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Abstract	

Multimerin-2	is	an	endothelial	specific	extracellular	matrix	protein,	which	

has	 been	 found	 to	 play	 a	 role	 in	 angiogenesis	 and	 tumour	 progression.	

MMRN2	 is	a	 ligand	 for	 the	C-type	 lectin	domain	 family	proteins	CLEC14A,	

CD93	and	CD248.	CLEC14A	and	CD93	bind	to	MMRN2	in	the	same	mapped	

region	MMRN2495-674.	 CLEC14A	 is	 expressed	 in	 the	 vessel	 of	 a	 number	 of	

tumour	 types	 as	 tumour	 endothelial	 marker	 (TEM)	 and	 like	 CD93	 is	

involved	 in	angiogenesis.	 Single	or	double	siRNA-mediated	knockdown	of	

CLEC14A,	 CD93	 and	 MMRN2	 confirmed	 an	 important	 role	 of	 CD93	 in	

sprouting	 angiogenesis	 that	 is	 CLEC14A	 and	 MMRN2	 independent.	

Furthermore,	due	to	the	high	affinity	of	the	binding	of	MMRN2495-674	to	the	

TEM	 CLEC14A,	 it	 has	 been	 exploited	 to	 target	 tumour	 endothelium.	 The	

fragment	 has	 been	 employed	 in	 the	 generation	 of	 a	 Chimeric	 Antigen	

Receptor	 (CAR)	 and	 other	 applications.	 T	 cells	 transduced	 with	 this	

receptor	 were	 activated	 on	 stimulation	 with	 both	 purified	 antigens	 and	

antigens	 expressed	 on	 the	 cell	 surface.	 The	 activation	 of	 T	 cells	 was	

measured	 as	 levels	 of	 IFNγ	 released	 in	 ELISA	 assays.	 Overall,	 this	 work	

sheds	light	on	the	interactions	of	MMRN2	and	two	of	its	receptors	in	in	vitro	

models	of	angiogenesis.		
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1. Introduction 

1.1 Angiogenesis 

 

Angiogenesis describes the growth of new vessels from pre-existing vessels. The 

term angiogenesis is derived from the Greek angeîon and genesis. Angeîon stands 

for vessel and genesis for birth. Angiogenesis occurs in both physiological and 

pathological conditions. For example, in physiology angiogenesis is essential for the 

development of the corpus luteum formation in the ovary and the endometrial 

regeneration during the menstrual cycle. Dysregulated angiogenesis contributes to 

various pathologies including cancer (Carmeliet, 2003).  

 

The result of physiological angiogenesis is a well-structured and functional 

vasculature. It is strictly controlled by gradients of stimulatory and inhibitory factors 

and the coordination of several independent but related processes. Although the 

main steps of neovascularization are similar both in healthy tissues and in pathology 

(e.g. tumours), the resulting vasculature differs greatly. In fact, the pathological 

angiogenic process is driven by an aberrantly high concentration of growth factors 

such as VEGF and the vessels generated are usually extremely unorganised, 

misshaped, tortuous and not very functional (leaky) (Papetti and Herman, 2002). The 

differences are clearly visible as shown in figure 1.1.  

 

The study in physiology and pathology of the mechanisms that regulate angiogenesis 

is important to improve the current therapeutic approaches to either stop or  
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Figure 1.1 Comparison between the vasculature in the tumour and its healthy counterpart 
	
Scanning electro micrographs of corrosion casts of the vasculature of colorectal normal mucosa (a) 
and colorectal carcinoma (b). It is possible to visibly appreciate the clear differences in organisation, 
shape and tortuosity. Within the normal mucosa the vasculature is very well organised, vessels are 
functional and well-shaped. This is completely lost in the vasculature of the tumour counterpart 
(Konerding, Fait and Gaumann, 2001) 
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promote angiogenesis. Whilst in tumours the angiogenic switch is something that 

should be prevented, many efforts to promote this process are being undertaken in 

regenerative medicine (e.g. in post-ischemic tissues) (Aday et al., 2017). 

 

It is well documented that tumours can grow to 1-2 mm3 of size and then not 

develop further. The lack of further growth is thought to be due to the absence of 

perfusion and limited supply of oxygen and nutrients (Holmgren, O’reilly and 

Folkman, 1995; Parangi et al., 1996). Folkman observed that tumours produce 

chemical signals that induce angiogenesis, later known as the angiogenic switch. 

Once perfused, tumour growth and metastasis accelerates (Folkman, 1971; Hanahan 

and Weinberg, 2011). 

 

Tumour angiogenesis has been described in five stages. Initially, quiescent 

endothelial cells are activated by the angiogenic stimulus, for example the vascular 

endothelial growth factor (VEGF).  
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Figure 1.2 Schematic representation of the main steps in sprouting angiogenesis  
 
A. The angiogenic stimuli activate the endothelial cells (red). B. In consequence of the stimulus, 
pericytes (in white) start detaching, while the basement membrane and extra cellular are gradually 
degraded. C. This allows endothelial cells to migrate through the perivascular region. D Stalk cells 
start proliferating following the migrating tip cells. E The sprout is drawn to the proximity of another 
sprout. The fusion of the sprouts leads to the formation of new vessels. Following, the perivascular 
cells are recruited to shape and stabilize the newly formed vessel. 
  

Endothelial	cells	
Pericytes	Pericytes	 Pericytes	detachment	

Tip	Stalk	

E	

C	 D	

A	 B	

Angiogenic	
s;muli	

(e.g.	VEGF)	
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Secondly, the structure of the existing vessels starts to disassemble and the 

endothelial cell-cell contacts are destabilised as a result of detachment of the 

perivascular cells and degradation of basement membrane and the extracellular 

matrix (ECM) by matrix metalloproteinases (MMPs). Thirdly, endothelial tip cells 

migrate to the angiogenic stimulus. Fourthly, the proliferation of stalk cells behind 

the tip cells extends the sprout while migrating. Endothelial cells change morphology 

and adhere to each other to form a lumen. Finally, new vessel networks are 

generated by contact and fusion of angiogenic sprouts via anastomosis. Lastly, the 

secretion of platelet derived growth factor-B (PDGFB) by endothelial cells leads to 

the recruitment of perivascular cells and to the maturation of the vessels 

(Bjarnegard, 2004) (Figure 1.2).  

 

In angiogenesis, tip cells follow a VEGF concentration gradient. Thus, blocking VEGF-

A signalling stopped tip cell migration and sprouting (Gerhardt et al., 2003). More 

recent findings also showed that VEGF-A is stimulating properly spaced branching 

and sprouting due to the activity of Dll4/Notch signalling. Downstream signalling of 

the VEGF-A/VEGFR2 pathway means that tip cells express elevated levels of Delta 

like ligand 4 (Dll4). This prevents adjacent cells to becoming tip cells (Hellström et al., 

2007). Dll4 is not the only notch ligand to play a role in the balance between tip and 

stalk cells. In fact, branching and sprouting is an extremely dynamic process and 

endothelial cells constantly compete for the tip cell position (Jakobsson et al., 2010).  

It is known that additional mechanisms to sprouting exist by which new blood 

vessels are formed. For example, blood vessels are able to split giving rise to 

daughter vessels in a process called intussusception.   
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Figure 1.3 Alternative processes to form vessels  
 
There are various known methods of blood vessel formation both in healthy tissues and in tumours. 
A. Cancer cells (green cells) can hijack the existing vasculature in a process called vessel co-option. B. 
Tumour cells can exert endothelial like functions in a process called vascular mimicry. C. Existing 
healthy or tumoral vessels can split (intussusception) generating new vessels. D. Cancer stem cell 
(orange cells) can differentiate in endothelial-like cells. E. Recruitment and differentiation of 
endothelial cell progenitors (blue cells) into endothelial cells (Post-natal vasculogenesis). (Adapted 
from Carmeliet and Jain, 2011). Endothelial cells are represented in red and pericytes in white. 
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Tumours have been shown to hijack the existing vasculature in a process called 

vessel co-option. In the same context, tumours cells are able to acquire endothelial-

like properties and to form vascular-patterned networks. This process is named 

vascular mimicry. Finally, cancer stem cells can differentiate to tumour endothelium. 

Unlike normal tissues, in which vasculature can be formed by vasculogenesis, 

sprouting or intussusception, tumours can generate new blood vessels using any of 

the methods described and reviewed in (Carmeliet and Jain, 2011) (Figure 1.3). 

 

1.2 Anti-angiogenic therapy 

 

Tumour angiogenesis and its role in tumour progression and metastasis led to its 

inclusion as one of the hallmarks of cancer by Hanahan and Weinberg (Hanahan and 

Weinberg, 2000). A major effort has been made to understand angiogenesis at the 

molecular level, trying to dissect the pathways involved and design possible 

therapeutic strategies in order to block tumour growth and metastasis.  

 

Most ant-angiogenic strategies have focused on blocking the VEGF/VEGFR signalling 

pathway. These studies led to the generation of a monoclonal antibody to vascular 

endothelial growth factor (VEGF), named Bevacizumab. Bevacizumab in combination 

with chemotherapy gave 5 months increased survival in metastatic colorectal cancer 

(Hurwitz et al., 2004). Following the approval of Avastin (the commercial name of 

Bevacizumab), Sunitinib, a VEGFR2 kinase inhibitor was approved for metastatic 

renal and gastrointestinal stromal cancer (Roskoski, 2007). The multikinase inhibitor 
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Sorafenib, originally discovered for its inhibition of the Raf kinase was also shown to 

be anti-angiogenic (Wilhelm et al., 2008).  

 

Blockade of VEGF presents various obstacles of which the main one is acquired 

resistance. It was observed that tumours are able to adapt upon treatment with 

VEGF blockers and switch to other pro-angiogenic growth factors such as fibroblast 

growth factor-2 (FGF2) or angiopoietin-2 (Ang2) (Casanovas et al., 2005; Rigamonti 

et al., 2014).  Another important aspect of prolonged VEGF blockade that has been 

elucidated in different tumour models is the promotion of invasive and metastatic 

cancer phenotypes (Ebos et al., 2009; Pàez-Ribes et al., 2009; Wragg, Heath and 

Bicknell, 2017). It has also been observed in a preclinical study in glioblastoma that 

systemic anti-VEGF therapy results in prolonged survival due to increased vascular 

co-option (Rubenstein et al., 2000). VEGF was reported to inhibit invasion and 

mesenchymal transition in glioblastoma cells. This effect is achieved by recruiting at 

the newly described heterodimer VEGFR2/MET the tyrosine protein phosphatase B1 

(PTP1B), resulting in the reduction of MET phosphorylation and cell migration. 

Consequently, upon VEGF-blockage the activity of MET was increased independently 

from the oxygen levels. In the frame of the same study, it was also shown the 

beneficial effects of the concomitant blockage of MET together with VEGF.  This 

approach was able to prevent the mesenchymal transition as well as invasion 

prompted by anti-VEGF treatment, leading to an increased survival (Lu et al., 2012). 
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1.2.1 Evaluation of preclinical models for anti-angiogenic therapy 

	
Considering the exciting results that pre-clinical studies had shown regarding anti-

angiogenic therapies, it was surprising that this translated poorly in the clinic. Over 

the years, it became clear that many of the preclinical models studied were 

inadequate. In fact, most of the reports showed efficacy of different angiogenic 

drugs in subcutaneous tumour models (Kerbel et al., 2013). These models are fairly 

easy to set up and fairly consistent, nevertheless, there are problems associated with 

such models. The cell lines employed in these models are characterised by a rapid 

growth, which does not recapitulate the much slower growth of human cancers. This 

makes them much more sensitive to chemotherapies. Another characteristic that 

should be considered when evaluating anti-angiogenic agents, as well as 

chemotherapeutic drugs, in these models is that it is still unclear whether the 

response of ectopic tumours is comparable to tumours growing orthotopically. For 

example, tumours growing subcutaneously are highly angiogenic and efficacies seen 

with anti-angiogenic agents may be exaggerated (Kerbel et al., 2013). One important 

consideration is the finding that tumour cells can grow by non-angiogenic growth 

and in fact can hijack normal blood vessels in highly vascularised organs such as the 

lung and liver amongst others (Donnem et al., 2018). Importantly, it has been shown 

that when the anti-angiogenic drug sorafenib is used on orthotopic models of liver 

cancer in mice, the tumours initially respond but then become resistant (Kuczynski 

and Kerbel, 2016). This resistance mechanism was due to the tumour cells co-opting 

the normal liver vasculature and is likely a contributing factor in both intrinsic and 

acquired resistance to anti-angiogenic drugs in the clinic. Furthermore, a 
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fundamental difference between these preclinical models and the clinical testing is 

that, usually patients have undergone and progressed under one or more therapies 

to which their tumours have become resistant. Finally, Phase III clinical trial patients 

usually present advanced metastatic disease in multiple organ sites and these simple 

subcutaneous implantation models fail to recapitulate metastatic disease (Francia et 

al., 2011). Due to these considerations, it has become more common to employ 

subcutaneous tumour models as first indication of activity of a specific drug, but 

more advanced models, which include orthotopic and genetically engineered mouse 

models, to evaluate the efficacy in a more reliable way are necessary. Furthermore, 

models in which primary subcutaneous tumours are resected were found to develop 

advanced multiple metastases. This can give an indication of the efficacy of the drugs 

in a metastatic model. It has been demonstrated that previously pre-clinically 

successful drugs that failed to improve standard care in clinical trial were not 

effective on early or late stage breast cancer metastasis (Francia et al., 2011). 

 

1.2.2 Targeting pro-angiogenic protein-protein interactions 

 

Existing anti-angiogenesis therapies have been less successful than expected and 

have promoted the search for alternatives due to acquired resistance and cases of 

increased metastasis in different pre-clinical tumour models (Casanovas et al., 2005; 

Ebos et al., 2009; Pàez-Ribes et al., 2009). One alternative is to block other pro-

angiogenic protein-protein interactions that are known to be critical. To effectively 

block the interaction between two proteins different means can be employed. 
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Anti-angiogenic agents include those that block FGF2-FGFR interaction. For example, 

an FGF trap comprising the extracellular domain (ECD) of FGFR2 fused to an Fc-tag 

sequesters the growth factor preventing binding to the receptor. This reduced the 

formation of pancreatic tumours in a spontaneous tumour model (Compagni et al., 

2000). Another attempt to disrupt this interaction was the generation of a 

monoclonal antibody specific for FGF2, which has shown efficacy alone or in 

combination with anti-VEGF therapy in preclinical studies (Wang et al., 2012). A 

different approach was taken for the inhibition of the interaction between Ang1 and 

Ang2 with the Tie2 receptor. Trebananib is a peptide that prevents the binding of the 

two ligands to the receptor and retarded tumour growth in colorectal xenografts in 

mice (Oliner et al., 2004).  

 

1.2.3 Vessel normalization 

 

Blood vessels usually form a very organised, hierarchical and functional network 

supported by the presence of perivascular cells such as pericytes. The 

malfunctioning of this network might be detrimental for all the tissues, which strictly 

depend on the oxygen and nutrients provided. For this reason, the generation of 

new blood vessels plays an important role in healthy human development. In a 

number of human diseases, the angiogenic process happens in a dysregulated way 

and solid tumours represent a perfect example. As already mentioned, tumour 

vessels are abnormal and chaotic, leading to aberrations in the local blood flow and 

oxygenation (Carmeliet, 2003). It is known that hypoxia in tumours is able to reduce 

the tumour cell sensitivity to radiation and chemotherapy (Teicher, 1996) and that 
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due to the leaky nature of these vessels, chemotherapeutic agents struggle to reach 

the target. This contributes to tumour growth and the metastatic potential but 

reduces the response to cytotoxic therapies. As anti-angiogenic therapy so far has 

not proven to be as effective as preclinical studies suggested, Jain and colleagues 

proposed a different approach, which requires the normalisation of the tumour 

vessels. According to this hypothesis, instead of attempting to obliterate the 

aberrant vessels, the use of anti-angiogenic therapy should be aimed to reverting the 

abnormal structure and function of the vessels, re-establishing a more normal state. 

The vascular normalisation hypothesis entails that direct or indirect antiangiogenic 

therapy tips the ratio between pro- and antiangiogenic factors back to a more 

equilibrated state.   

Preclinical studies shed light on possible flaws of this hypothesis. Many genetics 

studies have shown quite a rather stable normalisation of the vessels and an 

improvement in the efficacy of chemo and radiotherapy (Mazzone et al., 2009; Leite 

de Oliveira et al., 2012), on the other hand studies testing the effects of drugs have 

shown the presence of a “normalisation window”. In these latter studies, it has been 

shown that the normalisation of the vessels lasts about 1-2 days but, eventually, the 

features of the normalisation are lost (Goel, Wong and Jain, 2012). This effect might 

be due to an excessive or prolonged dosage of the anti-angiogenic agents, resulting 

in the skew of the balance towards the anti-angiogenic factors and hence towards 

vascular regression. It is still unclear if it is possible to replicate the phenotype 

observed in the genetic studies with pharmacological agents and considerable 

optimisation is needed to implement this type of approach in the clinic.  
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1.3 Tumour endothelial markers 

 

It is known that tumour vasculature differs from healthy vasculature due to the 

different environment (Neri and Bicknell, 2010). The acidic and hypoxic environment 

in combination with the poor blood flow and the lack of nutrients imprint in the 

tumour blood vessels a different gene expression pattern, this is unique and differs 

from the one that is observed in healthy tissues.  Moreover, the organisational and 

structural changes of the two types of vasculatures can be visually depicted as 

shown by Konerding and colleagues when comparing normal and tumour vascular of 

the colon (Konerding, Fait and Gaumann, 2001). For these reasons, vascular biology 

has focused on the identification of these genetic differences. The clarification of 

these differences opens up the possibility to develop more selective anti-cancer 

drugs. Various studies have been published exploiting different approaches to 

identify which genes are differentially expressed in health and disease. The 

investigation on tumour endothelial markers (TEMs) started by employing 

subtractive cDNA analysis methodologies (Wyder et al., 2000). One of the main and 

most important contributions to this type of investigation has been a study using a 

serial analysis of gene expression (SAGE) to determine which genes were 

differentially expressed in vessels of colorectal cancer compared with the healthy 

colon (St Croix et al., 2000). Alternatively, a bioinformatics approach was used with 

the aim to discover TEMs exploiting the availability of an increasing number of 

transcriptomes of solid tumours. Indeed, a subtractive algorithm was applied to the 

sequence tag expression data to identify new tumour endothelial markers 

(Huminiecki and Bicknell, 2000). Later attempts used microarray platforms, 
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comparing tumour endothelial cells with healthy tissue counterparts including 

various cancer types, e.g. lung, colorectal and renal cell carcinoma (Zhuang et al., 

2015; Ferguson et al., 2016; Wragg et al., 2016). These latter studies identified and 

validated GRIN2D in colorectal cancer and MCAM and LAMA4 in renal cell carcinoma 

as new tumour endothelial markers. Furthermore proteomics studies were able to 

classify Annexin A1 and CD276 as novel TEMs (Oh et al., 2004; Mesri et al., 2013).  

 

Altogether the output of these studies is a list of genes preferentially or uniquely 

expressed by tumour endothelium (a so-called signature). An experimental 

validation is needed to confirm the expression at the protein level of the potential 

TEM and also its absence in tissues other than tumour endothelium. Finally, for a 

tumour endothelial marker to be exploited as target, the protein should have a 

targetable extracellular portion (Neri and Bicknell, 2010). 

 

So far these and other studies have led to the conclusion that it is possible to clearly 

determine the differences between the healthy and tumour endothelium (St Croix et 

al., 2000; Mura et al., 2012; X. Zhuang et al., 2015; Ferguson et al., 2016; Wragg et 

al., 2016). In addition, it has become clear that there is not a global pattern of 

markers for all the tumours. In other words, the targeting of TEMs against solid 

tumours should be evaluated and design for each specific tumour setting and a 

generic approach against all the tumour types is unlikely to be possible.  
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1.3.1 Vascular targeting  

 

It has become increasingly clear that tumour endothelium plays a key role in tumour 

development and anti-angiogenic therapy has not been the only attempt to exploit 

this tumour compartment. In fact, the discovery of the first tumour endothelial 

markers prompted a new line of research that aimed to develop potential 

therapeutic tools in order to target not the tumour, but its blood supply. This 

approach is, in theory, a better strategy than inhibiting angiogenesis, because it does 

not rely on blocking a specific pathway. In fact, it effectively targets and kill tumour 

endothelial cells expressing a specific marker, so avoiding the acquired resistance 

that targeting tumour endothelium showed in clinical testing, due to alternative 

pathways. 

 

As previously explained, anti-angiogenic therapy prevents the formation of new 

blood vessels blocking angiogenesis. In contrast, vascular targeting aims to deliver 

therapeutics and kill existing tumour vessels with the aim of starving the tumour to 

death. Furthermore, targeting the endothelium is considered a particularly appealing 

strategy against cancer, due to its high genetic stability and the fact that tumours 

rely on new blood vessels to sustain growth and invasion. However, with the advent 

of single-cell genetic analysis the paradigm of the genetic stability of the 

endothelium may need to be reconsidered (Carmeliet, Gordon Angiogenesis 

Conference 2017). Various strategies have been used to target TEMs. Antibodies 

conjugated with radionuclide or drugs/toxins and vaccination are the main 

approaches. Nevertheless, the application of alternative strategies has become more 
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common.  Among others one of the most notable is the engineering of T cells with a 

Chimeric Antigen Receptor (CAR).  

 

1.3.1.1 Antibody radionuclide and drug conjugates 

 

Monoclonal antibodies are a class of molecule, which can be raised quickly and 

potentially against any type of antigen. This makes them particularly interesting in 

order to target specific antigens, which are expressed on the surface of the cell. 

Although the intact form of the antibodies, IgG format, is the most commonly 

employed, many other smaller versions of antibodies, such as Fab or ScFv, are 

increasingly considered for applications in pharmacodelivery (Neri and Bicknell, 

2010). They are a versatile tool used for delivery strategies and can easily be 

conjugated to either radionuclides or cytotoxic drugs (Carter and Senter, 2008; 

Sharkey and Goldenberg, 2008).  

 

There are a number of TEMs, which have been extensively studied so far and have 

been used as targets exploiting different approaches. One the most studied TEMs is 

an alternatively spliced variant of fibronectin, the extra-domain B (EDB) that can be 

found abundant in tumour neo-vascular structures and it is usually absent from adult 

tissues (Neri and Bicknell, 2010). Various types of antibodies have been developed 

against this domain, such as a full immunoglobulin G (IgG), a single chain antibody 

(ScFv) and small immunoprotein (SIP). The comparison among those led to the 

conclusion that the SIP version was preferred for conjugation with iodine (131I) and 

the result was named radretumab. This antibody has shown to be well tolerated and 
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positive results were obtained in treating patients with lymphoma and brain 

metastasis of different types of cancers (Poli et al., 2013). Another example is one 

using the antibody A8 conjugated with 131I (131I-A8) against the neo angiogenic 

marker endoglin that showed activity on hepatocellular carcinoma allowing also non-

invasive fluorescence imaging (Duan et al., 2014).  

 

Alternatively, antibodies can be conjugated to a cytotoxic drug instead of a 

radionuclide. Antibody Drug Conjugates (ADCs) to be effective need to be released 

for their activation, which commonly happens after internalisation into the target 

cells. For this reason, only specific targets that are internalised upon binding of the 

antibody are eligible for developing this type of therapeutic approach. There is an 

increasing amount of data to date regarding ADCs, even though few have developed 

into the clinic (Gerber, Senter and Grewal, 2009). Other important aspects, which are 

fundamental for this therapeutic approach, are the target expression, the linker used 

and the type of drug chosen. Indeed, ADCs are ideally used when the target is 

expressed at high level and does not present great heterogeneity. Moreover, the 

shedding of the target should be limited in order to avoid the binding of the 

antibody in the circulation. Finally, the linker and the drug should be designed to 

promote the action on site of the ADCs. It was also observed that the bystander 

effect can influence the off-target systemic toxicity of the ADCs and it should be 

taken into account when evaluating the efficacy of the newly designed drugs 

(Diamantis and Banerji, 2016). Various already approved monoclonal antibodies are 

now under study as ADCs. Interestingly, it is possible to identify a few attempts of 

ADCs targeting the endothelium or the tumour stroma. For example, a pre-clinical 
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study showed the efficacy of delivering TNFα to the alternatively spliced variant EDB 

or EDA of fibronectin in combination with doxorubicin (Hemmerle et al., 2013). This 

was achieved by conjugating TNFα with either L19 or L8 antibodies creating an 

immunecytokine; complete eradication and vaccination against the sarcomas were 

obtained in almost all the mice treated (Hemmerle et al., 2013). Another study 

showed the increased efficacy and the reduced toxicity of a targeted delivery of 

arsenic-trioxide As203 with an antibody against VEGFR2 compared to the drug alone 

in hepatocellular carcinoma (Xiangbao et al., 2014). A more recent study showed 

promising results in a variety of preclinical tumour models targeting CD276, which is 

both expressed in cancer cells and tumour-associated endothelial cells, with 

monomethyl auristatin E (MMAE)- and pyrrolobenzodiazepine (PBD)-linked ADCs 

(Seaman et al., 2017). 

 

So far, three ADCs have been licenced for cancer treatment, but after a decade from 

approval one of those, Mylotarg1, gemtuzumab ozogamicin was withdrawn from the 

market due to a lack of effect on the overall survival (Diamantis and Banerji, 2016). 

Two other ADCs have been recently licensed and are currently in use for cancer 

treatment. One is ado-trastuzumab-emtansine (T-DM1 Kadcyla) for the treatment of 

breast cancer in HER2-positive patients and Brentuximab vedotin for Hodgkin’s 

Lymphoma (Diamantis and Banerji, 2016). Only ADC’s against cancer cells have been 

approved so far and they showed improvement in overall survival and had a positive 

impact in cancer treatment. Nevertheless, it has been observed resistance in the 

treatment of breast cancer with T-DM1 and a recent study showed the possible 

mechanism in vitro (Li et al., 2018). 
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1.3.1.2 Vaccines and the tumour vasculature 

 

Anti-angiogenic therapy and anti-vascular therapy are not the only two approaches, 

which have been used in an attempt to intervene with the endothelium to stop 

tumour growth. In fact, examples of vaccination against the tumour vasculature and 

the up-regulated markers of angiogenesis are progressively increasing. The main aim 

of this approach is to raise the immune system against the unique markers of 

tumour endothelium, avoiding the cross-reaction with the healthy endothelium to 

exclude any possible autoimmune reaction. One of the advantages of vaccination in 

comparison with the other strategies is that, hypothetically, it should overcome the 

above-described side effects and the resistance. Moreover, the vaccination will raise 

a polyclonal antibody response, which display a wider neutralising action of the 

antigen when compared with the monoclonal counterpart. On the other hand, a 

possible relevant obstacle to a cancer vaccine is to raise an efficient response in 

cancer patients entering phase I clinical trials, whose immune system is impaired 

from chemo and radiotherapy. Additionally, the tolerance for self-antigens 

constitutes a major problem to overcome in order to stimulate an effective immune 

response (Wagner et al., 2016). 

 

To date the vaccines developed are either against a specific tumour-endothelium-

associated antigen or polyvalent, generated using the whole endothelial cells or 

isolated proteins from endothelial cell membranes. Based on the knowledge of the 

differences between healthy and tumour endothelium, a variety of vaccines against 

the most known proteins involved in angiogenesis or Tumour Endothelial Markers 
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(TEMs) have been developed. The vaccine CIGB-247 designed to raise immunity 

against a human VEGF variant molecule represents an example of the efficacy of this 

approach. The employment of CIGB-247 in a phase I clinical study showed promising 

immunogenicity and also no abnormality in hematopoiesis, in which VEGF is critical. 

From this study it is possible to conclude that immunity against self-antigens is 

achievable without triggering an autoimmune response (Gavilondo et al., 2014).  

 

More recently, other studies have described the possibility of raising the immune 

system against tumour endothelial markers with vaccines composed by the 

extracellular domain (ECD) of the transmembrane proteins studied fused with an 

hFc-tag in mice. Both of the studies have shown an effective humoral response upon 

immunisation with Robo4 or GRIN2D and the subsequent reduction in tumour 

growth (Zhuang et al., 2015; Ferguson et al., 2016). Finally, a technique has been 

developed and studied in the preclinical setting of a vaccine consisting of placenta-

derived endothelial cells (ValloVaxTM). The results of the study showed inhibition of 

tumour growth in different tumour models in vivo and also an effect on lung 

metastasis (Ichim et al., 2015). 

 

From these studies and others in the literature, it is possible to conclude that 

vaccines constitute a promising tool for cancer treatment. 
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1.4. The adaptive immune system and immune evasion in cancer 

 

T lymphocytes, along with B lymphocytes, are a part of the adaptive immune 

response and are able to respond to stimuli with great specificity. In fact, these cells 

are able to recognize a vast repertoire of ligands through unique T cell receptors 

(TCR), which are generated by a process of somatic recombination, called V(D)J 

recombination. Theoretically the outcomes of this process can reach a number of 

different TCR sequence combinations in the order of 1015 (Vrisekoop et al., 2014). 

