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Abstract 

1. Ecoacoustics, the study of environmental sound, is a growing field with great potential for

biodiversity monitoring. Audio recordings could provide a rapid, cost-effective monitoring tool 

offering novel insights into ecosystem dynamics. More than 60 acoustic indices have been developed 

to date, which reflect distinct attributes of the soundscape, (i.e. the total acoustic energy at a given 

location, including noise produced by animals, machinery, wind and rain). However, reported 
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patterns in acoustic indices have been contradictory, possibly because there is no accepted best 

practice for the collection and analysis of audio recordings.  

2. Here, we propose: (1) guidelines for designing studies using audio recordings for the rapid 

assessment of multiple sites, and (2) a workflow for comparing recordings with seven of the most 

commonly used indices, permitting discrimination among habitat-specific soundscapes. We collected 

and analysed over 26,000 hours of recordings from 117 sites across a range of habitats in a human-

modified tropical landscape in central Panama; an order of magnitude more recordings than used in 

previously published studies. 

3. We demonstrate that: (1) Standard error variance of indices stabilises within 120 hours of 

recordings from a single location. (2) Continuous recording should be used rather than sub-sample 

recording on a schedule; sub sampling is a common practice but delays capture of site variability and 

maximising total duration of recording should be prioritised. (3) Use of multiple indices to describe 

soundscape patterns reveals distinct diel and seasonal soundscape patterns among habitats.  

4. We advocate collecting at least 120 hours of continuous recordings per site, and using a range of 

acoustic indices to categorise the soundscape, including the Acoustic Complexity Index, Acoustic 

Evenness Index, Acoustic Entropy Index and the Normalised Difference Soundscape Index. 

Differences among habitat types can be captured if multiple indices are used, and magnitude of 

variance is often more important than mean values. The workflow we provide will enable successful 

use of ecoacoustic techniques for environmental monitoring. 

 

Key-words: Acoustic index, Bioacoustics, Biodiversity, Ecoacoustics, Landscape, Sound recording, 

Soundscape 
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Introduction 

Ecoacoustics, the study of environmental sound, is a rapidly evolving field (Sueur et al. 

2014). Recent developments in automated sound collection and processing offer enormous 

potential for rapid and cost-effective monitoring of biodiversity, an essential task in the face of 

global land-use change (Burivalova et al. 2019; Laiolo 2010; Ribeiro et al. 2017). By identifying 

temporal shifts in soundscapes, this monitoring can be used to assess how species are affected by 

anthropogenic disturbance (Burivalova et al. 2019). However, the relative novelty of this field and 

the pace of innovation mean there are currently no accepted standards regarding the quantity of 

data (i.e. the length of recordings) or sampling intensity necessary for characterising the soundscape 

of a given habitat. Similarly, guidance on how such data can be used for effective, yet simple, 

biodiversity monitoring is lacking (Priyadarshani et al. 2018). 

Thousands of hours of sound recordings have been collected from a multitude of habitats 

around the world, but methods for translating these data into a rapid monitoring process are not 

keeping pace (Gibb et al 2018; Priyadarshani et al 2018). Data on faunal presence can be extracted 

from audio recordings using either manual or automated methods. However, both manual and 

automated approaches are time-consuming, necessitate expert knowledge and, in the case of 

automated recognisers, are still subject to high error rates (Furnas & Callas 2015; Sevilla & Glotin 

2017). Rather than focus on individual species, alternative approaches are required that summarise 

the huge quantities of sound recordings now available. To this end, over 60 indices have been 

developed to rapidly classify soundscapes based on their acoustic properties, providing metrics for 

habitat assessment and monitoring (Sueur et al. 2014; Buxton et al. 2018).  

The soundscape is comprised of the total acoustic energy at a given location, incorporating 

biophony (noise produced by animals), anthrophony (noise produced by humans and machines), and 

geophony (noise from natural processes such as wind and rain) (Pijanowski et al. 2011). Each 

acoustic index utilises different characteristics of the soundscape, such as pitch, saturation, and 
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amplitude. Often these involve contrasting short time steps or frequency bands within a recording. 

