴⁴ For detailed information about *MrBayes* and this kind of tree see Chapter 5.

Phylogenetic Comparison

relationships between 05 and 091, or 038 and 045, can be seen in both this tree and the global stemma. However, this tree suggests a similar relationship between 037 and 047, which is not implied by the global stemma. As with the median-joining network, the same two distinct groups can be seen (although not as clearly as in the network).

In all three diagrams we find 01 at the end of a branch, if branch is the right word in the global stemma. The phylogenetic diagrams are able to highlight the enormous distance between 01 and the rest of the corpus, whereas this concept does not exist for the global stemma. We have already said above (see "Correctors") that 01 is famous for being the most corrected manuscript. But how should we explain the distance from the rest of the corpus? Were 01's scribes of low quality, or perhaps unscrupulous, missing bits out often or inventing new readings? Discussing an example from the Old Testament of 01 Parker states that "the prophetic books were not very well written in the first place, and therefore needed more [corrections] to get them up to standard."⁴⁵ Is this the case throughout 01, or is it possible that 01 represents a part of the tradition that is now mostly lost? Phylogenetic (and the CBGM's) diagrams frequently raise such questions.

As a final note, it is intriguing how well *MrBayes* has defined the top of the tree (although this could equally well be the bottom as far as *MrBayes* is concerned) and one could even draw "A" in at the root.

⁴⁵ Parker, Codex Sinaiticus, 89.

INTF's Nine Guidelines

At SBL in 2014 the editorial team of ECM Acts presented a paper based on their experience from Acts and expanding the original assumptions of the method. This paper included nine guidelines for creating local stemmata. Now that the above CBGM walkthrough is complete, it is valuable to reflect on the Acts team's guidelines. In the following section the guidelines are in italics, followed by my discussion.⁴⁶ Note that TP stands for transcriptional probability (traditional, internal, text-critical criteria) and GC for genealogical coherence.⁴⁷

1. Singular readings and unique readings of small groups which differ from the mainstream of transmission are secondary. Exceptions to this rule require strong support from internal criteria. (Ex. 1, 4, 7) However, as was the case with the Catholic Letters, such variants are systematically subjected to text critical analysis if they are supported by witnesses closely related to A.

At face value this guideline is worrying. It feels like a re-worded inversion of the maxim that variants must be weighed and not counted. If a reading has sufficiently little support (a very low count) then it can be discarded. But the caveat of the second sentence mitigates against this – and the Acts team are saying that, in their experience, readings with few attestations can normally be safely discarded. The third sentence brings in the idea of "good witnesses" of editions past, which in the ECM are the very same witnesses that appear as closely related to A. This example highlights the practical nature of the guidelines: they are designed to help the editorial team progress through the task of creating local stemmata

⁴⁶ See Gäbel et al., 'The CBGM Applied to Variants from Acts: Methodological Background', 3; For the examples mentioned here see Wachtel, 'Constructing Local Stemmata for the ECM of Acts: Examples'.

⁴⁷ It should be noted that TP is actually defined in the guidelines as "transcriptional priority", presumably by mistake. But in the same paper, and many other CBGM papers, it means "transcriptional probability". See, for example, Hüffmeier, 'The CBGM Applied to Variants from Acts' presented in the same session at the same conference.

INTF's Nine Guidelines

quickly. Such optimisations are necessary, but require a careful hand to avoid simply producing an edition based on 03 and its related witnesses.

2. An attestation lacking coherence is a sign of multiple emergence i.e. posteriority of a variant. (Ex. 1, 2, 3, 5) Multiple emergence weakens the force of internal criteria which might be used to account for the priority of the variant.

Multiple emergence is a difficult issue. Yes, the guideline is correct that multiple emergence is a strong sign of posteriority. However, as can be seen earlier in this chapter the easiest way to avoid multiple emergence of a reading is to declare that it is the initial text. Then such readings nearly always have perfect coherence. Of course, standard text-critical criteria will prevent this practice, but the corollary to this point is more important: multiple emergence of the initial text (i.e. that the *a* reading emerged on multiple occasions) is nearly always hidden because, in most cases, A is a potential ancestor of all witnesses in the attestation.

3. Good coherence of an attestation is primarily a sign of unfractured transmission. Good coherence is a valid argument for the priority of a variant only if supported by internal criteria. (Ex. 6, 8, 11)

This is somewhat the converse argument to the previous point. There poor coherence (where visible) was a sign of posteriority. Here good coherence can strengthen an existing text-critical argument for priority – but in itself cannot make that claim. This is a useful guideline, as otherwise the scholar could fall into the trap of using the CBGM's external criterion of coherence in favour of text-critical internal criteria. It should also be noted that coherence (or otherwise) in a connective variant (broadly equivalent to Lachmann's "indicative error") should be weighted differently from coherence in a reading that could

easily arise multiple times.

4. A strong argument for assessing a variant as initial text is provided by an attestation which combines coherence and a broad range of witnesses closely related to A. (Ex. 9, 10, 14, 15) In such cases strong coherence only materializes if A is part of the attestation.

This guideline returns to "good witnesses" but now requiring a broad range of them. It is hard to argue against a reading that has support from, for example, p60, p66, p75, 01, 03, 04, 019, 032, and so on. The final point is true because these witnesses have few potential ancestors, where later witnesses typically have many.

5. The priority of a majority reading is indicated if it is linguistically more difficult or contextually less suitable and thus atypical of the majority text. This may be valid even if the competing variant has a broad range of witnesses closely related to A. (Ex. 10)

This guideline highlights that the editorial team of Acts unsurprisingly have now mixed their own text-critical criteria with the definition of the CBGM. The CBGM can, in theory, be used by different approaches. This guideline may need to be discarded by scholars preferring different criteria. But the ECM editors follow the NA tradition and thus this guideline is a straightforward corollary to *lectio difficilior potior* – but a necessary counter to the previous guideline.

6. The source of a variant is likely to be a similar variant. If the attestation of a variant indicates that two or more other variants need to be considered as possible sources then TP suggests that the one which requires the least change to be transformed into the variant in question is preferable.

INTF's Nine Guidelines

This guideline is common sense, and a straightforward application of Occam's Razor. Nevertheless, it highlights a potential problem with the CBGM – namely that it effectively encourages the scholar to consider the text outside of its manuscript context. Now this is a guideline, and like the CBGM's assumptions we should consider it as being generally applicable but should allow exceptions. And the word "likely" in the first sentence reinforces that standpoint. The scholar should be on the lookout for exceptions. If circumstances and time permit (say for a variant attested by only a few witnesses) then the attesting manuscripts should be examined to see if any other factors need to be considered for the origin of the variant – for example the manuscript could be a catena including the source text in the commentary.

7. The source of a variant is questionable:

a) if GC and TP point to different potential source variants or cannot be aligned with each other for other reasons; (Ex. 8, 13)

b) if we cannot decide which of two or more variants is the prior one because neither GC nor TP provides a convincing argument. (Ex. 18)

This guideline can be seen as an indication to slow down. An editorial team must proceed quickly through the local stemmata, as there are thousands to be defined in the course of applying the CBGM to a typical New Testament book. Here the CBGM and traditional textual criticism disagree, and the local stemmata must be analysed in greater detail. This situation, we must assume, will occasionally or even regularly lead to an undefined initial text. It is important to note that the instinct of many of the CBGM's critics might be to ignore GC here and accept TP's solution – but that will not do. The CBGM provides checks and balances that have a genuine meaning and weight, and cannot easily be discarded.

8. Consciously introduced editorial variants are exceptional. If possible, variation should be explained with reference to the process of copying itself and to known causes of error. (Ex. 16, 17)

What is a "consciously introduced editorial variant"? It seems likely that this refers to an editorial conjecture. In that case this guideline is another example of Acts' editors textcritical approach mixing with the CBGM itself. That conjectures are to be avoided is obvious to some, and clearly wrong to others. In the ECM they will, evidently, be rare.

9. If the witnesses of a variant have to be assigned to different source variants, then the attestation should split accordingly.

Splitting an attestation (i.e. *b* becomes *b1* and *b2*) is common in the INTF's application of the CBGM – perhaps emphasised by the omission of a list of such examples following this guideline. Seven of the eighteen examples in Wachtel's *Constructing Local Stemmata* include split attestations. Being willing to split a reading – because the attestation clearly forms two or more groups – is important. But doing so feels at the time like adding unnecessary complexity. Perhaps due to this unconscious desire to keep things simple, there is only a single split attestation in my CBGM walkthrough above, namely John 6:22/20. Similarly, to date, Parker (ITSEE) has only a single split attestation in his full set of local stemmata for John's Gospel. Does this indicate that splitting attestations is actually unnecessary? We cannot say for sure, but the editors of Acts would argue that it should be done.

In summary, these guidelines are a useful aid for those who wish to apply the CBGM. They are particularly valuable if the scholar wishes to emulate the Acts team's text-critical methodology of reasoned eclecticism and a preference for older witnesses.

161

Conclusions

Conclusions

Perhaps the first conclusion to draw is that carrying out the full CBGM process on even a small dataset is very time consuming. It is also something like a pyramid, with the collation at the bottom, then upwards through the initial local stemmata, their updating from genealogical coherence, optimal substemmata and finally to the global stemma at the top. Thus any layer is only as valid as the decisions made in the layer below – and, as has happened several times while writing this chapter, any mistake identified in a lower layer can lead to many hours of re-working those decisions that depended on it. Similarly, a change made at a low layer will affect the higher ones – for example altering the collation can yield a different initial text.

The positive side of the first conclusion is that the CBGM is powerful, and does what it sets out to do – namely genuinely capture the textual decisions made and allow the user to see their consequences. The emergent initial text and the insights into the development of the text through the majuscule period are valuable results.

A final (tentative) conclusion is that applying independent phylogenetic techniques to this data has produced results that share many features with the CBGM's global stemma. It seems reasonable to infer that the CBGM is therefore producing valid results and that it could be considered just as trustworthy as are these phylogenetic techniques. This conclusion will be tested in much more detail in Chapter 10.

PART TWO

PHYLOGENETICS

Chapter 4: Stemmatics and Phylogenetics

Introduction

This chapter begins with an introduction to stemmatics and a discussion about why phylogenetics can be applied to manuscript studies. This is followed by a short review of projects that have successfully applied phylogenetics to manuscript traditions. After this, I describe my exploration of the IGNTP's transcriptions of John's Gospel and initial experiments using phylogenetic software. The following quotation from the special "Thematic Section on Studia Stemmatologica" from the *Digital Scholarship in the Humanities* (DSH) journal (2016, 31.3) neatly summarises the convergence of disciplines and techniques that underpin my thesis:

While having originated in textual scholarship, modern stemmatology lies at the intersection of several scientific disciplines. On one hand, it is associated with humanities where texts are used as sources and both their contents and the relationships between the individual textual witnesses are valuable as historical evidence. On the other hand, evolutionary ideas are equally present and methodologically interesting in disciplines like mathematics, statistics, computer science, and obviously, evolutionary biology and cladistics, the study of biological evolution and speciation. Academics working throughout the arts and humanities are borrowing the latest techniques employed in the sciences as tools that can help us understand the richness of human knowledge and creativity all the way from its roots, throughout the history, until our present society.¹

¹ Heikkilä and Roos, 'Thematic Section on Studia Stemmatologica', 520.

Stemmatics

Stemmatics

In 1831 Karl Lachmann published the first critical edition of the Greek New Testament.² He defined a methodology that still persists today at the heart of textual criticism. A fundamental principle he set out is that of the *Leitfehler*, or indicative error, which Parker describes clearly as "a distinctive reading representing an alteration of the text which is found in two or more manuscripts and cannot have been made on two separate occasions."³ Such an indicative error might be a large omission or addition, or a distinctive alteration to the text, for example. Lachmann used these indicative errors to identify how manuscripts are related to one another, in particular how they are descended from one another through the scribal copying process. The principle is that manuscripts which share sufficient common errors will have a shared ancestry – and this ancestry can be reconstructed using hypothetical witnesses even though most of the ancestors themselves have been lost. This information is represented in family tree form, and is known as a stemma, the construction of which is called recensio/recension. Lachmann's "ultimate goal was the establishment of texts that would constitute the nearest possible approximation to the authors' originals."⁴ In that, he shares a goal with many textual scholars who followed him. This method is widely known as "Lachmannian Stemmatics" and is the basis of much twentieth and twenty-first century textual scholarship.⁵

Lachmann also introduced the method of documenting the differences between a manuscript and a base text, which is still used today by transcribers to create data that can be

² See Lachmann, *Novum Testamentum Graece*. Lachmann published critical editions of many other works throughout the nineteenth century, but his *Novum Testamentum Graece* is of particular interest to this thesis for obvious reasons.

³ Parker, An Introduction to New Testament Manuscripts and Their Texts, 162.

⁴ Caruso, 'Review: The Genesis of Lachmann's Method by Sebastiano Timpanaro; Glenn W. Most', 469.

⁵ It is notable that Timpanaro has shown that the use of such a stemma actually predates Lachmann, despite him being popularly associated with its invention. See Timpanaro, *The Genesis of Lachmann's Method*, 65.

collated. The related process of changing the base text into what the scholar thinks is an appropriate critical text is called *emendatio*/emendation. However, it is *recensio* or stemmatics that concerns us here. The following brief review is intended to bridge the gap between the nineteenth and twenty-first centuries, and will be necessarily abridged, focusing on authors and points of particular relevance to this thesis.

Lachmann's theories, applied by him to a wide range of texts that included classical authors, the New Testament, and medieval German writings, became the most common methodology for textual editing. The way in which it came to be applied is probably best shown in the work of Paul Maas, who in 1927 wrote what became the standard handbook on textual criticism, and which was translated into English in 1958. Importantly, he highlights that it is impractical to apply stemmatics thoroughly to works where a large number of witnesses exist as "this would involve an enormous amount of labour [and] be far too expensive to publish".⁶ The result is that "we shall often have to make shift for the time being – establishing the stemmatic position only roughly, eliminating witnesses after testing samples."⁷ He highlights the problem of contamination, and states that "where contamination exists the science of stemmatics in the strict sense breaks down."⁸ These points are crucial to understanding the value that modern, computer-aided methods can bring to this field.

In 1963 Timpanaro first published his seminal book *La genesi del metodo del Lachmann*. Most's English translation was published in 2005 as *The Genesis of Lachmann's Method*.⁹ Timpanaro points out that half of Lachmann's method, namely *emendatio*, "had

⁶ Maas, Textual Criticism, 27.

⁷ Ibid., 27f.

⁸ Ibid., 48.

⁹ It is pleasing for a textual critic to see that Glen Most's 2005 translation of Timpanaro includes a "general critical apparatus" listing the development of Timpanaro's work through its various Italian and German editions. Most's primary source was Timpanaro's personal copy of his final 1985 edition. See Timpanaro, *The Genesis of Lachmann's Method*, 26.

Stemmatics

been practiced since antiquity.¹¹⁰ For example, Timpanaro shows Erasmus doing just this in the sixteenth century.¹¹ Regarding the other half, *recensio*, he states that "the great novelty of nineteenth-century textual criticism was the scientific foundation of *recensio*."¹² He describes the widespread reluctance in the eighteenth and nineteenth centuries to allow a text other than the *textus receptus* of the New Testament to be printed, while printing variants at the bottom of the page was admitted. The fault had arisen because the popularity of the *textus receptus* had made it become the *de facto* tradition, and deviation from the tradition (even towards older manuscripts) could not be allowed. This then led, in turn, to sceptics attacking the authenticity of the biblical text *per se* due to the number of variants amassed in these other editions.

Timpanaro describes how Bentley, from a desire to "defend the authority of the biblical text... sought to establish the text more solidly and thereby to defeat skepticism."¹³ Bentley's plan sounds very familiar to a modern textual critic: he would create an edition based on the "most ancient and venerable manuscripts" in Greek and Latin and therefore identify a text from the time of the council of Nicea.¹⁴ He would use versions and patristic citations to confirm his decisions. He also makes the mistaken statement that, concerning thirty thousand variant readings, "there will scarce be two hundred out of so many thousands that can deserve the least consideration."¹⁵ Bentley sadly did not complete this project, in part due to opposition (from those defending the *textus receptus*) and in part the size and complexity of the task. Timpanaro points out that Lachmann, in his critical editions (1831-1850), was finally able to achieve Bentley's goal, of creating "an edition founded solely on

¹⁰ Ibid., 43.

¹¹ See ibid., 49.

¹² Ibid., 43.

¹³ Ibid., 63; See, for example, Bentley, Remarks upon a Late Discourse of Free-Thinking.

¹⁴ Bentley, Dr. Bentley's Proposals for Printing a New Edition, 3.

¹⁵ Ibid., 4.

the ancient manuscripts and [the Vulgate]" after which the *textus receptus* never reasserted itself.¹⁶

In 1973 West effectively replaced Maas' book as the standard English handbook by publishing his *Textual Criticism and Editorial Technique*. He criticises Maas for treating contamination as "a regrettable deviation about which nothing can be done, instead of as a normal state of affairs."¹⁷ He introduces the problems of contamination and multiple parenthood of manuscripts, gives examples of how scribal errors can arise, and discusses some examples of classical authors who are known to have produced a new edition of their own work. He then walks the reader through the process of creating a critical edition, from organising a corpus of manuscripts through to publishing a text and critical apparatus. He highlights the importance of regularising the data: "... we shall surely come nearer the truth by regularizing the spelling than by committing ourselves to the vagaries of the tradition."¹⁸ West's point about regularisation turns out to be particularly important when preparing data for use with computer-aided methods such as the CBGM or phylogenetic software, since they are not otherwise able to tell, for example, that Teρoσόλυμα and Teρoυσαλήμ should be treated as the same.

Lachmannian Stemmatics can be applied successfully to certain parts of the New Testament tradition, for example Anderson on Family 1 in Matthew and Welsby on Family 1 in John.¹⁹ The reason for this success is that the effects of contamination are greatly reduced within the manuscript members of Family 1. Contamination makes applying traditional Lachmannian Stemmatics impossible for the New Testament manuscript tradition as a whole.

¹⁶ Timpanaro, The Genesis of Lachmann's Method, 84.

¹⁷ West, *Textual Criticism and Editorial Technique*, 5. Timpanaro also criticises Maas, to the extent to which Courtney describes Maas as Timpanaro's "bugbear". Courtney, 'Review: The Genesis of Lachmann's Method by Sebastiano Timpanaro; Glenn W. Most', 313.

¹⁸ West, Textual Criticism and Editorial Technique, 69.

¹⁹ See Anderson, *The Textual Tradition of the Gospels*; Welsby, 'A Textual Study of Family 1 in The Gospel of John.'

Stemmatics

As has been seen in Chapter 1, the CBGM claims to be the answer to contamination – for example Parker's assertion in his 2008 introduction to textual criticism states that "We are at last able to make Lachmannian stemmatics workable in complex textual traditions."²⁰

Phylogenetics for manuscript studies

The similarity of Phylogenetics and Manuscript Studies

While Lachmann was working on manuscript stemmatics, Charles Darwin was exploring the idea of how species relate to one another. In 1859 he published his famous work *On the Origin of Species*, in which he introduces the idea of the tree of life.²¹ The fields of textual criticism and evolutionary biology have developed alongside each other, and have frequently interacted. For example consider Streeter's 1924 book *The Four Gospels: A Study of Origins* in which he sets out to provide an introduction "to Textual Criticism, to the Synoptic Problem and the Johannine question."²² Parker asks "Is Streeter drawing on Darwin's observations...?"²³ Lin describes him taking a "distinctly Darwinian approach to the study of texts and their geographical origin."²⁴

The evolution of manuscripts (or texts) and the evolution of species have many similarities. Chapter 2 cites some key New Testament scholars' views on the matter which will be briefly revisited here. Lin's book *The Erotic Life of Manuscripts* is subtitled "New Testament Textual Criticism and the Biological Sciences", and contains a detailed history of the origins of the fields and their similarities.²⁵ She states that "From the organization of diversity by classification to the hierarchization of groups and finally to the association of

24 Lin, The Erotic Life of Manuscripts, 77.

²⁰ Parker, Textual Scholarship and the Making of the New Testament, 84.

²¹ See Darwin, On the Origin of Species.

²² Streeter, The Four Gospels: A Study of Origins, xxii.

²³ Parker, An Introduction to New Testament Manuscripts and Their Texts, 169.

²⁵ See Lin, The Erotic Life of Manuscripts.

variation with impurity and contamination, textual criticism kept in step with the developments of natural science, adopting its language and borrowing its structures.²²⁶ Lin points out that textual criticism followed the geneticists' advances in the twentieth century, seeing that textual difference should "in a Darwinian perspective, be understood as interesting in and of itself as a stage in a living text's adaptation to its environment.²⁷⁷ She states that "By the latter half of the twentieth century, New Testament textual criticism would, for the most part, leave the methods of classification and rudimentary genealogy behind.²⁸ This marks the transition from the use of a handful of geographical text-types to relate manuscripts to one another, to methods that use computers to analyse large sets of complex data – such as the CBGM and phylogenetics.

Parker compares problems faced by those seeking to apply Lachmannian Stemmatics with those faced by geneticists. He points out that contamination is like genetic crossmutation; coincidental emergence of readings is like independent mutations; and corrections to an earlier text are like a later mutation undoing another mutation's change. These similarities have meant that phylogenetic methods and software developed by geneticists can be adapted and used by textual critics.²⁹

The two fields are often described as "analogous", for example in Parker's comparison of Streeter and Darwin.³⁰ Lin describes that genetics provides "a completely new metaphor through which to view texts and textual variants". She also quotes Dawkins as saying that "So similar are the techniques and difficulties in DNA evolution and literary text evolution, that each can be used to illustrate the other."³¹ Lin states that "Because there are so

²⁶ Ibid., 62.

²⁷ Ibid., 64.

²⁸ Ibid., 65.

²⁹ See Parker, An Introduction to New Testament Manuscripts and Their Texts, 167ff.

³⁰ Ibid., 169; Streeter, The Four Gospels: A Study of Origins; Darwin, Journal of Researches.

³¹ Lin, *The Erotic Life of Manuscripts*, 110. Lin is quoting Richard Dawkins, *The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution*, New York: Houghton Mifflin, 2004, 128.

Phylogenetics for manuscript studies

many apparent parallels between an organism's genes and a manuscript's text, the tools of genomics and cladistics are readily adaptable to text-critical work."³²

The following quotation from Semple and Steel's introduction to Phylogenetics highlights just how appropriate phylogenetic tools are for studying manuscript traditions – and also shows the surprised reaction that this often elicits in biological fields:

"[The mathematical foundations of phylogenetics] date at least to the pioneering work by Peter Buneman, David Sankoff, and others in the early 1970s. Curiously, Buneman's early paper (1971) dealt not with biology but rather reconstructing the copying history of manuscripts."³³

In 2004, Howe et al. published a paper 'Parallels Between Stemmatology and Phylogenetics' with the specific aim of exploring "the similarities between the evolution of DNA sequences and the changes occurring in manuscript traditions."³⁴ This paper is an excellent introduction to why phylogenetic tools should be appropriate for manuscript traditions. They state that "It is remarkable how many parallels there are between the evolution of genetic material and the changes occurring in manuscripts... These include recombination, convergent evolution and transposition."³⁵ They show that recombination parallels a scribe changing his exemplar mid-way through the copying process. A more complicated form of recombination parallels contamination, or multiple exemplars. They argue that transposition (for example a virus inserting DNA from one species into another) has a parallel in manuscript studies where text from one passage is inserted into another. Convergent evolution is the name given to independent similar mutations, and is "comparable to convergence or parallelism in manuscript traditions", for example independent scribes

³² Ibid., 118.

³³ Semple and Steel, *Phylogenetics*, ix.

³⁴ Howe et al., 'Parallels Between Stemmatology and Phylogenetics', 3.

³⁵ Ibid., 7.

following local contemporary customs regarding spelling or dialect.³⁶ They conclude that "The process of incorporation of changes into DNA mirrors the incorporation of changes into manuscripts... [and therefore] programs for phylogenetic analysis of sequence data can be exploited for stemmatic analysis of manuscript traditions..."³⁷ It appears that the two fields are more than "analogous" - they map onto each other very closely indeed.

The application of Phylogenetics to Manuscript Studies

In the 1970s Buneman, Platnick, Cameron and others began to explore the appropriateness of using phylogenetic techniques to address text-critical problems.³⁸ The 1980s saw the first applications of phylogenetics to manuscript traditions. Robinson reports that "the first scholar to apply phylogenetic methodology in a stemmatic context" was Lee whose paper 'Numerical Taxonomy Revisited: John Griffith, Cladistic Analysis and St. Augustine's Quaestiones in Heptateuchum' was published in 1989.³⁹

Two clusters of researchers came to prominence in the 1990s in this area. A group of scholars in the Netherlands carried out what was described by Robinson as "the first concerted and methodical scholarly investigation into quantitative methods (including phylogenetics) for the exploration of textual scholarship... in the early 1990s".⁴⁰ Key among these scholars are van Reenen and van Mulken from Vrije Universiteit in Amsterdam, who edited two seminal works: *Studies in Stemmatology* in 1996 and, with den Hollander, *Studies in Stemmatology II* in 2004.⁴¹ *Studies in Stemmatology* contains a selection of papers from the

³⁶ Ibid., 9.

³⁷ Ibid., 10.

³⁸ See Buneman, 'The Recovery of Trees from Measures of Dissimilarity'; Platnick and Cameron, 'Cladistic Methods in Textual, Linguistic, and Phylogenetic Analysis'.

³⁹ Robinson, 'Four Rules for the Application of Phylogenetics in the Analysis of Textual Traditions', 637; Lee, 'Numerical Taxonomy Revisited: John Griffith, Cladistic Analysis and St. Augustine's Quaestiones in Heptateuchum'.

⁴⁰ Robinson, 'Four Rules for the Application of Phylogenetics in the Analysis of Textual Traditions', 637.

⁴¹ van Reenen and van Mulken, *Studies in Stemmatology*; van Reenen, den Hollander, and van Mulken, *Studies in Stemmatology II*.

Phylogenetics for manuscript studies

annual Free University Stemmatological Colloquia 1990-93, convened to allow scholars from various disciplines to report their research on the genealogy of texts and "the application of the newest technology to manuscript traditions."⁴²

The second group clusters around Robinson himself, who was a contributor to *Studies in Stemmatology*.⁴³ In 1991 Robinson posted a challenge online to "re-create by statistical or numerical means alone the table of relationships for some 44 manuscripts of the Old Norse narrative 'Svipdagsmal' established by Robinson on the basis of external evidence and traditional stemmatic methods."⁴⁴ A particularly successful response to the challenge came from O'Hara who used PAUP to carry out a cladistic analysis of the data.⁴⁵ Robinson and O'Hara went on to collaborate on a number of further projects, discussing and applying phylogenetic techniques to Chaucer's Canterbury Tales and Svipdagsmal.⁴⁶ As well as publishing his own individual papers, Robinson also collaborated with notable success with Barbrook, Blake and Howe on 'The Phylogeny of The Canterbury Tales', published in Nature in 1998. Here they used PAUP to create a phylogenetic tree from 58 manuscripts and identifed several distinct groups.⁴⁷ They reach a particularly interesting conclusion, that the root of the tradition is Chaucer's own copy which itself contained notes, deletions and additions – i.e. it was not a clean, finished text.

The 2000s saw *Studies in Stemmatology II*, as mentioned above. As discussed in Chapter 1, Mink's seminal work 'Problems of a highly contaminated tradition', his major publication on the CBGM, is found in *Studies in Stemmatology II*. Howe et al.'s 'Parallels

⁴² van Reenen and van Mulken, Studies in Stemmatology, viii.

⁴³ See Robinson, 'Computer-Assisted Stemmatic Analysis and "Best-Text" Historical Editing'.

⁴⁴ M.W. Robinson and O'Hara, 'Report on the Textual Criticism Challenge 1991', 331.

⁴⁵ See Swofford, *PAUP**. *Phylogenetic Analysis Using Parsimony (*and Other Methods)*. Version 4.0b10. This particular analysis was carried out using Macintosh Version 3.0r.

⁴⁶ O'Hara and Robinson, 'Computer-Assisted Methods of Stemmatic Analysis'; Robinson and O'Hara, 'Cladistic Analysis of an Old Norse Manuscript Tradition'.

⁴⁷ Barbrook et al., 'The Phylogeny of The Canterbury Tales'.

Between Stemmatology and Phylogenetics' (mentioned above) also comes from *Studies in Stemmatology II.*⁴⁸ Howe's co-authors of 'Parallels' were Barbrook, Mooney and Robinson. There is a strong collaborative trend in the articles on phylogenetics of manuscripts in the 2000s (continuing from the Nature article in 1998), and nearly all of them feature Spencer and Howe, or Robinson, or all three – along with other authors.⁴⁹ A notable two-fold collaboration between Spencer, Howe and Wachtel analysed manuscripts of the Letter of James from the New Testament. In their second paper, 'Representing Multiple Pathways of Textual Flow in the Greek Manuscripts of the Letter of James Using Reduced Median Networks', they argue that their results are consistent with the accepted theory that "most of the variation in the Greek New Testament arose early in the tradition."⁵⁰

An attempt was made in 2011 to encourage the adoption of the term "phylomemetics" for the use of "phylogenetic analysis of non-genetic data" (from the word "meme") but it has not succeeded.⁵¹ A clear introduction to the method of applying phylogenetics to manuscript traditions may be found in "Responding to Criticisms of Phylogenetic Methods in Stemmatology" by Howe, Connolly, and Windram.

In 2012 Perrin completed his PhD at Birmingham successfully using *SplitsTree* to analyse the relationships between the small number of Family 13 manuscripts in John.⁵² In the same year De Vos, Macé, and Geuten published their paper 'Comparing Stemmatological and Phylogenetic Methods to Understand the Transmission History of the "Florilegium Coislinianum" again with good results but with a small number of manuscripts. They used

⁴⁸ Howe et al., 'Parallels Between Stemmatology and Phylogenetics'.

⁴⁹ See, for example, Macé et al., 'Testing Methods on an Artificially Created Textual Tradition'; Howe et al., 'Parallels Between Stemmatology and Phylogenetics'; Spencer et al., 'Analyzing the Order of Items in Manuscripts of "The Canterbury Tales"; Spencer et al., 'How Reliable Is a Stemma?'; Howe et al., 'Manuscript Evolution'; Spencer et al., 'Phylogenetics of Artificial Manuscripts'.

⁵⁰ Spencer, Wachtel, and Howe, 'Representing Multiple Pathways of Textual Flow in the Greek Manuscripts of the Letter of James Using Reduced Median Networks', 10; See also Spencer, Wachtel, and Howe, 'The Greek Vorlage of the Syra Harclensis'.

⁵¹ Howe and Windram, 'Phylomemetics—Evolutionary Analysis beyond the Gene', para. 3.

⁵² See, for example, Perrin Jr., 'Family 13 in Saint John's Gospel', 165 - a network of ten manuscripts.

Phylogenetics for manuscript studies

PAUP, as did many of the papers above.

I will now discuss a special "Thematic Section on Studia Stemmatologica" from the *Digital Scholarship in the Humanities* (DSH) journal (2016, 31.3). This "Thematic Section" originated in a set of workshops organised by the section's editors in 2012 in Helsinki, Uppsala, Pisa, Cambridge and Rome.⁵³ Taken together these papers form an excellent overview of the task of applying phylogenetics to texts. Bordalejo sets out a clear introduction to stemmatology and the use of phylogenetics for analysing textual traditions.⁵⁴ For a full grounding the reader is directed to the articles themselves. Some key themes from these papers will be briefly discussed below, followed by a more in-depth look at Robinson's paper.

The question of the genealogical significance of a variant is tackled to varying extents in several papers in this special section. This is not only of interest for applying phylogenetics to textual traditions, but is also important for some arguments concerning the CBGM (see Chapter 2). Andrews concludes that philologists are not good at determining which variants are genealogically significant, and that "'insignificant' variation is really not that insignificant at all."⁵⁵ Her conclusions contrast with the related view from some scholars considering the CBGM that only "significant" variants should be included.⁵⁶ In my opinion, Andrews is right – for the significance of a variant in statistical analysis is not the same as its level of merit or interest from a text-critical perspective. This seems, to me, to be self-evident – for the definition of "genealogically meaningful" is not at all equivalent to saying that, for example, a variant reading is worthy of inclusion in a critical edition, or that it was made intentionally. It is easy to conceive of a hypothetical example where a simple spelling change in a place name

⁵³ See Heikkilä and Roos, 'Thematic Section on Studia Stemmatologica'; See also Macé, *The Evolution of Texts* for a similar work from a conference in 2004 featuring several of the same authors.

⁵⁴ See Bordalejo, 'The Genealogy of Texts'.

⁵⁵ Andrews, 'Analysis of Variation Significance in Artificial Traditions Using Stemmaweb', 538.

⁵⁶ See Chapter 2's discussion of, for example, Alexanderson, 'Problems in the New Testament: Old Manuscripts and Papyri, the New Genealogical Method (CBGM) and the Editio Critica Maior (ECM)'.

(a type of orthographic variation commonly regularised away) could be genealogically meaningful if it happened to be faithfully copied. Halonen discusses the question of the quality of a variant – is it "significant" or not? The computer-assisted methods generally work on the quantity of variants, and not their quality. So perhaps the question of significance is unnecessary anyway.⁵⁷ Robinson also addresses the question of whether variants should be classified as significant or not - or "indicative" to use the traditional term. He asks a key question: is this truly a binary distinction? Should variants be given various weights, rather than being simply included or excluded? He points out that "we are dealing with words, which are slippery things" and therefore the significance of a variant can be hard to determine.⁵⁸ His key point here is that "we can have confidence in [phylogenetic results] because our analysis does not rest on only these one or two variants ('indicative' as they might be), but on patterns within the whole mass of variation. We may be wrong sometimes about the classification of particular variants, but the great majority of times, we will be right."⁵⁹ Therefore applying phylogenetics to manuscript traditions is indeed valuable. A consequence of Robinson's point is that it is important to include the vast array of seemingly less indicative variants (regularised appropriately) to provide a weight of evidence for the phylogenetic software to use. Robinson and Andrews seem to disagree, to some extent, on the issue of the significance of variants – but their conclusions agree: It would be wrong to exclude variants for phylogenetic analysis merely because they seem less "significant" than others.

Halonen makes a bold claim, that in the future "there will be no need to compare stemma created by traditional and computer-assisted methods, one can simply rely on the

⁵⁷ See Halonen, 'Computer-Assisted Stemmatology in Studying Paulus Juusten's 16th-Century Chronicle *Catalogus et Ordinaria Successio Episcoporum Finlandensium*'.

⁵⁸ Robinson, 'Four Rules for the Application of Phylogenetics in the Analysis of Textual Traditions', 646.

⁵⁹ Ibid., 649.

Phylogenetics for manuscript studies

latter.³⁶⁰ Is this really likely? This Chapter, and Chapter 6 in particular will show that such computer-assisted methods can indeed identify relationships and trees that are very close to hand-made stemmata. He clearly believes that this time will come, although it will "take a long time and requires numerous stages of testing and retesting...³⁶¹ He points out that transcription and normalisation of witnesses must still be carried out manually.

The "Thematic Section on Studia Stemmatologica" also includes papers describing the successful application of phylogenetics to manuscript traditions (and in one case the evolution of a folk tale from its oral beginnings). We will consider the final paper by Buzzoni, Burgio, Modena and Simion: "Open versus closed recensions (Pasquali): Pros and cons of some methods for computer-assisted stemmatology." A simple definition is that a closed recension has no contamination and therefore all manuscripts are copies of exactly one exemplar. An open recension, clearly therefore, has contamination – and this is clearly likely to be the reality for any significant corpus. Buzzoni *et al.* describe two case studies (one open and one closed) and the results of analysing them using phylogenetic software. For the open recension (*The Anglo-Saxon Chronicle*) they compare the results of using RHM, Stemstem, NeighborJoining and NeighborNet.⁶² For a closed recension they chose the Latin *Meloine* tradition and applied RHM, Stemstem, NeighborJoining (as before) and also Maximum Parsimony.⁶³ PAUP was used for the Maximum Parsimony algorithm.⁶⁴ They conclude, for open recensions, with the thought that while these phylogenetic techniques have produced

⁶⁰ Halonen, 'Computer-Assisted Stemmatology in Studying Paulus Juusten's 16th-Century Chronicle Catalogus et Ordinaria Successio Episcoporum Finlandensium', 588.

⁶¹ Ibid.

⁶² See Roos and Heikkilä, 'Evaluating Methods for Computer-Assisted Stemmatology Using Artificial Benchmark Data Sets' (RHM); Roos and Zou, 'Analysis of Textual Variation by Latent Tree Structures' (Stemstem); Saitou and Nei, 'The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees'; Bryant and Moulton, 'NeighborNet'.

⁶³ There is a terminology problem here, which is perhaps best solved by considering these methods as proper names. For NeighborJoining is itself a method based on the principle of maximum parsimony (but not the method with the same name). See Saitou and Nei, 'The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees'.

⁶⁴ L. Swofford, PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10.

valuable insights there were weaknesses with each one (i.e. places where the phylogenetic results differed from their philological understanding of the manuscript relationships). For closed recensions a Maximum Parsimony approach produced the best results. This would be of interest to New Testament scholars seeking to apply phylogenetics to a set of manuscripts believed to be free of contamination – and there may be such a set (although I suspect not a large one). For open recensions they found RHM and NeighborJoining produced the best results. They found that phylogenetic techniques were good at identifying major groups of witnesses, but less useful for deciding the priority of variant readings. The good news for the application of phylogenetics to the New Testament is that Buzzoni et al. found that phylogenetics worked better on open recensions than closed.

Robinson's paper "Four rules for the application of phylogenetics in the analysis of textual traditions" is to be recommended as an introduction to the topic, as indicated by the first sentence of the abstract: "This article surveys how phylogenetics may be applied effectively and productively to the analysis of textual traditions—and, by implication, how it might not be."⁶⁵ Robinson points out two key facts, that phylogenetic tools are powerful and useful for this field, but that their results are hard to interpret correctly. His four rules are:

- "It is an error to understand the results of any quantitative analysis of textual traditions as if they represent exactly what happened in the actual making of these copies."⁶⁶
- "Quantitative methods can give useful results on vernacular and other traditions, where the spelling of individual words is relatively standard across copies, and can do so on the basis of computer-generated alignment and analysis alone."⁶⁷
- "Before any analysis is done, indeed, before any collation, any transcription, any data

⁶⁵ Robinson, 'Four Rules for the Application of Phylogenetics in the Analysis of Textual Traditions', 637.

⁶⁶ Ibid., 641.

⁶⁷ Ibid.

preparation is started toward investigation of a textual tradition, you must develop an explicit model of the variation you expect to find in the copies which constitute that tradition."⁶⁸

• "One can only be as certain, in any reconstruction of any textual tradition, as the data, the model of variation, the methods applied, and other evidence allow."⁶⁹

My analysis below and in Chapter 5 (carried out before Robinson's paper was published) agrees broadly with Robinson's rules. His neatly phrased concluding thought is that phylogenetics and traditional philology should be used together:

"Phylogenetics may surprise us into new knowledge; it may confirm what we already suspect. But in textual traditions, no phylogenetic account, on its own, can ever be complete: phylogenetics needs philology. The counter is that philologists may use phylogenetics to question and confirm. It is a fundamental of philology, as with any science, that all conclusions are subject to test. Usually, the test is against what we know of manuscripts, of scribes, of the author, of meaning. Now, we have a new and remarkable test. We should use it."⁷⁰

Phylogenetic Software

Stripey

As has been discussed more fully in Chapters 1 and 2, the International Greek New Testament Project (IGNTP) is working in partnership with the Institut für neutestamentliche Textforschung (INTF) in Münster on the *Novum Testamentum Graecum: Editio Critica*

⁶⁸ Ibid., 645.

⁶⁹ Ibid., 649.

⁷⁰ Ibid., 650.

Maior (ECM).⁷¹ As part of the process of creating the edition of John's Gospel, the IGNTP have made full text transcriptions of selected manuscripts. These are not all the manuscripts of the works in question, as that would be a prohibitively large amount of work as the transcriptions can only be made manually (at present).⁷² Nevertheless the manuscripts chosen are believed to contain all significant textual evidence. A TEI-compatible XML format is used to encode the transcriptions and these XML transcriptions are the starting point for computerized analysis of the data.⁷³

In the first weeks of my doctoral studies I began to write a small prototype computer program (called *Stripey*) to analyse manuscript transcriptions. The idea was to explore ways of visualizing the readings found in different texts in such a way that the texts (including corrections) could easily be compared – inspired by DNA sequences. Table 79 contains some example early output from *Stripey* showing Codex Sinaiticus's firsthand and five correctors. Each letter represents the state of the text in one verse of John 1. *Stripey* is named after these rows, or stripes, of letters that are not unlike DNA sequences – a core principle used in NEXUS files used by phylogenetic software.⁷⁴

01 (firsthand)	abbbabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb														
01 (S1)		С		(d d	С		С		С	С				
01 (S2)				e	e										
01 (ca)	а	С	а	dq	g cc	d		СС	С	С	cd	СС	са	cd	С
01 (cb2)				:	-		а	С					С		
01 (corrector)														С	

Table 79: Correctors as states of the text in John 1 of Codex Sinaiticus

Even in its early stages Stripey's output raised research questions. For example it was

⁷¹ The Institute for Textual Scholarship and Electronic Editing (ITSEE) in Birmingham is responsible for producing the Greek and Latin editions of John (and later Paul) for the IGNTP.

⁷² If someone could write a reliable automatic Greek manuscript transcription tool, then the benefits to the field would be immense.

⁷³ TEI is the "Text Encoding Initiative". It produces standards for representing digital texts. See <u>http://www.tei-c.org</u>.

⁷⁴ See, for example, Huson and Bryant, 'Application of Phylogenetic Networks in Evolutionary Studies'; Maddison, Swofford, and Maddison, 'Nexus'.

Phylogenetic Software

Stripey has developed significantly since the early prototype: It is now a databasedriven web application into which can be imported the XML transcription data. *Stripey* allows the user to explore new ways of analysing and visualizing the data from the XML transcriptions.⁷⁶ *Stripey* no longer uses verses as the smallest units of text, but instead uses automatic collation to create a much more fine grained dataset. It uses the CollateX software, which was written "with the aim to create a successor of Peter Robinson's Collate".⁷⁷ CollateX provides a solution for comparing texts that is analogous to the sequence alignment methods used in bioinformatics.

A straightforward step from the stripe display of identifiers in Table 79 was to make *Stripey* create NEXUS files, for use by phylogenetic software.⁷⁸ An abridged NEXUS file representing John 1:1 is shown in Table 80. The data is now ready to be input into phylogenetic software such as *SplitsTree*.

⁷⁵ See 'Codex Sinaiticus: Experience the Oldest Bible. The Transcription.' for information about 01's scribes and correctors.

⁷⁶ The current version of *Stripey* is v1.2, See <u>https://doi.org/10.5281/zenodo.1296295</u> or <u>https://github.com/edmondac/*stripey*</u>

⁷⁷ See https://collatex.net/about/ [Accessed 30 December 2016]

⁷⁸ See Maddison, Swofford, and Maddison, 'Nexus'.

```
#nexus
BEGIN Taxa;
DIMENSIONS ntax=153;
TAXLABELS
firsthand
01 firsthand
011 firsthand
[148 rows hidden]
P66 firsthand
P75 firsthand
END;
BEGIN Characters;
DIMENSIONS nchar=7;
FORMAT
    datatype=STANDARD
    missing=-
    gap=?
    symbols="a b c d"
MATRIX
firsthand abaaa?d
01_firsthand aaaaa?a
011 firsthand aaaaa?a
[148 rows hidden]
P66 firsthand aaaaa?a
P75 firsthand aaaaa?a
END;
```

Table 80: Abridged NEXUS file representing John 1:1 (Dekker)

SplitsTree

SplitsTree is popular in this field, and like many popular phylogenetic applications is freely downloadable.⁷⁹ Once *SplitsTree* has analysed the data it can present it in many different forms. Figure 27 shows a small section of a Neighbour-Joining (NJ) tree (phylogram) for John chapter 1 (*Needleman-Wunsch* algorithm).⁸⁰ It is immediately obvious that some expected relationships are present – for example 03 and $\mathfrak{P}75$ are close to one another.⁸¹ Note that Figure 27 represents roughly 7% of the full tree. *SplitsTree* includes many algorithms for generating trees and networks. For example, its UPGMA (Unweighted Pair

⁷⁹ See Huson and Bryant, 'Application of Phylogenetic Networks in Evolutionary Studies'. See the bibliography for versions used.

⁸⁰ See Saitou and Nei, 'The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees'. For a good introduction to reading phylogenetic trees, see Rambaut, 'How to Read a Phylogenetic Tree'. The full tree is available at <u>http://epapers.bham.ac.uk/3148/2/stripey_john_1_all.needleman-wunsch.splitstree.nj-phylogram.pdf</u>

⁸¹ Note that left-right distance represents the similarity (or difference) between manuscripts. Up-down distance has no such meaning, but is simply used to display the tree clearly.

Phylogenetic Software

Group Method using Arithmetic averages) tree of the same data is quite different from the NJ tree.

Stripey can also create a NEXUS file for an entire book. Consider the NJ tree for the whole of John (Figure 28), compared to that of just chapter $1.^{82}$ There are obvious similarities (e.g. 03 and p75 are once again close) but other features are different. This is not surprising, as this tree is based on all 21 chapters of John – equating to 15,767 characters rather than the 769 of John $1.^{83}$

SplitsTree's trees are binary splits – meaning every branch splits into at most two more. Its trees are therefore always going to be complicated and difficult to interpret. For each different tree algorithm some features of interest can be identified by a textual scholar, but there is so much noise that they are hard to find. *SplitsTree* can also produce phylogenetic networks, but they are impenetrably complex with this number of manuscripts and cannot be represented well at a printable scale.

⁸² The full tree is available at <u>http://epapers.bham.ac.uk/3149/1/stripey_john_all.needleman-wunsch.splitstree.nj-phylogram.pdf</u>

⁸³ A *character* in phylogenetics equates to a variant unit in a collation.

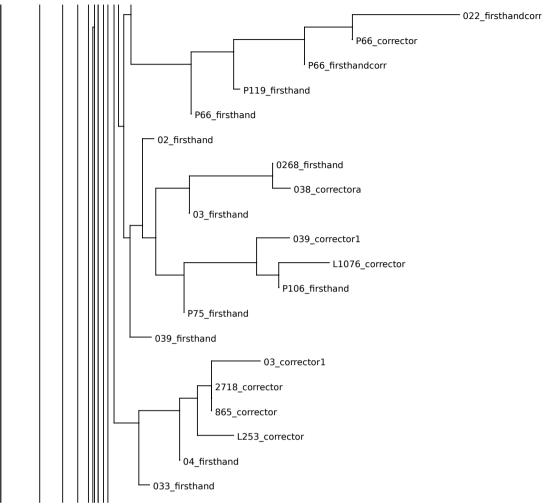


Figure 27: Part of SplitsTree NJ phylogram for John 1 (Needleman-Wunsch)

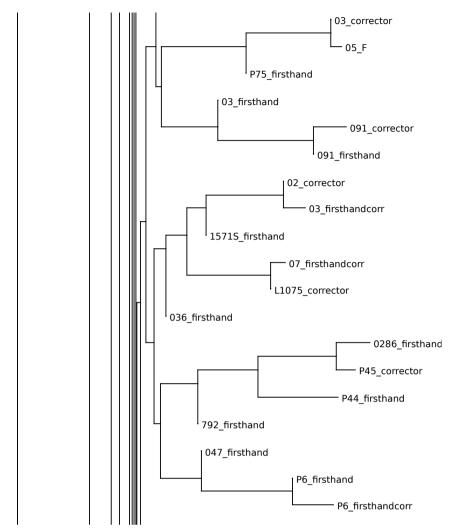


Figure 28: Part of SplitsTree NJ phylogram for John (Needleman-Wunsch)

Mesquite

A second example of free phylogenetic software is *Mesquite*. *Mesquite* is able to create circular trees similar to those used by Spencer et al. in 'The Greek Vorlage of the Syra Harclensis.'⁸⁴ *Mesquite* can take the character matrix in the NEXUS file provided by *Stripey* and, using Maximum Parsimony (MP) algorithms, create a specified number of most parsimonious trees.⁸⁵ These may then be further analysed and a consensus tree created

⁸⁴ Spencer, Wachtel, and Howe, 'The Greek Vorlage of the Syra Harclensis'. See Chapter 1. See also Wachtel, 'The Coherence-Based Genealogical Method', 125f.

⁸⁵ In Mesquite, select: "Analysis" > "Tree Influence" > "Tree Search" > "Heuristic (Add & rearrange)". Select "Treelength" as the criterion for the tree search. Select "SPR" as the rearrangement algorithm as it has the

summarising the previous trees.⁸⁶ *Mesquite* uses much more computationally heavy algorithms than *SplitsTree* to create its trees (several hours as opposed to a few minutes on my laptop). Whether this extra effort implies a more trustworthy result is unclear.

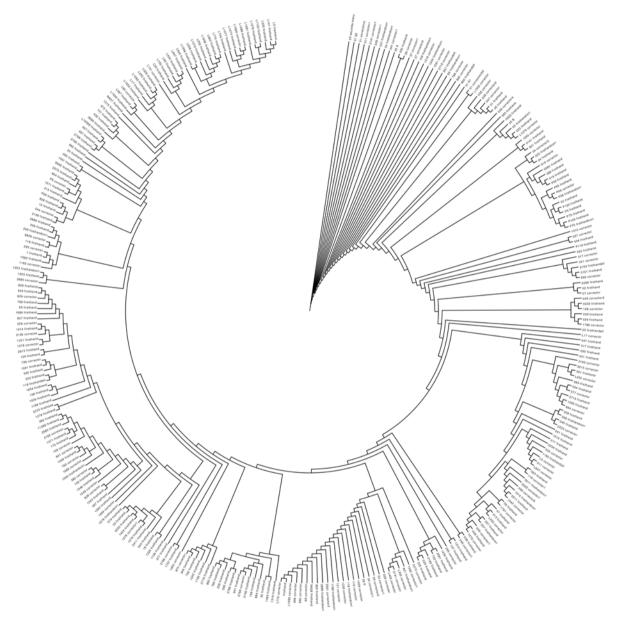


Figure 29: Mesquite consensus tree of MP trees of John 1 (Needleman-Wunsch)

Using the same NEXUS file used by SplitsTree to create the tree in Figure 27,

best chance of finding the most parsimonious tree(s) and choose the default MAXTREES=100. See 'Mesquite FAQ'.

⁸⁶ A "Majority Rules Consensus Tree" shows those clades present in the defined fraction (default > 0.50) of the trees.

Phylogenetic Software

Mesquite creates that in Figure 29.⁸⁷ Figure 30 shows (at a readable scale) the part of the tree corresponding to Figure 27 - and there are similarities (e.g. 03 and $\mathfrak{P75}$ again). However, there are also many differences, leaving open the question of whether either of them is correct. Unfortunately, *Mesquite's* documentation states this: "*Mesquite* is not designed for rigorous tree-estimation procedures, such as Maximum Parsimony, Maximum Likelihood, or Bayesian tree estimation. However, trees generated from programs such as PAUP, PHYLIP, and MrBayes can be read into and manipulated in Mesquite."⁸⁸ So let us now move on to try *MrBayes*.

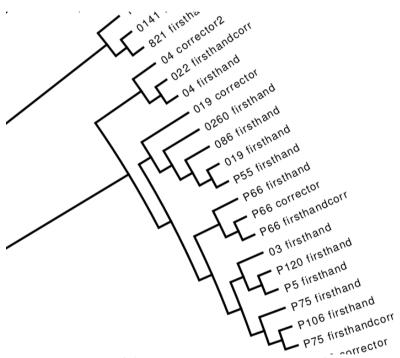


Figure 30: Part of the Mesquite consensus tree of MP trees of John 1 (Needleman-Wunsch)

MrBayes

MrBayes is extremely popular and powerful software for carrying out Bayesian Markov chain Monte Carlo (MCMC) analysis for phylogenetics. Unfortunately, *MrBayes*

⁸⁷ This tree is available at <u>http://epapers.bham.ac.uk/3150/1/mesquite_john_1_tree.pdf</u>

⁸⁸ See 'Mesquite FAQ' (Question: How do I create a publication-quality tree?).

does not allow custom symbols to be used, with only $\{0, 1, 2, 3, 4, 5, 6, 5, 7, 8, 9\}$ being allowed for standard (morphology) data. Some other types (e.g. RNA) allow larger sets but none is big enough for the number of symbols required to represent (for example) the majority of NEXUS files created by Stripev for the Gospel of John.⁸⁹

Nevertheless, a NEXUS file for a single verse is often simple enough for MrBayes. Figure 31 shows the consensus tree for John 2:1 (Needleman-Wunsch) using the version of MrBaves shipped with Ubuntu Linux, run for 1 million generations.⁹⁰ This circular representation of the tree has been drawn using *FigTree* - which can take *MrBayes*' output and draw high-quality trees of different types.⁹¹ It is important to note that while the trees are rooted, the root point is arbitrary and does not represent the actual root of the tradition. Indeed *FigTree* provides a facility for changing the root to any place in the tree.

MrBayes creates a different type of tree to SplitsTree and Mesquite - inasmuch as it can have multiple leaves hanging off a single branch (as opposed to just two). This allows it to create much more readable trees for text-critical purposes. It does have the same restriction as SplitsTree and Mesquite in that it assumes that all the supplied taxa will be leaves of the tree – because it assumes that the data provided is from species alive today. This restriction means that the trees created by such phylogenetic software are very unlikely to be a true reflection of the relationships between manuscripts. This is easiest to see when considering a tree containing two manuscripts where we know one is the exemplar for the other. In that case such phylogenetic software will show them as closely related siblings, but cannot show them

90 As of Feb 2017, this version is "mrbayes/xenial,now 3.2.6+dfsg-1build2 amd64" - or simply MrBayes v3.2.6.. The complete commands to *MrBaves* were: mcmc temp=0.01 ngen=1000000 autotune=yes stoprule=yes stopval=0.01 nchains=4 nruns=2; sump; sumt Calctreeprobs=yes nruns=2 burninfrac=0.5 Some of these settings were determined after the research in Chapters 4 and 5. This tree is available at http://epapers.bham.ac.uk/3151/1/stripey_john 2_1_all.needleman-wunsch.nex.con.tre.pdf

91 *FigTree* v1.4.2

⁸⁹ MrBayes uses the symbol set {A, C, G, U, R, Y, M, K, S, W, H, B, V, D, N} for RNA data.

Phylogenetic Software

as parent and child. Nevertheless, these phylogenetic tools can give valuable information about how closely manuscripts are related to one another.

An important point is raised by Figure 31: there are not many branches or sub-trees (rather most manuscripts are attached directly to the trunk) and thus the eye is immediately drawn to the more interesting features. For example the large group of lectionaries at the bottom is clearly separated from the rest of the manuscripts. And indeed while the other witnesses begin with some form of $\varkappa \alpha_1 \tau \eta \eta \mu \epsilon \rho \alpha \tau \eta \tau \rho \iota \tau \eta$, the lectionaries read a form of $\tau \omega$ $\varkappa \alpha_1 \rho \omega \epsilon \varkappa \epsilon \iota \nu \omega$ instead. The full collation of John 2:1 is shown in Table 81. One weakness of the automatic collation is immediately evident – the first $\varkappa \alpha_1$ is split across two columns, or variant units, and the same is true of $\epsilon \nu$ later. This introduces noise into the data and may limit the value of the output.

Patched MrBayes

In order to be able to use *MrBayes* more, since it has proved itself very useful, I patched the source code to allow up to 62 symbols (a-z, A-Z, 0-9) instead of just ten (0-9).⁹² Now NEXUS files for much larger data sets can be loaded into my modified *MrBayes*.⁹³ For example John 2 (the whole chapter) requires a maximum of 23 character states (a-w) for its 386 characters and 254 taxa. The whole consensus tree is unreadable at this scale, even as a circular tree.⁹⁴ The bottom portion of the tree (showing all the sub-trees and therefore the most interesting part) is shown in Figure 32.

⁹² The patch was to change the definition from line 15143 of command.c (int StandID (char nuc)) from the existing symbols (0-9) with values 2^n to (a-z,A-z) with values *n*. See the changeset at: <u>https://github.com/edmondac/MrBayes/commit/a0ad10fd48a0555c6ee627829e414d2799b990de</u>

⁹³ The version is now standard *MrBayes* v3.2.6 + my patch.

⁹⁴ Circular tree representations are frequently criticised anyway for being hard to read. They are a convenient way to show a lot of data on a single page, and they look attractive – but in general they are less useful than, the less spatially-efficient, vertically drawn trees. The full tree is available at http://epapers.bham.ac.uk/3152/1/stripey_john_2_all.needleman-wunsch.nex.con.tre.pdf

Chapter 4: Stemmatics and Phylogenetics

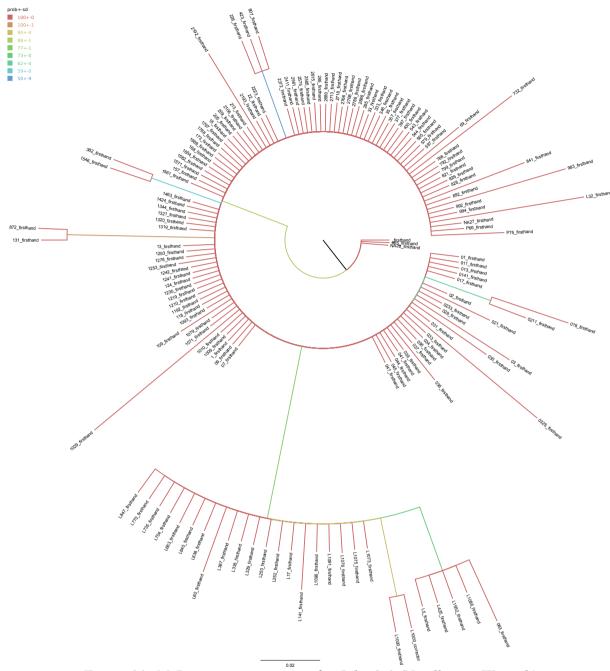
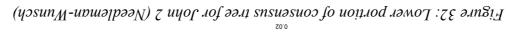
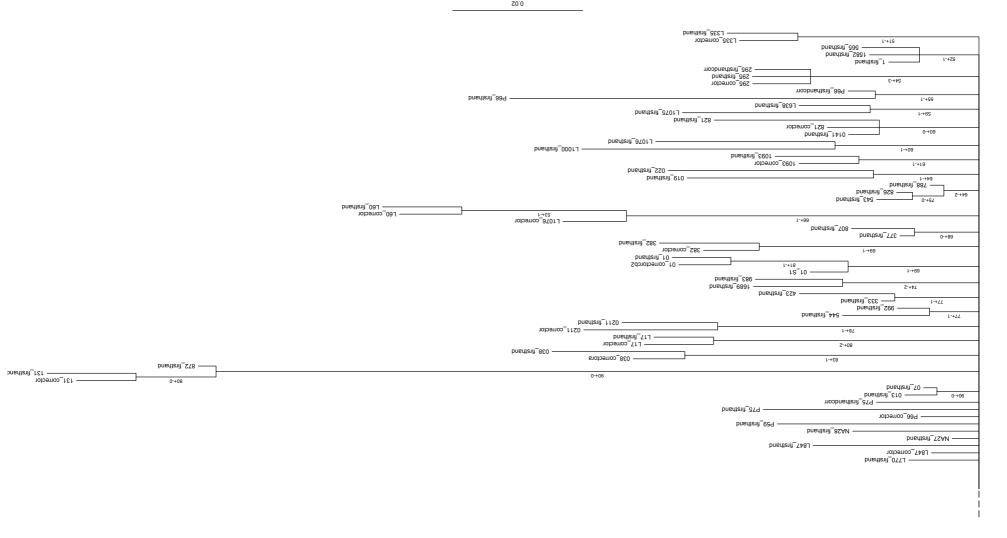


Figure 31: MrBayes consensus tree for John 2:1 (Needleman-Wunsch)


120	%9`76				120%	μı	krigr	λαίτος ελενετο	٨3	κανα			עמו אא א לאדאא דסט	13X3 (1)
1951 5571	%£`£6		177	μı	ะชวงปห	hг	٨	λαίτος ελενετο	A3	κανα	Shi	λαγιγαιαζ	אמו ואה א למאך דסט	13X3 (1)
728 181	%S [.] E6		177	μı	pd3rlu	μı	krigr	λαίτοα ελενετο	٨3	κανα	ohr	λαγιγαιαο	אמו אא א לאף דסט	13X3 (1)
610	%7`\$6	102		μı	pd3rlu	kı	krigr	λαίτος ελενετο	٨3	υνων	5h2	λαγιλγαιαδ	οο σμη μ πμ τοχ	13X3 (1)
7617	%8 [.] \$6		177	μı	ะชวาน	μı	μτιστ	λαίτος ελενετο	A3	κανα	hг	λαγιγαια	אמו אא א לאל בסח	13%3 (1)
1120	%6`\$6	102		μı	ะชวาน	μı	μτιστ	λαίτος ελενετο	A3	κανα	5h2	λαγιγατας	אמו אא א לאל בסח	13×3 01
385 1246	%6 [.] \$6		122	μı	pd3rlu	μı	krigr	ναίκος εγενετω	٨3	κανα	5h2	λαγιγαιαζ	και μη μ κηρ του	13X3 01
841	%6 [.] \$6		122	μı	pd3rlu	μı	krigr	λαίτος ελενετο	٨3	γκανα	5h2	λαγγιγαιαζ	και μη μ κηρ του	13%3 (1)
કાર	%9 [.] 96	102		μı	ะชวาน	μı	μτιστ	λαίτος ελενετο	иг из	κανα	5h2	λαγιγαιαζ	עמו אא א לאדאא דסט	13%3 (1)
5113 5289 510 1230 5133 5281 5285 510 1230 5133 5285 535 51 523 528 521 835 1010 1035 51 523 032 032 032 035 51 033 032 032 032 035 51 033 035 035 035 51 033 035 035 035 51 033 035 035 035 51 033 035 035 51 033 035 035 51 033 035 51 033 035 51 033 035 51 033 035 51 033 035 51 035 5	%0`26	122		لمع	pd3nk	لعا	kıldı	отзизүз гоциу	٨З	υλυχ	542	λαγιγαιαζ	הסי לאזא א איזא גסח	וא באבו
9887 8922 5912 5118 5192 525 1172 5252 5252 512 142 5252 5252 5252 526 1455 1128 51 728 1451 1551 5128 128 1451 1521 6121 56 6201 6001 766 566 662 562 268 505 575 512 602 891 811 52 52 513 602 891 811 52 52 51	%0`∠6		127	kı	pdsnlu	μı	kıldı.	олзизцз гоцру	٤٨	υλυχ	Shī	λαγιγαιαζ	מסג לאזא א איזא גסח	13X3 (1)
666 01 034 P	%7`86	ιωχ		kı	pdsnlu	μı	גטובא	οτзизүз гоцьү	ЛЗ	υνυχ	562	λαγιγαιαζ	אמו אא א איזאא בסח	າ3x3 ບາ
7771 1717 1424 1424 1424 1424 1424 1424	%7`86		10χ	ИI	ะชวาน	kı	kzidz	γαμος εγενετο	٨з	κανα	5h2	λαγιγαιαζ	מסז קרדוא א איז איזא	13X3 (1)
226 423 807	%8`86		107	ИI	ะชวาน	kı	krigr	λαίτος ελενετο	٨3	κανα	5h2	λαγιγαιαζ	מסג קמא א ער ומא	ואסטט באבו
LK NV58 862	%001		10χ	hг	ะปราใน	kı	krigr	οτзизүз гоцьү	٨3	κανα	Shi	λαγιγαιαζ	אמו אא א איזאא בסח	ารหร กอบไา


 ${\cal B}$ hylogenetic ${\cal S}$ oltware

Phylogenetic Software

														••				
69	89.9%			και	τη	τριτη	ημερα	γαμος εγενετο	ຍາ	V	κανα		της	γαλιλαιας	και ην η μηρ του		ιησου εκε	L
0328	89.6%	к	zı	τη	ημερα	τη	γ	γαμος εγινετο	ຍາ	V	κανα		της	γαλιλεας	και ην η μηρ του		ιυ εκι	
109	89.3%			και	τη	τριτη	ημερα	γαμος εγενετο	ຍາ	V	κανα		της	γαλιλαιας	και ην η μητηρ του		ιυ εκει	
03	88.8%	к	zı	τη		τριτη	ημερα	γαμος εγενετο	ຍາ	V	κανα		της	γαλειλαιας	και ην η μητηρ του		ιυ εκει	
983	88.1% xai	τγ	1	τριτη	ημερα		0	γαμος εγενετο	ຍາ	V	κανα		της	γαλιλαιας	και ην η μηρ του		ιυ εκει	
13 124 173 346 543 788 826 828 1689 2680	88.0%			και	τη	τριτη	ημερα	γαμος εγενετο	ຍາ	V	κανα		της	γαλιλαιας	και ην η μηρ του		ιυ εκει	
038	88.0%	к	zı	τη		τριτι	ημερα	γαμος εγενετο	ຍາ	V	κανα		της	γαλιλαιας	και ην η μηρ του		ιυ εκει	
030	85.9%	к	zı	τη		τριτη	ημερα	γαμος εγενετο	εν κ	ανα	της		της	γαλιλαιας	και ην η μηρ του		ιυ εκει	
L1000 corrector	82.7%			ω	καιρω	εκεινω		γαμος εγενετο	ຍາ	V	κανα		της	γαλιλαιας	και ην η μηρ του		ιυ εκει	
L17 L252 L253 L329 L335 L387 L638 L640 L663 L704 L735 L770 L847 L1073 L1075 L1076 L1091 L1096	82.2%			τω	καιρω	εκεινω		γαμος εγενετο	ຍາ	V	κανα		της	γαλιλαιας	και ην η μηρ του		ιυ εκει	
L5 L425 L1086 L1552	81.0%			τω	καιρω	εκεινω		γαμος εγενετο	ຍາ	V	κανα		της	γαληλαιας	και ην η μηρ του		ιυ εκει	
L32	80.7%			τωι	καιρωι	εκεινωι		γαμος εγενετο	ຍາ	V	κανα		της	γαλιλαιας	και ην η μηρ του		ιυ εκει	
L141	80.2%			τω	καιρω	εκεινω		γαμος εγενετο	ຍາ	V	κανα		της	γαλιλαιας	και ην η μηρ του		ιυ εκη	
063	79.8%			τω	καιρω	εκεινω		γαμος εγενετω	ຍ	V	κανα		της	γαληλαιας	και ην η μηρ του		ιυ εκει	
L1000	79.1% ιπει	0	κς	ω	καιρω	εκεινω		γαμος εγενετο	ຍາ	V	κανα		της	γαλιλαιας	και ην η μηρ του		ιυ εκει	
L60	79.0%			τω	καιρω	εκεινω		γαμος εγενετο	ຍາ	v	κανα		της	γαληλεας	και ην η μηρ του		ιυ εκει	
1029	78.1%			και	τη	τριτη	ημερα	γαμος εγενετο	εν κ	ανα	της	γαλιλαιας	και		ην η μηρ του ιυ	εκει	και οι	αδελφοι αυτο
732	57.4%	к	αι τη	ημερα	τη	τριτη	γαμος εγενετο											

Table 81: Collation of John 2:1 (Needleman-Wunsch)

 ρ_{V}

76I

Some sub-trees in Figure 32 are unremarkable – for example three hands of 295 are grouped together, as are the firsthand and corrector of each of l17, 038, 0211, and several more. Some groups are more interesting, however:

- 131 and 872 are grouped far from the trunk on a branch with 90% probability.⁹⁵ This pair of manuscripts has sometimes been associated with Family 1, but Welsby argues that they should not be in the family.⁹⁶ This tree suggests that even if they are not in Family 1, they are closely related to one another.
- The group 1, 565 and 1582 represents a part of Family 1.
- The group 543, 788 and 826 represents a part of Family 13.
- As will be seen in Chapter 6, 821 and 0141 are a copy and its exemplar, 600 years apart.
- The pair 377 and 807 are very similar in John, yet 400 years apart. Could there be a copying relationship here?

Network (Fluxus Engineering)

The primary piece of phylogenetic software recommended to me by Dr. Albert Nobre de Menezes, from the University of Birmingham's Centre for Computational Biology, was *Network*, by Fluxus Engineering. This software can create Median Joining networks, a kind of phylogenetic network.⁹⁷ The key difference between phylogenetic trees and networks is that nodes in a network can have more than one parent – whereas in a tree they must have exactly one. This allows the software to represent the complexity caused by contamination in the data and not need to simplify it to a tree. An unfortunate consequence of this is that networks with

⁹⁵ See Chapter 5 for more about branch probabilities.

⁹⁶ See Welsby, 'A Textual Study of Family 1 in The Gospel of John.', 201.

⁹⁷ Other software, such as *SplitsTree* and *Mesquite* (above) can also create networks, but Fluxus Engineering's *Network* software is particularly good with the data used in this thesis.

Phylogenetic Software

many nodes can quickly become too complex to visualise (and therefore to use). I converted the NEXUS file for John 2 to an amino acid file in Roehl data format, setting the maximum fragmentation level to 35%: i.e. any manuscript that is less than 65% extant is excluded from this network.⁹⁸ This is necessary as the Network software excludes any character that is not found in all taxa – and so the analysis is limited to only those variant units found in the intersection of all witnesses. Taxa cannot, apparently, have arbitrary names when using RDF files in *Network*. So we use H_1 (for haplotype 1), H_2 (for haplotype 2) etc. and maintain a mapping from those names back to the manuscripts. These can then be reinstated in the final diagram. This file can then in turn be loaded into *Network*.

A key feature of this software is that, unlike many such programs, taxa/haplotypes from the supplied data can occur as *internal nodes* in the network – not just as leaf nodes. This means it has the *potential* to create networks that represent the actual copying history of the witnesses.

Network is not, in my opinion, particularly good at actually drawing the networks it creates – and they are almost always full of overlapping nodes and edges. However, it is relatively straightforward to convert the FDI output file from *Network* into a DOT file – which can then be used by *Graphviz* (and many other programmes) to visualise the network. The Median Joining network for John 2, drawn using *Graphviz*' SFDP algorithm is far too complex to represent at this scale, even though it is probably the best *Graphviz* algorithm to use for large graphs – but Figure 33 shows a very small corner of it for illustrative purposes nevertheless.⁹⁹ The five witnesses (shown in yellow) in the network are: to the left, 333 and then from top to bottom ℓ 335, 423, 579 and 1797. The red dots represent hypothetical

⁹⁸ One character (variant unit) was too complex to represent in RDF – so was excluded. It had 21 character states.

⁹⁹ The full network is available at http://epapers.bham.ac.uk/3153/1/stripey_john_2_all.needleman-wunsch.f15.dot.sfdp.pdf

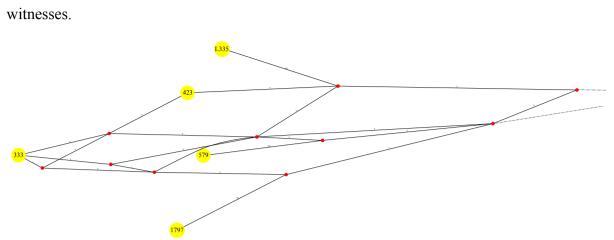


Figure 33: Part of the SFDP drawing of the John 2 Median Joining network

See Chapter 5 for some smaller, and much more valuable, Median Joining networks made using small numbers of witnesses from John 18.