Hence, considering that in the human body the T cell repertoire is in the order of 

1011, it is clear that each individual carries only a subset of all possible TCRs. 

Nevertheless, the mechanism by which the T cells are selected is clearly not random 

and only an effective repertoire is formed to prevent pathogen persistence and 

spread. So far, various models of selection have been proposed but the full 

mechanism is not yet completely understood (Vrisekoop et al., 2014).  

 

Generally speaking, T cell lymphocytes are an extremely important asset in various 

processes such as inflammation or cancer. T lymphocytes are responsible for the 

recognition and direct CD8+ mediated cytotoxic activity of cellular pathogens. 

Moreover, regulatory CD4+ T cells are also involved in orchestrating other cell types 

of the immune system, such as B cells or macrophages, as well as various different 

processes. As for most of the immune cells, T lymphocytes display an incredible 

plasticity and their phenotype can vary greatly according to the stimuli and the 

microenvironment. Indeed, during cancer progression, CD4+ T cells can display 

various different phenotypes and were originally divided in two subgroups, Th1 and 



	 23	

Th2. From the original dichotomy described, many others T helper (Th) subsets were 

described (Raphael et al., 2015). Each subset of T cells expresses different cytokines 

and receptor patterns, based on a specific genetic program. These subsets are 

shown to be flexible and can change their functional phenotypes in response to the 

environment. Clearly, this plasticity functions at different stages of pathological 

processes, such as cancer and autoimmune diseases, and thus it is extremely 

important.  

 

During cancer progression a Th1/Th17 response is elicited and a tumour is actively 

recognised as non-self. This pro-inflammatory response is mediated by the presence 

of T regulatory cells within the tumour mass, which allows the tumour to grow. At 

latter stages the hypoxic and acidic tumour microenvironment as well as Th2 and T 

regulatory cells contribute to tune the immune system down at the local and global 

level, which also favours the spreading of metastasis. Th2 mediated IL-4 production 

influences macrophages to display a more pro-angiogenic and pro-tumoral 

phenotype (Dunn et al., 2002). Formally, the dynamic interaction between the 

immune system and the tumour has been associated with a concept called “cancer 

immunoediting”, which can be divided in three phases, also known as the three E’s 

(Kim, 2007) (Figure 1.4). During the first phase, known as elimination, innate and 

adaptive immune cells are able to obliterate the tumour cells, keeping the organism 

clear. In this phase the main players are natural killer cells and the IFN-γ released by 

the innate immune cells. This phase ends when an immune-resistant population of 

the tumour appears. Within this population the cells represent tumour variants with 

decreased immunogenicity, becoming resistant to the immune effector cells; this   
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Figure 1.4 Tumour immunoediting  
	
The figure represents the most important steps in tumour immunoediting: elimination, equilibrium 
and escape. Transformed cells becomes immunogenic and are actively recognised by the immune 
system. The activation of the immune system can lead to the total elimination of the transformed 
cells (Elimination). The action of the immune system can lead to the selection of less immunogenic 
cells, which start expanding (Equilibrium). The combination between the low immunogenicity of the 
new clones and the strongly immunosuppressive microenvironment allow the tumour to escape the 
immune system and develop (Escape) adapted from (Schreiber, Old and Smyth, 2011).  
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new phase is called equilibrium. The equilibrium phase can last for years. Eventually, 

when the tumour has developed the proper mechanisms to dodge the action of the 

immune system, the escape phase starts. During this last phase, the tumour is able 

to evade immune detection or destruction by loss of tumour antigens, 

downregulating MHC class I molecules, and by the secretion of inhibitory cytokines 

among others. The microenvironment is able to produce a variety of stimuli, which 

result in the final effect of suppressing the immune system altogether. Moreover, 

some cell types end up being more pro-angiogenic and favour the tumour growth 

and the spread of metastasis. The outcome of this last phase is the suppression of 

the immune system and tumour progression. It has been shown that the reactivation 

of the immune system and stimulation of a Th1 type response, combined with an M1 

type response in macrophages, showed a positive effect in retarding tumour growth 

and, in some cases, eradication of the tumour (Kim, 2007). A feasible approach to 

reactivate the immune system against cancer would be to manipulate the regulatory 

T cells to differentiate in Th17. Nevertheless, this approach could be associated with 

autoimmune disorders.  

 

1.4.1 Chimeric antigen receptor (CAR) modified T cells  

 

Conventional therapies are targeting highly proliferating cells and are not able to 

distinguish between highly replicating malignant cells and highly replicating healthy 

tissues, such as the haematopoietic cells and the epidermis that have high turnover. 

As result, various side effects are connected with standard therapy (Pettitt et al., 

2018). The recent application of monoclonal antibody in cancer therapy was an 
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attempt to selectively target the tumour without affecting healthy tissues and 

reducing side effects (Coulson et al., 2014).   

 

One of the most promising advances regarding highly targeted therapy is 

immunotherapy.  As previously mentioned, adaptive immunity is able to recognise 

newly encountered antigens of bacteria, viruses, parasites, and malignant cells. The 

capacity of the immune system to adapt and selectively target specific antigens is 

unique and unparalleled. Moreover, over the years various techniques have been 

developed to be able to reprogram these cells, in order to display a particular 

specificity. Considering the number of possible variants of the TCR, T cells could be 

reprogrammed against virtually any type of target (Pettitt et al., 2018).  

 

With this aim, in 1989 Gross and colleagues attempted to manipulate T cells with 

chimeric receptors (Gross, Waks and Eshhar, 1989).  Over time, the limitations of this 

technique, such as poor in vivo expansion or persistence after post-infusion, were 

overcome. Indeed, recent reports both from pre-clinical and clinical studies showed 

the potential of this approach for cancer treatment.  

 

Chimeric Antigen Receptors are synthetic receptors, which originally comprised a 

single-chain variable fragment (scFv) to direct the specificity and a CD3ζ domain to 

allow the intracellular signalling of T cells for activation upon antigen binding. Other 

generations of CAR T cells included an additional domain to mimic the co-

stimulation, such as CD28, 4-1BB or OX40 (Maher et al., 2002; Imai et al., 2004; Pulè 
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et al., 2005) (Figure 1.5). Co-stimulation is also present during a physiological TCR 

recognition by antigen presenting cells, in order to fully activate the T cells. 

 

In 1970 it was hypothesised that a T cell requires not only the TCR signalling pathway 

but also another signal from Antigen Presenting Cells (APCs), providing costimulatory 

signals, in order to fully activate.  This model was suggested as a possible mechanism 

by which T cells discriminate self/non self peptide presentation (Bretscher and Cohn, 

1970). In the following years the discovery and characterisation of the CD28 

pathway, supported this theory. In fact, according to this model it is not only the 

binding between the T cell receptor (TCR) with the peptide presented by APCs, but 

also the activation of a costimulatory domain such as CD28 by the B7.1 and B7.2 

ligands on APCs to be important for T cell activation. The expression of CD28 was 

observed in 95% of human CD4+ and in 50% of human CD8+ T lymphocytes and in all 

the murine T cells. Engagement of the CD28 costimulatory domain together with TCR 

activation, showed increased T cell survival, proliferation and differentiation as well 

as IL-2 production (Lenschow, Walunas and Bluestone, 1996).  
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Figure 1.5 Schematic representation of four generation chimeric antigen receptors 
 
A. First generation CAR, carrying only the CD3ζ. B. A costimulatory domain is introduced in the 

second-generation CAR (e.g. CD28, 4-1BB or OX40). C. In third generation CARs two stimulatory 

domains are included. D. The fourth generation of CARs is based on the second-generation constructs 

including gene cassettes for the production of cytokines such as IL-12. This generation of CAR T cells is 

also known by the name “T cell redirected for universal cytokine killing” (TRUCK) cells   
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According to the costimulatory theory and the observations on the effect of the 

costimulation mediated by CD28, in 1998 costimulatory domains were introduced 

also in CAR applications. Initially the CD28 domain was introduced as an 

independent construct named chimeric costimulatory receptor (CCR) and it could 

induce IL-2 production and prolong survival in primary human T cells.  

 
Finney and colleagues were the first to introduce the costimulatory domain within 

the CD3ζ CAR construct. This second generation of CARs showed a greater 

production of IL-2 than CAR T cell only expressing CD3ζ (20-fold greater) (Finney et 

al., 1998). Moreover, it was shown that the position of CD3ζ and CD28 within the 

receptor was important for cell expression.  

 

Since the first introduction of the second generation its superiority was easily 

demonstrable and many in vitro studies showed a greater production of IL2, IFNγ and 

GMCSF when compared with the first generation (Hombach et al., 2001; Haynes et 

al., 2002; Maher et al., 2002). Moreover, it has been demonstrated that CD28 

domain addition to CAR constructs was able to upregulate the anti-apoptotic gene 

Bcl2 in an antigen-specific manner, promoting survival. Other costimulatory domains 

were tested. Hayes and colleagues demonstrated in animal models in vivo that the 

use of second generation CARs resulted in higher proliferation and cytokine 

production as well as in a more efficient tumour eradication than the older 

generation (Haynes et al., 2002). It has been shown that few tumours express the 

costimulatory ligands and this reinforces the importance of costimulatory domains 

within the CAR.  
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CD28 costimulatory pathway is one of the most studied, but many others over the 

years have been discovered and not as well characterised. For what it may concern 

the CAR design, two main other costimulatory domains have been frequently 

employed: OX40 and 41BB (Imai et al., 2004; Pulè et al., 2005). Although many 

research groups are currently working on costimulation, it is still unclear if it is 

possible to identify a single optimal domain.  

 

1.4.2 CAR as promising therapy for B cell malignancies 

 

One of the most impressive applications of the CAR T cell technology is clearly the 

treatment of B cell malignancies (Figure 1.6). In particular, CD19 has been favoured 

for targeting these malignancies both using monoclonal antibodies and 

immunotherapy. CD19 is a marker, which can be found expressed on B cells at 

various stages (e.g. precursors, mature B cells or malignant B cells) (Uckun et al., 

1988). From the first application of CARs against CD19, this technology proved to be 

more effective for cancer treatment than monoclonal antibodies. The use of CAR T 

cells showed the possibility of eradicating the B-cell lineage to achieve regression in 

a lymphoma patient (Kochenderfer et al., 2010). Further, it has been noted that the 

efficiency of the CARs was strongly associated with prior conditioning of the host. In 

other words, patients who were irradiated at the moment of the CAR T cell therapy 

responded consistently better to the treatment.  

 

First trials employing CAR T cells were designed for treating Non-Hodgkin’s 

lymphoma (NHL) such as chronic lymphocytic leukaemia (CLL) patients.  Initially, first 
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generation CARs showed no clinical responses. A direct comparison between first 

and second generation of CAR T cells, using CD28 costimulatory domain, showed 

improved proliferation and persistence in vivo in the presence of the costimulation 

(Savoldo et al., 2011). Although the second-generation CARs showed improvements, 

the clinical outcome was still poor. Indeed, after an initial stabilisation none of the 

patients showed signs of regression (Savoldo et al., 2011). An improved clinical result 

was observed when second generation CAR T cells against CD19 were infused 

together with high doses of IL2 in CLL and lymphoma patients. In fact, out of 8 

patients 5 showed a partial response and 1 patient showed complete response still 

ongoing after 15 months (Kochenderfer et al., 2012). More recently, another clinical 

report showed that the use of a second generation CAR (19-BBz CAR) carrying the 4-

1BB-costimulatory domain in chronic lymphocytic leukaemia (CLL) patients had an 

overall response of 57% (8 of 14) with 4 of the patients in complete remission and 4 

in refractory remission (Porter et al., 2015).  

 

Nevertheless, the most impressive results of the same 19-BBz CAR were obtained 

employing this CD19 specific CAR for treatment of acute lymphoblastic leukaemia (B-

ALL). In fact, in this trial 27 out of 30 patients treated showed a complete response. 

Moreover, 22 patients also showed no minimal residual disease. Consistently, most 

of these patients remained in remission over a follow up of 2-24 months (Maude et 

al., 2014).  A different CAR targeting CD19 (19-28z) showed almost equally positive 

results. On the other hand, the T cells expressing this car were showing a much 

lower persistence (days versus years of the 19-BBz CAR). Nevertheless, most patients 

treated with 19-28z CAR showed complete remission (CR) in this short timeframe 
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(Lee et al., 2015). A more recent clinical trial showed increasing positive outcome for 

patients treated with 19-BBz CAR (Turtle et al., 2016).  

 

However, although the results of the most recent clinical trial were outstanding for 

the treatment of B-cell malignancies, it is important not to overlook the toxicity that 

can arise. The important infusions of activated T cells carry with them a high 

inflammatory response, which can have major side effects. Thus, patients may 

develop cytokine release syndrome (CRS) caused by an overwhelming amount of 

cytokines released in the blood stream from activated immune cells. The immediate 

consequences are reduced blood flow and low oxygen delivered to organs. The 

extent of the CRS usually correlates with a high tumour burden as well as high T cell 

doses. Symptoms for the patients who experience CRS may vary from mild fever to 

life-threating conditions such as multi-organ failure (Maude et al., 2014; Lee et al., 

2015; Turtle et al., 2016). During or after the resolution of CRS, neurotoxicity is 

commonly observed in patients, which can result in symptoms such as confusion, 

delirium or seizures. It is still unclear why patients experience neurotoxicity, and, 

although its transient and reversible nature, a patient died because of the strong 

neurotoxicity that developed (Turtle et al., 2016). 

Finally, due to the CD19 targeting strategies of the mentioned clinical trial, a 

common side effect was B cell aplasia. In fact, CARs targeting CD19 are not able to 

discriminate between precursors, mature or malignant B cells, depleting blindly the 

B-cell population. This condition of aplasia is maintained according to the 

persistence of the CAR T cells infused. 
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Figure 1.6  CAR T cell therapy in the clinic  
	
The diagram represents the main steps for CAR T cell development in the clinic. After leukapheresis, T 

cells are separated by size and activated (Step 1-3). After stimulation T cells are expanded and 

transduced with the CAR construct (Step 4 and 5). T cells are either cryopreserved or re-infused into 

the patient (Step 6 and 7) adapted from (Levine et al., 2017). 
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An indication of poor persistence is the reappearance of the host B cell population. 

This was used to monitor persistence during clinical trials. In figure it is schematically 

shown the typical protocol employed in the clinic for CAR T cell therapy.  

 

1.4.3 Chimeric antigen receptor T cells against solid tumours and their endothelium 

 

Clinical trials on CAR T cells have shed light on the potentiality of CARs in 

haematological diseases, but little is known in solid tumours. Most of the clinical 

trials studying the effect of CAR T cell therapy in solid tumours have not been 

evaluated yet. However, it is possible to delineate various critical points that can 

affect CAR functionality in this setting. Primarily, the choice of the epitope, the CAR 

structure and the doses of CAR T cell to infuse are the starting points for an efficient 

CAR. According to the type of tumour, it is necessary to identify specific targetable 

antigens. The identification of these antigens is without any doubt one of the most 

important issues to the generation of efficient CARs, due to their rarity (D’Aloia et 

al., 2018). A specific splice variant for EGFR (EGFRvIII) has been shown to be a 

promising target due to its limited expression in glioma cells (Sampson et al., 2008). 

Regardless of the target, each CAR T cell therapy should be evaluated in a specific 

manner.  

 

Another fundamental aspect to consider in solid tumours is to evaluate all the 

possible physiological and functional barriers that might impede a correct delivery of 

CAR T cells to the tumour site. In particular, the extravasation, the tumour homing 
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and persistence in a hostile microenvironment are limiting factors for the 

functionality of CARs (D’Aloia et al., 2018).  

 

Targeting epitopes expressed by cancer cells raised a number of problems. An 

efficient infiltration of T cells within the tumour mass is difficult to obtain. Moreover, 

the tumour microenvironment proves to be strongly hostile towards T cells. In fact, 

hypoxia, acidic environment and low nutrients inhibit T cell proliferation and 

cytokines production. In addition, within the tumour mass due to the presence of 

tumour associated macrophages and neutrophils as well as regulatory T cells and 

myeloid derived suppressor cells, the concentration of immunosuppressive cytokines 

such as TGFβ, IL-10, IL-4 or prostaglandin-E2 suppress CAR T cell activity (Sakaguchi 

et al., 2010). New strategies have been implemented to avoid the suppression of 

CAR T cells. In a preclinical model it has been demonstrated that it is possible to 

overcome the TGFβ action within the tumour microenvironment using tumour-

specific cytotoxic T lymphocytes that are expressing a TGFβ dominant negative 

(Bollard et al., 2018). Furthermore, “armored” CAR expressing IL12 have also been 

used to mitigate the hostile microenvironment, enhancing the innate immunity, and 

stimulating recruitment (Pegram et al., 2015).   

 

Finally, to avoid problems related to the barrier constituted by the endothelium and 

the hostile microenvironment, recent reports showed efforts to re-direct CAR T cells 

against the endothelium and not against epitopes expressed by the tumour. One of 

the most notable examples is the CAR designed to target the VEGFR-1 expressing 

cells, namely V-1 CAR. As previously mentioned, the VEGF/VEGFRs pathway has been 
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long exploited for anti-angiogenic therapy, but problems of resistance, due to 

compensatory pathway limited the efficacy of Bevacizumab in the clinic. The 

approach of using modified T cells overcomes the problem, selectively killing VEGFR1 

expressing endothelial cells and not acting on one pathway. Wang and colleagues 

reported an inhibition in tumour formation and growth in a xenograft model in mice, 

mimicking the clinical protocol normally used for transferring of modified T cells 

(Wang et al., 2013). Moreover, it is shown that V1- CAR T cells have a strong anti-

angiogenic effect in vitro. Essentially targeting the tumour vasculature environment 

constitutes a strategy to disrupt newly formed vessels and impede tumour growth 

without the necessity for T cells to infiltrate the tumour.  

 

1.5 C-type lectin domain group 14 family 

 

 C-type lectin-like domains (CTLDs) proteins belong to a large superfamily of proteins 

with diverse functions.  In particular, 17 families of CTLDs proteins have been 

described so far. The group 14 family of CTLD contains CLEC14A, CD93, 

Thrombomodulin and Endosialin (CD248) and they all share similar domain 

architecture (Zelensky and Gready, 2005) (Figure 1.7). Each of these proteins from 

the N-terminal shows a signal-peptide, a CTLD domain with 8 conserved cysteine 

residues, a sushi domain (also known as control protein domain, CCP), various 

repeats of EGF-like domain, a variable region rich in proline, serine and threonine 

containing predicted sites for O-linked glycosylation (known as mucin-like domain) in 

the extracellular part of the protein. They all have a transmembrane domain and a 

short cytoplasmic tail.  
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Figure 1.7 Schematic representation of the domain distribution of the C-type lectin domain family 
14 members  
	
The numbers at the top of each protein indicates the number the predicted O-glycosylations, 

represented within the mucin domain with black bars. The CTLD domain is represented in green, the 

sushi domain in white and the EGF-like domain repeats in red.   
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Interestingly, although the CTLD was thought to be a calcium dependent 

carbohydrate-binding domain, not all the CTLDs binds to calcium or carbohydrates. 

The characteristic structure of a CTLD domain entails a double-loop (loop-in-a-loop). 

In addition to the two conserved disulphide bridges, a set of hydrophobic and polar 

interactions stabilise this structure (Zelensky and Gready, 2005). The sushi domain 

generally presents sequence variation, but it is possible to identify various conserved 

residues, such as 4 conserved cysteine residues and a tryptophan residue. Structural 

studies confirmed that they are responsible for its tertiary structure (Norman et al., 

1991). As already mentioned, the repeats of EGF-like domains on each protein of the 

family 14 varies and, in fact, CLEC14A contains one, CD93 five, THBD six and 

Endosialin three. The dimension of these domains is of 30-40 amino acids. Within 

this region it is possible to identify six conserved cysteine residues that are 

responsible for 3 intramolecular disulphide bonds (Wouters et al., 2005). 

Furthermore, the whole family shows a high level of glycosylation, which are 

concentrated within the mucin region. This domain normally associates with the 

structure of adhesion proteins, such as CD164 or selectins (Kansas, 1992; Doyonnas 

et al., 2018). The structure of the mucin region is very rigid and extended due to 

many O-linked sugars and it is inaccessible to the action of proteases, protecting the 

proteins from degradation (Jentoft, 1990). Due to this heavy glycosylation all the 

proteins of the family 14 were shown to be much larger than their predicted size 

based on the sequence.  

 

Finally, studies on the protein sequences of this family related CLEC14A to endosialin 

and CD93 with thrombomodulin (THBD). Moreover it appears that THBD and CD93 
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share a common ancestor (Harhausen et al., 2010). For the purpose of this work, the 

focus will be on CD93 and CLEC14A and their role in endothelial cell biology.  

 

1.6 CD93 

 

Cluster of differentiation 93 (or CD93) is a 120kDa O-glycoprotein that for many 

years was known by the name C1qRp and it was initially thought to be the putative 

receptor for C1q, a complement molecule (Nepomuceno and Tenner, 1998). 

Although this theory was corroborated by the fact that C1q acted on endothelial 

cells in a receptor-mediated fashion, latter studies disproved the possibility that 

C1qRp (CD93) is the receptor for C1q (McGreal et al., 2002). Furthermore, it was 

confirmed by expression cloning that C1qRp and CD93 were in fact the same protein 

(Steinberger et al., 2002). The mouse homolog of the protein is known as AA4. 

Interestingly, the homology of CD93 across species (rat versus human and mouse) is 

67 and 87%, indicating that this receptor might play an important biological role 

(Norsworthy et al., 2004). 

 

The expression of CD93 is detectable in a wide range of cell types: endothelial cells, 

neurons, monocytes, neutrophils, B cells, natural killer and naïve T cells as well as 

platelets and haematopoietic stem cells, but not fibroblasts (Nepomuceno and 

Tenner, 1998). Subsequently, it has been shown by in situ hybridization that CD93 is 

predominantly expressed in endothelial cells and pneumocytes. It is present 

abundantly on human circulating monocytes but not on tissue macrophages or 

dendritic cells, suggesting a tight regulation during embryogenesis and adult life. A 
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study in rat showed also expression of the homologous AA4 on natural killer cells, 

which are known to express type II lectins to prevent killing of “self” cells. It has been 

also suggested that AA4 might regulate both monocytes and NK-mediated innate 

immune responses (Dean et al., 2000). Murine AA4 was also detected on primitive 

haemopoietic stem cells, which would support a possible role in angiogenesis 

(Norsworthy et al., 2004). 

 

Due to the structural homology with adhesion molecules such as selectin, a putative 

role in adhesion and leukocyte rolling was suggested. Furthermore, CD93 presents a 

cell-bound form and a soluble form, which is shed in activated cells, similarly for 

what is observed for L-selectin and CD44 as well as TNF-α (Petrenko, 1999; 

Harhausen et al., 2010). The release and production of soluble CD93 appears to be 

mediated by metalloproteinases (MMPs) upon stimulus with proinflammatory 

cytokines (Bohlson et al., 2005).  The level of CD93 in the plasma has been correlated 

with coronary artery disease and acute myocardial infarction and it is increased in 

patients with rheumatoid arthritis (Mälarstig et al., 2011; Youn et al., 2014). It has 

been demonstrated that the shed form of CD93 is provided by both immune cells, 

due to inflammation, and non-haematopoietic cells, such as the endothelium 

(Bohlson et al., 2005; Greenlee, Sullivan and Bohlson, 2009; Jeon et al., 2010). 

Soluble CD93 was associated with monocyte inflammation and the phagocytosis of 

macrophages (Youn et al., 2014). 

 

Interestingly, as it was theorised, the O-glycosylation of the mucin-like domain of 

CD93 has been shown to prevent the shedding when it is expressed at the cell 
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surface. In fact, it has been observed that lack of this post-translational modification 

resulted in higher levels of soluble CD93. It has also been speculated that soluble 

CD93 might be an immature form of the protein (Park and Tenner, 2003). Therefore, 

the O-glycosylation modification might regulate the protein cleavage.  

 

Various studies have proposed and demonstrated putative roles of CD93 in various 

contexts. It has been shown that CD93-/- mice do not present defects during 

development and were grown up to 1 year of age. It has been observed that upon 

stimulation with the inflammatory cytokine IL-1β, there were no defects in leukocyte 

adhesion and transmigration upon CD93 loss, indicating that CD93 might not be 

involved in cell-cell interaction during leukocyte migration in the experimental model 

analysed. Due to the complexity of the leukocyte rolling and transmigration, it is 

evaluated the possibility that other receptors with redundant functions might have 

been recruited. Finally, the most striking phenotype observed in the knockout mice 

was the impaired clearance of apoptotic cells in a peritonitis model (Norsworthy et 

al., 2004).  

 

Furthermore, in the same CD93-/- mouse it has been shown that the absence of CD93 

reduces protection of ischemic damage in the brain. In fact, it has been 

demonstrated that CD93 protects neurons by reducing the neuroinflammatory 

response inhibiting the production of cytokines, such as CCL21. Consequently, the 

knockout mice constitutively presented a high level of CCL21 both before and after 

the treatment with LPS. Normally CCL21 is released by damaged neurons and it 
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stimulates the infiltration of leukocytes. Upon ischemic damage, CD93-/- mice 

presented increased oedema and infarct volumes (Harhausen et al., 2010).  

 

A recent study showed that in patients with colorectal cancer the expression of CD93 

was upregulated in the endothelial cells of blood vessels, whereas little expression 

was observed in the blood vessels of healthy tissue. Surprisingly, although the high 

levels of MMPs in CRC, a reduction in soluble CD93 has been observed. Interestingly, 

a particular SNP on the CD93 gene (rs2749817) correlated with disseminated cancer 

and increased risk of recurrence after surgery (Olsen et al., 2015).  

 

Due to its main expression in endothelial cells and tight regulation during 

development, it was suggested that CD93 might play an important role in 

angiogenesis (Petrenko, 1999). More recently, CD93 was identified as one of the 

“tumour angiogenesis signature” genes together with CLEC14A. Upon anti-VEGF 

treatment some of these genes were downregulated, including CD93 (Masiero et al., 

2013). This regulation was also independently confirmed by Genentech in tumour 

xenografts (Bais et al., 2011). Interestingly, CD93 has been identified as one of the 

main upregulated genes in the vasculature of IV grade glioblastoma tumours 

(Dieterich et al., 2012). In the same year, it has been shown that specifically the EGF-

like domain of the soluble CD93 is able to induce proliferation, migration in vitro and 

angiogenesis in vivo through PI3K/Akt/eNos and ERK ½ signalling pathways (Kao et 

al., 2012). To identify new mediators of angiogenesis, Orlandini and colleagues 

raised a monoclonal antibody by immunising mice with proliferating HUVEC. Further 

characterization led to the conclusion that the monoclonal antibody raised was 
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specific for the CTLD and sushi domains of CD93 and showed anti-angiogenic 

features both in vitro and in vivo (Orlandini et al., 2014). A subsequent study has 

identified upregulated protein levels of CD93 in the vasculature of glioblastoma and 

a correlation between this upregulation with poor survival of the patients 

(Langenkamp et al., 2015). Furthermore, the reduction in tumour growth observed 

in glioma and fibrosarcoma mouse models was detectable only for female mice. This 

sex-dependent effect might be due to the previously described influence of sex 

hormones on endothelial cell biology, angiogenesis and blood vessel function 

(Langenkamp et al., 2015). At the functional level, shRNA and siRNA mediated 

knockdown in HUVEC and HDMEC showed in independent studies a reduction in 

proliferation, migration, adhesion and sprout formation (Orlandini et al., 2014; 

Langenkamp et al., 2015). Further findings have shown the interaction and crosstalk 

between CD93 and the laminin binding protein dystroglycan (DG) and its importance 

for cell adhesion and migration in endothelial cells. This study has shown the 

importance of a specific Src-mediated phosphorylation on CD93 tyr628 upon 

interaction with β-DG when adhered to laminin. As a result of this phosphorylation, 

the recruitment and phosphorylation of the adapter protein Cbl was mediating cell 

adhesion and spreading (Galvagni et al., 2016). Previously it has also been reported 

in monocytes and HUVEC that the juxtamembrane (JX) region of CD93 interacts with 

the ERM family protein moesin in the presence of phosphatidylinositol 4,5-

bisphosphate (PIP2). The interaction of the JX domain stabilises moesin in the active 

conformation, interacting at the C-terminus with the cytoskeleton actin. Through 

this mechanism CD93 is able to co-ordinate events such as cytoskeletal 

rearrangement, adhesion and/or phagocytosis (Zhang et al., 2005). Another 
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intracellular partner of the (JX) CD93 have been identified namely the GAIP 

interacting protein C-terminus (GIPC) (Bohlson et al., 2005). It was speculated that 

GIPC and moesin are either in competition for the binding on CD93 or one depend 

on the binding of the other (Zhang et al., 2005). Finally CD93 is involved in 

neovascular age-related macular degeneration and it was identified as a potential 

new target for choroidal neovascularization (Tosi et al., 2017). 