For example, the widely used Acoustic Complexity Index (ACI) contrasts the amplitude difference 

between one short time step (e.g. 0.03 secs) and the next, within a narrow frequency band (e.g. 62 

Hz). The ACI is sensitive to the inherent irregularity of biophony, particularly from bird song, while it 

is relatively impervious to persistent sound of a constant intensity. Audio indices such as ACI reduce 

the enormous complexity of the soundscape to a single number, greatly simplifying extraction of 

information from recordings.  

Acoustic indices are now used in a range of ecological research. Recently, a promising 

method using false colour spectrograms constructed with acoustic indices has been developed as a 

means of detecting particular species or taxon choruses (Towsey et al. 2014b, 2018). However, 

research focus has generally concentrated on investigating overall soundscape patterns. For 

example, Rodriguez et al. (2014) used acoustic indices to describe clear diel cycles in tropical forest 

soundscapes, and differences between the canopy and understory strata. Seasonal shifts in 

soundscapes have been examined in both temperate and tropical habitats (Farina et al. 2011; 

Pieretti et al. 2015; Rankin & Axel 2017). There are also clear distinctions in the soundscapes of 

different habitat types (Villanueva-Rivera et al. 2011; Depraetere et al. 2012; Bormpoudakis et al. 

2013), with habitat disturbance or conversion reflected in changes in the soundscape, likely 

triggered by shifts in faunal assemblages (Burivalova et al 2017; Deichmann et al. 2017; Tucker et al. 

2014). From these studies it is clear that ecoacoustics has enormous potential for environmental 

research. 

 Despite the promising results described above, studies have reported contradictory 

patterns, even when using the same acoustic indices. For example, some have found higher 

biophony and lower soundscape variability to be associated with lower levels of disturbance (Fuller 

et al. 2015; Machado et al. 2017), while others have found no differences among habitat types 

(Mammides et al. 2017; Ng et al. 2018). These disagreements may have arisen because to date there 

has been no consistency in data collection, and little agreement on the best indices for soundscape 
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assessment. Although guidelines on the use of ecoacoustics for biodiversity monitoring have been 

published, these focus on assessing faunal presence rather than soundscape analysis (Browning et al. 

2017; Llusia et al. 2011). Thus, inconsistent methodologies may underlie the inconsistent patterns. 

Ecoacoustic studies have used a wide range of recording schedules (e.g. from continuous to 

<1 minute per hour) and data volumes (e.g. from >200 hours to <5 minutes per site; see supporting 

information). Inter-soundscape comparisons are common, without consideration of whether intra-

soundscape variation has been accurately captured. While geophony is a key constituent of natural 

soundscapes, recordings with “high” levels of geophony are often removed from analyses, without a 

common definition of what “high” might be. Moreover, studies often present just one or two 

indices, with little justification for their selection. We argue that these inconsistencies are limiting 

the efficacy of acoustic indices in biodiversity monitoring. Given each index reflects different spatio-

temporal features (Eldridge et al. 2016), considering several indices in concert may give a much 

better representation of the soundscape rather than any one individual index. Here, we use seven 

commonly employed acoustic indices derived from recordings collected across a human-modified 

landscape in central Panama to ask: 

1. What duration of recordings is necessary to quantify the soundscape of a site, and does 

this vary among habitat type or index? 

2. Should recordings be continuous, or can they be limited to temporal sub-samples to 

minimise storage volumes and subsequent analysis? 

3. Which indices best reflect temporal variation over the course of the day, and between 

seasons, and are there different patterns among habitats? 
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Materials and Methods 

Study Landscape 

Acoustic data were collected in the Emparador landscape, located in the central region of 

the Republic of Panama, to the west of the Panama Canal (Fig. 1). The landscape covers 

approximately 700 km2 and is highly heterogeneous, with tracts of extensive continuous forest, 

agricultural pasture, remnant forest fragments, non-native tree plantations, regenerating scrub and 

small urban centres. The landscape is bordered by the Panama Canal to the north and east, and the 

Interamericana highway to the south. The human population is distributed throughout the 

landscape, with sizeable areas of new urban development close to the Interamericana Highway. 