Conclusion

These phylogenetic diagrams have brought up many interesting areas for textual study, which is typical when data is visualised in new ways. For example a pair of witnesses from different locations and different centuries can immediately be identified as closely related in a phylogenetic tree – and the human eye spots such patterns easily where it would not see the same pattern when presented as tables of numbers. Thus the tools and techniques discussed in this chapter allow the data to be explored in new ways, resulting in new research questions being raised.¹⁰⁰ The MCMC approach used by *MrBayes* seems to create more interesting and valuable results when including many witnesses (when compared to *SplitsTree* and *Mesquite*) – or perhaps simply more easily decipherable results, which is crucial. *Network* has significant potential, as will be shown in subsequent chapters, but with many witnesses

¹⁰⁰ Prof. Mark Viant, discussing a similar phenomenon in Omics studies (Genomics, Metabolomics, etc.) says "Omics studies are intended to be hypothesis generating (also called discovery driven), and this analysis can then lead to targeted, hypothesis driven research questions being addressed." [Personal email 8/3/17, discussing his lecture at the "NERC-MDIBL Environmental Genomics and Metabolomics 2017" workshop, March 2017] This is analogous to the work of natural historians of previous centuries who set off to explore the unknown world, leading to countless important discoveries.

Conclusion

creates diagrams which are far too complex.

Phylogenetics has been applied successfully to manuscript traditions, as described in the earlier parts of this chapter – albeit commonly ones with relatively small numbers of manuscripts. It is possible that *MrBayes* may be able to create useful and meaningful trees with larger numbers of manuscripts, such as those involved in studying the gospel of John. It seems likely that the automatic collation introduces too much noise into the data – and to find out we will consider the results of running *MrBayes* and *Network* with manually collated texts in Chapter 5.

It is important to note, having considered both the CBGM and phylogenetics now, that while they have many similarities there are also some important differences. The first difference is that while phylogenetics (and indeed traditional stemmatics) introduce hypothetical nodes into their stemmata, the CBGM almost never does. The CBGM has the concept of the "intermediary node" (as can be seen in Chapter 3) but it is rarely necessary to incorporate one into the stemmata. As a result the CBGM's stemmata are generally much simpler than, for example, a phylogenetic network of the same data. A second difference is the manner in which the objects in the trees, networks and stemmata are related. Phylogenetic trees show the evolutionary descent of objects from a common ancestor - and this is true when considering the whole tree or just a small part. The CBGM takes the development of individual variants and combines them to create genealogical coherence tables, and then chooses the best ancestor in a stemma based on the percentage agreement between witnesses. These two tree-creation methods are methodologically distinct. The CBGM deals with texts and not manuscripts and is primarily (but not solely) concerned with identifying the initial text, and does not claim to represent historical manuscript relationships - an oft criticised feature of the CBGM that was discussed in Chapter 2. Conversely, phylogenetic software is

good at hypothesising how manuscripts are related and identifying groups, but they are not designed to exactly identify their origin. What remains to be seen is the extent to which the CBGM and Phylogenetics can be used to validate one another's results. This will be explored in Chapter 10.

Chapter 5: Phylogenetics of John 18

Identifying manuscript families – new and well known

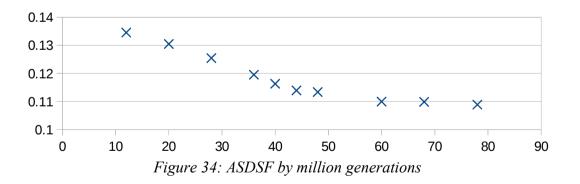
Introduction

In this chapter I describe the process of carrying out Bayesian phylogenetic analysis, using *MrBayes*, of sixteen hundred witnesses to John 18. Some remarkable groups of witnesses can be seen in the resulting phylogenetic tree – some already known about such as Families 1 and 13, and some new. A further phylogenetic network technique is then applied to interesting groups and families to shed further light on the relationships between the manuscripts.

Methodology

All 1,663 extant witnesses to John 18 were manually collated by the International Greek New Testament Project (IGNTP), and stored in a database in Münster.¹ I then generated NEXUS files from this database to be analysed by *MrBayes*, using the witnesses as taxa and variant units as characters.² The most varied of these variant units has fifty-two different readings (character states), post collation and regularisation. *MrBayes* is extremely popular and powerful software for carrying out Bayesian Markov chain Monte Carlo (MCMC) analysis for phylogenetics.³ However, *MrBayes* restricts the number of character states for standard (morphology) data to only ten. I therefore had to modify the source code of

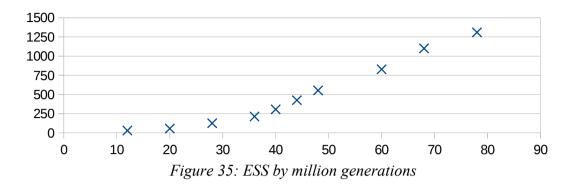
See Morrill, 'A Complete Collation and Analysis of All Greek Manuscripts of John 18'. This includes four special witnesses: A, NA27, MTJ18 and TR.


² See Maddison, Swofford, and Maddison, 'Nexus'; Huelsenbeck and Ronquist, 'MRBAYES'; Ronquist and Huelsenbeck, 'MrBayes 3'; Altekar et al., 'Parallel Metropolis Coupled Markov Chain Monte Carlo for Bayesian Phylogenetic Inference'. See Chapter 4 for an introduction to, and an analysis of, using phylogenetic software on manuscript transcription data, and Chapter 6 for an investigation into optimising *MrBayes*.

³ Technically, *MrBayes* runs Metropolis-coupled MCMC – or MCMCMC, or MC³.

Methodology

MrBayes to make it compatible with this dataset. My modified version of *MrBayes* accepts up to sixty-two character states, represented by the lower and upper case Latin letters and digits.


The computations described in this chapter were performed using the University of Birmingham's BlueBEAR HPC service, which provides a High Performance Computing service to the University's research community.⁴ I used *MrBayes* to carry out 78M generations of MCMC analysis on the data, in several stages.⁵ After each stage I checked for MCMC convergence by considering the average standard deviation of split frequencies (ASDSF), the effective sample size (ESS), and the potential scale reduction factor (PSRF).⁶ For this data set, it appears that the MCMC may never achieve an ASDSF of 0.01 (a typical metric for convergence) as Figure 34 shows it levelling off just below 0.11. Figure 35 shows ESS values growing slowly at first and then increasing steadily after approximately 36M generations. By 36M generations the ESS had passed a common rule of thumb value of 200, suggesting convergence. By 78M generations, the ESS had risen to 1,311.

⁴ See <u>http://www.birmingham.ac.uk/bear</u> for more details.

⁵ This analysis was carried out in March 2015.

⁶ *MrBayes*⁷ "sump" command calculates these convergence metrics. For definitions of these terms, and a discussion on the best ways to check for MCMC convergence, see Ronquist and Deans, 'Bayesian Phylogenetics and Its Influence on Insect Systematics'; Gelman and Rubin, 'Inference from Iterative Simulation Using Multiple Sequences'.

Finally, the PSRF (preferred by Ronquist and Deans) had fallen from 1.028 at 12M to 1.000 by 48M generations and measured between 1.000 and 1.003 thereafter.⁷ These metrics all suggest that by 36M generations the MCMC analysis has probably converged, and by 48M it can be said to have converged. It is therefore reasonable to expect the following results to be meaningful. They are based on the consensus tree created by *MrBayes* after 48M generations - primarily because the analysis had converged at this point and secondly (and pragmatically) because simply creating the trees after 78M generations requires more than forty-eight hours on BlueBEAR and therefore exceeds the maximum allowed runtime at the time of this analysis. For a further discussion of *MrBayes* convergence and optimising the time required to reach it see Chapter 6.

Results

The size of the resulting consensus tree generated by *MrBayes* representing the complete manual collation of John 18 presents a challenge. A spherical representation of the tree is the only version that could be printed on a single page, and is included as Figure 36.

⁷ See Ronquist and Deans, 'Bayesian Phylogenetics and Its Influence on Insect Systematics', 191.

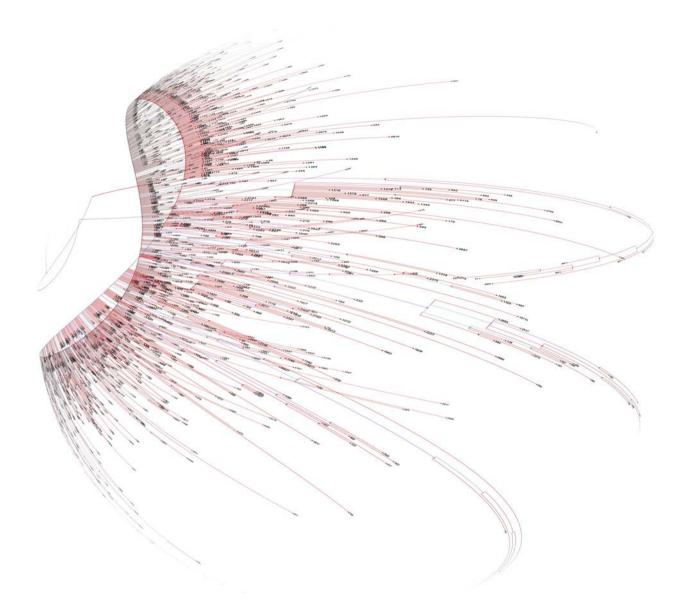
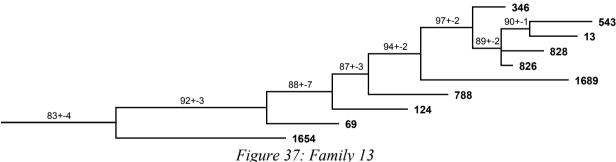


Figure 36: Spherical representation of the consensus tree of John 18

While Figure 36 is visually attractive, it is impossible to examine at this scale. An extract from the traditionally formatted consensus tree is shown in Figure 56, which represents only about 2% of the full tree. As a result the whole tree will not be included here in this format, but instead some interesting features will be presented in individual figures.⁸ The bold labels to the right of branches are Gregory-Aland numbers, identifying the


⁸ The full tree is available here: <u>http://epapers.bham.ac.uk/3105/1/John18MrBayesConsensusTree.pdf</u>

manuscripts. The small labels above branches represent the probability and standard deviation of the branch and thus represent a level of confidence in that branch. Any branch with no label carries 100% probability (i.e. is found in every tree from which the consensus tree was made).

Before proceeding, however, two things should be noted about this tree. First the tree represents closeness of relationship between witnesses and not true parent/child relationships.⁹ As such, a pair of witnesses where one was copied from the other will show up as close siblings, but not parent and child.¹⁰ Secondly, the tree is rooted arbitrarily at the *Textus Receptus* as doing so makes it comparatively easy to read. It is possible to represent the same tree with any given witness as the root.

Family 13 (f^{13})

At the very top of the full phylogenetic tree, is a familiar group: f^{13} or the "Ferrar Group". The relevant sub-tree is shown in Figure 37.

NA28 lists f^{13} membership (for the whole New Testament) as 13, 69, 124, 174, 230,

⁹ It is common for phylogenetic software to be based on the assumption that all supplied taxa will represent living organisms. As such it would be expected that these taxa will be leaves of any resultant phylogenetic tree.

¹⁰ See Chapter 4 for a discussion of the merits of visualising data this way to identify such close relationships.

346, 543, 788, 826, 828, 983, 1689, 1709 – ending with "etc.".¹¹ Jac Perrin established 13, 69, 124, 346, 543, 788, 826, 828, 983, and 1689 as valid members (in John's Gospel) in his PhD thesis in 2012 on f^{13} in John – so excluding 174, 230 and 1709 from NA28's list.¹² Didier Lafleur explored five criteria, from the Synoptics, for family membership (also in 2012) and his list agrees with NA28 excluding 1709 and adding l547.¹³ Perrin and Lafleur each list a number of other manuscripts that have previously been associated with f^{13} but which they argue are not members. Figure 37 shows f^{13} as identified by *MrBayes*; a group very similar to Perrin's list. The expected members 13, 69, 124, 346, 543, 788, 826, 828 and 1689 are present. 983 is missing John 11:34-19:9 and thus not present.

Of NA28's list 174, 230, and 1709 are also missing from Figure 37. 174 is lost after John 8 and therefore not present in this analysis. 230 and 1709 are both present but not associated with f^{13} and so appear in different parts of the tree.

Figure 37 shows one further manuscript in the sub-tree: 1654. 1654 is not normally associated with f^{13} . Visually it is closer to the main trunk of the tree than to f^{13} (and the point of such a tree is that it represents closeness or difference by the length of the horizontal lines). In fact 1654 differs from 69 (the f^{13} member closest to the trunk) in thirty-three variant units. For comparison, 69 and 124 differ in only seventeen variant units, and the greatest difference between any two members of this sub-tree is twenty-seven variant units. It appears that 1654 is a remote cousin of f^{13} at best. It is not easy to answer the question "so why did *MyBayes* put 1654 there?" This highlights something about the way this kind of phylogenetic tree is best used: allow the tree to suggest questions, but do not expect it to provide answers . . .

So, in conclusion, out of the thirteen f^{13} members listed in NA28, eleven are extant in

¹¹ See "Witnesses, Signs, Abbreviations" supplement to Aland et al., NA28.

¹² See Perrin Jr., 'Family 13 in Saint John's Gospel', 276.

¹³ See Lafleur, 'Which Criteria for Family 13 (f¹³) Manuscripts?', 140. Lectionaries are not included in this data set, so £547 is not present.

John 18. Nine of these have been successfully identified as a group by this phylogenetic analysis, exactly agreeing with Perrin's analysis. This is encouraging, in that it suggests that the method is valid. It is also good news for any keen supporters of f^{13} as the group has been so clearly identified out of 1,663 witnesses to John 18 – *a chapter devoid of any accepted markers of family membership*.

Median Joining Network

It is possible to carry out further phylogenetic analysis of this group of witnesses representing f^{13} . If we take the subset of the NEXUS file corresponding to f^{13} , and then remove any variant units (i.e. characters) where all nine witnesses agree, and then create a new NEXUS file of just this data we find that it has only sixty characters and no character has more than four states.¹⁴ This is crucial, as this can be represented exactly as DNA data – see Figure 38. A standard NEXUS file representing DNA data will use only the symbols ACGT, along with ? for missing data. In this case, the character states are simply transformed into these letters when creating the NEXUS file. There are many more tools available for analysing NEXUS files of DNA data than there are for morphological data.

```
#NEXUS
begin data;
dimensions ntax=10 nchar=77;
format missing=? gap=- matchchar=. datatype=dna;
matrix
END;
    Figure 38: NEXUS file for f<sup>13</sup> in John 18
```

¹⁴ If we also include 1654 then there are 77 characters. However, this witness is a far outlier in the resulting network, and so can be safely discarded at this stage. The network is otherwise unchanged.

	123456789111111111222222222233333333344444444445555555555	
H_1 H_2 H_3 H_4 H_5 H_6 H_7 H_8	AACCCACACCTCCACCAACAAATCCAATACAACAACAACA	1 1 1 1 1 1 1
Н_9 Н_10	AACCCAAAAACTCCAACAAAAAAAAACAATAACAAAAAAA	1 1
1111	11111111111111111111111111111111111111	

This entirely standard NEXUS file can be read by many phylogenetic software packages. It can then be converted into Roehl data format (see Figure 39), which can then in turn be loaded into the *Network* software from *Fluxus Engineering* for creating phylogenetic networks.¹⁵ A key feature of this software is that, unlike many such programs, taxa/haplotypes from the supplied data can occur as *internal* nodes in the network – not just as leaf nodes. See Figure 40 for the Median Joining network for f^{13} .

¹⁵ See <u>https://doi.org/10.5281/zenodo.1296329</u> or <u>https://github.com/edmondac/nexus_scripts</u>, for my script nexus_to_rdf.py to convert from NEXUS format to Roehl data format. The taxa cannot, apparently, have arbitrary names for this file format when using *Network*. So we use H_1 (for haplotype 1), H_2 (for haplotype 2) etc. and maintain a mapping from those names back to the manuscripts. These can then be reinstated in the final diagram using relabel_fdi.py from the same repository.

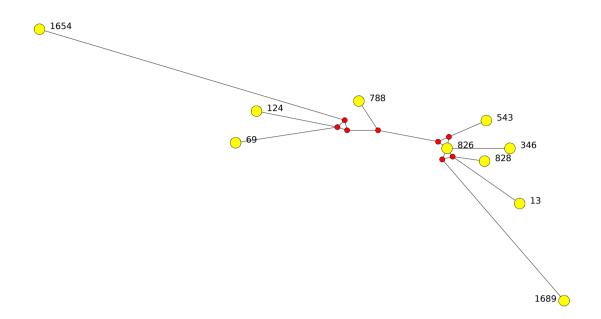


Figure 40: Median Joining Network of f¹³ in John 18

What is striking about this network, is that there is one witness very much at the centre: 826. This, for a bioinformatician, is a clear indication that 826 is the ancestral haplotype, or most recent common ancestor, of this group. Interestingly, this is in broad agreement with the conclusion of Wisse, when using the Claremont Profile Method to analyse Luke. Wisse comments that 826 is the only perfect member of the group, but that either it or 543 could represent f^{13} in an apparatus.¹⁶ He lists 13, 346, 543 and 788 as core members (in addition to 826). Perrin's core group of f^{13} in John is 13, 346, 543, 826, and 828.¹⁷ On the basis of our network in Figure 40 it would seem reasonable to state that the core group is actually the union of Perrin's and Wisse's lists, namely: 13, 346, 543, 788, 826 and 828 – with 826 at the very centre.

¹⁶ See Wisse, The Profile Method for the Classification and Evaluation of Manuscript Evidence, as Applied to the Continuous Greek Text of the Gospel of Luke, 55ff, 106ff.

¹⁷ See Perrin Jr., 'Family 13 in Saint John's Gospel', 273.

Family $1(f^1)$

There is perhaps only one manuscript family as famous as f^{43} : namely f^{4} or the "Lake Group". Figure 41 shows that *MrBayes* also found something akin to f^{4} .

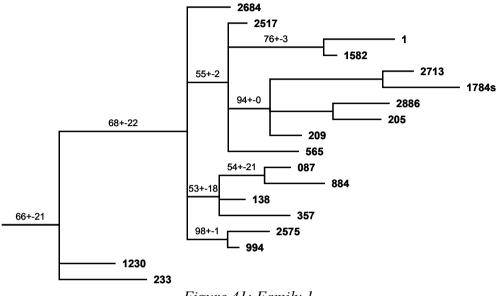
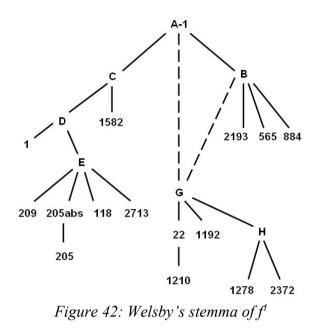
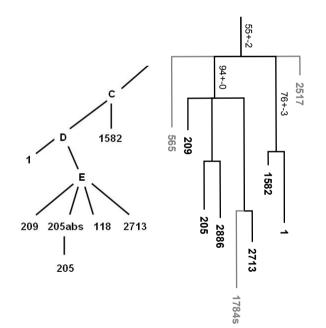


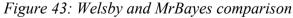
Figure 41: Family 1

NA28 lists f^4 membership as "1, 118, 131, 209, 1582, etc."¹⁸ Welsby, in 2011, studied seventeen candidate members of f^4 in John. She concluded that fifteen should be considered family members, namely: 1, 22, 118, 205, 205abs (now known as 2886), 209, 565, 884, 1192, 1210, 1278, 1582, 2193, 2372, and 2713. For the remaining two manuscripts, she argued that 131 has only a weak family affinity in John, and 872 has none.¹⁹


Several of the witnesses listed by Welsby (1, 2886, 205, 209, 565, 884, 1582 and 2713) are grouped together by this phylogenetic analysis along with a number of other manuscripts. Before turning to the others, first let us consider the stemma proposed by Welsby and compare it to our phylogenetic tree. Welsby's stemma of f^{1} is shown in Figure 42.²⁰

¹⁸ See "Witnesses, Signs, Abbreviations" supplement to Aland et al., NA28.


¹⁹ See Welsby, 'A Textual Study of Family 1 in The Gospel of John.', 201.


²⁰ Ibid., 202.

Consider the witnesses on the left of Welsby's tree. First, Welsby has 1 as a descendant of 1582 via the hypothetical witness D, where MrBaves has them as siblings in Figure 41 – but with 1582 having a much shorter branch length. This phylogenetic analysis only creates hyparchetypes (speciation events) as needed and would not postulate the C-D-E set from

Welsby's results. As such this may be considered as an equivalent result. Secondly, Welsby has 2886 (205abs) as 205's parent whereas *MrBayes* again shows them as siblings (on a

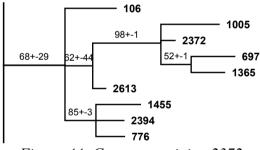
branch with 100% probability). Since the phylogenetic analysis will always show real witnesses as leaves of the tree this is as close to Welsby's relationship as can be achieved by this method. Thirdly, 209 and 2713 also appear in an equivalent relationship in both trees. Remarkably, these two sub-groups even appear to be related to one another in a similar way in both trees. The similarities between the

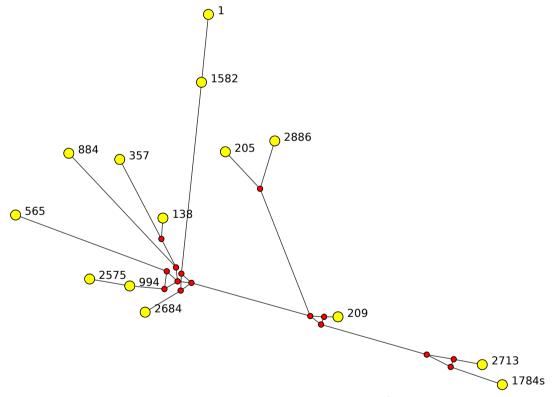
two trees are clearly shown if the relevant part of Figure 41 is extracted and rotated, extra witnesses greyed out and then the image placed beside the relevant part of Welsby's tree – as in Figure 43.

The only other two witnesses held in common between the two trees are 565 and 884. Welsby has these two as close siblings but Figure 41 shows them somewhat further apart. Of the remaining witnesses, 118 is supplemented in John 18 with 118S and this supplement differs in thirty-two places of variation in John 18 from 1582 (for example). This is the same number of differences as between 1582 and 01 (Codex Sinaiticus). As a comparison, 1 and 1582 differ in only seven places in John 18. Thus 118S is clearly not a member of f^4 , but this study can say nothing about the family membership of 118 itself.

Manuscript 22 is extant, but grouped with 134 and 1210 (another of Welsby's f^{1} members) but not with f^{1} . 1192, 1278 and 2193 are extant yet appear as individual branches off the trunk and not with f^{1} .

2372 is part of an interesting looking group (see Figure 44) and not with f^4 although it is lacunose in the last 114 variant units. In John 18, 2372 and 1005 (its closest visual neighbour in Figure 44) differ in only four variant units. By




Figure 44: Group containing 2372

contrast, the minimum number of variant units of difference between 2372 and any witness in Welsby's study and also the tree in Figure 41 is nineteen (with both 884 and 1582). Hence it seems, based only on data from John 18, that 2372 might not belong with f^{1} .

The phylogenetic tree in Figure 41 shows ten further manuscripts not listed by Welsby: 087, 138, 223, 357, 994, 1230, 1784S, 2517, 2684 and 3575. Perhaps the most surprising of these is the sixth century majuscule 087. But, 087 is extant in only seven verses of John 18 (29-35), along with fragments of John 19, 20, 21; and some parts of Matthew and Mark. This paucity of data means that the association with f^4 manuscripts must be treated with caution. 1784S, however, is shown right at the heart of the core f^4 group (varying from 2713)

in only eight places) – was it perhaps copied from a member of this core group to supplement 1784? Further study would be required to answer that question, and also to investigate the claims on family membership for the remaining manuscripts.

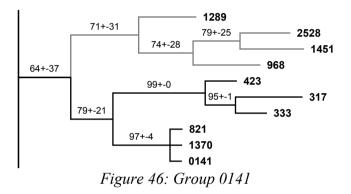

A median-joining network can be created for this group of manuscripts like we did for f^{13} above. There are a few key differences, however. First, two manuscripts (087 and 2517) must be excluded as they are sufficiently lacunose that *Network* reports an error with the data. Secondly, the resultant network (Figure 45) does not show an extant manuscript in a central location as it did for f^{13} . Nevertheless the locations of the remaining witnesses in the network show the same agreements with Welsby as did *MrBayes*. Also, interestingly, 1 is shown as descending from 1582; and 2575 from 994.

Figure 45: Median-joining network for f⁴

A Group of Catena Manuscripts

The full phylogenetic tree created by *MrBayes* contains many interesting sub-trees. These may represent hitherto unknown manuscript groups. They may well, however, just be an artificial product of the algorithms and not represent anything significant about the manuscript relationships. As such, to evaluate each group proposed by *MrBayes* it is necessary to return to the manuscripts themselves. First, we will consider the group of witnesses highlighted with black branches in Figure 46.

The most striking feature of this group is the trio of Byzantine witnesses at the bottom: 821, 1370 and 0141:

- 0141 is a tenth century catena manuscript in the Bibliothèque Nationale in Paris and written in one column. It has majuscule lemmata (with occasional exceptions) and a minuscule commentary.²¹
- 821 is a sixteenth century minuscule catena manuscript in Biblioteca Nacional de España in Madrid, again written in one column.
- 1370 is a sixteenth century (specifically 1542) minuscule catena manuscript in the Staatsbibliothek zu Berlin, written in two columns.

²¹ There are a few cases where the scribe has apparently forgotten to change script and instead marked the lemma with diplai or coronis. Taylor Farnes lists a few examples as John 3:3, 3:4, and 3:5. See Taylor Farnes, 'Scribal Habits in Selected New Testament Manuscripts', 225–26.

Chapter 5: Phylogenetics of John 18

In John 18, 0141 and 821 have almost identical Biblical text, as also shown by Bruce Morrill.²² It is worth noting that while Morrill's extensive tables contain the information that would demonstrate that these two manuscripts are closely related it is almost impossible to notice such a relationship. However, visualisation of the relationships (for example in the tree in Figure 46) allows such details to be spotted easily and intuitively. This is one of the important strengths of such a technique. Compare this to a pre-computer age where a scholar would have to travel to libraries in Madrid, Paris and Berlin searching out manuscripts. He would somehow have to realise that a copying relationship might exist between these three – which is virtually impossible unless he was already looking for it. Realistically, this could not have been achieved without computers.²³

In John 18, 821 and 0141 differ in only two places: In John 18:34/2-4, 821 reads απεκριθη ο ιησους, but 0141 does not have the article; and in John 18:38/22-24, 821 reads παλιν εξηλθεν, but 0141 duplicated the second word (presumably by mistake as it occurs at the end of one page and the start of another). Even in the unregularised, raw data these two manuscripts, *created six hundred years apart*, differ in only four minor places. More remarkable is that the commentary text agrees (at least in the handful of test passages I have inspected). For example consider these pages: 0141 folio 292r; and 821 folio 497v.²⁴ These pages both contain three biblical lemmata: John 18:31a, John 18:31b-32, and John 18:33-34. So could 821 be a copy of 0141, six centuries later? Alan Taylor Farnes has subsequently explored this question and has conclusively shown that 821 is a direct copy of 0141.²⁵

²² See Morrill, 'A Complete Collation and Analysis of All Greek Manuscripts of John 18', 128, 224.

²³ I was corrected here by a visiting noted textual scholar, who said that he would have remembered sufficient detail from one trip to make the connection on a second. So perhaps I should revise my statement to saying that I cannot imagine achieving that feat myself without computers!

²⁴ For 0141 folio 292r see <u>http://ntvmr.uni-muenster.de/community/modules/papyri/?zoom=38&left=5&top=-906&site=INTF&image=20141/155635/5900/10/2441;</u> and for 821 folio 497v <u>http://ntvmr.uni-muenster.de/community/modules/papyri/?zoom=63&left=-443&top=-1227&site=INTF&image=30821/155635/4750/10/2321</u>

²⁵ See Taylor Farnes, 'Scribal Habits in Selected New Testament Manuscripts'.

In the middle of Figure 46 is another trio of manuscripts: 317 (twelfth century), 333 (thirteenth century) and 423 (sixteenth century), all witnessing to Nicetas of Heraclea's catena. Michael Clark has shown that 333 was the exemplar used by the copyist of 423 and indeed they differ in only five variant units in John 18.²⁷ 333 and 423 also share a unique (although unremarkable) reading in John 18:29/6-18. All five witnesses in this group (0141, 821, 333, 317 and 423) share another seemingly unremarkable yet otherwise unique reading in John 18:18/30-48: $\eta\nu$ $\delta\varepsilon$ π ε τ ε τ

The group of four witnesses greyed out at the top of Figure 46 are 968 (sixteenth century), 1289 (thirteenth century), 1451 (twelfth/thirteenth century) and 2528 (thirteenth/fourteenth century). They are not catena manuscripts and it is not obvious why this group exists. This is a sometimes problematic characteristic of this kind of statistical method; there is no identifiable "reason" behind features in the results. The four witnesses differ

²⁶ As of May 2018, the first few folios of 1370 are now available through the NTVMR.

²⁷ See Clark, 'The Catena of Nicetas of Heraclea and Its Johannine Text', 29ff.

pairwise in between twelve and seventeen variant units and have no otherwise unique reading to set them apart from the corpus.

While a median-joining network does not add significantly to the results from the Bayesian analysis here, it is nevertheless interesting and confirms those results, and so is included as Figure 47. Consider, for example, the closeness of the pair 821 and 0141, with 1370 just a little distance away.

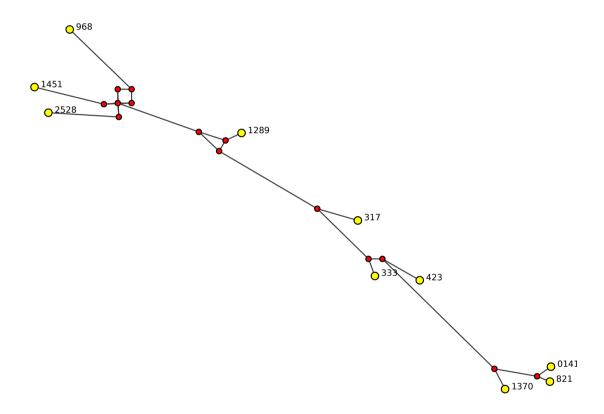
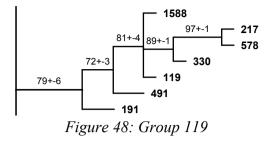
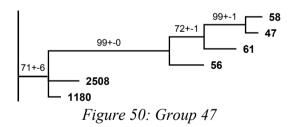



Figure 47: Median joining network of the catena manuscripts

Further Groups

The following figures depict other interesting groups. They are presented here to provide a further taste of the potential of this methodology, and are only briefly commented on. For convenience, each group is named after the lowest numbered member.

Figure 48 shows "Group 119". The pair of witnesses 217 (twelfth century) and 578 (fourteenth century) differ in only one word in John 18 – suggesting a very close relationship. The average



pairwise difference in variant units in this group as a whole is only 6.9, with maximum fourteen. More light can be shed on the relationships in this group by creating a medianjoining network, which shows that 578 may be descended from 217 which in turn may be descended from from 330. Also 191 is shown as having descended from 1588 (see Figure 49).

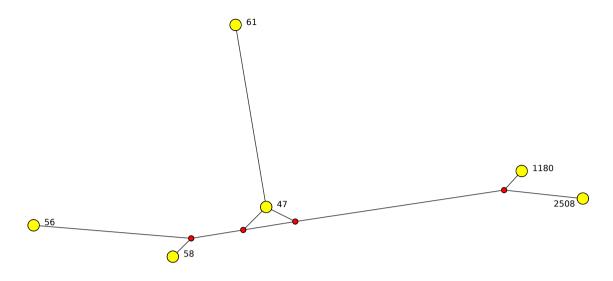
Figure 49: Median-joining network for group 119

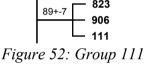
Figure 50 shows four witnesses identified as close by Gregory: 47, 56, 58 and 61.²⁸ Codex Montfortianus (61) was famously created in the sixteenth century in Oxford specifically to force

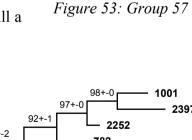
Erasmus to include the Johannine Comma in the *Textus Receptus*.²⁹ Out of the other three witnesses, in John 18, 61 is closest to 47, differing in only six variant units. Was it perhaps copied from 47, with a handful of changes (deliberate or accidental) drawing it closer to the imminent *Textus Receptus* text? Figure 51 lends weight to this suggestion, showing 61 descended from 47 in the Median Joining network.

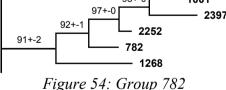
²⁸ Gregory, Textkritik des Neuen Testaments, p142.

²⁹ An additional clause in 1 John 5:7-8 [KJV]: 7 For there are three that bear record <u>in heaven</u>, the Father, the <u>Word</u>, and the Holy Ghost: and these three are one. 8 And there are three that bear witness in earth, the Spirit, and the water, and the blood: and these three agree in one.




Figure 51: Median-joining network for group 47


Figure 52 shows a trio of twelfth and thirteenth century witnesses that differ, pairwise, in only one (111 and 823), two (823 and 906) and three (111 and 906) variant units. These differences are very minor, and a very close relationship is implied.


Figure 53 shows four eleventh and twelfth century manuscripts. 57, 77 and 2458 have an average pairwise difference of 3.3 variant units while 108 increases this average to 5.5 – still a very close group.

Finally, Figure 54 shows a sub-tree with remarkably high confidence values. 782 and 2252 come from the twelfth century, 1001 and 1268 from

the thirteenth, and 2397 is dated, according to the *Liste*, to the year 1303.³⁰ The medianjoining network for this group is shown in Figure 55. This network implies that 1268 and 782 are descended from 2252.

³⁰ Aland et al., Kurzgefaßte Liste der griechischen Handschriften des Neuen Testaments, 185.

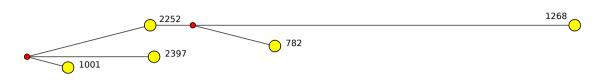


Figure 55: Median-joining network for group 782

There are many similar sub-trees in the results that could warrant further study, highlighting hitherto unknown manuscript relationships.

Chapter 6: Optimising MrBayes

Introduction

Running *MrBayes* on the IGNTP's John 18 data (see Chapter 5) on my laptop required several months for the results to converge and therefore be meaningful. Simply carrying out an identical calculation on the University of Birmingham's BlueBEAR HPC service (which provides a High Performance Computing service to the University's research community) brought the time required down to two weeks, using eight processors.¹ But BlueBEAR has thousands of processors, and so a question presents itself: can this be done any quicker?

This chapter explores several ways of potentially speeding up *MrBayes*' convergence – and looks for some correlation between convergence statistics and the subjective quality of the phylogenetic trees produced at the end of each job. As a dataset we will take Parker's collation of John 2 for the ECM, excluding any fragmentary witnesses that are only extant in less than 25% of variant units.² This dataset is considerably smaller than the IGNTP's John 18 data (and therefore faster to process), yet large enough for *MrBayes* to produce quality results.

The Solution Space

It is important to be able to visualise what *MrBayes* is actually doing in order to understand what convergence means. A helpful way to do this is to consider the set of all possible results (i.e. every possible phylogenetic tree having these witnesses at the ends of the branches) in terms of a mountain range. The higher the mountain peak, the better the result will match reality (the higher the mountain the better the view). *MrBayes*' job is to explore the

¹ See <u>http://www.birmingham.ac.uk/bear</u> for more details.

² Including witnesses that are highly fragmentary can create misleading results – or can hide otherwise useful knowledge to be gained from the consensus trees etc.

The Solution Space

mountain range looking for the highest peak. To do this analytically (e.g. by mapping out the entire mountain range) would take for ever and so *MrBayes*' approach is (broadly speaking) to explore the landscape and try to climb upwards.³ The key to *MrBayes*' success is that it uses multiple chains (see below) which allow it to jump from one mountain to another if the second one is found to be taller.

Convergence

MrBayes was compiled with OpenMPI support allowing it to run in parallel on many of BlueBEAR's processors at once.⁴ In 2004, Altekar, Dwarkadas, Huelsenbeck and Ronquist wrote a paper entitled *Parallel Metropolis-coupled Markov chain Monte Carlo for Bayesian phylogenetic inference*. They described their motivation for writing the paper as follows:

Bayesian estimation of phylogeny is based on the posterior probability distribution of trees. Currently, the only numerical method that can effectively approximate posterior probabilities of trees is Markov chain Monte Carlo (MCMC). Standard implementations of MCMC can be prone to entrapment in local optima. Metropolis coupled MCMC, a variant of MCMC, allows multiple peaks in the landscape of trees to be more readily explored, but at the cost of increased execution time.⁵

In other words, Metropolis coupling is required in order to increase the quality of the results for MCMC Bayesian analysis of phylogenetic data – but it is slow. The reason it is

³ The total number of possible trees with 176 leaves is huge. Calculating this number is described in Felsenstein, 'The Number of Evolutionary Trees'. We can simply infer that there are considerably more than 10^{370} possible multifurcating trees with 176 leaves. Consider that the number of atoms in the universe is approximately 10^{80} and the scale of the problem becomes clear.

⁴ This is my modified version of *MrBayes*. *MrBayes* only supports ten character states for standard morphology data. I modified *MrBayes* to support sixty-two character states. See Chapter 4 for details. See also Gabriel et al., 'Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation'.

⁵ Altekar et al., 'Parallel Metropolis Coupled Markov Chain Monte Carlo for Bayesian Phylogenetic Inference', 407.

slow is that instead of doing the MCMC analysis once, it is done several times at once in different "chains". Each of these chains has a different level of "heat" applied – basically making it traverse the solution space in bigger jumps. The first chain is "cold" - just like a simple MCMC analysis – but it can essentially learn from what is happening in the other chains by swapping places with them: "Successfully swapping states allows a chain that is otherwise stuck on one peak in the landscape of trees to explore other peaks. For example, if the cold chain is stuck on a peak in the posterior distribution of trees, swapping states with another (heated) chain allows the cold chain to jump to another peak in a single cycle. As a result, the cold chain can more easily traverse the space of trees."⁶

The MrBayes tutorial describes convergence like this:

By default, MrBayes will run two simultaneous, completely independent analyses starting from different random trees (Nruns = 2) ... The idea is to start each run from different randomly chosen trees. In the early phases of the run, the two runs will sample very different trees but when they have reached convergence (when they produce a good sample from the posterior probability distribution), the two tree samples should be very similar.⁷

We will consider the following three ways of identifying whether or not the analysis has converged: the average standard deviation of split frequencies (ASDSF); the effective sample size (ESS); and the potential scale reduction factor (PSRF).⁸ Basically, in an ideal world, when the analysis has converged the ASDSF should be low (preferably < 0.01), the ESS should be high (> 200) and the PSRF should approach one (rounding to 1.000 is desired).

⁶ Ibid., 409.

⁷ See 'MrBayes Tutorial, v3.2' (section 'Setting up the Analysis').

⁸ For definitions of these terms, and a discussion on the best ways to check for MCMC convergence see Chapter 5, and Ronquist and Deans, 'Bayesian Phylogenetics and Its Influence on Insect Systematics'; Gelman and Rubin, 'Inference from Iterative Simulation Using Multiple Sequences'.

Convergence

The goal of this optimisation task is to have well-converged analysis in the shortest time frame.

Benchmark

As a benchmark, I configured *MrBayes* as shown in Table 83 and executed it six independent times on the John 2 data, i.e. on a NEXUS file created from Parker's ECM collation of John 2, including all witnesses from the ECM that are extant in at least 25% of variant units in this chapter.⁹ See Appendix 3 for the full NEXUS file. This configuration means that two independent runs will be carried out with eight chains each.¹⁰ They will calculate a maximum of 100 million generations but stop early if the ASDSF gets as low as 0.01. These terms will be explained as we go along. The benchmark results are shown in Table 83.

#Runs	#Chains	Target ASDSF	#Generations	Burninfrac
2	8	0.01	100,000,000	0.5

Analysis ID	ASDSF	#Generations	ESS	PSRF	MCMC time
920421	0.009995	86470000	14944.03	1.000	16.75
920450	0.009848	58150000	9765.85	1.000	10.5
920451	0.009993	77865000	10329.27	1.000	14.75
920452	0.009997	43040000	7582.82	1.000	7.75
920453	0.009988	37780000	7612.02	1.000	6.5
920454	0.009998	67575000	11970.11	1.000	13

Table 82: MrBayes configuration for the benchmark

Table 83: Benchmark results

⁹ This analysis was carried out between May and November 2016, using data from 20th May 2016.

¹⁰ Each node on BlueBEAR has sixteen processors (at time of writing), so each benchmark run will require just a single node – which reduces the queue time waiting for the job to be started.

Chapter 6: Optimising MrBayes

The first key conclusion of the benchmarking process is that some of the statistics are significantly different between the six benchmarks. While they all converged to less than 0.01 ASDSF, they took between 6.5 and 16.75 hours to do so – and between 37,780,000 and 86,470,000 generations. The jobs that took longer had a larger ESS than those that took less time – which is to be expected. The ASDSF of the six jobs is shown in Figure 57 starting from generation 2,970,000. This graph highlights some interesting features of MC³. First consider 920450. It is converging at around the same number of generations as 920452 around the middle of the lower axis, but then a significant event happens and it diverges again. It seems reasonable to postulate that a heated chain for one of the two runs had found a better peak, some distance away in the solution space and the cold chain swapped with it – temporarily diverging from the other run. The same seems to have happened for 920454.

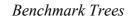
Benchmark Trees

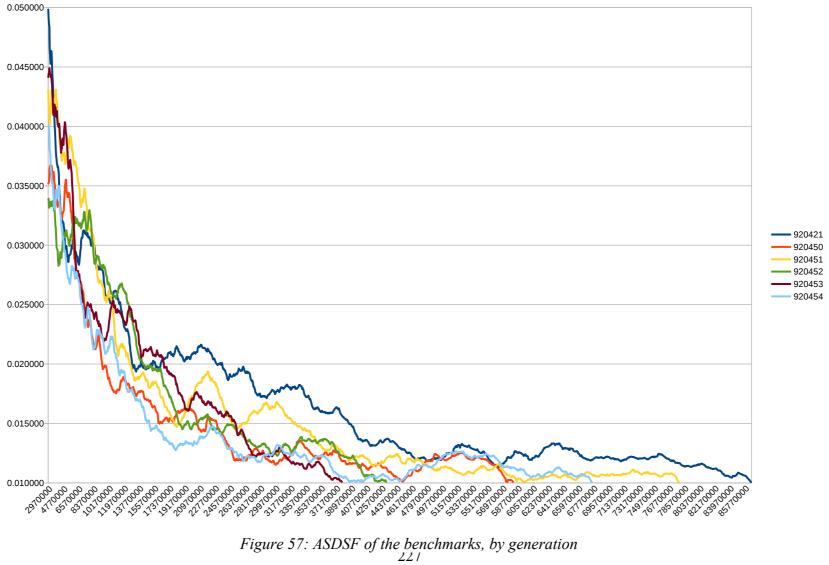
All six benchmarks produced very similar trees. For an example tree see Appendix 2. Job 920450 includes one extra sub-tree (when compared to all the other jobs; the pair 33 and 579). The full set of sub-trees from 920450 (as opposed to the rest of the tree which consists of single witnesses on the end of independent branches) is shown in Figure 58.

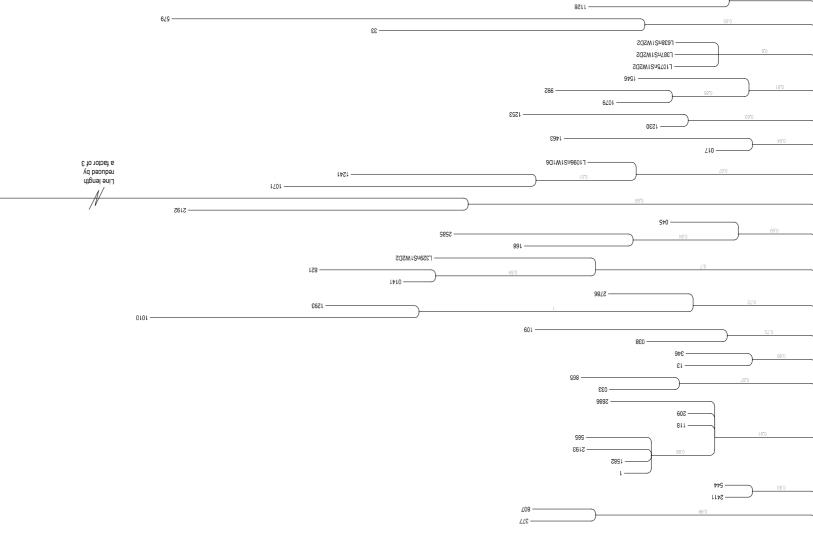

Branch Probabilities

Before looking at these trees in detail a brief mention of the numbers on the branches is in order. These represent the branch probability – or the confidence that can be assigned to any given branch. It is calculated by taking the second 50% of generations (the idea being that the data has largely converged by then) and considering the tree created by each generation. The trees shown here are consensus trees – which are made by including any sub-tree that occurs in more than half of the trees considered. Thus the minimum branch probability will be

Benchmark Trees


50%, and such a branch would indicate that nearly as many trees did not have this branch as had it. The higher the branch probability, the more confidence can be ascribed to the branch being a genuine feature of the data.


Sub-tree: Family 1 (f¹)



Family 1 was discussed in Chapter 5, where *MrBayes* identified a number of f^4 witnesses in a sub-tree in John 18 data. It has identified such a sub-tree again here in John 2, although with subtly different membership than before. Here 1, 118, 2886, 209, 565, 1582 and 2193 are found in a sub-tree, while the other extant (and included) witnesses 884, 1192, 1210, 1278, 2372 and 2713 are found as singleton branches.

Chapter 6: Optimising MrBayes

877

chapter 6: Optimizing MrBayes

- 565

287 ·

Sub-tree: Family 13 (f¹³)

Again in Chapter 5, f^{13} was discussed – where Perrin's list of members (13, 69, 124, 346, 543, 788, 826, 828, 983, and 1689) was largely identified by *MrBayes*. Here there is no such identifiable tree. Only 13 and 346 are grouped together in Figure 58. 1689 is not included in the ECM, but all the other witnesses listed above exist as singleton branches. Interestingly, jobs 920452, 920453 and 920454 also include a small sub-tree containing the pair 69 and 828, although separately from 13 and 346.

Other Notable Features

Some features among the remaining simple sub-trees are worthy of note. For example the pair 0141 and 821 (see Chapter 5) occurs again – this time grouped with a lectionary witness: L329-S1W2D2 (labelled as L329nS1W2D2 in the tree as *MrBayes* does not allow hyphens in a taxon name) – an eleventh century manuscript currently residing in the British Library.

The only multi-lectionary sub-tree is a trio of witnesses: L1075-S1W2D2, L387-S1W2D2 and L638-S1W2D2 – although the sub-tree only has 0.6 (i.e. 60%) probability indicating that caution should be exercised when talking about the group. These three eleventh century lectionaries currently reside in the Great Lavra (Mt. Athos), the National Library of Greece (Athens) and Dionysiou (Mt. Athos) respectively.

An intriguing pair is also found, although there is more distance between them than there is from the trunk. 017 is a ninth century manuscript in the National Library in Paris, while 1463 dates from the thirteenth century and resides in the Great Lavra (Mt. Athos).

Conclusion

Even though the convergence data vary significantly, the resulting phylogenetic trees from all six benchmark jobs are remarkably similar. We will, therefore, use these main subtrees as a way of measuring the relative quality of the results for the rest of this chapter. The goal is *to get equivalent (or better) quality results in significantly less time*.

Number of Processors

Introduction

There are two ways in which *MrBayes* can make use of multiple processors – multiple "runs" and multiple "chains". We will explore increasing and decreasing both settings.

Chains

In addition to the benchmark jobs (two runs, eight chains) I scheduled three jobs each with two runs and four, twelve, sixteen, twenty, twenty-four, thirty-two, forty-eight and sixty-four chains. The results were a mixture and did not show any strong pattern. Figure 59 shows the time required for the MCMC analysis to converge (ASDSF < 0.01) with the different numbers of chains. Figure 60 shows the number of generations required in each case.

Chapter 6: Optimising MrBayes

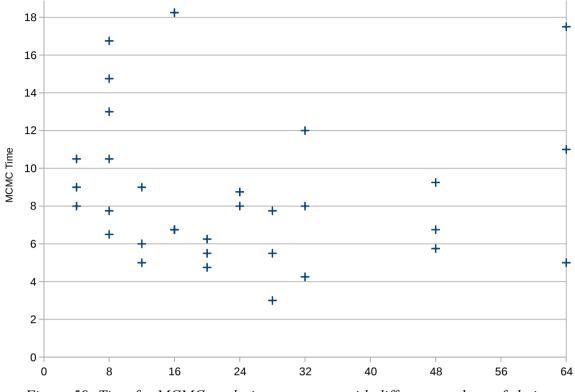


Figure 59: Time for MCMC analysis to converge with different numbers of chains

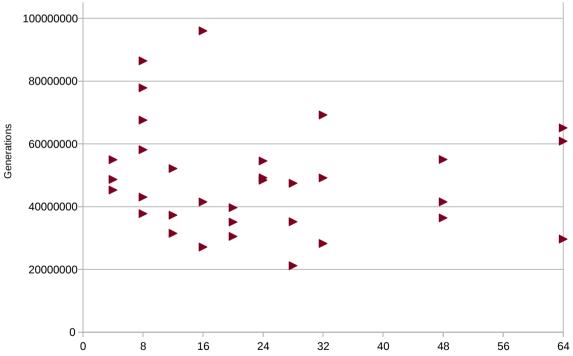
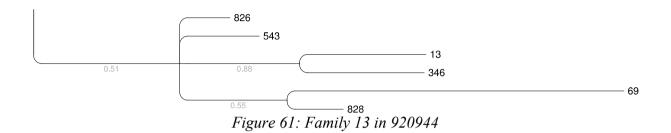


Figure 60: Generations for MCMC analysis to converge with different numbers of chains

Number of Processors


There are a number of peculiarities arising from these graphs. First there are some outliers – notably one job at sixteen chains took over eighteen hours to converge and required 96,035,000 generations. One job at sixty-four chains took nearly as long, but significantly fewer generations (65,100,000).¹¹ This highlights two important facts about this kind of analysis – first any given job could choose a good route through the solution space or a bad one – and a good one might converge quickly to a good answer while a bad one might take a very long time.¹² This is a feature of this kind of non-analytical, sampling-based method. The second feature is that there does not seem to be a simple way of translating the number of generations required into the time taken. For some reason it sometimes takes a long time to do a few generations. This is made plain by the other two jobs with sixteen chains. One took 6.75 hours to do 27,130,000 generations while the other took 6.25 hours to do 39,685,000. Whether this is a feature of *MrBayes*, or BlueBEAR or some other factor is not clear at this time.

The second peculiarity is that there seems to be a general downward trend in both graphs up to twenty chains, or possibly twenty-eight chains, but then it goes up again. Twenty and twenty-eight chains have about the same average time and generation results, but the standard deviation is significantly greater with twenty-eight chains (thus it also has the quickest individual job). Given the discussion in the previous paragraph it would be unwise to claim any kind of pattern from this data. It may be that this dataset can converge easily with relatively few chains, and so the extra chains do not add much to the Metropolis coupling. Or it may be that the apparent randomness of the Bayesian method outweighs the effects gained by adding more and more chains.

¹¹ These two facts come from the underlying data, as individual jobs cannot be identified from the graphs.

¹² Of course it does not "choose" a "route" at all – but attempts to converge on peaks while the Metropolis coupling helps it to jump to other peaks. But the end result can be thought of as a route through the solution space.

While most of these jobs produced the expected trees, two produced trees with an additional interesting feature: 920944 and 920607, both with twenty-eight chains. Figure 61 shows their sub-tree representing f^{13} – which is significantly more exciting to a text critic than that found in the benchmark results.

Here we find 13, 69, 346, 543, 826 and 828 grouped together. That leaves out only 124, 788 and 983 of the available witnesses. Sadly, this sub-tree sits on a branch with only 51% probability – and so no great claims can be made. This is either a hard-to-find result reflecting real-world relationships (and therefore exciting) or a statistical anomaly seeming to confirm a flawed result we were hoping to find (and therefore very shaky ground). Interestingly, 920607 was both the fastest result (three hours) and also contained this sub-tree. If this was the only job we had run then we might have claimed a great result, which highlights the importance of repeating such analysis multiple times.

Runs

The benchmark jobs used two runs and eight chains each. To test the effect of changing the number of runs I ran three jobs each with one, three, four, six and eight runs. In a similar vein to the Chains tests above, the results were inconclusive. Figure 62 shows the time required for the MCMC analysis to converge (ASDSF < 0.01) with the different numbers of runs. Figure 63 shows the number of generations required in each case. Note that, by definition, a single run cannot converge – so the first point on each graph represents the full

Number of Processors

100M generations.

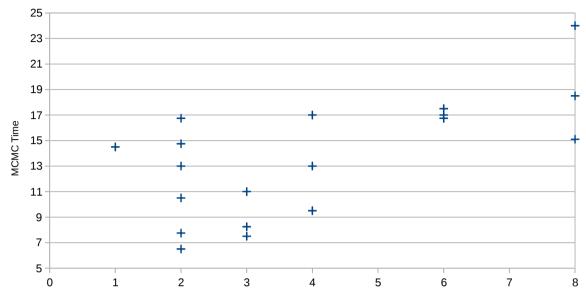


Figure 62: Time for MCMC analysis to converge with different numbers of runs

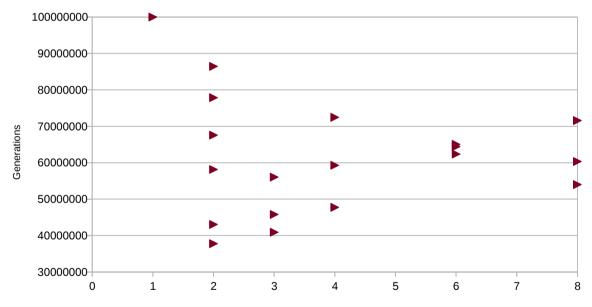


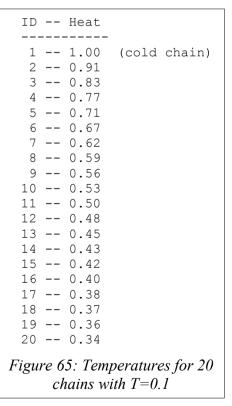
Figure 63: Generations for MCMC analysis to converge with different numbers of runs

The jobs with eight runs completed the MCMC analysis fine, but failed to create a consensus tree. It seems that BlueBEAR killed the process in each case - due to memory exhaustion on the first compute node. As such we can consider how quickly they converged, but they are currently unusable for the real end-purpose. The jobs with six runs were not

killed in this way, but they did not complete their analysis of the trees in time and BlueBEAR killed them anyway at forty-eight hours.

While there may be some doubt about a trend in Figure 63 (generations required to converge), Figure 62 seems conclusive: using more runs requires more time. This is not unexpected. It is likely that more independent runs would have a greater chance of finding the peaks in the solution space but, crucially, they would all have to converge on the same peak, which is much less likely to happen quickly. So more runs makes it harder to converge and *MrBayes* thus takes longer to do so. The jobs with one, two, three and four runs were able to complete and create consensus trees. The resulting trees were similar to the benchmarks. Therefore, it seems that increasing the number of runs above two is unnecessary.

Configuration Options

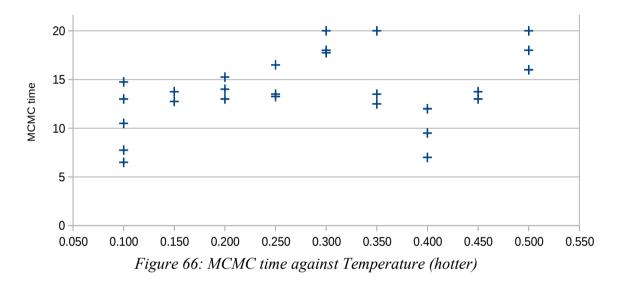

Burn-in

One key aspect of making a good consensus tree is making sure that early generations are not included. In these early generations the standard deviation will be changing significantly, as the two runs explore the solution space. If a consensus tree is created using these early generations then it is unlikely to contain many interesting sub-trees. Matzke's *MrBayes Lab* explains how to interpret the ".p" files created by *MrBayes* to identify a suitable burn-in setting. In this case the standard deviation becomes stationary early in the run and the "50%" burn-in setting that was used in all our test jobs was in no danger of including unstable results. As a result there is little to be gained by experimenting with different burn-in values at this time.

Temperature

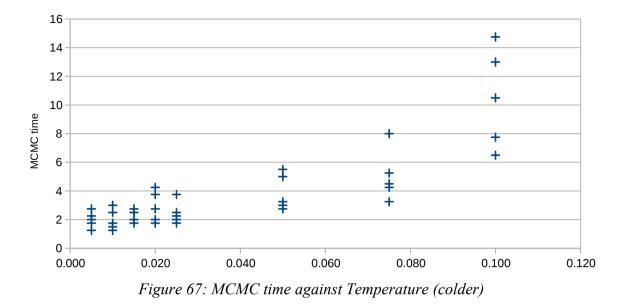
It is possible to change the temperature settings applied to the heated chains: "The higher the temperature, the more likely the heated chains are to move between isolated peaks in the posterior distribution. However, excessive heating may lead to very low acceptance rates for swaps between different chains."¹³ The *MrBayes Tutorial* explains the value of chains swapping states and that insufficient swaps are an indication that the temperature is too high.¹⁴ The more chains that are used, the smaller the change in temperature there is between the chains – which explains why running the analysis with more chains can speed up convergence, although it may not do so every time (see the Chains section above). Consider Figure 64 and Figure 65 - the heat applied to a run with eight chains compared with twenty chains.¹⁵

ID Heat				
1 1.00	(cold chain)			
2 0.91				
3 0.83				
4 0.77				
5 0.71				
6 0.67				
7 0.62				
8 0.59				
Figure 64: Temperatures for 8 chains with T=0.1				


¹³ *MrBayes* internal help (run "help mcmc" from within *MrBayes* itself). See also Altekar et al., 'Parallel Metropolis Coupled Markov Chain Monte Carlo for Bayesian Phylogenetic Inference'.

^{14 &#}x27;MrBayes Tutorial, v3.2', para. 4 in section "Running the Analysis".

¹⁵ The heat is calculated as follows: Heat = 1 / (1 + T * (ID - 1)). Where T = 0.10 is the temperature and ID is the chain number.


Chapter 6: Optimising MrBayes

It seems that modifying the temperature (from the default T=0.1) might be useful. First we will run two runs with eight chains at T=0.1 (the benchmark jobs), 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, and 0.5. Intuitively, it seems likely that raising the temperature will produce the best result – as it will produce hotter chains that traverse the solution space faster. The results are shown in Figure 66 - and it appears that (at least for this dataset) raising the temperature has made things worse.

Now we will try *lowering* the temperature – and it turns out that this is the key for this dataset. Figure 67 shows the MCMC time taken with $T \le 0.1$ – and it would seem, the colder the better:

Configuration Options

It is clear from this data that lowering the temperature results in considerably faster convergence. All jobs with T<0.02 converged in less than four hours, and the average time for T=0.005 was just two hours (the quickest of which took seventy-six minutes).¹⁶ So lowering the temperature is highly effective in reducing the time required to produce an equally good result. The reason must be that an increase in the frequency of chain swaps results in faster convergence for this dataset. Figure 69 shows the chain temperatures with T=0.025, and for comparison Figure 68 shows them with T=0.1 (duplicating Figure 64 above).

Figure 69: Temperatures for 8	Figure 68: Temperatures for 8
chains with T=0.025	chains with T=0.1
1 1.00 (cold chain)	1 1.00 (cold chain)
2 0.98	2 0.91
3 0.95	3 0.83
4 0.93	4 0.77
5 0.91	5 0.71
6 0.89	6 0.67
7 0.87	7 0.62
8 0.85	8 0.59
ID Heat	ID Heat

If we reduce the temperature significantly further, to 0.0001, we find that the results get somewhat worse again. I ran three jobs with T=0.0001 with an average convergence time

¹⁶ The fastest job of all was actually ID 946853, with T=0.01, which finished in 1 hour 11 mins.

of just under three hours.¹⁷ So it seems that a little heat is good, for traversing valleys, but too much and the chains refuse to swap. Even the default of T=0.1 seems considerably hotter than optimal, and T=0.005 has given the quickest convergence in this test. Note that T=0.01's results have an average convergence time of only about ten minutes higher than that of T=0.005. We could continue interpolating these values, but we have found a significant improvement and now must deal with the problem of too little heat.

Many Chains and Lower Temperatures

There is a methodological worry with lowering the temperature so much: what happens if the chains are no longer able to traverse valleys? They may climb to their local peak and stay there. It would then be possible to find that the two runs converged on a peak that was far from the highest in the space, but they just happened both to focus on it. This problem does not appear to have manifested in this analysis, considering the six test jobs performed. This risk can, however, be mitigated as follows.

Recall that the six benchmark jobs (two runs, eight chains, T=0.1 (default)) converged in between 6.5 hours (actually six hours twenty-four minutes and thirty-three seconds) and 16.75 hours (actually sixteen hours, forty-seven minutes and forty-nine seconds). Changing the number of runs could not improve on this time. Changing the number of chains did improve matters, with the best single result being with twenty-eight chains where it converged in three hours, six minutes and fifty-four seconds. The faster convergence was found by changing the temperature, where one job with T=0.01 took only one hour, ten minutes and fifty-seven seconds. A good solution would be to use a low temperature (say 0.01 - a tenth of the default) but more chains – so that there is still a suitably hot chain (e.g. chain thirty-two

¹⁷ Note that *MrBayes* reports the chain temperatures as all being 1 when T=0.0001, evidently rounding T to 0 at this value.

Configuration Options

where the heat is 0.76) that is able to traverse the valleys. I ran six jobs with these settings, the results of which are shown in Table 84.¹⁸ These include the first sub-one hour results we have seen, and the average is an order of magnitude improvement on the average time from the benchmarks (which was over eleven hours). The average time is fifty-seven minutes, with standard deviation (SD) twenty-one. The consensus trees created are of equal quality to those from the benchmarks.

Job ID	MCMC time	Avg. ESS	PSRF
947022	1 hour 29 mins 28 seconds	10867.94	1.000
947023	45 mins 31 seconds	5757.06	1.000
947024	46 mins 12 seconds	6604.11	1.000
947698	38 mins 20 seconds	3976.48	1.000
947699	42 mins 29 seconds	6048.18	1.000
947700	1 hour 18 mins 14 seconds	10193.42	1.000

Table 84: Results of 32 chains with T=0.01

This method can be pursued further, although with diminishing returns. I executed three runs with T=0.005 and sixty-four chains (i.e. 128 processors, or eight nodes), the results of which are shown in Table 85. The average run time was thirty-eight minutes (SD seventeen). This is a small improvement in time, speaking in absolutes, but requires twice as many BlueBEAR nodes.

Job ID	MCMC time	Avg. ESS	PSRF
948915	55 mins 35 seconds	6013.83	1.000
948916	35 mins 58 seconds	3100.96	1.000
948917	22 mins 58 seconds	3476.74	1.000

Table 85: Results of 64 chains with T=0.005

¹⁸ I.e. with settings: temperature=0.01, 32 chains, 2 runs, stop when ASDSF <= 0.01.

Conclusion

Table 86 shows the compute resources required for the benchmark, and the two fastest experiments. The "sweet spot" identified for this dataset is T=0.01 with thirty-two chains per run, completing the task in the fewest compute minutes. The best improvement (to T=0.005) yields an eighteen-fold increase in speed, considering the averages.

Temperature	Chains	Avg (SD) minutes	Compute minutes	
0.1	8 (per run)	690 (243)	8 x 2 x 690 = 11,040	
0.01	32 (per run)	57 (21)	32 x 2 x 57 = 3,616	
0.005	64 (per run)	38 (17)	64 x 2 x 38 = 4,907	

Table 86: Compute resource required

We have shown that, for a given dataset, the time required for *MrBayes*' analysis can be reduced by at least an order of magnitude. Exactly which settings to use will differ for different data sets – but there will be a "sweet spot" which is likely to be found using low temperatures and many chains. The final decision on which settings to use will include a trade-off between speed of completion and compute resource required.

PART THREE

ANALYSING THE CBGM

Chapter 7: The CBGM: Connectivity

Introduction

The CBGM's textual flow diagrams all use a specified maximum connectivity value.¹ For example a diagram with connectivity ten would only allow witnesses to be linked to ancestors of rank ten or less, where the rank comes from the genealogical coherence data for the witness. Mink observes that the default options for connectivity are: five (Low); ten (Average); and unlimited ("Absolute", although in reality 499).² Users can choose their own value, but when presented with default options, most people will select from those. The premise of this chapter is that using the rank for connectivity is insufficient, and it would be better to include a minimum coherence percentage. Also, using a single connectivity (rank) for all variant units is insufficient. As such, all textual flow diagrams in this section will show both the rank and genealogical coherence percentage on the link between witnesses.

Why does this matter? Consider, for example, Wasserman's paper from 2015: 'The Coherence Based Genealogical Method as a Tool for Explaining Textual Changes in the Greek New Testament.' In this paper the CBGM's ability (in its textual flow diagrams) to show multiple emergence of a variant reading is crucial to Wasserman's arguments concerning the development of the text. If textual flow diagrams are showing multiple emergence where there is none, or hiding it where it should be shown, then arguments such as Wasserman's could fail.

A typical implication of a textual flow diagram showing multiple emergence for a connective variant, is that the scholar must re-visit the relevant local stemma. If multiple

¹ See Mink, 'Guide to "Genealogical Queries" section 3.b for a brief discussion of connectivity and how to select it.

² See Mink, 'Contamination, Coherence, and Coincidence in Textual Transmission', 175.

Introduction

emergence is deemed unlikely/impossible (given the philological analysis of the variant readings) then the local stemma must be wrong, commonly with the result that the only remaining choice is to invert a relationship, potentially changing the critical text at this place.

Using the rank of a potential ancestor for deciding whether or not two witnesses may be linked in a textual flow diagram is highly problematic: it leaves one a hostage to fortune, and at the mercy of the vagaries of history.³ The rank would be radically different for a witness found in an archaeological cache of similar witnesses compared to exactly the same witness being found alone (with the others all destroyed). This is the same sandy foundation that underlies studies based on "singular readings", which can only know about readings in extant manuscripts (or references to manuscripts from secondary sources). A reading is not singular any more if another witness to it is found. Also consider the related question of the inclusion or exclusion of witnesses: the ECM of John has excluded (after careful study) the majority of witnesses (consider that John 18 has over 1,500 extant witnesses yet the ECM of John editorial team selected 229) - so is a reading singular if it only appears once in the selected witnesses?⁴ Similarly, if all the witnesses were included then most witnesses would gain a number of very similar relatives and many ranks would change (but not the related coherence percentages). Indeed the witnesses were excluded in order to avoid such nearduplicates as they add little to the edition.

Take a hypothetical example where a witness has many highly similar potential ancestors. Its fiftieth ranked potential ancestor could have a coherence of 95%. Yet a witness

³ Mink highlights this problem in Mink, 'The Coherence-Based Genealogical Method (CBGM) – Introductory Presentation, 1.0', 270, 293 etc. He cautions that high ranking potential ancestors with lower coherence "are in the same range of agreement percentages where coincidental agreement may be considered." Yet the CBGM only uses rank for textual flow diagrams, and so the reader is presented with a diagram that hides this crucial information. See also Mink, 'Problems of a Highly Contaminated Tradition', 32.

⁴ See Chapter 5 for the John 18 data. The ECM's 229 manuscripts are 27 papyri, 55 majuscules, 109 minuscules and 38 lectionaries, including supplements. See Parker et al., 'The Selection of Greek Manuscripts to Be Included in the International Greek New Testament Project's Edition of John in the Editio Critica Maior', 328 for a full list of included manuscripts.

Chapter 7: The CBGM: Connectivity

with few similar ancestors could have a third ranked potential ancestor with coherence 75%. Now suppose that forty-nine of the fifty close relatives of the first witness had been destroyed in a fire 500 years ago... The rank is too easily affected by the destruction or loss of manuscripts over the centuries, or the relative popularity (and thus the frequency of copying) of a witness. The coherence percentage is not changed by these factors.

This chapter describes a simple experiment aimed at proving the hypothesis that the coherence percentage should be used in preference to (or in combination with) the rank.

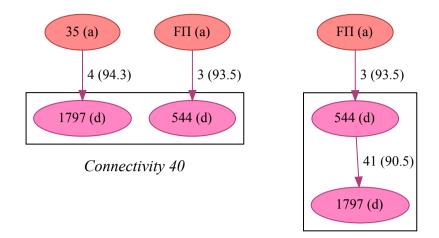
Data

The data used in this section comes from Parker's work on the ECM of John's Gospel.⁵ This is an intermediate stage in the process, where the majority of local stemmata have been defined, but are yet to be confirmed by reviewing the textual flow in each variant unit. This makes it an excellent set of data for analysing the impact of the methodology used for creating textual flow diagrams, for a change to the methodology could yield a change to the confirmation process, and thus a change in the ECM text of John.

Examples

John 2:10/12-20

The local stemma for John 2:10/12-20 is shown in Table 87. The interesting question, as far as this chapter is concerned, is whether reading d is a case of multiple emergence. Again, as is very often the case in the New Testament, the variant reading here is a simple one-word change; the omission of $\tau \sigma \nu$. Consider the textual flow diagrams in Figure 70. If the connectivity is set to less than forty-three then the left-hand diagram is produced – implying


⁵ This analysis was performed in November 2017 using my CBGM tag 1.10, with data from October 31 2017.