 

1.7 CLEC14A  

 

CLEC14 A (or C-type lectin family 14 member A) is a transmembrane glycoprotein of 

490 amino acids. Multiple reports have identified CLEC14A as a new endothelial 

specific gene either combining microarray analysis and data mining or, later, in in 

silico analyses (Ho et al., 2003; Herbert et al., 2008). Microarray analysis also found 

CLEC14A regulated during endothelial progenitor cells differentiation (Maeng et al., 

2009). An additional study confirmed at the RNA level that CLEC14A in multiple 

human tissues shows an endothelial specific expression. It has also been reported 

that CLEC14A is expressed at embryonic day 10.5 in mice embryo and in the 

vasculature of the retina at the post-natal day 12 (Rho et al., 2011). CLEC14A was 

then identified as a tumour endothelial marker because its expression was 

associated with tumour endothelial cells and tumour vessels but virtually no 

expression in the healthy tissues was observed. Various tissues have been analysed 

and in particular CLEC14A was found upregulated in the tumour vessels of prostate, 

breast, kidney and thyroid by immunohistochemical staining (Mura et al., 2012). 

Notably, CLEC14A staining in colorectal cancer showed poor expression. Another 
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study confirmed that at the RNA level, CLEC14A was upregulated in resected tumour 

tissues of non-small cell lung carcinoma (NSCLC) compared to adjacent non 

cancerous lung tissues (Pircher et al., 2013). Analysing clinical data it appeared that 

the upregulation of CLEC14A in lung tumours was correlated with prolonged survival. 

Recently it has been reported that CLEC14A was upregulated in circulating CD109+ 

tumour endothelial cells in cancer patients (Mancuso et al., 2014). Similarly to CD93, 

also CLEC14A was included in the top 20 genes of the proposed “tumour 

angiogenesis signature” from breast, renal and head and neck cancers (Masiero et 

al., 2013). CLEC14A was identified, along with CD93, to be one of the protein 

upregulated during morphogenesis in a mass-spectrometry analysis of HUVEC cells in 

matrigel. Additionally, the upregulation of CLEC14A was found in blood vessels of 

two different spontaneous tumour models, pancreatic and ovarian (Zanivan et al., 

2013). Comparably to what was observed with CD93, CLEC14A was also 

downregulated in response to anti-VEGF therapy, supporting the pro-angiogenic role 

reported (Bais et al., 2011).  

 

Due to its limited expression to endothelial cells and the involvement of the other 

proteins of the family 14 in angiogenesis, Rho et al. have investigated the role of 

CLEC14A in angiogenesis. It has been reported that the CTLD of the protein was 

responsible for cell-cell interactions and that siRNA-mediated knockdown of 

CLEC14A reduced endothelial cell angiogenic activity in tube formation and wound 

healing assays (Rho et al., 2011). Similar results have been independently confirmed 

by Mura and colleagues, who showed an inhibition of endothelial cells migration and 

tube formation in matrigel, both with a CLEC14A antisera and siRNA-mediated 
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knockdown (Mura et al., 2012). Furthermore, CLEC14A gene has also been described 

to be upregulated by low shear stress. Reduced shear stress happens within 

misshaped vessels, which are usually a result of pathological angiogenesis. This 

corroborates the hypothesis that describes CLEC14A as tumour endothelial marker 

(TEM). It has been shown that applying 2 Pa laminar shear flow on HUVEC in culture 

reduced the expression of CLEC14A by more than 90% (Mura et al., 2012).  

 

To elucidate the possible role of the CTLD domain of CLEC14A in angiogenesis, Ki and 

colleagues generated by phage display cross-reacting anti-mouse/human 

CLEC14ACTLD antibodies. It has been demonstrated that these antibodies were able 

to inhibit cell migration and filopodia formation without affecting cell viability. 

Furthermore, a mechanism by which the binding on the CTLD impedes CTLD-CTLD 

interaction and causes internalisation of CLEC14A in HUVEC cells was suggested (Ki 

et al., 2013). The effects of the CTLD domain of CLEC14A were found to be invalid by 

another study. In fact, it has been shown with that the absence of the CTLD domain 

impedes the localization at the cell membrane of the GFP-tagged protein used (Noy 

et al., 2016). A recent report showed that the optimised version of the anti-

CLEC14ACTLD antibody showed a strong anti-angiogenic effect in in vitro VEGF-

dependent angiogenesis assays. The same results were confirmed in 4 different 

angiogenesis mouse models in vivo. Notably, it has been shown efficacy to inhibit 

angiogenesis in bevacizumab-resistant colorectal cancer cells (Kim et al., 2018). 

Recently, HSP-70-1A was confirmed to interact with the CTLD of CLEC14A in HUVEC. 

This interaction has been shown to have importance for HSP-70-1A-mediated 
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angiogenesis by promoting CTLD mediated endothelial cell-cell contacts (Jang et al., 

2017).   

 

CLEC14A was later demonstrated to have a role in sprouting angiogenesis both in 

vitro and in vivo. Furthermore, the loss of CLEC14A in mice resulted in a reduction in 

tumour growth, measured as volume and weight. Finally, it has been shown in vitro 

that the knockdown of CLEC14A reduced the number of cells at the tip position in a 

spheroid assay, suggesting the implication of CLEC14A in initiating the sprout and 

migration (Noy et al., 2015). A more recent report showed a contrasting phenotype 

for the loss of CLEC14A in mice (CLEC14A-/-). It has been shown that upon loss of 

CLEC14A mice presented excessive developmental angiogenesis and 

lymphangiogenesis, as well as pathological angiogenesis. It has been confirmed as in 

the previous study that CLEC14A knockout mice showed reduced tumour growth but 

it has been also observed earlier cancer-related death in subcutaneous tumour 

models. It has been proposed a mechanism by which CLEC14A interacts with VEGFR3 

and indirectly regulates the expression and phosphorylation of VEGFR2. The loss of 

this interaction leads to impaired expression and phosphoactivation of VEGFR3 and 

the enhanced VEGFR2 expression, which results in increased vessel density and 

haemorrhages (Lee et al., 2017).  Although the tumour models employing CLEC14A 

knockout mice have provided similar results regarding tumour growth, the tumour 

microvasculature phenotypes and the sprouting phenotype were distinctly different 

in these reports (Noy et al., 2015; Lee et al., 2017). Further investigation is needed to 

clarify the differences observed in the two studies. Finally, according to the shedding 

mechanism of thrombomodulin, CLEC14A was found to be substrate of a rhomboid 
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protease. In particular, CLEC14A is specifically cleaved by RHBDL2. Further reports 

indicate that soluble CLEC14A shows a role in regulating sprouting angiogenesis (Noy 

et al., 2016). 

 

1.8 Multimerin-2  

 

Multimerin-2 is a high molecular weight protein (originally named EndoGlyx-1) 

identified as the first endothelial specific protein, due to its restricted expression 

pattern to normal and tumour blood vessels (Sanz-Moncasi et al., 1994). It was 

discovered because it was identified as the antigen of a monoclonal antibody (H572) 

obtained immunizing mice with HUVEC. Multimerin-2 is an extracellular matrix 

protein, which is expressed and secreted by endothelial cells and belongs to the 

EMILIN family of glycoproteins together with multimerin-1, emilin 1 and 2 

(Colombatti et al., 2012). The EMILIN family of proteins is present only in 

vertebrates. It is possible to identify in zebrafish two paralogues for each gene, 

except for multimerin-1, which is absent (Mei and Gui, 2008). Furthermore, it is 

possible to detect the same expression pattern for the paralogues mmrn2a and 

mmrn2b of zebrafish as the expression observed in mouse (Milanetto et al., 2008). 

All the proteins in the family share a common structure, at the N-terminus they 

present an EMI domain (with 7 cysteine residues regularly distributed) followed by a 

long predicted coiled coil (CC) region of approximately 700 amino acids and at the C-

terminus a C1q domain. In between the CC and the C1q domain, MMRN2 presents 

an highly charged region due to the presence of arginine, lysine, glutamate and 

aspartate residues (Colombatti et al., 2012). Furthermore, MMRN2 undergoes heavy 
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glycosylation and it has been predicted to have 11 sites for N-linked glycosylation 

and one site for O-linked glycosylation within the coiled coil domain. Further studies 

have confirmed that MMRN2 expression was restricted to endothelial cells based on 

both in silico and confirmed at the mRNA level with qRT-PCR in various different cell 

types (Herbert et al., 2008). During development in mice MMRN2 is expressed in 

endothelial-specific manner and it is detectable in intersomitic and umbilical vessel 

at embryonic day 9.5. At embryonic day 14.5 it is possible to detect the expression of 

MMRN2 in blood vessels, spinal cord and heart (Leimeister et al., 2002). Other 

proteomics studied identified MMRN2 as part of the secretome of HUVEC cells in 

static or oscillatory flow conditions (Tunica et al., 2009; Burghoff and Schrader, 

2011). It has been also identified as one of the most representative endothelial cell 

matrix protein and, along with other 127 proteins, they constitutes about the 90% of 

the whole HUVEC endothelial cell matrix (Zanivan et al., 2013). An 

immunohistochemical (IHC) analysis confirmed the expression of MMRN2 (Endoglyx-

1) confined in normal and tumor blood vessel endothelium, along with the “hot 

spots” of neoangiogenesis in melanoma section (Huber et al., 2006). Furthermore, 

the extensive use of the monoclonal antibody H572 originally used for MMRN2 

identification revealed its expression in blood vessels of both healthy thyroid or 

carcinomas (Koperek et al., 2007). Taking advantage of the same antibody, it has 

been shown that MMRN2 is also expressed on the luminal side of the vessels and it 

can be found in tight juxtaposition with endothelial cells (Christian et al., 2001). Not 

surprisingly, along with CLEC14A and CD93 also MMRN2 gene was identified as one 

of the “tumour angiogenesis signature” genes in renal and breast cancer (Masiero et 

al., 2013). Similarly to what have been shown for CLEC14A, MMRN2 was found at 
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higher levels in the urines of low-grade bladder cancer patients (Ambrose et al., 

2015). Finally, it has been also reported that MMRN2 knockout mice are viable and 

display hypertension (Colombatti et al., 2012). This might be due to the increased 

availability of VEGF-A in proximity of endothelial cells inducing proliferation and the 

formation of narrow vessels. Alternatively, the lack of this important extracellular 

matrix might reduce elasticity of the blood vessels.  

 

1.8.1 MMRN2 biological roles and interactions 

 

For many years from its discovery no functional studies on MMRN2 have been 

published. The first report on MMRN2 function suggests a possible role in regulating 

angiogenesis. Indeed, it has been shown that in presence of a VEGF-A stimulus in 

vitro, the concomitant presence of recombinant MMRN2 is able to greatly reduce 

processes such as cell migration, tube formation and sprouting, which are 

fundamental for angiogenesis. It has been reported that MMRN2 is able to directly 

bind VEGF-A impairing the phosphorylation of VEGFR2 and consequently the 

impaired phosphorylation of FAK (Lorenzon et al., 2012). From this study it is 

possible to conclude that MMRN2 functions as an angiostatic molecule. A tumour 

mouse model, in which HT1080 cells stably transfected for overexpressing MMRN2 

were injected in immunodeficient mice, has also supported these in vitro data. 

According to the model, MMRN2-overexpressing HT1080 tumours failed to form and 

vascularise, suggesting that MMRN2 was able to sequester VEGF-A from the 

environment, preventing the VEGF-A/VEGFR2 signalling. Furthermore, a more recent 

follow-up study clearly showed that the interaction between MMRN2 and VEGF-A 
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was strongly glycosylation-dependent. Impairing glycosylation of the recombinant 

MMRN2 strongly reduced but not completely abrogated the binding. It has been also 

shown that at a lower extent MMRN2 is also able to bind various related VEGF 

proteins, such as VEGF-C, VEGF-D and placental growth factor 1 (PlGF1) (Colladel et 

al., 2016).  

 

Although the angiostatic role of MMRN2 was extensively demonstrated, other 

studies have shown that MMRN2 can function as a mediator of angiogenesis and 

siRNA-mediated knockdown of MMRN2 impairs angiogenesis in vitro (Zanivan et al., 

2013; Noy et al., 2015). These independent studies reported that upon MMRN2 

siRNA knockdown sprouting as well as tube formation were impaired. Interestingly, 

Zanivan and colleagues identified MMRN2 as a binding partner of CLEC14A (Zanivan 

et al., 2013). Independent findings supported the direct interaction between 

CLEC14A and MMRN2 (Noy et al., 2016; Khan et al., 2017). Functional 

characterization of the binding led to the conclusion that the interaction between 

CLEC14A and MMRN2 is important for mediating angiogenic stimuli. In fact, the 

disruption of CLEC14A/MMRN2 interaction by C4 (CRT4) blocking antibody, which 

binds CLEC14A in the same region as MMRN2, led to a reduction of tumour growth 

in vivo when C4 was injected in LLC tumour bearing mice. Interestingly, the 

phenotype observed in this model was recapitulating the phenotype observed in 

CLEC14A-/- mice (Noy et al., 2015). It has also been hypothesized that the use of 

recombinant MMRN2 in Lorenzon et al. could support this model as it might not only 

sequester VEGF-A acting on VEGFR2 signalling but also disrupting the interaction 

between CLEC14A and MMRN2 present in the extracellular matrix (Lorenzon et al., 
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2012; Noy et al., 2015). Another finding supporting the possible use of MMRN2 as a 

decoy to block the binding is given by the experiment in which mouse MMRN2495-678 

fragment, which includes the binding site for CLEC14A but not the one for VEGF-A, 

expressed in LLC tumours subcutaneously injected in syngeneic mice led to a 

reduction in tumour growth (Colladel et al., 2016; Khan et al., 2017). Surprisingly, it 

has been also reported in the same study that CD93 is also able to bind MMRN2 and 

the binding site is the same as CLEC14A (Khan et al., 2017). Moreover, MMRN2 is 

described as a bridge, which stabilises the interaction of HUVEC to fibroblasts (Figure 

1.8). Indeed, CLEC14A and CD93 expressed on HUVEC bind to MMRN2 on the 

fragment 495-678, whereas CD248 expressed by fibroblast is able to bind MMRN2 in 

a different region (Khan et al., 2017). The regions of binding are different from the 

one that is used to sequester VEGF-A, explaining in part why MMRN2 is described 

controversially as an angiostatic molecule or a pro-angiogenic molecule (Lorenzon et 

al., 2012; Zanivan et al., 2013; Noy et al., 2015; Khan et al., 2017). Subsequently, two 

different studies were published confirming the interaction of MMRN2 with CD93 

and its importance for the angiogenic process. In particular, the first study focused 

on the interaction between CD93 and MMRN2 identifying the regions of CD93 that 

are involved in the binding with MMRN2 and in particular the residue F238 as key for 

the interaction (Galvagni et al., 2017). Finally, it has been further confirmed that 

CD93 and MMRN2 interact and co-localise within the tumour endothelium. 

Furthermore, it has been proposed a model that defines MMRN2 as fundamental for 

the stabilization of CD93 at the migratory front as well as at the extremity of the 

filopodia. Notably, in absence of MMRN2 the cleavage of CD93 is strongly 

upregulated (Lugano, Dejana and Dimberg, 2018). The interaction between CD93  
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Figure 1.8 MMRN2 and the CTLD family 14   
	
Schematic representation of the newly described MMRN2 interactions at the interface of Endothelial 

cell and either Fibroblast or Pericyte, by binding C-type lectin domain family 14 proteins (CLEC14, 

CD93 and CD248).  

	

(adapted from Khan et al., 2017)
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and MMRN2 is indispensable for the correct interaction and activation of integrin β1, 

regulating the fibronectin fibers deposition upon angiogenic stimuli (Lugano, Dejana 

and Dimberg, 2018). Data from high-grade (IV grade) human glioma samples 

confirmed that the interaction of CD93 and MMRN2 along with integrin β1 is 

necessary for the correct deposition of fibronectin. Implanted GL261 brain tumours 

in CD93-/- mice showed the lack of structure within the fibronectin fibrillary networks 

during angiogenesis. The phenotype recapitulates what has been shown in vitro 

assays.  
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1.9 Hypothesis and aims 

 

CLEC14A and CD93 are two members of the C-type lectin domain family 14, which 

are both capable of interacting with the extracellular matrix protein MMRN2 

(Zanivan et al., 2013; Galvagni et al., 2017; Khan et al., 2017; Lugano, Dejana and 

Dimberg, 2018). Mapping the binding site on MMRN2 showed that CLEC14A and 

CD93 also share the same binding region (Khan et al., 2017). Moreover, these two 

proteins have been reported to be involved in tumour angiogenesis and, 

interestingly, CLEC14A was also described as a tumour endothelial marker, because 

of its high expression on tumour endothelium compared to low expression on 

healthy endothelium.  

 

Hypothesis 1: CLEC14A and CD93 have similar domain structure, binding partners 

and reported roles in angiogenesis. It is plausible that CLEC14A and CD93 are 

redundant proteins in angiogenesis, and lack of one can be compensated by the 

other. 

 

Aim 1:  To investigate the relative roles of CLEC14A and CD93 in their regulation of 

processes critical to angiogenesis. 

 

Hypothesis 2: CLEC14A is a good target for developing anti-vascular targeting 

strategies. The MMRN2 binding fragment could be exploited to develop anti-tumour 

endothelial agents. 
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Aim 2: Exploit the tight binding of the MMRN2 fragment to CLEC14A in tumour 

endothelial targeting or blocking tumour angiogenesis by multiple approaches; 

engineered Chimeric Antigen Receptor (CAR) T cells, vaccination utilizing the 

CLEC14A and CD93 binding fragment mMMRN2495-678-hFc and mMMRN2495-678-

Dianthin toxin conjugates.  
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CHAPTER 2: Material and 
Methods  
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2. Material and Methods 

2.1 Reagents 

2.1.1 Commonly used solutions 

 

Phosphate Buffered 

Saline (PBS) 

140 mM NaCl, 10 mM Na2HPO4, 2.7 mM KCl and 1.76 mM 

KH2PO4, pH 7.4  

Phosphate Buffered 

Saline Tween (PBS-T) 

140 mM NaCl, 10 mM Na2HPO4, 2.7 mM KCl and 1.76 mM 

KH2PO4, pH 7.4, 0.1% (v/v) TWEEN-20  

Tris-acetate-EDTA (TAE) 40 mM Tris, 20mM acetic acid, 1 mM EDTA  

Reducing 6x SDS-PAGE 

sample buffer 

375 mM Tris-HCl pH 6.8, 6% (w/v) SDS, 48% (v/v) glycerol, 0.03% 

(w/v) bromophenol blue, 9% (v/v) β-mercaptoethanol  

Non-reducing 6x SDS-

PAGE sample buffer 

375 mM Tris-HCl pH 6.8, 6% (w/v) SDS, 48% (v/v) glycerol, 0.03% 

(w/v) bromophenol blue  

Stacking gel buffer 125 mM Tris-HCl pH 6.8, 0.1% (w/v) SDS  

Resolving gel buffer 375 mM Tris-HCl pH 8.8, 0.1% (w/v) SDS  

Running buffer SDS-

PAGE 

25 mM Tris, 250 mM glycine, 0.1% (w/v) SDS. pH 8.3  

Transfer buffer Western 

blot 

25 mM Tris, 187.2 mM glycine, 20% (v/v) methanol  

NP40 Lysis Buffer 1% (v/v) NP40, 10 mM Tris pH7.5, 150 mM NaCl and 1 mM EDTA 

with complete protease inhibitor cocktail (Roche # 11836153001).  

Stripping buffer 0.1 M sodium hydroxide (NaOH)  or 62.5 mM Tris-HCl pH 6.8, 2% 

(w/v) SDS, 100 μM β-mercaptoethanol  

Flow cytometry buffer PBS with 0.2% (w/v) BSA and 0.02% (w/v) sodium azide  

FACS buffer (MACS) 0.5-1% FCS or BSA and 1-2 mM EDTA in PBS 

Phosphatase Inhibitor 

Cocktail  

75 mM NaF, 15 mM Na3VO4, 150 mM Na β-glycero phosphate, 15 

mM EDTA and 75 mM Na pyrophosphate  

Blocking Buffer (IF) PBS, 3% (w/v) BSA, 10% (v/v) FCS, 0.1% (v/v) TWEEN 20, 0.01% 

(w/v) sodium azide  
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Coating Buffer (IFNϒ 

ELISA) 

0.1 M Na2HPO4, adjusted to pH 9 with 0.1 M NaH2PO4 

Blocking Buffer (IFNϒ 

ELISA) 

1% (w/v) BSA/PBS filtered and then Tween added (50�l/100ml) 

Wash Buffer (IFNϒ ELISA) PBS/0.05% (v/v) Tween (0.5 ml in 1 litre) 

Stopping Buffer (IFNϒ 

ELISA) 

1 M Phosphoric Acid 

Equilibration Buffer 

(Protein A column) 

20 mM Na2HPO4 pH 7.0 

 

Elution Buffer (Protein A 

column 

100 mM NaCitrate pH 3.0 

Equilibration Buffer (Ni-

NTA Column) 

PBS with 0.5M NaCl and 10mM imidazole 

Elution Buffer (Ni-NTA 

Column) 

PBS with 0.5M NaCl and 250 mM imidazole 

Regeneration Buffer (Ni-

NTA column) 

PBS with 0.5M NaCl 

MACS Buffer PBS with 0.5% (w/v) BSA and 2.5 mM Ethylenediaminetetraacetic 

acid  

 
Table 2.1 Commonly used reagents and their composition 

2.1.2 Primary Antibodies 

	
Antibody Manufacturer & Catalogue Species 

raised in 
Application 
(Concentration or 
dilution) 

CLEC14A polyclonal R&D (#AF4968) Sheep WB (0.1 μg/mL) 

MMRN2 polyclonal Abnova (#H00079812-B01P) Mouse WB (2 μg/mL) 

IF (4 μg/mL) 

Polyhistidine tag 

monoclonal 

(CLONE AD1.1.10) 

R&D (#MAB050) Mouse WB (1 μg/mL) 

ELISA (2 μg/mL) 
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α-Tubulin 

monoclonal 

(CLONE DM1A) 

Sigma-Aldrich (#T6199) Mouse WB (0.5 μg/mL) 

Human IgG Fc 

specific HRP 

conjugate 

Sigma-Aldrich (#A0170) Goat WB (1:2500) 

CD93 monoclonal 

(clone R139) 

eBioscience (#14-0939-82)  

 

Mouse FC (20 μg/mL) 

CD93 polyclonal R&D (#AF2379) Goat WB (0.1 μg/mL) 

CLEC14A 

monoclonal (clone 

CRT2) 

N/A – produced in laboratory Mouse FC (20 μg/mL) 

CLEC14A 

monoclonal (clone 

CRT4) 

N/A – produced in laboratory Mouse FC (20 μg/mL) 

EEA1  BD Biosciences Mouse IF (1.25 μg/mL) 

GFP tag 

monoclonal (Clone 

3E1) 

Cancer Research UK Mouse WB (1:500) 

Anti-mouse CD31 

(Clone MEC 13.3) 

BD Bioscience (#565629) Rat IF (1:200) (75 ng/mL) 

Anti-human CD31 

monoclonal (Clone 

JC70A) 

Dako (#M0823)  Mouse IHC (1.29 μg/mL) 

 
Table 2.2 Primary antibodies  

List of primary antibodies used, including the provider, the species in which they were raised and the 
concentrations for the specific applications: Immunofluorescence (IF), Immunohistochemistry (IHC) 
and western blot (WB). 
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2.1.3 Secondary Antibodies 

 

Antibody Manufacturer & 

Catalogue 

Species 

raised in 

Application 

(Concentration or 

dilution) 

Anti-mouse alkaline 

phosphatase (AP) 

Sigma-Aldrich (#A4656) Goat IHC (1:500) 

Anti-mouse HRP Dako (#P0447)  Goat WB (1:5000) 

ELISA (1:5000) 

Anti-rabbit HRP GE Healthcare 

(#NA9340V) 

Donkey WB (1:5000) 

Anti-goat HRP Dako (#P0449) Rabbit WB (1:5000) 

Anti-sheep HRP R&D (#HAF016) Donkey  WB (1:5000) 

Anti-human HRP R&D (#A0170) Goat WB (1:2000) 

ELISA (1:2500) 

Anti-human IgG (H+L) 

Alexa633 

Thermo Scientific  

(A-21091) 

Goat IF (2 μg/mL) 

FC (4 μg/mL) 

Anti-mouse IgG (H+L) 

Alexa633 

Thermo Scientific  

(A-21052) 

Goat IF (2 μg/mL) 

FC (4 μg/mL) 

Anti-human IgG (H+L) 

Alexa488 

Thermo Scientific  

(A-11013) 

Goat IF (2 μg/mL) 

FC (4 μg/mL) 

Anti-mouse IgG (H+L) 

Alexa488 

Thermo Scientific  

(A-11001) 

Goat IF (2 μg/mL) 

FC (4 μg/mL) 

Anti-rat IgG (H+L) 

Alexa488 

Thermo Scientific  

(A-11006) 

Goat IF (2 μg/mL) 

FC (4 μg/mL) 

Anti-mouse IgG (H+L) 

Alexa647 

Thermo Scientific  

(A-21235) 

Goat IF (2 μg/mL) 

FC (4 μg/mL) 

Anti-human FITC Sigma-Aldrich (#F9512) Goat FC (1:100) 

IF (1:500) 
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Table 2.3 Secondary antibodies  

List of secondary antibodies used, including the provider, the species in which they were raised and 
the concentrations (or dilution) for the specific applications: Immunofluorescence (IF), 
Immunohistochemistry (IHC), western blot (WB) and enzyme-linked immunosorbent assay (ELISA). 
 
2.1.4 Recombinant Proteins 

 

Protein Epitope Tags  Expression 

system 

Application 

(concentration) 

Human CLEC14AECD-hFc Human IgG1 Fc HEK293T ELISA (0.1-10 μg/mL) 

Mouse CLEC14AECD-hFc Human IgG1 Fc HEK293T ELISA (0.1-10 μg/mL) 

Human MMRN2495-674-

hFc 

Human IgG1 Fc HEK293T FC (20 μg/mL) 

 

Mouse MMRN2495-678-

hFc 

Human IgG1 Fc HEK293T FC (20 μg/mL) 

Vaccine (50μg/mL) 

IF (5 μg/mL) 

Mouse MMRN2495-678-

His 

His tag HEK293T ELISA (10 μg/mL) 

Table 2.4 Recombinant proteins  

List of recombinant proteins produced, specifying the tag, the expression system and the 
concentration for each specific application: Flow cytometry (FC), immunofluorescence (IF), enzyme-
linked immunosorbent assay (ELISA) and vaccination.  
 
2.2 Molecular Biology 

2.2.1 Oligonucleotides 

 

Oligonucleotides were purchased from Eurogentec as a lyophilised powder. Upon 

arrival, they were dissolved in nuclease-free water to obtain a concentration of 

100mM as a stock solution. They were stored at -20°C.  
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Name Oligonucleotides  Sequence 

EGFPN1 R  CGTCGCCGTCCAGCTCGACCAG  

EF1α Promoter F TCAAGCCTCAGACAGTGGTTC  

IRES R  CCTCACATTGCCAAAAGACG  

T7 Promoter F  TAATACGACTCACTATAGGG  

pET11d F GAGATCTCGATCCCGCGAAA 

pET11d R GGTTCCGCGCACATTTCCC 

pET11d F 2 GCGGCCACAGCATACACATT 

 
Table 2.5 Sequencing primers  

List of oligonucleotides used in sequencing reactions, displayed in the form 5’-3’. 
 