Rainfall varies from 2334mm in the north to 1969mm in the south (Pyke et al. 2001). There is a 

pronounced dry season between late December and late April when the mean daytime temperature 

is 31C. The remainder of the year is wet, with a mean daytime temperature of 28C (Robinson et al. 

2004). 

 

Data Collection 

One hundred and seventeen deployment sites (hereafter “sites”) were selected for this 

study, with 14-24 sites in each of the six main habitats present in the Emparador landscape: 

continuous forest, fragmented forest, riparian forest, scrub, teak plantation and pasture (Fig. 1). See 

Table S1 for a detailed description of the six habitats, their typical features, and numbers of sites in 

each habitat. Sites were positioned in patches of uniform habitat of at least one hectare, and were 

separated by a minimum distance of 500m from sites in other habitat types, and 1000m from those 

in the same habitat. 

Data were collected between January and September 2017. Recorders were deployed for 

one week at each site. There were a total of 154 deployments, 90 in the dry season and 64 in the 

wet season. Eighty sites were only visited once during the study, the remaining 37 sites had two 
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separate deployments of a week each, one in the dry season and one in the wet season, to facilitate 

study of intra-site seasonal patterns (mean 160 days +/- 26 between deployments). After each 

deployment, recorders were rotated between habitat types to minimise any bias that might arise 

from hardware variability. Sound recordings were collected using Solo recorders with 

omnidirectional microphones positioned between 1 and 2m above the ground (Whytock & Christie 

2017). Most recordings were collected with Primo EM172 microphones (Primo, Singapore), however 

logistical issues necessitated switching to Snowflake microphones (Blue, USA) during the wet season 

in some cases. Testing suggested no systematic disparity in recordings collected with the different 

microphone models (see supporting information), so we did not distinguish between the two sets of 

recordings in the main analyses. Solo recorders collect audio continuously, but for ease of analysis 

recordings are automatically divided into 10-minute files. A sampling rate of 32,000 Hz was used as a 

balance between capturing the majority of the human-audible soundscape against storage volume 

requirements.  

Pre-processing was limited to a 500 Hz low-stop filter prior to analyses to reduce 

microphone self-noise (Pieretti et al. 2015). This will have removed some genuine sources of low-

frequency noise, but microphone self-noise may bias indices values. Several studies have screened 

recordings to exclude those with high levels of geophony (Pieretti et al. 2015; Gasc et al. 2013; 

Depraetere et al. 2012), or anthrophony (Bormpoudakis et al. 2013), as some indices can be strongly 

influenced by these elements. However, we consider these to be key components of the 

soundscape, so no recordings were excluded.  

 

Data Analyses 

Calculation of Acoustic Indices  

157,476 10-minute files were included in this study, equivalent to three years of continuous 

audio. Index calculation and all analyses were conducted with the software R (ver 3.5.1; R Core Team 
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2018). We calculated soundscape indices values for each 10-minute recording, although for one 

section of the analysis, values were calculated for individual minutes (see below). Using the packages 

seewave (ver 2.1.0; Sueur et al. 2008a) and soundecology (ver 1.3.3; Villanueva-Rivera & Pijanowski 

2018), the following seven indices were calculated using the default values of each function: 

Acoustic Complexity Index (ACI), Acoustic Diversity Index (ADI), Acoustic Evenness (AEve), 

Bioacoustic Index (Bio), Acoustic Entropy (H), Median of the amplitude envelope (M), and the 

Normalised Difference Soundscape Index (NSDI). A description of each index and the patterns they 

reflect is in Table 1, with additional details in Table S2 and example sonograms in Fig. S1. We 

selected these indices as they are the most frequently used in ecoacoustic research and have been 

compared in other multi-index studies (Fuller et al. 2015; Machado et al. 2017b; Mammides et al. 