Examples

multiple emergence. If it is set to forty-three or higher then we have the right-hand diagram. In other words, multiple emergence is probable unless 544 is the ancestor (considering textual flow) of 1797. A connectivity setting of forty (used here) is high, and thus multiple emergence is strongly implied by the textual flow. This seems entirely appropriate, as the addition or omission of $\tau \sigma \nu$ after $\pi \rho \omega \tau \sigma \nu$ could easily happen multiple times independently.

	a d b c										
a	πρωτον τον καλον οινον τιθησιν	FП MT F1 F13 Ф66 01 02 03 07 011 019 022 028									
		032S 033 037 038 044 045 063 083 0141 0211 0233									
		18 33 35 109 157 168 173 213 226 295 333 357 377									
		397 430 579 597 732 792 799 807 821 841 865 992									
		994 1009 1010 1029 1071 1093 1230 1241 1242									
		1253 1293 1319 1320 1321 1344 1424 1463 1546									
		1561 1571 1654 1788 2106 2192 2223 2411 2561									
		2575 2615 2680 2718 2766 2768 2786									
b	πρωτον τιθησιν τον καλον οινον	382									
c	τον καλον οινον πρωτον τιθησιν	\$P75 892 2585									
d	πρωτον καλον οινον τιθησιν	544 1797									
la											
c											

Table 87: Local stemma for John 2:10/12-20

Absolute Connectivity

Figure 70: Textual flow diagrams of John 2:10/12-20 (reading d)

The difficult question is "what is an appropriate connectivity setting to use?" Normally, in the CBGM, a connectivity of ten or twenty is used – and so forty would be highly unusual. But notice the coherence values in brackets (which are not shown in conventional textual flow diagrams).⁶ If 90% coherence is acceptable then a textual flow diagram based on connectivity="90% coherence" (instead of the rank) would show perfect coherence. Should we insist on 95%? Wasserman points out that "it is up to the critic to adjust in each variation-unit the level of [connectivity]".⁷ But how to choose? In the simple case of looking at these partial textual flow diagrams, the problem is masked, as they are small and simple. To see why, consider the full textual flow diagram for this variant unit (see Figure 71). When viewing a full textual flow diagram (or indeed a traditional one showing a single reading, but with a hundred witnesses) it is not always possible to determine whether a relationship is admissible. We have considered 544 \rightarrow 1797 (both thirteenth century, rank forty-one, 90.5%). But on the same diagram we find, for example:

1. A (initial text) $\rightarrow 01$ (fourth century) both reading *a*, rank four, 88.3%;

⁶ The tables are accessible in "Genealogical Queries", and in the new CBGM interface they are easier to find. The key point here, however, is that the data is not shown in the diagram itself.

⁷ Wasserman, 'The Coherence Based Genealogical Method as a Tool for Explaining Textual Changes in the Greek New Testament', 209.

Examples

- 2. 35 (eleventh century) \rightarrow 173 (twelfth century) both reading *a*, rank five, 89.4%; and
- 3. 18 (fourteenth century) → 2718 (twelfth century) both reading *a*, rank five, 88.4%.
 This is an interesting case of a later manuscript (18) presumably preserving an older text, as it has a twelfth century descendant (2718).

Surely these examples are not inherently more trustworthy than $544 \rightarrow 1797$? They are examples of considerably less close relationships (considering coherence) even though they have ranks that would mean they will be shown as parent/child on any standard CBGM textual flow diagram. Rank forty-one might simply be dismissed out of hand, yet rank four or five could well be accepted without further investigation or question. Now we might trust that in each situation where a low rank (i.e. a large number) is shown, the ECM's editors would consult the genealogical coherence tables and examine the percentage coherence values. But how would they know to challenge the apparently strong relationship shown by rank four? Why would a user explore further into the data tables underlying the diagram? The real strength of a diagram is that it conveys a large amount of information ready to be quickly (and implicitly) interpreted. Why would anyone further investigate a relationship with a low and apparently acceptable rank?

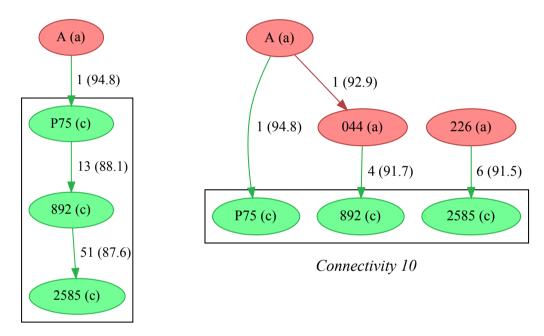


Figure 71: Full textual flow for John 2:10/12-20 with absolute connectivity

Note: This diagram has been edited to fit on the page. Normally witnesses of the same generation (e.g. the immediate descendants of 18) are shown on the same row. But here 226 has been moved lower so that the diagram is less wide.

Examples

Consider, too, reading *c* here (see Figure 72). What connectivity setting should be chosen in this case? The reading is a change in word order, and so not highly connective. There is no problem with using rank here, as a diagram with rank ten shows three-fold multiple emergence. But consider the relationships shown with absolute connectivity. First $\mathfrak{P75} \rightarrow 892$ (rank thirteen, 88.1%) has a modestly high rank, yet $892 \rightarrow 2585$ (rank fifty-one, 87.6%) has low rank – but a similar coherence to the first relationship.

Absolute connectivity Figure 72: Textual flow diagrams for John 2:10/12-20 (reading c)

Thus these two relationships have roughly equivalent strength considering coherence percentages, yet very different strength considering rank. In other words, rank alone is insufficient to determine the strength of a relationship. This is not a new statement, and will not surprise any CBGM-proficient scholar. The focus here is the information conveyed implicitly in the textual flow diagrams, where even such a scholar may miss important facts.

John 7:1/24

Here we find a genuine connective variant. This variant is part of the phrase Kai μετά ταῦτα περιεπάτει ὁ Ἰησοῦς ἐν τῆ Γαλιλαία· οὐ γὰρ ἤθελεν ἐν τῆ Ἰουδαία περιπατεῖν, ὅτι ἐζήτουν αὐτὸν οἱ Ἰουδαῖοι ἀποκτεῖναι. It is hard to imagine that reading b, ειχεν εξουσιαν (he did not have the authority to go to Judea) could have emerged multiple times independently from ηθελεν (he did not wish to go to Judea). John 7:1 has no synoptic parallel from which such a variant could be harmonised. Perhaps John 19:11 could be the source of the wording, although the context is hardly similar: $d\pi \epsilon \kappa \rho(\theta \eta [\alpha \eta \tau \tilde{\omega}])$ (hotois, our elyes exposition wat equal ούδεμίαν εἰ μὴ ἦν δεδομένον σοι ἄνωθεν· διὰ τοῦτο ὁ παραδούς μέ σοι μείζονα ἁμαρτίαν ἔχει. (NA28). The Greek manuscript support for reading b is interesting. Michael Clark has shown that 249, 333, 430 and 869 are all Nicetas catenae and were copied in the eleventh to thirteenth centuries - and thus are closely related and share a recent common ancestor.⁸ 032, however, is a fourth/fifth century majuscule, continuous text manuscript. There is also some Old Latin support for this reading, with the group VL 4, VL 14 and VL 22; the pair VL 8 and VL 11; and also VL 3 reading non enim habebat potestatem.9 These attestations imply that this reading was known in Italy at least by the late fourth century. So perhaps 032 (and other lost witnesses) are the source for both that and Nicetas' text - either directly or as a result of contamination.

Considering pre-genealogical coherence data for 032 (see Table 89) we find that the catena manuscripts have the following similarity to 032: 249 (rank thirty-four, 85.1%); 333 (rank fifty, 84.6%); 430 (rank ninety-six, 83.0%); and 869 (rank twenty-eight, 85.4%). Those are not strong relationships to 032, but since we have decided (from a text-critical

⁸ See Clark, 'The Catena of Nicetas of Heraclea and Its Johannine Text', 50 for Clark's stemma of these manuscripts.

⁹ See Houghton, *The Latin New Testament*, 166.

Examples

perspective) that this must be a connective variant we are left assuming that some "missing link" manuscripts must be lost in time.

		a J b
a	ηθελεν	FII MT F1 F13 \$\overline{9}66 \$\overline{9}75 01 03 04 05 07 011 019 022 028 033 037 038 044 045 0141 0211 18 33 35 109 138 157 168 173 213 226 295 357 377 382 397 544 579 597 732 792 799 807 821 841 865 892 992 994 1009 1010 1014 1029 1071 1093 1128 1230 1241 1242 1253 1293 1319 1320 1321 1344 1424 1463 1546 1561 1571S 1654 1788 1797 2106 2192 2223 2411 2561 2575 2585 2615 2680 2718 2766 2768 2786 2790
b	ειχεν εξουσιαν	032 249 333 430 869
	lac	•••

Table 88: Local stemma for John 7:1/24

Chrysostom cites this passage as $\epsilon t \chi \epsilon \nu \epsilon \xi o \upsilon \sigma t \alpha \nu$ in three of the four places where he quotes it – and this must be Nicetas' source. 032 and Chrysostom presumably share some ancestry, inasmuch as an older Greek witness (or witnesses) now lost attested the reading. But 032 and the four Nicetas manuscripts are not related. So this raises the question: "what is multiple emergence?" This reading is found in unrelated manuscripts – but a sound theory exists for how it got there without needing it to have emerged multiple times. Perhaps this is a limitation caused by considering only the Greek witnesses, and not the entire contents of the ECM at this stage.¹⁰ Further research is required on these questions. Even though *b* is the

¹⁰ Of course, to include all possible witness types in the CBGM would radically increase the complexity, and so the time and cost of making the edition.

harder reading, the overwhelming support (both numerically and based on age) for the a reading is enough to convince the textual scholar of its primacy.

W2	NR	PERC1	EQ	PASS
07C	1	97.727	86	88
1797C	2	97.590	81	83
017C	3	97.561	40	41
892SC	4	95.652	66	69
2192C	5	94.118	144	153
01Ccb2	6	92.727	51	55
037C	7	92.424	61	66
168C	8	91.447	139	152
1546C	9	91.304	84	92
А	10	91.237	4144	4542
2766C	11	91.111	82	90
019C	12	90.385	47	52
029	13	89.281	683	765
P75	14	88.381	2708	3064
P66C*	15	88.248	413	468
03	16	88.196	4386	4973
019	17	87.808	4278	4872
1788C	18	87.805	72	82
04	19	87.737	1760	2006
33	20	87.247	4262	4885
044	21	86.924	4321	4971
892	22	86.558	2228	2574
F1	23	86.169	4274	4960
1344C	24	86.111	62	72
070	25	85.747	758	884
033	26	85.721	3398	3964
FΠ	27	85.700	4231	4937
869	28	85.430	1800	2107
597	29	85.394	4233	4957
213	30	85.343	3575	4189
02	31	85.320	3551	4162
109C	32	85.294	58	68
2561C3	33	85.209	265	311
249	34	85.095	2649	3113

Table 89: Pre-genealogical coherence for W1=032 (showing up to rank 34)

So, let us look at the textual flow diagrams for reading b. The difficult question again,

Examples

is "what is a suitable connectivity setting to use?" Is ten a good choice, or twenty? Indeed, is 90% acceptable or should we insist on 95% (or allow 85%)? The default connectivity of ten results in the diagram in Figure 73.¹¹ Here 869 descends from its first ranked potential ancestor 397 (92.6%). Note that this rank refers to genealogical coherence, whereas the previous paragraph and table refer to <u>pre</u>-genealogical coherence. Hence the ranks are not comparable.

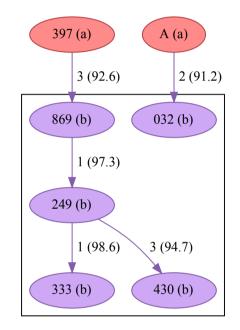


Figure 73: Textual flow diagram for John 7:1/24 (reading b) with connectivity 10

Since we have already decided that this is a connective variant, and therefore the multiple emergence shown here must be considered unlikely, we are left with three ways forward (generally speaking): first we could try a different connectivity setting; secondly we could invert the local stemma and see whether the coherence improves (this is often the case as manuscripts commonly have witness A as a relatively high ranking ancestor); thirdly we could consider the strength of the textual flow.

Now connective variants allow a looser connectivity setting by definition, as text

¹¹ The default for Acts was changed to five, because "For this writing a more cautious approach is appropriate." Wachtel, 'Text-Critical Commentary' in Strutwolf et al., *ECM III (Acts)*, pt 3, 2.

Chapter 7: The CBGM: Connectivity

critical knowledge is not overridden by the CBGM. Yet we are forced to increase the connectivity to thirty-three before reading *b* gains perfect coherence (see Figure 74). Recall that 032 is a fourth/fifth century codex, while the other witnesses to *b* come from the eleventh to thirteenth centuries. This is an interesting example of an old reading being preserved in much later manuscripts, with only one early manuscript surviving to attest it. Now rank thirty-three seems low (i.e. a large number), and a coherence of 85.4% is not much better. Given that this is a connective variant then perhaps any other witnesses to reading *b* (from the intervening six or seven centuries) have been "corrected" before they were copied. This is not pure speculation, as we know that 430's corrector changed reading *b* to *a*. Perhaps the missing link witnesses have just not been unearthed yet, or maybe they exist but have been excluded from the ECM edition of John. If we invert the textual flow, so *b* becomes the initial text, we find a situation that is not much improved (see Figure 75). We still require a connectivity setting of sixteen or 88.6% to get perfect coherence. Now sixteen seems like a significant improvement on thirty-one, but 88.6% is only marginally better than 85.4%. These values are not conclusive.

The final thing to do is to consider the strength of the textual flow for each relationship. A \rightarrow 032 has strength 322/0, so is strong and indisputable.¹² 032 \rightarrow 869 is 128/65 and still strong. 869 \rightarrow 249 is 23/20 and very weak. All that would be required would be the reversal of three local stemmata in the whole Gospel for this textual flow to be reversed. However, that does little to help as even though 869 would have a strong ancestor, 249 would descend from 032 with an even worse rank forty-six and 85.1%.¹³ 249 \rightarrow 333 is 16/10 and so quite weak. 249 \rightarrow 430 is 51/21, or moderate strength. The full genealogical

¹² I will use this notation for the strength of a textual flow. X/Y where X is the number of variants where W2 (ancestor) is prior, and Y is the number where W1 (descendant) is prior. The bigger the difference, the stronger the flow.

¹³ These values might be slightly changed with the change of other variant units, but presumably not much.

Examples

coherence data for these witnesses can be found in Appendix 4.

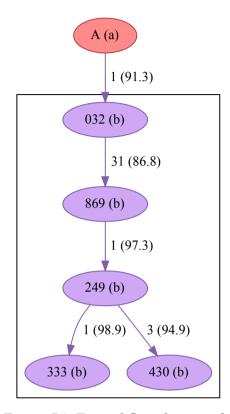
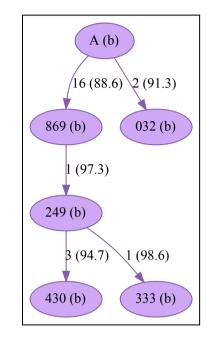
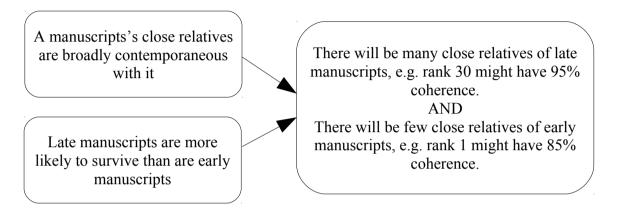


Figure 74: Textual flow diagram for John 7:1/24 for reading b with absolute connectivity




Figure 75: Textual flow diagram for John 7:1/24 for reading b (as initial text) with absolute connectivity

All in all, the textual flow suggests that the extant witnesses do not support this as a connective variant – and imply multiple emergence. Of course, if more witnesses were extant from the intervening centuries then the story might be quite different.

Percentage versus Rank

In each of the two examples above I have shown the date of the manuscripts. Now this might have caused some concern to the reader, as the CBGM deals in texts and not manuscripts (see Chapter 1). But actually this is a case where the manuscript itself, and particularly its date, matters. This statement is, I believe, undeniable: the later a manuscript the more likely it is to have been preserved. Or conversely, early manuscripts are more likely

to have been lost than later ones. And manuscripts are copied to create new manuscripts. A second, uncontroversial statement is: *most of the time*, manuscripts were copied from other manuscripts only slightly older than themselves. In other words, the close relatives of a *late* manuscript are likely to be *late* manuscripts, and the close relatives of an *early* manuscript are likely to be *early* manuscripts. These two ideas can be combined as follows:

So setting a particular connectivity value (maximum rank) will lead to textual flow diagrams that are more likely to show multiple emergence for variants in late manuscripts. And early variants in early witnesses are likely to appear to have good or perfect coherence because relatively distantly related witnesses may have rank one or two. This is a crucial point for the interpretation of textual flow diagrams.

The converse of the previous paragraph is true if the percentage is used instead of the rank for connectivity. Straightforwardly, earlier manuscripts do not have many extant close relatives but late manuscripts (generally) have many. So it is much easier to find a potential ancestor with an acceptable coherence percentage in later witnesses.

In summary, the CBGM is likely to suggest multiple emergence in later readings if the rank is used but in earlier readings if the percentage is used. If the CBGM allowed the user to specify a maximum rank *and* a minimum coherence percentage then multiple emergence would be indicated in both situations (i.e. not hidden).

Experiment: John 18

Introduction and Coherence Tables

Several years ago the IGNTP created local stemmata for the complete collation of 1,662 witnesses to John 18 (see Chapter 5) yielding 267 variant units.¹⁴ In contrast, Parker's ECM collation has 316 variant units for only 133 witnesses. For the current purpose, I have excluded correctors from this data, since the IGNTP data did not include them, and thus the comparison will be more appropriate. Of these 133, ninety-seven (non-corrector) witnesses are extant in at least 5% of variant units in John 18 of the ECM, and hence are included here.¹⁵ I have imported both sets of local stemmata into my CBGM implementation.¹⁶ The abridged pre-genealogical coherence for W1=032 is shown for each dataset in Figure 73 (IGNTP) and Figure 74 (ECM).¹⁷

The tables are difficult to compare, since so many witnesses exist only in the IGNTP data. The ranks change considerably between the tables yet the coherence percentages do not – for example:

- 03 and 1071 ECM equal rank five (88.9%), IGNTP equal rank twenty-six (87.3%)
- 01 ECM rank sixteen (87%), IGNTP rank forty-eight (85.8%) (See Appendix 5)

¹⁴ Note that in Chapter 5 I refer to 1,663 witnesses, the extra one being 'A', the critical text.

^{15 \$\}p\$108\$, \$\p\$52\$, \$\p\$59\$, \$\p\$60\$, \$\p\$66\$, \$\p\$90\$, 01, 0109, 011, 0141, 019, 02, 0211, 022, 028, 0290, 03, 032, 033, 037, 038, 04, 044, 045, 05, 054, 055, 07, 087, 1009, 1010, 1014, 1029, 1071, 109, 1093, 1128, 1185, 1230, 1241, 1242, 1293, 1319, 1320, 1321, 1344, 138, 1424, 1463, 1546, 1561, 157, 15715, 1654, 168, 1788, 1797, 18, 2106, 213, 2192, 2223, 226, 2411, 2561, 2575, 2615, 2680, 2718, 2766, 2768, 2786, 295, 317, 33, 333, 35, 357, 377, 397, 544, 579, 597, 732, 792, 799, 807, 821, 841, 865, 8925, 992, 994, F1, F13, FΠ, MT. Note, F1 is Family 1, F13 is Family 13, FΠ is Family Pi and MT is the majority text. See Chapter 5 for details of Families 1 and 13.

¹⁶ CBGM tag 1.11 was used for this experiment for both datasets (IGNTP and Parker's ECM). Note that this is John 18 only, and so the coherence tables and textual flow diagrams will differ from the whole-gospel ones earlier in this chapter.

¹⁷ For the full tables, see Appendix 5.

Chapter 7: The CBGM: Connectivity

W2	NR	PERC1	EQ	PASS
P108	1	100.000	10	10
P52		100.000	9	9
2418	3	94.828	55	58
1803		94.828	55	58
1143	5	93.220	110	118
P90	6	92.857	13	14
1590	7	91.346	95	104
А	8	90.763	226	249
1804	9	90.698	78	86
2649	10	89.423	93	104
2634	11	89.091	49	55
2307	12	89.062	114	128
1349	13	88.889	120	135
475s		88.889	24	27
546	15	88.679	141	159
748	16	88.281	113	128
96	17	88.000	154	175
2717	18	87.975	139	158
1571	19	87.919	131	149
405	20	87.861	152	173
2722	21	87.817	173	197
2372		87.817	173	197
179	23	87.778	158	180
NA27	24	87.640	234	267
940	25	87.293	158	181
1071	26	87.266	233	267
03		87.266	233	267
947	28	87.097	27	31
731s		87.097	27	31
1400	30	87.050	121	139
274	31	86.957	140	161
711	32	86.875	139	160

Table 90: Pre-genealogical coherence with W1=032 using **IGNTP data** (top 32 rows). Witnesses highlighted in grey are not present in the ECM data.

W2	NR	PERC1	EQ	PASS
P 108	1	100.000	21	21
P90	2	93.750	60	64
P52		93.750	30	32
А	4	90.789	276	304
1071	5	88.924	281	316
03		88.924	281	316
1571S	7	88.889	136	153
33	8	88.608	280	316
019	9	87.975	278	316
1321	10	87.937	277	315
0109	11	87.368	83	95
FП	12	87.342	276	316
397		87.342	276	316
044		87.342	276	316
1293	15	87.097	27	31
865	16	87.025	275	316
033		87.025	275	316
02		87.025	275	316
01		87.025	275	316
04	20	86.905	219	252
333	21	86.901	272	313
0290	22	86.873	225	259
F1	23	86.709	274	316
226		86.709	274	316
1561		86.709	274	316
MT	26	86.392	273	316
597		86.392	273	316
35		86.392	273	316
18		86.392	273	316
1320		86.392	273	316
1242		86.392	273	316
07		86.392	273	316
037		86.392	273	316

Table 91: Pre-genealogical coherence with W1=032 using **ECM data** (top 33 rows). Witnesses highlighted in grey are not present in the IGNTP data.

...

These examples follow the expected pattern of roughly similar coherence percentages, but much lower ranks in the IGNTP data.

Tables of genealogical coherence data (potential ancestors) are easier to compare. Consider W1=04: Table 92, IGNTP; and Table 93 ECM. In these short tables there seems to be no problem – in the IGNTP data there are only four potential ancestors (A, 03, NA27, 1803) and in the ECM only two (A, 03) – and the ranks and coherence percentage of the only shared witness 03 is basically the same in both tables (rank two, ~93%).¹⁸

W2	NR	D	PERC1	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<>	W1>W2	UNCL	NOREL
2726		-	100.000	13	13				
P59		-	100.000	10	10				
2290		-	100.000	9	9				
P52		-	100.000	3	3				
1143		-	95.918	94	98	1	1		2
А	1		93.056	201	216	12		1	2
03	2		92.544	211	228	9	2	2	4
NA27	3		92.105	210	228	12	1	3	2
2307		-	92.035	104	113	3	3	3	
1803	4		91.379	53	58	2	1	2	
96		-	91.176	124	136	3	3	5	1
019		-	90.789	207	228	8	8	3	2
2517		-	87.234	82	94	4	4	2	2
2676		-	77.000	77	100	6	6	9	2

W2 NR D PERC1 EQ PASS W1<W2 W1>W2 UNCL NOREL

Table 92: Potential ancestors for W1=04 (**IGNTP data**). Witnesses highlighted in grey are not present in the ECM data.

W2 NR D PERC1 EQ PASS W1<W2 W1>W2 UNCL NOREL

P52	-	100.000	11	11				
P90	-	100.000	3	3				
A 1		94.583	227	240	12		1	
P59	-	93.333	14	15			1	
03 2		92.857	234	252	11		6	1
019	-	91.667	231	252	8	8	5	

Table 93: Potential ancestors for W1=04 (**ECM data**) Witnesses highlighted in grey are not present in the IGNTP data.

¹⁸ Note that 'A' is technically a different witness in each dataset, as it is a different critical text.

Chapter 7: The CBGM: Connectivity

A longer table, however, does highlight the problem. Consider the genealogical coherence tables for 032: Table 94, IGNTP; and Table 95, ECM. Here the IGNTP includes nine manuscripts that rank higher as potential ancestors for 032 than any witness included in the ECM.¹⁹ This is expected, as the ECM has excluded many witnesses because of their similarity to those that were included. Thus, for example, 019 is rank four (89%) in the ECM data, yet rank eighteen (86%) in the IGNTP data. Now the rank is significantly different; a change that is more than enough to suggest multiple emergence if a connectivity setting of, say, ten ("Average") were to be used to draw a textual flow diagram. Yet the coherence percentage is less than 3% different – and assuming that people like round numbers (multiples of five) then the textual flow diagrams based on coherence percentage would be unchanged for this relationship.

¹⁹ Plus NA27 and its A text.

...

W2	NR	D	PERC1	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<>	W1>W2	UNCL	NOREL
P108		-	100.000	10	10				
P52		-	100.000	9	9				
1803	1		94.828	55	58	2		1	
1143		-	93.220	110	118	4	4		
А	2		90.763	226	249	20		3	
2307	3		89.062	114	128	7	3	4	
1349	4		88.889	120	135	6	5	3	1
475s		-	88.889	24	27	1	1	1	
96	5		88.000	154	175	8	6	7	
2717	6		87.975	139	158	7	6	5	1
1571		-	87.919	131	149	7	7	3	1
2372	7		87.817	173	197	9	8	4	3
NA27	8		87.640	234	267	23	1	9	
1071	9		87.266	233	267	15	10	8	1
03			87.266	233	267	18	2	11	3
1400	11		87.050	121	139	6	3	8	1
274	12		86.957	140	161	8	6	7	
2632	13		86.700	176	203	10	9	7	1
33	14		86.692	228	263	14	11	8	2
2398	15		86.667	143	165	7	6	8	1
233	16		86.466	230	266	13	9	11	3
1816	17		86.364	228	264	13	10	11	2
930		-	86.344	196	227	11	11	8	1
1558		-	86.207	200	232	11	11	8	2
019	18		86.142	230	267	18	7	10	2
2524	19		85.932	226	263	13	12	10	2
904	20		85.827	109	127	7	6	5	
669	21		85.768	229	267	13	11	12	2
235		-	85.768	229	267	12	12	12	2
1566			85.768	229	267	13	11	13	1
139			85.768	229	267	13	11	12	2
1006			85.768	229	267	16	11	9	2
044			85.768	229	267	15	10	11	2

NR D PERCI FO PASS WIZW2 WISW2 UNCL NORFL 11/2

Table 94: Potential ancestors (abridged) for W1=032 (IGNTP data). Witnesses highlighted in grey are not present in the ECM data.

	1111	ν	LICI	чv	11100	·· 1 · · · · 4	·· · · · · ·	Unch	TORLL
P108		-	100.000	21	21				
P90	1		93.750	60	64	3	1		
P52		-	93.750	30	32	1	1		
А	2		90.789	276	304	23		4	1
1071		-	88.924	281	316	12	12	8	3
03	3		88.924	281	316	22	1	10	2
019	4		87.975	278	316	17	8	11	2
1321		-	87.937	277	315	13	13	10	2
0109	5		87.368	83	95	6	4	2	
1293		-	87.097	27	31	1	1	2	
865		-	87.025	275	316	14	14	10	3
033		-	87.025	275	316	14	14	10	3
04	6		86.905	219	252	13	8	11	1
05S	7		83.810	176	210	11	10	8	5
087	8		80.952	34	42	2	1	4	1
P59	9		68.750	11	16	2		2	1

W2 NR D PERC1 EQ PASS W1<W2 W1>W2 UNCL NOREL

Table 95: Potential ancestors for W1=032 (**ECM data**). Witnesses highlighted in grey are not present in the IGNTP data.

Textual Flow

If the coherence tables can be hard to compare, then what about textual flow diagrams? Let us begin with a simple example: John 18:2/24-36. There are ten readings in the ECM. Reading *a* is the rarely attested text chosen by NA27 and by Parker for his initial text: $\sigma uv\eta \chi \theta \eta$ in $\sigma ou \varsigma$ exer $\mu \epsilon \tau \alpha \tau \omega \mu \alpha \theta \eta \tau \omega \nu \alpha u \tau o u$. In the ECM this is attested by only 01, 019, 033 and 865. 03 reads the same, but misses the exer. $\mathfrak{P}66$ misses the $\alpha u \tau o u$ – although the firsthand corrector notices the omission and adds it.²⁰ All other readings include the definite article before in $\sigma ou \varsigma$. In the IGNTP data this reading is labelled 2.²¹ Only one additional witness is included, 2591. 03 has its own reading (*6*) again. The reading attested by $\mathfrak{P}66$ in the ECM is included in the IGNTP data, but only 798 is shown as attesting it (a witness not included in

²⁰ Due to \$\phi66*'s many unique readings it is preserved as a witness, even when \$\phi66C*\$ changes it. Other witnesses are represented by their firsthand corrector where it exists.

²¹ This follows the convention from Aland, *Text Und Textwert Der Griechischen Handschriften Des Neuen Testaments*. There "1" = Majority; "2" = "NA"; "1/2" = where 1 and 2 agree; "3", "4", ... are the remaining readings.

Experiment: John 18

the ECM). Somewhat surprisingly, $\mathfrak{P}66$ is shown as lacunose here in the IGNTP data. It is designated reading number 98 in the Münster database, indicating that the textual evidence does not allow unambiguous support for a single reading.²² The IGNTP transcription for the two lines in question is as follows:

[κι]ς συνηχθ[η ις εκει μετα των]

[μα]θητων ο [ουν ιουδας λαβων]²³

Presumably the ECM transcribers measured the space needed for the additional article and decided that it would not fit, so therefore $\mathcal{P}66$ attests the *a* reading, without the final word which the scribe then added by correction. They did mark it as $\mathcal{P}66*V$, i.e. *ut videtur* ("apparently"). The earlier IGNTP transcribers or collators must have been more circumspect and withheld judgement. This decision, and the many other such small, individual decisions, will change the coherence data and thus can change the textual flow.

But, moving on from $\mathfrak{P66}$, let us consider the textual flow diagrams of reading *a* or 2 shown in Figure 76 and Figure 77 respectively. In this example we have two textual flow diagrams that differ in the only non-trivial sub-tree: 019 is the ancestor of 033 and 865 in Figure 76 yet in Figure 77 865 descends from 033 and neither descend from 019. Note that the convention of absolute coherence equating to rank 499 is inappropriate for the IGNTP data, since 2591 needs to descend from its 970th ranked potential ancestor (A) to allow perfect coherence. It is straightforward to state that 2591 arrived at this reading independently from the rest of this group (i.e. by multiple emergence). Perhaps a more complicated example is required before more similarities will appear in the diagrams.

²² This is the equivalent of Münster's "zw" reading and "99" equates to "zz", meaning truly lacunose.

²³ These are lines 15 and 16 of folio 125. See <u>http://www.iohannes.com/XML/transcriptions/greek/04_P66.xml#K-B04K18</u> [accessed 14/11/2017].

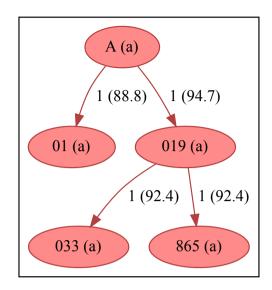


Figure 76: John 18:2/24-36 reading a (ECM data) with absolute coherence

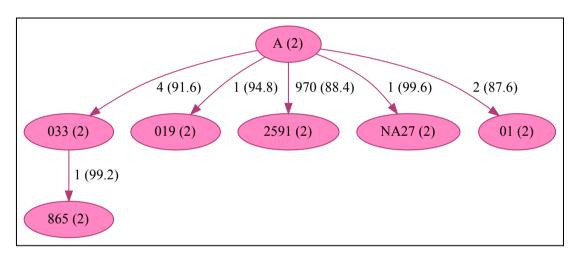


Figure 77: John 18:2/24-36 reading 2 (IGNTP data) with absolute coherence

Consider John 18:4/18-22, reading *a* or 2 ($\epsilon \xi \eta \lambda \theta \epsilon \nu \times \alpha \iota \lambda \epsilon \gamma \epsilon \iota$), shown in Figure 78 (ECM) and Figure 79 (IGNTP).²⁴ Note that Family 1 (F1 in the ECM diagram) is represented by 1582, 1, 209, 205, 2886, 2713 and 884 in the IGNTP diagram, which are greyed out for convenience.²⁵

²⁴ The other main readings being $\epsilon \xi \epsilon \lambda \theta \omega \nu$ $\epsilon i \pi \epsilon \nu$ and $\epsilon \xi \epsilon \lambda \theta \omega \nu \lambda \epsilon \gamma \epsilon i$.

²⁵ It is also very interesting to compare this diagram with the "Family 1" section in Chapter 5, "Phylogenetics of John 18". The shape of the Family 1 tree, with the additional "members", is very similar.

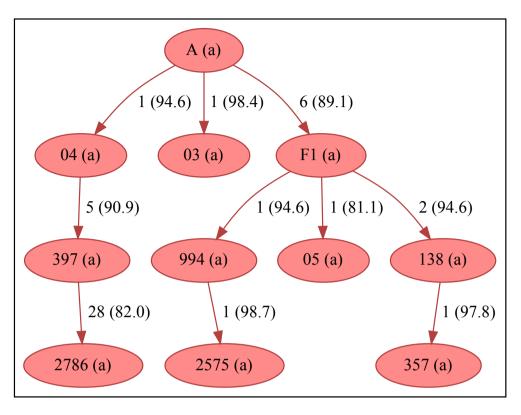
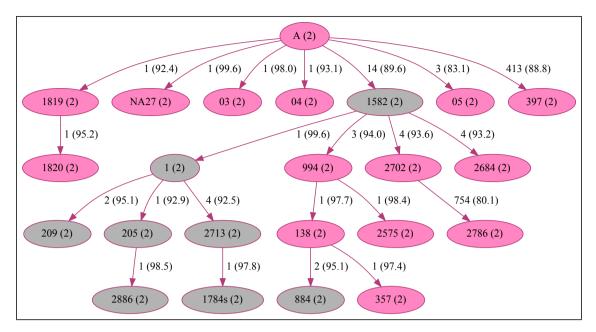



Figure 78: John 18:4/18-22 reading a with absolute coherence (ECM data)

It is clear that these two diagrams have a lot in common, notably: ECM: $A \rightarrow F1 \rightarrow$ 994 \rightarrow 2575, IGNTP: $A \rightarrow$ 1582 \rightarrow 994 \rightarrow 2575; and ECM: $A \rightarrow F1 \rightarrow$ 138 \rightarrow 357, IGNTP: $A \rightarrow$ 1582 \rightarrow 994 \rightarrow 138 \rightarrow 357. Now 05 descends from F1 in the ECM diagram, but from A in the IGNTP. It is not surprising that some manuscripts move up to descend directly from A - it is often the highest ranked potential ancestor for early witnesses (e.g. 05). The final major feature in the ECM data ($A \rightarrow 04 \rightarrow$ 397 \rightarrow 2786), however, is totally missing in the IGNTP diagram. Here 397 descends by itself from A, and 2786 is at the end of the following chain: A \rightarrow 1582 \rightarrow 2702 \rightarrow 2786. How can 2786's position be explained? The rank is the key. The ECM needs 2786 to descend from its twenty-eighth ranked potential ancestor, and the IGNTP its 754th! It is clear that the fact of 2786 attesting this reading is a co-incidence, and this is a case of multiple emergence.

Figure 79: John 18:4/18-22 reading 2 with absolute coherence (IGNTP data). Family 1 manuscripts are greyed out.

But what about 397? Why does it not descend from 04? The surprising answer is that, in the IGNTP data, 04 is 397's 415th highest ranked potential ancestor (87.3%).²⁶ In the ECM data 04 is 397's fifth ranked potential ancestor (90.9%) – see Table 96. Even if the coherence percentage were the same as in the IGNTP's data (87.3%) then the rank would only be thirteen – which might easily be accepted for a connective variant in a textual flow diagram (even if it would be the lowest ranked potential ancestor of all for 397). Note that the different of 3% coherence in the ECM data (in this case) equates to a difference in rank of eight – but the equivalent 3% in the IGNTP data equates to only fifty-three – out of 423. This underlines the fact, argued by this chapter, that ranking (alone) is not an objective measure.

²⁶ See Appendix 5 for the genealogical coherence data for W1=397.

W2	NR	D	PERC1	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOR</th></w2<>	W1>W2	UNCL	NOR
P90		-	93.750	60	64	2	2		
P59		-	93.750	15	16			1	
1071	1		93.354	295	316	9	6	6	
33	2		92.722	293	316	10	7	5	1
0109		-	92.632	88	95	3	3	1	
1321	3		92.381	291	315	10	8	6	
213		-	92.089	291	316	9	9	7	
865	4		91.456	289	316	12	9	6	
04	5		90.873	229	252	16	3	4	
033	6		90.823	287	316	13	10	6	
0290		-	90.347	234	259	8	8	9	
1571S		-	90.196	138	153	6	6	3	
А	7		90.132	274	304	26		3	1
044	8		89.873	284	316	13	11	7	1
02	9		89.241	282	316	13	11	8	2
019			89.241	282	316	19	7	7	1
03	11		88.608	280	316	25	1	8	2
032	12		87.342	276	316	13	11	12	4
087		-	85.714	36	42	1	1	2	2
P 108		-	85.714	18	21	1	1	1	

REL

Table 96: Potential ancestors for W1=397 using ECM data

In other words, creating a textual flow diagram on ranking alone involves *implicitly* choosing different metrics for each relationship within the diagram. This implicit metric involves an interplay between the following factors (at least): First consider the total number of potential ancestors. A witness with few potential ancestors will necessarily only have "high-ranked" ancestors - using the rank alone as a metric. A witness with many potential ancestors may have mostly (apparently) low ranked ancestors. Secondly consider the total number of witnesses in the data set (or the number excluded from it). An eleventh ranked ancestor with 88.6% coherence (such as 03 in the ECM data) cannot be considered even broadly the same as the thirteenth ranked ancestor with 93.6% (such as 926 in the IGNTP data). Remove many of the witnesses and the IGNTP data becomes the ECM (roughly speaking). The witnesses have not changed, but the results would.

Chapter 7: The CBGM: Connectivity

This John 18 experiment has shown that the rank of a potential ancestor is too easily affected by factors outside the textual data itself. If all witnesses shared a character (for example they all had a similar number of closely related other witnesses) then the problems identified here would be lessened in effect – for example choosing only majority text witnesses. But it is a mistake to expect to be able to compare the rankings of potential ancestors of witnesses with few close relatives – such as $\mathcal{P}66$, 01 or 05 – with those of majority text witnesses such as 35 or 226.

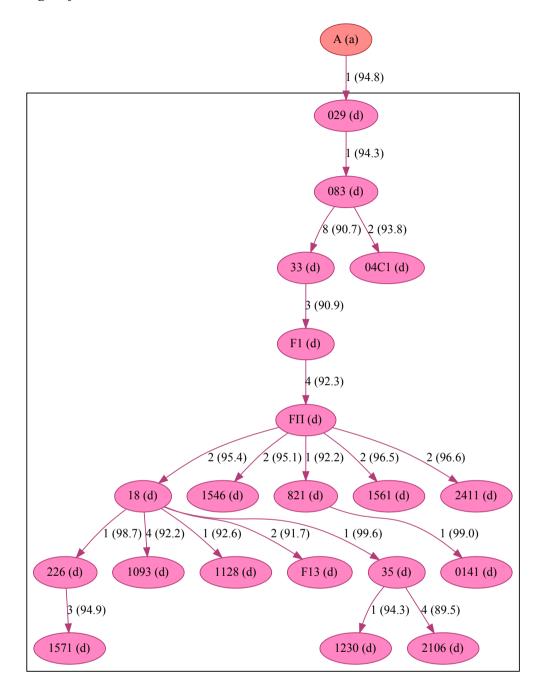
Conclusion

This chapter leads directly to two main conclusions: First, textual flow diagrams themselves are not sufficient to determine whether a reading is a case of multiple emergence or not (this is not a new thing to say); and secondly (and new) textual flow diagrams should show the rank and the percentage, thus providing the reader with the necessary information to identify places that require further investigation.

When interpreting textual flow diagrams the scholar needs to remember that a diagram drawn with a connectivity (rank) setting will be more likely to show multiple emergence for later variant readings and to show perfect coherence for earlier ones. Conversely, a diagram drawn with a coherence (percentage) setting will tend to show multiple emergence for earlier readings and perfect coherence for later ones. It would be valuable if a maximum rank *and* a minimum coherence percentage could both be specified when creating a textual flow diagram – then multiple emergence would be indicated in both situations (i.e. not hidden).

A final thought is that this conclusions of this chapter hold true only for manuscript traditions where many manuscripts have been lost. Where all manuscripts survive, then using the rank probably raises no problems.

Chapter 8: The CBGM: The Strength of Textual Flow


The Strength of Textual Flow is Invisible

Several scholars have raised concerns about the various strengths of flow found in textual flow diagrams. For example, Jongkind argues that the CBGM's textual flow diagram for 1 John 4:4/6a contains eight (out of seventy-three) suspect relationships, many of which occupy key locations in the textual flow diagram.¹

The key problem here with textual flow diagrams is that it is not clear how strong any given textual flow is. Consider John 1:28/4-8. The majority of witnesses attest either reading a, $\varepsilon v \beta \eta \theta \alpha \nu \alpha \varepsilon \gamma \varepsilon \nu \varepsilon \tau 0$.² The textual flow diagram (drawn showing the percentage coherence and rank of the ancestor, as recommended in Chapter 7) in Figure 80 has a variety of strengths of textual flow, but this is invisible to the reader. Note that in the INTF's "Genealogical Queries" user interface it is possible to show the coherence table, and thus the potential ancestors can be made visible (along with the data necessary to calculate the strengths of textual flow) – but the user needs to choose to seek out this information. This textual flow diagram is of interest as it shows several core relationships often found forming a spine in the textual flow diagrams for John, namely: $F1 \rightarrow F\Pi \rightarrow 18 \rightarrow 35$. These relationships become so familiar to the CBGM user (in this data) that they are unconsciously accepted as being "normal" and thus in some sense "the truth".

¹ See Jongkind, 'On the Weighing and Counting of Variants', 13.

^{Intriguingly, 04's corrector changed the text from reading} *a* to *d*. Witnesses for reading *a*: MT, \$75, 02, 03, 04, 07, 011, 019, 028, 032S, 033, 037, 038, 044, 045, 063, 0211, 109, 157, 168, 173, 213, 295, 333, 357, 377, 382, 397, 430, 544, 579, 597, 732, 792, 807, 841, 865, 892, 992, 1009, 1010, 1014, 1071, 1241, 1242, 1253, 1293, 1319, 1320, 1321, 1344, 1424, 1463, 1654, 1788, 1797, 2192, 2223, 2561, 2575, 2585, 2615, 2680, 2718, 2768, 2786. Witnesses for reading *d*: FΠ, F1, F13, 04C1, 029, 083, 0141, 18, 33, 35, 226, 821, 1093, 1128, 1230, 1546, 1561, 1571, 2106, 2411.

Figure 80: Textual flow diagram for John 1:28/4-8 (reading d) with absolute connectivity

Visible Strength

The strength of textual flow in this spine is actually rather weak, and should cause the scholar to doubt some relationships in the diagram – but to find this out they must turn to genealogical coherence tables, which is time consuming and relatively opaque. If instead the

Chapter 8: The CBGM: The Strength of Textual Flow

strengths were shown on the diagram, then the scholar would immediately be alerted to any doubtful relationships. Consider Figure 81 where dotted lines represent very weak textual flow (five or less), dashed lines represent weak textual flow (from six to twenty-five) and solid lines stronger textual flow (above twenty-five). Now it is clear that the spine is made up of weak flow, but the strengths still cannot be precisely quantified. Note that a weak textual flow can exist between two witnesses that are strongly related. Indeed, this is likely as very closely related witnesses will have few differences and so the number of prior and posterior readings must be low.

So now consider Figure 82. Here the number of prior and posterior readings is shown underneath the existing relationship label (rank and coherence) as [prior/posterior]. Consider $18 \rightarrow 35$ which we can now see as [11/9]. This means these very similar manuscripts (99.6%) coherence) differ in only twenty variant units in John; in eleven cases 18 is prior, yet in nine cases 35 is prior. This implies that 18 and 35 are much more like cousins than parent and child. They represent, together, a small assortment of readings in the majority text of their time. Because 18 and 35 are so similar, a change in one variant unit could force this relationship to become undirected, and two changes could reverse the flow. This matters because textual flow diagrams are used in the second pass of creating local stemmata. The user needs to be alerted to the fact that this relationship should not be used to determine the direction of a (local) genealogical relationship between variant readings. This would be a kind of forced feedback loop, where just the presence of a weak flow is used as an argument to make that very flow stronger (by modifying local stemmata to agree with the initially weak flow). This will be discussed further in Chapter 9. A weak textual flow between very closely related witnesses can be used positively, however, to state that there is likely to be a close relationship between their readings - even if the direction of that relationship cannot be

Visible Strength

identified from the textual flow data alone.

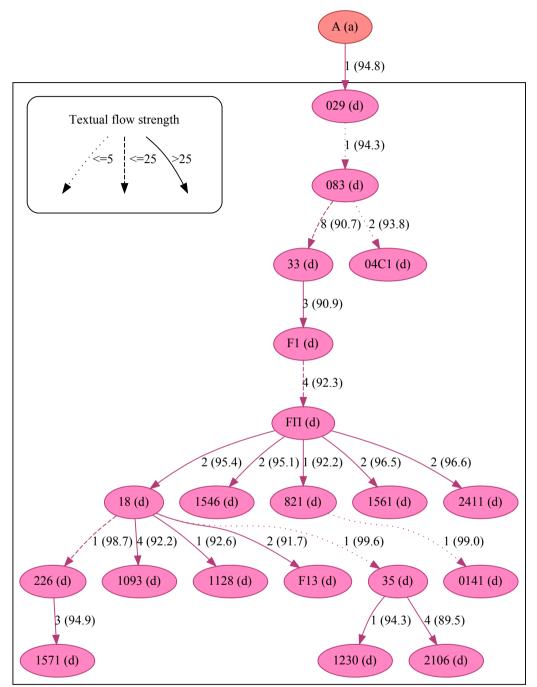


Figure 81: Textual flow diagram for John 1:28/4-8 (reading d) with absolute connectivity. Line styles represent strength of textual flow.

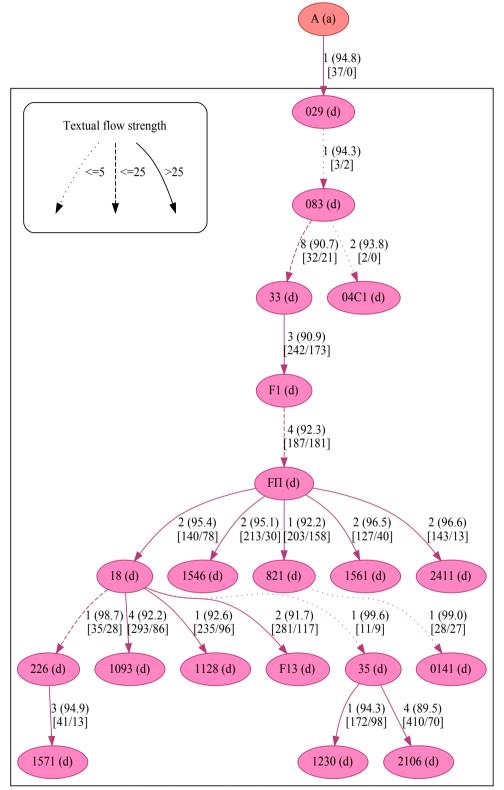
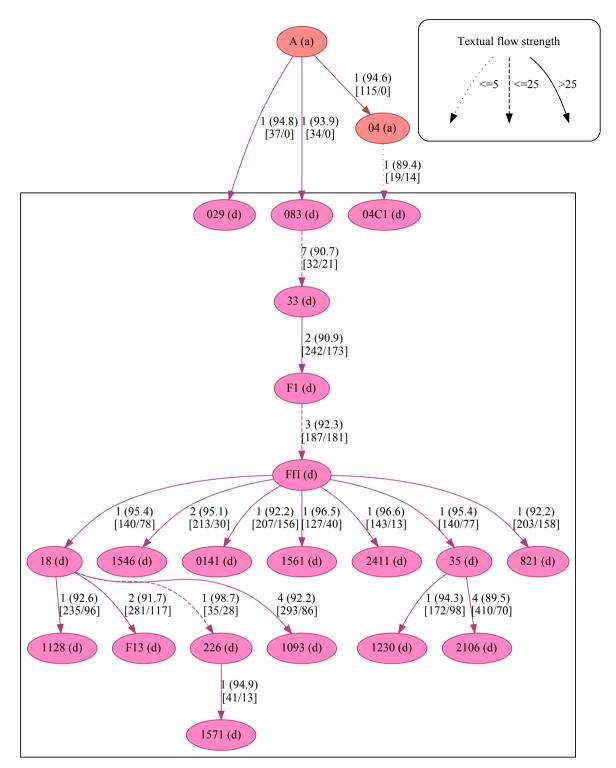


Figure 82: Textual flow diagram for John 1:28/4-8 (reading d) with absolute connectivity. Prior/posterior counts are shown in square brackets.

Visible Strength

Now this diagram looks too cluttered, and so perhaps the line styles alone might suffice. But having the actual data shown in place is of great use. So perhaps it should be left to the individual scholar's preferences – but in all cases some visualisation of the strength must be represented.³


Minimum Strength

A further advance could be to set a minimum textual flow strength for a textual flow diagram. In other words, textual flow weaker than the threshold would result in the relationship being treated as undirected. Figure 83 shows the equivalent textual flow diagram to Figure 82 but with a minimum strength of five. So, for example, 083 can no longer descend from 029, but now descends from A – indicating multiple emergence of the reading. This highlights something about multiple emergence - it is easily affected by small changes. Multiple emergence can sometimes be shown because of a genuinely undirected genealogical relationship - where just one change to a local stemma could provide a suitable potential ancestor. Setting a minimum strength just widens the group of "undirected" relationships and so makes this scenario more likely. In this diagram we find threefold multiple emergence where before there was perfect coherence. This would be, of course, a kind of false multiple emergence – as who would genuinely argue that two very closely related witnesses sharing a reading is evidence of multiple emergence? So while this diagram would mitigate against the problem of the forced feedback loop described above, it increases the chance of wrongful identification of multiple emergence (which already exists in normal textual flow diagrams for witnesses with undirected relationships). It could provide valuable information, nevertheless, in a situation where closely related witnesses (with weak textual flow) differ in

³ Gurry wrote a paragraph suggesting a similar solution to this problem, that of indicating the relative strengths of textual flow by changing the opacity of the lines connecting witnesses. See Gurry, *A Critical Examination of the Coherence-Based Genealogical Method*, 214.

attestation in a particular variant unit. In any case, it is important to remember that textual flow diagrams are always artificial, and do not claim to show historical manuscript relationships.

A further notable difference between Figure 82 and Figure 83 is that 35 no longer descends from 18, but is now its sibling. Setting a minimum strength is likely to have this flattening effect, as close parent/child relationships become siblings due to both witnesses having the same top-ranked potential ancestor (where before one had it as rank two with the now-sibling witness as rank one). So which is better? Each diagram is emphasising something about the data: Figure 82 shows that there is perfect coherence in reading d, made up of close witnesses. Figure 83 shows that the relationships are so close that the textual flow is too weak to rely on for defining/redefining local stemmata. Neither diagram is incorrect, but neither shows the whole truth either. See Figure 84 for a further flattened diagram with minimum strength ten.

Figure 83: Textual flow diagram for John 1:28/4-8 (reading d) with absolute connectivity and minimum flow strength 5. Prior/posterior counts are shown in square brackets.

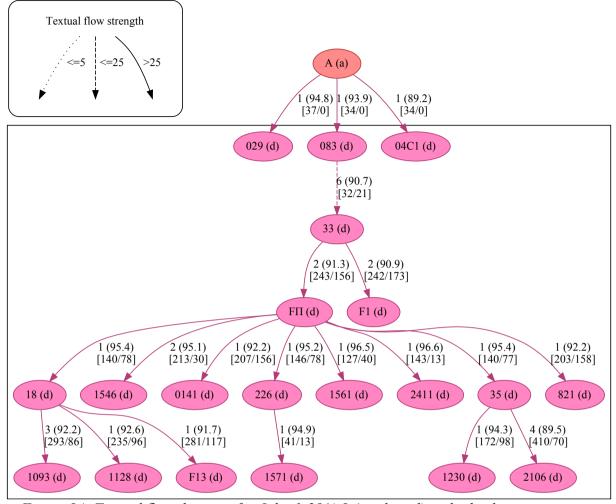


Figure 84: Textual flow diagram for John 1:28/4-8 (reading d) with absolute connectivity and minimum flow strength 10. Prior/posterior counts are shown in square brackets.

While there are obvious advantages to this method of setting a minimum strength for textual flow diagrams (and it would be particularly useful if the scholar could dynamically vary it via the user interface), it will also have the unfortunate effect of driving the diagrams further away from reality. Take, for example, 0141 and 821 – which in Chapter 5 were shown to be exemplar and copy.⁴ In the textual flow diagram (Figure 82) 0141 is shown descending from 821 with twenty-seven prior variants compared to 821's twenty-eight – i.e. a strength of one. This is a real manuscript relationship that is hidden when the minimum strength is set – and this is to be expected as very close witnesses will no longer be considered as potential

⁴ See Taylor Farnes, 'Scribal Habits in Selected New Testament Manuscripts' for a detailed examination of this relationship.

Minimum Strength

ancestors. Interestingly, a further feature of textual flow diagrams is highlighted here: The real relationship would be $0141 \rightarrow 821$ – but in Figure 82 *it is inverted*. This inversion is commonplace and will be discussed in more detail in Chapter 9.

Undirected Relationships

Consider the genealogical coherence table for FII, shown in Table 97. This might normally be referred to as the potential ancestors for FII, but not all the rows correspond to potential ancestors in the strict sense. For example the first row, 02, shows an undirected relationship where each of 02 and FII have 113 prior readings (with respect to each other) – highlighted by the "-" in the "D" column. In this table, I have also highlighted the witnesses where there is a directed relationship but the strength of textual flow is less than ten (so to correspond to the textual flow diagram in Figure 84). These rows have a "w" in the "D" column, indicating weak textual flow, and are treated as undirected. In Figure 84 these witnesses would also not count as potential ancestors.

02		- 94.583	4994 5280	113	113	52	8	а
892		w 93.345	3212 3441	94	88	29	18	a
044	1	93.002	5595 6016	223	107	73	18	a
0290		- 92.871	495 533	12	12	10	4	
086		w 92.342	410 444	17	16	1		
F1		w 92.281	5547 6011	187	181	71	25	d
33	2	91.312	5381 5893	243	156	82	31	d
А	3	90.658	5376 5930	476		53	25	a
033	4	90.581	3895 4300	171	145	65	24	a
083	5	89.984	575 639	34	21	8	1	d
04	6	89.980	2263 2515	146	61	30	15	a
019	7	89.504	5270 5888	357	128	94	39	a
019C	8	89.235	315 353	24	6	8		
03	9	89.221	5306 5947	448	42	122	29	a
070		w 88.768	735 828	41	33	12	7	
P75	10	88.743	3508 3953	261	96	71	17	
029	11	88.503	739 835	56	22	16	2	d

W2 NR D PERC1 EQ PASSW1<W2W1>W2UNCLNOREL READING

Chapter 8: The CBGM: The Strength of Textual Flow

04C1	12	87.335	331 379	27	10	6	5	d
032	13	87.162	3965 4549	241	206	98	39	
₽ 66С*	14	87.078	1934 2221	112	98	56	21	
P60		w 86.364	380 440	26	20	8	6	
01Cca	15	86.207	2200 2552	144	125	55	28	
01Ccb2		- 85.549	296 346	18	18	7	7	e

Table 97: Genealogical Coherence for $W1=F\Pi$ showing readings for John 1:28/4-8

Excluding weak or undirected relationships increases the confidence that the textual flow diagram is unlikely to change (as local stemmata are revised) and is therefore of great use during that process. But, as was said above, this moves the diagram further away from reality. What if we now move the bar in the other direction, and allow even undirected relationships in textual flow diagrams? These *potential* potential ancestors create a textual flow diagram where very close witnesses are shown as related (which must surely be the case). These undirected or weak textual flows (between witnesses that are likely to be strongly related) are shown with a bi-directional arrow and highlighted in red, as in Figure 85 (where they also show as having rank zero, because they are not true potential ancestors).

This diagram is lengthened, where Figure 84 was flattened. Several relationships on the spine are now shown with this bi-directional red arrow, showing that they could easily be reversed on a small number of changes to local stemmata. It also shows three groups of witnesses whose exact place in the textual flow is uncertain, but the location of the group itself seems unlikely to change, namely {029, 083, 04C1, F1, FII, 33}, {821, 0141, 18, 226, 35} and {2411, 1571, 1546, 1128, 1230}. This diagram could even be changed to make these groups explicit, as in Figure 86. This version of the diagram emphasises the fact that, in this textual flow diagram, there are groups of closely related witnesses where the exact flow is uncertain, but these groups are connected to one another (and a few individual witnesses) by stronger textual flows.

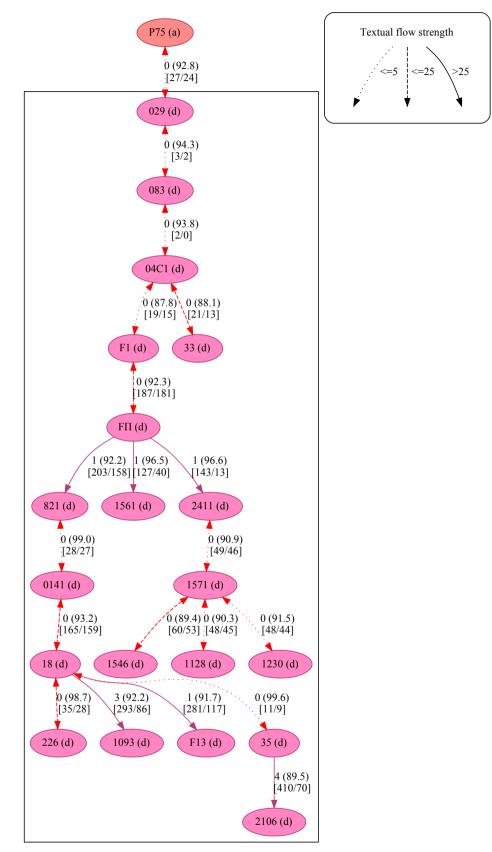


Figure 85: Textual flow diagram for John 1:28/4-8 (reading d) with absolute connectivity; textual flow strength ≤ 10 treated as undirected; and allowing undirected relationships.

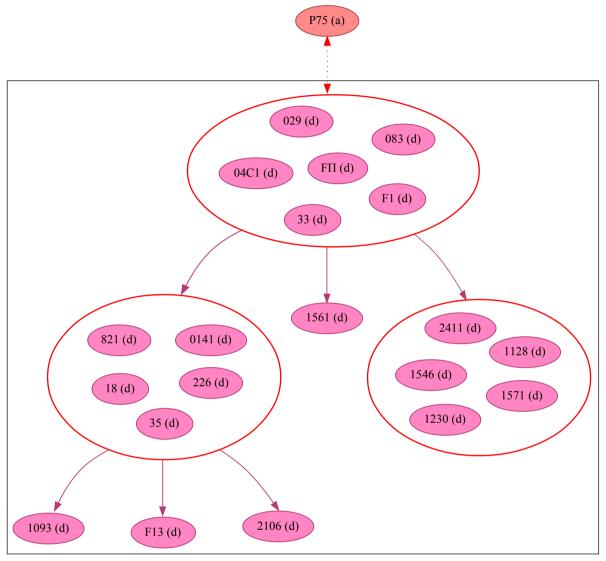


Figure 86: Textual flow diagram for John 1:28/4-8 (reading d) with absolute connectivity; textual flow strength <= 10 treated as undirected; and showing undirected relationships in groups.

For a scholar interested in finding out how the witnesses are genuinely related to one another, these modified diagrams could be of great use (when considered together). They are, however, of little interest to someone whose goal is to define an initial text, where the actual relationships between witnesses are relatively unimportant compared to identifying the abstract flow of the text (and thus its beginning).

Conclusion

Conclusion

The obvious conclusion of this chapter is that the scholar needs to be able to apply different criteria when creating textual flow diagrams, and needs to be aware of their benefits and disadvantages:

- 1. A minimum strength could be used to create a textual flow that is less susceptible to change and is therefore useful for refining local stemmata.
- 2. Weak relationships should be highlighted to prevent the scholar accidentally relying on them.
- 3. Undirected (or weak) textual flows could be allowed, but highlighted (for example with the double-headed red arrow) to create a diagram less likely to contain confusing or misleading ancestral relationships, while being less useful for refining local stemmata.
- 4. These settings need to be able to be dynamically modified by the user.

Chapter 9: The CBGM: Further Criticisms and Improvements

Introduction

This chapter discusses several further potential problems with the CBGM, or areas where it may be improved. The goal, as for the entire thesis, is to determine whether the CBGM should be considered methodologically sound, or not.

The Formula for Pre-genealogical Coherence

The CBGM calculates pre-genealogical coherence by comparing agreements across all variant units. Consider the simple example data in Table 98. The formula for pregenealogical coherence is simply the number of variant units where two witnesses agree (EQ) divided by the number where they are both extant (PASS), expressed as a percentage. Table 99 shows the pre-genealogical coherence values for witness α .

Witness	VU1	VU2	VU3	VU4	VU5
α	This is	a simple	example	of the CBGM's pre-genealogical coherence	formula
β	Here is	a simple	example	of the CBGM's pre-genealogical coherence	formula
γ	Here is	a simple	demo	of the pre-genealogical coherence	method
δ	Here is	an	example	of the pre-genealogical coherence	formula

Table 98: Example variant units

W2	NR	PERC1	EQ	PASS
β	1	80%	4	5
δ	2	40%	2	5
γ	3	20%	1	5

Table 99: Pre-genealogical coherence for W1= α

The problem is that the pre-genealogical coherence is entirely at the mercy of the

The Formula for Pre-genealogical Coherence

collation, and therefore also at the mercy of the extant tradition – yet is hailed as if it were <u>objective</u>.¹ In 'On the Weighing and Counting of Variants: The Coherence Based Genealogical Method, Potential Ancestors, and Statistical Significance', Jongkind gives an example of two variant units that he argues should be counted as only one. Therefore, he concludes, the data is <u>subjective</u> and not solid enough to provide a base for quantitative analysis.² The artificial example in Table 98 amplifies the problem, as only a small number of variant units are present and therefore any change to the collation would cause a significant corresponding change to the coherence values. If, for example, VU1 and VU2 were merged into a single variant unit then the pre-genealogical coherence percentage of witnesses α and γ would be reduced to zero.

A simple replacement algorithm for calculating pre-genealogical coherence would be to use the Levenshtein distance, an algorithm devised in 1965 by Vladimir Levenshtein to measure the similarity between two strings.³ In this case, the pre-genealogical coherence for α would be as shown in Table 100.⁴ The crucial point here is that this formula is collationindependent.

W2 NR PERC1

β	1	94.52%
δ	2	82.70%
γ	3	75.56%

Table 100: Pre-genealogical coherence for W1=\alpha using the Levenshtein distance

These figures are more intuitively correct, as "This is a simple example of the CBGM's pre-genealogical coherence formula" (α) and "Here is a simple demo of the pre-

¹ Consider, for example, Aland et al., *ECM IV 2nd ed. (Catholic Letters)*, 35*. "[the CBGM] confronts the editors with the objective data of pre-genealogical coherence"

² Jongkind, 'On the Weighing and Counting of Variants', 6.

³ See Levenshtein, 'Binary Codes Capable of Correcting Deletions, Insertions, and Reversals'; Atallah and Fox, *Algorithms and Theory of Computation Handbook*, 14–4; 14–35. This is the method used in Stripey (see Chapter 4).

⁴ I have removed the EQ and PASS columns as they are no longer relevant for calculating the pregenealogical coherence.

Chapter 9: The CBGM: Further Criticisms and Improvements

genealogical coherence method" (γ) are much more than 20% similar (agreeing in 7 words out of 10 or 11). It should be noted that the percentages produced by the two algorithms are not comparable – and the Levenshtein method is likely to produce higher values (a value of less than 90% might be rare).

Let us consider a real example based on Parker's ECM data for John, as of 20 June 2017. Table 101 shows the pre-genealogical coherence with W1=019 using the CBGM's algorithm to calculate the percentage, and Table 102 using the Levenshtein distance.

The Formula for Pre-genealogical Coherence

W2	NR	PERC1	EO	PASS	W2	NR	PERC1	ЕО	PASS	W2	NR	PERC1	ЕО	PASS
019C	1	97.486			07	51	88.200		5907	04C1	. 148		283	329
А	2	94.991		5869	037	52	88.199		5762	01	102	85.978		5848
03	3	93.314	5485	5878	1014	53	88.081	4848	5504	1009		85.939	5024	5846
04	4			2422	994	54	88.050		5640	295		85.923		5761
33	5	92.459		5808	07C	55	87.982	571		2766		85.869		5187
086	6	92.342	410		1293	56	87.957		4949	213S		85.855	522	
044	7	92.265		5921	1010	57	87.947		5559	892S				1956
P75	8	92.236		3980	011	58	87.937	4928	5604	892SC		85.569	421	492
083	9	91.862	587	639	P 66	59	87.818		5311	579		85.537		5552
029	10	91.844	777	846	p45	60	87.814		517	01Ccb2			294	344
070	11	91.766	769	838	1230	61	87.795		5850	1788C		85.408	398	466
033	12	91.552		4214	1571	62	87.749		1257	1424		85.368		5891
892	13	90.746		3447	138	63	87.728		5533	1344		85.360		5000
213	14	90.592	4757		2561	64	87.709		5329	1093		85.337		5872
397	15	90.308		5819	992	65	87.703		5904	799C		85.249		522
0290	16	89.811	476		2615	66	87.703		5904 5277	732		85.127		5769
1321	10	89.764		530 5891	2013 109C	67	87.621	4028 361		04C2		85.068	564	
821	17	89.704		5848	357	68	87.603		412 5840	1029		85.008		5815
017C	18 19	89.725 89.702		369 369	032S	69	87.586		1023	1029 1278C1			4943 526	
0170	20	89.648		5854	2411	70	87.500		5712	841		84.947		5826
F1	20 21	89.578			038	70 71			5915	892S*		84.879	4949	496
гı FП	21	89.578 89.504		5901			87.489						364	490
				5888	1241	72 72	87.487		5850	2766C		84.848		
597 700	23	89.480		5903	1242	73			5877	1242C		84.564	630 242	745
799 022	24	89.412		5818	807	74 75	87.432		5864	226C		84.275	343	407
032	25	89.396		4470	2575	75 76	87.404		5748	2585		84.155		3105
054	26	89.370		1063	1463	76	87.253		5876	2192		84.100		5717
1071	27	89.289		5910	0211	77	87.226		5887	1253		83.840		2698
P60	28		391		377	78			5882	382		83.797		4382
02	29	89.005		5157	2790	79			2792	2718		83.523		5189
249	30	88.994		3380	1654	80	87.041		5888	168		83.423		5381
01Cca	31	88.982		2496	1788	81	86.941		5835	2192C		83.156	780	938
865	32	88.934		4943	2561C3		86.926		1545	168C		82.934	554	668
869	33	88.895			430	83	86.904					82.576		
18	34	88.887		5894	0233	84		1980		2106			4720	
35	35	88.874		5914	2768	85	86.878		5891	2561C1			568	
022	36	88.871		3756	2680	86	86.833	5124		792		80.720		5809
157	37	88.834		5884	2223	87	86.759		5891	05	137	80.484	3827	4755
333	38	88.833		5749	1319	88	86.655		5875 ,	Table 1	01·	Pre-96	eneal	logical
226	39	88.825		5906	1582C1	89	86.646	571	659			e with		0
	40	88.793		2213	1128	90	86.627		5713			Malgo		
MT	41	88.700		5894	109	91	86.619		5874	(0)		vi uigo		1)
1320		88.700	5228	5894	1797C	92	86.589	523	604					
317	43	88.603	2690	3036	037C	93	86.579	329	380					
2786	44	88.592	5234	5908	1546	94	86.452	5105	5905					
1546C	45	88.589	427	482	544	95	86.375	5059	5857					
045	46	88.458	5227	5909	063	96	86.321	915	1060					
118S	47	88.434	1101	1245	F13	97	86.314	5102	5911					
028	48	88.364	5217	5904	05S	98	86.166	436	506					
1561	49	88.254	5207	5900	1797	99	86.086	5061	5879					
1501			5207	5700	1,2,1	//	00.000	2001	0019					

Chapter 9: The CBGM: Further Criticisms and Improvements

W2	NR	LEV	EO	PASS	W2	NR	LEV	EQ	PASS	W2	NR	LEV	EO	PASS
019C	1	99.761%	-		892SC		97.481%	-	492	2223	97	96.839%	-	
А	2	99.194%			249		97.472%		3380	994	98	96.807%	4966	5640
03	3	98.916%	5485	5878	1582C1	51	97.438%	571	659	1319	99	96.803%	5091	5875
070	4	98.796%	769	838	892S*	52	97.437%	421	496	1797	100	96.783%	5061	5879
083	5	98.780%	587	639	1797C	53	97.403%	523	604	1571S	101	96.779%	3366	3815
086	6	98.770%	410	444	18	54	97.402%	5239	5894	2615	102	96.750%	4628	5277
033	7	98.624%	3858	4214	35	55	97.392%	5256	5914	1029	103	96.732%	4943	5815
044	8	98.560%	5463	5921	892	56	97.386%	3128	3447	01Ccb2	104	96.729%	294	344
04	9	98.544%	2250	2422	1242	57	97.382%	5140	5877	109C	105	96.726%	361	412
P75	10	98.489%	3671	3980	063	58	97.360%	915	1060	357	106	96.718%	5116	5840
33	11	98.402%	5370	5808	892S	59	97.353%	1675	1956	841	107	96.715%	4949	5826
397		98.312%			2768		97.352%			0233		96.713%		
0290		98.233%			1230		97.346%			168C		96.687%		
213		98.131%			045		97.335%			2192		96.648%		
P60		98.121%		438	799C		97.333%			1009		96.633%		
029		98.106%		846	226		97.325%			138		96.588%		
037C		98.075%		380	1241		97.290%			2766		96.584%		
054		98.058%		1063	028		97.283%			732		96.554%		
032		98.035%			07		97.282%			544		96.488%		
799 2 ((0*		98.030%			1320		97.240%			168		96.466%		
,	21	98.023%			MT		97.240%			2192C		96.449%		
		97.954%			2786		97.227%			1093		96.439%		
1321		97.931%			1561		97.202%			579 2700		96.377% 96.284%		
02		97.926%			213S 1128		97.196% 97.188%			2790 2766C		96.103%		
118S 0141		97.874% 97.850%			1128 1242C		97.188%			2700C 865		96.036%		
0141		97.830%			07C		97.18276			295		96.018%		
821		97.824%			1014		97.132%			382		95.935%		
037		97.773%			992		97.112%			1253		95.842%		
FП		97.721%			1010		97.108%			1344C		95.840%		
017C	31	97.720%			2411		97.103%			2575		95.830%		
		97.710%			807	80	97.076%			1344		95.805%		
		97.691%			011	81	97.042%	4928	5604	2106	129	95.587%	4720	5721
1071		97.687%			1546	82	97.000%			2585		95.405%		
F1		97.675%			1293		96.989%			1278C1	131	95.402%	526	619
317		97.655%			04C2	84	96.970%	564	663	792	132	95.304%	4689	5809
2561C3		97.654%			1424	85	96.944%	5029	5891	1788C		94.932%		
P66	38	97.652%	4666	5311	377	86	96.925%	5129	5882	05	134	94.810%	3827	4755
04C1	39	97.640%	283	329	01	87	96.918%	5028	5848	226C	135	94.660%	343	407
038	40	97.630%	5175	5915	2561C1	88	96.916%	568	690	173	136	94.306%	3033	3673
05S	41	97.619%	436	506	1463	89	96.907%	5127	5876	2718	137	90.994%	4334	5189
597	42	97.607%	5282	5903	1654	90	96.899%	5125	5888 ,	Tabla 1	n7.	Dra aa	noal	ogiaal
869	43	97.602%	1721	1936	F13	91	96.894%	5102	5911			Pre-ge		-
1546C	44	97.599%	427	482	2680	92	96.894%	5124	5901			ce with		
157	45	97.577%	5227	5884	1788	93	96.891%	5073	5835	Leve	ensr	htein alg	zoriti	um)
2561	46	97.548%	4677	5329	430		96.874%							
1571	47	97.517%	1103	1257	032S	95	96.864%							
0211	48	97.495%	5135	5887	109	96	96.852%	5088	5874					

The Formula for Pre-genealogical Coherence

It is perhaps clearer to consider the top rows of each table side by side, as in Table 103 and Table 104 which show the top thirty-five rows of each table.