 

N° Name Oligonucleotides Sequence 
1 mMMRN2495-678 for fusion with hFc 

(Gibson) F 

ACTAGCCTCGAGGTTTAAACATGAGGCCAGCGCTTGC
C 

2 mMMRN2495-678 for fusion with hFc 
(Gibson) R 

GATGAAGAACCCAACTGTGGGTGCTGCTCC 

3 hFc fragment for mMMRN2495-678-
hFc (Gibson) F 

CACAGTTGGGTTCTTCATCGAGTGAG 

4 hFc fragment for mMMRN2495-678-
hFc (Gibson) R 

CTGCAGCCCGTAGTTTAAACTCATTTACCCGGAGACA
G 

5 mMMRN2495-678-His (Gibson) F ACTAGCCTCGAGGTTTAAACATGAGGCCAGCGCTTGC
C 

6 mMMRN2495-678-His (Gibson) R CTGCAGCCCGTAGTTTAAACTAGTGGTGGTGGTGGTG 
GTGCAACTGTGGGTGCTGCTCC 

7 HisMMRN2495-678 F ACTTTAAGAAGGAGATATACCATGGGACACCACCACC
ACCACCACATGCAGAAGCTCTATTTAGACCTGGA 

8 HisMMRN2495-678 R TGGCCGCGGCCATCGGCCGCGGGGGCTCCGA 

9 Dianthin F CCCGCGGCCGATGGCCGCGGCCACAGCATAC  

10 Dianthin R GAGGCCCTTTCGTCTTCAAGAATTCTTACTTCGGTCTA
CCTAAATACTTAAGGAGCCC 

11 HisDianthin F ACTTTAAGAAGGAGATATACCATGGGACATCATCATC
ATC  

12 HisDianthin R GCTTCTGCATCTTCGGTCTACCTAAATAC 

13 MMRN2495-678 F TAGACCGAAGATGCAGAAGCTCTATTTAGACCTGGAC
GTCATCC  
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14 MMRN2495-678 R GAGGCCCTTTCGTCTTCAAGAATTCTTACGGCCGCGG
GGGCTC  

15 hMMRN2495-674 for CAR construct F GTTTCCATCTATGGCATCGATGCAGAAGCTCTATTTAG
ACCTGGACGTCATCCGGGAGGG 

16 hMMRN2495-674 for CAR construct R GATACATAACTTCAATTGCGGCCGCTGCCGGCCGCGG
GGGCTC 

17 mMMRN2495-678 for CAR construct F GTTTCCATCTATGGCATCGATGAGGCCAGCGCTTGCC 

18 mMMRN2495-678 for CAR construct R GATACATAACTTCAATTGCGGCCGCTGCCAACTGTGG
GTGCTG 

 
Table 2.6 Oligonucleotides used for plasmid construction.  

List of the respective forward (F) and reverse (R) oligonucleotide sequences for each amplification. 
The sequences are 5’-3’. 
 
 
 
2.2.2 Plasmids 

 

Plasmids were cloned using two different strategies: either digestion with restriction 

enzymes and ligation reactions or using the GIBSON assembly reaction kit (New 

England Biolabs). 

 

Plasmid Restriction sites Number of the oligo (Ref. 
Table 2.6) 

mMMRN2495-678-hFc in 

pWPI 

PmeI  1 /2 and 3/4 

mMMRN2495-678-His in 

pWPI 

PmeI 5/6 

HisMMRN2495-678Dianthin 

in pET11d 

NcoI and EcoRI  7/8 and 9/10 

His Dianthin MMRN2495-678 

in pET11d 

NcoI and EcoRI 11/12 and 13/14 

hMMRN2 CAR in MP71 ClaI and NotI 15/16 

mMMRN2 CAR in MP71 ClaI and NotI 17/18 

hCLEC14AECD-hFc in pWPI PmeI N/A 
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(previously generated) 

mCLEC14AECD-hFc in pWPI 

(previously generated) 

PmeI N/A 

hMMRN2495-674 in pAvitag 

Kabir Khan, Thesis 2016) 

AgeI and KpnI N/A 

hCLEC14AFL in pEGFPN1 

(Kabir Khan, Thesis 2016) 

EcoRI N/A 

hCD93FL in pEGFPN1 

(Kabir Khan, Thesis 2016) 

EcoRI N/A 

hCLEC14AC103S in pEGFPN1 

(Kabir Khan, Thesis 2016) 

EcoRI N/A 

hCD93C104S in pEGFPN1 

(Kabir Khan, Thesis 2016) 

EcoRI N/A 

 
Table 2.7 Plasmids  

List of the plasmids generated and/or used, indicating the restriction sites used for the linearization of 
the vector and, when applicable, the oligonucleotides used in the amplification of the insert(s).  
 
 

2.2.3 Polymerase chain reaction (PCR) 

 

Polymerase chain reactions were assembled mixing the specific forward and reverse 

primers and the appropriate DNA template, either an IMAGE clone or a previously 

cloned plasmid. The matched primers used in these amplifications are listed in Table 

2.6. The enzyme employed in this reaction was the proofreading DNA polymerase 

Phusion (New England Biolabs). The typical PCR mix was as it follows: 

Template DNA <250 ng 

5X Phusion HF or GC Buffer 1X 

10 mM dNTPs 200 μM 

10 μM Forward Primer 0.5 μM 
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10μM Reverse Primer 0.5 μM 

DMSO 3% (v/v) 

Phusion Enzyme 1unit (50 μL reaction) 

Nuclease-free Water To 50 μL 

 

PCR was carried out as follows, with annealing temperatures calculated according to 

the NEB Phusion annealing temperature calculation program.  

 

 

 

2.2.4 Restriction Enzyme digest 

 

Restriction enzymes were selected appropriate to the cloning design and they were 

all from NEB. DNA digestions were according to the manufacturer’s protocol and 

they were incubated for a minimum of 1 hour up to overnight incubation.  

 

2.2.5 DNA agarose gel electrophoresis 

 

Agarose gels were made dissolving by molecular biology grade agarose (Bioline) in 

TAE buffer with SYBR Safe DNA gel stain (Invitrogen). The standard percentage of gel 

used was 1% (w/v); higher percentages were used on occasion if an increased 

Initial denaturation 98°C 30 Seconds 

Denaturation 98°C 20 Seconds 

Annealing - - °C 30 Seconds 

Extension 72°C 30 Seconds/Kb 

Final extension 72°C 7 minutes 

28 cycles 
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resolution was needed. At each run, samples were mixed with 6x loading dye 

(Thermo scientific) and loaded into agarose gels along with Generuler 1kb DNA 

ladder (Thermo Scientific). After a run of 30 minutes at 100 V, gels were visualised 

using a UV transilluminator (SynGene). 

 

2.2.6 DNA gel extraction 

 

Agarose gels were also used to purify DNA of interest (e.g. digested DNA) for 

molecular biology purposes. After visualising the band with the UV transilluminator, 

the DNA was excised with a scalpel and extracted from the gel according to the 

protocols of the GeneJet gel purification kit (Thermo scientific). 

 

2.2.7 Gibson cloning 

 

The primers used to amplify the fragment of interest by PCR for each cloning 

experiment in the PCR reactions were designed using the NEBuilder tool on the NEB 

website. The amplicons were carrying homologous sequences at their ends to either 

the digested vector or to the other fragments. The homologues ends were at least of 

18 nucleotides on each PCR product. All the Gibson reactions were assembled 

keeping at ratio of 1:3 linearised vector:Insert(s) and the 2x Gibson reaction master 

mix (New England Biolabs #E5510S). The reactions were incubated for 1 hour at 

50°C; subsequently, they were cooled at 4°C and then transformed into competent 

E. coli. 
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2.2.8 Transformations 

 

Transformations were carried out adding a plasmid or a Gibson reaction mix in 20 μL 

aliquots of competent bronze or gold efficiency DH5α E. coli (Bioline) thawed on ice. 

The mix was left incubating on ice for 30 minutes, heat-shocked at 42°C in a thermo-

block for 30 seconds and incubated an additional 2 minutes on ice. Afterwards, 950 

μL of SOC media was added and incubated at 37°C in a shaking incubator for at least 

1 hour. Finally, the transformation mix was spread on pre-warmed LB agar plates 

containing the appropriate selection antibiotic and incubated at 37°C overnight. 

 

2.2.9 Plasmid DNA isolation 

 

Following transformation, single colonies were picked and inoculated into 5 ml (or 

larger volumes for a maxi prep) of LB media containing antibiotics, either Ampicillin 

100 μg/ml or Kanamycin 50 μg/ml, appropriate to the resistance gene carried by the 

plasmid. These cultures were incubated approximately 16 hours in an orbital shaker 

(180 rpm) at 37°C. Cultures were centrifuged at maximum speed (13,000 rpm) and 

plasmid DNA was isolated according to the manufacturer’s instruction for either 

GeneJET plasmid mini prep (Thermo Scientific) or maxi prep (Thermo Scientific) kits. 

DNA concentrations were measured by Nanodrop (Thermo Scientific) reading.  

 

 

 

 



	 69	

2.2.10 Sequencing 

 

DNA was sequenced using Sanger sequencing performed by the Functional 

Genomics Service (University of Birmingham). Oligonucleotides for sequencing are 

listed in table 2.5. 

 

2.2.11 RNA extraction 

 

RNA was purified from HUVEC or HEK293T cells using the RNeasy Mini Kit (Qiagen), 

following the manufacturer’s instructions. Briefly, a confluent well of a 6-well plate 

was harvested as described in section 2.3.1 and centrifuged at 1100 rpm for 5 

minutes. The pellet was resuspended in 350 μL of RLT buffer with β-

mercaptoethanol (1:100). An equal volume of 70% (v/v) ethanol was added to the 

lysate and mixed well by pipetting. The sample was then transferred into an RNeasy 

Mini spin column and centrifuged at maximum speed (13000 rpm) for 1 minute. The 

flow-through was discarded. In sequence, 700 μL of RW1 buffer and 2 times 500 μL 

of RPE buffer were added and centrifuged as previously for 1 minute, discarding the 

flow-through. Before the elution, each sample was then centrifuged empty at 

maximum speed for 1 minute to dry the membranes of the column. The spin 

columns were then transferred into a clean tube and RNA was eluted in 30-50 μL of 

RNase-free water at maximum speed for more than a minute. RNA was subsequently 

stored at -80°C. 
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2.2.12 Reverse Transcription 

 

cDNA was obtained using the High Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems), following the manufacturer’s instructions.  The following mix was 

assembled: 

 

Component Volume/Reaction  
RNA template 2 μg in a total volume of 10 μL 

10x RT Buffer 2 μL 

25x dNTP Mix (100 mM) 0.8 μL 

10x RT Random Primers 2.0 uL 

MultiScribe Reverse Transcriptase 1.0 μL 

RNase Inhibitor 1.0 μL 

Nuclease-free H2O 4.2 μL 

Total Volume 20 μL 

 

The mix was then loaded into a thermo mixer and kept at 25°C for 10 minutes, at 

37°C for 2 hours and finally at 85°C for 5 minutes. Transcribed cDNA was then stored 

at -20°C. 
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2.2.13 qPCR 

 

cDNA obtained from the reverse transcription was employed in qPCR reactions at 

1/20 dilution. Probe based qPCR was done using the Roche universal probe library 

and the oligonucleotides were designed using the dedicated web tool. 

(https://lifescience.roche.com/en_it/brands/universal-probelibrary.html#assay-

design-center). Alternatively, SyBRGreen was used.  

 

Primers for qPCR  Sequence 

Actin F TCACCCACACTGTGCCCA TCTACGA 

Actin R CAGCGGAACCGCTCATTGCCAATGG 

CLEC14A F CTGGGACCGAGGTGAGTG 

CLEC14A R CGCGATGCAAGTAACTGAGA 

CD93 F GCCCCAGAATGCGGCAGACA 

CD93 R GCAGTCTGTCCCAGGTGTCGGA 

MMRN2 F AGGCTTCCAGTACTAGCCTCTCT 

MMRN2 R GGTAGGGGCACCAGTTACG 

 

Table 2.8 Primers used in qPCR   

Primers used in qPCR reactions displayed 5’-3’. 
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2.3 Cell Culture 

 

Cell culture was carried out in sterile conditions in a laminar flow hood. Dulbecco’s 

modified Eagle’s medium (DMEM) (Sigma-Aldrich, Gillingham UK) was used to 

culture most of the adherent mammalian cell lines, with 10% (v/v) foetal calf serum 

(FCS) (GIBCO Life Technologies), 4 mM L-glutamine (Life Technologies), 100 U/ml 

penicillin and 100 μg/ml streptomycin (Life Technologies). Primary HUVEC cells were 

cultured in Endothelial Basal Medium-2 (EBM-2, Lonza), with all the growth factors 

included in the BulletKit (Lonza). Human T-cells were cultured in Iscove’s modified 

Dulbecco’s medium (IMDM) or Roswell Park Memorial Institute medium (RPMI) 

(Sigma) containing 10% (v/v) FCS, Interleukin 2 (100 IU/ml), 2mM L-Glutamine, 

Penicillin (100 IU/ml) and Streptomycin (100 μg/ml), named T cell medium (TCM). T-

Cell ELISAs were performed in RPMI (Sigma) containing 10 (v/v) Fetal Bovine Serum 

(FBS), L-Glutamine 2mM, Streptomycin (100 mg/ml), Penicillin (100 IU/ml) and 

Interleukin 2 (50 IU/ml).  

 

Cell Type Cell source Media 

HEK293T Human embryonic Kidney cDMEM 

PhoenixTM Ampho Cell line  

(Virus for Human T cells) 

 

Human embryonic kidney line 

transformed with adenovirus 

E1a and carrying a temperature 

sensitive T antigen co-selected 

with neomycin. They contain 

Gag-pol and an amphotropic 

envelop, specific for infection of 

mammalian cells 

cDMEM 
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PhoenixTM Eco Cell line – 

(Virus for Mouse T cells) 

Human embryonic kidney line 

transformed with adenovirus 

E1a and carrying a temperature 

sensitive T antigen co-selected 

with neomycin. They contains 

Gag-pol and an Ecotropic 

envelope, specific for infection 

of mouse and rat cells 

cDMEM 

HUVEC  Human umbilical vein 

endothelial cells (Lonza) 

EBM-2 BulletKit 

Human T cell Adult peripheral blood 

mononuclear cells (PBMCs) 

from apheresis cones 

TCM 

 
 

Mouse T cell Splenocytes from mice TCM 

Splenocytes Isolated from immunised mice cRPMI 

NSO  Monoclonal antibody 

production unit 

cRPMI 

 
Table 2.9 List of cells and culture conditions 

 

 

2.3.1 Cell release by exposure to trypsin 

 

Media was removed and cells were washed with sterile PBS (Sigma). After the wash, 

cells were incubated with 1x Trypsin/EDTA (Gibco) at 37°C. Detached cells were 

collected in 10 ml of medium containing serum and centrifuged at 1100 rpm for 5 

minutes. 
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2.3.2 HUVEC cell culture 

 

Before thawing or detaching HUVECs (Lonza), new culture plates were covered and 

incubated at 37°C for 5min with 0.1% (w/v) porcine gelatin in PBS (Sigma). After 

removing the gelatine, 3x105 cells were seeded in 10mL of the medium EBM-2 

medium. Cells were cultured to passage 6 and used in assays at passage 3 or 4. 

 

2.3.3 siRNA transfections 

 

Small interfering RNA (siRNA) duplexes were either pre-designed by Life Technology 

website and then tested or based on published methods and ordered from 

Eurogentec. All duplexes were supplied at the stock concentration of 100 μM and 

stored in aliquots at -80°C. 

 

Target gene and duplex 
number 

Sequence Supplier 

CLEC14A D1 GAACAAGACAAUUCAGUAA  Eurogentec 
CLEC14A D2 CAAUCAGGGUCGACGAGAA  Eurogentec 
CD93 D1 CTGCGACAGCTTGTGCTTCAA Eurogentec 
CD93 D2 CCGGAACTCGTGCATCTCCAA Eurogentec 
MMRN2 D1 CUUACUAGCUCUUUGCAAA  Life technologies  
MMRN2 D2 GAGACUUUCGAUCAGAUUA  Life technologies 
 

Table 2.10 List of siRNA duplexes, sequences and suppliers 
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2.3.4 Transfection of siRNA duplexes to reduce gene expression 

 

106 HUVEC cells were seeded on a gelatine-coated 10 cm plate. On the following 

day, duplexes were diluted to a working solution of 20 μM. For each gene to 

knockdown, 10 μL of diluted siRNA was added to 670 μL of optiMEM (Invitrogen 

#31985-047). 12 μL of RNAi MAX Lipofectamine (Invitrogen #13778-150) was added 

to 108 μL of optiMEM to give a final concentration of Lipofectamine of 0.3% (v/v). 

The two solutions were incubated at room temperature for 10 minutes, and then 

mixed, flicked and incubated for an additional 10 minutes. Cells were washed twice 

with PBS and cultured in 3.2 mL of optiMEM. At the end of the incubation, the 800 

μL of Lipofectamine/siRNA solution was added to the cells. The final concentration of 

the siRNA in this mix was 50 nM. After 4 hours of incubation at 37°C, the medium 

was replaced with complete EMB2 medium without antibiotics. Cells were than used 

for experiments after 48h. The protocol was adjusted for either smaller or larger 

scales accordingly to the number of transfected cells needed.  

 

2.3.5 PEI Plasmid transfections 

 

Plasmids were transfected into HEK293T cells by use of polyethylenimine (PEI) 

(Sigma-Aldrich #408727), using 1:4 ratio of DNA:PEI. 

 

The day before transfection, 3x106 HEK293 cells were plated in a 10 cm plate in 

DMEM. On the day of transfection 9 μg of DNA were resuspended in 1 mL of 

optiMEM, flicked and supplemented with 12 μL PEI stock solution. The solution 
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DNA/PEI was gently vortexed and left for 10 min at room temperature. At the end of 

the incubation the solution was added to the HEK293T cells.  

 

2.3.6 Lentiviral transduction 

 

HEK293T cells were PEI transfected using 4.39 μg of transfer vector (target gene), 

3.29 μg of packaging vector (PsPAX2) and 1.32 μg of envelope vector (PMD2G). The 

number of plates required for the transfection was calculated based on the amount 

of virus required for transducing the target cells. The cells were allowed to generate 

virus for 24 hours. The virus-containing medium was then supplemented with 0.8% 

(v/v) of 8 μg/mL Polybrene, filtered through a 0.45μm syringe filter, and 

concentrated in a Corning Spin-X UF concentrator that had a 5 kDa molecular weight 

cut off (Sigma-Aldrich #CLS431487). This was then added to 106 of target cells for 48 

hours. Target genes were cloned into a pWPI plasmid, which contained an internal 

ribosome entry site (IRES), followed by a gene for GFP downstream of the cloning 

site. Constructs of this type allowed translation of the target and the GFP gene from 

a single mRNA. The presence of translation of the GFP allowed assessment of the 

transduction efficiency by flow cytometry. In cases where the transduction efficiency 

was low, the GFP positive population was isolated by FACS sorting, to obtain a purer 

population of cells expressing the target gene.  
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2.3.7 Fluorescence-activated cell sorting 

 

Cells were detached, counted and resuspended at a concentration of 2x106/mL in 

MACS buffer (0.5-1% (v/v) FCS or (w/v) BSA and 1-2 mM EDTA in PBS). Sorting was 

carried out by the Flow Cytometry and Sorting Facility of the University of 

Birmingham and a sterile GFP positive population was collected in 20% (v/v) FCS 

DMEM. Cells were then plated and amplified. 

 

2.3.8 Matrigel assay 

 

Matrigel (Corning® Matrigel® Growth Factor Reduced (GFR) Basement Membrane 

Matrix) was thawed overnight at 4°C on ice. PBS was used to wet the entire surface 

of each well of a 12-well plate and then aspirated. 70 μL of Matrigel was added to 

each well, and incubated at 37°C for 15 minutes to solidify. HUVEC cells were 

detached, counted and plated 1.4x105 in each well. The plate was incubated for 24 

hours at 37°C in the IncuCyte®. IncuCyte allowed monitoring of tube formation every 

6 hours by taking pictures in 9 areas of each well. The number of meshes was 

calculated by the ImageJ plugin. “angiogenesis analyser”. 

(http://image.bio.methods.free.fr/ImageJ/?Angiogenesis-Analyzer-for-ImageJ). 

Meshes are areas enclosed by segments or master segments within the network 

form by endothelial cells on matrigel.  
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2.3.9 MTT assay 

 

Proliferation was determined using a CellTiter 96® Non-radioactive Cell Proliferation 

Kit (Promega, G4000) according to the manufacturer’s instructions. Briefly, HUVEC 

under different treatments were seeded sub-confluently in triplicate in 100 μL of 

EBM-2 and left for 24 hours at 37°C in the incubator. The following day, each well 

was supplemented with 15 μL of Dye solution and incubated for 4 hours at 37°C. 

Living cells convert the MTT tetrazolium component of the Dye solution into a 

formazan product, which results in colour formation. At the end of the incubation, 

100 μL of stop solution were added and the absorbance at 570nm recorded on Bio-

tek Synergy HT Multi-Detection Microplate Reader.  

 

2.3.10 Chemotaxis assay 

 

HUVEC cells were incubated in serum-free EBM2 medium for 1 hour. Meanwhile, 

sterile FluoroBloks HTS 24 Well Plate Cell Culture Insert with 8.0 µm High Density 

PET Membrane (Corning) were transferred to a 24-well plate and coated with 0.1% 

(w/v) gelatin in PBS for 30 minutes at 37°C. Cells were then detached, counted and 

seeded 3x104 cells/well in 300 µl of serum-free media. Each insert was then placed in 

a well containing complete EBM-2 media and cells were left to migrate for 5 hours at 

37°C. Inserts were washed gently with PBS and fixed in 4% (w/v) PFA. Membranes 

from each insert were then carefully cut out and mounted between two glass slides 

using DAPI mounting media. The lower part of the membrane was imaged at 10X 

magnification and nuclei were counted in 9 different fields of view. 
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2.3.11 Co-Culture Assay 

 

3x104 human dermal fibroblasts were plated in each well of a 12 well plate in 1mL of 

complete DMEM. Four days later, the medium was replaced. On the same day 

HUVEC cells were transfected with siRNAs according to the protocol mentioned in 

2.3.3. The following day 3x104 of HUVEC cells were plated in each well on top of the 

fibroblast monolayer in 1 mL of EMB-2 media. On the 7th and 9th day, medium was 

replaced and on the 11th day the tubules that HUVEC formed were immunostained.  

 

Media was removed and the co-culture was washed with 1 mL of PBS and fixed with 

1 mL of 70% (v/v) -20°C-cold ethanol for 30 minutes at room temperature. Ethanol 

was removed, the tubules were washed twice with PBS and incubated with anti-

human CD31 (Dako, mouse monoclonal, clone JC70A) at 1.29 µg/mL diluted in 400 

µL in 1% (w/v) BSA in PBS at 37°C for 40-60 minutes. The plate was washed gently 3 

times with PBS and incubated with anti-mouse IgG (whole molecule)-Alkaline 

Phosphatase (goat polyclonal, Sigma A4656) diluted to 1:500 in 400 µL in 1% (w/v) 

BSA in PBS at 37°C for 40-60 minutes. Plates were washed 2 times with PBS and 3 

times with water before incubating with 500 µL of SigmaFAST BCIP/NBT substrate 

(Sigma, B5655-25TAB) dissolved in H2O. The reaction was finally stopped with 1ml of 

H2O and the plates were left to dry in the dark at room temperature. Images were 

taken at 1.6x magnification using the MZ16 Leica microscope and analysed using the 

Angio Sys analysis software (TCS Cell Works).  
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2.3.12 Cell monolayer wound healing assay 

 

HUVEC cells were plated in a 96-well plate (Essen BioScience) at 1x104 cells/well. The 

following day they were transfected with siRNA as described above 2.3.3. After 48 

hours the monolayers of transfected HUVEC cells were scratch wounded using a 96-

well plate scratcher (Essen BioScience). Plates were incubated in an Incucyte (Essen 

BioScience) and images were taken every 6 hours to document the closure of the 

wound. The area of closure was measured with ImageJ. 

 

2.3.13 Human T cell culture 

 

Human-T cells were obtained isolating from adult peripheral blood mononuclear 

cells (PBMCs) from apheresis cones (Blood Donor Centre), using lymphoprep 

(StemCell). Subsequently, cells were resuspended in T cell media (TCM) at a density 

of 1x106 cells/ml. PBMCs were activated by adding anti-CD3 (OKT3) (eBiosciences), 

anti-CD28 (Invitrogen) antibodies at a concentration of 30 ng/ml and IL2 (Sigma) at a 

concentration of 300 U/ml. Cells were stimulated for 48h before transduction and 

incubated at 37°C.  

 

2.3.14 Mouse-T cell isolation and activation 

 

Mice were housed at the Birmingham Biomedical Service Unit (University of 

Birmingham, UK). Mice 6 weeks old C57BL/6 were culled and the spleen dissected. A 

single cell suspension was prepared by smashing the spleen through a 70 μm 
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strainer. Cells were suspended in RPMI. To lyse red blood cells, 1x lysing buffer (BD 

Biosciences) was added in sterile water. Cells were washed and suspended in LCL at 

a final concentration of 3x106 cells/ml. In order to stimulate T cell differentiation, 

Concanavalin A (Sigma) at a final concentration of 2 μg/mL and IL7 (eBiosciences) to 

a final concentration of 1 ng/ml were added to the culture. Cells were then 

incubated for 48 hours at 37°C. 

 

2.3.15 Human T cell Transduction 

 

Phoenix A (Ph. A) cells were seeded in T150 flasks at a final concentration of 1x107 

cells/flask in 10% FCS DMEM and incubated overnight at 37°C. Ph. A cells at a 60-

80% confluence were transfected with 12μg of DNA carrying the CAR gene together 

with 12μg of pCl ampho plasmid in OptiMEM (Gibco) mixed with 120μl of FuGENE 

HD (Promega) in OptiMEM, according to manufacturer’s instructions. The mix of 

DNA and Fugene was incubated for 45 minutes at room temperature. After adding 9 

ml of 10% fresh DMEM without antibiotics to the Ph. A cells, the transfection 

reagents were added to the cultures.  24 hours later media was replaced with 21 ml 

of complete DMEM without antibiotics. Cells were incubated at 37°C for a further 24 

hours. According to the number of T cells to be transduced, 6 well plates were 

coated with 30 μg/ml of retronectin for 3 hours at room temperature. After the 

removal of retronectin the wells received blocking buffer (PBS-2% BSA) for 30 min. 

Virus-containing medium was collected and centrifuged at 1500 rpm for 5 minutes to 

remove dead floating cells. This suspension was then distributed in the retronectin-

coated wells and centrifuged in a pre-warmed centrifuge at 32°C for 2 hours. T cells  
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Figure 2.1 Retroviral transduction of human T cells  
	
The figure represents the main steps to transduce T cells. First, Phoenix A (Ph.A) cells are cultured and 

transfected with both CAR T DNA and pCL ampho DNA, in order to produce active retroviral particles. 

Meanwhile on day 2, peripheral blood mononuclear cells are cultured and stimulated with IL2, anti-

CD28 and anti-OKT3. On day 4, retronectin-coated plates are further incubated and coated with 

retrovirus-containing media. Finally, T cells are plated on top of the retrovirus.  
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were collected, counted and allowed to recover for 15-20 minutes at 37°C.  After 

centrifugation, the virus was removed and wells were washed once with PBS (4 

mL/well).  T cells were plated 2x106 cells/well, the plates were centrifuged at 1300 

rpm for 5 minutes and incubated at 37°C. The following day, cells were 

supplemented with additional 6 ml of TCM and incubated at 37°C (Figure 2.1).  

 

2.3.16 Mouse T cells Transduction 

 

Mouse splenocyte transduction was performed with a similar protocol as described 

for human T cells in 2.3.14. Retrovirus was produced in Pheonix E cells, which were 

transduced using 12 μg of pCl Eco plasmid instead of pCL Ampho. The following steps 

were as described in 2.3.14. On the 5th day, cells were collected in a 50 mL tube and 

centrifuged at 1800 rpm for 5 minutes and resuspended in 25 mL of media. The cell 

suspension was layered onto 15 mL of ficoll histopaque and centrifuged at 1400 rpm 

for 30 minutes. Cells were gently aspirated from the interface of the gradient and 

placed in a 50 mL tube. Cells were washed 2 times with 50 mL of RPMI to remove 

ficoll. Cells were finally resuspended in TCM and counted or stained for transduction 

efficiency by Flow Cytometry analysis.  

 

2.3.17 Human T cell transduction Efficiency 

 

In order to verify the transduction efficiency of the human T cells flow cytometry 

was carried out. A small population of T cells was stained with the following 

antibodies: anti-human CD4 FITC (BD Biosciences, 555346), anti-human CD8 PE 
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(Abcam, ab134386), anti-human CD34 APC (Biolegend, 581) and a viability stain. The 

staining was performed on ice in the dark for 30 minutes and cells were washed with 

MACS buffer. Finally, T cells were resuspended in a total of 300 μL of MACS buffer 

and analysed on the LSRII (BD) flow cytometer. Transduced T cells were typically 

cryopreserved between their generation and their use in functional assays. 

  

Antibodies for human T 

cells 

Manufacturer Concentration 

Human CD4-FITC BD Biosciences, 555346 1/8 

Human CD8-PE Abcam, ab134386 1/40 

Human CD34-APC Biolegend, 581 1/20 

 
Table 2.11 List of antibodies for T cell transduction efficiency  

 

2.3.18 Human T cell IFNγ ELISA 

2.3.18.1 ELISA against recombinant antigen 

 

In this assay, recombinant protein was used to activate the transduced T cells. 