2017; Ng et al. 2018 but see Buxton et al. 2016, 2018). Selected indices also had to meet the 

following criteria: simple to calculate (i.e. existing functions in R packages), their values reflect 

soundscape patterns with links to ecological dynamics, and they are supported by peer-reviewed 

publication. 

 

Minimum quantity of recordings and recording schedules 

 To determine the minimum number of recordings required to describe a site’s soundscape, 

we randomly assigned the 10-minute recordings from each site into groups of six to create “pseudo-

hours”. Randomisation of the entire recording set from each site removed any diel effects, 

permitting focus on overall soundscape variability. We calculated mean index value and standard 

error for each pseudo-hour. Mean value was determined from the six recordings within each 

pseudo-hour, but standard errors were cumulative over time, i.e. error was estimated using all 

pseudo-hours up to and including the latest to simulate successively longer deployments. For 

example, standard error for the fourth hour was calculated using the indices values from the first 

four pseudo-hours, for the fifth hour standard error was calculated with the first five pseudo-hours 
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and so on, (Fig. S2). As simulated deployments became longer, the inclusion of more data led to a 

decline in standard errors. Standard errors stabilised when natural variability rather than data 

paucity was determining the index variance. Reduction in this variance over time was modelled using 

nonlinear regression, to quantify the effect of increasing deployment lengths. For this analysis we 

treated all deployments as separate, even though some were revisits to the same site. A global 

model with index as a random effect would not converge, and so each index was modelled 

separately using the same distribution. We selected the Weibull distribution as it is both relatively 

simple and versatile, with a range of potential shapes from exponential to humped (Bolker, 2008). 

We explored potential habitat and seasonal differences in variance reduction but found no support 

for separate models, implying similar patterns across all habitats and seasons. 

 Recording on a temporal schedule, rather than continuously, is common practice in acoustic 

monitoring to improve battery performance and reduce data storage (Pieretti et al. 2015). To 

examine the effect of scheduled recording, we divided recordings into single minutes and calculated 

acoustic indices for each. We then simulated a range of schedules used in previous acoustic indices 

studies: continuous, one minute in every two, one in five, one in 10, one in 30 and one in 60 

minutes. All schedules were treated as if they came from a one-week deployment, so resulting 

datasets spanned the same length of time but those from sparser schedules contained fewer data. 

Cumulative standard errors were calculated for each schedule as described above. Reduction in 

variance of standard error as a percentage of the maximum was modelled over deployment length 

using nonlinear regression. Again, a global model with schedule as a random effect would not 

converge and so separate models with a Weibull distribution were used for each schedule. 

 

Indices for characterising temporal and spatial patterns 

Acoustic indices from the 10-minute recordings were used to generate mean and standard 

deviation values per hour for each habitat in dry and wet seasons (Pieretti et al. 2015). To test for 
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diel patterns, each hour was classed as either day (06:00 – 17:00) or night (18:00 – 05:00). Finer 

scale temporal trends were explored using the mean value per 10-minute recording within habitat 

and season. 

Temporal and spatial soundscape patterns among habitats were explored in four ways. First, 

we performed non-metric multidimensional scaling (NMDS) to investigate habitat-specific diel and 

seasonal patterns, using the mean and standard deviation of acoustic indices values per hour. We 

used two axes and the Horn-Morisita dissimilarity index (Horn 1966), and checked the output met 

minimum stress requirements (Kruskal 1964). Second, the ordination was extended with 

permutational multivariate analysis of variance (PERMANOVA) to quantitatively test the effect of 

diel phase, season and habitat type on mean hourly indices values (Anderson 2001). These two 

analyses were conducted with the package vegan (ver 2.5.2; Oksanen et al. 2018). Third, to illustrate 

finer-scale temporal patterns over 24 hours, we considered trends in mean index value from each 

10-minute recording block. This was undertaken for each habitat for both dry and wet seasons, and 

curves were fitted to these patterns with Generalised Additive Models (GAMs), using the package 

mgcv (ver 1.8.26; Wood 2004). 