W2	NR	PERC1	EO	PASS	W2	NR	LEV	EQ	PASS
019C	1	97.486	349	358	019C	1	99.761%		358
А	2	94.991	5575	5869	А	2	99.194%	5575	5869
03	3	93.314	5485	5878	03	3	98.916%	5485	5878
04	4	92.898	2250	2422	070	4	98.796%	769	838
33	5	92.459	5370	5808	083	5	98.780%	587	639
086	6	92.342	410	444	086	6	98.770%	410	444
044	7	92.265	5463	5921	033	7	98.624%	3858	4214
P75	8	92.236	3671	3980	044	8	98.560%	5463	5921
083	9	91.862	587	639	04	9	98.544%	2250	2422
029	10	91.844	777	846	P 75	10	98.489%	3671	3980
070	11	91.766	769	838	33	11	98.402%	5370	5808
033	12	91.552	3858	4214	397	12	98.312%	5255	5819
892	13	90.746	3128	3447	0290	13	98.233%	476	530
213	14	90.592	4757	5251	213	14	98.131%	4757	5251
397	15	90.308	5255	5819	P 60	15	98.121%	391	438
0290	16	89.811	476	530	029	16	98.106%	777	846
1321	17	89.764	5288	5891	037C	17	98.075%	329	380
821	18	89.723	5247	5848	054	18	98.058%	950	1063
017C	19	89.702	331	369	032	19	98.035%	3996	4470
0141	20	89.648	5248	5854	799	20	98.030%	5202	5818
F1	21	89.578	5286	5901	₽66С*	21	98.023%	1965	2213
FП	22	89.504	5270	5888	01Cca	22	97.954%	2221	2496
597	23	89.480	5282	5903	1321	23	97.931%	5288	5891
799	24	89.412	5202	5818	02	24	97.926%	4590	5157
032	25	89.396	3996	4470	118S	25	97.874%	1101	1245
054	26	89.370	950	1063	0141	26	97.850%	5248	5854
1071	27	89.289	5277	5910	022	27	97.824%	3338	3756
P60	28	89.269	391	438	821	28	97.814%	5247	5848
02	29	89.005	4590	5157	037	29	97.773%	5082	5762
249	30	88.994	3008	3380	FΠ	30	97.721%	5270	5888
01Cca	31	88.982	2221	2496	017C	31	97.720%	331	369
865	32	88.934	4396	4943	333	32	97.710%	5107	5749
869	33	88.895	1721	1936	P45	33	97.691%	454	517
18	34	88.887	5239	5894	1071	34	97.687%	5277	5910
35	35	88.874	5256	5914	F1	35	97.675%	5286	5901

 Table 103: Pre-genealogical coherence
 Table 104: Pre-genealogical coherence

 with W1=019 (CBGM algorithm) – top with W1=019 (Levenshtein algorithm) 35 rows

- top 35 rows

While the top three rows show the same witnesses in each table, the rest is considerably different – and so it may be safely assumed that each new collation would yield a different set of standard pre-genealogical coherence data. The Levenshtein distance is an appropriate algorithm for this task and presents a result that has a much better claim to being objective than does the CBGM's own algorithm.

Textual Flow is Backwards

The general textual flow moves from the initial text, through older forms of the text towards the majority text and its variations. This direction is "correct", at least according to the text-critical approach taken by the ECM's editors. One wonders what would happen if instead a majority text priority approach were to be adopted. Even if this general flow is as expected, in microcosm the textual flow is often the opposite of what might be expected.

Two manuscripts are included in the ECM of John that are now known to be exemplar and copy – namely 0141 and 821.⁵ It might be expected, therefore, that the CBGM would show this relationship appropriately. However, the CBGM will generally show 0141 as descending from 821. Why is this? 821 is 0141's best potential ancestor and, as is shown in Table 105, they only differ in sixty-nine variant units. 821 is prior in twenty-eight units, and 0141 prior in twenty-seven. It is safe to assume that sometimes the scribe made mistakes (creating new posterior readings) and sometimes corrected mistakes in the exemplar (returning to existing prior readings). If he had made two extra mistakes then the textual flow would be inverted and 0141 would become the ancestor. Any scribe who corrects more mistakes than he makes will create an inverted textual flow – since it is unlikely that any witness will have survived that is more closely related to the manuscript than its copy is, and thus the copy becomes the best potential ancestor for the exemplar.⁶

⁵ See Chapter 5 and Taylor Farnes, 'Scribal Habits in Selected New Testament Manuscripts'.

⁶ Of course, using the concept of correcting and making mistakes assumes that the local stemmata in these passages are "correct" and can be relied upon.

 W2 NR D
 PERC1
 EQ
 PASS
 W1<W2</th>
 W1>W2
 UNCL
 NOREL

 821
 1
 98.924
 6341
 6410
 28
 27
 12
 2

 Table 105: Best potential ancestor with W1=0141

This is a perfect example of the importance of distinguishing between manuscript and text. The manuscript 821 was copied from 0141. But the text in 821 is (only very slightly) prior to that of its real-world exemplar. The CBGM deals in texts, and is correct to show what it does. But it will mislead those who read "821" and "0141" to mean the manuscripts with those names – as the CBGM is making no direct claim about the manuscripts themselves.⁷ The convention to label the texts with manuscript identifiers has caused significant misunderstandings and criticisms of the CBGM. Sadly, no better solution presents itself other than to keep reiterating that the CBGM deals in texts and not manuscripts.

Forced Feedback Loop and Weighing versus Counting

Chapter 8 mentioned the danger of relying on weak textual flow when making decisions about local stemmata – as these decisions will subsequently affect the textual flow. In other words using a weak textual flow as a deciding factor in a troublesome local stemma will serve to strengthen that textual flow. This then presents a stronger textual flow, when in reality the weight of evidence is no different. This kind of forced feedback loop is a significant risk in numerical, iterative methods such as the CBGM. In Chapter 8 the solution proposed is to highlight weak textual flow on textual flow diagrams thus alerting the user that certain flows should not be relied upon for making future textual decisions. It is not just about very weak textual flow, however.

The iterative part of the CBGM is the process of revising the local stemmata in the light of the current state of the genealogical coherence, and so the textual flow. The aim is to

⁷ Gurry describes Jongkind's unpublished concerns with such reversed relationships due to contamination in Gurry, *A Critical Examination of the Coherence-Based Genealogical Method*, 151ff.

Chapter 9: The CBGM: Further Criticisms and Improvements

define a complete set of local stemmata that holds true with reference to the genealogical coherence data (at the time). Imagine a collation with a thousand variant units. The editor is working through the units defining the local stemmata. First the apparently unambiguous local stemmata are defined: say, 700 of them. Now consider an undefined local stemma. Two readings have seemingly equal claim to being prior on text-critical grounds. Each reading is attested by only a handful of witnesses. The textual flow is strongly in favour – say strength fifty or more – of one decision. And so the decision becomes easy. There was no doubt and no worrying weak textual flow. Now imagine that this is repeated twenty more times. At each stage the textual flow has been strong, and there is no problem. But the decisions were made on the basis of that strong flow. Without it they could have gone the other way. Now imagine that they did all go the other way. Instead of a flow of strength seventy (existing fifty plus twenty new local stemmata) we have a strength of thirty – but the textual evidence has not changed.

This example is unrealistic, but it serves the purpose of highlighting a danger: one entry in the CBGM's database does not represent the same weight of textual decision as another. A decision made on strong textual grounds is more valuable than a secondary decision made on the grounds of the sum of all decisions made so far. Perhaps the scholar should define the unambiguous local stemmata, and then keep hold of the genealogical coherence data from this time to refer back to throughout the remainder of the process – as well as the up-to-date data based on all local stemmata at a given time. This would avoid the danger of allowing the feedback loop to over-strengthen a flow that, based on textual evidence alone, should be considered weak.

A second example of a potential problem caused by treating all data points as alike

Forced Feedback Loop and Weighing versus Counting

has been highlighted by several scholars, for example Porter and Alexanderson.⁸ Their concern is that the CBGM treats every variant unit as having equal weight. Variants that are highly indicative (to use Lachmann's term) or connective (the CBGM's term) should, they argue, carry more weight than a trivial error or co-incidental agreement. This surely opens up the CBGM to the criticism that it counts variants rather than weighing them – in direct contradiction to the well known maxim. But what could it do instead?

Should an editor exclude certain variant units or readings at the collation stage? One might expect the answer "no!", as on the face of it this would distort the data – but of course that is exactly what is done. Simple error or nonsense readings and orthographic readings are regularised away in the early stages of preparing the collation, in order to remove such noise from the data. Who decides where to draw the line? Should *nomina sacra* be included or regularised? Should we keep different spellings of the same place name? What about differences in punctuation? Should ligatures be expanded to their normal characters? What about the final ν ? The reason to exclude all such features is often purely practical. If one manuscript has accents but another does not, then they cannot be compared directly. The scribe's decision of whether to use *nomina sacra* and which ones to use is one of fashion and scribal preferences, it is thought. Spelling of place names surely follows the spelling used at the time the scribe wrote. These are all quite uncontroversial, and all such features of the text tend to be regularised in preparation for the CBGM. The point of this is to take complex and varied information and convert it into pieces of data that may safely be compared (and counted).

But could this be extended, as Porter, Alexanderson et al. would like? What about excluding all corrections in the use of articles to match contemporaneous practices? Should

⁸ See Porter, *How We Got the New Testament*, 32; Alexanderson, 'Problems in the New Testament: Old Manuscripts and Papyri, the New Genealogical Method (CBGM) and the Editio Critica Maior (ECM)', 8.

Chapter 9: The CBGM: Further Criticisms and Improvements

omissions that are clearly attributable to *homeoteleuton* be regularised? Or all unintentional changes? Or instead of ignoring such variant units, perhaps they could be given less weight than a deliberate change? It would be possible, without changing the software, to test the impact of doing such things: variant units that are considered more important could simply be repeated a number of times in the collation. However, if the book has ten thousand variant units, then to define a weight for each one would take a long time, and to be done properly would need to become an iterative process in itself. The question is whether this extra effort yields enough value. Only further research could say for sure, but this would allow the variants to be genuinely weighed for the first time by the CBGM.

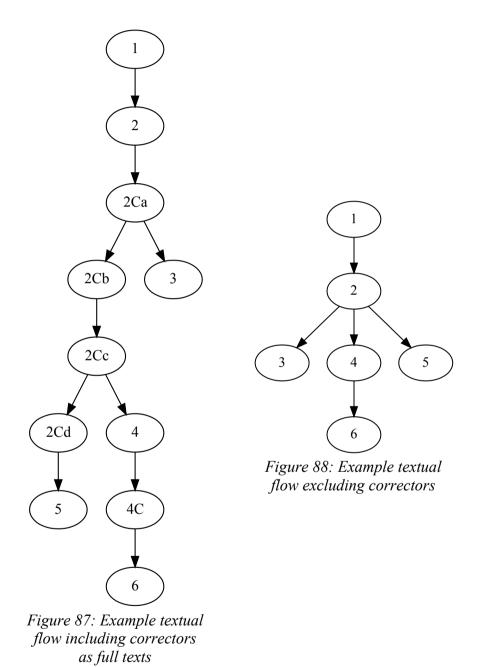
In some ways, this idea parallels the proposal above that the coherence data based on the unambiguous local stemmata be retained. Some data should be treated as being more important than others when it comes to making text-critical decisions based on percentages.

Correctors and Textual Flow

The CBGM does not include correctors, other than firsthand correctors which replace the firsthand of a witness. Both my implementation of the CBGM, and Parker's data, do include correctors. There are two options when creating a witness representing a corrector, and they have different benefits and disadvantages.

First, a witness can be created that represents the state of the text as the manuscript left the corrector's hand. The primary argument in favour of doing this is that it represents a real text that existed in history; a text that could have been copied into another manuscript. This witness will be very similar to the uncorrected text – perhaps with over 99% pregenealogical coherence. Consider a manuscript such as 01, which has been systematically corrected several times over hundreds of years. Each different state of the text may well have

Correctors and Textual Flow


been copied, indeed the corrections may well have been performed in preparation for making the copy. This information is lost in the standard CBGM.

Imagine the hypothetical example in Figure 87, where manuscript 2 has been corrected four times, and copies made after three of those corrections. The CBGM, by ignoring correctors, would show the textual flow as in Figure 88 - i.e. greatly simplified. Now, given that the CBGM does not claim to reconstruct the actual copying history of the manuscripts this might not seem like a problem. However, this is statistically unsatisfying, since 2Cc is a better potential ancestor for 4 than 2 is – the text is closer and agrees in more places. Indeed, if we insert a witness very similar to 2 then this new witness could be a better potential ancestor for 4 than 2 is – and so the situation would be made worse. In Figure 88 it appears that 3, 4 and 5 are siblings – where they could be shown in three different generations if the correctors were included.

The second approach with correctors is to create a witness consisting only of the corrections themselves. The character of this witness will be precisely the opposite of the first option, as it will have no readings in common with uncorrected text. In this case the focus is on the parents of the correctors – i.e. where do the corrections come from? I find this a much more satisfying situation, as understanding what a text is corrected towards can shed some light on the scribal context of the time.⁹ This is the approach we have adopted in applying the CBGM to Parker's ECM data of John. In my implementation of the CBGM these fragmentary correctors do still appear as parents of real witnesses, as I do not exclude fragmentary witnesses as the CBGM proper would do. There is a key argument against this approach: a fragmentary witness with, say, fifty variant units corresponds to a very low sample size, statistically speaking – and even though a witness may agree with it in 98% of units, it may

⁹ It is encouraging to note that this is also the approach Gurry advocates. See Gurry, *A Critical Examination* of the Coherence-Based Genealogical Method, 204.

disagree strongly with the uncorrected text in the rest of the manuscript. In other words, the fragmentary corrector witness is also misleading in nature – as it represents a text unrelated to the uncorrected text but rather to that of the exemplar used for correcting.

As an example, imagine manuscript X was corrected against manuscript Y – creating XC. Then XC was used as the exemplar for witness Z. The full text corrector witness (the first option above) is very similar to X, and may provide a better potential ancestor for Z than X

Correctors and Textual Flow

itself would. It is highly unlikely, however, that any information will be presented by the CBGM as to the precedence of the corrections. The fragmentary corrector witness (the second option) would, in all likelihood, descend from Y – showing that the corrections come from Y. It is unlikely that XC would descend from X, however (unless over 50% of variant units were corrected).

It is necessary to note that, while including correctors allows for these interesting research questions to be investigated (such as: where do XC's corrections originate?), Parker later decided that correctors should be excluded from textual flow diagrams for ECM John as they tend to add complexity and offer little help when carrying out the CBGM's primary purpose of establishing the initial text. But if, instead, a scholar wishes to explore the many states of the text and research individual manuscripts then the inclusion of correctors is a valuable tool.

Conclusion

In this chapter I have discussed several key issues regarding the CBGM. First, the algorithm used to generate pre-genealogical coherence is not objective and is entirely at the mercy of two external factors: regularisation and collation decisions made by the scholar; and the particular set of manuscripts known about or included in the database. Instead the Levenshtein distance provides an objective value that would not be affected by either of these factors.

Secondly I suggested that the coherence data based on only the unambiguous local stemmata should be retained. It should periodically be used to check that later results are correct and have not been skewed by the potential forced feedback loop that adds strength to weak textual flow and then bases decisions on that flow presuming it to be stronger than it really is.

Thirdly, and in a similar vein, there may be considerable value in modifying the CBGM to allow relative weights to be applied to variant units. However, to do so would add significant extra work to an already labour-intensive method. Further research is required to determine if weighing variants in this way would give sufficient benefit to the results.

Finally, when applying the CBGM the scholar should include all correctors if they are seeking to explore the development of the text over time. However, if the scholar's goal is simply to identify an initial text then they may safely use the texts as they left the firsthand or scriptorium (with exceptions such as $\mathcal{P}66^*$ which includes many readings found in no other witness).

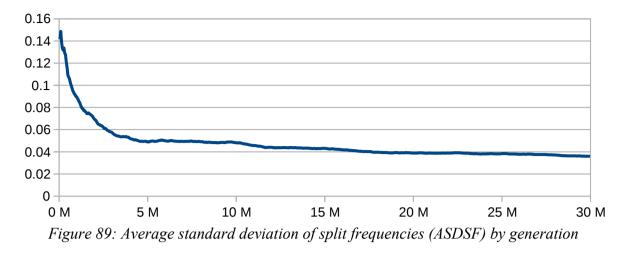
Chapter 10: The CBGM and Phylogenetics

Introduction

Earlier in this thesis, Chapter 3 set out a brief comparison of the CBGM's results with those produced by phylogenetic techniques, using a small test dataset. We are now in a position to perform this comparison in more detail using the full data from Parker's work on the ECM of John's Gospel.¹

Phylogenetic Tree

For *MrBayes*, Parker's collation of John is all that is required. I converted this into a NEXUS file with 138 taxa (witnesses) and 6,506 characters (variant units).² I then ran *MrBayes* on BlueBEAR for thirty million generations with two runs, thirty-two chains and temperature 0.1, using the lessons learned in Chapters 5 and 6.


After thirty million generations the average effective sample size (ESS) was 1,858.67, the potential scale reduction factor (PSRF) was 1.019 and the average standard deviation of split frequencies (ASDSF) was 0.03591 (see Figure 89).³ Together, these values are more than sufficient to say that the runs have converged, even though the PSRF and ASDSF have not quite reached their ideal values. The analysis took a little over 114 hours (nearly five days) and used nearly twenty-four days of CPU time.

¹ This analysis was performed in December 2017 using my CBGM tag 1.12, with data from 31 October 2017. The data does not represent the final version that will be used in the ECM, but it is excellent for the purposes of this chapter.

² See Part Two for more information about *MrBayes*, NEXUS files, and associated terminology.

³ See Chapter 6 for more details about MCMC convergence. See also Ronquist and Deans, 'Bayesian Phylogenetics and Its Influence on Insect Systematics'; Gelman and Rubin, 'Inference from Iterative Simulation Using Multiple Sequences'.

Phylogenetic Tree

The phylogenetic consensus tree is shown in Figure 90. This is quite hard to read at this scale, but smaller sections of it will be discussed in detail later and shown in much larger print.

Median Joining Network

I converted the NEXUS file to an amino acid Roehl data format (RDF) file, setting the maximum fragmentation level to 15%, and then used Fluxus Engineering's *Network* software to create a median joining network.⁴ The resultant network (drawn with the Graphviz NEATO algorithm) is shown in Figure 91. It will be compared to the phylogenetic tree and CBGM results below, with relevant sections of the diagram printed at a readable scale. Note that 1320 and MT have been merged into a single node by the software as they agree in all variant units considered by *Network*. This diagram is very hard to read at this scale, but is printed here to give an overall impression of its layout. A searchable, zoomable electronic copy is available at <u>http://epapers.bham.ac.uk/3144/1/dcp_john_combined_network.neato.pdf</u>

⁴ The 15% max. frag. level means that any manuscript that is less than 85% extant is excluded from this network. This is necessary as the *Network* software excludes any character that is not found in all taxa – and so the analysis is limited to only those variant units found in the intersection of all witnesses. See Chapter 4 for details of the whole process from NEXUS file to usable SVG files.

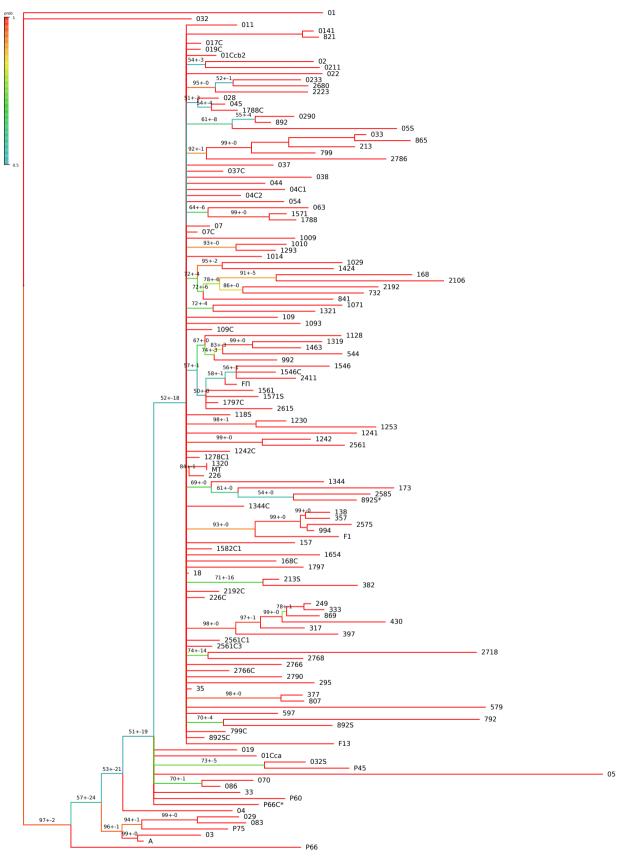


Figure 90: Phylogenetic Consensus Tree for John

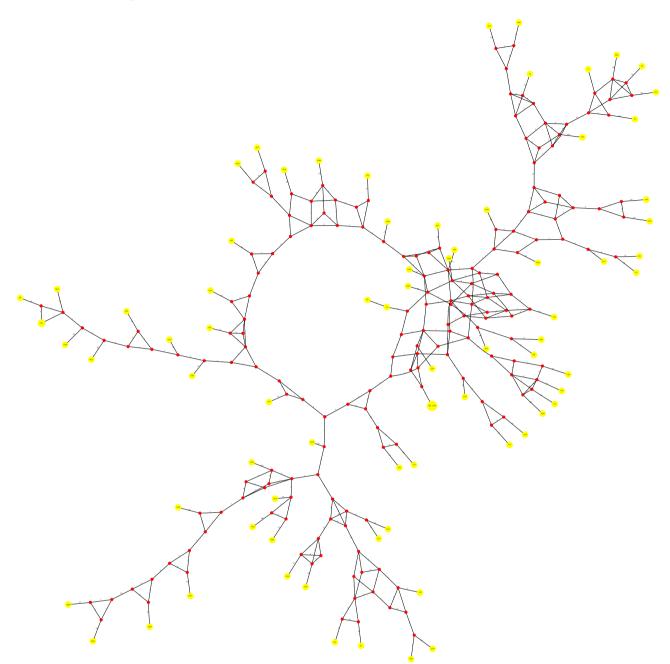


Figure 91: Median Joining Network for John (excluding witnesses <85% extant)

CBGM

Optimal Substemmata

For the CBGM I created lists of combinations of ancestors for each witness and then chose the "best" combination to create optimal substemmata.⁵ Recall that the *optimal* substemma for a witness will contain the smallest number of necessary ancestors that explain all its readings (or the most possible) – either by agreement or by the ancestor's reading being prior (henceforth 'explained by posteriority').⁶ The CBGM's table headings for combinations of ancestors are shown in Table 106.

Vorf	Combination of ancestors						
Vorfanz	Number of ancestors in the combination						
Stellen	Number of variants explained by agreement with an ancestor						
Post	Number of variants explained by posterity						
Fragl	Number of cases of unknown source of variant (i.e. incomplete local stemma)						
Offen	Number of cases not explained by this combination						
Hinweis	"Note". Only used to highlight the combination explaining the most variants						
	in the descendant compared with combinations which are equal in number of						
	ancestors – shown by "<<".						

Table 106: Column header definitions for combinations of ancestors

When presented with a set of combinations of 10,000 rows or more, there are a few tricks that reduce the time required to find the best combination of ancestors. First, only consider those rows with the smallest number in 'Offen', i.e. not explained by the combination. Ideally this should be zero, but in this dataset it is commonly a little higher. This

is a symptom of the fact that Parker has not yet completed the iterations of creating local

⁵ Combinations created using CBGM tag 1.12, and the command "cbgm -d \${DB} combanc all --extracols – max-comb-len=10000". See Chapter 3 for a detailed walkthrough of this process for creating optimal substemmata.

⁶ This can be directly prior or a higher in the local stemma. In other words, a grandparent witness can be used, or a great grandparent etc. This is necessary due to so many witnesses being lost.

CBGM

stemmata, and then considering the textual flow diagrams, coherence data etc. in order to refine the local stemmata. However, the number of unexplained readings is insignificant compared to those explained by agreement or posterity, and so this data is entirely adequate for creating a global stemma for my purposes.

In the case of 011, the data left after removing all rows with non-minimum entries in 'Offen' is shown in Table 107, and indeed there is only one suitable combination of ancestors.

VorfVorfanzStellenPostFraglOffenHinweis18, 2786, 03355191155424Table 107: Combinations of ancestors for 011, with Offen=4

070 is a good example of a witness where the CBGM has been able to determine the best rows automatically (shown by "<<"); they are shown in Table 108. In this case the question is which of the top four rows represents the best solution (the other rows have Offen > 0).

Vorf	Vorfanz	Stellen	Post	Fragl	Offen	Hinweis
019, 33, 03, \$ 75, 044	5	798	30	81	0	<<
04C1, 086, 019, 03, \$\$75, 044	6	797	31	81	0	<<
019, 03, \$ 75, 044	4	796	32	81	0	<<
03, P 75, 044	3	792	36	81	0	<<
A, 019, 33	3	792	35	81	1	<<
A, 019, 044	3	792	35	81	1	<<
019, 33, 03	3	792	35	81	1	<<
A, 33, 044	3	792	35	81	1	<<
019, 03, 044	3	792	35	81	1	<<
33, 03, 044	3	792	35	81	1	<<
019, p 75, 044	3	792	33	81	3	<<
019, 044, 01	3	792	32	81	4	<<

Table 108: Combinations of ancestors for 070 ("<<" rows only)

Combination {019, 33, 03, \$75, 044} explains the most by agreement. {04C1, 086,

Chapter 10: The CBGM and Phylogenetics

019, 03, $\mathfrak{P75}$, 044} is a larger set and so cannot be optimal. {019, 03, $\mathfrak{P75}$, 044} explains two more variant units by posterity, when compared to the first combination: John 11:51/30-34 (addition of an article) and John 9:9/27 (addition of $\delta \epsilon$). These two changes are clearly acceptable to include by posterity. Then {03, $\mathfrak{P75}$, 044} explains four further variant units by posterity: John 9:9/30 (omission of $\sigma \tau \iota$), John 9:8/27 (addition of $\sigma \tau \iota$), John 9:4/18 ($\omega \varsigma$ as opposed to $\epsilon \omega \varsigma$) and John 11:56/18-24 ($\epsilon \sigma \tau \eta \varkappa \sigma \tau \epsilon \varsigma \iota \tau \omega \iota \epsilon \rho \omega$ as opposed to $\epsilon \nu \tau \omega \iota \epsilon \rho \omega$ $\epsilon \sigma \tau \eta \varkappa \sigma \tau \epsilon \varsigma$). All these changes are easy to see as multiple emergence, and so accepting the explanation of posterity means that the optimal substemma is {03, $\mathfrak{P75}$, 044}. For the remaining optimal substemma, I will only consider smaller combinations that explain 10 or fewer extra readings by posterity. This is simply a practical restriction.⁷

A more complex example is 0290. Table 109 shows those combinations where 'Offen' is zero, and the '<<' marker is in the 'Hinweis' column. There are also eleven extra rows representing combinations of size eight (Vorfanz=8) and twenty-five of size nine – all of which explain 510 passages (Stellen) by agreement just as the two size seven combinations do at the top of Table 109. But these need not be considered as they cannot be optimal when compared to the rows of size seven. Within the rows for the same size (and the same 'Post'), the rows are ordered by the sum of their constituent ranks – i.e. the top row of each block is better.

⁷ See analyse_combinations_of_ancestors.py in https://doi.org/10.5281/zenodo.1296287 or https://github.com/edmondac/CBGM for a script that does this mechanical work, presenting the text critical questions to the user for analysis.

Vorf	Vorfanz	Stellen	Post	Fragl	Offen Hinweis
2561C3, 0141, 33, A, 1071, 044, 04	7	510	9	42	0 <<
2561C3, 0141, 33, 1071, 044, 03, 04	7	510	9	42	0 <<
2561C3, 0141, 33, A, 1071, 044	6	509	10	42	0 <<
2561C3, 0141, 33, A, 044, 04	6	509	10	42	0 <<
2561C3, 0141, 33, 1071, 044, 03	6	509	10	42	0 <<
2561C3, 0141, 33, 044, 03, 04	6	509	10	42	0 <<
0141, 33, A, 1071, 044, 04	6	509	10	42	0 <<
0141, 33, 1071, 044, 03, 04	6	509	10	42	0 <<
2561C3, 0141, 33, A, 044	5	508	11	42	0 <<
2561C3, 0141, 33, 044, 03	5	508	11	42	0 <<
0141, 33, A, 1071, 044	5	508	11	42	0 <<
0141, 33, 1071, 044, 03	5	508	11	42	0 <<
0141, 33, A, 044	4	506	13	42	0 <<
0141, A, 865, 044	4	506	13	42	0 <<
0141, 33, 044, 03	4	506	13	42	0 <<
0141, 865, 044, 03	4	506	13	42	0 <<
0141, A, 044	3	503	16	42	0 <<
0141, 044, 03	3	503	16	42	0 <<
A, 044	2	490	29	42	0 <<

Table 109: Combinations of ancestors for 0290 (Offen=0, Vorfanz<8 and "<<")

Combination {2561C3, 0141, 33, A, 1071, 044, 04} explains the most readings by agreement of all the rows, and has lower summed rank than the other size seven row which is otherwise just as good. Size six combination {2561C3, 0141, 33, A, 1071, 044} (i.e. removing 04) explains one further variant unit by posteriority, John 18:34/2-4, where 0290 adds an article ($\alpha\pi \epsilon \varkappa \rho \iota \theta \eta \circ \iota \eta \sigma \sigma \upsilon \varsigma$) when compared to some of its ancestors, with others of its ancestors reading $\alpha\pi \epsilon \varkappa \rho \iota \sigma \sigma \circ \iota \eta \sigma \sigma \upsilon \varsigma$. The best size five combination, {2561C3, 0141, 33, A, 044} (removing 1071), additionally explains John 19:34/22-24 by posteriority. Here 0290 reverses two words ($\epsilon \upsilon \theta \upsilon \varsigma \epsilon \xi \eta \lambda \theta \varepsilon \nu$) with respect to its ancestors. Removing 2561C3 yields a size four combination {0141, 33, A, 044} which requires a further two variant units to be explained by posteriority. First John 19:31/8-34 where $\epsilon\pi \varepsilon \iota \pi \alpha \rho \alpha \sigma \varkappa \varepsilon \upsilon \eta \nu$ is moved to the end of a phrase, and secondly John 19:27/10 where we find the second of the second o

Chapter 10: The CBGM and Phylogenetics

{0141, A, 044}, which requires three more variants to be explained by posteriority: John 19:38/2-6, John 19:38/13 and John 19:39/14-22. The first of these is a simple omitted $\delta\epsilon$. The second is another added article. The third, however, sees $\pi\rho\sigma\varsigma$ autov vuxtos to $\pi\rho\omega\tau\sigmav$ turn in to $\pi\rho\sigma\varsigma$ tov $\eta\sigma\sigma\sigmav$ vuxtos to $\pi\rho\omega\tau\sigmav$. This change has a considerably better claim to being connective than the others, and we will treat it as such.⁸ Therefore this combination is rejected and the optimal substemmata is as shown in Figure 92.

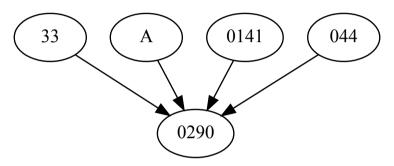


Figure 92: Optimal substemma for 0290

This example highlights an unexpected pattern, which is that as witnesses from the combinations of ancestors are removed the variant units that emerge as needing to be explained by posteriority *very often cluster together* – and indeed here they are all between John 18:34 and 19:39 and not spread throughout the Gospel. To confirm this pattern, and account for it would require further research.

For notes on all the decisions made creating the optimal substemmata for this chapter, see Appendix 6.

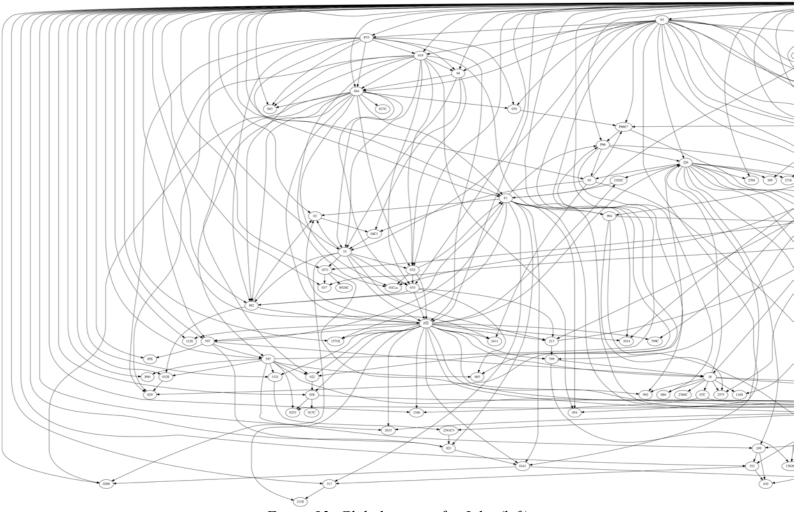
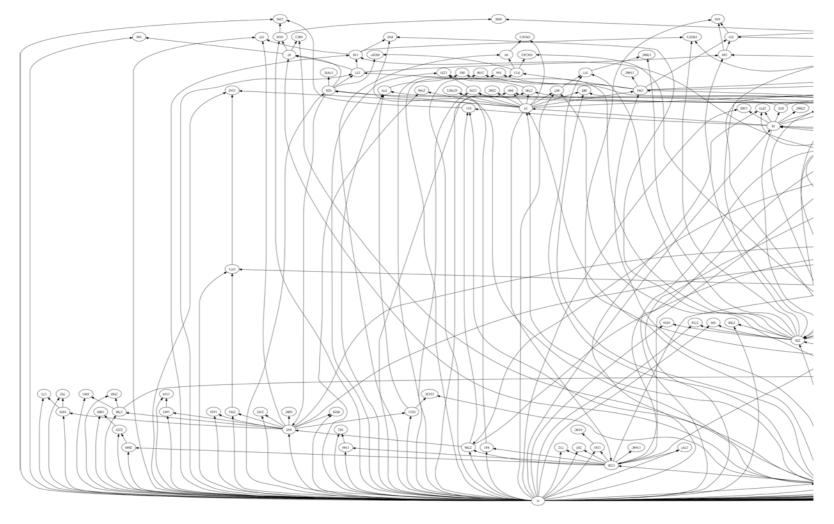
Global Stemma

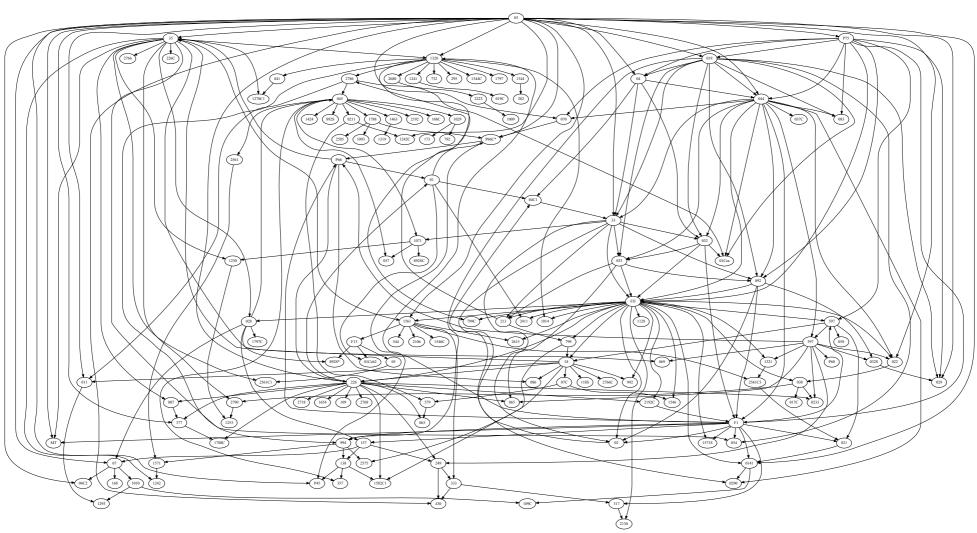
The global stemma can now be created, and is shown in Figure 93 (left) and Figure 94 (right). This is, again, difficult to see due to its complexity and printed scale. A searchable, zoomable electronic copy is available at <u>http://epapers.bham.ac.uk/3145/1/global_stemma.pdf</u>

⁸ This is actually rather less certain than I suggest here. But it is a reasonable argument, and convenient for the purpose of highlighting the effect of a connective variant in this process.

CBGM

An interesting diagram can be created by removing the initial text (A) from the global stemma. What remains is not a true global stemma, by the CBGM's definition, but it shows the global textual flow of extant witnesses – and is therefore of significant interest (and is simpler and so easier to read). This is shown in Figure 95. Again, a searchable, zoomable electronic copy is available at <u>http://epapers.bham.ac.uk/3146/1/global_stemma_no_A.pdf</u>


Figure 93: Global stemma for John (left)

(this in the the terms of terms of

CBGW

Chapter 10: The CBGM and Phylogenetics

CBGM

Figure 95: "Global stemma" for John, with the initial text (A) removed.

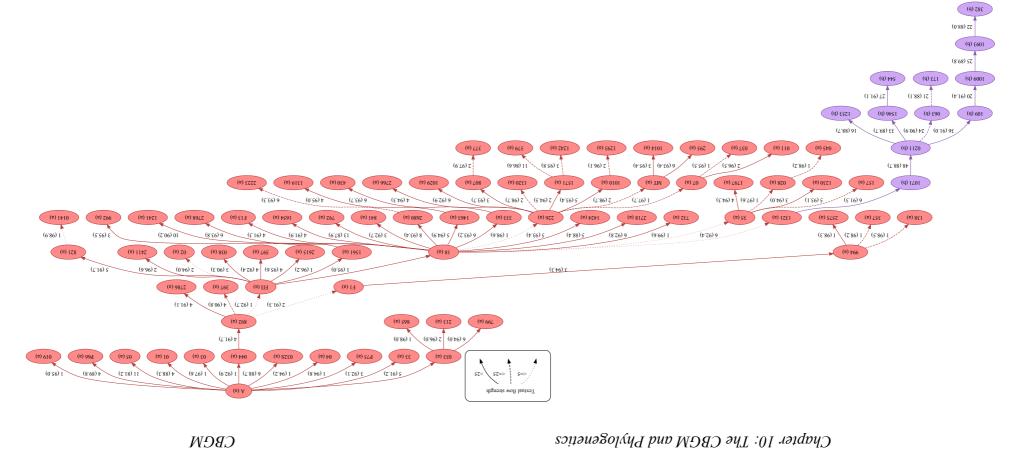


Figure 96: Textual Flow diagram for John 1.8/16 with absolute connectivity

Textual Flow Diagrams versus Global Stemmata

A note is warranted here about a frequent misuse of textual flow diagrams. Textual flow diagrams are often used in place of a global stemma, to try to identify a generic, or global, textual flow. There are, in my opinion, three reasons for this: first and most commonly, textual flow diagrams are mistakenly believed to show this information; secondly, textual flow diagrams are much simpler to interpret; and thirdly, global stemmata require so much work to create that they are frequently skipped and textual flow diagrams are substituted into their place. Consider the textual flow diagram in Figure 96 above.⁹ There is an easy-to-understand flow from the top to the bottom making the diagram accessible to the reader. A problem occurs, however, when the reading *b* sub-tree is considered. It is not particularly coherent (relatively low ranks and coherence percentages), and these witnesses should not be considered as a particularly coherent sub-group in the global flow. Indeed, they are spread throughout the global stemma. They are only grouped because they all share a non-connective reading ($\mu\alpha\rho\tau\nu\rho\eta\sigma\epsilon$) as opposed to $\mu\alpha\rho\tau\nu\rho\eta\sigma\eta$). These witnesses cannot, due to the nature of a textual flow diagram, have descendants attesting reading *a*. Thus the textual flow diagram cannot show even an approximation of the global textual flow for these witnesses.

It is possible, however, to gain a scholarly understanding of the prevailing textual flow by considering many textual flow diagrams. In this case the scholar will come to recognise common features such as the oft-present spine of $A \rightarrow 044 \rightarrow 892 \rightarrow F\Pi \rightarrow 18 \rightarrow 226 \rightarrow$ This spine is present in exactly this form in the global stemma – but it is one of many such routes through the graph. Textual flow diagrams are created by iterating through the witnesses and for each one taking the best parent witness that explains an attestation at this

⁹ While this diagram is considerably easier to read than the global stemmata above, the text is still a little small. I have therefore also made a searchable, zoomable electronic copy available for this diagram at http://epapers.bham.ac.uk/3147/1/textual_flow_B04K01V08_16_c499.pdf

CBGM

particular place in the text and thus forms a witness-to-witness relationship. A global stemma shows the combination of optimal substemmata – i.e. the relationships required to explain a witness in all variant units in the text. A global stemma is complex, and any attempt to simplify it will lose information. This is another point along the lines of "diagrams can be misinterpreted because they are intuitive". Once again, the solution here is to make sure that the reader understands what a textual flow diagram is conveying, and what it can *and cannot* show.

Comparing the Diagrams

0141 and 821

It is now time to compare *MrBayes*' phylogenetic tree, Network's median joining network and the CBGM's global stemma (and textual flow diagrams). Let us begin with perhaps the closest relationship in the data, 821 and its exemplar 0141.¹⁰

The *MrBayes* phylogenetic tree and the median joining network lend themselves to being cropped – and Figure 97 and Figure 98 show the sections of those diagrams containing 0141 and 821. The global stemma has so many crossing lines that the relevant subset of the diagram is hard to extract as an image. But, thankfully, the global stemma exists as a Graphviz DOT file, and it is easy to extract all the lines of that file that refer to one or other of 0141 and 821. This can then be drawn using the same method as textual flow diagrams, resulting in the subset of the global stemma showing 0141, 821 and their direct parents and children (Figure 99).

¹⁰ See Chapter 5, and Taylor Farnes, 'Scribal Habits in Selected New Testament Manuscripts'.

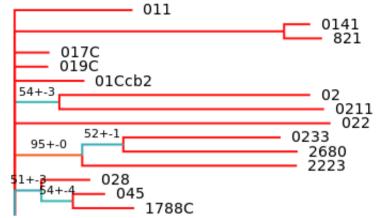


Figure 97: Section of the phylogenetic tree containing 0141 and 821

Comparing the Diagrams

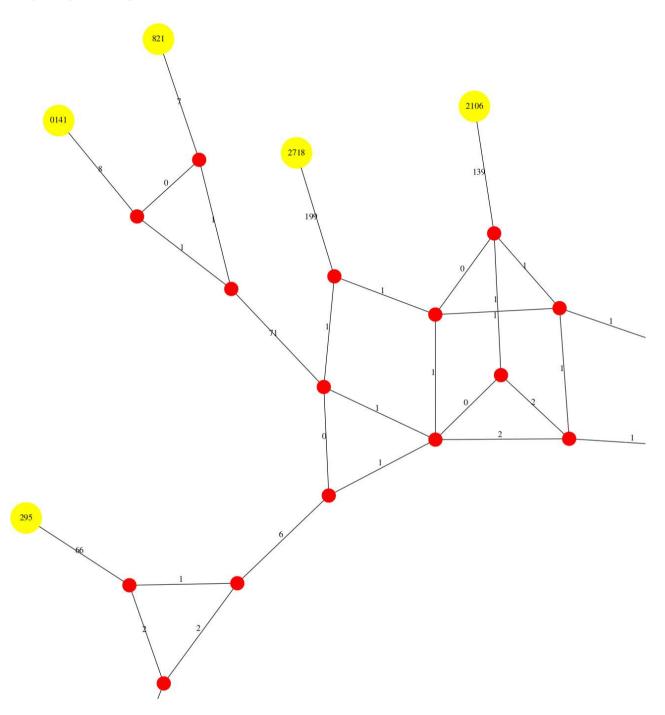


Figure 98: Section of the median joining network containing 0141 and 821

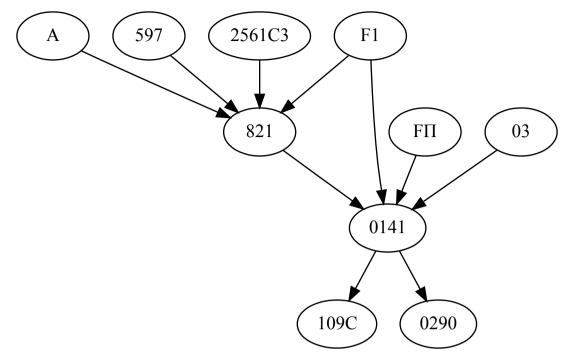


Figure 99: Subset of the global stemma showing 0141 and 821

In all three diagrams 821 and 0141 are directly related. In the phylogenetic tree they are close siblings at the end of a long branch (the nearest to a parent-child relationship that a phylogenetic tree can show). In the median joining network they are neighbours on branches of length seven (821) and eight (0141) joined to the rest of the network by two branches of length one and then a single branch of length seventy-one. Again this indicates a very close relationship and a reasonable distance from the rest of the corpus. A median joining network *can* show witnesses as parent and child – but it has not done so in this case. The subset of the global stemma shows a direct (and directed) relationship from 821 to 0141, following the usual pattern of the CBGM showing a copy as the parent of an exemplar. Of course it is actually showing that the *text* of the copy is closer to the ancestral text than that of the exemplar – which is normal if a copy has corrected some scribal errors in the exemplar but otherwise been very faithful to the exemplar's text.¹¹

None of the diagrams agree which witnesses should immediately surround 0141 and

¹¹ See Chapter 9 for more information about these "backwards" textual flows.

Comparing the Diagrams

821, but of course in the phylogenetic tree and median joining network proximity on the page is not important. Instead, left-right distance required to traverse a route from one witness to the other matters in a phylogenetic network (plus the geometry of the node hierarchy); and the sum of the branch weights (and again the geometry) matters for a median joining network. Let us look for an example with more witnesses.

The "Non-Majority" Witnesses

We will investigate a collection of "non-majority text" witnesses that appear to form a group in the diagrams. Whether or not it can be truly called a group in the text-critical sense is yet to be determined.

Phylogenetic Tree

The phylogenetic tree contains, broadly speaking, a large majority-text branch in the middle of the diagram. If that branch is removed we are left with Figure 100. Of course this is not truly the set of witnesses that do not attest the majority text, hence the quote marks. Instead we are using *MrBayes* as a starting point, and seeing if the sub-set of witnesses seen when that large branch is removed is a meaningful set that the other tools also find in the data. The nineteen witnesses are: A, p45, p60, p66, $p66C^*$, p75, 01, 01Cca, 03, 04, 05, 019, 029, 032, 032S, 070, 083, 086 and 33. Both p66 and $p66C^*$ are included in this data, contrary to the CBGM's standard practice of using the text as it left the firsthand (or Parker's practice of when it left the scriptorium), because the firsthand text of p66 contains many readings that are not found in any other witness.

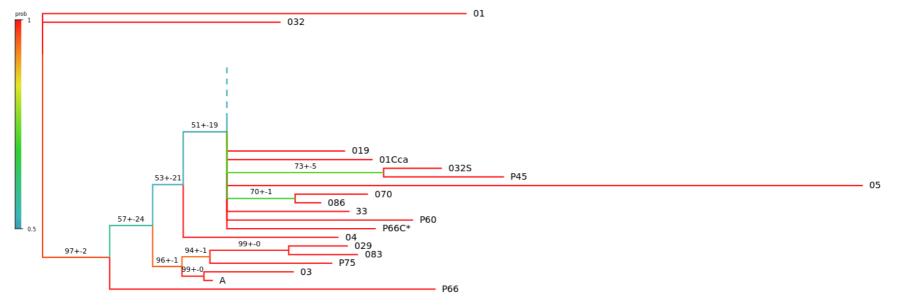


Figure 100: "Non-majority" witnesses in the phylogenetic tree

Median Joining Network

The median joining network excludes \$\Partial 45, \$\Partial 60, \$\Partial 66C^*, \$\Partial 75, 01Cca, 04, 05, 029, 032, 032S, 070, 083 and 086 as they are too fragmentary, leaving just A, \$\partial 66, 01, 03, 019 and 33. These six witnesses appear in a distinct branch of the network, as shown in Figure 101. Here A, $\mathfrak{P}66$, 01, 03 and 019 are a clear group separated from the rest of the network by a branch of length 76 (henceforth "weight", as length is confusing on a diagram where the lengths do not equate to the branch weights), albeit a group where (as expected) \$\P\$66 and 01 are on the end of heavyweight branches. 33 is this group's second-closest neighbour, visually speaking, (after 579) although a few other witnesses are closer when considering the sum of intermediate branch weights but traversing more median vectors (red, effectively hypothetical nodes). 044 is the closest neighbour considering branch weights. Note the branch at the bottom of Figure 101 connecting this section to the rest of the network is of weight forty-five - identifying this subset as a theoretically valid group. 213 and 579 are attached by heavy branches (weights 105 and 163 respectively) and so the core of the network is closer to this group than are these witnesses – and thus they need not be considered as potential group members.¹² Note that 33 is only moderately closer to the group than is 213, consider branch weights. There must therefore be some doubt as to 33's membership – although this doubt will be removed when considering the global stemma below.

¹² A similar argument would be possible for 01 and \$\P66\$, which are both on heavy branches (164 and 147 respectively). However, the additional 76-weight branch connecting their sub-network to the rest of the diagram acts in their favour and they are safe to consider as group members.

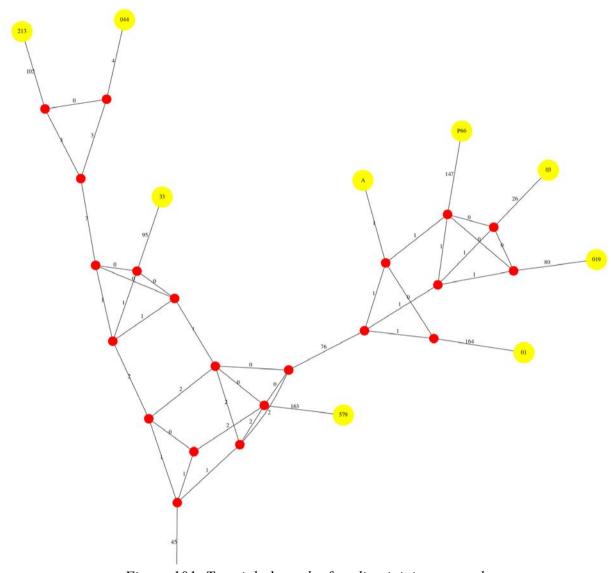
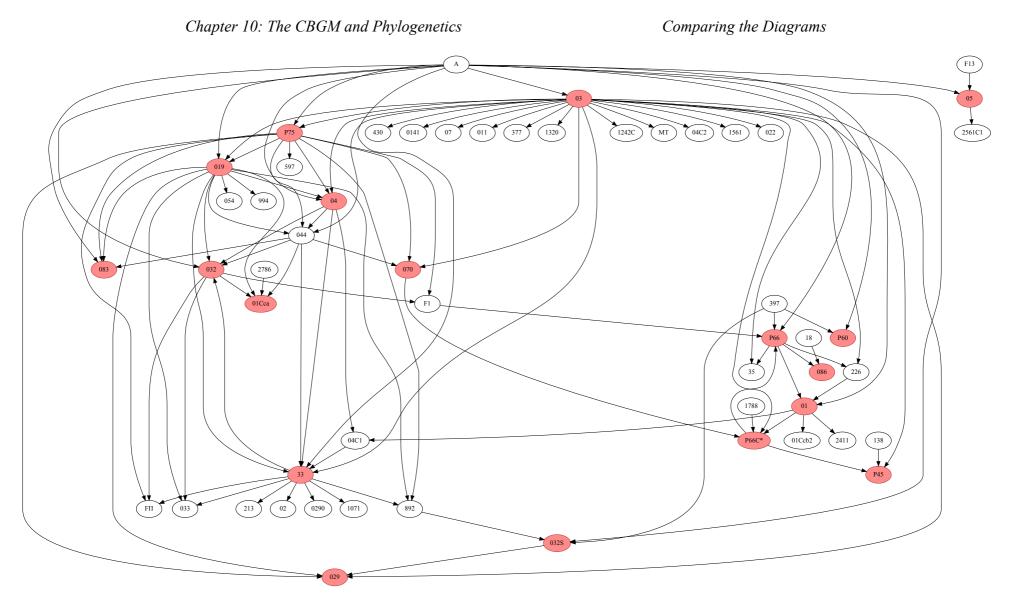


Figure 101: Top right branch of median joining network


CBGM Global Stemma

Due to the way the global stemma is drawn, subsets are difficult to identify. So instead of looking for such a subset, we will re-draw the global stemma including only those eighteen witnesses (the nineteen above excluding A) and their immediate parents or children.¹³ This global stemma subset is shown in Figure 102 and the eighteen witnesses are highlighted, to make interpreting the diagram easier.

Viewing the subset of the global stemma this way it becomes clear that the eighteen witnesses do indeed form an interconnected block – with a few extra candidate members. Indeed, "viewing" is the key here: an aim of this section is to make discoveries about the data (Parker's collation of John's Gospel) by exploring the three different diagrams created using three different techniques. Note that 33 is directly linked to four other current group members (from 03, 04 and 019 and to 032), confirming its membership when compared to, say, 213 (linked only to 33) which was rejected above. Should any of the related witnesses be considered for group membership? Clearly no witness that is only attached by a single line to one of our eighteen need be considered. Similarly, witnesses that are only descended from our group can be safely ignored.¹⁴ There are, therefore, six witnesses to consider: 044, 226, 892, F1, 04C1 and 397.

¹³ If all of A's children are included then the diagram once again becomes too complex. Instead, links are shown for A just as every other witness – i.e. only where it is directly connected to one of the eighteen witnesses.

¹⁴ We are looking for strong candidate members, and not just manuscripts that could be outliers in the group. Adding new members at the edge, if repeated, would eventually consume the entire global stemma into the group.

Candidate members

Even in the complete global stemma, 044 has only five parents: A, $\mathfrak{P75}$, 03, 04 and 019 – all of which are in our group. It has only one extra potential ancestor (which was not required in its optimal substemmata) as shown in Table 110. It has several children not in this group, along with the included 070, 083 and 33. 044 has a good claim to group membership based on the CBGM evidence. 044 has already been proposed as a potential group member as it is the closest witness (considering branch weights) to the group in the median joining network. In *MrBayes*' phylogenetic network, 044 is found in the "majority" branch, but not particularly close to any other witness and so no strong counter argument can be made that it should *not* be considered for group membership based on the phylogenetic tree. Therefore, from the three diagrams there are two positive votes and one abstention, and so 044 will be added to the group.

· · –		~	1 21101	- ~				01.01	1.01
019C		-	97.333	73	75			2	
А	1		92.918	5563	5987	355		42	27
019	2		91.182	5832	6396	239	127	170	28
04	3		90.253	2463	2729	113	68	74	11
03	4		89.983	5839	6489	325	57	236	32
P75	5		89.500	3921	4381	173	110	161	16
029	6		88.653	836	943	37	29	39	2
				_					

W2 NR D PERC1 EQ PASS W1<W2 W1>W2 UNCL NOREL

Table 110: Potential ancestors with W1=044

In the complete global stemma, 226 has more parents outside this group than within it - including 18, 35 and FII, all core majority text witnesses. It only has one child in our group, 01, and this is probably due to 01's peculiar textual nature. 226 need not be considered any further.

892 is included for consideration because it has three parents in the group ($\mathfrak{P}75$, 019

Chapter 10: The CBGM and Phylogenetics

and 33) and it is a parent of 032S. 032S is a sizeable supplement, containing John 1:1 to 5:11, and so 892 cannot be brushed aside. 892 has only three additional parents in the complete global stemma: A, 033 and 044. 044 has now joined the group, and A is in the original nineteen witnesses (if not the eighteen). 892's closest potential ancestors with significant passages in common are 044, A, 33 and 04 (as shown in Table 111) all of which are group members.¹⁵ It is even more closely related to 086 (a group member) but the relationship is undirected. It is, therefore, clearly a close relative of the group if not a member. 892 has only three further links in the global stemma: 02, F1 and FII are descended from 892. In other words, it has more connections (in the global stemma) within the group than outside (six connections against four) and all but one of its ancestors are group members. It seems reasonable therefore to include 892 in the group.

¹⁵ There are a number of potential ancestors in the table with small numbers of passages in common ("PASS"), but their high rank could be coincidental due to the particular passages shared with 892. It is safer to consider those potential ancestors with hundreds or thousands of passages in common.

W2	NR	D	PERC1	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<>	W1>W2	UNCL	NOREL
1797C		-	100.000	67	67				
07C		-	100.000	56	56				
017C		-	100.000	31	31				
892SC		-	100.000	1	1				
892S*		-	100.000	1	1				
2192C		-	96.190	101	105	1	1	1	1
037C	1		93.182	41	44	1		1	1
019C	2		92.593	25	27	1		1	
086		-	92.077	430	467	17	17	3	
01Ccb2	3		91.837	45	49	1			3
044	4		91.660	3451	3765	143	68	83	20
А	5		90.814	3134	3451	272		30	15
33	6		90.655	3347	3692	140	105	83	17
04	7		90.300	1443	1598	75	36	32	12
033	8		90.269	1911	2117	75	62	55	14
083	9		90.015	604	671	32	26	7	2
019	10		89.559	3371	3764	192	71	110	20
029	11		89.290	842	943	50	22	27	2
P66C*		-	88.976	339	381	11	11	15	5
03	12		88.472	3323	3756	244	30	142	17
P75	13		88.113	3054	3466	194	84	115	19
070	14		87.630	758	865	43	29	30	5
032	15		86.558	2228	2574	116	101	107	22
04C1		-	82.000	41	50	3	3	3	
0290		-	81.818	9	11			2	
213S		-	75.000	9	12			3	
05S		-	75.000	9	12			3	
P60		-	66.667	8	12			4	
892S		-	56.250	9	16			7	
118S		-	41.667	5	12			7	
054		-	41.667	5	12			7	

Table 111: Potential ancestors with W1=892

F1 has six parents: A, P75, 032, 044, 892 and 2192C. Of those, A, P75 and 032 are in our original group; and 044 and 892 have now joined it. 2192C is the intermediate step to F1 from both 226 and FΠ. F1 is only being considered for membership as it is a parent of P66 (a group member). However, like the argument for 226 and 01 above, P66's unusual textual nature presumably accounts for the need for F1 as a parent. There is no strong reason to consider F1 further, rather it is a link between this group and more "majority text" witnesses.

04C1 sits as an intermediary in the diagram between 04 and 01 and 33. In the full diagram it has only one other relationship, namely that 02 is its parent. So all but one of 04C1's links are with members of the group – and thus it seems logical to consider it further. 04C1 is in a very similar position to 044 in the phylogenetic tree as they are siblings with similar length branches and therefore the same arguments must apply – i.e. no strong evidence either for or against membership.¹⁶ 04C1 is too fragmentary to be included in the median joining network, and so we are left with the CBGM evidence alone. Table 112 shows 04C1's potential ancestors with current group members highlighted in grey. It is clear that 04C1 certainly is no closer to the group than to witnesses outside it – indeed the frequency of group members increases as we descend the table – indicating that 04C1 has more close relatives outside the group than within. It is therefore excluded.

W2	NR	D	PERC1	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL NORE</th></w2<>	W1>W2	UNCL NORE
168C		-	100.000	13	13			
037C		-	100.000	11	11			
2561C3		-	100.000	10	10			
226C		-	100.000	8	8			
1788C		-	100.000	8	8			
1546C		-	100.000	8	8			
2766C		-	100.000	6	6			
019C		-	100.000	6	6			
892SC		-	100.000	5	5			
109C		-	100.000	5	5			
07C		-	100.000	4	4			
799C		-	100.000	3	3			
1797C		-	100.000	2	2			
017C		-	100.000	1	1			
2192C	1		95.833	23	24	1		
213S		-	94.737	18	19			1

2 NR D PERC1 FO PASS W1<W2 W1>W2 UNCL NOREL

¹⁶ Recall that the vertical proximity of 044 and 04C1 is coincidental and therefore provides no evidence for or against relationships in this diagram. They are next to each other as siblings are sorted alphabetically!

maar			02 0.57	26	20			1	1	
₽66С*		-	92.857	26	28			1	1	
1278C1		-	91.667	11	12			1		
0290		-	91.667	11	12				1	
02	2		87.850	94	107	5	3	4	1	
083	3		85.714	12	14	2				
063		-	85.714	12	14	1	1			
1344C		-	85.714	6	7			1		
029			85.714	6	7	1				
P60		-	85.000	17	20	1	1	1		
038	5		84.545	93	110	7	6	3	1	
F1		-	84.404	92	109	7	7	2	1	
892		-	82.000	41	50	3	3	3		
1242	6		81.818	90	110	7	6	5	2	
2585		-	81.481	22	27	2	2	1		
2786	7		80.909	89	110	8	7	4	2	
044	8		80.000	88	110	10	5	5	2	
579	9		79.545	70	88	8	2	4	4	
033	10		79.310	69	87	6	5	5	2	
2561	11		78.652	70	89	8	6	3	2	
01	12		78.182	86	110	14	3	4	3	
P 66	13		77.778	70	90	10	4	4	2	
А	14		77.451	79	102	19		2	2	
032	15		75.281	67	89	11	2	6	3	
P75	16		75.000	33	44	7	3	1		
430		-	75.000	18	24	2	2	1	1	
05S			75.000	9	12	2			1	
03	18		74.545	82	110	19		6	3	
05	19		73.333	66	90	9	6	6	3	
019	20		70.213	66	94	12	9	5	2	
869		-	66.667	14	21	2	2	2	1	
04	21		60.377	64	106	19	15	7	1	

Table 112: Potential ancestors with W1=04C1 highlighting group members

397 is a parent of three group members: $\mathfrak{P60}$, $\mathfrak{P66}$ and 032S. Should it therefore be a group member? In the complete diagram it has three parents: A and 044 (in the group) and 597. It has six further children in the complete diagram: 022, 0233, 249, 865, 869, and 1321. In the median joining network, 397 is in a small sub-network with 333. The next closest witnesses are core majority witnesses such as MT, 1320, 226 and so on. In the phylogenetic tree it is in a sub-tree with a strong 98% branch, shown in Figure 103. It seems that 397 is

therefore closer to its children than its parents in the global stemma, and so it need not be considered further.

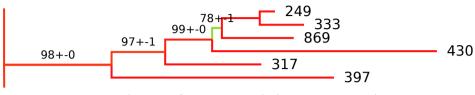
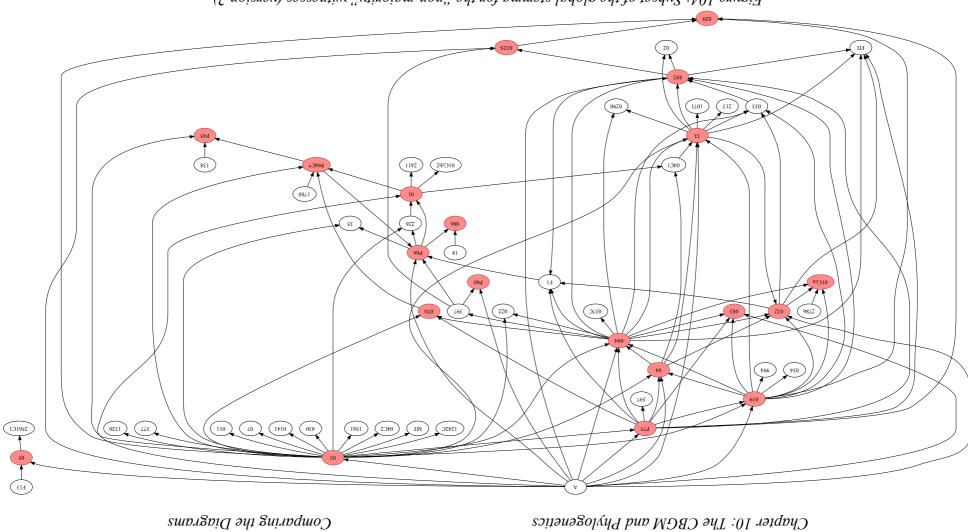



Figure 103: Sub-tree of MrBayes' phylogenetic tree showing 397

We can now iterate our process and create a global stemma subset diagram including 044 and 892 in the group. The new partial global stemma is shown in Figure 104. A risk with this kind of process is that each iteration will yield a few more witnesses to include in the group, and eventually the whole diagram is consumed. However, in this case the only witnesses suggested (visually) as being worthy of consideration are 04C1, 226, 397 and F1 – all of which were considered in the first attempt and excluded. Therefore it seems we have arrived at a stable group of witnesses: A, p45, p60, p66, $p66C^*$, p75, 01, 01Cca, 03, 04, 05, 019, 029, 032, 032S, 044, 070, 083, 086, 33 and 892. This has served as an example of the value of exploring such manuscript data using different techniques. Further research is needed to determine what (if any) textual characteristics can be identified as group markers.

Conclusion

This process has shown that the three diagrams created by independent methods (*MrBayes*'s phylogenetic consensus tree, *Network*'s median joining network and the CBGM's global stemma) do indeed identify similar groupings of manuscripts. This is a strong indicator that the methods are identifying structures inherent in the underlying data. Thus we can say that it is entirely appropriate to apply the CBGM to such data, with the caveats discussed in previous chapters.

As for a use for phylogenetics in textual criticism, a straightforward example would be to use such tools to identify groups of manuscripts, and also those which are more distantly related, and then to use such information to aid in the process of selecting which manuscripts to include in a critical edition. For example, phylogenetics can help to identify appropriate representatives of well known families (for example Chapter 5 showed that 826 is central to Family 13). Similarly, phylogenetics can identify witnesses that are not closely related to any other and thus it presents a strong case for their inclusion.

Chapter 11: Conclusions

In this thesis I explored and analysed the Coherence-Based Genealogical Method (CBGM) both directly and using phylogenetics. I have suggested several areas where it could be improved. The CBGM and phylogenetics are conceptually similar, while being methodologically very different, and their results are therefore effectively independent. The primary conclusion of this thesis is that the CBGM and phylogenetics can both be applied successfully to manuscript traditions. This can be seen when comparing the results of applying the CBGM with those produced by applying phylogenetic techniques to the same input data. In summary, I propose the following five changes to the CBGM:

- 1. Textual flow diagrams should show more information, either as numbers, colours or line-styles:
 - a. Show both the rank and coherence percentage of potential ancestors to avoid the user being misled regarding multiple emergence.
 - b. Highlight weak textual flows to avoid the user basing decisions on textual flows that will change with only a few modified local stemmata.
- 2. The user needs to be able to dynamically apply different settings to a textual flow diagram to reduce the chances of a diagram being misleading:
 - a. First, the user should be able to specify both a rank and a coherence percentage as the "connectivity" setting.
 - b. Secondly, the user should be able to specify the inclusion or exclusion of weak and undirected textual flows.
- 3. The Levenshtein distance should be used to calculate pre-genealogical coherence.

Chapter 11: Conclusions

- Coherence data based on unambiguous local stemmata should be kept and used to check later decisions.
- The decision to include or exclude correctors should be based on the user's goal(s) when applying the CBGM.

In Part One I introduced the CBGM and reviewed the primary and secondary literature. I showed that the primary literature is, generally speaking, inaccessible to non-experts and is complicated. This was confirmed many times in my review of the secondary (and often negative) literature. I was surprised by the number of scholars who have either totally or partially rejected the CBGM. It seems that such rejections often stem from misunderstandings of the method (sometimes simply due to different definitions of terminology) or mistrust of such a radical change (or addition) to the traditional methods of textual criticism. It is to be hoped that Wasserman and Gurry's attempts to provide a more accessible introduction to the CBGM will be of assistance here. Similarly, my step-by-step example of the CBGM in Chapter 3 based on just four verses should be of significant benefit to anyone seeking to understand how to apply the CBGM. It is worth noting that fully understanding the CBGM, and applying it to even a short text, both take a very long time. The CBGM is powerful, and does what it sets out to do: it captures the textual decisions made and allows the user to see the consequences of those decisions. It therefore brings a new level of consistency to textual criticism.

Part Two showed that phylogenetic software can be successfully applied to the ECM data for John's Gospel and raised many interesting research questions by allowing manuscript relationships to be visualised effectively. Several of these relationships are worthy of further study, for example the trio 0141, 821 and 1370; or the very close pair 217 and 578. Applying

phylogenetics is much less time-consuming than using the CBGM, but phylogenetics cannot create an initial text. It could be very useful as an aid in the pragmatic task of the selection (or elimination) of manuscripts for subsequent inclusion in the CBGM/ECM. For example, selection could be aided by identifying groups and appropriate representative manuscripts of such groups, or by identifying manuscripts that have no close relatives at all. Part Two also contained a brief excursus showing that *MrBayes* may be sped up eighteenfold for the IGNTP data for John 2, by setting appropriate parameters as opposed to simply using *MrBayes*' default values.

In Part Three I suggested several key improvements that could be made to the CBGM. First, Chapter 7 showed that textual flow diagrams should show both the rank of potential ancestors and the coherence percentage, thus providing the reader with the necessary information to understand whether the data implies multiple emergence or which places require further investigation before such a decision could be taken. Secondly, considering the connectivity setting used to draw a textual flow diagram for contaminated traditions where many manuscripts are also lost, I showed that a diagram based on rank as the connectivity setting will be more likely to show multiple emergence for later variant readings and to show perfect coherence for earlier ones. Conversely, a diagram based on coherence percentages will tend to show multiple emergence for earlier readings and perfect coherence for later ones. The user should be able to specify both a maximum rank *and* a minimum coherence percentage when creating a textual flow diagram – then multiple emergence would be indicated in both situations rather than being suppressed in one or the other.