Immunoabsorbent plates for ELISA were coated with both human or mouse 

recombinant CLEC14A ECD-hFc and hFc as a negative control.  Each protein was 

tested in triplicates at different concentrations (10μg/μl, 1 μg/μl, 0.1 μg/μl) with hFc 

tested at 10 μg/μl. The plates were coated at room temperature overnight covered 

with transparent film. After washing the plates with PBS, T cells in ELISA media were 

plated at 2x105 cells/well. Untransduced cells were used as a mock negative control. 
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Cells were incubated at 37°C for 16-24 hours. Supernatants containing INFγ were 

subsequently tested in the IFNγ ELISA protocol.  

 

2.3.18.2 Cells expressing the antigen 

 

In this type of assay, we used HUVEC cells (Lonza), which constitutively expressed 

both of the T cell targets CLEC14A and CD93, and HEK cells transfected with CLEC14A 

(full length and the non MMRN2 binding mutant CLEC14AC103S) and CD93 (full length 

and the non MMRN2 binding mutant CD93C104S). Target cells were seeded in tissue 

culture treated 96 well plates in TCM at 1x104 cells in 50 μl. T cells were seeded in 

TCM at 2x105 cells in 50 μl. Plates were centrifuged at 1400 rpm for 3 minutes and 

incubated for 16-24 hours at 37°C.  

 

2.3.18.3 ELISA development 

 

On the same day of seeding T cells with relevant targets (either recombinant 

proteins or cells expressing the antigen), Maxisorp plates (Nunc) were coated with 

anti-human IFNγ Ab diluted in coating buffer (0.75 μg/ml). The number of plates to 

coat was calculated based on the experiment size, including space for the standards. 

Plates were incubated overnight at 4 °C. 

The following day media was flicked off and the plates received blocking buffer for 2 

hours at room temperature. After incubation, the plates were washed four times 

and both the supernatants (50 μL/well) and the standards were added. Standards 

were added to a concentration of 2x104 pg/ml to 312 pg/ml in two-fold dilutions in 



	 86	

culture medium. Plates were incubated at room temperature for 3 hours and further 

washed 4 times with PBS/Tween. Biotinylated anti-IFNγ (Invitrogen) at 1/1333 

dilution in blocking buffer was added to each well and the plate was incubated for 1 

hour at RT and washed as previously. The plates were incubated one last time with 

extra-avidin peroxidase in blocking buffer at 1/1000 dilution, incubated 30 minutes 

and washed 8 times before developing. The ELISA signal was developed by adding 50 

μl for 20 minutes of TMB substrate per well. The reaction was stopped with 1M 

phosphoric acid (50 μl/well) and the absorbance was read at 450nm with Bio-tek 

Synergy HT Multi-Detection Microplate Reader. 

 

2.3.19 Chromium Release Experiment 

 

T cell killing activity was measured performing a chromium release assay. Target cells 

were generated by transfecting HEK293T cells with the following constructs: 

CLEC14AFL, CLEC14AC103S, CD93FL and CD93C104S. In order to observe if the 

endogenous expression of the targets was able to trigger the killing activity of T cells, 

HUVEC cells were chosen as they express both CLEC14A and CD93. Target cells were 

released by exposure to trypsin, counted and pelleted at 1400rpm for 5 minutes. The 

supernatant was carefully removed, 10 μL (=50 μCi) of fresh 51Cr was pipetted on top 

of the pellet and the tubes were flicked to resuspend the cells in the 51Cr. In case the 

51Cr past its activity date or if high cell numbers were labelled, the amount of 51Cr 

was increased accordingly. The cells incorporating the 51Cr were incubated at 37°C 

for 2 hours and they were resuspended every half an hour. Meanwhile T cells were 

washed, counted and plated in 100 μL of media in V-bottom 96 well assay plates. 
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Plates were set up in order to include effector:target (E:T) ratio of 20:1, 10:1 and 5:1 

and triplicates for each sample. For each target 3-6 replicates were also included 

with media alone and 3-6 replicates with 1% (v/v) SDS, necessary to calculate 

respectively spontaneous release and maximum lysis. At the end of the incubation, 

target cells were washed twice with 8 mL of media and centrifuged at 2000rpm for 3 

minutes. They were diluted to a concentration of 2.5x104 cell/mL and 100 μL of each 

were plated out in V-bottomed 96-well assay plate containing the T cells. The plates 

were then centrifuged at 1400 rpm for 3 minutes and incubated at 37°C for 4-5 

hours. At the end of the incubation 100 μL/well were harvested and transferred into 

LP2 tubes. The levels of 51Cr were read by the Cobra 5010 gamma counter (Packard). 

The percentage of specific lysis was calculated with the following formula: 

% specific lysis = ((release of test sample - spontaneous release)/(max release-
spontaneous release)) * 100  
 
 

2.4 Biochemistry 

2.4.1 Cell Lysis 

 

For cell lysis, cells were detached (either by treatment with trypsin or scraping) and 

pelleted. According to the cell type and the number of cells, they were resuspended 

in different amounts of lysis buffer NP40, usually 10 times the pellet volumes. The 

lysis buffer was supplemented with a protease inhibitor. After resuspending, cells 

were vortexed for 1 minute and incubated on ice for 30 minutes. The insoluble 

cellular debris was pelleted by centrifuging at maximum speed (13000 rpm) at 4°C 
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for 30 minutes and the lysate was transferred to a new microcentrifuge tube and 

stored at -20°C. 

 

2.4.2 SDS PAGE and western blotting  

 

Protein concentration was measured with BCA Protein Assay Kit (Thermo Scientific) 

according to manufacturer’s instructions. Protein samples were separated by sodium 

dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). SDS-PAGE gels 

were poured into XCell Surelock mini gel cassettes (Thermo Scientific) and run using 

XCell Surelock apparatus in SDS running buffer at 70mV through the stacking and 

120 mV for the resolving gel. The stacking gel was composed of 15.8 mM Tris pH 6.8, 

0.013% (v/v) SDS, 5% (w/v) polyacrylamide, 0.001% (v/v) TEMED. In the resolving gel, 

the percentage of polyacrylamide was variable (6-18%) according to the molecular 

weight of the proteins analysed whereas the remaining ingredients of the gel were 

at a fixed concentration of 97.5 After protein separation, wet transfer was 

performed onto PVDF membranes in transfer buffer for 2 hours at 30mV at 4°C in 

the cold room. After ensuring transfer with Ponceau S protein stain, PVDF 

membranes were blocked in 5% (w/v) milk in PBST for 1 hour at room temperature 

or 4°C overnight. Primary antibodies were resuspended at the working concentration 

(table 2.2) in PBST solution (3% (w/v) BSA and 0.001% (w/v) of sodium azide) and 

used to probe the PVDF membranes at the end of the blocking step at room 

temperature for 1 hour or at 4°C overnight. At the end of the incubation membranes 

were washed 5 times with PBST. The appropriate secondary antibodies conjugated 

with HRP were diluted as reported (table 2.3) and incubated with the membranes for 
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1 hour at room temperature. The blots were further washed as previously described 

and prepared to detect the presence of HRP conjugated antibodies by enhanced 

chemi-luminescence (ECL), using Amersham ECL western blotting detection reagent 

(GE Healthcare) and Amersham Hyperfilm X-ray film (GE Healthcare) according to 

the manufacturer’s instructions.  

 

2.4.3. Comparing the protein levels of endogenous CLEC14A and CD93 in HUVEC 

 

A comparison of endogenous protein levels of CLEC14A and CD93 in HUVEC was 

achieved by western blotting.  

 

HEK293T were transfected GFP-tagged construct of CLEC14A and CD93 cloned into 

pEGFPN1 vectors. Proteins were extracted from these transfected cells and 

alongside lysate from HUVEC they were used for SDS-PAGE and western blotting. In 

order to probe with different antibodies, three identical replicas of the same 

samples were run in the same gel and transferred onto a membrane. Subsequently, 

the membrane was cut and each replica was probed with a specific antibody. 

Western blot was performed as described in the previous paragraph (2.4.2). 

 

The intensity values of CLEC14A-GFP bands obtained with the CLEC14A- or GFP-

specific antibodies were compared with the intensity values of CD93-GFP bands 

obtained with CD93- and GFP-specific antibodies. Exploiting the CLEC14A-GFP and 

the CD93-GFP protein, and the GFP specific antibody allowed the calculation of the 
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relative efficacies of the CLEC14A- and CD93-specific antibodies and so enabled the 

relative expression levels of CLEC14A and CD93 in HUVEC to be determined.  

 

2.4.4 ELISAs 

2.4.4.1 Direct ELISA 

 

Direct Enzyme-linked immunosorbent assay was employed in the detection of 

specific antibodies against h/mCLEC14A ECD-hFc in plasma. The plasma of 

vaccinated mice was tested against specific antigens. ELISA plates (NUNC MaxiSorp) 

were coated with the target protein (e.g. h/mCLEC14A ECD-hFc) in PBS at a 

concentration of 20-50 μg/mL at 4°C overnight. The wells were washed 3 times with 

PBS-T, blocked with 5% (w/v) BSA for 2 hours at room temperature and then washed 

again as before. The murine plasma or phage supernatant was incubated for 1 hour 

at room temperature. Wells were washed again 3 times, incubated with anti-myc 

antibody for 1 hour at room temperature and washed again. Before the last wash 

and to develop HRP signals, the anti-mouse HRP antibody was added for 1 hour at 

room temperature. The ready-to-use BM Chemi-luminescence ELISA Substrate 

(Roche) was added to the wells and left for 10 minutes in order for the colorimetric 

reaction to develop. The reaction was quenched with 2M sulphuric acid. The OD was 

read at 450nm. 
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2.4.4.2 In-cell ELISA 

 

To assess recognition of an antigen expressed on cells, an in-cell ELISA was 

constructed. Two stable transduced lines of HEK293T expressing the full-length gene 

of hCLEC14A or the empty vector were generated. These cells were plated at 5x104 

cells/well in 100 μL of complete DMEM media. On the following day, cells were fixed 

by adding 100 μL of 8% (w/v) paraformaldehyde (PFA), in order to have a final 

concentration of 4% (w/v) PFA, for 30 minutes at room temperature. Cells were then 

washed 3 times with PBS and then stored in PBS at 4°C for a maximum of a couple of 

weeks. On the day of the ELISA, the hybridoma supernatants were tested once 

against cells expressing the target and once against cells expressing the empty vector 

as negative control. From this point, the protocol was the same as described in 

2.4.4.1. 

 

2.4.5 Biotinylation of hCLEC14A-ECD-hFc  

 

To generate a recombinant biotinylated hCLEC14A-ECD-hFc for Phage display 

panning purposes, the EZ-link NHS-SS-Biotin kit (Thermo) was employed. This kit 

allowed the reversible biotinylation of proteins on their free primary amines (-NH2) 

such as lysine side chains or the amino termini. The biotinylation was performed 

according to the manufacturer’s instructions at a ratio of 50:1 biotin to protein. 

Excess of free biotin was removed by buffer exchange using PD-10 desalting columns 

(GE Healthcare) according to manufacturer’s instructions.  
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2.4.6 Alexafluor 488-conjugation to MMRN2485-678-hFc 

 

To obtain directly conjugated recombinant proteins, mMMRN2485-678-hFc and hFc 

alone were conjugated to the fluorophore Alexa-Fluor 488 using anantibody labelling 

kit (Life Technology). The reaction with the dye is similar to the biotinylation reaction 

described in 2.4.4. The recombinant protein hFc and mMMRN2485-678-hFc were 

conjugated according to the manufacturer’s instruction.  

 

2.5 Purification of proteins 

2.5.1 Purification of Fc-tagged proteins 

 

Fc-tagged proteins were expressed in the lentiviral vector pWPI. In order to produce 

these proteins, HEK293T cells were lentivirally transduced with these vectors and the 

stable cell lines, expressing and secreting (due to the presence of a signal peptide) 

these proteins, were generated. An exception was hMMRN2495-674-hFc, which was 

cloned into the non-lentiviral expression vector pHL-Fc and, in order to produce this 

protein, cells were transiently transfected. Stable or transiently transfected cells 

were cultured in large dishes to reach confluence. At confluence, media was 

changed from complete DMEM to OptiMEM; it was then collected and replaced 

every two days over a period of 2-3 weeks. The collected medium was centrifuged, 

sterile filtered, supplemented with PMSF and EDTA, and stored at 4°C.  

 

A protein A column was employed for the purification of Fc-tagged proteins. The 

column was washed with 5x the volume of the column with deionized water to 
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remove ethanol used for storage. The column was then equilibrated, running 5x the 

volume of the column with Na2PO4 pH 7.0. Once equilibrated, the protein containing 

optiMEM was run through the column in a loop, at a speed of 1mL per minute. Once 

all the media had run through the medium, pH of the column was lowered by 

running through NaCitrate pH 3.0, allowing the elution of the protein which was 

collected in 0.5 mL aliquots and neutralised with 0.2 mL of Tris pH 9.0. All the above-

described steps were performed at 4°C. Eventually, in order to clean the column, the 

same steps were performed in reverse order allowing column storage in 20% EtOH 

at 4°C. 

 

2.5.2 Purification of His-tagged proteins 

 

The production and purification of His-tagged proteins were similar to that was done 

for Fc-tagged proteins. Sequentially the following were run through an Ni-NTA 

column: PBS, PBS 0.5 M NaCl, Protein containing OptiMEM, PBS 0.5 M NaCl 10 mM 

Imidazole (to wash non-specific binders) and PBS 0.5 M NaCl 250 mM Imidazole to 

elute proteins from the column.  

 

2.6 Flow cytometry 

2.6.1 Generic protocol for immunostaining cells 

 

In order to detect the presence of a cell surface marker, such as CLEC14A or CD93, 

HUVEC were detached from the culture plates by scraping or by using cell 

dissociation buffer. Cells were stained on ice with 20 μg/mL of the antibody of 
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interest or recombinant proteins for an hour. After washing with an excess of Flow 

Cytometer buffer, cells were incubated with secondary antibodies (1:100) chosen 

accordingly to the species of the primary antibody and the conjugated fluorophore 

for 1 hour on ice in the dark. In all incubation steps cells were resuspended in Flow 

cytometer buffer. Samples were analysed either on a FACSCalibur Machine (BD 

Biosciences) or a Cyan ADP (Beckman Coulter). Data were analysed using FlowJo 10.2 

(v3.05470).  

 

2.6.2 Cell cycle 

 

48 hours after transfection with siRNA (2.3.3), HUVEC were collected, including 

possible cells floating in the media. Cells were then pelleted at 1500 rpm for 3 

minutes and resuspended in 3 mL of ice-cold PBS. Cells were fixed with 100% 

ethanol (at -20°C) added dropwise while vortexing gently. Following the addition of 

100% ethanol cells were incubated at -20°C for at least one hour, centrifuged at 

1500 rpm for 5 min and the ethanol removed. Cells were washed twice in ice-cold 

PBS. After washing, cells were incubated on a rocker for 15 minutes with ice-cold 

PBS with 0.25% Triton X-100. The PBS-Triton was carefully removed and cells were 

resuspended in 470 μL of PBS, transferred into a FACS tube and incubated with 5 μL 

of 0.1 mg/mL RNAse A and 25 μL of 50 μg/mL propidium iodide for at least 30 min in 

the dark on ice. Samples were analysed by at flow cytometer Cyan (Beckman 

counter) and data were analysed using FlowJo 10.2 (v3.05470). 
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2.6.3 Lentiviral transduction efficiency analysis 

	
HEK293T cells lentivirally transduced with GFP constructs were detached, 

resuspended in Flow cytometer buffer (Table 2.1) and green fluorescence was 

directly detected by Flow cytometer analysis. 

 

2.7 Cell and tissue staining 

2.7.1 Immunofluorescent staining of cultured cells 

2.7.1.1 Preparation of coverslips 

 

Coverslips were sterilised with 1M HCl for 10 minutes at room temperature. Before 

storage, they were washed 5 times with sterile ddH2O and then transferred to 70% 

(v/v) ethanol. Before use, they were washed with sterile PBS and then moved into a 

6 well dish and coated with 0.1% (w/v) gelatin in PBS.  

 

2.7.1.2 IF protocol 

 

HUVEC were plated in 6-well dishes containing coverslips. Once reached the desired 

confluency, coverslips were washed 3 times with sterile PBS and incubated with 4% 

(w/v) PFA in PBS for 10 minutes at room temperature. After fixation, coverslips were 

washed 3 times with PBS and incubated with 50 mM NH4Cl in PBS for 10 minutes at 

room temperature. Before the incubation with blocking buffer (Table 2.1) for 1 hour 

at room temperature cells were washed 3 times as previously described. Primary 

and secondary antibodies were diluted into blocking buffer and incubated 1 hour at 
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room temperature and, at the end of each incubation, cells were washed 3 times 

with PBS. Coverslips were mounted face down onto 5.5 μL ProLong Gold Antifade 

reagent with DAPI. They were left overnight at room temperature in the dark and 

the following day the edges of the coverslips were sealed with clear nail polish and 

stored at -20°C. Images were taken on a Zeiss LSM 780 Confocal microscope.  

 

2.7.1.3 MMRN2495-678-hFc internalisation experiment 

 

HUVEC cells were plated in 6 well plates containing sterile coverslips. On the day of 

the experiment, cells were sparse on the plate and incubated for at least 30 minutes 

with pre-warmed serum-free media. The stimulation of each time point was 

performed using 5 μg/mL of either MMRN2495-678-hFc or hFc alone as the negative 

control. At the end of the stimulation the cells were fixed with 4% (w/v) PFA for 10 

minutes after 3 washes in ice-cold PBS. Then the standard protocol for IF described 

previously in the paragraph 2.7.1.2 was used. In order to detect the possible 

presence of MMRN2-hFc cells were stained with Alexa 633 anti-hFc. Moreover, 

endosome staining was achieved using an antibody against the early endosomes 

antigen 1 (EEA1) (BD Biosciences), which is a known marker for endosomes (Mu et 

al., 1995).  

 

Finally, the coverslips were mounted using the ProLong Gold Antifade Mountant 

with DAPI. Pictures were taken on the Zeiss LSM 780 Confocal microscope.  
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2.7.2 CD31 Immunofluorescent staining of frozen murine tumour tissues 

 

Sections of frozen murine tumour tissues were fixed by immersion in acetone for 10 

minutes at -20°C. The slides were washed 3 times with PBS and then mounted into a 

Sequenza slide rack with a Shandon cover plate. Sections were blocked with 2.5% 

(v/v) horse serum in PBS for 30 minutes at 23°C. CD31 monoclonal (Biolegend, Clone 

MEC13.3) antibody was diluted to 10 μg/mL (1/50) in sterile PBS and 100 μL of 

diluted antibody was added to each slide and incubated for 1 hour at 23°C. The 

slides were washed 3 times with PBS and incubated with chicken anti rat-

alexafluor488 antibody (Life Technologies, A21470) at concentration of 10 μL/mL 

(1/200) in sterile PBS for 1 hour at 23°C. Before mounting the slides with Prolong 

Gold antifade reagent with DAPI, tissues were washed 3 times with PBS and once 

with deionised water. Slides were stored at -20°C in the dark. Images were taken 

with a Leica DM6000 fluorescent microscope.  

 

2.8 In vivo experiments 

 

All the in vivo experiments were performed at the University of Birmingham animal 

facility (BioMedical Service Unit, BMSU) under the Project License of Prof. Roy 

Bicknell (PPL70 8704). 
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2.8.1 Hybridoma antibody production 

 

The generation of monoclonal antibodies to CLEC14A was performed in 

collaboration with the monoclonal antibody production unit of the University of 

Birmingham with the help of Dr. Margaret Goodall.  

 

2.8.1.1 Immunisation protocol 

 

The protocol of immunisation was similar to the one used from Cancer Research 

Technology (CRT). The mouse version of the extracellular domain of CLEC14A was 

expressed fused with a human Fc fragment, in order to elicit the immune response. 

Three mice were immunised subcutaneously at the base of the tail with 50 μg of the 

antigen thoroughly resuspended in complete Freund’s Adjuvant (CFA). The following 

boosts were every two weeks. The first boost was an intraperitoneal (IP) injection of 

the same amount of protein in PBS. The second boost was performed similarly as the 

first immunisation, injecting subcutaneously 50 μg of protein but using incomplete 

Freund’s Adjuvant (IFA). The serum was tested by in In-cell ELISA and, if the titre was 

sufficiently high to see a response at 1/104 dilution, the last boost was given IP 

injection and three days later the fusion was performed.  

 

2.8.1.2 Fusion protocol 

 

Mice were culled and the spleen was removed and placed in a petri dish. Holes were 

created using the needle of a syringe and RPMI was used to gently flush cells out of 
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the spleen. In order to obtain a complete single cell suspension, the rest of the 

spleen was gently flushed through a 40 μm strainer. Both spleen cells and mouse 

myeloma cells NSO were washed 3 times with serum-free RPMI in order to eliminate 

any trace of serum, that is known to interfere with polyethylene glycol (PEG). The 

splenocytes isolated were counted and pooled in a 1:5 ratio (myeloma:splenocyte) 

with the myeloma cells in a sterile glass tube with a round bottom. Cells were then 

centrifuged and the supernatant was aspirated carefully. Cells were resuspended in 

1 mL of PEG added with a plastic Pasteur pipette gently while stirring. The same 

operation was repeated while supplementing the PEG solution of cells with 1 mL of 

warm RPMI reducing the concentration of PEG. This was repeated 1 mL at a time up 

to 20 mL. After allowing cells to rest for 5 minutes, the process was continued up to 

50 mL. Cells were centrifuged at 1700 rpm for 7 minutes and the supernatant was 

aspirated. The hybridomas were resuspended in 50 mL of RPMI 20% (v/v) FCS in a 

T75 flask. Cells were then resuspended and plated in 96-well plates in 150 μL of 

RPMI 15% (v/v) FCS. On the following day, 2x hypoxanthine-aminopterin-thymidine 

(HAT) media was added to the plates in order to select the hybridomas between 

myeloma cells and splenocytes.  

 

2.8.2 Tumour vaccination experiment against MMRN2495-678 

 

Mice were immunised subcutaneously every 2 weeks with 50 μg of the protein fused 

with hFc fragment. Purified hFc was injected in the control group. The first 

immunisation was in complete Freud’s adjuvant whereas the second and third 

immunisations were in incomplete Freud’s adjuvant. Before each immunisation, 
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blood samples were collected in order to check the antibody titre. One last 

immunisation was performed intraperitoneal in PBS. Two weeks after the last 

immunisation, 2x106 LLC cells were injected and every 2 days measurements of the 

tumours were made with a calliper.  
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3. Investigating the interaction of Multimerin-2 (MMRN2) with CD93 

and CLEC14A 

3.1 Introduction 

 

Angiogenesis is a highly regulated and complex process by which new vessels are 

generated from existing ones. In angiogenesis endothelial cells undergo multiple 

changes. Firstly, they have to escape quiescence, developing a proliferative 

phenotype.  Then, in order to respond to pro-angiogenic stimuli, they have to 

migrate and transmigrate, remodelling the environment and the extracellular matrix. 

Finally, undergoing tubulogenesis to form functional vessels. Thus, angiogenesis may 

be divided into four main steps: (I) vascular sprouting, (II) tubule morphogenesis, (III) 

adaptation to tissue needs and (IV) vessel stabilisation. Different proteins regulate 

these steps although some may be involved in several. In addition, other cell types 

collaborate with endothelial cells during angiogenesis, for example a key role is 

played by pericytes (Carmeliet and Jain, 2011).  As there is no gold standard assay in 

vitro to evaluate the involvement of a protein in each step, multiple in vitro assays 

are usually used. In vivo assays can give a comprehensive overview of angiogenesis, 

but it is not possible to appreciate the contribution of an individual protein to each 

step (Irvin et al., 2014). 

 

CLEC14A and CD93 are C-type lectin domain proteins that both belong to the family-

14. CLEC14A has been shown to be a tumour endothelial marker, which means that 

it is upregulated in the vasculature in different tumour types, but it is virtually absent 
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within the vasculature of healthy tissues (Mura et al., 2012). Knockdown of CLEC14A 

led to reduced endothelial cell migration and tube formation (Rho et al., 2011; Mura 

et al., 2012). Moreover the ectopic expression of CLEC14A resulted in increased 

filopodia in Hela and human embryonic kidney 293 cells, showing a polarization at 

the plasma membrane of CLEC14A (Mura et al., 2012). Likewise CD93 is also involved 

in angiogenesis. Endothelial knockdown of CD93 showed impairment in cell-cell and 

cell-matrix contacts, migration and tubular morphogenesis. CD93 binds to 

dystroglycan and binding was important for those activities (Orlandini et al., 2014; 

Langenkamp et al., 2015; Galvagni et al., 2016). More recently MMRN2, an 

extracellular matrix protein also involved in angiogenesis (Zanivan et al., 2013; Noy 

et al., 2015; Colladel et al., 2016), was shown to be a ligand of both CLEC14A and 

CD93 (Khan et al., 2017).  

Altogether these data suggest that CLEC14A and CD93 are redundant receptors for 

MMRN2 and the interaction of all three proteins is relevant to their angiogenic roles. 

Therefore, the aim of this work was to evaluate the effect of the double knockdown 

compared to the singles knockdowns in various in vitro assays using HUVEC cells.  

 

3.2 Validation of siRNA and antibodies for CLEC14A, CD93 and MMRN2 

 

Two duplexes targeting each gene (CLEC14A, CD93 and MMRN2) were tested in 

knockdown experiments. The knockdowns were assessed at the RNA level via qPCR 

and at the protein level via western blot. HUVEC cells were transfected with each of 

the siRNA independently and after 48 hours proteins were extracted and subjected  
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Figure 3.1 Validation of siRNA and antibodies for CLEC14A, CD93 and MMRN2  
 

To validate the siRNAs, HUVEC cells were transfected with siCTRL and the respective duplexes for 

MMRN2, CLEC14A and CD93. After 48 hours, lysates from transfected cells were prepared and 

subjected to western blot. The upper part of the blot was developed probing with CLEC14A, CD93 or 

MMRN2 antibody, and the lower part with α-tubulin control. The blot shows the knockdown 

experiment A for CLEC14A, B. for CD93 and C. for MMRN2. The graphs on the right side of the figure 

show the densitometry analysis, normalising the value of each protein band to the corresponding 

band for α-tubulin. Blue arrows indicate the specific bands in case of ambiguity. The data is expressed 

as a percentage. n=1 
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Figure 3.2 siRNA double knockdowns of CD93/CLEC14A and CD93/MMRN2  
 

To investigate the possibility of obtaining a double silencing of these proteins in HUVEC cells, cells 

were transfected with the different siRNAs (alone or in combination). Lysates after 48 hours were 

prepared and subjected to western blot. A. The blot shows the protein levels of CLEC14A in the 

various combinations of KD. B and C show the levels of CD93 and MMRN2. Each of the blots shows α-

tubulin as housekeeping gene in the lower part of each blot. The same samples were loaded in three 

independent gels and blotted for one of the proteins. This result confirmed the possibility of obtaining 

a successful double knockdown. The graphs on the right side of the figure show the densitometry 

analysis, normalising the value of each protein band to the corresponding band for α-tubulin. The 

data is expressed as a percentage. The same analysis also was repeated for each transfection to 

ensure that cells used later in functional assay were knocked down successfully. Blue arrows indicate 

the specific bands in case of ambiguity n=5   
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to western blot, probing with commercial polyclonal antibodies for each of the 

proteins.  

 

Blots showed bands at 100-120 kDa for CLEC14A and CD93 and at 135 kDa for 

MMRN2. Although CLEC14A and CD93 amino acids predicted molecular weights are 

50 kDa and 68 kDa (Uniprot), the actual bands were shown at much higher molecular 

weights, due to the fact they are both highly glycosylated. Knockdown reduced 

(almost 100%) for all three proteins and with both of the duplexes (D1 and D2) 

(Figure 3.1). This confirmed that both the antibodies used and the duplexes were 

specific for their targets. A similar experiment was performed to show the 

knockdown of two genes at the same time. Based on the strong effect of CD93 in 

some preliminary functional assays, the double knockdown of CD93-CLEC14A and 

CD93-MMRN2 was attempted. As shown in Figure 3.2 it was possible to achieve 

double knockdowns for each combination. These combined knockdown cells were 

then studied in functional assays. The effect of the siRNAs was also checked at the 

mRNA level by qPCR for CLEC14A, CD93 and MMRN2 in collaboration with Dr Peter 

Hewett. HUVEC cells were collected at 24 and 48 hours after transfection and the 

cDNA from these cells was subjected to qPCR. The result showed a strong reduction 

in the mRNA of CD93 and CLEC14A, both at 24 hours and at 48 hours. Data for the 

48-hour experiment are shown in figure 3.3. 
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Figure 3.3 qPCR result of knockdowns 48h after transfection  
 

To investigate whether the knockdown was confirmed at the mRNA level, HUVEC cells transfected 

with CTRL, CLEC14A, CD93 and MMRN2 siRNAs (alone or in combination) were collected after 

48hours. From these populations mRNA was extracted, retrotranscribed and subjected to qPCR 

analysis. Probes employed in this experiment were designed for Sybergreen analysis. The expression 

levels were normalised for the levels of β-actin.  A. The bar graph shows the gene expression of 

CLEC14A in each knockdown population tested. B and C The graphs represent the expression level of 

CD93 and MMRN2 respectively. Data are expressed as fold change. The data represent the mean of 3 

technical replicates ± SEM. n=1 
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3.3 Knockdown of CLEC14A, CD93 and MMRN2 does not inhibit proliferation or 

block cell cycle checkpoints in HUVEC 

 

Proliferation was examined using an MTT assay. HUVEC were transfected with the 

previously validated siRNAs duplexed and proliferation was measured based on the 

conversion of tetrazolium into a formazan dye. This showed that there is a subtle but 

not significant reduction in proliferation after transfection. Reduction was observed 

to a greater extent on CLEC14/CD93 and MMRN2 knockdown, whereas only slightly 

on MMRN2/CD93 and CD93 knockdown. No observable changes compared to 

controls were found on CLEC14A knockdown (Figure 3.4). Although there are no 

obvious effects on cell proliferation 24 hours after transfection, there might be 

observable differences at later time points. The inclusion of siRNA for cyclin D1 as 

positive control could give a better indication whether the absence of a phenotype is 

due to the short time point rather than the actual consequence of the knockdown.  
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Figure 3.4 The knockdown of CLEC14A, CD93 and MMRN2 has no effect on HUVEC proliferation  
 

An equal number of HUVEC cell was cultured in a wells of a 96-well plate and in situ transfected with 

different siRNA. After 24 hours, a tetrazolium solution was added to the cells and incubated. 