Finally, to determine which indices were most important in separating habitat-specific 

soundscapes, we undertook a random forest (RF) classification (Breiman 2001) using the 

randomForest package (ver 4.6.14; Liaw & Wiener 2002). We built a RF using mean hourly indices 

values and standard deviations, plus the factors “dry” or “wet” season, diel phase “day” or “night”. 

75% of the data were used for forest construction and the remaining 25% reserved for testing. 

 

Results 

Minimum quantity of recordings and recording schedules 

Standard errors rapidly shrank with increasing deployment time; all indices showed a 

common pattern of exponential decline as standard errors converging on the mean (Fig. 2). These 
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patterns were consistent for all indices, across all sites and habitats, and between seasons, as 

evidenced by fitting the same Weibull distribution to all datasets (Table S3). After 120 hours of 

recordings, variance stabilised to 8.9 - 12.1 %. 

Similar patterns of exponential decline in standard errors were evident when exploring the 

importance of scheduling (Fig. 3). Sparser schedules were associated with greater variability, a 

pattern consistent across all indices. Extrapolation of the one-minute-in-10 model suggested that 

more than 26 weeks of recording would be required to reduce index variance to a similar level 

achieved with seven days of continuous recordings (one-in-10 = 2.1% after 4368 hours, continuous = 

1.56% after 168 hours). Convergence was a product of total recording length irrespective of the 

schedule used. 

 

Indices for characterising spatial and temporal patterns 

The NMDS ordination showed clear patterns (Fig. 4); dry and wet season recordings 

separated along axis 1 suggesting distinct soundscapes at different times of the year, while axis 2 

illustrated a clear division between day and night soundscapes. The effect of habitat was less clear, 

with no obvious pattern in habitat type driving separation among the points. These results were 

reflected in the PERMANOVA; diel phase, season, habitat type and the diel phase-season interaction 

were all significant (Table S5).  

Six of the seven indices exhibited distinct patterns over the 24 hour period (Fig. 5, Table S6), 

often with marked shifts between the day and night soundscapes as implied by the NMDS ordination 

and PERMANOVA. Curves from the GAM fitted to 10-minute mean index values showed ADI and H 

values were high across all habitats during the day, but 6% and 9% lower at night respectively. 

Conversely, the AEve, Bio, M and NSDI values were lower during the day but 50 – 200% higher at 

night. Habitat-specific diel patterns were also apparent; the rise to daytime H values in pasture was 

an hour behind the other habitats, a lag mirrored in the Bio and NDSI indices values. AEve and Bio 
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values in both fragmented forest and scrub were higher at night and lower during the day compared 

with other habitats. Diel patterns in ACI were not apparent, but values in pasture were more 

variable with a standard deviation of 17, compared to <10 for other habitats. Seasonal differences in 

diel patterns of all habitats were also evident. The switch from diurnal to nocturnal values in the ADI, 

AEve and Bio indices was much more gradual in the wet season, beginning around 90 minutes earlier 

than in the dry season across all habitats. In the wet season, diel variation was reduced in the AEve 

index (standard deviation 50% lower) but magnified in NDSI (standard deviation 50% higher). 

The RF classifier built with mean hourly values per habitat was able to readily separate the 

data into the six habitat classes (Fig. 6). When applied to the testing dataset, the RF was 84.7% 

accurate in assigning soundscapes to the correct habitat type. Both mean and standard deviation of 

ACI were more important than any other variables for distinguishing among habitat types (with 

removal accounting for a proportional drop in accuracy of 0.17 and 0.08 respectively). Mean AEve 

values, and the mean and standard deviations of H and NDSI were also important. Season and diel 

phase were of least importance. 

 

Discussion 

Minimum quantity of recordings and recording schedules 

We found a consistent pattern in variance reduction across all indices, habitats and seasons. 