In Chapter 8 I proposed a further important modification to the CBGM: the user needs to be able to apply different criteria dynamically when creating textual flow diagrams, and needs to be aware of their benefits and disadvantages: a minimum strength could be used to

Chapter 11: Conclusions

create a textual flow that is less susceptible to later change and is therefore useful for refining local stemmata; weak relationships should be highlighted to prevent the user accidentally relying on them; undirected (or weak) textual flows could be allowed, but highlighted to create a diagram less likely to contain confusing or misleading ancestral relationships, while being less useful for refining local stemmata.

Chapter 9 set out three main suggestions. First, the algorithm used to generate pregenealogical coherence is entirely at the mercy of external factors and is not objective, even though it is hailed as such. It is dependent on the decisions made by the textual scholar applying the method, such as what to regularise and how to collate the text. These decisions shape the basic input data for the pre-genealogical coherence calculations. It is also at the mercy of the extant tradition, for any new variant reading found in a freshly discovered manuscript will change the collation (unless the scholar regularises it away). By contrast, the Levenshtein distance presents a result that has a much better claim to being objective than does the CBGM's own algorithm and would not be affected by either of these factors.

Secondly, the coherence data based on only the unambiguous local stemmata should be retained and periodically used to check that later results have not been skewed by the potential forced feedback loop that can create falsely strong textual flow.

Thirdly, I argued that further research should be carried out to identify whether the CBGM's algorithm should be modified to allow weights to be applied to variant units. The question is whether this would yield results valuable enough to warrant the considerable extra effort required to apply such weights to thousands of units.

Fourthly, when applying the CBGM the scholar should choose whether or not to include all correctors. All correctors should be included if the goal is to explore the development of the text over time. However, if the scholar's aim is simply to identify an initial text then they may safely use the texts as they left the firsthand or scriptorium (with exceptions such as p66* which includes many readings found in no other witness).

In Chapter 10 I compared the CBGM's results to those of independent phylogenetic methods (*MrBayes*'s phylogenetic consensus tree and *Network*'s median joining network), showing that all three methods are identifying real structures inherent in the underlying data. Therefore all three methods can be trusted as long as their output is properly interpreted. I have found phylogenetics a useful tool for discovering facts about the manuscript tradition and would recommend its wider use in textual criticism.

My own CBGM implementation has been used throughout this thesis.¹ It has allowed me to experiment with changes to the method in ways not possible just using the existing INTF implementation. There is considerable scope for further work here. In particular, two major developments would be valuable for my CBGM implementation. Its primary design concerns are to be accessible and modifiable – and it can therefore be quite slow at certain tasks. There are doubtless several areas where its speed could be improved substantially. It would also be useful to provide a graphical interface to it, allowing it to be used by researchers with less technical expertise. This is an Open Source implementation and perhaps, therefore, other scholars will choose to collaborate on it.

Wasserman and Gurry have identified a significant problem: "What scholars and student[s] most need now is a version of the CBGM that allows them to edit the local stemmata and create their own database of genealogical data."² The new implementation of the CBGM from the INTF and the Cologne Center for eHumanities will be very useful and contains many improvements on the previous system, but it is still something of a "black box" that can only be operated with the aid of the INTF. My implementation of the CBGM allows

¹ See https://doi.org/10.5281/zenodo.1296287 or https://github.com/edmondac/CBGM

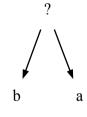
² Wasserman and Gurry, A New Approach to Textual Criticism, 119.

Chapter 11: Conclusions

full transparency and can be operated by anyone with access to a computer running Linux – and thus should address this problem highlighted by Wasserman and Gurry.

In the six years I have spent on this part-time PhD the scholarly landscape surrounding the CBGM has changed radically, for example the introduction of the new Cologne interface and the seminal contributions to the field by Gurry and Wasserman. It has also, in other respects, stayed much the same: The method itself has changed little, despite the continuing waves of criticism from the secondary literature. I hope that this thesis will help to convince sceptical scholars that the CBGM improves the ECM's methodological consistency and therefore the quality of its text. I also hope that my suggestions will be incorporated into the CBGM with the potential of further improving the text of the ECM.

Appendix 1: CBGM Example (Remaining Data)


Introduction

This appendix completes the CBGM example from Chapter 3 and together they contain the complete record of the local stemmata (first pass with only pre-genealogical coherence data and second with genealogical coherence data) and optimal substemmata for John 6:21-24 (Papyri and Majuscules).

Local Stemmata

John 6:21/28-30

The two readings in John 6:21/28-30 differ only in their case. Moule states that "[t]he use of the cases after $\dot{\epsilon}\pi \dot{\iota}$ is very fluid" and it is no surprise to see the accusative and genitive both used in this situation.¹ The genitive is more common, and indeed throughout the IGNTP transcriptions of John's gospel, the ratio of " $\epsilon\pi\iota \tau\eta\varsigma \gamma\eta\varsigma$ " to " $\epsilon\pi\iota \tau\eta\nu \gamma\eta\nu$ " is about 10:1. But this isn't enough to be confident in this

a της γης ... b την γην 01, 0211 lac \$75, 091 Table 113: Local stemma for John 6:21/28-30

variant unit, and so we will wait for genealogical coherence data. The readings are shown in Table 114.

¹ Moule, An Idiom Book of New Testament Greek, 49.

John 6:21/36

Here 01 reads $\upsilon \pi \eta \nu \tau \eta \sigma \varepsilon \nu$, which is a word John uses when people meet one another but here seems like a mistake by the scribe. The local stemma is shown in Table 114.

			11			
a 		John 6:22/3	b υπηντησεν (lac (01 091		
	↓ ↓	In John 6:22/3, 0211 uniquely adds $\tau\epsilon$ –	Table 114: Lo stemma for Jo			
	b	creating the local stemma in Table 115.	6:21/36			
a b τε	 0211	John 6:22/10	a 			
lac	091	In this unit, 038 and 045 don't read the	Ļ	Ļ		
	15: Local a for John	article. The normal Johannine construction	b			
6:22/3		in this case would be to use the article, and	a o b 038,04	15		
so it seem	lac 091	-				

so it seems clear that reading *a* is prior. The local stemma is shown in Table 116.

Table 116: Local stemma for John 6:22/10

а

b

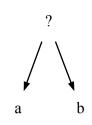
•••

a υπηγον

ψ
 b
 a εστηκως ...
 b εστως 01
 lac 091
 Table 117: Local
 stemma for John
 6:22/12

а

John 6:22/12


Here, 01 uniquely reads $\varepsilon \sigma \tau \omega \varsigma$ instead of $\varepsilon \sigma \tau \eta \varkappa \omega \varsigma$. Morphologically, both are RAPMSN but $\varepsilon \sigma \tau \omega \varsigma$ is considerably more common.² John 12:29, for example, reads " $\circ \circ \upsilon \upsilon \circ \chi \lambda \circ \varsigma \circ$ $\varepsilon \sigma \tau \omega \varsigma$ " in the majority of older witnesses including 01.³ So it seems that 01 has changed this text, possibly by harmonisation. The local stemma is shown in Table 117.

² RAPMSN = Perfect Active Participle Masculine Singular Nominative

³ Although here also many witnesses read εστηκως.

John 6:22/40

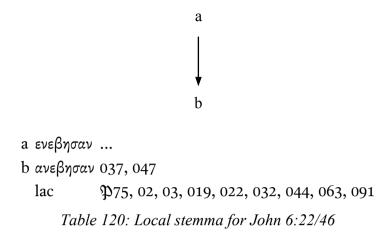
John 6:22/40-52 was a later addition. This long addition contains a number of variant units, the first of which is John $6:22/40.^4$ Here 05 and 0211 omit exervo. On the one hand, with the word the text is smoother

а єкєїло ... b 05, 0211 lac \$75, 02, 03, 019, 022, 032, 044, 063, 091 *Table 118: Local stemma for John 6:22/40*

and so 05 and 0211 could be witnessing to an earlier, shorter form. On the other hand, however, exervo sounds somewhat like a marginal note, and would therefore be later. We will wait for further evidence. The readings are shown in Table 118.

John 6:22/42

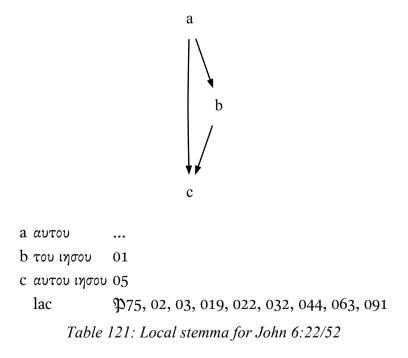
034 omits John 6:22/42; εις. Normally, ενεβησαν is paired with εις (as in John's two uses: John 6:17 and John 6:24). The text doesn't make sense without εις so 038 must have made a mistake in omitting it. The local stemma is shown in Table 119.



a εις ... b 034 lac \$\$75, 02, 03, 019, 022, 032, 044, 063, 091 *Table 119: Local stemma for John 6:22/42*

⁴ Thus making John 6:40-52 an "overlapping" variant unit.

John 6:22/46


Here, 037 and 047 read $\alpha\nu\epsilon\beta\eta\sigma\alpha\nu$ (ascended) rather than $\epsilon\nu\epsilon\beta\eta\sigma\alpha\nu$ (embarked). While $\alpha\nu\epsilon\beta\eta\sigma\alpha\nu$ can be used to describe getting into a boat the vast majority of early witnesses read

ενεβησαν for this concept in John's gospel, with ανεβησαν attested to almost exclusively by later witnesses.⁵ So it seems clear that ανεβησαν is a later change (or error). The local stemma is shown in Table 120.

John 6:22/52

Here 01 replaces $\alpha \upsilon \tau \sigma \upsilon$ with $\tau \sigma \upsilon$ υ $\eta \sigma \sigma \upsilon$ and 05 adds $\upsilon \eta \sigma \sigma \upsilon$, making the odd phrase $\alpha \upsilon \tau \sigma \upsilon$ υ $\eta \sigma \sigma \upsilon$. 05 was later corrected to read $\tau \sigma \upsilon$ $\upsilon \eta \sigma \sigma \upsilon$ but is its original reading here evidence of the evolution of this improving addition? 05's

reading $\alpha \upsilon \tau \sigma \upsilon$ seems to be derived from both the other readings, and so we can construct the local stemma – see Table 121

⁵ The passages in question are John 6:22 (this verse), John 6:24 and John 21:3.

John 6:22/61

In John 6:22/61, 02 has evidently inserted a clarifying o injous, creating the local stemma in Table 122.

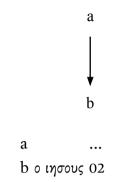


Table 122: Local stemma for John 6:22/61

John 6:22/68-70

In this unit 034 omits o infoous. While the sense is fine without o $i\eta\sigma\sigma\sigma\sigma$ - and therefore it could be argued that those witness that include it do so as a clarification - it seems nevertheless clear that 034 has

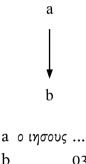


Table 123: Local stemma for John 6:22/68-70

034

omitted it.⁶ So the local stemma in Table 123 can be created.

John 6:22/76

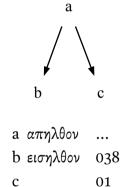
In John 6:22/76 the two words $\pi\lambda_{01}$ and $\pi\lambda_{01}$ ov roughly split the attestations. Are the boats little or not? This is very likely to be a case of assimilation to the unanimously attested $\pi\lambda_{0i\alpha\rho_{10}\nu_{10}\nu_{10}\nu_{10}\nu_{10}\nu_{10}}$ in John 6:22/24, since this refers to the very same boat. The local stemma is shown in Table 124.

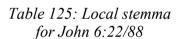
Is this a situation where textual scholars will readily transgress the maxim that "witness should be weighed 6 and not counted"? Perhaps pragmatism allows such transgressions.

a πλοιαριον 07, 011, 013, 021, 028, 030, 034, 036, 037, 038, 045, 047, 063 b πλοιον \$\P75, 01, 02, 03, 05, 017, 019, 022, 032, 044, 091, 0141, 0211 lac 031

а

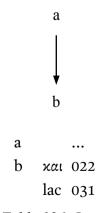
b

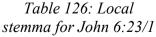

Table 124: Local stemma for John 6:22/76


John 6:22/88

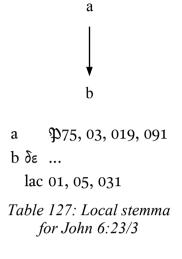
In John 6:22/88, 038 seems to improve the text by replacing $\alpha\pi\eta\lambda\theta\sigma\nu$ with $\epsilon\iota\sigma\eta\lambda\theta\sigma\nu$ and thus reflecting word 60 ($\sigma\nu\nu\epsilon\iota\sigma\eta\lambda\theta\epsilon$). 01 omits the word entirely creating a further legitimate reading. But could this omission actually be a prior reading? 01's scribe has a proclivity to drop words, and so this is probably an omission. The local stemma is shown in Table 125.

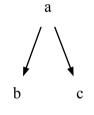
John 6:23/1


022 uniquely includes και at the start of verse 23 (reading και αλλα $\delta \varepsilon$), and this is surely an addition. The local stemma is shown in Table 126.



031


lac


John 6:23/3

In John 6:23/3 $\mathfrak{P75}$, 03, 019 and 091 read the base text (om) but the rest of the witnesses add $\delta \varepsilon$.⁷ With the exception of a handful of witnesses to John 10:16, this is the only instance of " $\alpha\lambda\lambda\alpha$ $\delta\varepsilon$ " in John's gospel.⁸ This word is unnecessary and clearly an addition. Thus the local stemma can be constructed – see Table 127.

John 6:23/12-16

032 omits John 6:23/12-16. So was the omission an earlier form and the "near the place" a later addition, or did 032's scribe shorten the text? It seems likely that 032 has simply omitted the words. 01's text "being near" is half-way regarding simplicity, but is probably a symptom of 01's scribe either making an error or simply misunderstanding a complicated text. The local stemma is shown in Table 128.

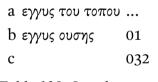
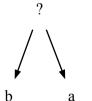


Table 128: Local stemma for John 6:23/12-16


⁷ Apart from 01 and 05 which are lacunose for this variant unit being covered by the overlapping unit John 6:23/2-6.

⁸ Considering all the transcriptions prepared for the ECM version of John.

John 6:23/20-22

In John 6:23/20-22 01 again has an unique reading but it is not obvious whether it is prior or posterior to the rest of the tradition. The readings are shown in Table 129.

John 6:24/2-10

In John 6:24/2-10 we find yet

6:23/20-22 another overlapping unit representing a unique reading of 01.

It is not easy to create the local stemma, so this will be

deferred. The readings are shown in Table 130.

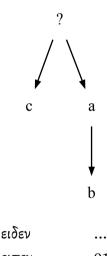
a οτε ουν ειδεν ο οχλος ... b και ιδοντες 01 Table 130: Local stemma for overlapping unit John 6:24/2-10

<u>John 6:24/6</u>

In John 6:24/6 most witnesses read $\epsilon\iota\delta\epsilon\nu$. 013 has made a mistake and written $\epsilon\iota\pi\epsilon\nu$. 030 reads $\epsilon\gamma\nu\omega$, which is valid here. But relating $\epsilon\iota\delta\epsilon\nu$ to $\epsilon\gamma\nu\omega$ is not straightforward and so only a partial local stemma can be created (see Table 131).

John 6:24/14

In John 6:24/14 01 and 038


Table 131: Local stemma for John 6:24/6

c b a ιησους ... b ο ιησους 01, 038 c 013 lac 031, 063 Table 132: Local stemma for John 6:24/14

have the article before $\iota\eta\sigma\sigma\sigma\sigma$, which seems to be a clear addition. 013 omits the word, and while not strictly necessary this does seem like a mistake. The local stemma is shown in Table 132.

a b

с

a εφαγον τον ... b και εφαγον 01

Table 129: Local

stemma for John

01007	•••
ειπεν	013
εγνω	030
lac	01

John 6:24/14-20

In the overlapping variant unit John 6:24/14-20, 01 again has a unique reading – this time a matter of word order and a change of tense from $\varepsilon \sigma \tau \iota \nu$ to $\eta \nu$. It is likely (given 01's character in these verses) that genealogical coherence will be able to help decide this local stemma later. For now the readings are shown in Table 133.

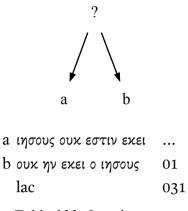


Table 133: Local stemma for John 6:24/14-20

John 6:24/28

Here we find yet another variant unit that exists purely because of 01. Here 01 omits the word and is known for shortening the text in this way. So even though 01's reading is reasonable, it is probably posterior. The local stemma is shown in Table 134.

John 6:24/31

In John 6:24/31, 030, 036 and 0211 (out of order) include the word $x\alpha i$, which seems a clear addition. This creates the local stemma shown in Table 135.

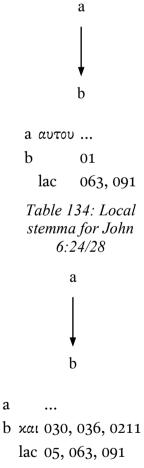


Table 135: Local stemma for John 6:24/31

John 6:24/30

John 6:24/30 contains a second example of the question of $\varepsilon v \varepsilon \beta \eta \sigma \alpha v$ versus $\alpha v \varepsilon \beta \eta \sigma \alpha v$ ($\mathfrak{P75}$, 01 and 019) – with regard to a boat.⁹ Now $\mathfrak{P75}$ and 019 are closest relatives (Table 136) with 97.143% coherence – suggesting their shared reading here is not coincidental. 01, however, is a very distant relative (last in the table with only 42.424% coherence). So either $\alpha v \varepsilon \beta \eta \sigma \alpha v$ is the initial text, or it has emerged independently twice. Sadly for this line of argument, it is entirely conceivable that this single-letter change could have arisen independently. So in keeping with the decision in John 6:22/46 above, we can construct the local stemma (see Table 137).

a ↓ b a ενεβησαν ... b ανεβησαν \$\$75,01,019 lac 05,063,091 Table 137: Local stemma

for John 6:24/30

W2	NR	PERC1	EQ	PASS
019	1	97.143	34	35
03	2	94.444	34	36
091	3	88.889	16	18
022	4	88.571	31	35
044	5	86.111	31	36
032	6	85.714	30	35
0141	7	83.333	30	36
02		83.333	30	36
063	9	82.143	23	28
011	10	80.556	29	36
037	11	80.000	28	35
031		80.000	24	30
017	13	77.778	28	36
021		77.778	28	36
07		77.778	28	36
028	16	75.000	27	36
034		75.000	27	36
036		75.000	27	36
045		75.000	27	36
047		75.000	27	36
05	21	72.414	21	29
013	22	72.222	26	36
0211		72.222	26	36
030		72.222	26	36
038		72.222	26	36
01	26	42.424	14	33

Table 136: Pregenealogical coherence with W1=\$75

⁹ See John 6:22/46 above. Note that no witness attests an $\beta\eta\sigma\alpha\nu$ in both verses.

John 6:24/32

In John 6:24/32 01 and 028 omit the pronoun. This seems likely to be another example of 01's scribe dropping a word. 028 is 01's second closest relative (Table 139) and so this is

	↓ b
a αυτοι	
b	01, 028
lac	05, 063, 091
	3: Local stemma ohn 6:24/32

а

probably not a case of multiple emergence. The local stemma is shown in Table 138.

John 6:24/30-38

05's unique reading in these words is represented as an overlapping unit: John 6:24/30-38. It seems very likely that 05's attempted improvement is posterior here, although actually it seems that 05 has misunderstood which boats are being talked about. The local stemma is shown in Table 140.

> a ↓ ↓ b

a ενεβησαν αυτοι εις τα πλοια ... b ελαβον εαυτοις πλοιαρια 05 lac 063, 091 *Table 140: Local stemma for*

overlapping variant unit John 6:24/30-38

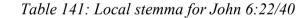

W2	NR	PERC1	EQ	PASS
031	1	48.485	16	33
028	2	47.368	18	38
А	3	45.833	11	24
07	4	44.737	17	38
038		44.737	17	38
021		44.737	17	38
017		44.737	17	38
0141		44.737	17	38
013		44.737	17	38
037	10	43.243	16	37
\$P75	11	42.424	14	33
019		42.424	14	33
045	13	42.105	16	38
036		42.105	16	38
030		42.105	16	38
011		42.105	16	38
047	17	39.474	15	38
034		39.474	15	38
0211		39.474	15	38
063	20	38.462	10	26
03	21	38.235	13	34
032	22	36.364	12	33
022		36.364	12	33
044	24	35.294	12	34
05	25	33.333	11	33
091		33.333	5	15
02	27	32.353	11	34

Table 139: Pregenealogical coherence with W1=01

Genealogical coherence and textual flow

John 6:22/40

This unit can be resolved by considering the likelihood of multiple emergence of the addition of exeivo. Note that in this unit the initial text is lacunose, as it attests the omission in the overlapping variant unit John 6:22/40-52. Recall that "OL PARENT" is a hypothetical witness where the addition in John а 6:22/40-52 occurred.¹⁰ The only viable scenario is that b comes from b a, and 05 and 0211 omitted the word а екего ... (see Figure 106).¹¹ The local stemma b 05,0211 is shown in Table 141. lac P75, 02, 03, 019, 022, 032, 044, 063, 091

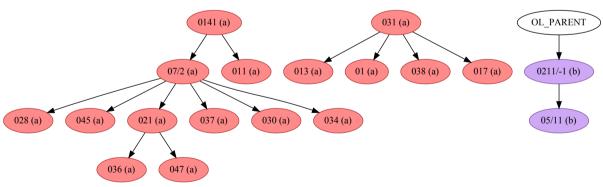


Figure 105: Textual flow diagram for John 6:22/40 with parent text b

¹⁰ No extant witness can serve in this role here since the two witnesses that normally occur beneath it (0141 and 031) have undirected genealogical coherence – and thus neither can serve as ancestor to the other.

¹¹ If we allow absolute connectivity then 05 must descend from 0211, its 11th most likely potential ancestor and their omission is related. For lower connectivity values 05 and 0211 independently omitted the word – which is perfectly believable.

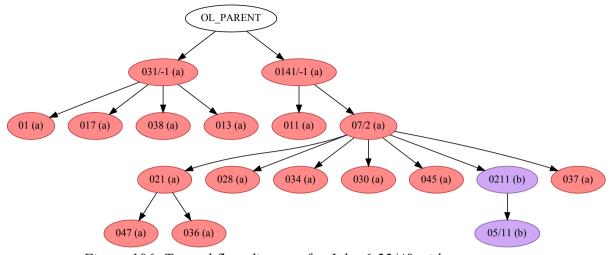
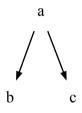
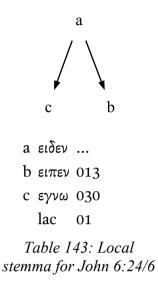



Figure 106: Textual flow diagram for John 6:22/40 with parent text a

John 6:23/2-10

In this unit we have two genitive absolute variations (b 01 and c 05) on the majority


reading a. 01 and 05 are almost as distantly related as is possible in this dataset, and so it is highly unlikely that their readings are related. These genitive absolutes must be seen, therefore, as two independent improvements on the a reading. The local stemma is shown in Table 142.

a αλλα ηλθεν πλοιαρια εκ τιβεριαδος ... b επελθοντων ουν των πλοιων εκ τιβεριαδος 01 c αλλων πλοιαρειων ελθοντων εκ τιβεριαδος 05 Table 142: Local stemma for John 6:23/2-10

John 6:24/6

Reading *a* must surely be the initial text and so the only remaining question is that of the origin of c.¹² Reading *c* is more closely related to witnesses reading *a* than *b*, and indeed has only undirected coherence with the witness for reading *b* (see potential ancestors of 030 in Table 144). So the local stemma can be determined (see Table 143).

W2	NR	D	PERC1	EQ	PASS	READING	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NORI</th></w2<>	W1>W2	UNCL	NORI
07	1		95.122	39	41	а	1		1	
031	2		94.286	33	35	а	1		1	
063	3		93.103	27	29	а	1		1	
045		-	92.683	38	41	а	1	1	1	
028		-	92.683	38	41	а	1	1	1	
021		-	92.683	38	41	а	1	1	1	
013		-	92.683	38	41	b	1	1	1	
011	4		92.683	38	41	а	1		2	
037		-	92.500	37	40	а	1	1	1	
017		-	87.805	36	41	а	2	2	1	
0141	5		87.805	36	41	а	2		2	1
А	6		83.333	25	30	а	5		1	
044	7		78.378	29	37	а	3		4	1
02			78.378	29	37	а	4	2	2	
022	9		77.778	28	36	а	3	2	3	
03	10		75.676	28	37	a	5	1	3	
032	11		75.000	27	36	a	3	2	4	
019			75.000	27	36	a	4	2	3	
¥75	13		72.222	26	36	а	5	2	3	
091		-	72.222	13	18	а	2	2	1	

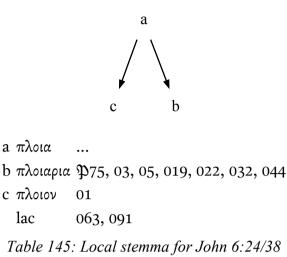

W2 NR D PERC1 EQ PASS READING W1<W2 W1>W2 UNCL NOREL

Table 144: Potential ancestors with W1=030, showing their reading at John 6:24/6

¹² As in other places in this section, what is text-critically obvious does sometimes seem a little too much like counting witnesses. But surely a single, otherwise relatively unimportant majuscule wouldn't carry the initial text?

John 6:24/38

This variant unit can be resolved by considering a previous unit, and following in its tracks. In John 6:23/4-10 $\mathfrak{P}75$, 03, 032, 044 and 0141 referred to these *exact same boats* as $\pi\lambda oi\alpha$ (while here all but $\mathfrak{P}75$, 03, 05, 019, 022, 032 and 044 do!) Witnesses 01 and 05 were lacunose in that variant unit

while 063 and 091 are lacunose here. A very small number of witnesses seem to have assimilated this to their reading in 23/4-10. In that variant unit we decided that the $\pi\lambda oia\rho ia$ readings were prior – and therefore here the $\pi\lambda oia$ reading must be (for most of the same witnesses to read the initial text in both places when referring to these boats.) See Table 145 for the local stemma.

Optimal Substemmata

02 has three potential ancestors, and so there are seven possible combinations, as shown in Table 146. The decision in this case is easy, however, as the combination that explains the most readings by

Vorf	Vorfanz	Stellen	Post	Fragl	Offen	Hinweis
А	1	29	3	5	0	<<
A, 03	2	29	3	5	0	<<
A, 091	2	29	3	5	0	<<
A, 03, 091	3	29	3	5	0	<<
03	1	27	3	5	2	
03, 091	2	27	3	5	2	
091	1	12	2	5	18	

```
Table 146: Combinations of ancestors for 02
```

agreement is simply {A}, which explains all 02's readings.

Optimal Substemmata

P75's combinations of ancestors are shown in Table 147. Again, this decision is straightforward. 03 explains 30 readings by agreement, but cannot explain one. A explains all P75's

Vorf	Vorfanz	Stellen	Post	Fragl	Offen	Hinweis
03, A	2	30	2	4	0	<<
03, 031	2	30	2	4	0	<<
03, A, 031	3	30	2	4	0	<<
03	1	30	1	4	1	
А	1	29	3	4	0	<<
A, 031	2	29	3	4	0	
031	1	21	3	4	8	

Table 147: Combinations of ancestors for $\mathfrak{P75}$

readings, but only 29 by agreement – and two more by posterity than 03. So $\{03, A\}$ explains 30 all the readings and 30 by agreement. But so does $\{03, 031\}$. Table 148 shows that 031 is a significantly more distant relation than 03 and A, and therefore the combination $\{03, A\}$ is to be preferred.

W2	NR	D	PERC1	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<>	W1>W2	UNCL	NOREL
019		-	97.143	34	35				1
03	1		94.444	34	36	1			1
А	2		90.625	29	32	3			
02		-	83.333	30	36	3	3		
037		-	80.000	28	35	3	3	1	
031	3		80.000	24	30	3	2	1	

Table 148: Potential ancestors with W1=\$75

The same classes of argument lead to these decisions: 07 {063, 0141}; 019 {03, A}; 044 {03, \$\partial 75}; 091 {A}; and 0141 {044, A}.

017 has eleven potential ancestors none of which can explain all of its readings. It has twenty equally good pairs of witnesses that explain all its readings, and so {031, 0141} is chosen because the summed rank of 0131 and 0141 is higher than the summed rank of any other such pair (in this case the first and joint-second highest ranked potential ancestors).¹³ Applying all these techniques provides decisions for: 011 {0141, 063}; 021 {07, 091}; 022 {044, A}; 028 {07}, 032 {044, 03}, 037 {07}, 045 {07}.

¹³ It seems entirely reasonable to prefer the combination made up of the closest ancestors when all else is equal.

Appendix 1: CBGM Example (Remaining Data)

05 has 524,288 possible combinations, but the decision boils down to these four: {03, 0211}, {091, 03, 0211}, {091, 03, 047, 0211} and {091, $\mathfrak{P}75$, 047, 0211}. The two combinations of length four explain most by agreement but both require two eleventh ranked potential ancestors. {03, 0211} is the shortest, but requires John 6:23/26-30 (three word omission) to be explained by posteriority which is not preferable. 091 is 05's highest ranked potential ancestor, and explains this reading by agreement. The four-length combinations explain one further reading by agreement over this combination, but it is a simple one-character change ($\mu ovoi$ to $\mu ovov$) and is fine by posteriority. As such {091, 03, 0211} is the optimal substemma.

The decision for 047 comes down to a simple choice between {021} and {021, 037}. 037 explains John 6:22/46 by agreement ($\epsilon\nu\epsilon\beta\eta\sigma\alpha\nu$ or $\alpha\nu\epsilon\beta\eta\sigma\alpha\nu$) but this variant is not connective and so 037 is not required. 0211 has two equally good best combinations: {036, A} or {030, A}. They are equally good by all measures we have used so far, and as such we must leave the decision open. The remaining witnesses, even though they have very large possible combinations, are all explained best by a single witness: 013 {07}; 030 {07}; 034 {07}; 036 {021}; and 038 {045}.

Appendix 2: John 2 Phylogenetic Tree from Job 920421

Appendix 3: NEXUS File of John 2

This is the contents of the NEXUS file of Parker's ECM collation of John 2 (as of the

20th May 2016), including all witnesses from the ECM that are extant in at least 25% of

variant units in this chapter :

#NEXUS begin data; dimensions ntax=176 nchar=239; format missing=? gap=- matchchar=. datatype=standard; matrix 77777777777777777777777777777 265 baaaaabaaaaaaaaaaaaaaa faaaaabadcdccecedcdd baaaaaaaaaaaaaa 1010

Appendix 3: NEXUS File of John 2

821 ababaaabaaaaaaaaaaab P75 aaaaabcaaaaabaaaaaacacaaaa 02 baaaaaaaaaaaaaa

777777777777777777777777777777 1079 I 5nS1W2D2 L60nS1W2D2 baaaaaaaaaaaaaa 038

Appendix 3: NEXUS File of John 2

baaaaaaaaaaaaaa basetext baaaaabaaaaaaaaaaaaaaaa 777777777777777777777777777777 L847nS1W2D2 aaaaaa

асаааааааааааааааааааааааааааааааааа L1552nS1W2D2 L1086nS1W2D2 L1073nS1W2D2 aaaaabaaacaaaaaaaaaa? L253nS1W1D3 019 baaaaaaaaaaaaaaa L387nS1W2D2 L141nS1W2D2

Appendix 3: NEXUS File of John 2

baaaaabaaaaaaaaaaaaaaa baaaaaaaaaaaaaaa baaaaaaaaaaaaaaa L735nS1W2D2 cdhceccdfcdcdccecedcdd

END:

Appendix 4: Coherence Data for Chapter 7

The following genealogical coherence tables constitute supporting data for Chapter 7.

Genealogical coherence with W1=032

W2	NR	D	PERC1	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<>	W1>W2	UNCL	NOREL
017C		-	97.561	40	41	-	-		1
892SC	1		95.652	66	69	2	1		
01Ccb2		-	92.727	51	55	1	1	1	1
037C		-	92.424	61	66	1	1	2	1
А	2		91.237	4144	4542	322		67	9
019C	3		90.385	47	52	2	1	2	
029	4		89.281	683	765	34	15	32	1
P75	5		88.381	2708	3064	145	70	131	10
03	6		88.196	4386	4973	305	35	235	12
019	7		87.808	4278	4872	265	107	203	19
04	8		87.737	1760	2006	109	46	83	8
33	9		87.247	4262	4885	215	175	213	20
044	10		86.924	4321	4971	231	185	205	29
0290	11		84.848	476	561	29	27	26	3
1571	12		82.564	161	195	14	9	7	4
086		-	50.000	6	12			6	
032S		-	46.667	7	15			8	
083		-	46.154	6	13			7	

Table 149: Genealogical coherence with W1=032

Genealogical coherence with W1=249

W2	NR	D	ERCI	EQ	SSA	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>OREL</th></w2<>	W1>W2	UNCL	OREL
017C			E 100.000	24	24	M	M	D	ž
		-	100.000	24 17	24 17				
892SC 869	1	-	97.286	2079	2137	23	20	11	4
809 07C	1		97.280	2079 55	57	25 1	20 1	11	4
1797C	2	-	96.491 96.429	55 54	56	2	1		
019C	2		96.000	24	25	2		1	
019C 01Ccb2	3	-	95.238	40	42	1		1	1
037C	5	_	94.286	33	35	1		2	1
2192C	4		94.175	97	103	3	1	1	1
397	- 5		92.648	3415	3686	117	1 74	63	17
MT	6		92.048 92.431	3407	3686	98	88	77	16
1320	0		92.431 92.431	3407	3686	98	88	77	16
226	8		92.431	3416	3702	105	84	79	18
35	8 9		92.274	3410	3702	105	84 89	79 77	18
			92.220 92.151	3393	3682	105	89 90		
18	10		92.131	2620	2861	1100	90 69	76 45	17
892 1571	11			690	754	29			17
028	12		91.512 91.493		734 3691	29 108	27 101	7 88	1
028	13			3377	3698	108	101	84	17
	14		91.455	3382					14
063	15		91.388	573	627	21	19 106	13	1
07	16		91.320	3377	3698	110		89 00	16
1561	17		91.188	3363	3688	111	103	90	21
0290	10	-	90.909	10	11	1.42	0.0	1	1.5
FП	18		90.869	3334	3669	143	80	97 02	15
821	19		90.842	3323	3658	136	89	92	18
0141	20		90.822	3325	3661	135	92	91	18
799	21		90.491	3264	3607	128	102	94 02	19
157	22		90.488	3320	3669	128	111	92	18
044	23		90.465	3349	3702	186	56	99 01	12
1321	24		90.439	3320	3671	123	111	91 5	26
083	25		90.432	293	324	17	7	5	2
597	26		89.875	3320	3694	152	106	93	23
994	27		89.415	3269	3656	133	132	105	17
033	28		89.367	1992	2229	95	55	70	17
2786	29		89.304	3298	3693	158	118	95	24
33	30		89.241	3235	3625	187	76	109	18
F1	31		89.142	3292		177	93	115	16
02	32		89.132		2880	128	74	97 00	14
213	33		89.064		3676	156	129	98	19
A	34		88.731		3372	310		48	22
022	35		88.529		2101	96	79	53	13
04	36		88.344	1296	1467	97	26	37	11

ζW	1	NR	D	PERCI	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<>	W1>W2	UNCL	NOREL
02	29	37		87.990	740	841	47	20	30	4
01	19	38		87.693	3242	3697	242	55	135	23
P	66C*	39		87.692	342	390	14	10	20	4
01	l Cca	40		87.640	390	445	18	9	23	5
07	70	41		86.435	771	892	50	33	31	7
03	3	42		86.078	3178	3692	289	25	176	24
89	92S	43		85.940	599	697	29	25	37	7
P	75	44		85.731	2986	3483	244	73	151	29
03	32S	45		85.551	450	526	34	31	5	6
03	32	46		85.095	2649	3113	184	108	142	30
21	13S		-	83.333	10	12			2	
05	5S		-	83.333	10	12			2	
P	66	47		82.397	2874	3488	218	196	162	38
01	l	48		81.102	2974	3667	236	220	202	35
P	45	49		78.894	471	597	37	33	49	7
04	4C1	50		75.000	33	44	5	3	2	1
P	60		-	75.000	9	12			3	
11	18S		-	50.000	6	12			6	
05	54		-	50.000	6	12			6	

Table 150: Genealogical coherence with W1=249

Genealogical coherence with W1=333

W2	NR	D	ERCI	EQ	PASS	v1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>OREL</th></w2<>	W1>W2	UNCL	OREL
249	1		98.620	3644	3695	► 16	► 10	21	Z
07C	1	_	98.198	109	111	1	1	21	-
892SC		_	97.590	81	83	1	1		
037C	2		96.296	78	81	1		2	
869	3		96.161	2054	2136	33	24	22	3
1797C	4		95.876	93	97	2	1	1	5
017C	•	-	95.522		67	1	1	1	
2192C	5		94.886	167	176	4	1	3	1
18	6		93.176		6213	159	123	116	26
35	7		93.133	5805	6233	159	124	119	26
MT	8		93.127	5786	6213	154	130	119	24
1320			93.127	5786	6213	154	130	119	24
226	10		93.089	5792	6222	158	126	117	29
01Ccb2	11		93.056	67	72	1		1	3
397	12		92.569	5668	6123	192	130	107	26
028	13		92.366	5747	6222	163	145	141	26
045	14		92.213	5743	6228	174	160	129	22
07	15		92.130	5736	6226	172	158	134	26
1561	16		92.038	5722	6217	169	158	138	30
892	17		91.484	3427	3746	138	86	74	21
FП	18		91.435	5669	6200	223	126	154	28
799	19		91.272	5595	6130	195	156	152	32
1321	20		91.271	5657	6198	196	162	139	44
597	21		91.171	5669	6218	215	154	142	38
821	22		90.993	5597	6151	220	151	145	38
0141	23		90.970	5601	6157	218	158	144	36
0290	24		90.827	505	556	15	11	21	4
157	25		90.805	5629	6199	201	178	158	33
044	26		90.581	5645	6232	299	102	159	27
1582C1	27		90.286	158	175	4	3	4	6

W2	NR	D	PERCI	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<>	W1>W2	UNCL	NOREL
054	28		90.054	1005	1116	39	38	30	4
02	29		89.880	4858	5405	223	142	153	29
33	30		89.490	5475	6118	298	136	171	38
213	31		89.412	5075	5676	230	183	157	31
1071	32		89.377	5553	6213	235	233	155	37
033	33		89.375	3945	4414	191	113	132	33
F1	34		89.161	5544	6218	282	178	183	31
086	35		88.817	413	465	24	18	10	
А	36		88.747	5087	5732	530		73	42
2786	37		88.689	5512	6215	247	244	164	48
022	38		88.625	3397	3833	169	151	92	24
04	39		87.853	2177	2478	165	47	74	15
019	40		87.620	5457	6228	411	95	219	46
P66C*	41		87.480	545	623	22	18	29	9
01Cca	42		87.145	705	809	28	20	43	13
083	43		86.398	578	669	44	27	15	5
029	44		86.368	811	939	60	23	42	3
03	45		86.164	5362	6223	495	49	274	43
05S	46		85.660	448	523	24	23	24	4
P75	47		85.573	3731	4360	310	101	185	33
P60	48		85.288	400	469	20	17	29	3
070	49		85.288	771	904	54	34	37	8
032S	50		84.644	915	1081	68	64	23	11
032	51		84.643	3996	4721	275	181	219	50
P66	52		82.614	4709	5700	350	319	263	59
01	53		81.310	5016	6169	395	390	310	58
04C1	54		78.409	69	88	8	5	4	2
P45	55		77.181	460	596	37	33	57	9

Table 151: Genealogical coherence with W1=333

Genealogical coherence with W1=430

W2	R	D	RC1	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>REL</th><th>W2</th><th>D NR</th><th>RC1</th><th>EQ</th><th>PASS</th><th>W1<w2< th=""><th>W1>W2</th><th>CL</th><th>REL</th></w2<></th></w2<>	W1>W2	UNCL	REL	W2	D NR	RC1	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>CL</th><th>REL</th></w2<>	W1>W2	CL	REL
5	Z	-	PERC	H	PA	·Iм	ŚĮW	S	NOREI	5	z -	PERC	E	PA	·IM	кIw	UNCL	ION
892SC		-	100.000	1	1					1797C	7	92.308	36	39	2		1	
892S*		-	100.000	1	1					MT	8	91.084	2033	2232	96	54	41	8
017C	1		95.833	23	24	1				1320		91.084	2033	2232	96	54	41	8
019C		-	95.238	20	21			1		028	10	91.002	2043	2245	96	56	43	7
P45	2		94.828	55	58	1		2		226	11	90.970	2045	2248	99	53	42	9
249	3		94.667	1580	1669	51	21	16	1	35	12	90.925	2044	2248	104	52	41	7
869	4		93.792	695	741	24	11	11		045	13	90.865	2039	2244	98	60	40	7
2192C	5		93.750	45	48	2			1	18	14	90.799	2023	2228	104	53	40	8
333	6		93.739	2096	2236	71	36	28	5	07	15	90.302	2030	2248	104	65	42	7

W2	NR	D	PERCI	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<>	W1>W2	UNCL	NOREL
1571	16		90.208	1170	1297	63	47	13	4
086	17		89.936	420	467	27	16	4	
FΠ	18		89.928	2009	2234	122	51	43	9
037	19		89.750	2014	2244	109	62	47	12
157	20		89.730	1992	2220	106	66	46	10
01Ccb2		-	89.474	17	19				2
892	21		89.413	2010	2248	135	58	34	11
799	22		89.340	1936	2167	114	60	50	7
1561	23		89.267	1996	2236	108	70	51	11
397	24		89.242	1991	2231	125	55	47	13
1321	25		89.149		2221	102	76	47	16
011	26		89.028	1996	2242	104	81	47	14
2790	27		88.945	1593	1791	82	69	35	12
2615	28		88.929	1984	2231	111	79	46	11
0211	29		88.924	1983	2230	100	79	54	14
1014	30		88.804	1618	1822	82	70	42	10
063		-	88.798	975	1098	48	48	24	3
044	31		88.785	1995	2247	154	34	55	9
992	32		88.770	1992	2244	110	86	45	11
02	33		88.756	1555	1752	112	45	35	5
1463	34		88.724	1975	2226	107	87	47	10
1242	35		88.675	1981	2234	116	78	49	10
1319	36		88.651	1984	2238	108	87	48	11
2766	37		88.568	1991	2248	99	92	55	11
1230	38		88.462	1978	2236	109	91	43	15
2680	39		88.414	1984	2244	99	97	51	13
821	40		88.174	1961	2224	138	59	53	13
0141	41		88.056	1961	2227	138	62	53	13
357	42		87.993	1942	2207	118	87	52	8
2768	43		87.968	1974	2244	101	99	54	16
2561	44		87.952	1898	2158	125	74	54	7
865	45		87.904	1279	1455	69	63	36	8
597	46		87.873	1971	2243	136	75	46	15
33	47		87.783	1940	2210	148	58	50	14
2223	48		87.684	1965	2241	105	104	52	15
994	49		87.631	1757	2005	108	83	50	7
2411	50		87.562	1929	2203	114	98	53	9
1293	51		87.517	1956	2235	112	100	46	21
037C		-	87.500	21	24	1	1	1	
544	52		87.455	1938	2216	105	104	61	8
138	53		87.447	1658	1896	98	84	48	8
1788	54		87.408	1902	2176	114	98	52	10
0233	55		87.385	568	650	39	34	6	3
1654	56		87.271	1954	2239	106	104	55	20
2575	57		87.267	1871	2144	110	102	54	7
1128	58		87.253	1807	2071	97	90	61	16
213	59		87.222	1959	2246	141	86	50	10
2786	60		87.210	1957	2244	130	91	52	14
F1	61		87.199	1955	2242	144	79	52	12
022	62		87.083	1591	1827	122	61	44	9
038	63		87.011	1956	2248	127	92	61	12

W2	NR	D	PERCI	ЕQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<>	W1>W2	UNCL	NOREL
1071	64		86.943	1951	2244	124	106	51	12
А	65		86.670	1814	2093	236		27	16
1010	66		86.598	1932	2231	123	104	51	21
04	67		86.331	840	973	81	22	22	8
033	68		86.234	664	770	49	22	31	4
083	69		86.212	569	660	51	26	9	5
₽ 66С*	70		86.154	168	195	12	3	8	4
019	71		85.975	1931	2246	187	44	64	20
1241	72		85.881	1916	2231	120	117	58	20
03	73		85.076	1904	2238	215	23	80	16
029	74		84.411	666	789	62	19	37	5
032S	75		84.235	903	1072	77	62	18	12
01Cca	76		84.227	267	317	19	6	17	8
P75	77		84.146	1863	2214	197	60	79	15
032	78		82.967	906	1092	82	42	50	12
070	79		82.840	140	169	16	6	5	2
P66	80		82.059	1674	2040	166	102	73	25
0290		-	81.818	9	11			2	
04C1		-	75.000	18	24	2	2	1	1
213S		-	75.000	9	12			3	
05S		-	75.000	9	12			3	
109C	81		71.053	27	38	5	4	1	1
P 60		-	66.667	8	12			4	
317		-	46.154	6	13			7	
892S		-	41.667	5	12			7	
118S		-	41.667	5	12			7	
054		-	41.667	5	12			7	

Table 152: Genealogical coherence withW1=430

Genealogical coherence with W1=869

W2	NR	D	ERCI	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>DREL</th></w2<>	W1>W2	UNCL	DREL
			E 100.000			M	M	D	ž
892SC		-	100.000		12				
086 017C		-	100.000 100.000	12	12 11				
1797C	1	-	97.143	34	35	1			
019C	1	_	94.737	18	19	1		1	
01/Ccb2	2		94.595	35	37	1		1	1
397	3		92.636	1975	2132		38	42	12
1571	5	-	92.308	12	13	00	50	1	12
083		_	92.308	12	13			1	
0328		_	92.308	12	13			1	
2192C	4		91.429	64	70	4	1		1
0290		_	90.909	10	11			1	
892	5		90.817		1481	52	44	29	11
226		-	90.454		2137	68	68	54	14
35	6		90.360		2137		68	53	15
18	7		90.316		2117		68	52	15
044	8		89.752		2137	103	42	64	10
063	9		89.744	70	78	3	1	4	
FП	10		89.734	1888	2104	87	63	56	10
168C		-	89.583	43	48	1	1	3	
821	11		89.357	1889	2114	82	63	67	13
0141	12		89.252	1885	2112	82	67	65	13
799	13		89.213	1894	2123	88	66	62	13
1321	14		88.873	1885	2121	78	74	66	18
597	15		88.821	1891	2129	86	73	62	17
033	16		88.800	1546	1741	84	50	46	15
33	17		88.793	1854	2088	108	39	76	11
А	18		88.543	1708	1929	169		36	16
F1	19		88.498	1885	2130	101	54	78	12
04	20		88.386	723	818	54	10	25	6
029	21		88.190	687	779	39	15	33	5
022	22		88.164		1318		49	47	8
2786	23		87.981	1874	2130	97	81	64	14
865	24		87.853	1526	1737	83	63	51	14
213	25		87.849	1858	2115	94	88	63	12
019	26		87.576		2133	135	30	85	15
01Cca	27		87.549	225	257	11	7	12	2
037C		-	87.500	14	16			2	
P66C*	28		86.977	187	215	9	5	13	1
02	29		86.950		1318		49	57	10
2561	30		86.760	1802	2077	91	84	80	20

W2	NR	D	PERC1	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<>	W1>W2	UNCL	NOREL
03	31		85.915	1836	2137	163	6	116	16
P75	32		85.673	1764	2059	140	38	100	17
032	33		85.430	1800	2107	128	65	96	18
070	34		84.965	599	705	45	27	28	6
038	35		84.792	1812	2137	107	106	91	21
892S		-	84.314	473	561	25	25	30	8
213S		-	83.333	10	12			2	
05S		-	83.333	10	12			2	
1242C		-	82.796	77	93	4	4	5	3
P66	36		81.850	1637	2000	116	113	110	24
01	37		80.746	1711	2119	135	102	148	23
P45	38		77.401	411	531	36	31	46	7
P60		-	75.000	9	12			3	
04C1		-	66.667	14	21	2	2	2	1
118S		-	50.000	6	12			6	
054		-	50.000	6	12			6	

Table 153: Genealogical coherence with W1=869

Appendix 5: Chapter 7 John 18 Experiment

Some tables in Chapter 7's John 18 experiment were abridged. This appendix contains the unabridged data.

Pre-Genealogical Coherence for W1=032

IGNTP Data

\$\P\$1081100.00010106493786.567586775885.393228267\$\P\$218394.828555814213986.46623026620285.393228267\$1813394.828555811814086.463198229272185.393228267\$1143593.2201101189304186.344196227181985.393228267\$1509731.461415584286.0720023216985.393228267\$1509793.1369221910410194386.142230267156385.393228267\$1509791.346951041094386.142230267156385.393228267\$164990.69878869044585.827109127136585.393228267\$2641199.9195512734785.778204127136585.393228267\$3761289.0621141286694885.76822926794185.393228267\$3761388.8912013523585.76822926794185.393228227266 <th< th=""><th>W2</th><th>NR</th><th>PERC1</th><th>EQ</th><th>PASS</th><th>W2</th><th>NR</th><th>PERC1</th><th>EQ</th><th>PASS</th><th>W2</th><th>NR</th><th>PERC1</th><th>EQ</th><th>PASS</th></th<>	W2	NR	PERC1	EQ	PASS	W2	NR	PERC1	EQ	PASS	W2	NR	PERC1	EQ	PASS
2 2	P 108	1	100.000	10	10	649	37	86.567	58	67	758		85.393	228	267
1803 94,828 55 58 1816 40 86,364 228 264 2472 85,393 228 267 1143 5 93,220 110 118 930 41 86,344 196 227 1819 85,393 228 267 1590 7 91,346 95 104 019 43 86,142 230 267 1563 85,393 228 267 1804 9 90,698 78 86 904 45 85,827 109 127 1365 85,393 228 267 2644 10 89,021 49 55 127 47 85,772 211 246 1057 85,393 228 267 2307 12 89,062 114 128 669 48 85,768 229 267 941 85,338 227 266 475 88,869 141 158 139 128 1006 85,768 229 267 941 85,338 227 266	P52		100.000	9	9	233	38	86.466	230	266	2902		85.393	228	267
1113 5 93.220 110 118 930 41 86.344 196 227 1819 85.393 228 267 1590 6 92.857 13 14 1558 42 86.207 200 232 1699 85.393 228 267 1590 7 91.346 95 104 019 43 86.142 230 267 1563 85.393 228 267 A 8 90.763 226 249 2524 44 85.932 226 263 154 85.393 228 267 2649 10 89.423 93 104 926 46 85.787 109 127 1365 85.393 228 267 2634 11 89.062 14 128 669 48 85.768 229 267 041 85.393 228 267 1349 13 88.889 10 135 235 85.768 229 267 941 85.338 227 266 546 15 88.679 141 159 139 85.768 229 267 64 85.33	2418	3	94.828	55	58	1421	39	86.463	198	229	2721		85.393	228	267
\$\p\$90692.857131415584286.207200232169985.3932282671590791.346951040194386.142230267156385.393228267A890.69878869044585.827109127136585.3932282671804990.69878869044585.827109127136585.39322826726491089.423931049264685.784175127417785.39322826726341189.091495512734785.772211246105785.39322826723071289.0621141286694885.76822926704185.338227266475888.7892427156685.7682292679448585.3382272667481688.281113128100685.7682292676685.3382272667471887.9751391580185.76822926758485.3382272667481688.281113128100685.76822926758485.3382272667471887.975139	1803		94.828	55	58	1816	40	86.364	228	264	2472		85.393	228	267
1590 7 91.346 95 104 019 43 86.142 230 267 1563 85.393 228 267 A 8 90.763 226 249 2524 44 85.932 226 263 1544 85.393 228 267 1804 9 90.698 78 86 904 45 85.827 109 127 1365 85.393 228 267 2634 11 89.091 49 55 1273 47 85.772 211 246 1057 85.393 228 267 1349 13 88.889 120 135 235 85.768 229 267 944 85 85.338 227 266 475s 88.889 120 135 235 85.768 229 267 684 85.338 227 266 571 19 88.00 14 85.768 229 267	1143	5	93.220	110	118	930	41	86.344	196	227	1819		85.393	228	267
A890.76322624925244485.932226263154485.3932282671804990.69878869044585.827109127136585.39322826726341089.021495512734785.772211246105785.39322826723071289.0621141286694885.7682292679448585.393228267475888.88912013523585.76822926794185.393227266475888.8891415913985.7682292679448585.382272665461588.67914115913985.7682292676685.382272667481688.281113128100685.76822926758485.38822726657171987.0911311496855585.71422826621585.3882272661792387.787173197145185.71422826616685.3882272662322487.68239257256139285.3382272661792387.787173197145185.714228266 <td>P90</td> <td>6</td> <td>92.857</td> <td>13</td> <td>14</td> <td>1558</td> <td>42</td> <td>86.207</td> <td>200</td> <td>232</td> <td>1699</td> <td></td> <td>85.393</td> <td>228</td> <td>267</td>	P90	6	92.857	13	14	1558	42	86.207	200	232	1699		85.393	228	267
1804 9 90.698 78 86 904 45 85.827 109 127 1365 85.393 228 267 2649 10 89.423 93 104 926 46 85.784 175 204 1278 85.393 228 267 2634 11 89.092 14 128 669 48 85.768 229 267 041 85.393 228 267 1349 13 88.889 120 135 235 85.768 229 267 944 85 85.388 227 266 475s 88.889 141 159 139 85.768 229 267 697 85.388 227 266 748 16 88.281 113 128 1006 85.768 229 267 584 85.338 227 266 717 18 87.975 139 158 01 85.768 229 267 584 85.338 227 266 2717 18 87.	1590	7	91.346	95	104	019	43	86.142	230	267	1563		85.393	228	267
2649 10 89,433 93 104 926 46 85.784 175 204 1278 85.393 228 267 2634 11 89,062 114 128 669 48 85.772 211 246 1057 85.393 228 267 1349 13 88.889 120 135 235 85.768 229 267 944 85 85.338 227 266 475s 88.889 141 159 139 85.768 229 267 941 85.338 227 266 546 15 88.679 141 159 139 85.768 229 267 66 85.338 227 266 748 16 85.848 131 128 1006 85.768 229 267 584 85.338 227 266 717 18 87.975 139 158 117 91 85.768 229 267 584 85.338 227 266 717 18 8	А	8	90.763	226	249	2524	44	85.932	226	263	1544		85.393	228	267
2634 11 89.091 49 55 1273 47 85.772 211 246 1057 85.393 228 267 2307 12 89.062 114 128 669 48 85.768 229 267 041 85.393 228 267 1349 13 88.889 120 135 235 85.768 229 267 944 85 85.338 227 266 475s 88.889 24 27 1566 85.768 229 267 697 85.338 227 266 546 15 88.679 141 159 139 85.768 229 267 66 85.338 227 266 96 17 88.000 154 175 044 85.768 229 267 396 85.338 227 266 1571 19 87.919 131 149 685 55 85.714 228	1804	9	90.698	78	86	904	45	85.827	109	127	1365		85.393	228	267
2307 12 89.02 114 128 669 48 85.768 229 267 041 85.393 228 267 1349 13 88.889 120 135 235 85.768 229 267 944 85 85.338 227 266 475s 88.889 24 27 1566 85.768 229 267 941 85.338 227 266 546 15 88.679 141 159 139 85.768 229 267 666 85.338 227 266 748 16 88.281 113 128 1006 85.768 229 267 584 85.338 227 266 717 18 87.975 139 158 01 85.768 229 267 584 85.338 227 266 157 19 87.919 131 149 685 55 85.714 228 266 215 85.338 227 266 2722 21 87.817	2649	10	89.423	93	104	926	46	85.784	175	204	1278		85.393	228	267
13491388.88912013523585.7682292679448585.338227266475s88.8892427156685.76822926794185.3382272665461588.67914115913985.76822926769785.3382272667481688.281113128100685.7682292676685.338227266961788.00015417504485.76822926758485.33822726627171887.9751391580185.76822926739685.33822726615711987.9191311496855585.714228266272885.33822726627222187.817173197145185.71422826619585.33822726627222387.77815818011485.714228266167685.3382272661792387.77815818011485.714228266160485.3382272669402587.2931581817766185.660227265139285.3382272669402587.09727314196485.551 <t< td=""><td>2634</td><td>11</td><td>89.091</td><td>49</td><td>55</td><td>1273</td><td>47</td><td>85.772</td><td>211</td><td>246</td><td>1057</td><td></td><td>85.393</td><td>228</td><td>267</td></t<>	2634	11	89.091	49	55	1273	47	85.772	211	246	1057		85.393	228	267
475s 88.889 24 27 1566 85.768 229 267 941 85.338 227 266 546 15 88.679 141 159 139 85.768 229 267 667 85.338 227 266 748 16 88.281 113 128 1006 85.768 229 267 66 85.338 227 266 96 17 88.000 154 175 044 85.768 229 267 584 85.338 227 266 2717 18 87.975 139 158 01 85.768 229 267 396 85.338 227 266 1571 19 87.919 131 149 685 55 85.714 228 266 2728 85.338 227 266 2722 21 87.817 173 197 1451 85.714 228 266 195 85.338 227 266 2722 87.817 173 197 1192 85.714 228 266 1676 85.338 227 266 2722 87.877 158 180 114 85.714 228 266 1676 85.338 227 266 179 23 87.778 158 180 114 85.714 228 266 1604 85.338 227 266 179 23 267 2726	2307	12	89.062	114	128	669	48	85.768	229	267	041		85.393	228	267
546 15 88.679 141 159 139 85.768 229 267 667 85.338 227 266 748 16 88.281 113 128 1006 85.768 229 267 66 85.338 227 266 96 17 88.000 154 175 044 85.768 229 267 584 85.338 227 266 2717 18 87.975 139 158 01 85.768 229 267 396 85.338 227 266 1571 19 87.919 131 149 685 55 85.714 228 266 215 85.338 227 266 2722 21 87.817 173 197 1451 85.714 228 266 1676 85.338 227 266 2722 24 87.640 234 267 2726 85.714 228 266 1604 85.338 227 266 179 23 87.778 158	1349	13	88.889	120	135	235		85.768	229	267	944	85	85.338	227	266
7481688.281113128100685.7682292676685.338227266961788.00015417504485.76822926758485.33822726627171887.9751391580185.76822926739685.33822726615711987.9191311496855585.714228266272885.3382272664052087.861152173261385.71422826619585.33822726627222187.817173197145185.714228266167685.338227266237287.817173197119285.714228266160485.3382272661792387.77815818011485.714228266160485.3382272661792387.768234267272685.7141214158185.33822726617012687.26623326729076385.677166194108085.33822726610712687.09727314196485.55122526334210085.3182272661712887.09727310465	475s		88.889	24	27	1566		85.768	229	267	941		85.338	227	266
96 17 88.000 154 175 044 85.768 229 267 584 85.338 227 266 2717 18 87.975 139 158 01 85.768 229 267 396 85.338 227 266 1571 19 87.919 131 149 685 55 85.714 228 266 2728 85.338 227 266 405 20 87.861 152 173 2613 85.714 228 266 215 85.338 227 266 2722 21 87.817 173 197 1451 85.714 228 266 1676 85.338 227 266 2722 21 87.817 173 197 1451 85.714 228 266 1604 85.338 227 266 2722 24 87.640 234 267 2726 85.714 12 14 1581 85.338 227 266 1701 26 87.266 233	546	15	88.679	141	159	139		85.768	229	267	697		85.338	227	266
27171887.9751391580185.76822926739685.33822726615711987.9191311496855585.714228266272885.3382272662087.861152173261385.71422826621585.33822726627222187.817173197145185.71422826619585.338227266237287.817173197119285.714228266167685.3382272661792387.77815818011485.714228266160485.338227266NA272487.640234267272685.7141214158185.3382272669402587.2931581817766185.660227265139285.33822726610712687.26623326729076385.55122526334210085.317215252731s87.0972731046585.5261952288710185.28322626514003087.05012113916386685.43717620647985.2832262657113286.8751391601207 <td>748</td> <td>16</td> <td>88.281</td> <td>113</td> <td>128</td> <td>1006</td> <td></td> <td>85.768</td> <td>229</td> <td>267</td> <td>66</td> <td></td> <td>85.338</td> <td>227</td> <td>266</td>	748	16	88.281	113	128	1006		85.768	229	267	66		85.338	227	266
15711987.9191311496855585.714228266272885.3382272664052087.861152173261385.71422826621585.33822726627222187.817173197145185.71422826619585.338227266237287.817173197119285.714228266167685.3382272661792387.77815818011485.714228266160485.338227266NA272487.640234267272685.7141214158185.3382272669402587.2931581817766185.660227265139285.33822726610712687.26623326729076385.567166194108085.3382272669472887.0972731046585.5261952288710185.28322626514003087.05012113916386685.43717620647985.2832262652743186.95714016115646785.39321725435285.283226265113286.765177 <t< td=""><td>96</td><td>17</td><td>88.000</td><td>154</td><td>175</td><td>044</td><td></td><td>85.768</td><td>229</td><td>267</td><td>584</td><td></td><td>85.338</td><td>227</td><td>266</td></t<>	96	17	88.000	154	175	044		85.768	229	267	584		85.338	227	266
4052087.861152173261385.71422826621585.33822726627222187.817173197145185.71422826619585.338227266237287.817173197119285.714228266167685.3382272661792387.77815818011485.714228266160485.338227266NA272487.640234267272685.7141214158185.3382272669402587.2931581817766185.600227265139285.33822726610712687.2662332679746285.60622626411285.3382272660387.26623326729076385.55122526334210085.317215252731s87.0972731046585.5261952288710185.28322626514003087.05012113916386685.43717620647985.2832262657113286.87513916012076885.93321725435285.2832262656573386.765177204 <t< td=""><td>2717</td><td>18</td><td>87.975</td><td>139</td><td>158</td><td>01</td><td></td><td>85.768</td><td>229</td><td>267</td><td>396</td><td></td><td>85.338</td><td>227</td><td>266</td></t<>	2717	18	87.975	139	158	01		85.768	229	267	396		85.338	227	266
27222187.817173197145185.71422826619585.338227266237287.817173197119285.714228266167685.3382272661792387.77815818011485.714228266160485.338227266NA272487.640234267272685.7141214158185.3382272669402587.2931581817766185.660227265139285.33822726610712687.2662332679746285.60622626411285.3382272660387.26623326729076385.567166194108085.317215252731s87.09727314196485.55122526334210085.317215252731s87.05012113916386685.43717620647985.28322626514003087.05012113916386685.43717620647985.2832262657113286.87513916012076885.425211247133885.2832262656573386.765177204951 </td <td>1571</td> <td>19</td> <td>87.919</td> <td>131</td> <td>149</td> <td>685</td> <td>55</td> <td>85.714</td> <td>228</td> <td>266</td> <td>2728</td> <td></td> <td>85.338</td> <td>227</td> <td>266</td>	1571	19	87.919	131	149	685	55	85.714	228	266	2728		85.338	227	266
237287.817173197119285.714228266167685.3382272661792387.77815818011485.714228266160485.338227266NA272487.640234267272685.7141214158185.3382272669402587.2931581817766185.660227265139285.33822726610712687.2662332679746285.60622626411285.3382272660387.26623326729076385.567166194108085.3382272669472887.09727314196485.55122526334210085.317215252731s87.0972731046585.5261952288710185.28322626514003087.05012113916386685.43717620647985.2832262657113286.87513916012076885.425211247133885.2832262656573386.7651772049516985.393228267131285.28322626526323486.7001	405	20	87.861	152	173	2613		85.714	228	266	215		85.338	227	266
1792387.77815818011485.714228266160485.338227266NA272487.640234267272685.7141214158185.3382272669402587.2931581817766185.660227265139285.33822726610712687.2662332679746285.60622626411285.3382272660387.26623326729076385.567166194108085.3382272669472887.09727314196485.55122526334210085.317215252731s87.0972731046585.5261952288710185.28322626514003087.05012113916386685.43717620647985.2832262652743186.95714016115646785.43321725435285.2832262656573386.7651772049516985.393228267131285.28322626526323486.70017620388785.393228267122985.283226265333586.692 <td>2722</td> <td>21</td> <td>87.817</td> <td>173</td> <td>197</td> <td>1451</td> <td></td> <td>85.714</td> <td>228</td> <td>266</td> <td>195</td> <td></td> <td>85.338</td> <td>227</td> <td>266</td>	2722	21	87.817	173	197	1451		85.714	228	266	195		85.338	227	266
NA27 24 87.640 234 267 2726 85.714 12 14 1581 85.338 227 266 940 25 87.293 158 181 776 61 85.660 227 265 1392 85.338 227 266 1071 26 87.266 233 267 974 62 85.606 226 264 112 85.338 227 266 03 87.266 233 267 2907 63 85.567 166 194 1080 85.318 227 266 947 28 87.097 27 31 419 64 85.551 225 263 342 100 85.317 215 252 731s 87.097 27 31 04 65 85.437 176 206 479 85.283 226 265 1400 30 87.050 121 139 1638 66 85.437 176 206 479 85.283 226 265 711<	2372		87.817	173	197	1192		85.714	228	266	1676		85.338	227	266
9402587.2931581817766185.660227265139285.33822726610712687.2662332679746285.60622626411285.3382272660387.26623326729076385.567166194108085.3382272669472887.09727314196485.55122526334210085.317215252731s87.0972731046585.5261952288710185.28322626514003087.05012113916386685.43717620647985.2832262652743186.95714016115646785.43321725435285.2832262657113286.87513916012076885.425211247133885.2832262656573386.7651772049516985.393228267131285.28322626526323486.70017620388785.393228267122985.283226265333586.69222826387185.393228267101910785.2465261	179	23	87.778	158	180	114		85.714	228	266	1604		85.338	227	266
10712687.2662332679746285.60622626411285.3382272660387.26623326729076385.567166194108085.3382272669472887.09727314196485.55122526334210085.317215252731s87.0972731046585.5261952288710185.28322626514003087.05012113916386685.43717620647985.2832262652743186.95714016115646785.43321725435285.2832262657113286.87513916012076885.425211247133885.2832262656573386.7651772049516985.393228267131285.28322626526323486.70017620388785.393228267122985.283226265333586.69222826387185.393228267010910785.2465261	NA27	24	87.640	234	267	2726		85.714	12	14	1581		85.338	227	266
0387.26623326729076385.567166194108085.3382272669472887.09727314196485.55122526334210085.317215252731s87.0972731046585.5261952288710185.28322626514003087.05012113916386685.43717620647985.2832262652743186.95714016115646785.43321725435285.2832262657113286.87513916012076885.425211247133885.2832262656573386.7651772049516985.393228267131285.28322626526323486.70017620388785.393228267122985.283226265333586.69222826387185.393228267010910785.2465261	940	25	87.293	158	181		61	85.660	227	265	1392		85.338	227	266
947 28 87.097 27 31 419 64 85.551 225 263 342 100 85.317 215 252 731s 87.097 27 31 04 65 85.526 195 228 87 101 85.283 226 265 1400 30 87.050 121 139 1638 66 85.437 176 206 479 85.283 226 265 274 31 86.957 140 161 1564 67 85.433 217 254 352 85.283 226 265 711 32 86.875 139 160 1207 68 85.425 211 247 1338 85.283 226 265 657 33 86.765 177 204 951 69 85.393 228 267 1312 85.283 226 265 2632 34 86.700 176 203 887 85.393 228 267 1312 85.283 226 265<	1071	26	87.266	233	267	974	62	85.606	226	264	112		85.338	227	266
731s87.0972731046585.5261952288710185.28322626514003087.05012113916386685.43717620647985.2832262652743186.95714016115646785.43321725435285.2832262657113286.87513916012076885.425211247133885.2832262656573386.7651772049516985.393228267131285.28322626526323486.70017620388785.393228267122985.283226265333586.69222826387185.393228267010910785.2465261	03		87.266	233	267	2907	63	85.567	166	194	1080				
14003087.05012113916386685.43717620647985.2832262652743186.95714016115646785.43321725435285.2832262657113286.87513916012076885.425211247133885.2832262656573386.7651772049516985.393228267131285.28322626526323486.70017620388785.393228267122985.283226265333586.69222826387185.393228267010910785.2465261	947	28	87.097	27	31	419	64				342	100			
2743186.95714016115646785.43321725435285.2832262657113286.87513916012076885.425211247133885.2832262656573386.7651772049516985.393228267131285.28322626526323486.70017620388785.393228267122985.283226265333586.69222826387185.393228267010910785.2465261	731s		87.097	27	31	04	65	85.526	195	228	87	101	85.283	226	265
7113286.87513916012076885.425211247133885.2832262656573386.7651772049516985.393228267131285.28322626526323486.70017620388785.393228267122985.283226265333586.69222826387185.393228267010910785.2465261	1400	30	87.050	121	139	1638	66	85.437	176	206	479		85.283	226	265
6573386.7651772049516985.393228267131285.28322626526323486.70017620388785.393228267122985.283226265333586.69222826387185.393228267010910785.2465261	274	31	86.957	140	161		67								
2632 34 86.700 176 203 887 85.393 228 267 1229 85.283 226 265 33 35 86.692 228 263 871 85.393 228 267 0109 107 85.246 52 61	711	32	86.875	139	160		68				1338				
33 35 86.692 228 263 871 85.393 228 267 0109 107 85.246 52 61	657	33	86.765	177	204		69								
	2632	34	86.700	176	203										
2398 36 86.667 143 165 774 85.393 228 267 650 108 85.227 225 264	33	35	86.692	228	263	871						107			
	2398	36	86.667	143	165	774		85.393	228	267	650	108	85.227	225	264