Absorbance of the colorimetric reaction was read at 570nm. In the lower part of the graph the 

timeline of the experiment. This experiment showed no significant difference in the proliferation rate 

on knockdown. n=3 (Duplex 2 for each gene was used once), *p<0.05 versus Negative Control 

(Tukey’s test). The graphs show mean ± SEM.  
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HUVEC cells 48 hour after transfection were stained with Propidium Iodide (PI) and 

the content of DNA was measured with a flow cytometer. This experiment showed 

the percentage of cells in specific phases of the cell cycle: subG0, G0/G1, S, G2/M. 

The result confirmed no effect of the knockdowns on the cell cycle. There is an 

accumulation of cells in subG0 if transfected with CD93 siRNA (12.23% more than 

control). The combination of CD93 siRNA with either CLEC14A (26%) or MMRN2 

(36.4%) shows a further increase in the percentage of cells in subG0 compared to the 

control (6.77%). This effect might be explained by the cytotoxicity of the siRNAs 

used. The percentages in subG0 of the cells upon knockdown of CLEC14A and 

MMRN2 are comparable to the negative control. MMRN2/CD93 showed an 8% 

reduction of cells in the S phase and a 15% increase of cells in G0/G1. No great 

differences were found across the other knockdowns regarding the percentage of 

cells undergoing the S and G2/M phase.  A notable reduction of the cells in the G0 

phase was observed upon double knockdown of CLEC14A/CD93 and MMRN2/CD93 

(Figure 3.5).  

 

It was concluded that CLEC14A, CD93 and MMRN2 do not play a role in HUVEC 

proliferation or the cell cycle under these culture conditions. 
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Figure 3.5 The knockdown of CLEC14A, CD93 and MMRN2 does not change the cell cycle in HUVEC  
 

siRNA transfected HUVEC were ethanol fixed, permeabilized and stained with propidium iodide (PI) 

for 30 minutes in the dark. Cell cycle data were collected by flow cytometry. Equal gating was 

employed in each of the condition. Example of the gating strategy used is shown in the NegCTRL. A. 

The flow cytometer histograms show the distribution of the cells in the characteristic G0/G1, S, G2/M 

division. B The graph summarizes the percentage of cells in each stage of the cell cycle. The 

experiment shows no blockade of the HUVEC cell cycle upon knockdown but increased cell death 

upon CD93 knockdown either alone or in combination. n=1.  
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3.4 siRNA knockdown of CD93 reduces tube formation in a Matrigel assay in a 

CLEC14A and MMRN2 independent manner. 

 

Matrigel is a secreted gelatinous protein mixture obtained from Engelbreth-Holm-

Swarm (EHS) mouse sarcoma cells, containing different extracellular matrix proteins 

and growth factors and sold commercially. It is known that endothelial cells such as 

HUVEC plated on Matrigel undergo a morphological differentiation into capillary-like 

structures (Kubota et al., 1988). This process was recognised to mimic the way by 

which endothelial cells form capillaries in vivo, hence it has been extensively used as 

model for tube-formation.  

 

Briefly, 1.4x105 HUVEC cells were plated onto solidified Matrigel and the tube 

formation was monitored every 6 hours in the incucyte over 24 hours. An incucyte 

incubator was used to record 9 fields of view per test condition. The number of 

meshes was then analysed. The most significant differences in their phenotype were 

shown after 6 and 12 hours. At 18 and 24 hours the phenotypes are similar and 

significant as the previous timepoints, but the differences are slightly reduced. The 

experiment showed that upon CLEC14A and MMRN2 knockdown alone there was a 

non-significant increase in tube formation compared to the HUVEC cells transfected 

with a negative control siRNA. Whereas, silencing CD93 alone or in combination with 

CLEC14A and MMRN2 showed a strong and significant reduction in tube formation 

both at 6 and 12 hour time points compared with the control. Interestingly, there 

was no significant difference between silencing both CD93 and CLEC14A compared 

to the knockdown of CD93 alone.  
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Figure 3.6 CD93 siRNA knockdown reduces tube formation in Matrigel assay in a CLEC14A and 
MMRN2 independent manner  
 

HUVEC cells were transfected and after 48 hours they were seeded on Matrigel. Tube formation was 

monitored every 6 hours over 24 hours using an Incucyte. For each sample and time point, nine fields 

of view were taken. Pictures were analysed using the “angiogenesis analyser” plug-in for ImageJ. The 

number of meshes was considered as main parameter for the quantification. The most significant 

effects were observed at 6 and 12 hours. A. Representative pictures of the tube formation at 6h and 

12h time points. CD93 significantly reduces tube formation and upon double KD with CLEC14A and 

MMRN2 the level was the same as the single CD93 knockdown. At 12 hours MMRN2 knockdown 

showed a significant increase in tube formation. B. The graphs represent the quantification on the 

number of meshes. n=5 (Duplex 2 for each gene was used twice), *p<0.05 versus Negative Control 

(Tukey’s test). The graphs show mean ± SEM  
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The combined knockdown of CD93 and MMRN2 showed a trend towards rescue of 

the control phenotype compared to CD93 knockdown alone. This effect was, 

however, minimal as there was a significant reduction of the CD93/MMRN2 

knockdown compared with the negative control. The experiment was repeated 5 

times with independent cultures of commercial HUVEC (Lonza), resulting in 

comparable outcomes each time (Figure 3.6).  

 

3.5 CD93 knockdown reduced tube formation in co-culture assays 

 

The Matrigel assay is very phenotype sensitive. Due to its short time course and the 

large amount of mouse ECM proteins included in the Matrigel, the results obtained 

with this assay are often confirmed in a more physiological setting with a co-culture 

assay. In fact, HUVEC in co-culture with fibroblasts form significantly more 

heterogeneous tubules, including both short and long interconnecting tubules. In 

contrast, the tubules in Matrigel assays are relatively short and homogeneous 

(Donovan et al., 2001).  

 

Briefly, HUVEC cells after knockdown were seeded on top of a confluent monolayer 

of fibroblasts and cultured for a further 6 days, replacing media every other day. At 

the end of the experiment, the network of tubules was stained with an anti-CD31 

monoclonal antibody and imaged. Interestingly, HUVEC silenced for CD93 struggled 

to adhere to plastic when re-plated, whereas they were properly adhering to the 

fibroblast monolayer. The use of an inducible shRNA system could provide a valid 

alternative in order not to overlook late effects of the knockdowns. This co-culture 
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experiment demonstrated that upon silencing of CLEC14A and MMRN2 HUVEC cells 

showed no impairment in network formation. Following CLEC14A knockdown, the 

network formed in a similar fashion to the negative control; in contrast, MMRN2 

knocked down cells showed a slight increase in network formation. CD93 silenced 

cells were significantly impaired in tube formation and the total tubule length was 

half of that in the negative control. A similar but milder phenotype was seen in 

double knockdowns of CD93/CLEC14A and CD93/MMRN2. Thus, CD93/CLEC14A 

double knockdown showed a 25% reduction in the total tubule length compared to 

controls. In contrast the CD93/MMRN2 double knockdown showed a significantly 

reduced network similar to the CD93 knockdown alone where the total tubule length 

was a half of that in controls (Figure 3.7).  
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Figure 3.7 CD93 knockdown reduced the tube formation in co-culture assays  
 

As previously, HUVEC cells were transfected with siRNAs. 24 hours after transfection cells were 

seeded on top of a monolayer of fibroblasts and cultured for a further 6 days. On the last day, cells 

were fixed and stained for CD31. Networks were imaged and analysed with Angio Sys analysis 

software (TCS Cell Works). The total tubule length was plotted. A Representative images of the tube 

formation. B The graph shows a significant reduction of the tubule length upon CD93 knockdown 

versus the negative control. n=5 (Duplex 2 for each gene was used once), *p<0.05 versus negative 

control ANOVA. The graphs show mean ± SEM.  
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Figure 3.8 Knockdown timecourse in HUVEC  
 

A timecourse on HUVEC was performed in order to ensure that each knockdown was effective for 

more than 48 hours. HUVEC cells were transfected with siRNA and collected on the third and fourth 

day after transfection. Lysates were prepared and subjected to western blot. In the upper parts of the 

blot, the membranes were incubated with the specific antibodies (CLEC14A, CD93 and MMRN2), in 

the lower part they were incubated with anti α-tubulin. The blots confirm a complete knockdown up 

to the fourth day after transfection for CLEC14A, CD93 and MMRN2.   
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As this assay takes 6 days, protein knockdown was examined by western blot 3 and 4 

days after transfection. The blots confirmed knockdowns for at least 4 days following 

transfection. Protein knockdown for at least 4 days was considered sufficient to 

observe a phenotypic change if present in this assay (Figure 3.8).   

 

3.6 MMRN2 and CD93 play opposing roles in cell migration 

 

To further investigate the possible role of MMRN2 and CD93 in cell migration, a 

scratch wound assay was employed. The scratch wound assay is a simple and 

reproducible assay, which does not require specific chemoattractant or gradient 

chambers. It allows observing the migration process in two dimensions of a sheet of 

cells in response to a wound (Cory, 2011). 
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Figure 3.9 MMRN2 and CD93 play an opposite role in cell migration in a scratch wound assay  
 

HUVEC cells were plated in wells of a 96-well plates and in-situ transfected. Once they reached 

confluence 48 hours post-transfection a scratch was made. The cells were cultured for an additional 

24 hours. The closure of the scratch was monitored, and images were taken every 6 hours using the 

Incucyte. Images were then analysed manually with imageJ. A. Representative images over the 24 

hours from the moment of the scratch (0h). B. Quantification of the percentage of wound closure at 

the different time points. At 18 and 24 hours a non-significant retardation in the wound closure upon 

CD93 knockdowns (alone or in combination) was observable. Overall no significant effect was 

detected. n=3 (Duplex 2 for each gene was used once), *p<0.05 versus Negative Control. (Dunnett’s 

Test). The graphs show mean ± SEM  
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Cells were seeded into 96 well plates and then transfected with different siRNAs. 

Cells were transfected in the well, rather than plating transfected cells, because 

upon CD93 knockdown cells showed a defective adhesion. This effect of CD93 

knockdown has been reported (Langenkamp et al., 2015) and they showed a 

significant retardation in the wound closure.  

 

Briefly, 48 hours after transfection the monolayer was scratched using a 

WoundMaker (Essenbioscience). Using the Incucyte, pictures were taken at 6-hour 

intervals. Knockdown of CLEC14A cells had no effect on cell migration. The absence 

of MMRN2 showed a trend to enhanced migration and the wound closed faster than 

controls. In contrast, silencing CD93 alone or in combination with the silencing of 

CLEC14A or MMRN2 showed reduced migration. The greatest differences were 

observed at 12 and 18 hours. At 24 hours it was possible to see a closure of the 

wound in most cases, except for the ones where CD93 was silenced, which showed 

an open wound (Figure 3.9). Although the CD93 data did not reach significance it is 

in agreement with the literature (Langenkamp et al., 2015). 

 

3.7 CD93 knockdown significantly inhibited transmigration, whereas in contrast 

MMRN2 knockdown stimulated transmigration by HUVEC 

 

The transwell migration assay assesses the ability of cells to directionally respond to 

different stimuli such as a chemo-attract gradient. Briefly, after starvation, 3x104 

cells were plated on a gelatin-coated FluoroBlok 8.0 µm transwells in serum free 

media. In the bottom chamber growth factors and serum containing EBM2 media 
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were placed and cells were left for 5 hours. Transmigrated cells were then stained 

with DAPI and imaged. Finally, cells were manually counted with imageJ. In order to 

obtain reduced variability in the experiment, pictures of different areas of the 

membrane were taken. The sum of all the cells counted was considered the total 

number of cells transmigrated. The nuclei are imaged as larger grey dots in figure 

3.10 (some indicated by blue arrows), whereas the white smaller uniform dots are 

the pores of the membranes. The calculation was performed uniformly for each 

condition.  

 

Overall this experiment showed different effects for the knockdowns analysed. 

CLEC14A knockdown had no effect on cell transmigration. MMRN2 knockdown 

showed a significantly increased transmigration. CD93 knockdown showed a 

significantly decreased transmigration. CLEC14A/CD93 and MMRN2/CD93 double 

knockdown cells transmigrated in a similar fashion to CD93 knockdown alone. This 

experiment was repeated 3 times, using different cultures of commercial HUVEC 

cells transfected independently and showing comparable results (Figure 3.10). 

 

3.8 Relative expression of CLEC14A and CD93 in HUVEC cells 

 

CLEC14 and CD93 are proteins of the C-type lectin domain family 14, are both 

expressed in HUVEC cells and share the same binding site on MMRN2. We 

investigated their comparative expression in HUVEC cells in culture by western blot. 

Lysates of HEK293T cells overexpressing either CLEC14A-GFP or CD93-GFP were 

prepared along with a lysate from HUVEC cells. Equal amounts of the lysates were 
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used for western blotting with GFP, CLEC14A and CD93 antibodies. Blots were 

developed with Odyssey Imager and quantified with the software ImageStudioLite. 

In order to calculate relative expression, the relative amounts of GFP fusion protein 

in the lysates was obtained and used to work out the relative efficiencies of the two 

antibodies within the same GFP lysates. Finally, this value was used to normalise the 

expression of CLEC14A and CD93 in the HUVEC lysates and the result was expressed 

as fold change compared to the expression of CLEC14A in HUVEC cells. This showed 

that under these culture conditions, CD93 is expressed 10 times more than CLEC14A 

(Figure 3.11).  
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       (Legend on the next page) 
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Figure 3.10 CD93 knockdown strongly impaired transmigration, whereas MMRN2 knockdown 
stimulated transmigration in HUVEC  
 

Cells were transfected as for the previous functional assay. Before the assay, cells were incubated in 

starvation M199 medium, without growth factors, calcium and magnesium. After starvation, in the 

same medium HUVEC were plated in the transwell, whereas in the bottom chamber complete EBM2 

was placed. Cells were left migrating for 5 hours at 37°C. At the end of the transmigration, the lower 

part of the chamber was fixed and stained with DAPI. Nuclei (some indicated by the blue arrows) 

were manually counted. The images are one representative of 3 experiments. The graph expresses 

the transmigration data as fold change versus the negative control of the total cells transmigrated. 

The experiment showed a significant reduction in transmigration in absence of CD93 and significant 

increase in transmigration in absence of MMRN2. n=3 (Duplex 2 for each gene was used once) 

*p<0.05 versus negative control ANOVA (Dunnet’s test). The graph shows mean ± SEM. 
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Figure 3.11 Relative expression of CLEC14A and CD93 in HUVEC cells  
 

A. HEK293T were transfected with plasmids encoding CLEC14A-GFP, CD93-GFP and lysates were 

prepared. These and HUVEC lysates were subjected to western blot with respective antibodies and 

the reaction was developed using an Odyssey machine. With the dedicated software ImageStudio lite 

the bands were quantified. B the chart shows calculated relative CLEC14A and CD93 protein levels in 

HUVEC expressed as fold change/CLEC14A.  
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3.9 Discussion 

 

CD93 knockdown showed a clear Matrigel phenotype. For this reason, the double 

knockdowns of CLEC14A/CD93 and MMRN2/CD93 were also studied. First, the 

efficacy of the duplexes was assessed by western blot. Both single and double 

knockdowns were successful at the mRNA and protein level. The efficacy of the 

duplexes chosen to knockdown CD93 was originally described in a previous report 

(Langenkamp et al., 2015). In the course of this work, the potential co-regulation of 

CLEC14A, CD93 and MMRN2 has not been investigated. A recent report suggests 

that the knockdown of MMRN2 is affecting the protein expression of CD93, due to 

loss of stability (Lugano, Dejana and Dimberg, 2018). Further analyses would be 

necessary to confirm this regulation and to investigate the regulation of expression 

of CLEC14A and MMRN2 upon the different knockdowns. Once the efficacy of the 

knockdowns was confirmed, it has been evaluated whether the transfection of 

HUVEC with the different duplexes was affecting HUVEC proliferation and 

progression of the cell cycle. An MTT assay showed that there is no significant effect 

of knockdown on proliferation of HUVEC. No effect on proliferation for CD93 

knockdown in HDMEC has been reported previously (Langenkamp et al., 2015).  

 

It has been reported in the literature a role of CD93 in cell cycle and the silencing of 

CD93 in acute myeloid leukaemia cells led to an increased number of quiescent cells 

(Iwasaki et al., 2015). However, in HUVEC the analysis of the cell cycle performed has 

shown no changes. Interestingly, it is shown that on CD93 knockdown HUVEC do not 

become quiescent, as has been reported in AML cells.  
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Although single knockdowns of CLEC14A, CD93 or MMRN2 have been reported, 

double knockdowns have not. In agreement with previous literature, the single 

knockdown of CD93 strongly inhibited the tube formation in endothelial cells 

(Langenkamp et al., 2015). This was also observed when the silencing of CD93 

occurred in combination with CLEC14A or MMRN2. Surprisingly, this experiment 

failed to reproduce what has been previously reported for CLEC14A (Rho et al., 2011; 

Mura et al., 2012). In fact, the result showed that upon CLEC14A knockdown not 

only no reduction in tube formation was observed but also that the effect was a 

consistent, but not significant, increase in the number of meshes. Although Mura 

and colleagues reported a strong reduction in tube formation, this effect has been 

observed only at 0h (the moment when the cells are seeded) but not at 12 and 24 

hours. At the latter time points in fact, when a proper phenotype is actually 

observable, the figure shows a strong increment in tube formation upon siRNA-

mediated knockdown of CLEC14A when compared to the control. Due to 

discrepancies between the discussion and the figures, it is unclear whether these 

findings are relevant to support either one or the other phenotype observed (Mura 

et al., 2012). An explanation for the differences observed with the another report 

that showed CLEC14A as a pro-angiogenic molecule (Rho et al., 2011) might be the 

presence of VEGF in the medium. In the experiment performed in this work cells 

were incubated with EMB2 media containing different growth factors, including 

VEGF, whereas Rho and colleagues used a basic M199 media containing only basic 

FGF. The strong pro-angiogenic signalling of VEGF might have overcome the absence 

of CLEC14A acting on different pathways. Over the past few years contrasting 
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reports have been published reporting different roles of CLEC14A in angiogenesis 

also in vivo (Noy et al., 2015; Lee et al., 2017). It is possible to speculate that the role 

of CLEC14A might be context dependent and according to what interactions are 

involved different signalling pathways might be activated downstream. To note, the 

double knockdown CLEC14A/CD93 clearly showed a strong reduction in tube 

formation, comparable to what observed for CD93 alone, suggesting that CLEC14A 

did not rescue or strengthen the CD93 phenotype. Similarly, it was observed when 

CD93 was silenced along with MMRN2, indicating that CD93 is necessary. In 

agreement with the published role of MMRN2 as an angiostatic protein, which 

sequesters VEGFA molecule, the absence of MMRN2 in tube formation led to a 

significant increase of the number of meshes (Lorenzon et al., 2012). These findings 

are in contrast with other publications which advocate for MMRN2 angiogenic 

properties (Zanivan et al., 2013; Noy et al., 2015). The results here obtained on 

Matrigel were also supported by a co-culture assay with fibroblasts. In this more 

physiological assay, upon CLEC14A knockdown the network formation showed a 

slight impairment when compared to the control, corroborating the possibility that 

CLEC14A phenotype might vary based on different environmental conditions. The 

time-course of the knockdown confirmed at the protein level that the during the co-

culture experiments the silencing was effective up to the 4th day after transfection, 

indicating that any phenotype observed was due to the siRNA transfection. It is 

possible to assume that even if the expression of each protein would be restored in 

the last two days of the experiment that the phenotype would still be appreciable.  
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CD93 was shown to be an important mediator of tube formation, and also HUVEC 

migration and chemotaxis. Upon CD93 knockdown both HUVEC migration was 

retarded and chemotaxis was strongly impaired in a transwell experiment. This 

confirms what has been published (Langenkamp et al., 2015; Galvagni et al., 2016). 

Interestingly, neither the dual knockdown with CLEC14A or MMRN2 rescued or 

aggravated the phenotype. A recently proposed mechanism showed that the 

presence of MMRN2 is necessary for the stabilization of CD93 and its correct 

localization at the front of the migration (Lugano, Dejana and Dimberg, 2018). Based 

on this mechanism it was a surprise that the absence of both CD93 and MMRN2 did 

not recapitulate the phenotype of the single MMRN2 knockdown. This might be 

explained by the fact that in absence of MMRN2, CD93 shedding is strongly 

upregulated releasing CD93 in its soluble form. It has been reported that soluble 

CD93 stimulates angiogenesis in vitro and in vivo (Kao et al., 2012). For this reason, it 

is plausible that an increased soluble CD93 within the medium stimulated the 

angiogenic phenotype observed upon MMRN2 knockdown.  

 

Furthermore, it has been also reported that MMRN2 can function as a VEGF-A trap, 

impeding the VEGF/VEGFR2 signalling pathway (Lorenzon et al., 2012).  The absence 

of MMRN2 strongly increases the availability of VEGF-A within the medium, leading 

to a stronger angiogenic phenotype. The interaction between CLEC14A and MMRN2 

was proven to be important for angiogenesis and its disruption led to a reduction in 

angiogenesis both in vitro and in vivo (Noy et al., 2015). It is reasonable to speculate 

that in absence of either CLEC14A or MMRN2 the resulting phenotype would show 

less angiogenesis. Based on these results, it is possible to conclude that due to the 
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different interactions with which MMRN2 is implicated are predominant in this 

specific setting than the one signalling through the interaction MMRN2/CLEC14A. 

Moreover, this might in part explained by the fact that CD93 is 10 times more 

expressed than CLEC14A in HUVEC cells. Due to their relative levels, it is not possible 

to exclude that these two proteins might have the same role and, for this reason, the 

effects upon loss of CLEC14A are much less evident in HUVEC in vitro. It is important 

to note that the band of CLEC14A-GFP in HEK293T cells was expected to run at a 

higher molecular weight than endogenous CLEC14A in HUVEC cells. This behaviour 

was also previously reported by Khan et al., in far western experiments employing 

the same construct. A plausible explanation might be an impairment or a different 

glycosylation pattern expressing this construct in HEK293T, compared to 

endogenous CLEC14A in HUVEC. To confirm this, the same construct could be used 

to transfect HUVEC and verify by Western if CLEC14A GFP runs at a higher molecular 

weight than in HEK293T.  

 

Here we present the first comparison of CLEC14A and CD93 function. These data 

suggest that CD93 is a much stronger mediator of angiogenesis than CLEC14A and 

this effect is CLEC14A and MMRN2 independent. In fact, the double knockdowns 

showed no aggravated or rescued phenotype, compared to CD93 alone. Interestingly 

the role of MMRN2 has been shown to be both pro- and anti-angiogenic (Lorenzon 

et al., 2012; Zanivan et al., 2013; Noy et al., 2015; Colladel et al., 2016; Khan et al., 

2017). The results in our setting reveal a more angiostatic phenotype, although it is 

clear that MMRN2 phenotype depends on a subtle balance. Little or no effects have 

been observed in these experiments when CLEC14A was knockdown.  
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4. Development of novel approaches targeting CLEC14A 

4.1 Introduction  

 

The interaction of MMRN2 and CLEC14A has been shown to be important for 

tumour progression and that its disruption inhibited tumour growth and 

angiogenesis (Noy et al., 2015). The kinetics and structural studies of the binding 

between CLEC14A and MMRN2 have shown that it is a tight and stable interaction 

(Khan et al., 2017). Moreover, Khan and colleagues identified, employing deletion 

mutants of MMRN2 in Far western blots that a minimal region of MMRN2 still 

bound. Due to its antibody-like binding affinity the MMRN2 fragment was 

particularly appealing for possible therapeutic uses. In addition, mouse MMRN2495-

678-mFc expressing cancer cells injected subcutaneously in syngeneic mice showed a 

reduction in tumour growth compared to the mFc expressing counterpart (Khan et 

al., 2017). For these reasons and the fact that CLEC14A was a characterised tumour 

endothelial marker (Mura et al., 2012), it was decided to further investigate the 

properties of the recombinant protein mouse MMRN2495-678 and to elaborate 

different strategies to exploit this fragment in targeting specifically tumour 

endothelium.  

 

Targeted toxins are a group of therapeutics employed in cancer research to 

specifically kill cancer cells and avoid the possible side effects of non-specific cancer 

therapies. Targeted toxins work due to two functional parts: the toxic component, 

which causes cytotoxicity, and a targeting ligand, which directs the complex to the 

target. For example, there are studies showing the efficiency of ligands conjugated 
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to Dianthin from Dianthus caryophyllus L. (Von Mallinckrodt et al., 2014; Bhargava et 

al., 2017).  Dianthin is an enzyme, which is able to mediate the cleavage of a 

particular bond in the 28S RNA of mammalian cells. This cleavage releases an 

adenine residue, impeding the binding of the eukaryotic elongation factors, resulting 

in the arrest of protein synthesis. This block of synthesis eventually leads to 

apoptosis and cell death. In order to act appropriately as a toxin, dianthin needs to 

be released in the cytosol. This means that the fusion partner of dianthin within the 

fusion complex should be internalized.   

 

The aim of this chapter was to produce a stable recombinant MMRN2 fragment 

retaining the binding properties to CLEC14A that could be employed in different 

approaches targeting tumour endothelium via the interaction with CLEC14A.  

 

4.2 Recombinant protein expression of human MMRN2495-674 and mouse 

MMRN2495-678 

 

Previous work has identified the region of MMRN2 that binds to CLEC14A and CD93 

(Zanivan et al., 2013; Noy et al., 2015; Galvagni et al., 2017; Khan et al., 2017). By 

constructing a series of deletion constructs, far western blot confirmed that this 

region lies between amino acids 495 and 678 in mouse and 495 and 674 in the 

human. The minimal binding region was found in a even smaller fragment, but this 

proved to be unstable. So, the MMRN2495-674 fragment incorporating the binding 

region was studied instead. It is of interest that homology across vertebrate species 

of this region was high, showing that it was strongly conserved during evolution. In 
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this study, the mouse version was also produced with 4 additional amino acids: 

MMRN2495-678. The fact that CLEC14A and CD93 shared the same binding site and 

that the binding was occurring with high affinity was suggestive of biological 

significance (Khan et al., 2017). For these reasons it was decided to investigate 

further the properties of this peptide and to attempt to exploit it for therapeutic 

purposes.  

 

In this work different variants of the peptide have been generated. Initially a mouse 

Fc-tagged version was designed. MMRN2495-678 was cloned in a lentiviral pWPI vector 

using a PmeI restriction site. The signal peptide of CLEC14A was added at the N-

terminus, and the human fragment crystallisable region (Fc) sequence was added at 

the C-terminus.  The use of the lentiviral vector enabled the generation of a HEK293T 

cell line stably expressing MMRN2495-678. The fragment was secreted from the cells 

due to the signal peptide and purified using the Fc fragment on a protein A column. 

In order to verify the correct secretion of the peptide a small amount of the medium 

was incubated with protein A beads and expression checked by gel electrophoresis 

and Coomassie staining (not shown). As the production/purification process was 

working efficiently, a larger scale preparation was carried out. The purity of the 

mouse fragment was analysed on a protein gel by Coomassie staining (Figure 4.1 A). 

The most concentrated aliquots, as measured by nanodrop, were also tested on 

western blot by detecting the human Fc fragment (Figure 4.1 B). This fragment was 

then studied in in vitro assays.  
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Figure 4.1 Production and purification of the hFc- and His-tagged recombinant mouse MMRN2
495-678

  

In order to study the properties of the fragment, two tagged version of MMRN2
495-678

 were produced. 