Index variability was reduced to a mean of 10.9% of its maximum after 120 recording hours. We 

selected this cut-off as a balance between deployment length and capturing the majority of site 

variability. Beyond 120 hours variance decreased so slowly with increasing sampling duration that it 

was not worth the increased input of time and resources. Convergence of indices values was a 

product of the total amount of recordings used rather than the length of the deployment or 

recording schedule. Thereafter continued variability was likely due to inherent soundscape features 

of the site rather than insufficient length of recording. 
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Previous acoustic studies have used a median of 24 hours (range 0.1 – 1436 hours) of 

recordings per site in terrestrial systems (see supporting information); at which point variance in 

index standard error will still be high. Our analysis suggests that studies using <120 recording hours 

may not have fully described the soundscapes, limiting the power of their conclusions. Similar 

analyses with recordings from other terrestrial landscapes would be required to determine if this 

rate of variance reduction is typical. Tropical soundscapes are often more complex than those of 

temperate systems, therefore convergence might be achieved more rapidly in simpler 

environments. However, all habitats in this study shared common convergence patterns despite 

considerable variation in vegetation structure and faunal communities, so the time required for 

other locations may prove similar. 

To our knowledge there is only one other study of temporal sampling, which advocated a 

one-minute-in-5 schedule as retaining the majority of information found in continuous recordings 

(Pieretti et al 2015). Our results from simulated datasets suggest that sparser sampling schedules 

(even 1-in-5) delays capture of inherent soundscape variability; and that continuous recordings are 

more effective for reliably capturing a soundscape. Sparse sampling schedules also require longer 

deployment times, so that site patterns might be complicated by seasonal shifts. Where monitoring 

seeks to describe patterns over longer temporal scales, it might be difficult to distinguish between 

short-term stochasticity and longer-term variability such as seasonal changes. 

 

Indices for characterising temporal and spatial patterns in soundscapes 

We found clear diel, seasonal and habitat-specific patterns among the soundscapes. Diel 

patterns were particularly pronounced, with all soundscapes showing a consistent distinction 

between day and night. Such findings are intuitive; almost every habitat in the world has discreet 

diurnal and nocturnal faunal assemblages. The diel division is evidenced by the common trends 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

shown in most of the indices, regardless of habitat type, and reinforced by the clear division along 

axis 2 of the NMDS and the significant effect in the PERMANOVA. 

Diel patterns in the soundscape were particularly marked with the AEve, Bio, H and NDSI 

indices. Overall, the indices imply that nocturnal soundscapes were more uneven; with fewer 

occupied frequency bands (ADI, AEve), a greater disparity between loudest and quietest bands (Bio, 

H) and lower levels of anthrophony (NDSI). This is consistent with insect and anuran communities 

dominating a limited range of frequencies (Villaneuva-Rivera et al. 2011). Conversely, diurnal 

soundscapes were typically more even. Greater levels of anthrophony and more variable biophony 

lead to an increase in the number of occupied frequency bands (ADI, AEve, NDSI), and with a more 

even amplitude (Bio, H). The only index without a clear diel pattern was ACI, perhaps because it 

effectively filters out consistent sounds such as insect choruses that are likely to underlie the diel 

differences in the other indices. 

The division of soundscapes into distinct diel phases has been widely reported. Equivalent 

patterns in NDSI values have been found previously, presumably because there is generally more 

anthrophony during daylight hours (Fuller et al. 2015). However, for some indices, specific patterns 

appear strongly dependent on region. Studies of Australian woodland sites report a diel split with 

the reverse of our results; high ADI and H values at night, and high Bio during the day (Fuller et al. 

2015, Gage et al. 2017). This would be consistent with insects in nocturnal soundscapes in Australia 

occupying a broader range of frequency bands than in Panama. Trends in ACI are also inconsistent: 

either no clear pattern (this study; Fuller et al. 2015), or marked diel differences arising from 

nocturnal insect biophony (Pieretti et al. 2015). Villanueva-Rivera et al. (2011) showed that most of 

their temperate sites had distinct diel patterns in ADI, with strong peaks corresponding to dawn and 

dusk choruses, a pattern not evident in our recordings. These patterns may reflect genuine 

differences among soundscapes but, as noted earlier, such contradictory results may arise from the 