Pre-Genealogical Coherence for W1=032

W2	NR	PERC1	EQ	PASS	W2	NR	PERC1	EQ	PASS	W2	NR	PERC1	EQ	PASS
278		85.227	225	264	100		85.019	227	267	890		84.644	226	267
1142		85.227	225	264	017		85.019	227	267	875		84.644	226	267
2467	111	85.204	167	196	345	165	85.000	221	260	864		84.644	226	267
333	112	85.200	213	250	78	166	84.962	226	266	852		84.644	226	267
376	113	85.185	207	243	696		84.962	226	266	844		84.644	226	267
969	114	85.171	224	263	583		84.962	226	266	843		84.644	226	267
760		85.171	224	263	410		84.962	226	266	831		84.644	226	267
511	116	85.115	223	262	402		84.962	226	266	824		84.644	226	267
1306	117	85.081	211	248	276		84.962	226	266	823		84.644	226	267
2562	118	85.057	222	261	269		84.962	226	266	759		84.644	226	267
1388		85.057	222	261	2549		84.962	226	266	746		84.644	226	267
2567	120	85.034	125	147	2463		84.962	226	266	698		84.644	226	267
MTJ18	121	85.019	227	267	2400		84.962	226	266	689		84.644	226	267
991		85.019	227	267	2370		84.962	226	266	597		84.644	226	267
975		85.019	227	267	200		84.962	226	266	592		84.644	226	267
961		85.019	227	267	1693		84.962	226	266	586		84.644	226	267
943		85.019	227	267	1688		84.962	226	266	549		84.644	226	267
932		85.019	227	267	1627		84.962	226	266	547		84.644	226	267
924		85.019	227	267	1582		84.962	226	266	536		84.644	226	267
764		85.019	227	267	1444		84.962	226	266	521		84.644	226	267
728		85.019	227	267	1428		84.962	226	266	510		84.644	226	267
699		85.019	227	267	1367		84.962	226	266	480		84.644	226	267
489		85.019	227	267	1272		84.962	226	266	43		84.644	226	267
414		85.019	227	267	1179		84.962	226	266	399		84.644	226	267
406		85.019	227	267	1061		84.962	226	266	37		84.644	226	267
317		85.019	227	267	757	188	84.906	225	265	363		84.644	226	267
298		85.019	227	267	710		84.906	225	265	35		84.644	226	267
2686		85.019	227	267	506		84.906	225	265	324		84.644	226	267
260		85.019	227	267	375		84.906	225	265	291		84.644	226	267
2394		85.019	227	267	2502		84.906	225	265	2863		84.644	226	267
2346		85.019	227	267	2100		84.906	225	265	285		84.644	226	267
226		85.019	227	267	1779		84.906	225	265	2806		84.644	226	267
22		85.019	227	267	1578		84.906	225	265	2756		84.644	226	267
2182		85.019	227		1136		84.906	225	265	2730		84.644	226	267
2122		85.019	227		1008		84.906	225	265	2665		84.644	226	267
210		85.019	227	267	1182		84.906	135	159	2604		84.644	226	267
190		85.019	227	267	1092		84.906	135	159	2554		84.644	226	267
1628		85.019	227	267		200	84.848	224	264	2522			226	
1620		85.019	227	267	158		84.848	224	264	2520		84.644	226	267
160		85.019	227		1172s			224		2508			226	
1596		85.019	227	267	1158		84.848	224		2503		84.644	226	267
1586		85.019	227	267	2442		84.848	196	231	2466		84.644	226	267
1584		85.019	227	267	2636	205	84.825	218	257	2439		84.644	226	267
1535		85.019	227	267	552	206	84.791	223	263	2382		84.644	226	267
150		85.019	227	267	515		84.791	223		2362		84.644	226	267
1466		85.019	227	267	2405		84.791	223	263	2323		84.644	226	267
1448		85.019	227		2290s	209	84.766	217		2321			226	
1423		85.019	227		1560	210		178		232			226	
1346		85.019	227		1556	211		221		2296			226	
1230		85.019	227		1145	212		215		2273			226	
1220		85.019	227		958	213				2260			226	
1219		85.019	227		955					2249			226	
1141		85.019	227		942		84.644			2229			226	
1042		85.019	227	267	896		84.644	226	267	2221		84.644	226	267

Appendix 5: Chapter 7 John 18 Experiment

			-											
W2	NR	PERC1	-		W2	NR	PERC1				NR	PERC1	-	
2204		84.644	226		1205		84.644	226		1324		84.586	225	
2176		84.644	226		1197		84.644	226		1285		84.586	225	
2175		84.644	226		1181		84.644	226		1225		84.586	225	
214		84.644	226		1157		84.644	226		514		84.581	192	
2131		84.644	226		1147		84.644	226		784		84.556	219	
211		84.644	226		1146		84.644	226		782	384	84.528	224	
2109		84.644	226		1110		84.644	226		591		84.528	224	
2097		84.644	226		111		84.644	226		286		84.528	224	
183		84.644	226		1085		84.644	226		2812		84.528	224	
18		84.644	226		1075		84.644	226		2767		84.528	224	
1680		84.644	226		1073		84.644	226		2715		84.528	224	
1667		84.644	226		1072		84.644	226		2687		84.528	224	
166		84.644	226		1056		84.644	226		2621		84.528	224	
1647		84.644	226		105		84.644	226		2388		84.528	224	
1637		84.644	226		1040		84.644	226		2112		84.528	224	
1636		84.644	226		1032		84.644	226	267	1530		84.528	224	265
1618		84.644	226	267	1013		84.644	226	267	1484		84.528	224	265
1617		84.644	226	267	1		84.644	226	267	1422		84.528	224	265
1600		84.644	226	267	033		84.644	226	267	1331		84.528	224	265
1576		84.644	226	267	830	344	84.615	220	260	1248		84.528	224	
1572		84.644	226	267	2437		84.615	209	247	1565	399	84.519	202	239
1562		84.644	226	267	960	346	84.586	225	266	836	400	84.507	180	213
1561		84.644	226	267	953		84.586	225	266	047	401	84.500	169	200
1557		84.644	226	267	945		84.586	225	266	505	402	84.470	223	264
1550		84.644	226	267	865		84.586	225	266	496		84.470	223	264
155		84.644	226	267	773		84.586	225	266	2747		84.470	223	264
1548		84.644	226	267	750		84.586	225	266	2653		84.470	223	264
1510		84.644	226	267	715		84.586	225	266	2245		84.470	223	264
1503		84.644	226	267	700		84.586	225	266	1186		84.470	223	264
1497		84.644	226	267	582		84.586	225	266	2179	408	84.434	179	212
1496		84.644	226	267	5		84.586	225	266	968	409	84.411	222	263
1494		84.644	226	267	482		84.586	225		719		84.411	222	263
1492		84.644	226	267	478		84.586	225	266	2894		84.411	222	263
1491		84.644	226	267	448		84.586	225	266	1431		84.411	222	263
1490		84.644	226	267	431		84.586	225	266	120		84.411	222	263
1487		84.644	226	267	394		84.586	225	266	2369	414	84.375	216	256
1482		84.644	226	267	284		84.586	225	266	350	415	84.362	205	243
1477		84.644	226	267	2788s		84.586	225	266	374	416	84.351	221	262
1472		84.644	226	267	263		84.586	225	266	245		84.351	221	262
1469		84.644	226	267	234		84.586	225	266	403	418	84.348	194	230
1456		84.644	226	267	2132		84.586	225	266	2414	419	84.293	161	191
1427		84.644	226	267	21		84.586	225	266	53	420	84.291	220	261
141		84.644	226	267	20		84.586	225	266	986	421	84.270	225	267
1389		84.644	226	267	1791		84.586	225	266	98		84.270	225	267
1341		84.644	226	267	1789		84.586	225	266	938		84.270	225	267
134		84.644	226	267	17		84.586	225	266	923		84.270	225	267
1339		84.644	226	267	1652		84.586	225	266	845		84.270	225	267
1322		84.644	226	267	1554		84.586	225	266	83		84.270	225	267
1313		84.644	226	267	1551		84.586	225	266	806		84.270	225	267
130		84.644	226	267	1493		84.586	225	266	797		84.270	225	267
1292		84.644	226	267	1470		84.586	225	266	769		84.270	225	267
127		84.644	226	267	1426		84.586	225	266	765		84.270	225	267
1251		84.644	226	267	1370		84.586	225	266	763		84.270	225	
1235		84.644			1357			225		754			225	

Pre-Genealogical Coherence for W1=032

	ND	DEDCI	EO	DAGG	W2	ND	DEDCI	EO	D 4 00	W2	ND	DEDCI	FO	DAGG
	NK	PERC1	-		W2	NK	PERC1			W2	NK	PERC1		
726			225		2201			225		1003			225	
72		84.270	225		2193			225		030	- 10		225	
717		84.270	225		219		84.270	225		996	543	84.211	224	
708		84.270	225		2181		84.270	225		987s		84.211	224	
703		84.270	225		204		84.270	225		972		84.211	224	
7		84.270	225		201		84.270	225		880		84.211	224	
662		84.270	225		1705		84.270	225		80		84.211	224	
653		84.270	225		1698		84.270	225		76		84.211	224	
575		84.270	225		1695		84.270	225		718		84.211	224	
564		84.270	225		1687		84.270	225		694		84.211	224	
556		84.270	225		1686		84.270	225		664		84.211	224	
530		84.270	225		167		84.270	225		587		84.211	224	
512		84.270	225		1650		84.270	225		563		84.211	224	
507		84.270	225		1634		84.270	225		473		84.211	224	
504		84.270	225		1632		84.270	225		446		84.211	224	266
49		84.270	225		1619		84.270	225	267	395		84.211	224	266
461		84.270	225		1514		84.270	225	267	346		84.211	224	266
447		84.270	225		151		84.270	225	267	288		84.211	224	266
439		84.270	225		1501		84.270	225	267	2758s		84.211	224	266
387		84.270	225		15		84.270	225	267	2732		84.211	224	266
386		84.270	225		1489		84.270	225	267	271		84.211	224	266
329		84.270	225	267	1476		84.270	225	267	2703		84.211	224	266
3		84.270	225	267	147		84.270	225	267	268		84.211	224	266
29		84.270	225	267	1462		84.270	225	267	2661		84.211	224	266
2856		84.270	225	267	1452		84.270	225	267	251		84.211	224	266
2773		84.270	225	267	1445		84.270	225	267	247		84.211	224	266
277		84.270	225	267	1441		84.270	225	267	2317		84.211	224	266
2754		84.270	225	267	1398		84.270	225	267	230		84.211	224	266
275		84.270	225	267	1396		84.270	225	267	2278		84.211	224	266
2714		84.270	225	267	1356		84.270	225	267	2252		84.211	224	266
2706		84.270	225	267	1355		84.270	225	267	2141		84.211	224	266
2701		84.270	225	267	1347		84.270	225	267	175		84.211	224	266
2695		84.270	225	267	1328		84.270	225	267	1649		84.211	224	266
2689		84.270	225	267	1323		84.270	225	267	1570		84.211	224	266
2635		84.270	225	267	1320		84.270	225	267	1552		84.211	224	266
2624		84.270	225	267	1300		84.270	225	267	149		84.211	224	266
2623		84.270	225	267	1296		84.270	225	267	1480		84.211	224	266
26		84.270	225	267	1242		84.270	225	267	1468		84.211	224	266
2571		84.270	225	267	1234		84.270	225	267	1455		84.211	224	266
2525		84.270	225	267	1222		84.270	225	267	1442		84.211	224	266
2515		84.270	225	267	1210		84.270	225	267	137		84.211	224	266
2510		84.270	225	267	121		84.270	225	267	1359		84.211	224	266
2507		84.270	225	267	12		84.270	225	267	1358		84.211	224	266
2415		84.270	225	267	1189		84.270	225	267	1289		84.211	224	266
2407		84.270	225	267	1165		84.270	225	267	1195		84.211	224	266
240		84.270	225	267	1120		84.270	225	267	1191		84.211	224	266
2367		84.270	225		1117		84.270	225	267	1178		84.211	224	266
2356		84.270	225		1076			225		116		84.211	224	
2354		84.270	225		1062			225		1123		84.211	224	
2352		84.270	225		1049			225		1089		84.211	224	
2297		84.270	225		1034			225		1088		84.211	224	
2261		84.270	225		1020			225		036		84.211	224	
2224		84.270	225		1018			225		021		84.211	224	
2213		84.270			1015		84.270			2813	594	84.190		
-														

Appendix 5: Chapter 7 John 18 Experiment

W2	NR	PERC1	FO	PASS	W2	ND	PERC1	FO	PASS	W2	ND	PERC1	FO	DASS
2794	595		197		380			224		1155	INK	83.895	224	
1541	596	84.170	218		379		83.895	224		1095		83.895	224	
973	597	84.151	223		367			224		1078		83.895	224	
877		84.151	223		296			224		1035		83.895	224	
581		84.151	223		2860			224		1033		83.895	224	
30		84.151	223		281			224		1019		83.895	224	
2545		84.151	223		2765			224		07		83.895	224	
24		84.151	223	265	2550		83.895	224	267	039		83.895	224	267
2371		84.151	223	265	2530		83.895	224	267	037		83.895	224	267
2101		84.151	223	265	2518		83.895	224	267	034		83.895	224	267
1901		84.151	223	265	2516		83.895	224	267	1820	713	83.871	208	248
188		84.151	223	265	2511		83.895	224	267	995	714	83.835	223	266
1781		84.151	223	265	2495		83.895	224	267	990		83.835	223	266
1700		84.151	223	265	2458		83.895	224	267	959		83.835	223	266
170		84.151	223	265	2444		83.895	224	267	952		83.835	223	266
1678		84.151	223	265	2397		83.895	224	267	929		83.835	223	266
1642		84.151	223	265	2381		83.895	224	267	905		83.835	223	266
1519		84.151	223	265	2355		83.895	224	267	883		83.835	223	266
1406		84.151	223	265	2315		83.895	224	267	861		83.835	223	266
1096		84.151	223	265	2292		83.895	224	267	825		83.835	223	266
1011		84.151	223	265	2277		83.895	224	267	793		83.835	223	266
780	616	84.091	222	264	227		83.895	224	267	655		83.835	223	266
55		84.091	222	264	2178		83.895	224	267	527		83.835	223	266
2159		84.091	222		2135			224		443		83.835	223	
2147		84.091	222		2099			224		364		83.835	223	
2282		84.091	74		2098			224		360		83.835	223	
534	621	84.047	216		199			224		351		83.835	223	
2517	622	84.043	79		194			224		270		83.835	223	
595	623	84.030	221		1787			224		2592		83.835	223	
2389	(05	84.030	221		1783		83.895	224		2514		83.835	223	
303	625	83.969	220		1703			224		2509		83.835	223	
280	626	83.922 83.908	214		1672			224		2396		83.835	223 223	
745 2492	627	83.908 83.908	219 219		1668			224		2322 2295		83.835 83.835	223 223	
2492 992	629	83.895	219		1648 1594		83.895 83.895	224 224		2293 2284		83.835	223 223	
992 957	029	83.895			1545		83.895			2284		83.835		
906		83.895			1545			224		2236		83.835	223	
899			224		1513			224		2215		83.835	223	
826			224		1508			224		2142		83.835	223	
77		83.895	224		1504		83.895	224		2120		83.835	223	
75		83.895	224		1475		83.895	224		171		83.835	223	
714		83.895	224		1465		83.895	224		1440		83.835	223	
672		83.895	224		1459		83.895	224		1342		83.835	223	
660		83.895	224		143		83.895	224		131		83.835	223	
645		83.895	224	267	1373		83.895	224	267	1303		83.835	223	266
550		83.895	224		1316		83.895	224	267	1202		83.835	223	
533		83.895	224	267	1309		83.895	224	267	1201		83.835	223	266
509		83.895	224	267	1305		83.895	224	267	1180		83.835	223	266
498		83.895	224	267	129		83.895	224	267	1039		83.835	223	266
490		83.895	224	267	1238		83.895	224	267	1038		83.835	223	266
476		83.895	224	267	1237		83.895	224	267	1435	753	83.830	197	235
470		83.895	224	267	1227		83.895	224	267	1119	754	83.799	150	179
423		83.895	224	267	1193		83.895	224	267	1808	755	83.784	217	259
415		83.895	224	267	1163		83.895	224	267	988	756	83.774	222	265

Pre-Genealogical Coherence for W1=032

W2	NR	PERC1	EQ	PASS	W2	NR	PERC1	EQ	PASS	W2	NR	PERC1	EQ	PASS
931		83.774	222	265	358		83.521	223	267	783		83.459	222	266
73		83.774	222	265	347		83.521	223	267	762		83.459	222	266
682		83.774	222	265	331		83.521	223	267	690		83.459	222	266
486		83.774	222	265	297		83.521	223	267	668		83.459	222	266
48		83.774	222	265	2724		83.521	223	267	585		83.459	222	266
349		83.774	222	265	265		83.521	223	267	538		83.459	222	266
2760		83.774	222	265	261		83.521	223	267	409		83.459	222	266
267		83.774	222	265	2496		83.521	223	267	359		83.459	222	266
2546		83.774	222	265	2451		83.521	223	267	2673		83.459	222	266
2474		83.774	222	265	2324		83.521	223	267	2633		83.459	222	266
2462		83.774	222	265	2265		83.521	223	267	2598		83.459	222	266
229		83.774	222	265	218		83.521	223	267	2523		83.459	222	266
1615		83.774	222	265	2173		83.521	223	267	2483		83.459	222	266
045		83.774	222	265	2172		83.521	223	267	2314		83.459	222	266
503	771	83.712	221	264	2137		83.521	223	267	2304		83.459	222	266
294		83.712	221	264	2136		83.521	223	267	2174		83.459	222	266
2487		83.712	221	264	213		83.521	223	267	2145		83.459	222	266
1478s		83.712	221	264	2107		83.521	223		2117		83.459	222	266
1457		83.712			185		83.521	223		205		83.459	222	266
1196		83.712			1823		83.521	223		196		83.459	222	266
054		83.712			1792		83.521	223		189			222	
2693s	778		215		1701		83.521	223		1685			222	
45	779		220		1684		83.521	223		1673			222	
287			220		1660		83.521	223		1629			222	
2446			220		1623		83.521	223		1479			222	
1567			220		1602		83.521	223		1415			222	
1250			220		1580		83.521	223		1298			222	
1050			220		157		83.521	223		1226			222	
600	785		219		1539		83.521	223		1223			222	
736			219		1505		83.521	223		1208			222	
TR	787		213		1474		83.521	223		1185			222	
999	/0/		223		1453		83.521	223		1149			222	
956			223		1450		83.521	223		108			222	
930 927			223		1430		83.521	223		1068			222	
927 925			223		1438		83.521	223		1064			222	
821		83.521	223		142		83.521	223					222	
		83.521								1043				
808					1297		83.521			1017	002	83.459		
799					1279		83.521	223		2779			146	
787					1268		83.521	223		475	903		201	
777					1241		83.521	223		851	904		221	
707			223		1211		83.521	223		796			221	
651			223		106		83.521	223		70			221	
65			223		1058		83.521	223		588			221	
6			223		1037		83.521	223		545			221	
57		83.521	223		1031		83.521	223		520			221	
568		83.521	223		1029		83.521	223		2707			221	
560			223		1026		83.521	223		2454			221	
528		83.521	223		1010		83.521	223		2426			221	
522		83.521	223		028		83.521	223		23			221	
495		83.521	223		0141		83.521	223		1802			221	
481		83.521	223		95	861	83.459	222		1646			221	
44		83.521	223	267	933		83.459	222	266	159		83.396	221	265
393		83.521	223	267	809		83.459	222	266	1543		83.396	221	265
39		83.521	223	267	801		83.459	222	266	1446		83.396	221	265

Appendix 5: Chapter 7 John 18 Experiment

	ND	DEDCI	EO	DAGG	wa	ND	DED.C1	EO	DAGG	11/2	ND	DEDCI	FO	DAGG
W2 1425	NK	PERC1	-		W2 237	NK	PERC1	-		W2 2709	NR	PERC1	-	
1423		83.396 83.396	221		2301		83.146 83.146	222 222		2709		83.083 83.083	221 221	
117		83.396	221		2263		83.146	222		2656		83.083	221	
109		83.396	221		2146		83.146	222		2591		83.083	221	
109		83.396	221		202		83.146	222		2127		83.083	221	
1077		83.396	221		1813		83.146	222		193		83.083	221	
1024		83.396	221		1670		83.146	222		19		83.083	221	
64	926	83.333		264	1664		83.146	222		1644		83.083	221	
491	/20	83.333		264	1654		83.146	222		1626		83.083	221	
2606		83.333		264	1635		83.146	222		1613		83.083	221	
2406		83.333		264	1597		83.146	222		1583		83.083	221	
2283		83.333		264	1592		83.146	222		1577		83.083	221	
2121		83.333		264	1538		83.146	222		153		83.083	221	
1542		83.333		264	1512		83.146	222		1509		83.083	221	
1375		83.333	220	264	1511		83.146	222	267	125		83.083	221	266
1059		83.333	220	264	1485		83.146	222	267	1194		83.083	221	266
2679		83.333	170	204	148		83.146	222	267	1065		83.083	221	266
888		83.333	135	162	145		83.146	222	267	1054s		83.083	221	266
1498	937	83.270	219	263	144s		83.146	222	267	1048		83.083	221	266
976	938	83.260	189	227	1443		83.146	222	267	901	1046	83.019	220	265
1540		83.260	189	227	1394		83.146	222	267	820		83.019	220	265
305	940	83.206	218	262	1352		83.146	222	267	742		83.019	220	265
2238		83.206	218	262	1345		83.146	222	267	565		83.019	220	265
231	942	83.203	213	256	133		83.146	222	267	518		83.019	220	265
948	943	83.146	222	267	1318		83.146	222	267	2620		83.019	220	265
900		83.146	222	267	1315		83.146	222	267	2616		83.019	220	265
828		83.146	222	267	1310		83.146	222	267	225		83.019	220	265
788		83.146	222	267	1266		83.146	222	267	1692		83.019	220	265
785		83.146	222	267	1256		83.146	222	267	1643		83.019	220	265
775		83.146	222	267	118s		83.146	222	267	164		83.019	220	265
705		83.146	222	267	1187		83.146	222	267	1432		83.019	220	
688		83.146	222		1173		83.146	222		1212		83.019	220	265
561		83.146	222		1144		83.146	222	267	895	1059	82.955	219	264
497		83.146	222		1121		83.146	222		734		82.955	219	
484		83.146	222		1074		83.146	222		706		82.955	219	
449		83.146	222		1001		83.146	222		422			219	
413		83.146			1000		83.146			2897			219	
397			222		1327			212		2374		82.955	219	
390			222		1041			118		162		82.955	219	
388		83.146	222		937	1012	83.083	221		156		82.955	219	
353		83.146	222		874		83.083	221		1082		82.955	219	
2757		83.146	222		854		83.083	221		031s	10/0	82.955	219	
2685		83.146	222		74 677		83.083	221		2900		82.946	214 204	
2684		83.146	222		677		83.083	221		2584		82.927		
266 2645		83.146 83.146	222 222		656 525		83.083 83.083	221 221		2612 2375	10/1	82.890 82.890	218218	
													218	
2637 259		83.146 83.146	222 222		508 493		83.083 83.083	221 221		1966 1200s		82.890 82.890	218 218	
259		83.146	222		493		83.083	221		12005		82.890	218	
2503		83.146	222		438		83.083	221		1053		82.890	218	
2300		83.146	222		408		83.083	221		1569		82.879	213	
2476		83.146	222		348		83.083	221		1288		82.869	208	
2465		83.146	222		2886		83.083	221		798		82.857	200	
2404		83.146			279		83.083			1152			217	
													- /	

Pre-Genealogical Coherence for W1=032

		PERC1	-				PERC1	-			NR	PERC1	-	
997	1081	82.772			28	1135	82.703	153	185	551		82.331		
994		82.772	221	267	1269	1136	82.692	215	260	54		82.331	219	266
90		82.772	221	267	827	1137	82.642	219	265	2611		82.331	219	266
89		82.772	221	267	819		82.642	219	265	228		82.331	219	266
811		82.772	221	267	720		82.642	219	265	2223		82.331	219	266
68		82.772	221	267	71		82.642	219	265	191		82.331	219	266
676		82.772	221	267	435s		82.642	219	265	1651		82.331	219	266
59		82.772	221	267	40		82.642	219	265	1645		82.331	219	266
580		82.772	221	267	295		82.642	219	265	1495		82.331	219	266
579s		82.772	221	267	2735		82.642	219	265	1458		82.331	219	266
578		82.772	221	267	2220		82.642	219	265	138		82.331	219	266
513		82.772	221	267	2133		82.642	219	265	1314		82.331	219	266
51		82.772	221	267	1393		82.642	219	265	1204		82.331	219	266
483		82.772	221	267	1333		82.642	219	265	1171		82.331	219	266
412		82.772	221	267	1267		82.642	219	265	1090		82.331	219	266
36		82.772	221	267	1188		82.642	219	265	1012		82.331	219	266
344s		82.772	221	267	1047s		82.642	219	265	949	1205	82.308	214	260
34		82.772	221	267	248	1152	82.625	214	259	727	1206	82.264	218	265
2718		82.772	221	267	2727	1153	82.609	190	230	684		82.264	218	265
2710		82.772	221	267	891	1154	82.576	218	264	494		82.264	218	265
2573		82.772	221	267	1788		82.576	218	264	2775s		82.264	218	265
2266		82.772	221	267	1413		82.576	218	264	2658		82.264	218	265
217		82.772	221	267	1263		82.576	218	264	2561		82.264	218	265
209		82.772	221	267	1166		82.576	218	264	2482		82.264	218	265
178		82.772	221	267	886	1159	82.510	217	263	184		82.264	218	265
1639		82.772	221	267	1403		82.510	217	263	1704		82.264	218	265
1624		82.772	221	267	1009		82.510	217	263	163		82.264	218	265
1418		82.772	221	267	1625	1162	82.490	212	257	1531		82.264	218	265
1364		82.772	221	267	011s	1163	82.474	80	97	1299		82.264	218	265
1240		82.772	221	267	1677	1164	82.443	216	262	1215		82.264	218	265
1214		82.772	221	267	858	1165	82.397	220	267	993	1219	82.197	217	264
1086		82.772	221	267	661		82.397	220	267	440		82.197	217	264
107		82.772	221	267	574		82.397	220	267	1780		82.197	217	264
1036		82.772	221	267	555		82.397	220	267	1060		82.197	217	264
10		82.772	221	267	544		82.397	220	267	977	1223	82.022	219	267
165	1116	82.759	216	261	502		82.397	220	267	652		82.022	219	267
725	1117	82.707	220	266	444		82.397	220	267	524		82.022	219	267
716		82.707	220	266	289		82.397	220	267	501		82.022	219	267
666s		82.707	220	266	2713		82.397	220	267	355		82.022		
46		82.707	220	266	2702		82.397	220	267	293		82.022		
373		82.707	220	266	2247		82.397	220	267	2868		82.022		
2608		82.707	220	266	186		82.397	220	267	2809		82.022	219	267
2586		82.707	220	266	1707		82.397	220	267	1528		82.022	219	267
2108		82.707	220	266	1641		82.397	220	267	1515		82.022	219	267
192		82.707	220	266	1595		82.397	220	267	1395		82.022	219	267
1454		82.707	220	266	1588		82.397	220	267	1387		82.022	219	267
1410		82.707		266	152			220		1319		82.022		
1397		82.707		266	1350			220		119		82.022		
1348		82.707		266	124			220			1237	81.955		
1236		82.707		266	1239			220		306			218	
1203		82.707		266	1217			220		301			218	
1190		82.707		266	1087			220		1573			218	
1127		82.707		266	1063			220		1555		81.955		
1091		82.707	220	266	889	1188	82.331	219	266	1402		81.955	218	266

Appendix 5: Chapter 7 John 18 Experiment

11/2	ND	DEDCI	FO	D 4 GG	11/2	ND	DED.CI	FO	DAGG
W2	NR	PERC1 81.955	-	PASS 266	W2	NK	PERC1	-	
1317 1302		81.955		266	273s 2291		81.132 81.132	215 215	
500	1245	81.935	136		1506		81.132	215	
86		81.887		265	58	1301	81.061	213	
829	1240	81.887		265	472			184	
523		81.887		265	878		80.899	216	
1536		81.887		265	392	1505	80.899	216	
0211		81.887		265	2214		80.899	216	
569	1251	81.818		264	2106		80.899	216	
4	1201	81.818		264	1294		80.899	216	
1170		81.818		264	022		80.899	216	
1343s		81.818		209	1663	1309	80.859	207	
2575	1255	81.783		258	61		80.827	215	
169		81.749		263	2206		80.827	215	
1630		81.749		263	1122		80.827	215	
1553		81.749		263	56	1313	80.608	212	
835	1259	81.648		267	2478		80.608	212	
69		81.648		267	729	1315	80.556	203	
686		81.648		267	732		80.524	215	
554		81.648		267	1784s		80.524	215	
1436		81.648	218	267	1326		80.524	215	267
1353		81.648	218	267	05s	1319	80.460	140	174
13		81.648	218	267	683	1320	80.377	213	265
1291		81.648	218	267	16	1321	80.303	212	264
1265		81.648	218	267	744	1322	80.150	214	267
1004		81.648	218	267	723		80.150	214	267
445	1269	81.641	209	256	1689		80.150	214	267
2452	1270	81.624	191	234	182	1325	80.075	213	266
834	1271	81.579	217	266	1135		80.075	213	266
391		81.579	217	266	903	1327	80.000	208	260
2711		81.579	217	266	733		80.000	204	255
1533		81.579	217	266	1293		80.000	16	20
1262		81.579	217	266	P59		80.000	8	10
1160		81.579	217	266	2290		80.000	8	10
1113		81.579	217	266	2526	1332	79.894	151	189
2188	1278	81.553	168	206	857	1333	79.775	213	267
679	1279	81.509	216	265	2680		79.775	213	267
2605		81.509	216	265	1574		79.775	213	267
1301		81.509	216	265	2399	1336	79.747	126	158
1243		81.509	216	265	370	1337	79.730	59	74
752	1283	81.439	215	264	013	1338	79.605	121	152
741		81.439	215	264	05	1339	79.570	74	93
428		81.439	215	264	2535	1340	79.508	97	122
1081		81.439		264	246	1341	79.365	100	126
2185	1287	81.423		253	2679s		79.365	50	63
011	1288	81.395	140	172	1534	1343	79.245	210	265
855	1289	81.273	217	267	1633	1344	79.231	103	130
817		81.273		267	1335		79.087	208	
357		81.273		267	P66	1346	79.032	98	124
2660		81.273		267	1424		78.868	209	
1044		81.273		267	792			190	
		81.250	78	96	841	1349	78.788	208	
		81.203		266	2192		78.788	208	
884	1296	81.132		265	2311	1351	78.652	210	267
47		81.132	215	265	1797		78.652	210	267

W2	NR	PERC1	EQ	PASS
2529	1353	78.626	103	131
2148	1354	78.491	208	265
2810	1355	78.113	207	265
2643	1356	77.903	208	267
2676	1357	77.863	102	131
2650		77.863	102	131
779	1359	77.778	42	54
892	1360	77.143	54	70
27	1361	76.923	10	13
2766	1362	76.779	205	267
731	1363	76.471	143	187
2786	1364	75.564	201	266
1571s	1365	73.504	86	117
087	1366	73.333	22	30
2992	1367	73.214	41	56

Table 154: Pre-genealogical coherence withW1=032 using IGNTP data

ECM Data

W2	NR	PERC1	EQ	PASS	W2	NR	PERC1	EQ	PASS	W2
P108	1	100.000	21	21	2768		85.443	270	316	05
P90	2	93.750	60	64	1654		85.443	270	316	792
P52		93.750	30	32	038		85.443	270		168
А	4		276		2561	50	85.397	269		276
1071	5		281		045		85.397	269		278
03		88.924	281		F13	52		269		P5
1571S		88.889		153	994		85.127	269		Table
33	8	88.608	280		1241		85.127		316	cohere
019	9	87.975	278		118S	55	85.050	256		conere
1321	10	87.937	277		P66	56	85.034	250		
0109	11	87.368	83	95	295	57	84.984	266		
FП	12	87.342		316	011	58	84.862	185		
397		87.342	276		138	59	84.810	268		
044		87.342	276		1009	(1	84.810	268		
1293	15	87.097	27		807	61	84.494	267		
865	16	87.025	275		1546		84.494	267		
033		87.025	275		1093	()	84.494	267		
02		87.025	275		2223	64 65	84.444 84.390	266		
01 04	20	87.025	275		Ф60 892S*	65 66		173	102	
333	20 21	86.905 86.901	219 272		8925. 544	67	84.314 84.177	86 266		
0290	21		272		2718	07	84.177	266		
6290 F1	22		274		109		84.177	266		
226	25		274		357	70	84.127	265		
1561			274		1319	/0	84.127	265		
MT	26		273		054	72	84.076	263		
597	20	86.392	273		2575	73	83.974	262		
35		86.392	273		2615	74	83.861	265		
18		86.392	273		05S	75	83.810	176		
1320		86.392	273		2411	76	83.729	247		
1242		86.392	273		377	77	83.706	262		
07		86.392	273		1788	78	83.548	259		
037		86.392	273		1029	79	83.544	264	316	
992	34	86.076	272	316	022		83.544	264	316	
821			272		892S	81	83.178	178	214	
213		86.076	272	316	0211	82	83.175	262	315	
0141		86.076	272	316	732	83	82.911	262	316	
317	38	85.942	269	313	2106	84	82.595	261	316	
157	39	85.759	271	316	1797		82.595	261	316	
1463		85.759	271	316	1344	86	82.000	123	150	
1014		85.759	271	316	1424	87	81.962	259	316	
1010		85.759	271	316	1128	88	81.699	250	306	
028		85.759	271	316	2192	89	81.646	258	316	
579	44	85.714	270	315	2680	90	81.329	257	316	
1230	45	85.484	265	310	841	91	81.029	252		
799	46	85.443	270	316	087	92	80.952	34	42	

W2	NR	PERC1	EQ	PASS
05	93	80.000	76	95
792	94	79.866	238	298
168	95	79.801	241	302
2766	96	79.618	250	314
2786	97	79.114	250	316
P59	98	68.750	11	16

Table 155: Pre-genealogical coherence with W1=032 using ECM data

Genealogical coherence for W1=032

IGNTP Data

The equivalent table for the ECM data is printed in full in Chapter 7.

W2	NR	D	PERCI	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th><th>W2</th><th>NR</th><th>D</th><th>PERCI</th><th>EQ</th><th>PASS</th><th>W1<w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<></th></w2<>	W1>W2	UNCL	NOREL	W2	NR	D	PERCI	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<>	W1>W2	UNCL	NOREL
P108		-	100.000	10	10					419		-	85.551	225	263	13	13	10	2
P52		-	100.000	9	9					04	33		85.526	195	228	15	12	6	
1803	1		94.828	55	58	2		1		1564	34		85.433	217	254	12	11	13	1
1143		-	93.220	110	118	4	4			1207	35		85.425	211	247	13	11	11	1
А	2		90.763	226	249	20		3		951		-	85.393	228	267	13	13	12	1
2307	3		89.062	114	128	7	3	4		887	36		85.393	228	267	13	12	12	2
1349	4		88.889	120	135	6	5	3	1	871			85.393	228	267	13	12	13	1
475s		-	88.889	24	27	1	1	1		774			85.393	228	267	13	12	13	1
96	5		88.000	154	175	8	6	7		758			85.393	228	267	13	12	12	2
2717	6		87.975	139	158	7	6	5	1	2902			85.393	228	267	14	10	13	2
1571		-	87.919	131	149	7	7	3	1	2721			85.393	228	267	13	12	12	2
2372	7		87.817	173	197	9	8	4	3	2472			85.393	228	267	13	12	13	1
NA27	8		87.640	234	267	23	1	9		1819			85.393	228	267	14	13	9	3
1071	9		87.266	233	267	15	10	8	1	1699			85.393	228	267	13	12	12	2
03			87.266	233	267	18	2	11	3	1563		-	85.393	228	267	13	13	12	1
1400	11		87.050	121	139	6	3	8	1	1544			85.393	228	267	13	12	12	2
274	12		86.957	140	161	8	6	7		1365			85.393	228	267	13	11	12	3
2632	13		86.700	176	203	10	9	7	1	1278			85.393	228	267	14	12	12	1
33	14		86.692	228	263	14	11	8	2	1057			85.393	228	267	13	12	12	2
2398	15		86.667	143	165	7	6	8	1	041			85.393	228	267	14	11	12	2
233	16		86.466	230	266	13	9	11	3	944		-	85.338	227	266	13	13	12	1
1816	17		86.364	228	264	13	10	11	2	941		-	85.338	227	266	13	13	11	2
930		-	86.344	196	227	11	11	8	1	697	50		85.338	227	266	14	11	12	2
1558		-	86.207	200	232	11	11	8	2	66			85.338	227	266	13	10	13	3
019	18		86.142	230	267	18	7	10	2	584			85.338	227	266	13	11	13	2
2524	19		85.932	226	263	13	12	10	2	396			85.338	227	266	13	12	13	1
904	20		85.827	109	127	7	6	5		2728			85.338	227	266	14	12	11	2
669	21		85.768	229	267	13	11	12	2	215			85.338	227	266	13	12	13	1
235		-	85.768	229	267	12	12	12	2	195			85.338	227	266	13	12	13	1
1566			85.768	229	267	13	11	13	1	1676			85.338	227	266	16	12	9	2
139			85.768	229	267	13	11	12	2	1604		-	85.338	227	266	13	13	12	1
1006			85.768	229	267	16	11	9	2	1392			85.338	227	266	12	10	13	4
044			85.768	229	267	15	10	11	2	112			85.338	227	266	12	11	13	3
685	26		85.714	228	266	13	11	12	2	1080		-	85.338	227	266	12	12	13	2
2613			85.714	228	266	14	11	11	2	479		-	85.283	226	265	12	12	13	2
1192		-	85.714	228	266	13	13	11	1	352	60		85.283	226	265	16	13	8	2
114			85.714	228	266	14	11	12	1	1338		-	85.283	226	265	13	13	12	1
2726			85.714	12	14	1		1		1229			85.283	226	265	13	11	14	1
776	30		85.660	227	265	13	11	12	2	0109	62		85.246	52	61	2	1	5	1
974	31		85.606	226	264	16	11	9	2	650		-	85.227	225	264	13	13	12	1
2907	32		85.567	166	194	9	6	11	2	278	63		85.227	225	264	14	11	12	2

W2	NR	D	PERCI	ЕQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<>	W1>W2	UNCL	NOREL
1142			85.227	225	264	13	12	13	1
376		-	85.185	207	243	12	12	11	1
1306	65		85.081	211	248	13	11	11	2
2562		-	85.057	222	261	13	13	12	1
1388	66		85.057	222	261	13	10	15	1
MTJ18		-	85.019	227	267	13	13	13	1
991	67		85.019	227	267	13	12	13	2
975		-	85.019	227	267	13	13	12	2
961		-	85.019	227	267	13	13	12	2
943		-	85.019	227	267	13	13	13	1
932		_	85.019	227	267	13	13	12	2
924			85.019	227	267	14	12	12	2
728			85.019	227	267	13	12	14	1
699			85.019	227	267	14	11	13	2
489			85.019	227	267	14	12	12	2
414			85.019	227	267	13	12	14	1
406		_	85.019	227	267	13	12	13	1
317		_	85.019	227	267	13	13	11	3
298			85.019	227	267	13	12	13	2
2686		_	85.019	227	267	13	12	12	2
260			85.019	227	267	13	11	12	3
2394			85.019	227	267	13	12	13	2
2394			85.019	227	267	12	12	13	2
2340 226		-	85.019	227	267	12	12	14	1
2182		-	85.019	227	267	13	13	13	1
2182		-	85.019	227	267	13	13	12	2
2122		-	85.019	227	267	13	12	12	2
190		-	85.019	227	267	13	12	13	1
1628		-	85.019	227	267	13	13	12	2
1620		_	85.019	227	267	13	13	12	2
1596		_	85.019	227	267	13	13	12	2
1586		_	85.019	227	267	13	13	13	1
1584		-	85.019	227	267	12	12	14	2
1535		-	85.019	227		13	13	13	1
1466			85.019	227	267	13	12	14	1
1448			85.019		267	14	12	12	2
1423			85.019	227	267	13	12	13	2
1346			85.019	227	267	14	12	12	2
1230		-	85.019	227	267	12	12	13	3
1219			85.019	227	267	14	11	13	2
1141		-	85.019	227	267	13	13	13	1
1042		-	85.019	227	267	13	13	13	1
100			85.019	227	267	13	12	13	2
017			85.019	227	267	14	12	11	3
78	84		84.962	226	266	13	12	13	2
696			84.962	226	266	13	12	13	2
583		-	84.962	226	266	12	12	13	3
410			84.962	226	266	13	12	14	1
402		-	84.962	226	266	13	13	12	2
276			84.962	226	266	13	12	13	2
269		-	84.962	226	266	13	13	13	1
2549			84.962	226	266	13	12	14	1

W2	NR	D	PERCI	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<>	W1>W2	UNCL	NOREL
2463		-	84.962	226	266	13	13	12	2
2400		-	84.962	226	266	14	14	10	2
1688			84.962	226	266	13	12	13	2
1627			84.962	226	266	13	12	11	4
1367		-	84.962	226	266	13	13	13	1
1272		-	84.962	226	266	13	13	11	3
1179		-	84.962	226	266	13	13	13	1
757		-	84.906	225	265	13	13	12	2
506		-	84.906	225	265	13	13	12	2
375	91		84.906	225	265	16	12	9	3
2100	71	_	84.906	225	265	13	12	13	1
1779			84.906	225	265	13	12	12	3
1136			84.906	225	265	13	12	12	1
1008			84.906	225	265 265			12	1
		-				13	13		1
1092			84.906	135	159	8	6	9	1
158		-	84.848	224	264	14	14	10	2
1158	95		84.848	224	264	13	12	13	2
2405	96		84.791	223	263	14	12	11	3
1556		-	84.674	221	261	13	13	11	3
958		-	84.644	226	267	13	13	13	2
955		-	84.644	226	267	13	13	13	2
864		-	84.644	226	267	13	13	13	2
844	97		84.644	226	267	13	12	14	2
824		-	84.644	226	267	13	13	13	2
597		-	84.644	226	267	13	13	13	2
592		-	84.644	226	267	13	13	13	2
586		-	84.644	226	267	13	13	13	2
547		-	84.644	226	267	13	13	13	2
536		-	84.644	226	267	13	13	13	2
521		-	84.644	226	267	13	13	13	2
510		-	84.644	226	267	13	13	13	2
399		-	84.644	226	267	13	13	14	1
363		-	84.644	226	267	13	13	12	3
35		_	84.644	226	267	13	13	12	2
324		_	84.644		267	12	12	14	3
291		-	84.644	226	267	12	12	13	2
285		-	84.644	226	267	13	13	13	2
2806		-	84.644		267	13	13	13	2
		-		226 226	267			15	
2730			84.644			13	12		1
2665		-	84.644	226	267	13	13	14	1
2554		-	84.644	226	267	13	13	13	2
2520		-	84.644	226	267	13	13	13	2
2508		-	84.644	226	267	13	13	13	2
2503		-	84.644	226	267	13	13	13	2
2439		-	84.644	226	267	13	13	14	1
2382		-	84.644	226	267	13	13	13	2
2362			84.644	226	267	14	13	13	1
2323		-	84.644	226	267	13	13	13	2
2321		-	84.644	226	267	13	13	13	2
2296		-	84.644	226	267	13	13	13	2
2273		-	84.644	226	267	13	13	13	2
2260		-	84.644	226	267	13	13	13	2

W2	NR	D	PERCI	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<>	W1>W2	UNCL	NOREL
2249		-	84.644	226	267	13	13	13	2
2221		-	84.644	226	267	13	13	13	2
2204		-	84.644	226	267	13	13	13	2
214		-	84.644	226	267	13	13	13	2
2131		-	84.644	226	267	13	13	13	2
211		-	84.644	226	267	13	13	14	1
18		-	84.644	226	267	13	13	13	2
1680		-	84.644	226	267	13	13	13	2
1667		-	84.644	226	267	13	13	13	2
166		-	84.644	226	267	13	13	14	1
1636		-	84.644	226	267	13	13	13	2
1618			84.644	226	267	13	12	14	2
1617		-	84.644	226	267	13	13	12	3
1576		-	84.644	226	267	13	13	13	2
1572		-	84.644	226	267	13	13	13	2
1561		-	84.644	226	267	14	14	11	2
1550		-	84.644	226	267	13	13	13	2
155		-	84.644	226	267	13	13	13	2
1548		-	84.644	226	267	13	13	13	2
1510		-	84.644	226	267	13	13	13	2
1503		-	84.644	226	267	13	13	13	2
1497			84.644	226	267	14	13	12	2
1497			84.644	226	267	14	13	12	2
1490		-	84.644	226	267	13	13	13	2
1492		-	84.644	226		13	13	13 14	
1491			84.644 84.644	226	267	13	12	14	2 2
		-			267				
1487		-	84.644	226	267	13	13	13	2
1482		-	84.644	226	267	13	13	13	2
1477 1472			84.644 84.644	226	267	14	13	12	2
		-		226	267	13	13	14	1
1469		-	84.644	226	267	13	13	13	2
1456		-	84.644	226	267	13	13	13	2
1427		-	84.644	226	267	13	13	13	2
141		-	84.644	226	267	13	13	13	2
1389			84.644	226		14	13	12	2
1339		-	84.644	226	267	13	13	13	2
1313		-	84.644	226		14	14	10	3
1292			84.644	226	267	13	12	14	2
127			84.644	226	267	13	12	12	4
1251		-	84.644	226	267	13	13	13	2
1235		-	84.644	226	267	13	13	13	2
1205		-	84.644	226	267	13	13	14	1
1197		-	84.644	226	267	13	13	13	2
1181		-	84.644	226	267	13	13	13	2
1157		-	84.644	226	267	13	13	13	2
1147		-	84.644	226	267	13	13	13	2
1146		-	84.644	226	267	13	13	13	2
1075		-	84.644	226	267	13	13	13	2
1072		-	84.644	226	267	13	13	13	2
105		-	84.644	226	267	13	13	14	1
1040		-	84.644	226	267	13	13	13	2
033		-	84.644	226	267	16	16	9	

Appendix .	5: Cl	hapter	7 Jo	hn 18	Experiment
------------	-------	--------	------	-------	------------

W2	NR	D	PERC1	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<>	W1>W2	UNCL	NOREL
830		-	84.615	220	260	13	13	13	1
960		-	84.586	225	266	13	13	13	2
953	107		84.586	225	266	14	13	12	2
865			84.586	225	266	16	15	10	
773		-	84.586	225	266	13	13	14	1
700			84.586	225	266	14	11	13	3
5		-	84.586	225	266	13	13	14	1
21		_	84.586	225	266	12	12	14	3
20		-	84.586	225	266	13	13	14	1
1789		_	84.586	225	266	13	13	13	2
1554			84.586	225	266	13	11	15	2
1551		-	84.586	225	266	13	13	13	2
1493		_	84.586	225	266	13	13	13	2
1426		-	84.586	225	266	13	13	14	1
1370		-	84.586	225	266	15	14	11	1
1285			84.586	225		13	14	14	1
		-			266			14	1
1225 782	112	-	84.586	225	266	13	13		
	112		84.528	224 224	265	16 14	14	10	1
591 27(7			84.528 84.528	224	265		13	12	2
2767		-			265	13	13	13	2
2621		-	84.528	224	265	13	13	13	2
1530			84.528	224	265	14	13	13	1
1484		-	84.528	224	265	13	13	13	2
1422		-	84.528	224	265	14	14	12	1
1248		-	84.528	224	265	13	13	13	2
836	115		84.507	180	213	11	10	11	1
719		-	84.411	222	263	13	13	14	1
1431	116		84.411	222	263	14	11	14	2
806		-	84.270	225	267	14	14	12	2
754		-	84.270	225	267	13	13	14	2
72		-	84.270	225	267	13	13	14	2
530		-	84.270	225	267	13	13	14	2
387		-	84.270	225	267	14	14	12	2
2624		-	84.270	225	267	14	14	12	2
2623	117		84.270	225	267	14	13	13	2
2415		-	84.270	225	267	14	14	13	1
2193			84.270	225	267	14	13	13	2
1695			84.270	225	267	13	12	14	3
1634		-	84.270	225	267	13	13	14	2
1462		-	84.270	225	267	13	13	14	2
1398			84.270	225	267	14	13	12	3
1356			84.270	225	267	14	13	14	1
1355		-	84.270	225	267	14	14	13	1
1347		-	84.270	225	267	13	13	14	2
121		-	84.270	225	267	13	13	13	3
1018		-	84.270	225	267	13	13	14	2
030			84.270	225	267	15	13	12	2
395		-	84.211	224	266	13	13	14	2
271		-	84.211	224	266	14	14	13	1
2252		-	84.211	224	266	15	15	10	2
1552		-	84.211	224	266	14	14	12	2
1468		-	84.211	224	266	13	13	15	1

Genealogical coherence for W1=032

W2	NR	D	PERCI	EQ	PASS	V1 <w2< th=""><th>V1>W2</th><th>UNCL</th><th>NOREL</th></w2<>	V1>W2	UNCL	NOREL
2794	123		84.188	197	234	14	12	9	2
188		-	84.151	223	265	13	13	15	1
2282	124		84.091	74	88	4	3	7	
2517	125		84.043	79	94	7	6	1	1
490		-	83.895	224	267	13	13	15	2
470		-	83.895	224	267	13	13	15	2
2516		-	83.895	224	267	14	14	11	4
2495		-	83.895	224	267	13	13	14	3
2397		-	83.895	224	267	15	15	10	3
1520	126		83.895	224	267	14	13	13	3
1513		-	83.895	224	267	14	14	13	2
861	127		83.835	223	266	17	13	12	1
655		-	83.835	223	266	14	14	13	2
443		-	83.835	223	266	13	13	15	2
045	128		83.774	222	265	15	14	13	1
821		-	83.521	223	267	15	15	11	3
799	129		83.521	223	267	16	15	12	1
331			83.521	223	267	15	14	13	2
1268			83.521	223	267	16	14	12	2
0141		-	83.521	223	267	15	15	11	3
1208		-	83.459	222	266	15	15	12	2
888		-	83.333	135	162	10	10	7	
1041	132		83.099	118	142	10	7	7	
798		-	82.857	29	35	3	3		
500		-	81.928	136	166	9	9	12	
1293	133		80.000	16	20	2	1	1	
2290			80.000	8	10	1		1	
370		-	79.730	59	74	5	5	5	
2535		-	79.508	97	122	7	7	11	
2679s	135		79.365	50	63	3	2	8	
2676	136		77.863	102	131	9	8	12	
779		-	77.778	42	54	2	2	8	
27		-	76.923	10	13	1	1	1	
087	137		73.333	22	30	3	1	4	
2992		-	73.214	41	56	5	5	5	

 Table 156: Potential ancestors for W1=032

 using IGNTP data

Genealogical Coherence for W1=397

IGNTP Data

The equivalent table for the ECM data is printed in full in Chapter 7.

W2		NR	D	PERCI	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th><th>W2</th><th>NR</th><th>D</th><th>PERCI</th><th>EQ</th><th>PASS</th><th>W1<w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<></th></w2<>	W1>W2	UNCL	NOREL	W2	NR	D	PERCI	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<>	W1>W2	UNCL	NOREL
272	26		-	100.000	14	14					1466			93.258	249	267	5	2	7	4
P5	9		-	100.000	10	10					1452			93.258	249	267	4	3	7	4
229	90		-	100.000	10	10					1445		-	93.258	249	267	4	4	6	4
P5	2		-	100.000	9	9					1300			93.258	249	267	4	3	7	4
114	43	1		96.610	114	118	1		2	1	105			93.258	249	267	4	3	7	4
180)3		-	96.552	56	58			1	1	1042			93.258	249	267	5	3	6	4
241	18	2		94.828	55	58	2			1	972		-	93.233	248	266	4	4	6	4
239	98		-	94.545	156	165	1	1	6	1	952	35		93.233	248	266	5	4	6	3
230	07		-	94.531	121	128	2	2	3		696			93.233	248	266	5	3	6	4
376	5	3		94.239	229	243	4	3	4	3	431		-	93.233	248	266	4	4	6	4
159	9 0	4		94.231	98	104	3	2		1	402			93.233	248	266	5	4	5	4
163	38	5		94.175	194	206	5	2	1	4	2732			93.233	248	266	5	4	6	3
277	74		-	93.939	248	264	4	4	5	3	269			93.233	248	266	5	3	6	4
256	52	6		93.870	245	261	4	2	7	3	2117			93.233	248	266	5	4	6	3
285	56	7		93.633	250	267	5	3	6	3	195			93.233	248	266	5	3	6	4
266	65			93.633	250	267	4	2	7	4	1688			93.233	248	266	5	3	6	4
210)			93.633	250	267	5	3	6	3	1652		-	93.233	248	266	4	4	6	4
158	86			93.633	250	267	4	3	6	4	1493			93.233	248	266	5	4	6	3
129	92			93.633	250	267	4	2	7	4	1367			93.233	248	266	5	3	6	4
114	41			93.633	250	267	4	3	6	4	1064		-	93.233	248	266	5	5	5	3
926	5	13		93.627	191	204	5	3	1	4	2502	45		93.208	247	265	5	4	6	3
657	7		-	93.627	191	204	4	4	3	2	55		-	93.182	246	264	4	4	6	4
214	41	14		93.609	249	266	4	3	7	3	2245	46		93.182	246	264	6	4	5	3
137	7			93.609	249	266	5	3	6	3	1186		-	93.182	246	264	5	5	5	3
263	32	16		93.596	190	203	4	3	2	4	719	47		93.156	245	263	4	3	8	3
238	88	17		93.585	248	265	4	3	7	3	2894			93.156	245	263	5	3	7	3
13	12			93.585	248	265	5	3	6	3	96	49		93.143	163	175	5		6	1
113	36			93.585	248	265	5	3	7	2	600		-	93.130	244	262	5	5	5	3
947	7		-	93.548	29	31			2		53		-	93.103	243	261	4	4	7	3
534	1	20		93.385	240	257	5	3	6	3	830	50		93.077	242	260	6	3	6	3
156	50	21		93.333	196	210	6	3	2	3	930	51		92.952	211	227	5	3	4	4
МТ	FJ18	22		93.258	249	267	5	3	6	4	1145	52		92.913	236	254	5	4	6	3
975	5			93.258	249	267	4	3	7	4	991	53		92.884	248	267	5	3	7	4
774	1			93.258	249	267	6	2	6	4	958			92.884	248	267	5	4	6	4
769)		-	93.258	249	267	4	4	6	4	955			92.884	248	267	5	4	6	4
746	5		-	93.258	249	267	4	4	6	4	943			92.884	248	267	5	4	6	4
414	1			93.258	249	267	5	2	7	4	890			92.884	248	267	5	4	6	4
247	72			93.258	249	267	5	3	6	4	845			92.884	248	267	5	4	6	4
226	5			93.258	249	267	5	3	6	4	83			92.884	248	267	6	4	6	3
179	92			93.258	249	267	5	4	6	3	824			92.884	248	267	5	4	6	4
147	72			93.258	249	267	4	3	7	4	806		-	92.884	248	267	4	4	7	4

W2	NR	D	PERC1	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th><th>ŝ</th></w2<>	W1>W2	UNCL	NOREL	ŝ
759		-	92.884	248	267	5	5	5	4	14
754		-	92.884	248	267	4	4	7	4	14
586			92.884	248	267	5	4	6	4	14
549		-	92.884	248	267	4	4	6	5	1
547			92.884	248	267	5	4	6	4	1
536			92.884	248	267	5	4	6	4	1
510			92.884	248	267	5	4	6	4	1
476		-	92.884	248	267	4	4	7	4	1
43			92.884	248	267	5	4	6	4	1
380		-	92.884	248	267	4	4	7	4	1
367		-	92.884	248	267	4	4	7	4	1
35			92.884	248	267	5	4	6	4	1
285			92.884	248	267	5	4	6	4	1
2806			92.884	248	267	5	4	6	4	1
2765		-	92.884	248	267	4	4	7	4	9
2701			92.884	248	267	5	4	6	4	7.
2554			92.884	248	267	5	4	6	4	7
2525			92.884	248	267	5	4	6	4	6
2520			92.884	248	267	5	4	6	4	6
2503			92.884	248	267	5	4	6	4	4
2439			92.884	248	267	5	3	7	4	2
2382			92.884	248	267	5	4	6	4	2
2323			92.884	248	267	5	4	6	4	1
232			92.884	248	267	5	4	6	4	1
2296			92.884	248	267	5	4	6	4	1
2273			92.884	248	267	5	4	6	4	1-
2260			92.884	248	267	5	4	6	4	1-
2221			92.884	248	267	5	4	6	4	1
2201		-	92.884	248	267	4	4	7	4	1
2175			92.884	248	267	5	4	6	4	7.
214			92.884	248	267	5	4	6	4	4
2131			92.884	248	267	5	4	6	4	2
2109		-	92.884	248	267	4	4	7	4	2
18			92.884	248	267	5	4	6	4	2
1783			92.884	248	267	5	4	6	4	2-
1705			92.884	248	267	6	4	6	3	1
1698			92.884	248	267	6	4	6	3	1
1667			92.884	248	267	5	4	6	4	1
1637			92.884	248	267	5	4	6	4	5
1636			92.884	248	267	5	4	6	4	2
1576			92.884	248	267	5	4	6	4	1-
1572			92.884	248	267	5	4	6	4	1
1562			92.884	248	267	5	4	6	4	1
1550			92.884	248	267	5	4	6	4	2-
155			92.884	248	267	5	4	6	4	2
1548			92.884	248	267	5	4	6	4	1
1503			92.884	248	267	5	4	6	4	2
1496			92.884	248	267	5	4	6	4	2
1492			92.884		267		4	6	4	9
1490			92.884		267		4	6	4	9
1487			92.884	248	267	5	4	6	4	9
1482			92.884	248	267	5	4	6	4	9.

W2	NR	D	PERC1	ЕQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<>	W1>W2	UNCL	NOREL
1469			92.884	248	267	5	4	6	4
1427			92.884	248	267	5	4	6	4
141			92.884	248	267	5	4	6	4
139			92.884	248	267	6	3	7	3
1339			92.884	248	267	5	4	6	4
1328			92.884	248	267	5	4	6	4
1320			92.884	248	267	5	4	6	4
1251			92.884	248	267	5	4	6	4
1238		-	92.884	248	267	4	4	7	4
1163		-	92.884	248	267	4	4	, 7	4
1147			92.884	248	267	5	4	6	4
1146			92.884	248	267	5	4	6	4
1075			92.884	248	267	5	4	6	4
1072			92.884	248	267	5	4	6	4
960	116		92.857	248	267	5	4	6	4
750	110		92.857	247	266	5	4 5	5	4
		-	92.857						
715		-		247	266	6	6	4	3
664			92.857	247	266	5	4	6	4
66			92.857	247	266	5	4	6	4
410			92.857	247	266	5	3	7	4
2314		-	92.857	247	266	5	5	6	3
215			92.857	247	266	5	2	8	4
1791		-	92.857	247	266	5	5	5	4
1554			92.857	247	266	6	3	7	3
1551			92.857	247	266	5	4	6	4
1442			92.857	247	266	6	5	5	3
1426			92.857	247	266	5	3	7	4
1179			92.857	247	266	5	3	6	5
1088			92.857	247	266	6	4	6	3
757	127		92.830	246	265	5	4	6	4
479			92.830	246	265	5	4	6	4
2767			92.830	246	265	5	4	6	4
2715			92.830	246	265	6	5	5	3
2621			92.830	246	265	5	4	6	4
2462			92.830	246	265	5	4	7	3
1781		-	92.830	246	265	5	5	6	3
1229			92.830	246	265	6	2	7	4
1008			92.830	246	265	5	3	7	4
505	135		92.803	245	264	6	4	7	2
2747			92.803	245	264	6	3	6	4
1457			92.803	245	264	6	4	6	3
1158			92.803	245	264	5	4	6	4
1142			92.803	245	264	6	4	6	3
245		_	92.748	243	262	5	5	7	2
2636	140		92.607	238	257	5	4	6	4
1349	141		92.593	125	135	4	3	1	2
274	141		92.595 92.547	123	161	4	2	6	2
			92.547 92.517			3 4	2	2	
2567	143			136	147				2
986		-	92.509	247	267	4	4	8	4
98	144	-	92.509	247	267	5	5	6	4
961	144		92.509	247	267	5	4	7	4
951			92.509	247	267	5	4	7	4