The constructs were designed to allow the production in mammalian cells and for the fragment to be 

released in the medium. MMRN2
495-678

 was purified from media either on protein A columns (hFc-

tagged version) or on Ni-NTA columns (His-tagged version). A. Protein gel stained with Coomassie 

blue to detect impurities after protein A column purification of MMRN2
495-678

. In each lane an equal 

volume of different aliquots of recombinant was loaded. BSA standard concentrations were used as 

control. B. The anti-hFc blot shows the accessibility of the hFc tag on the recombinant protein. C. Anti-

his blot shows the accessibility of the His-tagged version of MMRN2
495-678

. MMRN2
485-678

 was stable 

and the tag was accessible for purification and detection by western blot. D. Diagram of the fusion 

protein cloned and produced. From N-terminus, signal peptide (SP), the mouse MMRN2 fragment 

(495-678) and either an hFc-tag or an his-tag.  
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Figure 4.2 Production of hFc-tagged human MMRN2
495-674

  

Similarly to what was performed for the mouse version of the fragment, human MMRN2
495-674

 was 

designed to be produced in mammalian cells (HEK293T) and released in the supernatant. The protein-

containing media was collected and protein A columns were used for the purification. The figure 

shows a protein gel stained with Coomassie blue, in which different aliquots of purified MMRN2
495-674

 

were loaded at the same volume, showing the different stages of the elution phase. The numbers 

from 1 to 10 indicate the order of collection of the different fractions during purification. 
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In the course of the project, an immunisation experiment using the mouse 

MMRN2495-678-hFc in mice was performed. For this reason, there was also a need for 

an identical fragment but with a different tag in order to monitor the response of the  

mice to MMRN2495-678-hFc immunisation. For this purpose, the fragment was cloned 

into the same vector pWPI with the same signal peptide at the N-terminus but with a 

6 histidine (His) tag at the C-terminus. The purity of the fragment was examined by 

SDS PAGE with Coomassie staining (not shown) and the His-tag was detected by 

western blot, using an anti-His antibody (Figure 4.1 C). Both the hFc and His tagged 

mouse fragments were produced efficiently and obtained at high purity with a yield 

in the range of 5-10 mg for each batch.  

 

The human version of the fragment was also produced. MMRN2495-674 was previously 

cloned into the pHL-Fc expression vector (Kabir Khan). This vector had a signal 

peptide and the hFc sequence, using the AgeI and KpnI restriction site, it was 

possible to clone in frame the sequence with the signal peptide at the N-terminus 

and the hFc at the C- terminus. In contrast to pWPI, pHL-Fc is not a lentiviral vector. 

Thus, the peptide was produced by transient transfection in this instance.  

 

Purification was efficient and Coomassie blue stained SDS PAGE analysis showed few 

contaminants (Figure 4.2), yielding around 0.5-1 mg for each batch. 
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4.3 Peptides human MMRN2495-674 and mouse MMRN2495-678 bind CLEC14A 

transfected HEK293T and HUVEC cells 

 

CLEC14A was previously validated as a tumour endothelial marker. Expression on the 

tumour vasculature is thought to be due to reduced shear stress. In other words, it 

would be possible to target CLEC14A in order to deplete tumour endothelium, 

resulting in starvation of the tumour and blockage of tumour growth (Mura et al., 

2012; Noy et al., 2015). As MMRN2 binds at high affinity to CLEC14A and CD93 (Khan 

et al., 2017), the fragment minimal stable (mouse) MMRN2495-678-hFc fragment that 

bound to CLEC14A expressing cells was investigated. 

 

To test whether the recombinant MMRN2495-678-hFc fragment bound to CLEC14A 

was confirmed by FACS. It was important to determine whether or not the mouse 

MMRN2495-678-hFc fragment could bind to human cells and in vivo experiments in 

mice. Due to difficulties in its production, the human MMRN2495-674-hFc was used 

only in selected experiments to confirm the results obtained with the mouse 

counterpart. 

 

HEK293T overexpressing CLEC14A full length or HUVEC that express both CLEC14A 

and CD93 endogenously, were incubated one hour with MMRN2495-678-hFc. Control 

cells were incubated with a commercially available recombinant human Fc tag. 

Binding was confirmed with a fluorescent Alexa488 secondary antibody against the 

human Fc tag. Both control and MMRN2495-678-hFc cells were then analysed by flow 

cytometry.   
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HEK293T cells overexpressing human CLEC14A full length were examined. The CRT2 

monoclonal antibody was used as positive control. A reproducible increase in 

fluorescence was detected in cells incubated with the mouse MMRN2495-678-hFc 

compared to the negative control incubated with hFc only. The increased 

fluorescence was comparable to that obtained with the CRT2 antibody (Figure 4.3).  
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Figure 4.3 FACS analysis of the binding capacity of MMRN2
495-678

 to CLEC14A transfected HEK293T 
cell  
 

In order to see if the recombinant mouse fragment retained the binding properties of the full-length 

MMRN2 FACS was performed. Firstly, HEK293T cells were transfected with a construct coding for the 

full-length CLEC14A. 24 hours post-transfection, HEK293T cells were collected and stained with either 

hFc, CRT2 (monoclonal antibody for CLEC14A) or MMRN2
495-678

-hFc. After incubation, each was 

stained with anti-hFc PE and cells were analysed by flow cytometry. The upper part of the figure, the 

flow cytometry histograms show an appreciable binding of MMRN2
495-678

 to HEK293T expressing 

CLEC14A
FL

. In the lower part binding of CRT2 is used as positive control. The experiment shows that 

MMRN2
495-678

 binds to CLEC14A overexpressed on the cell surface and as does the antibody CRT2. The 

experiment was repeated 3 times.  
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This showed that recombinant MMRN2495-678-hFc retained affinity towards CLEC14A 

and that there was cross-reactivity between mouse MMRN2495-678 and human 

CLEC14A. The tertiary structure of this region was presumably not impaired, as the 

loss of the 3D structure of a protein is usually fundamental for the protein-protein 

interaction.  

 

We next investigated binding to endogenous CLEC14A. Previous studies showed that 

CLEC14A is expressed endogenously in HUVEC (Rho et al., 2011; Mura et al., 2012). 

In a similar fashion both mouse MMRN2495-678-hFc and human MMRN2495-674-hFc 

showed an increment of fluorescence at the flow cytometer when compared with 

the hFc alone. Moreover, these shifts were comparable indicating a similar 

behaviour towards the target.   

 

Both employing MMRN2495-678-hFc and MMRN2495-674-hFc it was possible to detect a 

consistent binding to HUVEC compared to hFc alone (Figure 4.4).  

 

It has been shown that the MMRN2 binding site on CLEC14A is in the same region as 

the binding site of the CRT4 antibody (Noy et al., 2015).  In order to further evaluate 

the activity of the recombinant MMRN2 fragment, a blocking experiment was 

performed. Cells were first blocked with IgG, CRT4 or CRT2. CRT2 was used as 

negative control, because it has been shown to bind a different epitope to MMRN2 

and CRT4. Therefore, blocking with CRT2 was expected to have no reduction of 

recombinant MMRN2 binding and no shift of the fluorescence. When cells were first  
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Figure 4.4 Testing the binding capacity of mouse MMRN2
495-678

-hFc
 
and human MMRN2

495-674
-hFc in 

HUVEC  
 

To assess if both human and mouse recombinant fragments are able to bind to HUVEC, which express 

MMRN2 binding CLEC14A and CD93 at a physiological level, FACS analysis was performed. HUVEC 

were incubated with the two versions of the fragment or hFc as negative control. As secondary 

antibody an anti-hFc FITC was used. Stained cells were analysed by flow cytometry. The experiment 

demonstrated that both the mouse (upper graph) and the human (lower graph) version of MMRN2 

fragment were able to bind HUVEC. The experiment was repeated 3 times with similar results. 
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Figure 4.5 CRT4 and MMRN2

495-678
 bind to the same region of CLEC14A  

 

To confirm previously published data in which it was demonstrated that CRT4 and MMRN2 are 

binding on the same CLEC14A site. HUVEC cells were blocked with either IgG, CRT2 and CRT4 

antibodies. It is known that CRT4 binds the same site on CLEC14A than MMRN2, whereas CRT2 bind 

an alternative site. Cells were washed and incubated with either mouse MMRN2
495-678

-hFc or 

recombinant hFc alone. The loss of mouse MMRN2 binding when HUVEC were blocked with CRT4 but 

not with CRT2 or IgG. The experiment was repeated 3 times with similar results. 



	147	

blocked with CRT4, the shift corresponding to MMRN2495-678-hFc binding was lost, 

indicating that CRT4 was blocking all the binding sites for MMRN2495-678 (Figure 4.5).  

 

4.4 Vaccination against the mouse MMRN2495-678-hFc fragment in mice 

 

Previous studies have shown examples of vaccination in mice against at least two 

different tumour endothelial markers (Zhuang et al., 2015; Ferguson et al., 2016). 

Vaccination resulted in a reduction in tumour growth by generating an antibody 

response against the antigen used. In both cases the extracellular portion of a mouse 

protein was fused with a hFc. This method showed an antibody response to hFc, also 

breaking tolerance against the mouse portion of the chimeric protein (Zhuang et al., 

2015; Ferguson et al., 2016). For this reason, we decided to examine the response to 

a chimeric mouse MMRN2 fragment human Fc protein (Figure 4.6).  

 

4.4.1 Antibody response to mouse immunisation with MMRN2495-678-hFc 

 

The mouse MMRN2 fragment was examined as a vaccine. C57BL/6 mice were 

injected with 50μg of protein (either MMRN2495-678-hFc or hFc) mixed with complete 

Freund’s adjuvant (CFA) at day 0. Mice were boosted twice with the same amount of 

protein in incomplete Freund’s adjuvant (IFA) every two weeks. The ratio between 

the protein and the adjuvant was 1:1 (v/v) and mixed to form an emulsion. Each 

boost was injected subcutaneously. A final boost was given in PBS with an 

intraperitoneal injection (IP) (Figure 4.7). In order to test the immune response, 

before each immunisation, 50μL of blood was collected from each mouse and the  
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Figure 4.6 Schematic diagram of the MMRN2495-678-hFc vaccine approach  
 

Representation of the MMRN2 interactions with CLEC14A and CD93 and the expected immune 

response disrupting these interactions. The generation of blocking antibodies upon immunisation 

with the binding MMRN2 fragment are expecting to disrupt the interaction between MMRN2-

CLEC14A and MMRN2-CD93, impairing angiogenesis and leading to a reduction of tumour growth in 

an LLC subcutaneous tumour model.  
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Figure 4.7 Schematic representation of the immunization strategy  
 

On day 1, 15, and 29 mice were subcutaneously injected (SC) with the antigen in either complete or 

incomplete Freund’s adjuvant (CFA or IFA). Before each injection, mice were bled to monitor the 

possible immune response. Following immunisation, Lewis Lung Carcinomas cells were implanted 

subcutaneously and tumour growth and weight were monitored. Due to ulcers at the injection site in 

some of the mice, the experiment was ended 13 days after tumour implantation. 
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Figure 4.8 Humoral response upon mMMRN2495-678-hFc and hFc immunisation  
	
To monitor the immune response after subcutaneous immunisation, blood from the mice was 

collected and the serum was tested against mMMRN2
495-678

-His in ELISA assay. A The graph shows the 

humoral response after the last bleed in the hFc control group at different dilution against both hFc 

and mMMRN2
495-678

. There is a strong response to hFc but a very weak response towards mMMRN2. 

B. The graph shows the response of the mMMRN2
495-678

-hFc group. There is a strong response to hFc; 

whereas there is little, if any, response against mMMRN2. C. Average response against mMMRN2 in 

mMMRN2 cohort for the last three bleeds. (n=9 ± SEM) 
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serum was tested in ELISA at different dilutions (from 1:102-1:105). In order to detect 

the response to MMRN2495-678 and not to the hFc tag (that was the most 

immunogenic portion of the antigen), an ELISA screening was performed against 

MMRN2495-678-His. As shown by the last bleed, there was a strong response to hFc 

both in the control group and in the MMRN2495-678-hFc. The response to MMRN2495-

678 was absent in mice immunised against hFc (Figure 4.8 A). It was possible to see a 

small increase in the response to MMRN2 along the last three immunisations in the 

mice immunised against the fragment (Figure 4.8 B). Nevertheless, if in the last bleed 

the response towards the fragment of the treated group was compared with the 

response of the control group it was clear that the immunisation using the mouse 

MMRN2495-678-hFc was weak (Figure 4.8). 

 

4.4.2 Effects of the vaccination on tumour growth in a LLC mouse model 

 

Although the vaccination response to the MMRN2495-678 fragment was much weaker 

than published studies on ROBO4 and GRIN2D, Lewis Lung Carcinoma (LLC) cells 

were implanted in vaccinated mice. 106 LLC cells were injected subcutaneously in 

both control and treated mice. Tumour size was monitored. The experiment was 

terminated 13 days after tumour implantation, due to the formation of ulcers at the 

injection site (Figure 4.9). Tumour volumes were measured using a calliper and the 

volume was calculated using the following formula V= π×[d2 ×D]/6, where d is the 

minor tumour axis and D is the major tumour axis. Additionally, after all tumour-

bearing mice were culled and tumours excised, the wet weight of each tumour was 

recorded. No observable differences were found in tumour growth between the  
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Figure 4.9 Effects of mMMRN2

495-678
-hFc immunisation on tumour growth and burden  

 

After tumour implantation, tumours were measured using a caliper and, at the end of the 

experiment, were dissected out and weighed. A. the graph shows the kinetic of growth of the 

tumours in mice immunised with mMMRN2 versus the ones immunised with hFc. B. The bar chart 

shows the mean weight of the tumours between the two experimental groups. The experiment 

showed no observable differences in tumour growth or burden. (n=9 ± SEM). 
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MMRN2495-678 vaccinated mice and hFc control (Figure 4.9 A). Moreover, the average 

tumour weight of the treated mice was consistent with the average tumour weight 

of the control group (Figure 4.9 B). In conclusion, the mild immune response 

obtained against MMRN2495-678 did not affect tumour growth in the LLC tumour 

model compared with the control group.   

 

4.5 Internalisation of the multimerin fragments 

 

Overviewing all the different possibilities to exploit mouse MMRN2495-678 binding 

with the TEM CLEC14A, the option to conjugate the fragment with toxins in order to 

target the tumour vasculature was considered. It was decided to opt for the use of 

targeted anti-tumour toxins, such as dianthin.  

 

Due to their mechanism of action of the toxins chosen it was important to check 

whether the recombinant fragment of MMRN2 could also be internalized. There was 

evidence from unpublished data that the binding of CLEC14A was inducing 

internalization of the CRT antibodies (Lodhia, PhD Thesis 2017). Internalisation of the 

mouse MMRN2495-678-hFc was investigated in HUVEC. 

 

Firstly, cells were starved with serum-free media for 30 minutes. The protein was 

added to a final concentration of 5μg/mL and incubated for different times. After 

incubation cells were fixed in 4% PFA and stained. Recombinant hFc was used as 

negative control. Different time points were chosen according to the ones used for 

the antibody internalization study: 70, 90 and 120 minutes. The slides were stained 
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Figure 4.10 mMMRN2

495-678
-hFc internalisation in HUVEC cells  

	
To examine if the mMMRN2

495-678
-hFc fragment behaves as CRT antibodies, which are internalised, an 

internalisation experiment was carried out. Either the fragment or hFc were incubated with HUVEC 

cells and at the end of each timepoint cells were fixed and stained (DAPI, α-hFc and EEA1). Cells were 

imaged by confocal microscopy. This experiment showed mMMRN2 internalised at the earliest 

timepoint (70’), but signal is absent in the same channel for cells treated with hFc only. A Shows 

images at each time point for both mMMRN2 and hFC treated cells. B The images show the hFc 

treated HUVEC at 120’ (zoomed in) C. The images show the mMMRN2-hFc treated HUVEC at 120’ 

(zoomed in). The experiment was repeated 3 times with similar results (n=3).  
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with anti-hFc for hFc/MMRN2495-678-hFc, anti-EEA1 (early endosome antigen 1) for 

endosomes and DAPI for nuclei.  

 

Overall, it was possible to see a positive staining for mMMRN2-hFc starting from the 

70’ time point. Consistently, the staining was positive in the following time points at 

90 and 120 minutes. Interestingly, only part of the staining was co-localising with the 

endosome staining suggesting that the internalization of the fragment could be 

mediated by endosomes. The presence of MMRN2 was also seen in the cytosol, 

which is important when conjugated with Dianthin to obtain the cytotoxic effect of 

the inhibitor. This was also correlating with the previous unpublished findings on the 

internalization of CRT3 and CRT4. There was no signal in the hFc channel for HUVEC 

treated with hFc only, indicating that the signal observed with MMRN2-hFc was 

specific. In fact, there was no signal detectable in hFc treated HUVEC at any time 

point considered (Figure 4.10).  

 

4.6 Generation of targeted toxins HisMMRN2495-678-Dianthin and HisDianthin-

MMRN2495-678 

 

Based on the internalization experiment, MMRN2495-678 was a good candidate to 

generate a targeted toxin able to selectively deplete CLEC14A expressing cells. In 

order to generate this new possible therapeutic tool different types of toxins were 

taken into consideration. We evaluated two different types of toxins: the ribosome 

inactivating protein saporin-2 and the antiviral protein DAP-30, dianthin. Both of 

them are Ribosomes-Inactivating Proteins (RIPs) and work as N-glycosylases.  
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Figure 4.11 MMRN2-dianthin toxin rationale  
	
Based on the fact that MMRN2495-678 is internalised upon binding in HUVEC, MMRN2-dianthin toxin 

is expected to bind to CLEC14A and being internalised (1 & 2). The presence of these recombinant 

toxins within the cytoplasm is expected to block the ribosome activity leading to cell death (3).  
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They belong to the type 1 RIPs, which lack a natural cell-binding domain and, for this 

reason, they constitute the perfect candidates for targeted toxins. According to a 

published study, which compares two targeted toxins (HisSaporin-EGF and 

HisDianthin-EGF), the differences in saporin and dianthin were minimal (Gilabert-

Oriol et al., 2013). They showed the same cytotoxic activity measured in real time. 

The identity of the two toxins moieties aligned was 80% and the similarity was 90%. 

The main difference between the two constructs was at the expression level after 

purification. They showed that HisSaporin-EGF was produced at significant lower 

levels than the dianthin counterpart. It has been shown, that three main structural 

differences, one at the N-terminus, one at the C-terminus and the presence of a gap 

in saporin, which is replaced by an extra amino acid in dianthin, were impairing the 

production of saporin. These sites made saporin more accessible to the action of 

bacterial proteases. Some of the fusion proteins were losing the His-tag when 

cleaved at the N-terminus, affecting the purification, and other proteins were 

cleaved at the C-terminus of the toxin portion, resulting in a truncated form 

(Gilabert-Oriol et al., 2013). For all these reasons, it was decided to proceed only 

with the cloning of the targeted toxin, using dianthin as toxic moiety (Figure 4.11).  

 

The group of Prof. Fuchs provided us with a pET11d vector, carrying the gene of 

dianthin. In order to clone a functional targeted toxin, two different approaches 

were designed: HisMMRN2495-678-Dianthin and HisDianthin-MMRN2495-678. Both of the 

approaches were attempted, as it was not known whether the presence of the 

Dianthin portion in the recombinant protein at the N-terminus or at the C-terminus 

could affect the correct folding of MMRN2495-678 and its binding to CLEC14A, or its  
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Figure 4.12 Diagrams of MMRN2
495-678

 dianthin constructs 
 

As MMRN2
495-678

 is internalised, two different dianthin constructs were designed and constructed in 

order to test if MMRN2
495-678 

was a good candidate for conjugation with this type of toxin (ribosome 

inactivating proteins). Indeed in order to function, dianthin should be delivered within the cytoplasm 

of the cell, but mammals do not express natural receptors for dianthin. A fusion protein with an 

internalised ligand would be an ideal construct to target specific cell types. The figure shows either an 

N-terminus (A) or a C-terminus (B) MMRN2 fusion protein with an his tag for purification and study.  
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effect on the accessibility of the His-tag for purification purposes. Similarly, for both 

the designs, the pET11d empty vector was digested using NcoI and EcoRI restriction 

sites. The dianthin and the MMRN2495-678 fragments were amplified with primers by 

PCR, incorporating a His-tag at the N-terminus at each construct. Moreover, each 

fragment was carrying homologous regions of at least 18 nucleotides at each end. 

Gibson cloning kit was used to ligate the multiple DNA fragments cloning. As result it 

was possible to generate both of the targeted constructs planned (Figure 4.12).  

 

4.7 Discussion 

	
The latest studies underlined the importance of a newly discovered interaction 

between MMRN2 with either CLEC14A or CD93. In particular the interaction 

between CLEC14A and MMRN2 has been recently characterized and the minimal 

binding fragment of MMRN2 has been identified (Zanivan et al., 2013; Khan et al., 

2017). Furthermore, it has been shown that the disruption of CLEC14A and MMRN2 

interaction leads to a strong reduction in sprouting in vitro and tumour growth and 

angiogenesis in vivo (Noy et al., 2015). Interestingly, the overexpression in LLC 

tumours of the mouse MMRN2495-678-mFc fragment showed significant reduction in 

tumour growth in vivo (Khan et al., 2017). The fact that the interaction between 

CLEC14A and MMRN2 happens with high affinity and the fact that CLEC14A has been 

identified as a tumour endothelial marker (Mura et al., 2012) prompted efforts in 

trying to exploit the recombinant MMRN2 to specifically target the tumour 

endothelium.  
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This study mainly focused on the use of the mouse MMRN2495-678-hFc because it 

proved to be cross-reacting between human and mouse CLEC14A. The cross-

reactivity of the mouse fragment towards human and mouse CD93 has not been 

investigated. Mouse MMRN2495-678-hFc retained the binding capability for both 

HEK293T overexpressing CLEC14A and HUVEC, which express CLEC14A at the 

endogenous level along with CD93. The binding was repeated and confirmed with 

the human form of the fragment in HUVEC. Interestingly, it was also possible to 

corroborate previously published findings that showed CRT4 antibody binding to the 

same region of CLEC14A as MMRN2. HUVEC incubated with CRT4 but not CRT2 and 

IgG showed an inhibition of the binding of mouse MMRN2495-678-hFc. The same 

experiment was repeated with the human MMRN2495-674-hFc counterpart but in this 

case CRT4 was unable to block HUVEC (Appendix 1). It is not surprising that the CRT4 

would not block the human MMRN2495-674-hFc binding, because it is known that, 

although CLEC14A binding sites are not accessible, CD93 is still available for the 

binding.  The most likely explanation is that mouse MMRN2495-678-hFc is able to 

cross-react only with mouse and human CLEC14A, whereas it is not able to bind the 

human CD93. In order to confirm this possibility an experiment in which human 

CD93 is overexpressed in HEK293T cells and blocked with CRT4 before binding of 

mouse MMRN2495-678-hFc should be performed.  

 

Due to the characteristics of this recombinant protein and previous published 

reports, mouse MMRN2495-678-hFc was employed in a vaccination experiment in 

mice. It has been reported that the injection of a human Fc-tagged mouse 

recombinant protein was able to raise an immune response mainly against the hFc 
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tag but also with the fragment of the peptide adjacent the hFc tag. The protocol of 

vaccination was based on what was reported in previous studies for GRIND2D and 

ROBO4 (Zhuang et al., 2015; Ferguson et al., 2016). The aim of GRIND2D and ROBO4 

vaccination was to raise an immune response against proteins that are recognized to 

be tumour endothelial markers. Conversely, immunizing against the MMRN2 

fragment was aiming to exploit the immune system to generate antibodies able to 

block the interactions of MMRN2495-678 with CLEC14A or CD93 (Figure 4.6). Mouse 

MMRN2495-678-hFc was not able to induce a strong immune response. Interestingly, 

the published reports only showed the immune response at the serum dilution 1:10 

(v/v), which is fairly concentrated, when determining the titer of the humoral 

response. In this study the minimal immune response investigated was 1:102 (v/v) up 

to a dilution of 1:105. According to the ELISA results, the response towards 

mMMRN2495-678-hFc was minimal, whereas the response to hFc both in the treated 

group and the control was strong. Consequently, it is not surprising that tumour 

weight and tumour growth were similar to the ones measured in the control group. 

It is still unclear if, even though the dilution at which they could observe a response 

for ROBO4 and GRIND2D was 1:10 (v/v), the response was actually detectable at 

increasing dilutions (e.g. 1/104-5) (Zhuang et al., 2015; Ferguson et al., 2016). It is 

doubtless that each recombinant fusion protein has a specific immunogenicity and 

raises a different degree of response. It is possible to conclude that the 

immunization with mouse MMRN2495-678-hFc does not raise a strong immune 

response against the fragment and its ubiquitous expression might be a reason. Even 

though the protocol implemented was not able to induce a proper titer against 

MMRN2 fragment, the literature supports the theory that a vaccination response 
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against MMRN2495-678-hFc might have two strong consequences: the first would be 

blocking MMRN2-CLEC14A interaction (Noy et al., 2015) and second blocking the 

recently described MMRN2-CD93 interaction (Lugano, Dejana and Dimberg, 2018). 

Both of the interactions have been reported to be important for tumour 

angiogenesis.  

 

Finally, because CLEC14A was identified as a tumour endothelial marker, the 

possibility of using the fragment conjugated with a toxin to target tumour 

endothelium was explored. Therefore, it has been decided to generate a fusion 

protein, MMRN2495-678-Dianthin. As previously mentioned, dianthin is a plant toxin, 

which is able to block the ribosome activity during translation if released in the 

cytosol. As human cells do not naturally express receptors for dianthin, a fusion 

partner that is internalized should be used to create an active toxin. For this reason, 

we investigated whether mouse MMRN2495-678-hFc was internalized, as previously 

observed for the CRT monoclonal antibodies against CLEC14A by Puja Lodhia (Thesis, 

2017). The specific staining of MMRN2495-678-hFc was partly co-localising with the 

EEA-1 staining (endosomes marker), indicating that MMRN2 might be internalized 

through the endosome pathway and subsequently released in the cytosol. Further 

experiments would be necessary in order to confirm whether the endosomes are 

actually involved (Figure 4.11). Moreover, it would be interesting to understand if 

the internalization is depending only on the binding of the fragment with CLEC14A 

and not also due to CD93. It is possible to speculate, due to the mechanism observed 

with the internalization of the CRT antibodies, that the binding to CLEC14A is at least 

in part involved. For therapeutic purposes, the internalization should be preferably 
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only CLEC14A-dependent to avoid toxicity on off-target cell types that express CD93, 

because its expression is not tumour endothelial specific. Consequently, it would be 

extremely appealing to confirm whether mouse MMRN2495-678 is able to cross react 

only with human CLEC14A and not with human CD93.  

 

Due to lack of time to complete this part of the project, two recombinant toxin-

fusion proteins (HisMMRN2495-678-Dianthin and HisDianthin-MMRN2495-678) were 

designed and cloned, in order to identify the best construct to further study in vitro 

on HUVEC cells and eventually in vivo.  
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CHAPTER 5: A ligand-based 
chimeric antigen receptor   
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5. A ligand-based chimeric antigen receptor  

5.1 Introduction 

	
Chimeric antigen receptor (CAR) T cells are a promising new approach for cancer 

treatment and over the last few years many clinical trials of them have been 

initiated. Four generations of CAR T cell have been developed, introducing more co-

stimulatory signals. This is to improve survival and activation of the T cells upon 

recognition of their target. Aside from the presence of the co-stimulatory signals, a 

fundamental part of these chimeric receptors is the single chain variable fragment 

(ScFv), which is responsible for the specificity to the T cells (Pettitt et al., 2018). ScFv 

comprises a variable light and a variable heavy chain joined together by a linker. The 

molecular weight of an ScFv is around 25 kDa (Ahmad et al., 2012).  

 

Due to its strong binding with CLEC14A (Khan et al., 2017) and its molecular weight, 

MMRN2495-674 behaviour was comparable to the one of an ScFv and various 

applications were taken into account in order to exploit it for therapeutic purposes, 

due to its CLEC14A binding properties. One of the most innovative methods 

attempted was the generation of a fragment-based Chimeric Antigen Receptor 

(CAR). 

 

5.2 Construction of a ligand-based chimeric antigen receptor  

	
This work was in collaboration with the Dr Steve Lee in the Institute of Immunity and 

Infection, University of Birmingham. A second generation CAR T cell plasmid (MP71)	

was provided by Dr Lee, which included a CD3ζ and a CD28 co-stimulatory domain  
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Figure 5.1 Schematic diagram representing the ligand-based chimeric antigen receptor strategy  
 

A. Schematic representation of the various domains of hMMRN2 and the position of the fragment 

495-674 within the coiled-coil domain. B. Figure showing the difference between a conventional ScFv-

based CAR (on the left) and the MMRN2
495-674

-based CAR (on the right) constructed in order to target 

the tumour endothelial marker CLEC14A.   
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(Engels et al., 2003). Currently there are more advanced chimeric antigen receptors 

in use, described as ‘third’ and ‘fourth’ generation. In these new generations of CAR 

further intracellular domains have been added to the second-generation structure of 

the CAR, in order to improve cytokine production and the killing activity. Due to the 

common use in the literature of second generation CAR T cells, which are the most 

studied so far, it has been decided here to use this construct instead of the newer 

generations.  