938 92.509 247 267 5 6 4 932 92.509 247 267 5 6 4 923 92.509 247 267 5 5 6 4 923 92.509 247 267 5 5 6 4 923 92.509 247 267 5 5 6 4 977 92.509 247 267 5 5 6 4 763 92.509 247 267 5 5 6 4 72 92.509 247 267 5 5 6 4 703 92.509 247 267 5 5 6 4 645 92.509 247 267 5 5 6 4 645 92.509 247 267 5 5 6 4 71 92.509 247	W2	NR	D	PERC1	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>VOREL</th></w2<>	W1>W2	UNCL	VOREL
932 92.509 247 267 5 6 4 923 - 92.509 247 267 5 6 4 887 92.509 247 267 5 5 6 4 797 - 92.509 247 267 5 5 6 4 764 92.509 247 267 5 5 6 4 72 92.509 247 267 5 5 6 4 669 92.509 247 267 5 5 6 4 653 92.509 247 267 5 5 6 4 645 92.509 247 267 5 5 6 4 653 92.509 247 267 5 5 6 4 645 92.509 247 267 5 5 6 4 656 92.509 247 267 5 5 6 4 7 92.509 247 267 5 5 6 4 7 92.509 247 267 5 5 6 4 <	938		-	92,509	247	267	5		6	4
923 - 92.509 247 267 5 6 4 887 92.509 247 267 5 4 7 3 852 92.509 247 267 5 5 6 4 797 - 92.509 247 267 5 5 6 4 763 - 92.509 247 267 5 5 6 4 72 92.509 247 267 5 5 6 4 669 92.509 247 267 5 5 6 4 645 92.509 247 267 5 5 6 4 556 - 92.509 247 267 5 5 6 4 512 - 92.509 247 267 5 5 6 4 363 92.509 247 267 5 5 6 4 273 - 92.509 247 267 5 6										
88792.509247267647385292.509247267547476492.509247267556476392.50924726755647292.509247267556466992.509247267556465392.509247267556464592.509247267556455692.509247267556451292.509247267556438692.50924726755643792.509247267556438692.509247267556439292.509247267556439392.509247267556439492.509247267556439392.509247267556439492.509247267556439392.509247267556439492.509247267556439492.509247 </td <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			_							
852 92.509 247 267 5 6 4 797 - 92.509 247 267 5 6 4 763 - 92.509 247 267 5 6 4 72 92.509 247 267 5 5 6 4 669 92.509 247 267 5 4 7 4 645 92.509 247 267 5 5 6 4 645 92.509 247 267 5 5 6 4 645 92.509 247 267 5 5 6 4 556 92.509 247 267 5 5 6 4 480 92.509 247 267 5 5 6 4 37 92.509 247 267 5 5 6 4 363 92.509 247 267 5 5 6 4 2773 9 92.50										
797 - 92.509 247 267 5 6 4 763 - 92.509 247 267 5 6 4 72 92.509 247 267 5 6 4 669 92.509 247 267 5 6 4 663 92.509 247 267 5 6 4 645 92.509 247 267 5 6 4 645 92.509 247 267 5 5 6 4 556 - 92.509 247 267 5 5 6 4 512 - 92.509 247 267 5 5 6 4 80 - 92.509 247 267 5 5 6 4 12 - 92.509 247 267 5 5 6 4 363 - 92.509 247 267 5 5 6 4 2773										
764 92.509 247 267 5 6 4 763 - 92.509 247 267 5 6 3 717 - 92.509 247 267 5 5 6 4 669 92.509 247 267 5 4 7 3 645 92.509 247 267 5 5 6 4 645 92.509 247 267 5 5 6 4 645 92.509 247 267 5 5 6 4 575 - 92.509 247 267 5 5 6 4 512 - 92.509 247 267 5 5 6 4 386 - 92.509 247 267 5 5 6 4 37 92.509 247 267 5 5 6 4 363 - 92.509 247 267 5 5 6			_							
763 - 92.509 247 267 5 6 4 72 92.509 247 267 5 5 6 4 669 92.509 247 267 5 4 7 4 645 92.509 247 267 5 4 7 3 575 - 92.509 247 267 5 5 6 4 556 - 92.509 247 267 5 5 6 4 512 - 92.509 247 267 5 5 6 4 386 - 92.509 247 267 5 5 6 4 37 92.509 247 267 5 5 6 4 363 92.509 247 267 5 5 6 4 2773 - 92.509 247 267 5 5 6 4 271 92.509 247 267 5 6			-							
72 92.509 247 267 6 5 6 669 92.509 247 267 5 4 7 653 92.509 247 267 5 4 7 3 645 92.509 247 267 5 5 6 4 645 92.509 247 267 5 5 7 3 575 - 92.509 247 267 5 5 6 4 512 - 92.509 247 267 5 5 6 4 386 - 92.509 247 267 5 5 6 4 37 92.509 247 267 5 5 6 4 363 - 92.509 247 267 5 5 6 4 298 - 92.509 247 267 5 5 6 4 2773 - 92.509 247 267 5 5 6										
717 - 92.509 247 267 5 6 4 669 92.509 247 267 5 4 7 3 645 92.509 247 267 5 5 6 4 556 - 92.509 247 267 5 5 6 4 556 - 92.509 247 267 5 5 6 4 512 - 92.509 247 267 5 5 6 4 386 - 92.509 247 267 5 5 6 4 363 92.509 247 267 5 5 6 4 37 92.509 247 267 5 5 6 4 37 92.509 247 267 5 5 6 4 386 - 92.509 247 267 5 5 6 4 271 92.509 247 267 5 5			-							
669 92.509 247 267 6 4 7 4 645 92.509 247 267 5 4 7 3 575 - 92.509 247 267 5 5 6 4 556 - 92.509 247 267 5 5 6 4 512 - 92.509 247 267 5 5 6 4 386 - 92.509 247 267 5 5 6 4 386 - 92.509 247 267 5 5 6 4 37 92.509 247 267 5 5 6 4 363 92.509 247 267 5 5 6 4 270 - 92.509 247 267 5 5 6 4 271 92.509 247 267 5 5 6 4 2706 - 92.509 247 267										
653 92.509 247 267 5 4 7 3 575 - 92.509 247 267 5 5 6 4 556 - 92.509 247 267 5 5 6 4 512 - 92.509 247 267 5 5 6 4 386 - 92.509 247 267 5 5 6 4 386 - 92.509 247 267 5 5 6 4 386 - 92.509 247 267 5 5 6 4 37 92.509 247 267 5 5 6 4 392 - 92.509 247 267 5 5 6 4 2773 - 92.509 247 267 5 5 6 4 275 - 92.509 247 267 5 5 6 4 271 92.509			-							
645 92.509 247 267 5 6 4 575 - 92.509 247 267 5 5 6 4 556 - 92.509 247 267 5 5 6 4 512 - 92.509 247 267 5 5 6 4 386 - 92.509 247 267 5 5 6 4 386 - 92.509 247 267 5 5 6 4 37 92.509 247 267 5 5 6 4 363 92.509 247 267 5 5 6 4 37 92.509 247 267 5 5 6 4 2773 - 92.509 247 267 5 5 6 4 275 - 92.509 247 267 5 5 6 4 271 92.509 247 267 5										
575 - 92.509 247 267 5 5 7 3 521 92.509 247 267 5 5 6 4 512 - 92.509 247 267 5 5 6 4 380 - 92.509 247 267 5 5 6 4 386 - 92.509 247 267 5 5 6 4 370 92.509 247 267 5 5 6 4 363 92.509 247 267 5 5 6 4 371 92.509 247 267 5 5 6 4 373 - 92.509 247 267 5 5 6 4 275 - 92.509 247 267 5 5 6 4 271 92.509 247 267 5 5 6 4 275 - 92.509 247 267										
556 - 92.509 247 267 5 7 3 521 - 92.509 247 267 5 5 6 4 512 - 92.509 247 267 5 5 6 4 380 - 92.509 247 267 5 5 6 4 363 - 92.509 247 267 5 5 6 4 329 - 92.509 247 267 5 5 6 4 2773 - 92.509 247 267 5 5 6 4 275 - 92.509 247 267 5 5 6 4 275 - 92.509 247 267 5 5 6 4 275 - 92.509 247 267 5 5 6 4 275 - 92.509 247 267 5 5 6 4 275 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
521 92.509 247 267 5 6 4 512 92.509 247 267 5 5 6 4 386 92.509 247 267 5 5 6 4 37 92.509 247 267 5 5 6 4 363 92.509 247 267 5 5 6 4 329 92.509 247 267 5 5 6 4 2773 92.509 247 267 5 5 6 4 275 92.509 247 267 5 5 6 4 275 92.509 247 267 5 5 6 4 275 92.509 247 267 5 5 6 4 2635 92.509 247 267 5 5 6 4 210 92.509 247 267 5 5 6 4 2367 92.509 <			-							
512 - 92.509 247 267 5 6 4 480 - 92.509 247 267 5 5 6 4 386 - 92.509 247 267 5 5 6 4 37 92.509 247 267 5 5 6 4 363 92.509 247 267 5 5 6 4 298 92.509 247 267 5 5 6 4 2773 - 92.509 247 267 5 5 6 4 275 - 92.509 247 267 5 5 6 4 275 - 92.509 247 267 5 5 6 4 2635 - 92.509 247 267 5 5 6 4 2510 - 92.509 247 267 5 5 6 4 2635 - 92.509 247			-							
480 - 92.509 247 267 5 6 4 386 - 92.509 247 267 5 6 4 37 92.509 247 267 5 4 7 4 363 92.509 247 267 5 5 6 4 329 - 92.509 247 267 5 5 6 4 2773 - 92.509 247 267 5 5 6 4 2773 - 92.509 247 267 5 5 6 4 275 - 92.509 247 267 5 5 6 4 2635 - 92.509 247 267 5 5 6 4 2518 - 92.509 247 267 5 5 6 4 2367 - 92.509 247 267 5 5 6 4 2367 - 92.509 247 <td></td>										
386 - 92.509 247 267 5 6 4 37 92.509 247 267 5 4 7 4 363 92.509 247 267 5 4 7 4 329 - 92.509 247 267 5 5 6 4 2773 - 92.509 247 267 5 5 6 4 275 - 92.509 247 267 5 5 6 4 275 - 92.509 247 267 5 5 6 4 2635 - 92.509 247 267 5 5 6 4 2615 - 92.509 247 267 5 5 6 4 2510 - 92.509 247 267 5 5 6 4 2510 - 92.509 247 267 5 5 6 4 2367 - 92.509			-							
37 92.509 247 267 6 4 6 4 363 92.509 247 267 5 6 4 329 - 92.509 247 267 5 6 4 298 92.509 247 267 5 5 6 4 2773 - 92.509 247 267 5 5 6 4 275 - 92.509 247 267 5 5 6 4 275 - 92.509 247 267 5 5 6 4 2635 - 92.509 247 267 5 5 6 4 2510 - 92.509 247 267 5 5 6 4 246 92.509 247 267 5 5 6 4 2367 - 92.509 247 267 5 5 6 4 2352 - 92.509 247 267 5 <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			-							
363 92.509 247 267 5 4 7 4 329 92.509 247 267 5 5 6 4 298 92.509 247 267 5 5 6 4 2773 92.509 247 267 5 5 7 3 271 92.509 247 267 5 5 6 4 275 92.509 247 267 5 5 6 4 2706 92.509 247 267 5 5 6 4 2635 92.509 247 267 5 5 6 4 2510 92.509 247 267 5 5 6 4 2466 92.509 247 267 5 5 6 4 2367 92.509 247 267 5 5 6 4 2352 92.509 247 267 5 5 6 4 2249			-				5		6	
329 - 92.509 247 267 5 6 4 298 92.509 247 267 5 5 6 4 2773 - 92.509 247 267 5 5 6 4 275 - 92.509 247 267 5 5 6 4 275 - 92.509 247 267 5 5 6 4 2706 - 92.509 247 267 5 5 6 4 2635 - 92.509 247 267 5 5 6 4 2518 - 92.509 247 267 5 5 6 4 2466 92.509 247 267 5 5 6 4 2367 - 92.509 247 267 5 5 6 4 2352 - 92.509 247 267 5 4 7 4 2249 92.509 247<	37			92.509	247	267	6	4	6	4
298 92.509 247 267 6 4 6 4 2773 92.509 247 267 5 5 6 4 275 92.509 247 267 5 5 7 3 2721 92.509 247 267 5 5 6 4 2635 92.509 247 267 5 5 6 4 2635 92.509 247 267 5 5 6 4 2518 92.509 247 267 5 5 6 4 2466 92.509 247 267 5 5 6 4 2367 92.509 247 267 5 5 6 4 2367 92.509 247 267 5 5 6 4 2352 92.509 247 267 5 6 4 2249 92.509 247 267 5 4 7 4 2229 92.509 <td>363</td> <td></td> <td></td> <td>92.509</td> <td>247</td> <td>267</td> <td>5</td> <td>4</td> <td>7</td> <td>4</td>	363			92.509	247	267	5	4	7	4
2773 - 92.509 247 267 5 6 4 275 - 92.509 247 267 5 5 7 3 2721 92.509 247 267 5 5 6 4 2635 - 92.509 247 267 5 5 6 4 2635 - 92.509 247 267 5 5 6 4 2518 - 92.509 247 267 5 5 6 4 2510 - 92.509 247 267 5 5 6 4 2466 92.509 247 267 5 5 6 4 2367 - 92.509 247 267 5 5 6 4 2352 - 92.509 247 267 5 5 6 4 2249 92.509 247 267 5 4 7 4 2229 92.509 247 267 5 4	329		-	92.509	247	267	5	5	6	4
275- 92.509 247 267 5573 2721 92.509 247 267 7463 2706 - 92.509 247 267 5564 2635 - 92.509 247 267 5564 2518 - 92.509 247 267 5564 2466 92.509 247 267 5564 2466 - 92.509 247 267 5564 2367 - 92.509 247 267 5564 2352 - 92.509 247 267 5564 2261 - 92.509 247 267 564 2229 92.509 247 267 5474 2229 92.509 247 267 5474 2182 92.509 247 267 564 2181 - 92.509 247 267 564 204 - 92.509 247 267 564 2181 - 92.509 247 267 564 219 - 92.509 247 267 564 2104 - 92.509 247 267 564 2104 <td>298</td> <td></td> <td></td> <td>92.509</td> <td>247</td> <td>267</td> <td>6</td> <td>4</td> <td>6</td> <td>4</td>	298			92.509	247	267	6	4	6	4
2721 92.509 247 267 7 4 6 3 2706 92.509 247 267 5 5 6 4 2635 92.509 247 267 5 5 6 4 2518 92.509 247 267 5 5 6 4 2510 92.509 247 267 5 5 6 4 2466 92.509 247 267 5 5 6 4 240 92.509 247 267 5 5 6 4 2367 92.509 247 267 5 5 6 4 2352 92.509 247 267 5 5 6 4 2352 92.509 247 267 5 4 7 4 2261 92.509 247 267 5 4 7 4 2229 92.509 247 267 5 4 7 4 2182	2773		-	92.509	247	267	5	5	6	4
2706 - 92.509 247 267 5 6 4 2635 - 92.509 247 267 5 5 6 4 2518 - 92.509 247 267 5 5 6 4 2510 - 92.509 247 267 5 5 6 4 2466 92.509 247 267 5 5 6 4 240 - 92.509 247 267 5 5 6 4 2367 - 92.509 247 267 5 5 6 4 2352 - 92.509 247 267 5 5 6 4 2352 - 92.509 247 267 5 4 7 4 2261 - 92.509 247 267 5 4 7 4 2249 92.509 247 267 5 4 7 4 2182 92.509 2	275		-	92.509	247	267	5	5	7	3
2635- 92.509 247 267 5 6 4 2518 - 92.509 247 267 5 6 4 2510 - 92.509 247 267 5 6 4 2466 92.509 247 267 5 6 4 2367 - 92.509 247 267 5 6 4 2357 - 92.509 247 267 5 6 4 2352 - 92.509 247 267 5 6 4 2249 92.509 247 267 5 6 4 2229 92.509 247 267 5 4 7 4 2182 92.509 247 267 5 4 7 4 2182 92.509 247 267 5 4 7 4 2181 - 92.509 247 267 5 6 4 2112 92.509 247 267 5 6 4 2112 92.509 247 267 5 6 4 2104 - 92.509 247 267 5 6 4 2112 92.509 247 267 5 6 4 2112 92.509 247 267 5 6 4 2104 - 92.509 247 267 5 6 4 2104 <t< td=""><td>2721</td><td></td><td></td><td>92.509</td><td>247</td><td>267</td><td>7</td><td>4</td><td>6</td><td>3</td></t<>	2721			92.509	247	267	7	4	6	3
2518- 92.509 247 267 5 6 4 2510 - 92.509 247 267 5 6 4 2466 92.509 247 267 5 5 6 4 2367 - 92.509 247 267 5 5 6 4 2357 - 92.509 247 267 5 5 6 4 2352 - 92.509 247 267 5 5 6 4 2249 92.509 247 267 5 4 7 4 2229 92.509 247 267 5 4 7 4 2182 92.509 247 267 5 4 7 4 2181 - 92.509 247 267 5 6 4 2114 - 92.509 247 267 5 6 4 2122 92.509 247 267 5 6 4 2124 92.509 247 267 5 6 4 2104 - 92.509 247 267 5 6 4 2104 - 92.509 247 267 5 6 4 2104 - 92.509 247 267 5 6 4 2104 - 92.509 247 267 5 6 4 2104 - 92.509 247 <td>2706</td> <td></td> <td>-</td> <td>92.509</td> <td>247</td> <td>267</td> <td>5</td> <td>5</td> <td>6</td> <td>4</td>	2706		-	92.509	247	267	5	5	6	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2635		-	92.509	247	267	5	5	6	4
2466 92.509 247 267 6 4 7 3 240 92.509 247 267 5 6 4 2367 92.509 247 267 5 6 4 2356 92.509 247 267 5 6 4 2356 92.509 247 267 5 6 4 2352 92.509 247 267 5 6 4 2261 92.509 247 267 5 6 4 2249 92.509 247 267 5 4 7 4 2229 92.509 247 267 5 4 7 4 2182 92.509 247 267 5 4 7 4 2181 92.509 247 267 5 4 7 4 204 92.509 247 267 5 6 4 2122 92.509 247 267 5 6 4	2518		-	92.509	247	267	5	5	6	4
240- 92.509 247 267 5 6 4 2367 - 92.509 247 267 5 6 4 2356 92.509 247 267 5 6 4 2352 - 92.509 247 267 5 6 4 2261 - 92.509 247 267 5 6 4 2249 92.509 247 267 5 4 7 4 2229 92.509 247 267 5 4 7 4 2182 92.509 247 267 5 4 7 4 2181 - 92.509 247 267 5 4 7 4 2122 92.509 247 267 5 6 4 2181 - 92.509 247 267 5 6 4 2104 - 92.509 247 267 5 6 4 204 - 92.509 247 267 5 6 4 201 - 92.509 247 267 5 6 4 190 92.509 247 267 5 6 4 1686 - 92.509 247 267 5 6 4 166 - 92.509 247 267 5 6 4 166 - 92.509 247 267 5 6 <t< td=""><td>2510</td><td></td><td>-</td><td>92.509</td><td>247</td><td>267</td><td>5</td><td>5</td><td>6</td><td>4</td></t<>	2510		-	92.509	247	267	5	5	6	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2466			92.509	247	267	6	4	7	3
2356 92.509 247 267 5 4 7 4 2352 92.509 247 267 5 5 6 4 2261 92.509 247 267 5 5 6 4 2249 92.509 247 267 5 4 7 4 2229 92.509 247 267 5 4 6 5 2204 92.509 247 267 5 4 7 4 2129 92.509 247 267 5 4 7 4 2182 92.509 247 267 5 4 7 4 2181 - 92.509 247 267 5 6 4 204 - 92.509 247 267 5 6 4 201 - 92.509 247 267 5 6 4 100 92.509 247 267 5 6 4 1686 92.509	240		-	92.509	247	267	5	5	6	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2367		-	92.509	247	267	5	5	6	4
2261 - 92.509 247 267 5 6 4 2249 92.509 247 267 5 4 7 4 2229 92.509 247 267 5 4 7 4 2120 92.509 247 267 5 4 7 4 2120 92.509 247 267 5 4 7 4 2182 92.509 247 267 5 4 7 4 2181 - 92.509 247 267 5 4 7 4 2121 92.509 247 267 5 4 7 4 204 - 92.509 247 267 5 6 4 201 - 92.509 247 267 5 6 4 190 92.509 247 267 5 6 4 1686 - 92.509 247 267 5 6 4 1680	2356			92.509	247	267	5	4	7	4
2249 92.509 247 267 5 4 7 4 2229 92.509 247 267 5 4 6 5 2204 92.509 247 267 5 4 7 4 2182 92.509 247 267 5 4 6 4 2181 - 92.509 247 267 5 4 7 4 2182 92.509 247 267 5 4 7 4 2181 - 92.509 247 267 5 4 7 4 2122 92.509 247 267 5 4 7 4 204 - 92.509 247 267 5 6 4 201 - 92.509 247 267 5 6 4 190 92.509 247 267 5 6 4 1686 - 92.509 247 267 5 6 4 <	2352		-	92.509	247	267	5	5	6	4
2229 92.509 247 267 5 4 6 5 2204 92.509 247 267 5 4 7 4 2182 92.509 247 267 5 4 6 4 2181 - 92.509 247 267 5 4 7 4 2181 - 92.509 247 267 5 4 7 4 2122 92.509 247 267 5 4 7 4 204 - 92.509 247 267 5 6 4 204 - 92.509 247 267 5 6 4 201 - 92.509 247 267 5 6 4 190 92.509 247 267 5 6 4 1686 - 92.509 247 267 5 6 4 166 92.509 247 267 5 5 6 4 <td< td=""><td>2261</td><td></td><td>-</td><td>92.509</td><td>247</td><td>267</td><td>5</td><td>5</td><td>6</td><td>4</td></td<>	2261		-	92.509	247	267	5	5	6	4
2229 92.509 247 267 5 4 6 5 2204 92.509 247 267 5 4 7 4 2182 92.509 247 267 5 4 6 4 2181 - 92.509 247 267 5 4 7 4 2181 - 92.509 247 267 5 4 7 4 2122 92.509 247 267 5 4 7 4 204 - 92.509 247 267 5 6 4 204 - 92.509 247 267 5 6 4 201 - 92.509 247 267 5 6 4 190 92.509 247 267 5 6 4 1686 - 92.509 247 267 5 6 4 166 92.509 247 267 5 5 6 4 <td< td=""><td>2249</td><td></td><td></td><td>92.509</td><td>247</td><td>267</td><td>5</td><td>4</td><td>7</td><td>4</td></td<>	2249			92.509	247	267	5	4	7	4
2204 92.509 247 267 5 4 7 4 2182 92.509 247 267 6 4 6 4 2181 - 92.509 247 267 5 4 7 4 2181 - 92.509 247 267 5 4 7 4 2122 92.509 247 267 5 4 7 4 204 - 92.509 247 267 5 6 4 201 - 92.509 247 267 5 6 4 190 92.509 247 267 5 6 4 190 92.509 247 267 5 6 4 1686 - 92.509 247 267 5 6 4 1680 - 92.509 247 267 5 6 4 166 92.509 247 267 5 6 4 166 92.509				92.509				4	6	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
2181 - 92.509 247 267 4 8 4 2122 92.509 247 267 5 4 7 4 204 - 92.509 247 267 5 6 4 201 - 92.509 247 267 5 6 4 190 92.509 247 267 5 6 4 190 92.509 247 267 5 6 4 190 92.509 247 267 5 6 4 1686 - 92.509 247 267 5 6 4 1680 - 92.509 247 267 5 6 4 1680 - 92.509 247 267 5 6 4 167 - 92.509 247 267 5 6 4 166 92.509 247 267 5 6 4 166 92.509 247 267 5										
2122 92.509 247 267 5 4 7 4 204 - 92.509 247 267 5 6 4 201 - 92.509 247 267 5 6 4 190 92.509 247 267 7 4 6 3 1703 - 92.509 247 267 5 6 4 1686 - 92.509 247 267 5 6 4 1680 - 92.509 247 267 5 6 4 1680 - 92.509 247 267 5 6 4 1680 - 92.509 247 267 5 6 4 167 - 92.509 247 267 5 6 4 166 92.509 247 267 5 5 6 4 166 92.509 247 267 5 6 4 1650 - <			-							
204 - 92.509 247 267 5 6 4 201 - 92.509 247 267 5 5 6 4 190 92.509 247 267 7 4 6 3 1703 - 92.509 247 267 5 5 6 4 1686 - 92.509 247 267 5 5 6 4 1680 - 92.509 247 267 5 5 6 4 1680 - 92.509 247 267 5 5 6 4 167 - 92.509 247 267 5 5 6 4 166 - 92.509 247 267 5 5 6 4 166 - 92.509 247 267 5 6 4 1650 - 92.509 247 267 5 6 4										
201 - 92.509 247 267 5 6 4 190 92.509 247 267 7 4 6 3 1703 - 92.509 247 267 5 6 4 1686 - 92.509 247 267 5 6 4 1680 - 92.509 247 267 5 6 4 1680 - 92.509 247 267 5 6 4 167 - 92.509 247 267 5 6 4 166 92.509 247 267 5 6 4 166 92.509 247 267 5 6 4 1650 - 92.509 247 267 5 6 4			_							
19092.50924726774631703-92.5092472675641686-92.5092472675641680-92.509247267564167-92.50924726756416692.50924726754741650-92.509247267564										
1703-92.5092472675641686-92.5092472675641680-92.509247267564167-92.50924726756416692.50924726754741650-92.509247267564										
1686 - 92.509 247 267 5 6 4 1680 - 92.509 247 267 5 6 4 167 - 92.509 247 267 5 6 4 166 92.509 247 267 5 6 4 166 92.509 247 267 5 4 7 4 1650 - 92.509 247 267 5 6 4			_							
1680 - 92.509 247 267 5 6 4 167 - 92.509 247 267 5 6 4 166 92.509 247 267 5 4 7 4 1650 - 92.509 247 267 5 6 4										
167 - 92.509 247 267 5 6 4 166 92.509 247 267 5 4 7 4 1650 - 92.509 247 267 5 6 4										
166 92.509 247 267 5 4 7 4 1650 - 92.509 247 267 5 6 4										
1650 - 92.509 247 267 5 5 6 4			-							
1028 92.309 24/26/54/4			-							
	1028			92.309	247	20/	3	4	/	4

W2	NR	D	PERC1	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<>	W1>W2	UNCL	NOREL
1620			92.509	247	267	5	4	7	4
1619		-	92.509	247	267	5	5	6	4
1618			92.509	247	267	5	4	7	4
1617		-	92.509	247	267	5	5	6	4
1596			92.509	247	267	5	4	7	4
1563			92.509	247	267	6	4	5	5
1544			92.509	247	267	6	3	7	4
1514			92.509	247	267	5	4	7	4
1501		-	92.509	247	267	5	5	6	4
15		-	92.509	247	267	4	4	8	4
1497			92.509	247	267	5	4	7	4
1491			92.509	247	267	6	4	7	3
1489		-	92.509	247	267	5	5	6	4
1477			92.509	247	267	5	4	7	4
1465			92.509	247	267	6	3	8	3
1441		_	92.509	247	267	5	5	6	4
1389			92.509	247	267	5	4	7	4
1356			92.509	247	267	7	3	, 7	3
1347			92.509	247	267	5	4	, 7	4
1323		_	92.509	247	267	5	5	6	4
1322		_	92.509	247	267	5	5	6	4
1189		_	92.509	247	267	5	5	6	4
1181			92.509	247	267	5	4	7	4
1165		_	92.509	247	267	5	5	6	4
1120			92.509	247	267	5	4	8	3
1117		_	92.509	247	267	5	5	6	4
1095		_	92.509	247	267	5	5	6	4
1076			92.509	247	267	5	4	7	4
1062		-	92.509	247	267	5	5	6	4
1040			92.509	247	267	6	4	6	4
1034			92.509	247	267	5	4	7	4
1032		-	92.509	247	267	5	5	6	4
1020		_	92.509	247	267	5	5	6	4
1018			92.509	247	267	5	4	7	4
1015		_	92.509	247	267	5	5	6	4
1010		_	92.509	247	267	5	5	7	3
1003		-	92.509	247	267	5	5	6	4
836		-	92.488	197	213	3	3	7	3
959	188		92.481	246	266	6	5	6	3
953			92.481	246	266	5	4	7	4
95		-	92.481	246	266	5	5	7	3
685			92.481	246	266	6	4	6	4
563		-	92.481	246	266	5	5	6	4
448			92.481	246	266	6	5	6	3
284		-	92.481	246	266	5	5	6	4
2788s		-	92.481	246	266	5	5	6	4
2673			92.481	246	266	6	5	6	3
263		-	92.481	246	266	5	5	6	4
2549			92.481	246	266	6	3	7	4
2322		-	92.481	246	266	5	5	6	4
1789		-	92.481	246	266	5	5	6	4
17			92.481	246	266	5	3	8	4

W2	NR	D	PERC1	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th><th>W2</th><th>an</th><th></th><th>D</th><th>PERC1</th><th>EQ</th><th>PASS</th><th>W1<w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<></th></w2<>	W1>W2	UNCL	NOREL	W2	an		D	PERC1	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<>	W1>W2	UNCL	NOREL
1693			92.481	246	266	-	4	7	4	2292			_	92.135	246	267	-	5	7	4
1470		_	92.481		266		5	6	4	2224			_	92.135		267		5	7	4
1225			92.481		266		3	7	3	2098			_	92.135		267		5	7	4
1061			92.481		266		2	7	5	2097				92.135		267		5	6	4
036			92.481		266		5	6	3	199			-	92.135		267		5	7	4
591	199		92.453	245	265	5	4	7	4	183				92.135	246	267	6	5	6	4
2812		-	92.453	245	265	5	5	6	4	1701				92.135	246	267	7	6	6	2
2545			92.453		265		4	7	3	1687			-	92.135	246	267	5	5	7	4
2112		-	92.453	245	265	6	6	5	3	1684			-	92.135	246	267	5	5	7	4
2101		-	92.453	245	265	5	5	6	4	1647				92.135	246	267	6	5	7	3
2100			92.453	245	265	5	4	8	3	1634			-	92.135		267		5	7	4
1578			92.453		265		4	6	3	1600			-	92.135	246	267	5	5	7	4
1338			92.453	245	265	7	4	6	3	1584			-	92.135	246	267	5	5	7	4
2179			92.453	196	212	5	4	3	4	1566				92.135	246	267	7	4	6	4
1092			92.453	147	159	3	2	5	2	1557				92.135	246	267	6	4	7	4
2717	206		92.405	146	158	3	2	5	2	1520				92.135	246	267	7	5	6	3
333	207		92.400	231	250	7	6	4	2	1504			-	92.135	246	267	5	5	7	4
2722	208		92.386		197		3	4	3	150				92.135	246	267	5	4	7	5
1435		-	92.340		235		5	4	4	1494				92.135	246	267	6	5	6	4
1388	209		92.337	241	261	5	4	7	4	148				92.135	246	267	6	5	7	3
1207	210		92.308		247		4	7	3	1476			-	92.135	246	267	5	5	7	4
784		-	92.278	239	259	6	6	6	2	1462			-	92.135	246	267	5	5	7	4
924	211		92.135		267		4	7	3	1459			-	92.135		267		5	7	4
906		-	92.135	246	267	6	6	6	3	1456				92.135	246	267	6	5	6	4
899		-	92.135	246	267	5	5	7	4	144s				92.135	246	267	6	5	7	3
864			92.135	246	267	5	4	8	4	1423				92.135	246	267	5	3	9	4
843		-	92.135	246	267	5	5	7	4	130			-	92.135	246	267	6	6	5	4
823			92.135	246	267	6	5	6	4	1296			-	92.135	246	267	6	6	6	3
758			92.135	246	267	6	4	7	4	1278				92.135	246	267	7	3	7	4
728			92.135	246	267	6	4	7	4	1205				92.135	246	267	6	4	7	4
698			92.135	246	267	6	5	6	4	12				92.135	246	267	5	4	8	4
672		-	92.135	246	267	5	5	7	4	111				92.135	246	267	6	5	6	4
597			92.135	246	267	5	3	9	4	1056			-	92.135	246	267	4	4	9	4
550			92.135	246	267	6	5	7	3	100				92.135	246	267	5	3	9	4
461		-	92.135	246	267	5	5	7	4	475			-	92.116	222	241	5	5	5	4
399			92.135	246	267	6	4	7	4	880	24	19		92.105	245	266	5	4	8	4
387		-	92.135	246	267	5	5	7	4	783				92.105	245	266	6	5	7	3
3			92.135	246	267	7	5	6	3	78				92.105	245	266	8	5	6	2
291			92.135	246	267	5	4	8	4	773				92.105	245	266	5	3	9	4
2863			92.135	246	267	6	5	6	4	587			-	92.105	245	266	5	5	7	4
2860		-	92.135	246	267	5	5	7	4	538			-	92.105	245	266	5	5	8	3
2724			92.135	246	267	5	4	8	4	5			-	92.105	245	266	5	5	8	3
261		-	92.135	246	267	5	5	7	4	364			-	92.105	245	266	5	5	7	4
2604		-	92.135	246	267	5	5	7	4	2633				92.105	245	266	6	5	7	3
260			92.135	246	267	8	4	6	3	2598				92.105	245	266	6	5	7	3
2571			92.135	246	267	6	4	7	4	2370			-	92.105	245	266	5	5	7	4
2508			92.135	246	267	6	5	6	4	234			-	92.105	245	266	5	5	7	4
2507		-	92.135	246	267	5	5	7	4	230			-	92.105	245	266	5	5	7	4
2496			92.135	246	267	6	5	7	3	2281			-	92.105	245	266	5	5	7	4
2407			92.135	246	267	6	5	7	3	2278				92.105	245	266	5	4	9	3
2362			92.135	246	267	7	4	6	4	21				92.105	245	266	7	4	7	3
2354			92.135	246	267	7	4	7	3	20				92.105	245	266	5	3	9	4

Appendix 5:	Chapter	7 John 1	8 Experiment

2	~		CI		S	W2	W2	T	EL
W2	NR	Ω	PER	ΕQ	PASS	W1 <w< th=""><th>W1>W2</th><th>Ň</th><th>NOR</th></w<>	W1>W2	Ň	NOR
1604			92.105	245	266	6	4	7	4
1552		-	92.105	245	266	5	5	7	4
1370			92.105	245	266	8	5	5	3
1359		-	92.105	245	266	6	6	6	3
1358			92.105	245	266	7	4	7	3
1298			92.105	245	266	5	4	8	4
1285			92.105	245	266	6	4	7	4
1208		-	92.105	245	266	5	5	7	4
1192			92.105	245	266	6	4	7	4
1191		-	92.105	245	266	5	5	7	4
1149			92.105	245	266	6	5	7	3
2813	265		92.095	233	253	7	6	4	3
682		-	92.075	244	265	5	5	7	4
506	266		92.075	244	265	6	4	8	3
286			92.075	244	265	7	5	6	3
2371			92.075	244	265	4	3	8	6
188			92.075	244	265	5	3	8	5
1779		-	92.075	244	265	6	6	6	3
170		-	92.075	244	265	5	5	7	4
1543		-	92.075	244	265	6	6	6	3
1530			92.075	244	265	7	4	6	4
1484		-	92.075	244	265	5	5	7	4
1248			92.075	244	265	5	4	8	4
1096		-	92.075	244	265	5	5	7	4
1565	272		92.050	220	239	5	4	5	5
650	273		92.045	243	264	6	4	6	5
496		-	92.045	243	264	5	5	7	4
2159		_	92.045	243	264	5	5	, 7	4
120	274		92.015	242	263	5	4	8	4
047	275		92.000	184	200	6	5	2	3
1571	276		91.946	137	149	5	4	1	2
2372	277		91.878	181	197	8	2	3	3
546	278		91.824	146	159	5	3	2	3
942	279		91.760	245	267	5	4	8	5
875	_ , ,		91.760	245	267	7	6	6	3
871			91.760	245	267	7	5	6	4
765			91.760	245	267	7	5	7	3
714		-	91.760	245	267	6	6	6	4
7			91.760	245	267	6	5	7	4
, 509		_	91.760	245	267	6	6	, 7	3
507			91.760	245	267	7	5	6	4
504			91.760	245	267	6	5	7	4
490		_	91.760	245	267	5	5	8	4
484		_	91.760	245	267	5	5	8	4
470		_	91.760	245	267	5	5	8	4
449		-	91.760	245	267	6	6	7	3
423		_	91.760	245	267	8	8	5	1
379		_	91.760	245	267	6	6	7	3
317		_	91.760	245	267	7	7	5	3
2754		_	91.760	245	267	5	5	8	4
2645		-	91.760	245	267	5	5	8	4
2522		-	91.760	245	267	6	6	6	4
			/1./00	240	201	0	0	0	7

W2	NR	D	PERC1	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<>	W1>W2	UNCL	NOREL
235			91.760	245	267	6	5	7	4
2346			91.760	245	267	5	3	10	4
2321		-	91.760	245	267	5	5	8	4
2265		-	91.760	245	267	5	5	8	4
194		-	91.760	245	267	5	5	7	5
1787		-	91.760	245	267	5	5	8	4
1632		-	91.760	245	267	6	6	6	4
160			91.760	245	267	6	5	8	3
1594		_	91.760	245	267	5	5	8	4
1513			91.760	245	267	8	6	6	2
147		-	91.760	245	267	6	6	6	4
1341			91.760	245	267	6	5	7	4
127			91.760	245	267	7	6	7	2
1235			91.760	245	267	5	4	, 9	4
1197			91.760	245	267	5	5	8	4
1110		_	91.760	245	267	6	6	6	4
1057		-	91.760	245	267	6	4	8	4
				243 245	267				4
1049	204	-	91.760			6	6	6	
2907	294		91.753	178	194	4	3	6	3
941	295		91.729	244	266	6	5	7	4
700			91.729	244	266	6	5	8	3
697			91.729	244	266	8	3	8	3
666s			91.729	244	266	6	5	8	3
478			91.729	244	266	6	5	7	4
473		-	91.729	244	266	6	6	6	4
446			91.729	244	266	8	5	6	3
443			91.729	244	266	6	4	8	4
395		-	91.729	244	266	5	5	8	4
2132			91.729	244	266	7	6	6	3
1581		-	91.729	244	266	5	5	8	4
1570		-	91.729	244	266	5	5	8	4
149		-	91.729	244	266	6	6	6	4
1468		-	91.729	244	266	5	5	8	4
131		-	91.729	244	266	5	5	8	4
87	303		91.698	243	265	8	3	8	3
710			91.698	243	265	7	5	6	4
1700		-	91.698	243	265	6	6	6	4
1422			91.698	243	265	7	5	6	4
503		-	91.667	242	264	6	6	7	3
422		-	91.667	242	264	7	7	5	3
278	306		91.667	242	264	7	4	9	2
162		_	91.667	242	264	6	6	6	4
968	307		91.635	241	263	7	5	7	3
775	201	_	91.386	244	267	6	6	8	3
660	308		91.386	244		6	5	8	4
592	500		91.386	244		7	4	8	4
530			91.386	244		8	4 6	8 7	4
530 447			91.386 91.386	244 244		8 6	6		2 4
		-		244 244				7	4 4
406			91.386			7	6 5	6 °	
2730			91.386	244		6	5	8	4
2563		-	91.386	244		6	6	7	4
2495		-	91.386	244	267	6	6	7	4

W2	NR	D	PERCI	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<>	W1>W2	UNCL	NOREL
2415			91.386	244	267	6	5	8	4
237		-	91.386	244		6	6	7	4
2324		-	91.386		267	5	5	9	4
22			91.386	244		6	5	8	4
219		-	91.386	244		5	5	8	5
1602		-	91.386	244		6	6	8	3
1535			91.386	244		7	5	7	4
151		-	91.386	244		7	7	6	3
1505			91.386	244	267	7	6	7	3
145		-	91.386	244		5	5	9	4
1448			91.386		267	9	5	7	2
1396		-	91.386	244		6	6	7	4
1297		-	91.386	244		7	7	6	3
1157			91.386	244		6	4	8	5
1073			91.386	244		6	5	8	4
1029		-	91.386	244		6	6	7	4
039			91.386	244		6	5	7	5
030			91.386	244		6	2	, 11	4
945	322		91.353	243	266	6	5	8	4
944	522		91.353	243	266	7	5	7	4
905		_	91.353	243	266	6	6	, 7	4
584			91.353	243	266	7	5	8	3
396			91.353	243	266	, 7	4	8	4
360		_	91.353	243	266	5	5	8	5
276			91.353	243	266	6	4	9	4
270			91.353	243	266	6	5	8	4
175		_	91.353	243	266	7	7	7	2
1444			91.353	243	266	8	5	, 7	3
1440		_	91.353	243	266	6	6	, 7	4
1392			91.353	243	266	7	5	8	3
1185		_	91.353	243	266	6	6	8	3
112		-	91.353	243	266	6	4	8	5
1080			91.353	243	266	7	4 6	6	4
2442	332		91.335 91.342	243	231	6	5	6	3
1564	333		91.342		254	5	4	8	5
30	333 334		91.339	232		3 7	4 5	8	3
2687	554		91.321		265	7	5 6	8 7	3
1646			91.321		265	5	5	9	4
159		-	91.321		265 265	5 6	5 5	9 8	4
403	337		91.321 91.304		203 230	8	5 6	о 3	4
403 246	331		91.304 91.270	115	230 126	8 2	6 2	5 5	3 2
246 1421	338	-	91.270		126 229		2 4	5 6	4
552	550	_	91.200		229 263	6	4 6	0 7	4
332 419	339	-	91.255 91.255		263 263	6	5	8	4
419 287	339		91.255 91.255	240 240		6	5 5	8 8	4
287			91.255	240 240		9	5 5	8 7	4
2324 2405			91.255		263 263	8	5 6	7 7	2
									2 4
1567	212	-	91.255		263	6 °	6 5	7	4
2437	343		91.093		247	8		6 7	
2369	344		91.016		256	7	6 5	7 °	3
2290s	316		91.016		256 267	6 9	5 8	8 1	4 3
821	346		91.011	243	267	7	8	4	3

			_			7	7		L
W2	NR	D	PERC	EQ	PASS	W1 <w< th=""><th>W1>W</th><th>UNC</th><th>NORE</th></w<>	W1>W	UNC	NORE
388		-	91.011	243	267	6	6	9	3
297		-	91.011	243	267	6	6	9	3
29			91.011	243	267	6	5	9	4
2530			91.011	243	267	8	7	7	2
2465		-	91.011	243	267	7	7	7	3
2213		-	91.011	243	267	6	6	8	4
2176		-	91.011	243	267	7	7	6	4
1561		-	91.011	243	267	5	5	10	4
1510			91.011	243	267	6	5	9	4
1365			91.011	243	267	8	4	9	3
134			91.011	243	267	7	6	7	4
1210			91.011	243	267	7	6	8	3
987s		-	90.977	242	266	7	7	6	4
80		-	90.977	242	266	5	5	8	6
718		-	90.977	242	266	7	7	7	3
694		-	90.977	242	266	6	6	8	4
655	353		90.977	242	266	7	6	7	4
583			90.977	242	266	6	5	8	5
351		-	90.977	242	266	7	7	7	3
2592		-	90.977	242	266	5	5	9	5
200		-	90.977	242	266	6	6	7	5
1451			90.977	242	266	8	5	8	3
1428			90.977	242	266	8	5	9	2
1357		-	90.977	242	266	6	6	9	3
1324		-	90.977	242	266	6	6	7	5
375	357		90.943	241	265	7	5	10	2
352			90.943	241	265	8	5	9	2
974	359		90.909	240	264	9	3	10	2
1166			90.909	240	264	8	6	7	3
969	361		90.875	239	263	7	6	7	4
515			90.875	239	263	8	5	8	3
1431			90.875	239	263	9	6	7	2
342		-	90.873	229	252	6	6	7	4
1288		-	90.837	228	251	6	6	8	3
1306	364		90.726	225	248	7	5	8	3
277	365		90.637	242	267	7	5	9	4
2624		-	90.637	242	267	5	5	11	4
1699			90.637	242	267	7	5	9	4
1668		-	90.637	242	267	6	6	9	4
1355			90.637	242	267	7	6	8	4
1309			90.637	242	267	8	6	8	3
1230			90.637	242	267	6	5	10	4
1187		-	90.637	242	267	7	7	7	4
1006			90.637	242	267	9	3	10	3
0141			90.637	242	267	9	8	5	3
690	372		90.602	241	266	9	6	8	2
279		-	90.602	241	266	8	8	7	2
2728			90.602	241	266	7	4	12	2
2613			90.602	241	266	8	4	9	4
1289		_	90.602	241	266	6	- 6	9	4
045	375		90.002	241	265	7	6	8	4
500	515	_	90.361	150	166	4	4	6	2
500			20.501	1.50	100	-1	-1	0	-

Appendix 5:	Chapter 7	7 John 18	Experiment
11	1		1

W2	NR	D	PERCI	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<>	W1>W2	UNCL	NOREL
992		-	90.262	241	267	6	6	9	5
2397		-	90.262	241	267	7	7	11	1
2394	376		90.262	241	267	9	5	8	4
2193		-	90.262	241	267	5	5	12	4
1695			90.262	241	267	7	6	9	4
1220			90.262	241	267	10	5	8	3
106			90.262	241	267	9	7	8	2
017			90.262	241	267	6	5	11	4
233	381		90.226	240	266	8	4	10	4
782	382		90.189	239	265	8	5	11	2
776			90.189	239	265	10	5	8	3
2794	384		90.171	211	234	7	3	11	2
1816	385		90.152	238	264	8	4	10	4
158		_	90.152	238	264	6	6	11	3
760	386		90.114	237	263	9	6	8	3
2529	200	_	90.076	118	131	2	2	7	2
726		-	89.888	240	267	6	6	11	4
2623	387		89.888		267	8	6	10	3
2025	507	_	89.888	240	267	7	7	9	4
157		_	89.888	240	267	7	, 7	8	5
1346			89.888	240	267	7	5	11	4
1071			89.888	240	267	13	6	7	1
041			89.888	240	267	7	5	, 11	4
861	391		89.850	239	266	9	5	10	3
2463	391		89.850	239	266	, 7	6	10	4
2403			89.850	239	266	8	7	8	4
1676			89.850	239	266	9	5	11	2
1627			89.850	239	266	, 7	7	10	3
48		-	89.811	239	265	, 7	, 7	10	3
1425		-	89.811	238	265	, 7	, 7	9	4
345	395	-	89.615	233	260	8	, 7	8	4
489	395 396		89.513	233 239	200 267	o 9	5	o 11	3
1268	390		89.513	239	267	9 10	6	11	1
1626			89.474	239	266	8	8	9	3
1455	398	-	89.474		266		8 7	8	4
1273	399		89.431	238	246	9 11	5	6	4
	400			109	122	2	1	8	2
2535 2676			89.344 89.313	109	122	2 4	2	8 7	2
331	401 402		89.139	238	267	4 9	2 7	/ 10	3
2902	402		89.139	238 238	267	9 8	5	10	3 4
							5 5		
1219			89.139	238	267	8		12	4
037	405	-	89.139	238	267	9	9 °	7 °	4
482	405		89.098	237	266	9	8	8	4
1272			89.098	237	266	9	8	8	4
114			89.098	237	266	8	6	11	4
581	100	-	89.057	236	265	8	8	10	3
33	408		88.973		263	12	5	9	3
799	409		88.764	237	267	11	8	9	2

W2	NR	D	PERCI	EQ	PASS	W1 <w2< th=""><th>W1>W2</th><th>UNCL</th><th>NOREL</th></w2<>	W1>W2	UNCL	NOREL
699			88.764	237	267	8	6	12	4
1398			88.764	237	267	10	8	9	3
044			88.764	237	267	13	6	9	2
А	413		88.755	221	249	24		2	2
0109	-	-	88.525	54	61	1	1	5	
1819	414		87.640	234	267	13	8	10	2
2992	-	-	87.500	49	56	2	2	2	1
04	415		87.281	199	228	15	6	6	2
033	416		87.266	233	267	15	11	6	2
2684	-	-	86.891	232	267	11	11	10	3
865	417		86.466	230	266	15	12	7	2
1820	418		86.290	214	248	13	10	9	2
2517	419		85.106	80	94	5	3	4	2
NA27	420		85.019	227	267	24	1	13	2
019			85.019	227	267	20	7	12	1
1582	-	-	84.586	225	266	13	13	12	3
03	422		84.270	225	267	22	3	13	4
032	423		83.146	222	267	15	13	14	3

 Table 157: Potential ancestors for W1=397

 using IGNTP data

Appendix 6: Optimal Substemmata

Optimal Substemmata

In Chapter 10 I defined the Optimal Substemmata for all witnesses. The following notes show the working behind my decisions. The comment "simple" means that my script analyse_combinations_of_ancestors.py in my CBGM software found a single combination that had minimal 'Offen' and lowest summed rank – with no combinations with fewer witnesses able to challenge it.¹

```
# Thu 14 Dec 13:44:53 GMT 2017
optimal substemmata = {
    # $_/home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 011.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 4
    # > 1 rows have Offen=4
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 18, 2786, 03
    '011': [{'18', '2786', '03'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 0141.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 1
    # > 14 rows have Offen=1
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 821, FI, F1, 03
    '0141': [{'821', 'FI', 'F1', '03'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 017C.csv
    # > Found Hinweis '<<' entries
    # > Loaded 8191 rows
    # > Restricting search to Hinweis '<<' rows
    # > Min 'Offen' is 0
    # > 7930 rows have Offen=0
    # > Restricted to the best of each combination size: 13 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 038
    '017C': [{'038'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse_combinations_of_ancestors.py 019C.csv
    # > Found Hinweis '<<' entries
    # > Loaded 9999 rows
    # > Restricting search to Hinweis '<<' rows
    # > Min 'Offen' is 0
```

1 See https://doi.org/10.5281/zenodo.1296287 or https://github.com/edmondac/CBGM

```
# > 3401 rows have Offen=0
    # > Restricted to the best of each combination size: 7 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
    # > Combination {'1241', '01'} explains the most by agreement
# > Combination {'1241', explains the following by posterity (compared to
{'1241', '01'}): {'B04K13V37/6-8'}
    # Just an article
    '019C': [{'1241'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 019.csv
    # > Loaded 7 rows
    # > Min 'Offen' is 4
    \# > 2 rows have Offen=4
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
    # > Combination {'A', '03', 'P75'} explains the most by agreement
    \# > Too large a difference by posterity (21), skipping combination {'A', '03'}
    '019': [{'A', '03', 'P75'}], # simple, in the end
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 01Cca.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 9
    \# > 117 rows have Offen=9
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
# > Combination {'019', '044', '2786', '032'} explains the most by agreement
# > Combination {'019', 'FII', '032'} explains the following by posterity
(compared to {'019', '044', '2786', '032'}): {'B04K03V03/4-10', 'B04K05V15/2-8',
'B04K11V52/11', 'B04K06V11/22', 'B04K20V16/27', 'B04K13V32/2-12'}
    # B04K20V16/27 is an added phrase "και προσεδραμεν αψασθαι αυτου" - too much to
be coincidence.
    '01Cca': [{'019', '044', '2786', '032'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py
01Ccb2.csv
    # > Found Hinweis '<<' entries</pre>
    # > Loaded 9999 rows
    # > Restricting search to Hinweis '<<' rows</pre>
    # > Min 'Offen' is 0
    # > 391 rows have Offen=0
    # > Restricted to the best of each combination size: 3 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: F13, 01
    '01Ccb2': [{'F13', '01'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 01.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 4
    \# > 8 rows have Offen=4
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: A, 226, P66
    '01': [{'A', '226', 'P66'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 0211.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 10
    \# > 4 rows have Offen=10
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 045, A
    '0211': [{'045', 'A'}], # simple
```

```
# $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 022.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 2
    \# > 4 rows have Offen=2
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 044, FI, 397, 03
    '022': [{'044', 'FI', '397', '03'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 0233.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 1
    \# > 13 rows have Offen=1
    # > Restricted to the best of each combination size: 1 comb. left
    \# > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 226, 038, 397
    '0233': [{'226', '038', '397'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 028.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 3
    \# > 29 rows have Offen=3
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 35, FI, A
    '028': [{'35', 'FII', 'A'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 0290.csv
    # > Found Hinweis '<<' entries
    # > Loaded 8191 rows
    # > Restricting search to Hinweis '<<' rows</pre>
    # > Min 'Offen' is 0
    # > 113 rows have Offen=0
    # > Restricted to the best of each combination size: 12 comb. left
    # > Excluded rows with more combinations but no better results: 6 comb. left
    # > Human thought required (probably)...
    # > Combination {'2561C3', '0141', '33', 'A', '1071', '044', '04'} explains the
most by agreement
    # > Combination {'2561C3', '0141', '33', 'A', '1071', '044'} explains the
following by posterity (compared to {'2561C3', '0141', '33', 'A', '1071', '044',
'04'}): {'B04K18V34/2-4'}
    # added article
    \# > Combination {'2561C3', '0141', '33', 'A', '044'} explains the following by
posterity (compared to {'2561C3', '0141', '33', 'A', '1071', '044'}):
{ 'B04K19V34/22-24' }
    # two words reversed
    # > Combination {'0141', '33', 'A', '044'} explains the following by posterity
(compared to {'2561C3', '0141', '33', 'A', '044'}): {'B04K19V31/8-34',
'B04K19V27/10'}
    # επει παρασκευη ην moved to end of phrase instead of start (I.e. word order),
ιδου νε. ιδε
    # > Combination { '0141', 'A', '044' } explains the following by posterity
(compared to {'0141', '33', 'A', '044'}): {'B04K19V38/2-6', 'B04K19V39/14-22',
'B04K19V38/13'}
    # removed \delta\epsilon, τον ιησουν vs. αυτον, added article
    \# I think tov indouv is sufficiently connective here
    \# > Too large a difference by posterity (20), skipping combination {'A', '044'}
    '0290': [{'0141', '33', 'A', '044'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 029.csv
    # > Found Hinweis '<<' entries
    # > Loaded 1023 rows
    # > Restricting search to Hinweis '<<' rows
    # > Min 'Offen' is 0
```

> 35 rows have Offen=0 # > Restricted to the best of each combination size: 9 comb. left # > Excluded rows with more combinations but no better results: 4 comb. left # > Human thought required (probably) ... # > Combination {'03', 'P75', '019', '04', '032S'} explains the most by agreement # > Combination {'03', 'P75', '019', '032S'} explains the following by posterity (compared to {'03', 'P75', '019', '04', '032S'}): {'B04K04V53/9'} # Added autou # Added doited
> Combination {'A', '019', '032S'} explains the following by posterity
(compared to {'03', 'P75', '019', '032S'}): {'B04K08V31/24', 'B04K03V12/30',
'B04K06V30/20-24', 'B04K06V32/24', 'B04K06V52/20-30'} # > Too large a difference by posterity (12), skipping combination {'A', '032S'} '029': [{'03', 'P75', '019', '032s'}], # \$ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 02.csv # > Loaded 9999 rows # > Min 'Offen' is 1 # > 122 rows have Offen=1 # > Restricted to the best of each combination size: 3 comb. left # > Excluded rows with more combinations but no better results: 3 comb. left # > Human thought required (probably)... # > Human thought required (probably)... # > Combination {'FII', '892', 'A', 'F1', '33'} explains the most by agreement # > Combination {'FII', '892', 'A', 'F1'} explains the following by posterity (compared to {'FII', '892', 'A', 'F1', '33'}): {'B04K15V08/24', 'B04K06V09/6', 'B04K18V25/40-44', 'B04K19V27/26', 'B04K03V03/4-10', 'B04K12V09/50-56', 'B04K20V04/12-18', 'B04K19V38/13'} # 'B04K19V27/26': ημερας vs. ωρας, 'B04K20V04/12-18': ο δε vs. και ο, 'B04K18V25/40-44': λεγει vs. ειπεν... that's enough to say "no". # > Too large a difference by posterity (18), skipping combination {'FII', 'A', ' ም1 ' እ '02': [{'FI', '892', 'A', 'F1', '33'}], # \$ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 032.csv # > Loaded 4095 rows # > Min 'Offen' is 6 # > 1280 rows have Offen=6 # > Restricted to the best of each combination size: 11 comb. left # > Excluded rows with more combinations but no better results: 8 comb. left # > Human thought required (probably)... # > Combination {'A', '029', 'P75', '03', '019', '04', '33', '044', '0290'} explains the most by agreement # > Combination {'A', '029', '03', '019', '04', '33', '044', '0290'} explains the following by posterity (compared to {'A', '029', 'P75', '03', '019', '04', '33', '044', '0290'}): {'B04K10V09/14'} # εαν vs. αν # > Combination {'A', '029', '03', '019', '04', '33', '044'} explains the following by posterity (compared to {'A', '029', '03', '019', '04', '33', '044', '0290'}): {'B04K19V13/28-30', 'B04K18V20/12-16'} # added article, ελαλησα vs λελαληκα # > Combination {'A', '029', '019', '04', '33', '044'} explains the following
by posterity (compared to {'A', '029', '03', '019', '04', '33', '044'}): {'B04K12V04/4', 'B04K20V31/36-38'} # $\delta\epsilon$ vs. ouv, ζωην αιωνιον εχητε vs. ζωην εχητε – eye skip to the v? # > Combination {'A', '019', '04', '33', '044'} explains the following by posterity (compared to {'A', '029', '019', '04', '33', '044'}): {'B04K08V31/24', 'B04K06V57/34'} # μεινητε vs. μενητε, ζησεται vs. ζησει # > Too large a difference by posterity (14), skipping combination {'A', '019', **'33', '044'** # > Too large a difference by posterity (21), skipping combination {'A', '33', '044'} # > Too large a difference by posterity (52), skipping combination {'A', '044'} '032': [{'A', '019', '04', '33', '044'}],

\$ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 032S.csv # > Found Hinweis '<<' entries</pre> # > Loaded 9999 rows # > Restricting search to Hinweis '<<' rows</pre> # > Min 'Offen' is 0 # > 4 rows have Offen=0 # > Restricted to the best of each combination size: 2 comb. left # > Excluded rows with more combinations but no better results: 2 comb. left # > Human thought required (probably) ... # > Combination {'A', '892', '397'} explains the most by agreement # > Combination {'A', '213'} explains the following by posterity (compared to {'A', '892', '397'}): {'B04K05V01/18-22', 'B04K03V21/36', 'B04K03V20/36-40', 'B04K04V01/34', 'B04K02V15/4-10', 'B04K04V30/3', 'B04K01V39/10', 'B04K03V20/41', 'B04K05V01/6', 'B04K02V17/15', 'B04K01V44/4-6', 'B04K04V05/24', 'B04K04V53/31', 'B04K01V40/2'} # > ... and the other way round: {'B04K04V54/4-6', 'B04K01V15/16-22', 'B04K01V37/6-14', 'B04K04V31/10-14'} # That's too many - so just take {A, 892, 397} '032S': [{'A', '892', '397'}], # \$ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 033.csv # > Loaded 9999 rows # > Min 'Offen' is 4 # > 66 rows have Offen=4 # > Restricted to the best of each combination size: 3 comb. left # > Excluded rows with more combinations but no better results: 2 comb. left # > Human thought required (probably)... # > Combination {'A', '044', '33', '019', '032'} explains the most by agreement # > Combination {'A', '044', '33', '019'} explains the following by posterity (compared to {'A', '044', '33', '019', '032'}): {'B04K14V15/16', 'B04K10V38/26-28', 'B04K20V31/36-38', 'B04K14V02/26-30', 'B04K10V32/34-36', 'B04K16V29/4-8', 'B04K09V30/20-24'} # τηρησετε vs. τηρησατε, και γινωσκητε vs. και γινωσκετε, ζωην αιωνιον εχητε vs. ζωην εχητε - eye skip to the ν?, missing αν, εμε λιθαζετε vs. λιθαζετε με, odd - 033 and 33 agree at 'B04K16V29/4-8', article - seems a bit much to me. '033': [{'A', '044', '33', '019', '032'}], # \$ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 037C.csv # > Found Hinweis '<<' entries # > Loaded 511 rows # > Restricting search to Hinweis '<<' rows # > Min 'Offen' is 0 # > 189 rows have Offen=0 # > Restricted to the best of each combination size: 9 comb. left # > Excluded rows with more combinations but no better results: 2 comb. left # > Human thought required (probably)... # > Combination {'044', '019'} explains the most by agreement # > Combination {'044'} explains the following by posterity (compared to {'044', '019'}): {'B04K05V35/24-28'} # αγαλλιασθηναι vs. αγαλλιαθηναι '037C': [{'044'}], # \$ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 037.csv # > Loaded 9999 rows # > Min 'Offen' is 3 # > 14 rows have Offen=3 # > Restricted to the best of each combination size: 1 comb. left # > Excluded rows with more combinations but no better results: 1 comb. left # > Only one combination left: 045, A, 1071 '037': [{'045', 'A', '1071'}], # simple # \$ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 038.csv # > Loaded 9999 rows # > Min 'Offen' is 5

```
\# > 2 rows have Offen=5
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: FI, A, 022
    '038': [{'FII', 'A', '022'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 03.csv
    \# > Loaded 1 rows
    # > Min 'Offen' is 1
    \# > 1 rows have Offen=1
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: A
    '03': [{'A'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 044.csv
    # > Loaded 63 rows
    # > Min 'Offen' is 21
    \# > 4 rows have Offen=21
    # > Restricted to the best of each combination size: 3 comb. left
    # > Excluded rows with more combinations but no better results: 3 comb. left
    # > Human thought required (probably)...
    # > Combination {'A', '019', '04', '03', 'P75', '029'} explains the most by
agreement
   \# > Combination {'A', '019', '04', '03', 'P75'} explains the following by
posterity (compared to {'A', '019', '04', '03', 'P75', '029'}): {'B04K06V45/23',
'B04K01V26/21'}
    # added ouv, added \delta\epsilon
    # > Too large a difference by posterity (14), skipping combination {'A', '019',
'04', '03'}
    '044': [{'A', '019', '04', '03', 'P75'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 045.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 3
    \# > 3 rows have Offen=3
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 028, 2786, A
    '045': [{'028', '2786', 'A'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 04C1.csv
    # > Found Hinweis '<<' entries
    # > Loaded 9999 rows
    # > Restricting search to Hinweis '<<' rows</pre>
    # > Min 'Offen' is 0
    \# > 12 rows have Offen=0
    # > Restricted to the best of each combination size: 3 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
    # > Combination {'02', '1242', '01', '04'} explains the most by agreement
# > Combination {'02', '01', '04'} explains the following by posterity
(compared to {'02', '1242', '01', '04'}): {'B04K17V01/43', 'B04K11V12/6-10'}
    # added και, αυτου vs. αυτω
    '04C1': [{'02', '01', '04'}],
    # $ /home/ed/coding/CBGM/scripts/analyse_combinations_of_ancestors.py 04C2.csv
    # > Found Hinweis '<<' entries</pre>
    # > Loaded 9999 rows
    # > Restricting search to Hinweis '<<' rows</pre>
    # > Min 'Offen' is 0
    \# > 16 rows have Offen=0
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
```

Appendix 6: Optimal Substemmata

```
# > Combination {'1278C1', '07', '03'} explains the most by agreement
    # > Combination {'07', '03'} explains the following by posterity (compared to
{'1278C1', '07', '03'}): {'B04K21V01/6-18'}
    # 04C2 and 1271C1 had unique readings anyway, albeit very similar.
Regularisation?
    '04C2': [{'07', '03'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 04.csv
    \# > Loaded 15 rows
    # > Min 'Offen' is 3
    \# > 2 rows have Offen=3
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
# > Combination {'A', '03', '019', 'P75'} explains the most by agreement
# > Combination {'A', '03', '019'} explains the following by posterity
(compared to {'A', '03', '019', 'P75'}): {'B04K08V41/18', 'B04K06V52/6-12',
'B04K11V22/12-14', 'B04K01V33/65', 'B04K04V12/20'}
    # added ουν, word order, οσα εαν vs. οσα αν, addition of και πυρι, δεδωκεν vs.
εδωκεν
    # P75 is also a close ancestor - so keep it
    '04': [{'A', '03', '019', 'P75'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 054.csv
    # > Found Hinweis '<<' entries
    # > Loaded 9999 rows
    # > Restricting search to Hinweis '<<' rows</pre>
    # > Min 'Offen' is 0
    # > 1 rows have Offen=0
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 35, 019, F1
    '054': [{'35', '019', 'F1'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 05.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 20
    \# > 2 rows have Offen=20
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: A, F13
    '05': [{'A', 'F13'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 05S.csv
    # > Found Hinweis '<<' entries
    # > Loaded 9999 rows
    # > Restricting search to Hinweis '<<' rows
    # > Min 'Offen' is 0
    # > 9 rows have Offen=0
    # > Restricted to the best of each combination size: 3 comb. left
    # > Excluded rows with more combinations but no better results: 3 comb. left
    # > Human thought required (probably)...
    \# > Combination {'597', '038', '044', 'P66'} explains the most by agreement
# > Combination {'597', 'A', '044'} explains the following by posterity
(compared to {'597', '038', '044', 'P66'}): {'B04K18V40/24-26', 'B04K18V34/10',
'B04K18V36/38-44'}
    # article, om. vs. συ, η εμη βασιλεια vs. η βασιλεια η εμη
    # > Combination {'597', 'A'} explains the following by posterity (compared to
{'597', 'A', '044'}): {'B04K19V31/46-50', 'B04K19V14/18'}
    # word order, τριτη vs. εκτη - that's ok
    '05S': [{'597', 'A'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 063.csv
    # > Found Hinweis '<<' entries
    # > Loaded 9999 rows
```

```
# > Restricting search to Hinweis '<<' rows
    # > Min 'Offen' is 0
    \# > 3 rows have Offen=0
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 226, 579
    '063': [{'226', '579'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.pv 070.csv
    # > Found Hinweis '<<' entries</pre>
    # > Loaded 9999 rows
    # > Restricting search to Hinweis '<<' rows</pre>
    # > Min 'Offen' is 0
    \# > 4 rows have Offen=0
    # > Restricted to the best of each combination size: 4 comb. left
    # > Excluded rows with more combinations but no better results: 4 comb. left
    # > Human thought required (probably)...
    # > Combination {'019', '33', '03', 'P75', '044'} explains the most by
agreement.
    # > Combination {'04C1', '086', '019', '03', 'P75', '044'} explains the
following by posterity (compared to {'019', '33', '03', 'P75', '044'}):
{ 'B04K11V51/30-34' }
    # Useful to check for the next line's benefit: just an article
# > Combination {'019', '03', 'P75', '044'} explains the following by posterity
(compared to {'04C1', '086', '019', '03', 'P75', '044'}): {'B04K09V09/27'}
    # added \delta\epsilon
# > Combination {'03', 'P75', '044'} explains the following by posterity
(compared to {'019', '03', 'P75', '044'}): {'B04K09V09/30', 'B04K09V08/27',
'B04K09V04/18', 'B04K11V56/18-24'}
    \# removed ott, added ott, wç vs. \epsilon\omega\varsigma, word order
    '070': [{'03', 'P75', '044'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 07C.csv
    # > Found Hinweis '<<' entries</pre>
    # > Loaded 9999 rows
    # > Restricting search to Hinweis '<<' rows
    # > Min 'Offen' is 0
    \# > 2204 rows have Offen=0
    # > Restricted to the best of each combination size: 4 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
    # > Combination {'18', '157'} explains the most by agreement
    # > Combination {'18'} explains the following by posterity (compared to {'18',
'157'}): {'B04K03V04/4-10'}
    # article
    '07C': [{'18'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 07.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 2
    \# > 31 rows have Offen=2
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 028, 157, 03
    '07': [{'028', '157', '03'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse_combinations_of_ancestors.py 083.csv
    # > Found Hinweis '<<' entries</pre>
    # > Loaded 2047 rows
    # > Restricting search to Hinweis '<<' rows</pre>
    # > Min 'Offen' is 0
    \# > 57 rows have Offen=0
    # > Restricted to the best of each combination size: 10 comb. left
    # > Excluded rows with more combinations but no better results: 5 comb. left
    # > Human thought required (probably)...
```

Appendix 6: Optimal Substemmata

```
# > Combination {'029', 'A', 'P75', '044', '019', '033'} explains the most by
agreement
    # > Combination {'A', 'P75', '044', '019', '033'} explains the following by
posterity (compared to {'029', 'A', 'P75', '044', '019', '033'}): {'B04K01V28/4-8'}
    # βηθαβαρα vs. βηθανια
# > Combination {'A', 'P75', '044', '019'} explains the following by posterity
(compared to {'A', 'P75', '044', '019', '033'}): {'B04K01V35/6-12', 'B04K01V33/62-
64'}
    # παλιν ιστηκει ο ιωαννης vs. ειστηκει ιωαννης (P75) παλιν ειστηκει ιωαννης
(019) and ιστηκει ο ιωαννης (044), article
# > Combination {'A', 'P75', '044'} explains the following by posterity
(compared to {'A', 'P75', '044', '019'}): {'B04K04V46/28-30', 'B04K04V08/10'}
    # ην δε vs. και ην, απηλθον (unique to 083 and 019) vs. απεληλυθεισαν but 019
is 6th ranked - so accept multiple emergence? No. There's no other reading like it.
    # > Combination {'A', '044'} explains the following by posterity (compared to
{'A', 'P75', '044'}): {'B04K04V50/26-38', 'B04K03V20/41', 'B04K04V03/12',
'B04K02V18/22', 'B04K03V12/30'}
    # Not continuing ...
    '083': [{'A', 'P75', '044', '019'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 086.csv
    # > Found Hinweis '<<' entries
    # > Loaded 9999 rows
    # > Restricting search to Hinweis '<<' rows
    # > Min 'Offen' is 0
    # > 22 rows have Offen=0
    # > Restricted to the best of each combination size: 4 comb. left
    # > Excluded rows with more combinations but no better results: 4 comb. left
    # > Human thought required (probably)...
    # > Combination {'18', 'P75', '213', '022'} explains the most by agreement
# > Combination {'18', 'P75', '022'} explains the following by posterity
(compared to {'18', 'P75', '213', '022'}): {'B04K03V27/16', 'B04K03V21/24-28'}
    # λαμβανειν αφ εαυτου vs. λαμβανειν - relatively common words in John so
accept, word order
    \frac{1}{4} > Combination {'18', 'P66'} explains the following by posterity (compared to
{'18', 'P75', '022'}): {'B04K03V12/30', 'B04K03V27/3', 'B04K04V13/3'}
    # πιστευετε vs. πιστευσετε, added article, added article
    \# > Too large a difference by posterity (27), skipping combination {'A'}
    '086': [{'18', 'P66'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 1009.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 6
    \# > 2 rows have Offen=6
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 2223, A
    '1009': [{'2223', 'A'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 1010.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 10
    # > 11 rows have Offen=10
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
    \# > Combination {'118S', '07', 'A'} explains the most by agreement
    # > Combination {'07', 'A'} explains the following by posterity (compared to
{'118S', '07', 'A'}): {'B04K19V11/38', 'B04K21V04/12', 'B04K19V35/14-20',
'B04K20V11/8-16'}
    # παραδιδους vs. παραδους, article, word order, το vs. τω
    '1010': [{'07', 'A'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 1014.csv
```

> Loaded 9999 rows

```
# > Min 'Offen' is 6
    # > 28 rows have Offen=6
   # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 1320, FI, A
   '1014': [{'1320', 'FII', 'A'}], # simple
   # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 1029.csv
    \# > Loaded 9999 rows
   # > Min 'Offen' is 17
   \# > 12 rows have Offen=17
   # > Restricted to the best of each combination size: 2 comb. left
   # > Excluded rows with more combinations but no better results: 1 comb. left
   # > Only one combination left: 045, A
   '1029': [{'045', 'A'}], # simple
   # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 1071.csv
   # > Loaded 9999 rows
   # > Min 'Offen' is 8
    \# > 4 rows have Offen=8
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 33, 045, A
   '1071': [{'33', '045', 'A'}],
                                   # simple
   # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 1093.csv
   # > Loaded 9999 rows
    # > Min 'Offen' is 18
   \# > 2 rows have Offen=18
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 1788, A
    '1093': [{'1788', 'A'}], # simple
   # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 109C.csv
   # > Loaded 9999 rows
   # > Min 'Offen' is 1
   # > 2107 rows have Offen=1
    # > Restricted to the best of each combination size: 2 comb. left
   # > Excluded rows with more combinations but no better results: 1 comb. left
   # > Only one combination left: 1010, 0141
   '109C': [{'1010', '0141'}], # simple
   # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 109.csv
    # > Loaded 9999 rows
   # > Min 'Offen' is 5
   \# > 3 rows have Offen=5
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
   # > Combination {'019C', '226', 'A'} explains the most by agreement
# > Combination {'226', 'A'} explains the following by posterity (compared to
{'019C', '226', 'A'}): {'B04K15V24/28', 'B04K13V37/6-8'}
    # ειχον vs. ειχοσαν, article
    '109': [{'226', 'A'}],
   # $ /home/ed/coding/CBGM/scripts/analyse_combinations_of_ancestors.py 1128.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 14
   \# > 2 rows have Offen=14
    # > Restricted to the best of each combination size: 2 comb. left
   # > Excluded rows with more combinations but no better results: 1 comb. left
   # > Only one combination left: FI, A
   '1128': [{'FII', 'A'}], # simple
```

```
# $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 118S.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 1
    # > 1097 rows have Offen=1
    # > Restricted to the best of each combination size: 3 comb. left
    # > Excluded rows with more combinations but no better results: 3 comb. left
    # > Human thought required (probably)..
# > Combination {'18', '317', '1321', '044'} explains the most by agreement
# > Combination {'18', '1321', '044'} explains the following by posterity
(compared to {'18', '317', '1321', '044'}): {'B04K19V40/24', 'B04K16V29/4-8'}
    # om. article, same as B04K16V29/4-8 above...
    # > Combination {'18', 'A'} explains the following by posterity (compared to
{'18', '1321', '044'}): {'B04K19V28/6-10', 'B04K20V11/8-16', 'B04K18V11/32',
'B04K20V13/6-8'}
    # ιδων vs. ειδως, μνημειον vs. μνημειω, δεδωκεν vs. εδωκεν, αυτοι vs. αυτη
    '118S': [{'18', 'A'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 1230.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 5
    # > 6 rows have Offen=5
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 35, 1071, A
    '1230': [{'35', '1071', 'A'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse_combinations_of_ancestors.py 1241.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 9
    \# > 6 rows have Offen=9
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 1320, A
    '1241': [{'1320', 'A'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 1242C.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 3
    \# > 14 rows have Offen=3
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
    # > Combination {'083', '0211', '05'} explains the most by agreement
# > Combination {'0211', '03'} explains the following by posterity (compared to
{'083', '0211', '05'}): {'B04K06V07/24-28', 'B04K04V52/22-24'}
    # εκαστος αυτων βραχυ τι vs.εκαστος βραχυ, και ειπον vs. ειπον ουν
    \# > \ldots and the other way round: {'B04K05V10/32'}
    # om. σου
    '1242C': [{'0211', '03'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 1242.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 9
    # > 10 rows have Offen=9
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
    # > Combination {'1571', '35', 'A'} explains the most by agreement
    # > Too large a difference by posterity (31), skipping combination {'35', 'A'}
    '1242': [{'1571', '35', 'A'}], # simple, in the end
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 1253.csv
    # > Found Hinweis '<<' entries</pre>
    # > Loaded 9999 rows
    # > Restricting search to Hinweis '<<' rows
```

```
# > Min 'Offen' is 0
    # > 1 rows have Offen=0
   # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 1230, 2790, A
    '1253': [{'1230', '2790', 'A'}], # simple
   # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py
1278C1.csv
   # > Found Hinweis '<<' entries</pre>
   # > Loaded 9999 rows
   # > Restricting search to Hinweis '<<' rows</pre>
   # > Min 'Offen' is 0
   # > 166 rows have Offen=0
    # > Restricted to the best of each combination size: 2 comb. left
   # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 35, 841
   '1278C1': [{'35', '841'}], # simple
   # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 1293.csv
   # > Loaded 9999 rows
   # > Min 'Offen' is 2
   \# > 7 rows have Offen=2
   # > Restricted to the best of each combination size: 1 comb. left
   # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 1010, 011, A
   '1293': [{'1010', '011', 'A'}], # simple
   # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 1319.csv
   # > Loaded 9999 rows
    # > Min 'Offen' is 7
    # > 6 rows have Offen=7
   # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 1463, A
   '1319': [{'1463', 'A'}], # simple
   # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 1320.csv
   # > Loaded 9999 rows
   # > Min 'Offen' is 1
    \# > 2 rows have Offen=1
    # > Restricted to the best of each combination size: 1 comb. left
   # > Excluded rows with more combinations but no better results: 1 comb. left
   # > Only one combination left: 35, F1, 03
   '1320': [{'35', 'F1', '03'}], # simple
   # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 1321.csv
   # > Loaded 9999 rows
   # > Min 'Offen' is 7
    # > 1 rows have Offen=7
   # > Restricted to the best of each combination size: 1 comb. left
   # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: FI, 397, A
   '1321': [{'FI', '397', 'A'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 1344C.csv
   # > Found Hinweis '<<' entries</pre>
    # > Loaded 9999 rows
    # > Restricting search to Hinweis '<<' rows
   # > Min 'Offen' is 0
    # > 8061 rows have Offen=0
   # > Restricted to the best of each combination size: 3 comb. left
   # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 1320
   '1344C': [{'1320'}], # simple
```

```
# $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 1344.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 9
    \# > 4 rows have Offen=9
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
    # > Combination {'019C', '1320', 'A'} explains the most by agreement
# > Combination {'1320', 'A'} explains the following by posterity (compared to
{'019C', '1320', 'A'}): {'B04K13V37/6-8'}
    # article
    '1344': [{'1320', 'A'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 138.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 2
    \# > 5 rows have Offen=2
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 994, 157, A
    '138': [{'994', '157', 'A'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 1424.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 14
    \# > 2 rows have Offen=14
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 045, A
    '1424': [{'045', 'A'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 1463.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 6
    \# > 3 rows have Offen=6
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 045, A
    '1463': [{'045', 'A'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 1546C.csv
    # > Found Hinweis '<<' entries</pre>
    # > Loaded 9999 rows
    # > Restricting search to Hinweis '<<' rows
    # > Min 'Offen' is 0
    # > 95 rows have Offen=0
    # > Restricted to the best of each combination size: 3 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
    # > Combination {'1561', '029'} explains the most by agreement
    # > Combination {'1561'} explains the following by posterity (compared to
{'1561', '029'}): {'B04K01V25/2-12'}
    # και ηρωτησαν αυτον vs. και ηρωτησαν αυτον και ειπον αυτω - I.e. om. και ειπον
αυτω
    '1546C': [{'1561'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 1546.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 7
    # > 3 rows have Offen=7
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
    # > Combination {'07C', 'FII', 'A'} explains the most by agreement
```

```
\# > Combination {'FI', 'A'} explains the following by posterity (compared to
{'07C', 'FII', 'A'}): {'B04K08V09/2-40'}
   # FII is lac in that verse... so without further evidence we'll include 07C.
Initial text is to omit the verse.
    '1546': [{'07C', 'FII', 'A'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 1561.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 3
    \# > 4 rows have Offen=3
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: FI, 35, 03
    '1561': [{'FI', '35', '03'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse_combinations_of_ancestors.py 1571.csv
    # > Found Hinweis '<<' entries</pre>
    # > Loaded 9999 rows
    # > Restricting search to Hinweis '<<' rows</pre>
    # > Min 'Offen' is 0
    # > 2 rows have Offen=0
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 2561, 994, A
    '1571': [{'2561', '994', 'A'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse_combinations_of_ancestors.py 1571S.csv
    # > Found Hinweis '<<' entries</pre>
    # > Loaded 9999 rows
    # > Restricting search to Hinweis '<<' rows</pre>
    # > Min 'Offen' is 0
    # > 1 rows have Offen=0
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: FI, F1, A
    '1571S': [{'FN', 'F1', 'A'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 157.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 6
    \# > 1 rows have Offen=6
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 028, F1, A
    '157': [{'028', 'F1', 'A'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py
1582C1.csv
    # > Found Hinweis '<<' entries</pre>
    # > Loaded 9999 rows
    # > Restricting search to Hinweis '<<' rows
    # > Min 'Offen' is 0
    # > 5 rows have Offen=0
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 226, 799, 138
    '1582C1': [{'226', '799', '138'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 1654.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 19
    \# > 10 rows have Offen=19
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
```

```
# > Combination {'2192C', '226', 'A'} explains the most by agreement
# > Combination {'226', 'A'} explains the following by posterity (compared to
{'2192C', '226', 'A'}): {'B04K08V42/3'}
    # added ouv
    '1654': [{'226', 'A'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 168C.csv
    # > Found Hinweis '<<' entries
    # > Loaded 9999 rows
    # > Restricting search to Hinweis '<<' rows</pre>
    # > Min 'Offen' is 0
    # > 33 rows have Offen=0
    # > Restricted to the best of each combination size: 3 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
    \# > Combination {'1093', '045'} explains the most by agreement
    # > Combination {'045'} explains the following by posterity (compared to
{'1093', '045'}): {'B04K01V29/6', 'B04K03V19/28-38', 'B04K14V14/2-4'}
    # βλεπει ο ιωαννης vs. βλεπει, το σκοτος μαλλον vs. μαλλον το σκοτος, added και
    '168C': [{'045'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 168.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 14
    \# > 8 rows have Offen=14
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
    # > Combination {'07C', '07', 'A'} explains the most by agreement
# > Combination {'07', 'A'} explains the following by posterity (compared to
{'07C', '07', 'A'}): {'B04K05V02/26', 'B04K16V13 /44', 'B04K03V04/4-10'}
    # βηθεσδα vs. βηθσαιδα, ακουση vs. ακουσει, article
    '168': [{'07', 'A'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 173.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 14
    \# > 3 rows have Offen=14
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 1029, A
    '173': [{'1029', 'A'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 1788C.csv
    # > Found Hinweis '<<' entries
    # > Loaded 9999 rows
    # > Restricting search to Hinweis '<<' rows
    # > Min 'Offen' is 0
    \# > 67 rows have Offen=0
    # > Restricted to the best of each combination size: 3 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
    # > Combination {'377', '226'} explains the most by agreement
    # > Combination {'1321'} explains the following by posterity (compared to
{'377', '226'}): {'B04K08V10/2-24', 'B04K11V34/8', 'B04K11V40/20', 'B04K12V26/4-8',
'B04K08V09/2-40', 'B04K08V06/2-41'}
    # 'B04K08V10/2-24', 'B04K08V09/2-40' and 'B04K08V06/2-41' are om. verses in
1321 - that's not good enough.
    '1788C': [{'377', '226'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 1788.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 9
    \# > 3 rows have Offen=9
    # > Restricted to the best of each combination size: 2 comb. left
```

```
# > Excluded rows with more combinations but no better results: 1 comb. left
   # > Only one combination left: 045, A
   '1788': [{'045', 'A'}], # simple
   # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 1797C.csv
   # > Found Hinweis '<<' entries
   # > Loaded 9999 rows
   # > Restricting search to Hinweis '<<' rows
   # > Min 'Offen' is 0
   # > 803 rows have Offen=0
   # > Restricted to the best of each combination size: 3 comb. left
   # > Excluded rows with more combinations but no better results: 2 comb. left
   # > Human thought required (probably)...
   \# > Combination {'1546', '028'} explains the most by agreement
   # > Combination {'028'} explains the following by posterity (compared to
{'1546', '028'}): {'B04K19V30/4'}
   # δε vs. ουν
   '1797C': [{'028'}],
   # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 1797.csv
   # > Loaded 9999 rows
   # > Min 'Offen' is 7
   \# > 6 rows have Offen=7
   # > Restricted to the best of each combination size: 2 comb. left
   # > Excluded rows with more combinations but no better results: 1 comb. left
   # > Only one combination left: 1320, A
   '1797': [{'1320', 'A'}], # simple
   # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 18.csv
   # > Loaded 9999 rows
   # > Min 'Offen' is 3
   # > 14 rows have Offen=3
   # > Restricted to the best of each combination size: 1 comb. left
   # > Excluded rows with more combinations but no better results: 1 comb. left
   # > Only one combination left: FI, 597, 799, A
   '18': [{'FI', '597', '799', 'A'}], # simple
   # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 2106.csv
   # > Loaded 9999 rows
   # > Min 'Offen' is 22
   \# > 1 rows have Offen=22
   # > Restricted to the best of each combination size: 1 comb. left
   # > Excluded rows with more combinations but no better results: 1 comb. left
   # > Only one combination left: 1561, A
   '2106': [{'1561', 'A'}], # simple
   # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 213.csv
   # > Loaded 9999 rows
   # > Min 'Offen' is 2
   \# > 4 rows have Offen=2
   # > Restricted to the best of each combination size: 1 comb. left
   # > Excluded rows with more combinations but no better results: 1 comb. left
   # > Only one combination left: 033, 33, A, FI
   '213': [{'033', '33', 'A', 'FII'}], # simple
   # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 213S.csv
   # > Loaded 9999 rows
   # > Min 'Offen' is 1
   # > 394 rows have Offen=1
   # > Restricted to the best of each combination size: 2 comb. left
   # > Excluded rows with more combinations but no better results: 2 comb. left
   # > Human thought required (probably)...
   # > Combination {'992', 'F1', 'A'} explains the most by agreement
```

```
\# > Combination {'317', 'FII'} explains the following by posterity (compared to
{'992', 'F1', 'A'}): {'B04K19V24/60', 'B04K19V41/24', 'B04K19V27/30-34',
'B04K20V23/20', 'B04K20V26/14-20', 'B04K19V13/28-30', 'B04K21V01/6-18'}
    # εβαλλον vs. εβαλον, τοπω vs. κηπω, word order, κρατειτε vs. κρατητε, removed
αυτου, added article, added αυτου.
    \# > ... and the other way round: {'B04K20V30/22-26'}
    # removes αυτου
    # Also, {'317', 'FN'} sum rank is 35, whereas {992, F1, A} is 104
    '213S': [{'317', 'FT'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 2192C.csv
    # > Loaded 4095 rows
    # > Min 'Offen' is 1
    \# > 4004 rows have Offen=1
    # > Restricted to the best of each combination size: 12 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably) ...
    \# > Combination {'FI', '226'} explains the most by agreement
    \# > Combination {'A'} explains the following by posterity (compared to {'FII',
'226'}): {'B04K06V17/8', 'B04K20V21/6-12', 'B04K08V54/48', 'B04K08V59/31'}
    # article, added ο ιησους, ημων vs. υμων, addition of "διελθων δια μεσου αυτων
και παρηγεν ουτως - too much to accept"
    '2192C': [{'FII', '226'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 2192.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 9
    \# > 2 rows have Offen=9
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 045, A
    '2192': [{'045', 'A'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 2223.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 6
    # > 3 rows have Offen=6
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
    # > Combination {'07C', '2680', 'A'} explains the most by agreement
# > Combination {'2680', 'A'} explains the following by posterity (compared to
{'07C', '2680', 'A'}): {'B04K03V04/4-10', 'B04K16V13/44'}
    # article, ακουση vs. ακουσει
    '2223': [{'2680', 'A'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 226C.csv
    # > Found Hinweis '<<' entries</pre>
    # > Loaded 9999 rows
    # > Restricting search to Hinweis '<<' rows
    # > Min 'Offen' is 0
    \# > 2199 rows have Offen=0
    # > Restricted to the best of each combination size: 3 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
    # > Combination {'35', 'FII'} explains the most by agreement
    \# > Combination {'35'} explains the following by posterity (compared to {'35',
'FП'}): {'B04K07V29/2'}
    # added δε
    '226C': [{'35'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 226.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 2
```

```
\# > 2 rows have Offen=2
```

```
# > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 18, FI, 03, P66
    '226': [{'18', 'FN', '03', 'P66'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 2411.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 1
    # > 1 rows have Offen=1
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: FI, A, 01
    '2411': [{'FI', 'A', '01'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 249.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 2
    \# > 22 rows have Offen=2
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 397, 226, 157
    '249': [{'397', '226', '157'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py
2561C1.csv
    # > Found Hinweis '<<' entries</pre>
    # > Loaded 9999 rows
    # > Restricting search to Hinweis '<<' rows
    # > Min 'Offen' is 0
    \# > 9 rows have Offen=0
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
    # > Combination {'35', '1788', '05'} explains the most by agreement
# > Combination {'35', '05'} explains the following by posterity (compared to
{'35', '1788', '05'}): {'B04K19V02 /30-32'}
    # αυτω vs. αυτον
    '2561C1': [{'35', '05'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py
2561C3.csv
    # > Found Hinweis '<<' entries
    # > Loaded 9999 rows
    # > Restricting search to Hinweis '<<' rows</pre>
    # > Min 'Offen' is 0
    \# > 5 rows have Offen=0
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
    # > Combination {'18', '1561', '1321'} explains the most by agreement
# > Combination {'1561', '1321'} explains the following by posterity (compared
to {'18', '1561', '1321'}): {'B04K16V33/26', 'B04K04V37/8-14'}
    # εξετε vs. εχετε
    '2561C3': [{'1561', '1321'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 2561.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 7
    # > 5 rows have Offen=7
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 045, A
    '2561': [{'045', 'A'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 2575.csv
```

```
# > Loaded 9999 rows
    # > Min 'Offen' is 2
    \# > 19 rows have Offen=2
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 994, 18, A
    '2575': [{'994', '18', 'A'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 2585.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 10
    \# > 1 rows have Offen=10
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 1788, A
    '2585': [{'1788', 'A'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 2615.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 4
    # > 1 rows have Offen=4
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: FI, 1561, A
    '2615': [{'FII', '1561', 'A'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse_combinations_of_ancestors.py 2680.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 7
    \# > 9 rows have Offen=7
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
    # > Combination {'037C', '1320', 'A'} explains the most by agreement
# > Combination {'1320', 'A'} explains the following by posterity (compared to
{'037C', '1320', 'A'}): {'B04K05V35/24-28'}
    # αγαλλιασθηναι vs. αγαλλιαθηναι
    '2680': [{'1320', 'A'}],
    # $ /home/ed/coding/CBGM/scripts/analyse_combinations_of_ancestors.py 2718.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 9
    # > 11 rows have Offen=9
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
    # > Combination {'019C', '226', 'A'} explains the most by agreement
# > Combination {'226', 'A'} explains the following by posterity (compared to
{'019C', '226', 'A'}): {'B04K13V37/6-8'}
    # article
    '2718': [{'226', 'A'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 2766C.csv
    # > Found Hinweis '<<' entries
    # > Loaded 9999 rows
    # > Restricting search to Hinweis '<<' rows
    # > Min 'Offen' is 0
    # > 143 rows have Offen=0
    # > Restricted to the best of each combination size: 3 comb. left
    # > Excluded rows with more combinations but no better results: 3 comb. left
    # > Human thought required (probably)...
    # > Combination {'35', '2786', '333'} explains the most by agreement
# > Combination {'1546', '2786'} explains the following by posterity (compared
to {'35', '2786', '333'}): {'B04K16V13/22-28'}
```

```
# προς vs. εις
```

```
\# > Combination {'18'} explains the following by posterity (compared to
{'1546', '2786'}): {'B04K19V31/46-50'}
   # word order
   '2766C': [{'18'}],
   # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 2766.csv
    # > Loaded 9999 rows
   # > Min 'Offen' is 8
    \# > 6 rows have Offen=8
    # > Restricted to the best of each combination size: 2 comb. left
   # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
   # > Combination {'07C', '35', 'A'} explains the most by agreement
# > Combination {'35', 'A'} explains the following by posterity (compared to
{'07C', '35', 'A'}): {'B04K03V04/4-10'}
    # article
    '2766': [{'35', 'A'}],
   # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 2768.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 7
   \# > 15 rows have Offen=7
   # > Restricted to the best of each combination size: 2 comb. left
   # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 226, A
   '2768': [{'226', 'A'}], # simple
   # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 2786.csv
   # > Loaded 9999 rows
   # > Min 'Offen' is 11
    # > 9 rows have Offen=11
    # > Restricted to the best of each combination size: 1 comb. left
   # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 1320, A, 213
    '2786': [{'1320', 'A', '213'}], # simple
   # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 2790.csv
   # > Loaded 9999 rows
    # > Min 'Offen' is 2
   \# > 29 rows have Offen=2
   # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
   \# > Combination {'35', '038', 'A'} explains the most by agreement
    \# > Too large a difference by posterity (28), skipping combination {'045', 'A'}
    '2790': [{'35', '038', 'A'}], # simple, in the end
   # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 295.csv
   # > Loaded 9999 rows
    # > Min 'Offen' is 9
    # > 6 rows have Offen=9
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 1320, A
    '295': [{'1320', 'A'}], # simple
   # $ /home/ed/coding/CBGM/scripts/analyse_combinations_of_ancestors.py 317.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 1
   \# > 2 rows have Offen=1
    # > Restricted to the best of each combination size: 1 comb. left
   # > Excluded rows with more combinations but no better results: 1 comb. left
   # > Only one combination left: 333, F1, A
   '317': [{'333', 'F1', 'A'}], # simple
```

\$ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 333.csv # > Loaded 9999 rows # > Min 'Offen' is 4 # > 2 rows have Offen=4 # > Restricted to the best of each combination size: 1 comb. left # > Excluded rows with more combinations but no better results: 1 comb. left # > Only one combination left: 249, 1561, A '333': [{'249', '1561', 'A'}], # simple # \$ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 33.csv # > Loaded 4095 rows # > Min 'Offen' is 5 # > 256 rows have Offen=5 # > Restricted to the best of each combination size: 9 comb. left # > Excluded rows with more combinations but no better results: 7 comb. left # > Human thought required (probably)... # > Combination {'A', '044', '019', '04', 'P66C*', '03', 'P75', '083', '029', '04C1'} explains the most by agreement # > Combination {'A', '044', '019', '04', 'P66C*', '03', 'P75', '083', '04C1'} explains the following by posterity (compared to {'A', '044', '019', '04', 'P66C*', '03', 'P75', '083', '029', '04C1'}): {'B04K01V24/2'} # added or # > Combination {'A', '044', '019', '04', 'P66C*', '03', 'P75', '04C1'}
explains the following by posterity (compared to {'A', '044', '019', '04', 'P66C*', '03', 'P75', '083', '04C1'}): {'B04K04V14/43', 'B04K02V20/36'} # added εγω, εγειρεις vs. εγερεις # > Combination {'A', '044', '019', '04', '03', 'P75', '04C1'} explains the following by posterity (compared to {'A', '044', '019', '04', 'P66C*', '03', 'P75', '04C1'}): {'B04K12V16/24', 'B04K17V16/2-24', 'B04K11V41/18-22'} # article, om. "εκ του κοσμου ουκ εισιν καθως εγω ουκ ειμι εκ του κοσμου" - 33 also omits v15 - but v14 also ends "εκ του κοσμου" so that's just a big eye skip, added αυτου # > Combination {'A', '044', '019', '04', '03', '04C1'} explains the following
by posterity (compared to {'A', '044', '019', '04', '03', 'P75', '04C1'}): {'B04K12V36/30', 'B04K09V17/12-16', 'B04K01V42/12', 'B04K04V31/2'} # added article, word order, added $\delta \varepsilon$, added $\delta \varepsilon$ # > Too large a difference by posterity (14), skipping combination {'A', '044', '019', '04', '04C1'} # > Too large a difference by posterity (21), skipping combination {'A', '044', '019', '04'} '33': [{'A', '044', '019', '04', '03', '04C1'}], # \$ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 357.csv # > Loaded 9999 rows # > Min 'Offen' is 2 # > 9 rows have Offen=2 # > Restricted to the best of each combination size: 1 comb. left # > Excluded rows with more combinations but no better results: 1 comb. left # > Only one combination left: 138, 045, A '357': [{'138', '045', 'A'}], # simple # \$ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 35.csv # > Loaded 9999 rows # > Min 'Offen' is 1 # > 30 rows have Offen=1 # > Restricted to the best of each combination size: 2 comb. left # > Excluded rows with more combinations but no better results: 2 comb. left # > Human thought required (probably)... # > Combination {'18', 'FII', '03', 'P66'} explains the most by agreement # > Combination {'18', '03', 'P66'} explains the following by posterity (compared to {'18', 'FII', '03', 'P66'}): {'B04K07V33/12-14', 'B04K10V42/2-12', 'B04K13V37/6-8', 'B04K19V26/32', 'B04K12V14/14-16', 'B04K05V26/20-34'} # word order, word order, added article, ιδου vs. ιδε, αυτω vs. αυτο, word order

'35': [{'18', '03', 'P66'}],

```
# $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 377.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 3
    \# > 7 rows have Offen=3
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 807, 226, 03
    '377': [{'807', '226', '03'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 382.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 10
    \# > 8 rows have Offen=10
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
    \# > Combination {'1344', 'A'} explains the most by agreement
    \# > Too large a difference by posterity (21), skipping combination {'07C',
'045', 'A'}
    '382': [{'1344', 'A'}], # simple, in the end
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 397.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 5
    \# > 9 rows have Offen=5
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
# > Human chought required (probably)...
# > Combination {'037C', '044', '597', 'A'} explains the most by agreement
# > Combination {'044', '597', 'A'} explains the following by posterity
(compared to {'037C', '044', '597', 'A'}): {'B04K05V35/24-28'}
    # αγαλλιασθηναι vs. αγαλλιαθηναι
    '397': [{'044', '597', 'A'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 430.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 1
    \# > 2 rows have Offen=1
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 249, 333, 03
    '430': [{'249', '333', '03'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 544.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 8
    # > 2 rows have Offen=8
    \# > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 1561, A
    '544': [{'1561', 'A'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 579.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 21
    \# > 4 rows have Offen=21
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
    # > Combination {'07C', 'A', '0211'} explains the most by agreement
# > Combination {'A', '0211'} explains the following by posterity (compared to
{'07C', 'A', '0211'}): {'B04K05V02/26', 'B04K08V09/2-40'}
    # βηθεσδα vs. βηθζαθα or βηθσαιδα, om. verse - no good reason
    '579': [{'07C', 'A', '0211'}],
```

```
# $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 597.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 4
    \# > 1 rows have Offen=4
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: FI, F1, A, P75
    '597': [{'FI', 'A', 'P75'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 732.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 15
    \# > 8 rows have Offen=15
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 1320, A
    '732': [{'1320', 'A'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 792.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 24
    \# > 1 rows have Offen=24
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 1029, A
    '792': [{'1029', 'A'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 799C.csv
    # > Found Hinweis '<<' entries
    # > Loaded 9999 rows
    # > Restricting search to Hinweis '<<' rows</pre>
    # > Min 'Offen' is 0
    \# > 72 rows have Offen=0
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably) ...
    # > Combination {'1320', 'P66C*', 'FII'} explains the most by agreement
# > Combination {'1320', 'FII'} explains the following by posterity (compared to
{'1320', 'P66C*', 'FN'}): {'B04K11V45/26-28'}
    # οσα εποιησεν vs. α εποιησεν
    '799C': [{'1320', 'FT'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 799.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 5
    \# > 2 rows have Offen=5
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
# > Human thought required (probably)...
# > Combination {'017C', '213', 'FII', 'A'} explains the most by agreement
# > Combination {'213', 'FII', 'A'} explains the following by posterity
(compared to {'017C', '213', 'FII', 'A'}): {'B04K14V28/33'}
    # added ειπον
    '799': [{'213', 'FII', 'A'}],
    # $ /home/ed/coding/CBGM/scripts/analyse_combinations_of_ancestors.py 807.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 11
    # > 5 rows have Offen=11
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
    # > Combination {'226', '35', 'A'} explains the most by agreement
```

Optimal Substemmata

```
# > Too large a difference by posterity (34), skipping combination {'1463',
1 2 1 3
    '807': [{'226', '35', 'A'}], # simple, in the end
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 821.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 10
    \# > 7 rows have Offen=10
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
    # > Combination {'2561C3', '597', 'A', 'F1'} explains the most by agreement
# > Too large a difference by posterity (17), skipping combination {'FI', 'A',
'F1'}
    '821': [{'2561C3', '597', 'A', 'F1'}], # simple, in the end
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 841.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 7
    \# > 4 rows have Offen=7
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 1320, A
    '841': [{'1320', 'A'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 865.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 2
    \# > 8 rows have Offen=2
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 033, 226, 397
    '865': [{'033', '226', '397'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 869.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 2
    \# > 15 rows have Offen=2
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 397, 35, A
    '869': [{'397', '35', 'A'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 892.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 6
    \# > 144 rows have Offen=6
    # > Restricted to the best of each combination size: 4 comb. left
    \# > Excluded rows with more combinations but no better results: 3 comb. left
    # > Human thought required (probably)...
    # > Combination {'044', 'A', '33', '033', '019', 'P75'} explains the most by
agreement
    # > Combination {'044', 'A', '33', '033', 'P75'} explains the following by
posterity (compared to {'044', 'A', '33', '033', '019', 'P75'}): {'B04K09V37/2-4',
'B04K05V04/8-20', 'B04K05V36/6-12', 'B04K13V08/6', 'B04K03V36/31', 'B04K06V07/6',
'B04K08V14/58-62', 'B04K04V50/20', 'B04K05V44/6-8'}
   # 019 is needed for the large addition 'B04K05V04/8-20': "κατα καιρον
κατεβαινεν εν τη κολυμβηθρα και"
   # > Too large a difference by posterity (25), skipping combination {'044', 'A',
'33', 'P75'}
    '892': [{'044', 'A', '33', '033', '019', 'P75'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 892SC.csv
    # > Found Hinweis '<<' entries</pre>
```

> Loaded 9999 rows

```
# > Restricting search to Hinweis '<<' rows
    # > Min 'Offen' is 0
    # > 9925 rows have Offen=0
    # > Restricted to the best of each combination size: 4 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 1071
    '892SC': [{'1071'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 892S.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 3
    \# > 4 rows have Offen=3
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
    # > Combination {'1242C', '045', 'A'} explains the most by agreement
# > Combination {'045', 'A'} explains the following by posterity (compared to
{'1242C', '045', 'A'}): {'B04K17V11/50-54'}
    # ouc vs. ω
    '892S': [{'045', 'A'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py
'892S*.csv'
    # > Loaded 9999 rows
    # > Min 'Offen' is 1
    # > 238 rows have Offen=1
    # > Restricted to the best of each combination size: 2 comb. left
    # > Excluded rows with more combinations but no better results: 2 comb. left
    # > Human thought required (probably)...
    \# > Combination {'35', '1546', 'F13'} explains the most by agreement
    # > Combination {'028', 'F13'} explains the following by posterity (compared to
{'35', '1546', 'F13'}): {'B04K15V06/42', 'B04K15V16/48-52', 'B04K18V10/45'}
    # βαλουσιν vs, βαλλουσιν, ο τι εαν vs. οταν or ο τι αν, article
    # NOTE: This hand shouldn't be here, as it should have been merged with 892S.
But the
    # S and the * seem to have ganged up and created a bug. We will live with it.
    \# > \ldots and the other way round: {'B04K20V02/56'}
    # οιδα vs. οιδαμεν
    '892S*': [{'028', 'F13'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 992.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 5
    \# > 10 rows have Offen=5
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: FI, 18, A
    '992': [{'FI', '18', 'A'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py 994.csv
    # > Found Hinweis '<<' entries
    # > Loaded 9999 rows
    # > Restricting search to Hinweis '<<' rows
    # > Min 'Offen' is 0
    \# > 2 rows have Offen=0
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: F1, 1320, 019
    '994': [{'F1', '1320', '019'}], # simple
    'A': [{}], # obviously no ancestors
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py F13.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 23
```

Optimal Substemmata

```
\# > 4 rows have Offen=23
     # > Restricted to the best of each combination size: 2 comb. left
     # > Excluded rows with more combinations but no better results: 1 comb. left
     # > Only one combination left: 1561, A
     'F13': [{'1561', 'A'}], # simple
     # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py F1.csv
     # > Loaded 9999 rows
     # > Min 'Offen' is 6
     \# > 2 rows have Offen=6
     # > Restricted to the best of each combination size: 2 comb. left
     # > Excluded rows with more combinations but no better results: 2 comb. left
     # > Human thought required (probably)...
     # > Combination {'2192C', '892', '044', 'A', 'P75', '032'} explains the most by
agreement
# > Combination {'044', 'A', '33', 'P75', '032'} explains the following by
posterity (compared to {'2192C', '892', '044', 'A', 'P75', '032'}): {'B04K08V01/2-
17', 'B04K05V04/8-20', 'B04K05V36/6-12', 'B04K09V18/16-24', 'B04K08V59/31',
'B04K04V09/32-36', 'B04K04V06/42', 'B04K04V09/4', 'B04K06V35/3', 'B04K12V25/12', 'B04K08V03/2-32', 'B04K07V41/3', 'B04K08V07/2-34', 'B04K09V01/12-14', 'B04K07V43/6-
12', 'B04K08V04/2-20', 'B04K07V32/2', 'B04K05V02/26', 'B04K07V53/2-14',
'B04K04V36/1', 'B04K06V71/18-22', 'B04K06V46/10-12', 'B04K12V36/2', 'B04K05V27/2-
12', 'B04K13V30/12-14', 'B04K13V20/36', 'B04K08V02/2-36', 'B04K01V20/18-22',
'B04K09V37/2-4', 'B04K08V06/2-41', 'B04K04V30/3', 'B04K12V40/40', 'B04K06V17/30-
32', 'B04K08V05/2-29', 'B04K07V33/6-8', 'B04K08V58/2'}
     # > ... and the other way round: {'B04K09V10/12-14', 'B04K04V47/24',
'B04K07V29/2', 'B04K12V26/4-8', 'B04K10V29/8-12', 'B04K18V15/15', 'B04K21V04/14',
'B04K21V20/4-12', 'B04K08V28/52-54', 'B04K11V40/22', 'B04K11V20/22', 'B04K02V19/2-
10', 'B04K21V04/12', 'B04K16V19/4', 'B04K01V32/18-26', 'B04K04V51/20',
'B04K06V10/42-44', 'B04K15V16/54', 'B04K10V23/22', 'B04K04V05/24', 'B04K05V02/20-
22', 'B04K21V14/10-14', 'B04K02V16/19', 'B04K01V28/4-8', 'B04K19V07/23',
'B04K06V09/8-10', 'B04K05V44/6-8'}
     \# Too much change (36 vs. 27). We'll take the larger set.
     'F1': [{'2192C', '892', '044', 'A', 'P75', '032'}],
     # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py FI.csv
     # > Loaded 9999 rows
     # > Min 'Offen' is 2
     \# > 2 rows have Offen=2
     # > Restricted to the best of each combination size: 2 comb. left
     # > Excluded rows with more combinations but no better results: 2 comb. left
     # > Human thought required (probably)...
     # > Combination {'892', '044', 'A', '33', '033', 'P75', '032'} explains the
most by agreement
     # > Too large a difference by posterity (11), skipping combination {'892',
'044', 'A', '33<sup>'</sup>, 'P75', '032'}
     'FП': [{'892', '044', 'A', '33', '033', 'P75', '032'}], # simple, in the end
     # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py MT.csv
     # > Loaded 9999 rows
     # > Min 'Offen' is 1
     \# > 2 rows have Offen=1
     # > Restricted to the best of each combination size: 1 comb. left
     # > Excluded rows with more combinations but no better results: 1 comb. left
     # > Only one combination left: 35, F1, 03
     'MT': [{'35', 'F1', '03'}], # simple
     # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py P45.csv
     # > Found Hinweis '<<' entries</pre>
     # > Loaded 9999 rows
     # > Restricting search to Hinweis '<<' rows
     # > Min 'Offen' is 0
     \# > 1 rows have Offen=0
     # > Restricted to the best of each combination size: 1 comb. left
     # > Excluded rows with more combinations but no better results: 1 comb. left
```

```
# > Only one combination left: P66C*, 03, 138
    'P45': [{'P66C*', '03', '138'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py P60.csv
    # > Found Hinweis '<<' entries</pre>
    # > Loaded 9999 rows
    # > Restricting search to Hinweis '<<' rows</pre>
    # > Min 'Offen' is 0
    \# > 6 rows have Offen=0
    # > Restricted to the best of each combination size: 3 comb. left
    # > Excluded rows with more combinations but no better results: 3 comb. left
    # > Human thought required (probably)...
# > Combination {'A', '397', '03', '05S'} explains the most by agreement
# > Combination {'A', '397', '05S'} explains the following by posterity
(compared to {'A', '397', '05S'}): {'B04K19V12/48-50', 'B04K18V39/18-22'}
    # AUTOV VS. EAUTOV, OM. EV
    # > Combination {'A', '397'} explains the following by posterity (compared to
{'A', '397', '05S'}): {'B04K18V20/38', 'B04K18V34/10', 'B04K19V17/24-28'}
    # παντοτε vs. παντες, omit συ, ος vs. ο
    'P60': [{'A', '397'}],
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py
'P66C*.csv'
    # > Found Hinweis '<<' entries
    # > Loaded 9999 rows
    # > Restricting search to Hinweis '<<' rows
    # > Min 'Offen' is 0
    # > 1 rows have Offen=0
    # > Restricted to the best of each combination size: 1 comb. left
    \# > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: 070, 03, 1788, 01
    'P66C*': [{'070', '03', '1788', '01'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py P66.csv
    # > Loaded 9999 rows
    # > Min 'Offen' is 4
    # > 8 rows have Offen=4
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: A, F1, 397, P66C*
    'P66': [{'A', 'F1', '397', 'P66C*'}], # simple
    # $ /home/ed/coding/CBGM/scripts/analyse combinations of ancestors.py P75.csv
    # > Loaded 3 rows
    # > Min 'Offen' is 3
    # > 1 rows have Offen=3
    # > Restricted to the best of each combination size: 1 comb. left
    # > Excluded rows with more combinations but no better results: 1 comb. left
    # > Only one combination left: A, 03
    'P75': [{'A', '03'}], # simple
1
```

Software

- 1. Andrew Edmondson
 - a) My CBGM implementation: <u>https://doi.org/10.5281/zenodo.1296287</u> or <u>https://github.com/edmondac/CBGM</u>
 - b) Scripts for manipulating NEXUS files and related things: <u>https://doi.org/10.5281/zenodo.1296329</u> or <u>https://github.com/edmondac/nexus_scripts</u>
 - c) Stripey: <u>https://doi.org/10.5281/zenodo.1296295</u> or <u>https://github.com/edmondac/stripey</u>
- 2. Archaeopteryx, an evolutionary tree explorer. Part of the forester collection of software: <u>https://sites.google.com/site/cmzmasek/home/software/forester</u> Accessed 14 March 2017.
 - a) See Edmondson's fork of the code for automated tree creation here: <u>https://github.com/edmondac/forester</u> Accessed 14 March 2017.
- 3. CollateX
 - a) Java-based service: <u>http://collatex.net/</u> Accessed 30 December 2016. Versions used: Initially collatex-0.9 then collatex-tools-1.3, collatex-tools-1.5.1 and finally collatex-tools-1.7.1 (in January 2017).
 - b) Python-based library: <u>https://pypi.python.org/pypi/collatex</u> Accessed 17 January 2017. Version 2.1.1 (in January 2017). The source code is here, although the releases are not tagged there: <u>https://github.com/interedition/collatex</u> Accessed 17 January 2017.
- 4. FigTree, <u>http://tree.bio.ed.ac.uk/software/figtree/</u> Accessed 23 September 2014. Versions used 1.4.2 and 1.4.3.
- 5. Graphviz, <u>http://www.graphviz.org/</u> Accessed 10 October 2017.¹
 - a) See <u>https://graphviz.gitlab.io/_pages/pdf/dot.1.pdf</u> for information about the different algorithms, including NEATO and SFDP. Accessed 26 August 2018.
- 6. Mesquite, <u>http://mesquiteproject.org/</u> Accessed 17 January 2017. Maddison, W. P. and D.R. Maddison. (2017) *Mesquite: a modular system for evolutionary analysis*. Version used: 3.2 (build 801).

¹ See Gansner and North, 'An Open Graph Visualization System and Its Applications to Software Engineering'.

- MrBayes, *Bayesian Inference of Phylogeny*, <u>http://mrbayes.sourceforge.net/download.php</u> Accessed 2 February 2017. Versions used 3.2.2 to 3.2.6.²
 - a) Edmondson patch for MrBayes 3.2.6: <u>https://github.com/edmondac/MrBayes</u> (commit a0ad10f applied to upstream 3.2.6).
- 8. Network, <u>http://www.fluxus-engineering.com/sharenet.htm</u> Accessed 10 October 2017. Versions used 4.613, 5.0.0, 5.0.0.1.³
- 9. SplitsTree, <u>http://www.splitstree.org/</u> Accessed 23 September 2014. Version used: 4.13.1⁴

General bibliography

- Aland, Barbara, Kurt Aland, Johannes Karavidopoulos, Carlo Maria Martini, and Bruce Manning Metzger, eds. *Novum Testamentum Graece* 27. 9th corrected. Stuttgart: Deutsche Bibelgesellschaft, 2006.
- 11. Aland, Barbara, Kurt Aland, Johannes Karavidopoulos, Carlo Maria Martini, Bruce Manning Metzger, and Holger Strutwolf, eds. *Novum Testamentum Graece 28*. Stuttgart: Deutsche Bibelgesellschaft, 2012.
- 12. Aland, Barbara, Kurt Aland, Gerd Mink, Holger Strutwolf, and Klaus Wachtel, eds. *Novum Testamentum Graecum, Editio Critica Maior: IV Catholic Letters*. 2nd Revised Edition. Stuttgart: Deutsche Bibelgesellschaft, 2013.
- 13. _____, eds. Novum Testamentum Graecum Editio Critica Maior: IV Catholic Letters: Part 1 Text: Installment 4: The The Second and Third Letter of John, the Letter of Jude. Stuttgart: Deutsche Bibelgesellschaft, 2005.
- 14. Aland, Barbara, Kurt Aland, Gerd Mink, and Klaus Wachtel, eds. *Novum Testamentum Graecum Editio Critica Maior: IV Catholic Letters: Part 1 Text: Installment 1: James.* Stuttgart: Deutsche Bibelgesellschaft, 1997.
- 15. ——, eds. Novum Testamentum Graecum Editio Critica Maior: IV Catholic Letters: Part 1 Text: Installment 2: The Letters of Peter. Stuttgart: Deutsche Bibelgesellschaft, 2000.
- 16. ——, eds. Novum Testamentum Graecum Editio Critica Maior: IV Catholic Letters: Part 1 Text: Installment 3: The First Letter of John. Stuttgart: Deutsche Bibelgesellschaft, 2003.
- 17. Aland, Kurt. Text Und Textwert Der Griechischen Handschriften Des Neuen Testaments. Berlin: De Gruyter, 1987–2005.

4 See Huson and Bryant, 'Application of Phylogenetic Networks in Evolutionary Studies'.

² See Huelsenbeck and Ronquist, 'MRBAYES'; Ronquist and Deans, 'Bayesian Phylogenetics and Its Influence on Insect Systematics'; Ronquist and Huelsenbeck, 'MrBayes 3'; 'MrBayes Tutorial, v3.2'., Ronquist and Deans, 'Bayesian Phylogenetics and Its Influence on Insect Systematics'.

³ See Bandelt, Forster, and Rohl, 'Median-Joining Networks for Inferring Intraspecific Phylogenies'.

- 18. Aland, Kurt, and Barbara Aland. *The Text of the New Testament: An Introduction to the Critical Editions and to the Theory and Practice of Modern Textual Criticism*. Grand Rapids: Eerdmans and Leiden: Brill, 1987.
- Aland, Kurt, Klaus Junack, Beate Köster, and Michael Welte. *Kurzgefaßte Liste der griechischen Handschriften des Neuen Testaments*, 2011. https://doi.org/10.1515/9783110877588.
- 20. Alexanderson, Bengt. 'Problems in the New Testament: Old Manuscripts and Papyri, the New Genealogical Method (CBGM) and the Editio Critica Maior (ECM)'. *Humaniora* 48 (2014).
- Altekar, Gautam, Sandhya Dwarkadas, John P. Huelsenbeck, and Fredrik Ronquist. 'Parallel Metropolis Coupled Markov Chain Monte Carlo for Bayesian Phylogenetic Inference'. *Bioinformatics* 20, no. 3 (12 February 2004): 407–15. https://doi.org/10.1093/bioinformatics/btg427.
- 22. Anderson, Amy S. *The Textual Tradition of the Gospels: Family 1 in Matthew*. New Testament Tools and Studies, v. 32. Leiden; Boston: Brill, 2004.
- Andrews, Tara L. 'Analysis of Variation Significance in Artificial Traditions Using Stemmaweb'. *Digital Scholarship in the Humanities* 31, no. 3 (September 2016): 523– 39. https://doi.org/10.1093/llc/fqu072.
- 24. Atallah, Mikhail J., and Susan Fox, eds. *Algorithms and Theory of Computation Handbook*. 1st ed. Boca Raton, FL, USA: CRC Press, Inc., 1998.
- 25. Bandelt, H. J., P. Forster, and A. Rohl. 'Median-Joining Networks for Inferring Intraspecific Phylogenies'. *Molecular Biology and Evolution* 16, no. 1 (1 January 1999): 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036.
- 26. Barbrook, Adrian C., Christopher J. Howe, Norman Blake, and Peter Robinson. 'The Phylogeny of The Canterbury Tales'. *Nature* 394, no. 6696 (August 1998): 839–839. https://doi.org/10.1038/29667.
- 27. Bentley, Richard. Dr. Bentley's Proposals for Printing a New Edition of the Greek Testament, and St. Hierom's Latin Version: With a Full Answer to All the Remarks of a Late Pamphleteer. J. Knapton, 1721.
- 28. ——. *Remarks upon a Late Discourse of Free-Thinking: In a Letter to N. N. W.* Thurlbourn, 1737.
- Bergel, Giles, Christopher J. Howe, and Heather F. Windram. 'Lines of Succession in an English Ballad Tradition: The Publishing History and Textual Descent of *The Wandering Jew's Chronicle'*. *Digital Scholarship in the Humanities* 31, no. 3 (September 2016): 540–62. https://doi.org/10.1093/llc/fqv003.
- 30. Bhagwat, V. M., and B. V. Ramachandran. 'Malathion A and B Esterases of Mouse Liver-I'. *Biochemical Pharmacology* 24, no. 18 (15 September 1975): 1713–17.
- Boc, A., A. B. Diallo, and V. Makarenkov. 'T-REX: A Web Server for Inferring, Validating and Visualizing Phylogenetic Trees and Networks'. *Nucleic Acids Research* 40, no. W1 (1 July 2012): W573–79. https://doi.org/10.1093/nar/gks485.

- 32. Bordalejo, Barbara. 'The Genealogy of Texts: Manuscript Traditions and Textual Traditions'. *Digital Scholarship in the Humanities* 31, no. 3 (September 2016): 563–77. https://doi.org/10.1093/llc/fqv038.
- Bryant, David, and Vincent Moulton. 'NeighborNet: An Agglomerative Method for the Construction of Planar Phylogenetic Networks'. In *Algorithms in Bioinformatics*, edited by Roderic Guigó and Dan Gusfield, 2452:375–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. https://doi.org/10.1007/3-540-45784-4 28.
- 34. Buneman, Peter. 'The Recovery of Trees from Measures of Dissimilarity'. *Mathematics in the Archaeological and Historical Sciences*, 1971. https://ci.nii.ac.jp/naid/10018379872/en/.
- Buzzoni, Marina, Eugenio Burgio, Martina Modena, and Samuela Simion. 'Open versus Closed Recensions (Pasquali): Pros and Cons of Some Methods for Computer-Assisted Stemmatology'. *Digital Scholarship in the Humanities* 31, no. 3 (September 2016): 652–69. https://doi.org/10.1093/llc/fqw014.
- Carlson, Stephen C. 'Coherence-Based Genealogical Method'. *Hypotyposeis* (blog), 1 December 2009. http://hypotyposeis.org/weblog/2009/12/coherence-basedgenealogical-method.html.
- "Comments on the Coherence-Based Genealogical Method". TC A Journal of Biblical Textual Criticism 20 (2015). http://rosetta.reltech.org/TC/v20/TC-2015-CBGM-Carlson.pdf.
- 38. ——. 'Fundamentals of New Testament Textual Criticism. By Stanley E. Porter and Andrew W. Pitts.' *The Journal of Theological Studies* 68, no. 1 (April 2017): 269–73. https://doi.org/10.1093/jts/flx065.
- 39. ——. 'The Text of Galatians and Its History'. PhD, Duke University, 2012. http://dukespace.lib.duke.edu/dspace/bitstream/handle/10161/5597/Carlson_duke_0066 D_11426.pdf.
- 40. ——. *The Text of Galatians and Its History*. Wissenschaftliche Untersuchunger zum Neuen Testament. 2. Reihe 385. Tübingen, Germany: Mohr Siebeck, 2015.
- Caruso, Carlo. 'Review: The Genesis of Lachmann's Method by Sebastiano Timpanaro; Glenn W. Most'. *The Modern Language Review* 102 (2007). https://doi.org/10.2307/20467293.
- 42. Clark, Michael A. 'The Catena of Nicetas of Heraclea and Its Johannine Text'. PhD, University of Birmingham, 2016. http://etheses.bham.ac.uk/6424/1/ClarkM16PhD.pdf.
- 43. 'Codex Sinaiticus: Experience the Oldest Bible. The Transcription.' Accessed 6 March 2018. http://codexsinaiticus.org/en/project/transcription_detailed.aspx.
- 44. Courtney, E. 'Review: The Genesis of Lachmann's Method by Sebastiano Timpanaro; Glenn W. Most'. *The Classical Journal* 102, no. 3 (2007): 312–315.
- 45. Darwin, Charles. Journal of Researches into the Natural History and Geology of the Countries Visited during the Voyage of H.M.S. Beagle (Reprint of 3rd Edn., 1860). London, 2003.

- 46. ——. On the Origin of Species by Means of Natural Selection, or, The Preservation of Favoured Races in the Struggle for Life. London: John Murry, 1859.
- 47. De Vos, Ilse, Caroline Macé, and Koen Geuten. 'Comparing Stemmatological and Phylogenetic Methods to Understand the Transmission History of the "Florilegium Coislinianum". In Ars Edendi Lecture Series Vol. II, edited by Alessandra Bucossi and Erika Kihlman, 107–129. Acta Universitatis Stockholmiensis, Studia Latina Stockholmiensia LVIII. Stockholm University Publications, 2012.
- 48. Dress, Andreas, ed. *Basic Phylogenetic Combinatorics*. Cambridge, UK; New York: Cambridge University Press, 2012.
- 49. Eagleton, Catherine, and Matthew Spencer. 'Copying and Conflation in Geoffrey Chaucer's Treatise on the Astrolabe: A Stemmatic Analysis Using Phylogenetic Software'. *Studies in History and Philosophy of Science Part A* 37, no. 2 (June 2006): 237–68. https://doi.org/10.1016/j.shpsa.2005.08.020.
- 50. Ehrman, Bart D. *The Orthodox Corruption of Scripture: The Effect of Early Christological Controversies on the Text of the New Testament.* 2nd edition. Oxford/New York:OUP, 2011.
- 51. Ehrman, Bart D., and Michael W. Holmes, eds. *The Text of the New Testament in Contemporary Research: Essays on the Status Quaestionis.* 2nd ed. New Testament Tools, Studies, and Documents, v. 42. Leiden; Boston: Brill, 2013.
- 52. Elliott, James K. 'A New Edition of Nestle-Aland, Greek New Testament'. *The Journal of Theological Studies* 64, no. 1 (2013): 47–65.
- 53. ——. 'Review of "How We Got the New Testament: Text, Transmission, Translation." Porter, S.E.' *The Journal of Theological Studies* 65, no. 2 (2014): 672–674.
- 54. ——. 'Review of "Novum Testamentum Graecum: Editio Critica Maior", INTF (ed.)'. *The Journal of Theological Studies* 64, no. 1 (2013): 636–642.
- 55. Epp, Eldon Jay. 'In the Beginning Was the New Testament Text, but Which Text?' In *Texts and Traditions*, edited by Jeffrey Kloha and Peter Doble, 35–70. Brill, 2014. https://doi.org/10.1163/9789004273931_005.
- 56. ——. 'Textual Clusters: Their Past and Future in New Testament Textual Criticism'. In *The Text of the New Testament in Contemporary Research*, edited by Bart D. Ehrman and Michael W. Holmes, 519–77. Brill, 2012. https://doi.org/10.1163/9789004236554 021.
- 57. Fee, Gordon D. 'On the Types, Classification, and Presentation of Textual Variation'. In *Studies in the Theory and Method of New Testament Textual Criticism*, edited by Gordon D Fee and Eldon Jay Epp. Grand Rapids, Mich.: W.B. Eerdmans, 1993.
- Felsenstein, Joseph. 'The Number of Evolutionary Trees'. Systematic Zoology 27, no. 1 (March 1978): 27. https://doi.org/10.2307/2412810.
- 59. Finney, Timothy. 'How to Discover Textual Groups'. *Digital Studies/Le Champ Numérique* 8, no. 1 (10 May 2018). https://doi.org/10.16995/dscn.291.

- Foster, Paul. 'Book Review: Recent Developments and Future Directions in New Testament Textual Criticism: Report on a Conference at the University of Edinburgh'. *Journal for the Study of the New Testament* 29, no. 2 (December 2006): 229–35. https://doi.org/10.1177/0142064X06072929.
- Gäbel, Georg, Annette Hüffmeier, Gerd Mink, Holger Strutwolf, and Klaus Wachtel. 'The CBGM Applied to Variants from Acts: Methodological Background'. *TC – A Journal of Biblical Textual Criticism* 20 (2015). http://rosetta.reltech.org/TC/v20/TC-2015-CBGM-background.pdf.
- 62. Gabriel, Edgar, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra, Jeffrey M. Squyres, Vishal Sahay, et al. 'Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation'. In *Proceedings, 11th European PVM/MPI Users' Group Meeting*, 97–104. Budapest, Hungary, 2004.
- 63. Gansner, Emden R., and Stephen C. North. 'An Open Graph Visualization System and Its Applications to Software Engineering'. *Software Practice and Experience* 30, no. 11 (2000): 1203–1233.
- 64. Gelman, Andrew, and Donald B. Rubin. 'Inference from Iterative Simulation Using Multiple Sequences'. *Statistical Science* 7, no. 4 (November 1992): 457–72. https://doi.org/10.1214/ss/1177011136.
- 65. Goodrich, Richard J., and Albert L. Lukaszewski, eds. *A Reader's Greek New Testament*. 2nd ed. Grand Rapids, Mich: Zondervan, 2007.
- 66. Gregory, Caspar René. Textkritik des Neuen Testaments. Vol. 1. Hinrichs: Leipzig, 1900.
- 67. Gurry, Peter J. A Critical Examination of the Coherence-Based Genealogical Method in New Testament Textual Criticism. Leiden: Brill, 2017.
- Halonen, Marko. 'Computer-Assisted Stemmatology in Studying Paulus Juusten's 16th-Century Chronicle *Catalogus et Ordinaria Successio Episcoporum Finlandensium*'. *Digital Scholarship in the Humanities* 31, no. 3 (September 2016): 578–93. https://doi.org/10.1093/llc/fqv004.
- Haugen, Odd Einar. 'The *Silva Portentosa* of Stemmatology: Bifurcation in the Recension of Old Norse Manuscripts'. *Digital Scholarship in the Humanities* 31, no. 3 (September 2016): 594–610. https://doi.org/10.1093/llc/fqv002.
- 70. Head, Peter. 'Editio Critica Maior: An Introduction and Assessment'. *Tyndale Bulletin* 61, no. 1 (2010): 131–152.
- 71. Heikkilä, Tuomas, and Teemu Roos. 'Thematic Section on Studia Stemmatologica'. *Digital Scholarship in the Humanities* 31, no. 3 (September 2016): 520–22. https://doi.org/10.1093/llc/fqw038.
- 72. Holmes, Michael W. *The Greek New Testament. SBL Edition*. SBL:Atlanta and Logos Bible Software:Bellingham, 2010.
- Houghton, Hugh A. G. 'Recent Developments in New Testament Textual Criticism'. *Early Christianity* 2, no. 2 (1 May 2011): 245–68. https://doi.org/10.1628/186870311795777463.

- 74. ——. The Latin New Testament. Oxford: OUP, 2016.
- 75. Houghton, Hugh A. G., and David C. Parker. *Textual Variation: Theological and Social Tendencies?* New Jersey: Gorgias Press, 2008.
- 76. Houghton, Hugh A. G., and Catherine J. Smith. 'Digital Editing and the Greek New Testament'. In *Ancient Worlds in Digital Culture*, 110–127. Digital Biblical Studies. Brill, 2016.
- 77. Howe, Christopher J., Adrian C Barbrook, Linne R. Mooney, and Peter Robinson. 'Parallels Between Stemmatology and Phylogenetics'. In *Studies in Stemmatology II*, edited by Pieter van Reenen, August den Hollander, and Margot van Mulken, 3–11. John Benjamins, 2004.
- Howe, Christopher J., Adrian C. Barbrook, Matthew Spencer, Peter Robinson, Barbara Bordalejo, and Linne R. Mooney. 'Manuscript Evolution'. *Trends in Genetics* 17, no. 3 (March 2001): 147–52. https://doi.org/10.1016/S0168-9525(00)02210-1.
- Howe, Christopher J., Ruth Connolly, and Heather F. Windram. 'Responding to Criticisms of Phylogenetic Methods in Stemmatology'. *SEL Studies in English Literature 1500-1900* 52, no. 1 (2012): 51–67. https://doi.org/10.1353/sel.2012.0008.
- 80. Howe, Christopher J., and Heather F. Windram. 'Phylomemetics—Evolutionary Analysis beyond the Gene'. *PLoS Biology* 9, no. 5 (31 May 2011): e1001069. https://doi.org/10.1371/journal.pbio.1001069.
- Huelsenbeck, John P., and Fredrik Ronquist. 'MRBAYES: Bayesian Inference of Phylogenetic Trees'. *Bioinformatics* 17, no. 8 (1 August 2001): 754–55. https://doi.org/10.1093/bioinformatics/17.8.754.
- Hüffmeier, Annette. 'The CBGM Applied to Variants from Acts'. TC A Journal of Biblical Textual Criticism 20 (2015). http://rosetta.reltech.org/TC/v20/TC-2015-CBGM-H%C3%BCffmeier.pdf.
- 83. Hurtado, Larry. 'Muenster'. *Larry Hurtado's Blog: Comments on the New Testament and Early Christianity (and Related Matters)* (blog). Accessed 6 March 2018. https://larryhurtado.wordpress.com/2010/07/05/muenster/.
- Huson, Daniel H., and David Bryant. 'Application of Phylogenetic Networks in Evolutionary Studies'. *Molecular Biology and Evolution* 23, no. 2 (1 February 2006): 254–67. https://doi.org/10.1093/molbev/msj030.
- IGNTP. 'IGNTP Guidelines for XML Transcriptions of New Testament Manuscripts Using the TEI P5', 2012. http://epapers.bham.ac.uk/1656/10/IGNTP_XML_guidelines_1-3.pdf.
- 86. ——. 'Online Electronic Edition of John'. Accessed 16 August 2018. http://www.iohannes.com/transcriptions/.
- 87. INTF. "Genealogical Queries" v1 (for the 1st Edition of ECM Vol IV)'. Accessed 25 October 2013. http://intf.uni-muenster.de/cbgm/GenQ.html.
- 88. ——. "Genealogical Queries" v2 (for the 2nd Edition of ECM Vol IV)'. Accessed 25 October 2013. http://intf.uni-muenster.de/cbgm2/GenQ.html.

- 89. INTF, and Cologne Center for eHumanities. "Genealogical Queries" Phase 4 (for ECM Vol III)', 2017. http://ntg.cceh.uni-koeln.de/ph4/.
- Jongkind, Dirk. 'On the Nature and Limitations of the Coherence Based Genealogical Method.' In SBL Annual Meeting, 2014. https://www.sblsite.org/meetings/Congresses_Abstracts.aspx?MeetingId=25.
- 91. ——. 'On the Weighing and Counting of Variants: The Coherence Based Genealogical Method, Potential Ancestors and Statistical Significance'. Baltimore, 2013. https://www.sbl-site.org/meetings/Congresses_Abstracts.aspx?MeetingId=23.
- 92. ——. 'Review of "The Erotic Life of Manuscripts: New Testament Textual Criticism and the Biological Sciences", Yii-Jan Lin'. *Journal for the Study of the New Testament* 39, no. 5 (August 2017): 117–18.
- 93. ——. 'Review of "The Textual History of the Greek New Testament", Wachtel, Klaus and Michael Holmes Eds.' *Journal for the Study of the New Testament* 35, no. 5 (2013): 147.
- 94. Kloppenborg, John S., and Judith H. Newman, eds. *Editing the Bible: Assessing the Task Past and Present*. Atlanta: Society of Biblical Literature, 2012. http://www.jstor.org/stable/j.ctt32bzxf.
- 95. Lachmann, Karl. *Novum Testamentum Graece*. Berlin: G. Reimer, 1831. http://archive.org/details/novumtestamentu00lachgoog.
- 96. Lafleur, Didier. 'Which Criteria for Family 13 (f¹³) Manuscripts?' *Novum Testamentum* 54, no. 2 (2012): 105–48.
- 97. Lakner, Clemens, Paul van der Mark, John P. Huelsenbeck, Bret Larget, and Fredrik Ronquist. 'Efficiency of Markov Chain Monte Carlo Tree Proposals in Bayesian Phylogenetics'. *Systematic Biology* 57, no. 1 (February 2008): 86–103. https://doi.org/10.1080/10635150801886156.
- 98. Lee, Arthur. 'Numerical Taxonomy Revisited: John Griffith, Cladistic Analysis and St. Augustine's Quaestiones in Heptateuchum'. *Studia Patristica* XX, Originally delivered at the 10th International Conference of Patristic Studies, Oxford, 1987. (1989): 24–32.
- Levenshtein, V.I. 'Binary Codes Capable of Correcting Deletions, Insertions, and Reversals'. (Russian). English Translation in Soviet Physics Doklady 163, no. 4 (1965): 845–48.
- Lewis, Paul O. 'A Likelihood Approach to Estimating Phylogeny from Discrete Morphological Character Data'. *Systematic Biology* 50, no. 6 (1 November 2001): 913– 25. https://doi.org/10.1080/106351501753462876.
- 101. Lin, Yii-Jan. The Erotic Life of Manuscripts: New Testament Textual Criticism and the Biological Sciences. New York, New York: Oxford University Press, 2016.
- 102. Maas, Paul. Textual Criticism (Translation of Textkritic, 3rd Edn, Leipzig, 1957). Oxford, 1958.

- 103. Macé, C, C Peersman, Riccardo Mazza, J Noret, E Van Mulken, Evert Wattel, Paolo Canettieri, et al. 'Testing Methods on an Artificially Created Textual Tradition'. Macé, Caroline: The Evolution of Texts: Confronting Stemmatological and Genetical Methods; Proceedings of the International Workshop Held in Louvain-La-Neuve on September 1 - 2, 2004, Ist. Ed. e Poligrafici Internazionli, 255-283 (2006), 2006.
- 104. Macé, Caroline, ed. The Evolution of Texts: Confronting Stemmatological and Genetical Methods; Proceedings of the International Workshop Held in Louvain-La Neuve on September 1-2, 2004. Linguistica Computazionale, 24/25. Pisa: Istituti editoriali e poligrafici internazionali, 2006.
- 105. Maddison, David R., David L. Swofford, and Wayne P. Maddison. 'Nexus: An Extensible File Format for Systematic Information'. Edited by David Cannatella. *Systematic Biology* 46, no. 4 (1 December 1997): 590–621. https://doi.org/10.1093/sysbio/46.4.590.
- 106. Matzke, Nick. 'MrBayes Lab (Handout), PRINCIPLES OF PHYLOGENETICS, Integrative Biology 200A'. University of California, Berkeley, 2008. http://ib.berkeley.edu/courses/ib200a/labs/ib200a_lab11_mrbayes.pdf.
- 107. 'Mesquite FAQ'. Accessed 6 March 2018. http://mesquiteproject.wikispaces.com/FAQ.
- 108. Metzger, Bruce Manning. A Textual Commentary on the Greek New Testament. 2nd ed. Stuttgart: Deutsche Bibelgesellschaft, 1994.
- 109. ——. The Text of the New Testament. Its Transmission, Corruption, and Restoration. Oxford: OUP, 1964.
- 110. Mink, Gerd. 'Contamination, Coherence, and Coincidence in Textual Transmission: The Coherence-Based Genealogical Method (CBGM) as a Complement and Corrective to Existing Approaches.' In *The Textual History of the Greek New Testament. Changing Views in Contemporary Research.*, edited by Klaus Wachtel and Michael W. Holmes. Atlanta: SBL, 2011.
- 111. ——. 'Editing and Genealogical Studies: The New Testament'. *Literary and Linguistic Computing* 15 (2000): 51–56.
- 112. ——. 'Eine umfassende Genealogie der neutestamentlichen Überlieferung'. New *Testament Studies* 39 (1993): 481–99.
- 113. ——. 'Guide to "Genealogical Queries", 2008. http://intf.unimuenster.de/cbgm/guide_en.html.
- 114. ——. 'Problems of a Highly Contaminated Tradition: The New Testament Stemmata of Variants as a Source of a Genealogy for Witnesses.' In *Studies in Stemmatology II*, edited by Pieter van Reenen, August den Hollander, and Margot van Mulken, 13–85. Amsterdam; Philadelphia: John Benjamins Pub, 2004.
- 115. ——. 'The Coherence-Based Genealogical Method What Is It About?', 2002. http://www.uni-muenster.de/INTF/Genealogical_method.html.

- 116. ———. 'The Coherence-Based Genealogical Method (CBGM) Introductory Presentation, 1.0'. 2009. http://egora.unimuenster.de/intf/bindata/CBGM_Presentation.zip.
- 117. ——. 'Was verändert sich in der Textkritik durch die Beachtung genealogischer Kohärenz?' In *Recent Developments in Textual Criticism, New Tesament, other Early Christian and Jewish Literature*, edited by Wilhelmus J. C. Weren and Dietrich-Alex Koch, STAR 8:39–68. Assen: Royal can Gorcum, 2003.
- 118. . 'Zur Stemmatisierung neutestamentlicher Handschriften'. In Bericht der Hermann Kunst-Stiftung zur Förderung der neutestamentlichen Textforschung für die Jahre 1979-1981, 110–14. Münster: INTF, 1982.
- 119. Morrill, Michael Bruce. 'A Complete Collation and Analysis of All Greek Manuscripts of John 18'. PhD, University of Birmingham, 2012. http://etheses.bham.ac.uk/3733/.
- 120. Moule, Charles Francis Digby. *An Idiom Book of New Testament Greek*. 2. ed., repr. Cambridge: Univ. Press, 1971.
- 121. 'MrBayes Tutorial, v3.2'. Accessed 4 August 2016. http://mrbayes.sourceforge.net/wiki/index.php/Tutorial_3.2.
- 122. M.W. Robinson, Peter, and Robert O'Hara. 'Report on the Textual Criticism Challenge 1991'. *Bryn Mawr Classical Review* 3 (1992): 331–337.
- 123. 'NTVMR: "New Testament Virtual Manuscript Room". Accessed 17 January 2014. http://ntvmr.uni-muenster.de/en_GB/home.
- 124. O'Hara, Robert, and Peter Robinson. 'Computer-Assisted Methods of Stemmatic Analysis'. *Occasional Papers of the Canterbury Tales Project* 1 (1993): 53–74.
- 125. Parker, David C. An Introduction to New Testament Manuscripts and Their Texts. Cambridge: CUP, 2008.
- 126. ——. Codex Bezae: An Early Christian Manuscript and its Text. Cambridge: CUP, 1992.
- 127. ——. Codex Sinaiticus. London: The British Library, 2010.
- 128. ———. 'Making Editions of the New Testament Today'. In *Jesus, Paul, and Early Christianity: Studies in Honour of Henk Jan de Jonge.*, edited by Harm W. Hollander, Johannes Tromp, and Rieuwerd Buitenwerf. Leiden: Brill, 2008.
- 129. ———. 'New Testament Textual Traditions in Byzantium'. In *The New Testament in Byzantium*, edited by Robert S. Nelson and Derek Krueger. Washington: Dumbarton Oaks Research Library and Collection, 2016.
- 130. ———. 'Review of Alexanderson, Problems in the New Testament: Old Manuscripts and Papyri, the New Genealogical Method (CBGM) and the Editio Critica Maior (ECM)', Unpublished at time of writing.
- 131. ——. *Textual Scholarship and the Making of the New Testament*. Oxford: OUP, 2012.

- 132. ——. 'Through a Screen Darkly: Digital Texts and the New Testament'. Journal for the Study of the New Testament 25, no. 4 (June 2003): 395–411. https://doi.org/10.1177/0142064X0302500401.
- 133. Parker, David C., Klaus Wachtel, Bruce Morrill, and Ulrich Schmid. 'The Selection of Greek Manuscripts to Be Included in the International Greek New Testament Project's Edition of John in the Editio Critica Maior'. In *Studies on the Text of the New Testament and Early Christianity*, 287–328. Brill, 2015. https://doi.org/10.1163/9789004300026_015.
- 134. Perrin Jr. Jac D. 'Family 13 in Saint John's Gospel'. PhD, University of Birmingham, 2012. http://etheses.bham.ac.uk/4482/1/Perrin13PhD.pdf.
- 135. Platnick, Norman I., and H. Don Cameron. 'Cladistic Methods in Textual, Linguistic, and Phylogenetic Analysis'. *Systematic Zoology* 26, no. 4 (1977).
- 136. Porter, Stanley E. *Fundamentals of New Testament Textual Criticism*. Grand Rapids, Michigan: William B. Eerdmans Publishing Company, 2015.
- 137. ——. How We Got the New Testament. Grand Rapids: Baker, 2013.
- 138. Racine, Jean-François, and Thomas C. Geer. 'Analyzing and Categorizing New Testament Greek Manuscripts'. In *The Text of the New Testament in Contemporary Research*, edited by Bart D. Ehrman and Michael W. Holmes, 497–518. Brill, 2012. https://doi.org/10.1163/9789004236554_020.
- 139. Rambaut, Andrew. 'How to Read a Phylogenetic Tree', 2013. http://epidemic.bio.ed.ac.uk/how_to_read_a_phylogeny.
- 140. ——. 'How to Read a Phylogenetic Tree (Text Only)', 2013. https://github.com/rambaut/mol-evo-epi/blob/master/docs/how to read a tree.md.
- 141. Reenen, Pieter van, August den Hollander, and Margot van Mulken, eds. *Studies in Stemmatology II*. Amsterdam: John Benjamins Publishing Company, 2004. https://doi.org/10.1075/z.125.
- 142. Reenen, Pieter van, and Margot van Mulken, eds. *Studies in Stemmatology*. Amsterdam: John Benjamins Publishing Company, 1996. https://doi.org/10.1075/z.79.
- 143. Robinson, Maurice A., and William G. Pierpont, eds. *The New Testament in the Original Greek: Byzantine Textform, 2005.* 1st ed. Southborough, Mass: Chilton Book Pub, 2005.
- 144. Robinson, Peter. 'Computer-Assisted Stemmatic Analysis and "Best-Text" Historical Editing'. In *Studies in Stemmatology*, edited by Pieter van Reenen and Margot van Mulken, 71. Amsterdam: John Benjamins Publishing Company, 1996. https://doi.org/10.1075/z.79.04rob.
- 145. ——. 'Four Rules for the Application of Phylogenetics in the Analysis of Textual Traditions'. *Digital Scholarship in the Humanities* 31, no. 3 (September 2016): 637–51. https://doi.org/10.1093/llc/fqv065.
- 146. Robinson, Peter, and Robert O'Hara. 'Cladistic Analysis of an Old Norse Manuscript Tradition'. *Research in Humanities Computing* 4 (1996): 115–137.

- 147. Ronquist, Fredrik, and Andrew R. Deans. 'Bayesian Phylogenetics and Its Influence on Insect Systematics'. *Annual Review of Entomology* 55, no. 1 (January 2010): 189–206. https://doi.org/10.1146/annurev.ento.54.110807.090529.
- 148. Ronquist, Fredrik, and John P. Huelsenbeck. 'MrBayes 3: Bayesian Phylogenetic Inference under Mixed Models'. *Bioinformatics (Oxford, England)* 19, no. 12 (12 August 2003): 1572–74.
- 149. Roos, Teemu, and Tuomas Heikkilä. 'Evaluating Methods for Computer-Assisted Stemmatology Using Artificial Benchmark Data Sets'. *Literary and Linguistic Computing* 24, no. 4 (1 December 2009): 417–33. https://doi.org/10.1093/llc/fqp002.
- 150. Roos, Teemu, and Yuan Zou. 'Analysis of Textual Variation by Latent Tree Structures', 567–76. IEEE, 2011. https://doi.org/10.1109/ICDM.2011.24.
- Saitou, N., and M. Nei. 'The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees'. *Molecular Biology and Evolution* 4 (1987): 406– 425.
- 152. Semple, Charles, and M. A. Steel. *Phylogenetics*. Oxford lecture series in mathematics and its applications 24. Oxford; New York: Oxford University Press, 2003.
- 153. Soden, Hermann F. von. *Die Schriften des Neuen Testaments*. 6th ed. Göttingen: Vandenhoeck und Ruprecht, 1913.
- 154. Spencer, Matthew, Barbara Bordalejo, Peter Robinson, and Christopher J. Howe. 'How Reliable Is a Stemma? An Analysis of Chaucer's Miller's Tale'. *Literary and Linguistic Computing* 18, no. 4 (1 November 2003): 407–22. https://doi.org/10.1093/llc/18.4.407.
- 155. Spencer, Matthew, Barbara Bordalejo, Li-San Wang, Adrian C. Barbrook, Linne R. Mooney, Peter Robinson, Tandy Warnow, and Christopher J. Howe. 'Analyzing the Order of Items in Manuscripts of "The Canterbury Tales". *Computers and the Humanities* 37, no. 1 (2003): 97–109.
- 156. Spencer, Matthew, Elizabeth A Davidson, Adrian C Barbrook, and Christopher J. Howe. 'Phylogenetics of Artificial Manuscripts'. *Journal of Theoretical Biology* 227, no. 4 (April 2004): 503–11. https://doi.org/10.1016/j.jtbi.2003.11.022.
- 157. Spencer, Matthew, Klaus Wachtel, and Christopher J. Howe. 'Representing Multiple Pathways of Textual Flow in the Greek Manuscripts of the Letter of James Using Reduced Median Networks'. *Computers and the Humanities* 38, no. 1 (2004): 1–14.
- 158. ——. 'The Greek Vorlage of the Syra Harclensis: A Comparative Study on Method in Exploring Textual Genealogy'. *TC A Journal of Biblical Textual Criticism* 7 (August 2002). http://purl.org/TC/vol07/SWH2002/.
- 159. Streeter, B.H. The Four Gospels: A Study of Origins. London: Maxmillan, 1964.
- 160. Strutwolf, Holger. 'Scribal Practices and the Transmission of Biblical Texts: New Insights from the Coherence-Based Genealogical Method'. In *Editing the Bible:* Assessing the Task Past and Present, edited by John S. Kloppenborg and Judith H. Newman. Atlanta: Society of Biblical Literature, 2012. http://www.jstor.org/stable/j.ctt32bzxf.

- 161. Strutwolf, Holger, Georg Gäbel, Annette Hüffmeier, Gerd Mink, and Klaus Wachtel. *Novum Testamentum Graecum. Editio Critica Maior: III Acts.* Stuttgart: Deutsche Bibelgesellschaft, 2017.
- 162. Sutton, Darrell A. 'CAVEAT EMPTOR. Remarks on the Nestle/Aland Novum Testamentum Graece'. *The Ds Commentary on Books*, no. 1 (Autumn/Fall 2014). https://www.researchgate.net/publication/279537091_The_Ds_Commentary_on_Books_1.
- 163. Swofford, David L. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10, 2002.
- 164. Taylor Farnes, Alan. 'Scribal Habits in Selected New Testament Manuscripts, Including Those with Surviving Exemplars'. PhD, University of Birmingham, 2017. http://etheses.bham.ac.uk/8285/1/Farnes18PhD.pdf.
- 165. TC Editors. 'Special Feature: The Coherence-Based Genealogical Method. Editorial Introduction.' *TC A Journal of Biblical Textual Criticism* 20 (2015). http://rosetta.reltech.org/TC/v20/TC-2015-CBGM-intro.pdf.
- 166. Tehrani, Jamshid, Quan Nguyen, and Teemu Roos. 'Oral Fairy Tale or Literary Fake? Investigating the Origins of *Little Red Riding Hood* Using Phylogenetic Network Analysis'. *Digital Scholarship in the Humanities* 31, no. 3 (September 2016): 611–36. https://doi.org/10.1093/llc/fqv016.
- 167. Timpanaro, Sebastiano. *The Genesis of Lachmann's Method*. Edited by Glenn W. Most. Chicago: University of Chicago Press, 2005.
- 168. Tischendorf, Constantin von. Novum Testamentum Graece, Editio octava critica maior. Leipzig, 1869.
- 169. Tregelles, Samuel P. *The Greek New Testament, Edited from Ancient Authorities, with Their Various Readings in Full, and the Latin Version of Jerome*. London:Bagster; Stewart, 1857.
- 170. Wachtel, K., and D.C. Parker. 'The Joint IGNTP/INTF Editio Critica Maior of the Gospel of John: Its Goals and Their Significance for New Testament Scholarship'. Halle, 2005. http://epapers.bham.ac.uk/754/1/2005_SNTS_WachtelParker.pdf.
- 171. Wachtel, Klaus. 'A Stemmatological Approach in Editing the Greek New Testament: The Coherence-Based Genealogical Method'. In *Advances in Digital Scholarly Editing: Papers Presented at the DiXiT Conferences in The Hague, Cologne, and Antwerp*, edited by Peter Boot. Leiden: Slidestone Press, 2017.
- 172. ———. 'Constructing Local Stemmata for the ECM of Acts: Examples'. *TC A Journal of Biblical Textual Criticism* 20 (2015). http://rosetta.reltech.org/TC/v20/TC-2015-CBGM-examples.pdf.
- 173. ——. 'Reconstructing the Initial Text of Acts: Principles and Criteria'. SBL, 2017.
 Slides: https://www.academia.edu/35232745/Reconstructing_the_Initial_Text_of_Acts_Princip les and Criteria -SBL2017.

- 174. ———. 'Textual Changes in NA28', 2013. http://intf.unimuenster.de/NA28/files/TextChangesNA28.pdf.
- 175. ———. 'The Coherence Method and History'. *TC A Journal of Biblical Textual Criticism* 20 (2015). http://rosetta.reltech.org/TC/v20/TC-2015-CBGM-history.pdf.
- 176. ——. 'The Coherence-Based Genealogical Method: A New Way to Reconstruct the Text of the Greek New Testament'. In *Editing the Bible: Assessing the Task Past and Present*, edited by John S. Kloppenborg and Judith H. Newman. Atlanta: Society of Biblical Literature, 2012. http://www.jstor.org/stable/j.ctt32bzxf.
- 177. ———. 'Towards a Global Stemma of the Greek New Testament Textual Tradition: Methodological Approach'. Antwerp, 2016. http://dixit.uni-koeln.de/wpcontent/uploads/wachtel_CBGM_DiXiT2016_2.pdf.
- 178. ——. 'Towards a Redefinition of External Criteria: The Role of Coherence in Assessing the Origin of Variants'. In *Textual Variation: Theological and Social Tendencies?*, edited by Hugh A. G. Houghton and David C. Parker, 6:109–127. Texts and Studies 3. Piscataway: Gorgias Press, 2008.
- 179. Wachtel, Klaus, and Michael W. Holmes, eds. *The Textual History of the Greek New Testament. Changing Views in Contemporary Research*. Atlanta: SBL, 2011.
- Wallace, Daniel B. 'Challenges in New Testament Textual Criticism for the Twenty-First Century'. *Journal of the Evangelical Theological Society* 52, no. 1 (March 2009): 79–100.
- 181. Wasserman, Tommy. 'Criteria for Evaluating Readings in New Testament Textual Criticism'. In *The Text of the New Testament in Contemporary Research*, edited by Bart D. Ehrman and Michael W. Holmes, 579–612. Brill, 2012. https://doi.org/10.1163/9789004236554 022.
- 182. ——. 'Historical and Philological Correlations and the CBGM as Applied to Mark 1:1'. TC – A Journal of Biblical Textual Criticism 20 (2015). http://rosetta.reltech.org/TC/v20/TC-2015-CBGM-Wasserman.pdf.
- 183. ——. 'The Coherence Based Genealogical Method as a Tool for Explaining Textual Changes in the Greek New Testament'. *Novum Testamentum* 57 (2015): 206–218.
- 184. ——. *The Epistle of Jude: Its Text and Transmission*. Stockholm: Almqvist & Wiksell, 2006.
- 185. Wasserman, Tommy, and Peter J. Gurry. *A New Approach to Textual Criticism: An Introduction to the Coherence-Based Genealogical Method*. Resources for Biblical Study, number 80. Atlanta: Stuttgart: SBL Press; Deutsche Bibelgesellschaft, 2017.
- 186. Welsby, Alison S. 'A Textual Study of Family 1 in The Gospel of John.' PhD, University of Birmingham, 2011. http://etheses.bham.ac.uk/3338/1/Welsby12PhD.pdf.
- 187. West, Martin. Textual Criticism and Editorial Technique. Stuttgart: Teubner, 1973.
- 188. Westcott, Brooke Foss, and Fenton J. A. Hort. *The New Testament in the Original Greek*. Cambridge:Macmillan, 1881.

- 189. ——. *The New Testament in the Original Greek, Introduction and Appendix.* Cambridge:Macmillan, 1882.
- 190. Wettlaufer, Ryan D. *No Longer Written: The Use of Conjectural Emendation in the Restoration of the Text of the New Testament, the Epistle of James As a Case Study.* Leiden: Brill, 2013.
- 191. Wisse, Frederik. *The Profile Method for the Classification and Evaluation of Manuscript Evidence, as Applied to the Continuous Greek Text of the Gospel of Luke.* Grand Rapids: Eerdmans, 1982.