 

As demonstrated in the previous chapter, both MMRN2495-674 and MMRN2495-678 

were able to bind CLEC14A expressed on the cell surface. Because of this, it was 

decided to clone both the human MMRN2495-674 and the mouse MMRN2495-678 

version of the CAR. To do so, the human and the mouse version of the fragment 

were amplified by PCR with homologous endings to the vector. These fragments 

were separately inserted in frame in to the MP71 vector, instead of a single chain 

antibody (scFv) normally employed in the generation of CAR T cells (Figure 5.1B). The 

plasmid constructs are shown schematically in Figure 5.2.  

 

These constructs were then used to produce a retrovirus carrying the genetic 

information for the specific CAR: either the mouse or human MMRN2 fragment. 

Peripheral blood mononuclear cells (PBMCs) were activated with anti-OKT3 (anti-

CD3), anti-CD28 and IL-2. After two days, activated T cells were retro-transduced 

with the retrovirus either carrying the genetic information for the CAR constructs or 

no DNA as mock. Each of the following experiments will compare mock control, 

MMRN2495-674 (or human MMRN2) and MMRN2495-678 (or mouse MMRN2) CAR T  
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Figure 5.2 Plasmid map of the ligand-based CAR generated  
 

A. Plasmid map of the human MMRN
495-674

 CAR T cells, indicating the main domains of the chimeric 

antigen receptor. A similar map would schematically represent the plasmid of the mouse version. B. A 

linear representation of the DNA construct is shown. It contains an N-terminus and a C-terminus Long 

Terminal Repeats (LTR) domains, a truncated form of CD34 as extracellular tag, a peptide 2A linker, 

the gene of MMRN2
495-674

 and the two signalling domains CD28 and CD3ζ. C. A linear representation 

of pCL ampho, including the Envelope gene 4070A, as well as GAG and POL genes, under a 

cytomegalovirus promoter.  
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cells. The results shown in this chapter were obtained with one transduction. The 

same experiment was repeated with PBMCs obtained from different donors and 

independently transduced. The same pattern of reactivity was observed across 

multiple transductions confirming the activity of the CAR.  

 

5.3 MMRN2495-674 CAR modified T cells activate on contact with the recombinant 

CLEC14A antigen as shown by IFNγ ELISAs 

	
Once the T cells were activated and transduced with the CAR as previously described 

(2.3.13/14), the transduction efficiency was measured by flow cytometry. The four 

human PBMCs plasmapheresis cones transduced were analysed before the 

functional experiments. The transduction efficiency shows the percentage of the 

cells that are transduced and expressing the CAR gene in the population.  

 

There are two main differences to be taken into account when comparing different 

repeats: the intrinsic donor variability and, in particular, the transduction efficiency. 

Presumably, two donors transduced with the same CAR and at the same 

transduction efficiency will show little, if any, variations in activation. More relevant 

to be considered is the transduction efficiency levels of the different donors. In fact, 

two or more donors transduced with the same CAR construct at different efficiencies 

would show different levels of activation.  The extent of the IFNγ production is 

correlated with the efficiency of transduction, because in each experiment the same 

number of cells from the total population is plated. For this reason, it has been 

decided not to pool the data and simply evaluate the pattern of response. 
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Figure 5.3 Determination of the transduction efficiency  
 

Following activation, human PBMCs were transduced with either hMMRN2
495-674

, mMMRN2
495-678

 CAR 

or no DNA for mock cells. Flow cytometry analysis was performed gating for a viability marker and a 

selecting the lymphocyte population. In addition, viable lymphocytes were analysed for the 

expression of a truncated form of CD34, which is employed as tag of the CAR surface expression. 

Finally, the CD34 gate was set using the mock/transduced cells. This is a representative analysis 

performed on one of the four donors. Similar staining and gating were applied to each transduction.   
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Four different donors were employed and showed different transduction efficiencies 

in the following experiments.  

 

With respect to the donor shown, the transduction efficiency was relatively high for 

both CARs and similar between each other; human MMRN2 CAR T cells were 

transduced at 64.4%, whereas the mouse MMRN2 CAR T cells were transduced at 

75.5% (Figure 5.3).  

 

Recombinant human and mouse CLEC14AECD-hFc were produced in HEK293T and 

purified on protein A columns. The sequences of either human or mouse 

CLEC14AECD-hFc were cloned into the pWPI vector with the CLEC14A signal peptide 

at the N-terminus. These constructs were transfected together with the packaging 

and envelope vectors into HEK293T cells. The virus containing supernatant from this 

transfection was then used to transduce HEK293T according to the protocol 

described in 2.3.5. In this way it was possible to obtain a cell line stably expressing 

and secreting the recombinant proteins. The efficiency of the purification was 

analysed by a protein gel stained with Coomassie blue (Figure 5.4A). Moreover, the 

availability of the hFc-tag was checked via western blot, using the anti-hFc antibody 

(Figure 5.4B).  

 

The recombinant CLEC14A and hFc control were then coated on a NUNC-immuno 96 

well plate. After coating, both mock, hMMRN2and mMMRN2 CAR T cells were 

seeded in technical triplicates. The following day, the INFγ containing media was 

tested in the IFNγ ELISA as described in 2.3.16.1. 
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Figure 5.4 Expression and purification of mouse and human CLEC14A
ECD

-hFc  
 

A. Protein gel and Coomassie staining of both mouse and human CLEC14A aliquots after protein A 

purification. The same volume was loaded from each aliquot showing clearly the beginning and the 

end of the elution phase. The proteins are seen to be more than 90% pure. B. Western blots detecting 

the purified proteins either in non-reducing (NR) or (R) reducing conditions with a anti-hFc HRP 

antibody. It was possible to detect the protein in both conditions, showing the accessibility of the hFc 

tag within the recombinant protein.   
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Figure 5.5 MMRN2
495-674 

T cells activate on contact with the recombinant antigens in IFNγ ELISAs 
 

To normalise the transduction, human and mouse MMRN2 CAR T cells were matched by diluting 

with mock cells the population with the highest transduction efficiency. The same number of 

cells was then incubated with recombinant human and mouse CLEC14A-hFc and hFc as control at 

decreasing concentrations. The medium was finally tested in ELISA for INFγ production. The 

figure represents the INFγ response of the mock, hMMRN2 and mMMRN2 CAR T cells after 

stimulation with purified recombinant proteins. The graph shows the results of one donor of the 

four tested obtaining similar results. The bars represent the average of 3 technical replicates ± 

SEM.   
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The mMMRN2 CAR was unresponsive to both mouse and human CLEC14AECD-hFc as 

its INFγ levels were the same as those exposed to mock CAR T cells. In contrast, the 

hMMRN2 CAR was responsive to both mouse and human CLEC14AECD-hFc but not to 

hFc alone. This indicated that T cells expressing the human version of the fragment 

as a CAR were able to recognise and to be activated by target antigen. The INFγ 

produced in the presence of CLEC14A-ECD-hFc was greater than with recombinant 

hFc control. Further, this experiment showed that hMMRN2 CAR was able to cross-

activate with both the human and the mouse antigen. The response was dose 

dependent and comparable for the two species. Only in presence of 10 μg/μL of 

purified antigen, the response of the CAR to mouse CLEC14AECD-hFc was lower than 

the response to human CLEC14AECD-hFc. The baseline response of the hMMRN2495-

674 CAR T cells was consistently greater than the mock or the mouse version, 

indicating that the expression of this CAR in T cells causes a constitutive basal 

activation. Finally, the response of the CARs to hFc was comparable to the one 

obtained in wells containing PBS only, showing that these CARs were not affected by 

the presence of the hFc tag of the recombinant CLEC14AECD (Figure 5.5). This result 

was confirmed by transfecting different donors with the same CAR constructs. The 

extent of the IFNγ response was different because of the different levels of 

transduction, but the same pattern of response was observed.  
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5.4 Human MMRN2495-674 T cells are responsive to CLEC14A and CD93 expressing 

cells in IFNγ ELISAs 

	
Antigen activation of the human CAR prompted further study. The CAR T cells were 

next challenged in an in-cell INFγ ELISA. In order to have a more comprehensive 

understanding of the specificity of these CARs, a variety of targets were employed. 

HEK293T do not express any of the possible targets of MMRN2 CAR: CLEC14A or 

CD93. So, it was possible to use them as negative control to investigate the 

overexpression of the full-length version of the targets and their mutant versions. 

HEK293T were PEI transfected with the constructs of CLEC14A and CD93 full-length 

both cloned into pEGFPN1. It has been reported that the two cysteine residues in the 

long loop region of CLEC14A, conserved also on CD93, are important for the binding 

to MMRN2 due to the formation of disulphide bonds (Khan et al., 2017). The 

mutation of these cysteine residues (CLEC14AC103S and CLEC14AC138S) to a serine 

residue, which is the most similar amino acid to cysteine that lacks the ability to form 

disulphide bonds, resulted in the loss of the binding.  

 

Similarly, this was also observed with the CD93C104S and CD93C138S mutants (Khan et 

al., 2017). These mutants, cloned in the same vector of the full-length constructs 

pEGFPN1, were also used to generate transiently transfected HEK293T cell lines. It 

was expected that upon cysteine mutation, the human MMRN2495-674 CART cell was 

not able to bind properly to the targets and activate the T cells, so these mutants 

were used as negative control. In the plan of the study only the CLEC14AC103S and 

CD93C104S mutants were used. The transfected HEK293T cell lines together with  
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Figure 5.6 MMRN2
495-674 

T cells are responsive to CLEC14A and CD93 expressing cells in IFNγ ELISAs  
 

HEK293T were transfected with CLEC14A and CD93 (either WT or mutant). After 24 hours, together 

with HUVEC, which express both CLEC14A and CD93 endogenously, transfected HEK293T were 

seeded with the T cells (E:T=20:1). After overnight incubation, the supernatant was tested in ELISA for 

IFNγ production. This figure shows the response of the different CARs tested (mock, hMMRN2 and 

mMMRN2) to targets expressed on cells. The graph shows the results of one donor of the four 

tested obtaining similar results. The bars represent the average of 3 technical replicates ± SEM.   
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HUVEC, that express both CLEC14A and CD93 endogenously, were tested as targets 

of the previously described CARs.  

 

The transfected HEK293T cells and HUVEC were placed in co-culture with mock, 

hMMRN2 and mMMRN2 CAR modified T cells overnight. IFNγ containing 

supernatants were then analysed as described in 2.3.16.1. 

 

As previously for the purified antigen IFNγ ELISA, mMMRN2 CAR T cells were not 

responsive to the antigens, showing that this CAR was not able to recognise the  

target, leading to comparable IFNγ levels of the untransduced T cells of the mock. 

Moreover, it was possible to observe a basal activation across all the CAR T cells 

towards each target, because the levels of INFγ were slightly higher than the one 

detected with PBS only. In contrast human as opposed to mouse was responsive to 

the targets. This strong response towards HEK293T overexpressing CLEC14AFL and 

CD93FL was seen. Moreover, as expected hMMRN2495-674 was not activated upon 

contact with the mutated targets CLEC14AC103S and CD93C104S. The IFNγ levels were 

comparable to the mock and the non-responsive mMMRN2 CAR against the same 

conditions.  Human MMRN2 CAR showed a strong activation when in co-culture with 

HUVEC. The concentration of INFγ in the medium was comparable to the one 

detected with this CAR in co-culture with HEK293T cells expressing CD93 (Figure 5.6).  
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5.5 MMRN2495-674 CAR modified T cells are cytotoxic to HUVEC in culture 

	
The action of CAR T cells in vivo is mainly cytotoxic. After recognition and binding of 

the target, the T cells activate and eventually kill the cells expressing the target. An 

important prerequisite to study CAR T cells in vivo is to show cell killing in vitro. It is 

then known that the CAR is functional and you can look for a therapeutic effect in 

vivo. A reliable assay to measure the cytotoxicity of T cells is the Chromium (Cr51) 

release assay. 

 

The chromium release assay was set up with the same target cells employed in the 

cell ELISA. Target cells were incubated with Cr51 for cell loading. Once the Cr51 was 

incorporated, the target cells were co-cultured with the CAR T cells at different 

Effector:Target (E:T) ratios (20:1, 10:1, 5:1). Cells were co-cultured for 5 hours and, 

then, the Cr51 containing medium was analysed by a gamma counter. Each 

combination of co-culture was seeded in triplicates. Moreover, for each target cell 

spontaneous (untreated cells) and maximum lysis (cells treated with 1% SDS) were 

measured in order for the counter to calculate the ratio of each sample according to 

the formula in paragraph 2.3.19. 

 

According to previous experiments, mMMRN2 CAR T cells did not show any killing 

activity towards the targets. In fact, the levels of chromium registered were 

comparable with the mock. On the other hand, hMMRN2 CAR showed strong killing 

activity in HUVEC when compared with the mock (Figure 5.7). The experiment was 

performed testing the killing activity of all the 4 transduced donors available. The 
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results of the first attempt across the different donors were not entirely consistent. 

This was probably due to the fact that the donors not shown were having a lower 

transduction and all the T cells used had spent a long time in culture. The same 

experiment was performed a second time. The results of this second attempt were 

not taken into consideration due to the maximum release values registered, which 

were not suitable for a correct calculation of the ratio.    
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Figure 5.7 MMRN2
495-674

 T cells display cytotoxic activity towards HUVEC  
 

Target cells (HUVEC) were labelled with 50μCi of fresh 
51

Cr. After staining, these cells were cultured 

with CAR T cells at different E:T ratios (20:01, 10:01 and 05:01). At the end of the incubation, 

radioactive containing media resulting from the T cell mediated lysis was collected and read at the 

scintillator. The graph shows the killing activity of the different CAR T cells against HUVEC. The graph 

shows the results of one donor of the four tested. The bars represent the average of 3 technical 

replicates ± SEM.   
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5.6 Discussion 

	
Current in cancer research aims to identify new therapeutic approaches, which are 

more effective and less invasive for the patient than conventional treatment with 

chemo- or radio-therapeutic agents. Over the past few years, chimeric antigen 

receptor (CAR) T cell therapy has been demonstrated to improve patient survival in B 

cell malignancies’ clinical trials (Kochenderfer et al., 2010, 2012; Maude et al., 2014; 

Lee et al., 2015; Porter et al., 2015). Regular CAR constructs employ a single chain 

antibody (ScFv) to drive the specificity. Here we present an alternative method to 

generate a CAR, which utilize a receptor/ligand binding. This is a comparatively 

unexplored approach and, in fact, only two previous examples of ligand/receptor 

CAR T cells have been published, a NKG2D based and an ErBb based CAR (Parente-

Pereira et al., 2013; Sentman and Meehan, 2014). These two attempts were focused 

on targeting tumour cells, whereas the CARs generated in this work are aiming to 

target tumour endothelial cells. Due to its strong interaction with CLEC14A, a 

reported tumour endothelial marker (Mura et al., 2012; Zanivan et al., 2013), 

MMRN2495-674 was a putative candidate for targeted therapy development.  

 

Both human MMRN2495-674 and mouse MMRN2495-678 chimeric antigen receptors 

have been generated. We evaluated the functionality of the CAR in vitro. Initially, 

specifically the ability of T cells transduced with the MMRN2 CARs to be activated on 

the purified antigen, mouse and human CLEC14AECD-hFc. Upon activation T cells 

secrete IFNγ that is measured in the culture media. Human MMRN2 CAR T cells 

showed strong levels of IFNγ upon recognition with both human and mouse  
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Figure 5.8 Schematic representation of hMMRN2 CAR T activation.  
	
T cells expressing the chimeric antigen receptor based on the MMRN2 fragment recognise the 

targets, CLEC14A and CD93 expressing cells. Upon binding, T cells activate and produce IFNɣ. After 

activation, T cells exert their killing activity by the action of granzymes and perforins. 
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recombinant CLEC14A. The cross-reactivity of the CAR is important for future studies 

in pre-clinical and clinical settings. This result indicates that hMMRN2 CAR T cells are 

able to selectively recognise the target and activate. According to the hypothesized 

specificity of the binding, CAR T cells were unable to activate when HEK293T were 

expressing the mutated forms of CLEC14A and CD93. The response pattern was 

consistent across all the donors. The levels of IFNγ were variable, due to their 

different transduction efficiency. Conversely, mMMRN2 CAR T cells show no activity. 

As the recombinant mMMRN2495-678-hFc was retaining the binding properties 

towards both human and mouse CLEC14A, it is possible to speculate that the 

confirmation of mMMRN2 within the CAR construct was either not folding correctly 

or presenting a different pattern of glycosylation, losing its binding capability. 

Further investigations are needed to assess why this CAR is unable to bind to its 

target. Interestingly, hMMRN2 showed great efficiency of binding both to HEK293T 

overexpressing CLEC14A and CD93, and HUVEC that express both of the targets 

physiologically. Finally, it was shown that hMMRN2 CAR T cells were able to activate 

in response to HUVEC cells and kill them, in a chromium release experiment (Figure 

5.8). In this experiment it is not possible to appreciate a dose-dependent killing 

activity. This is probably due to the fact that at this E:T ratios the killing activity 

resulted in the saturation of these signals. Employing less T cells per target cells 

would allow to appreciate a dose dependent effect. If these preliminary data are 

confirmed, this would open the possibility of testing this specific CAR in a pre-clinical 

tumour model in mice. It would be important to assess whether hMMRN2 is able to 

cross-react with mCD93. This interaction would be critical to evaluate the off-target 

toxicity of the CAR in preclinical models, because CD93 expression is not limited to 
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tumour endothelium. Finally, if the levels of toxicity were acceptable, the effects on 

tumour growth can be evaluated. Targeting solid tumours with CAR T cells has been 

demonstrated to be challenging when compared with what observed in 

haematological cancers. Theoretically, targeting the tumour endothelium should be 

an effective way to employ CAR T cell therapy to treat solid tumours. In fact, 

hMMRN2 CAR transduced T cells would not necessarily need to penetrate the 

tumour to be effective. This would allow them to avoid the strong 

immunosuppressive environment driven by hypoxia and, among others, regulatory T 

cells.  

 

Here we present an example of a functional CAR T cell based on a ligand. So far, only 

a couple of examples for this type of approach have been reported. This work 

supports the possibility of exploiting known interactions to generate new chimeric 

antigen receptors for immunotherapy. In particular, it shows the generation of a 

possible therapeutic use based on hMMRN2 fragment in order to deplete the 

tumour endothelial compartment because of the expression of CLEC14A.   
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Chapter 6: General discussion 

6.1 Introduction  

	

The success of anti-angiogenic drugs in preclinical studies did not translate in clinical 

trials. In fact, they have failed to improve overall survival of patients (Kerbel, 2008). 

This type of therapy can result in acquired resistance due to alternative angiogenic 

pathways taking over, due to tumour cells secreting other angiogenic factors other 

than VEGF. Vascular targeting might represent an alternative strategy to potentially 

combat acquired resistance, as tumour vessels themselves will be targeted rather 

than the actual angiogenic process of blood vessel formation. By targeting changes 

in the tumour blood vessels it is less likely that acquired resistance will occur as the 

endothelial cells expressing such markers will be more genetically stable, more 

homogeneous and less able to give rise to tumour endothelial cells that do not 

express certain tumour endothelial markers. For all these reasons, new, more 

effective targets for anti-vascular therapies for cancer are urgently needed. 

 

The recently described CLEC14A interacts with the extracellular matrix protein 

MMRN2 (Zanivan et al., 2013) and actively promotes angiogenesis. The antibody 

mediated disruption of the CLEC14A/MMRN2 interaction led to a reduction in 

tumour growth in a LLC tumour model (Noy et al., 2015). This was further confirmed 

by disrupting the interaction by expressing the binding fragment of MMRN2 

(MMRN2495-678) in mouse LLC tumour cells injected subcutaneously (Khan et al., 

2017). In vitro studies also demonstrated that upon loss of CLEC14A in HUVEC, pro-

angiogenic activities such as tube formation and cell migration were impaired (Rho 
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et al., 2011; Mura et al., 2012). The closely related CD93 is also involved in 

angiogenesis and has been shown to interact with MMRN2 (Galvagni et al., 2017; 

Khan et al., 2017; Lugano, Dejana and Dimberg, 2018). The region responsible for the 

interaction between MMRN2 and CD93 is the same as for CLEC14A, falling between 

amino acids 495 and 674 of MMRN2. These reports suggest that CLEC14A and CD93 

may be involved in the same signalling pathway or play a redundant role in 

angiogenesis.  

 

As the CLEC14A, CD93/MMRN2 interactions appear to be important in angiogenesis, 

the interaction was exploited as a mean to generate new cancer therapies.  

 

6.2 CLEC14A and CD93: possible redundancy 

 

No study has yet compared the function of both CLEC14A and CD93 in angiogenesis. 

The first aim of this work was to explore whether the loss of function of CLEC14A or 

CD93 in angiogenesis was redundant, or whether the loss of both proteins had an 

additive effect on components of angiogenesis, such as tube formation, migration or 

membrane transmigration. The double knockdown of MMRN2 and CD93 was also 

studied to verify whether the phenotype observed in the single knockdown was 

mediated by the presence of MMRN2. 

 

In chapter 3 it was shown that CD93 is involved in angiogenesis and has an 

independent function from CLEC14A. This conclusion was supported by the fact that 

with CLEC14A knockdown there was no effect on tube formation (both in Matrigel 
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and in a co-culture assay with fibroblasts), migration or membrane transmigration. In 

contrast, CD93 knockdown showed a significant reduction in network formation and 

transmigration. CD93 knockdown also showed an observable retardation in a wound 

healing assay (at 24 hours the wound was not closed), supporting what has been 

previously shown (Langenkamp et al., 2015). The strong phenotype observed on 

CD93 knockdown seems to be independent from CLEC14A and MMRN2, because 

upon double knockdown there was no phenotypic change. In the double 

knockdowns the phenotype was the same as the CD93 single knockdowns. It is 

interesting to note that upon single knockdown of MMRN2, there is a significant 

increase in tube formation on Matrigel and in transmigration, but this effect was lost 

completely when the knockdown was coupled with CD93 knockdown. 

 

Measurement of the relative expression of CLEC14A and CD93 showed that CD93 is 

expressed around 10 times more than CLEC14A in HUVEC in cultures. It is plausible 

that CLEC14A has the same role as CD93, but due to its low level of expression in 

vitro there is little effect on knockdown. 

 

This work supports the angiostatic role of MMRN2 reported by Lorenzon and 

colleagues (Lorenzon et al., 2012). According to these reports, the reduction of 

MMRN2 increases the availability of VEGFA, because MMRN2 is able to directly bind 

VEGFA sequestering it from the environment. MMRN2 has also been described as a 

scaffold at the interface between endothelial cells and pericytes, orchestrating 

various different proteins, underling the complexity of its interactions (Khan et al., 

2017).  
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In the frame of this work, it would be interesting to analyse the CLEC14A/MMRN2 

double knockdown phenotype, which has not been investigated yet, to test whether 

the phenotype observed for MMRN2 knockdowns were lost or exacerbated upon 

knockdown of CLEC14A, or vice versa. Furthermore, it would be interesting to 

employ an anti-VEGF antibody upon MMRN2 knockdown, to see if it is possible to 

reverse the phenotype observed and to conclude if the effect observed is mediated 

by an increased VEGF-A availability. For future studies it would be also interesting to 

investigate if these proteins are co-regulated or if they regulate the expression of 

other key proteins involved in angiogenesis. qPCR analysis has shown a regulation at 

the RNA level of VE-cadherin and VEGFR3 upon loss of CLEC14A. Further studies in 

vitro together with a few recent reports may shed light on the mechanism by which 

CD93 and potentially CLEC14A mediates angiogenesis and what the role MMRN2 

plays in this signalling pathway. As the respective knockout mice are all viable, the 

generation of double and potentially triple knockout mice offer the potential to 

confirm the in vitro data in in vivo angiogenesis and tumour models.  

 

6.3 Exploiting the MMRN2 binding fragment for anti-angiogenic and anti-tumour 

therapies 

 

A second aim of this work was to exploit our knowledge regarding the interaction 

between CLEC14A and MMRN2 in order to generate therapeutic tools for anti-

vascular and anti-angiogenic therapy. Previously, Khan and colleagues had used far 

western blot to identify a minimal binding fragment of MMRN2, namely MMRN2495-
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678, which retains the avidity capability towards CLEC14A and CD93. This work has 

explored the possibilities of using a recombinant MMRN2495-678-hFc fragment as a 

vaccine and alternatively the generation of a drug conjugate.  

 

Two previous reports from our laboratory described the vaccination against the 

TEM’s Robo4 and GRIN2D (Zhuang et al., 2015; Ferguson et al., 2016). In a similar 

vein we attempted to vaccinate against the MMRN2 fragment. This should disrupt 

the interaction between MMRN2 and CLEC14A blocking tumour angiogenesis. 

However, in practise our vaccination attempts failed, this could be due to the 

inability to break tolerance and generate antibodies towards the MMRN2 self-

protein. Future strategies could employ using a stronger adjuvant as a fusion protein 

such as the C-terminal fragment of tetanus toxoid (TT) instead of the human Fc 

protein. The TT fragment was successfully used to generate a vaccination response 

against TEM1 (Facciponte et al., 2014).  

 

There have been numerous successful attempts in using antibody drug conjugates 

(ADCs) described in the literature, such as those targeting Endosialin or CD276 

(Capone et al., 2017; Seaman et al., 2017). Here we present an analogous approach, 

which exploits a binding fragment rather than an actual antibody. It was shown that 

mouse MMRN2495-678 is internalised in HUVEC and this makes it the perfect fusion 

partner for toxins like dianthin, which need to be released within the cytosol.  Our 

results showing the internalisation of MMRN2495-678 confirmed unpublished data 

from our lab that demonstrated the internalisation of monoclonal antibodies to 

CLEC14A (Puja Lodhia PhD Thesis 2016). The use of the fragment would have a 
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double effect, targeting CLEC14A expressing cells (specifically the tumour 

compartment), but also disrupting the interaction between CLEC14A and MMRN2 as 

previously shown when expressed by transfected tumour cells (Khan et al., 2017). 

Future study will be necessary to test the actual toxin in vitro in HUVEC. It is also 

plausible, if CD93 mediates also the internalisation of the target, that the effect of 

the toxin will be stronger on endothelial cells than the one observed with 

monoclonal antibodies specific for CLEC14A. In vivo studies will be necessary to 

determine whether the fragment binding CD93 will have cytotoxic consequences.  

 

Finally, the last and most innovative approach was the generation of a fragment-

based Chimeric Antigen Receptor T cell. Here we demonstrate the functionality of T 

cells expressing this CAR in vitro. Further confirmation of the activity of this CAR in 

cytotoxic assay is needed.  

 

hMMRN2 CAR represents the third example of chimeric antigen receptors based on 

ligands in the literature (Parente-Pereira et al., 2013; Sentman and Meehan, 2014).  

These reports are the proof of principle that ligand-based CARs are a feasible option 

and open the possibility of creating functional immunotherapy strategies even in 

absence of specific monoclonal antibodies, taking advantage of possible information 

on natural ligands. Furthermore, these ligand-based CARs might have multiple 

specificity like hMMRN2 or the previously described T1E28z CAR by Parente-Pereira 

et al., 20013, making them more powerful tools for immunotherapy. Theoretically, it 

would also be possible to generate chimeric antigen receptors based on ligands of 
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specific isoforms of protein known to promote tumorigenesis. The generation of 

antibodies with such specificity might not be easily achievable.  

 

It is possible to speculate that the targeting of the endothelium using modified T 

cells might present advantages such as avoiding resistance and necessity of 

penetrating the tumour mass, but also limitations. In fact, immune cells to reach the 

tumour site usually extravasate from the blood stream. Selectively targeting tumour 

vessels might reduce the number of modified T cells as well as of other immune cell 

types recruited at the tumour sites. Dedicated in vivo studies are necessary confirm 

what the effects of this therapy are in tumour models.  
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Figure A1 MMRN2495-674 is able to bind CD93 on HUVEC  
 

HUVEC cells were blocked with either IgG, CRT2 and CRT4 antibodies. It is known that CRT4 binds the 
same site on CLEC14A than MMRN2, whereas CRT2 bind an alternative site. Cells were washed and 

incubated with either human MMRN2
495-674

-hFc or recombinant hFc alone. CRT4 is not able to block 
MMRN2 binding in HUVEC, suggesting that the fragment is able to bind CD93 on HUVEC. The 
experiment was repeated 3 times with similar results. 
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