variable amounts of recordings analysed in these studies (Table S7).  
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Soundscapes differed between seasons, with different diel patterns. Seasonal variation 

might be driven by changes in vegetation structure, or follow behavioural shifts in faunal 

communities, such as the onset of territorial birdsong (Buxton et al. 2016; Rankin & Axel 2017). In 

our recordings the most important seasonal influence was the frequency of storms, which had a 

notable impact on wet season soundscapes. Wet season diel variation was weaker in Bio and H index 

values, but stronger in NDSI, suggesting a smaller disparity between loudest and quietest frequency 

bands. Furthermore, the diel switch in ADI, AEve , Bio and H indices values was more gradual in the 

wet season, implying a less abrupt transition to nocturnal dominance of a reduced range of 

frequencies. Storm geophony likely underpinned this reduced diel shift, as storm events are less 

temporally restricted than biophony. 

 While temporal influences drove overall patterns, the RF implied consistent finer-scale 

differences among habitat soundscapes. Mean ACI and standard deviation were the most important 

variables for distinguishing among habitats, matching previous findings of habitat-specific patterns in 

ACI values (Fuller et al 2015; Pieretti et al 2015). The influence of geophony on ACI values likely 

permitted effective discrimination between open habitats (scrub and pasture), and those habitats 

with trees. The low vegetation characteristic of pasture and scrub make these habitats exposed to 

wind and the associated sound. Conversely, rainstorms in forested habitats have a much greater 

influence on the soundscape, as water continues to drip from vegetation long after the rain has 

ceased.  

We did not include urban sites in this study, and distinct patterns in acoustic indices have 

been found in urban habitats (Fairbrass et al 2017; Joo et al 2011). It would be interesting to 

ascertain how an acoustically rich anthrophony is reflected in acoustic indices values and whether 

urban sites might exhibit the same patterns in variance reduction and the effects of temporal 

subsampling reported here. Although our seven indices describe a range of soundscape features 

they are only a fraction of those available; other less commonly used indices may well contain 

additional important information. Further testing would be required to determine whether variance 
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reduction in other acoustic indices follows similar patterns to those we report for the seven in this 

study. 

 

Recommendations for acoustic monitoring 

Recent reviews have highlighted the critical need for standardised protocols in ecoacoustic 

data collection and processing (Gibb et al 2018; Priyadarshani et al. 2018). We provide the following 

workflow to guide future ecoacoustic studies; 

1. Collect 120 hours of audio recordings per site. This balances deployment length and capture of 

soundscape variability, although the time required to improve precision might vary in other biomes 

or ecosystems. Repeated short deployments during distinct seasons may be as suitable as a single 

long deployment.  

2. Avoid temporal sub-sampling. Recording on a schedule only delays the capture of soundscape 

variability; sparse sampling schedules will require longer deployment times. 

3. Use multiple indices to describe soundscape patterns. No single acoustic index can describe the 

entire soundscape; capturing inter-habitat differences requires multiple indices, as there are often 

competing explanations for a particular index value. For example, low Bio values could indicate 

either an impoverished soundscape with little noise or an acoustically rich environment; if the 

soundscape also has low H and high AEve values it would support the latter interpretation. The 

seven indices used in this study will not necessarily suit all situations and systems, and identifying 

the most appropriate indices to use will depend on study aims. Using a suite of indices will offer 

complimentary impressions of different aspects of the soundscape. Selection should be based on a 

solid understanding of the soundscape patterns underlying index values, and hence the ecological 

patterns they may reflect. 
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4. Use mean values and standard deviations rather than raw values. This draws out patterns that 

might otherwise be obscured by short-term variability. The magnitude of variability provides 

additional information, and in many cases standard deviations of indices were more important than 

mean values for distinguishing among the habitats. 

5. Consider more than just a single portion of the day. Diel patterns are important for extracting 

differences between habitat types. Dry season values for Bio and NDSI were near uniform among 

habitats between 12:00 and 17:00, but differed widely outside these hours. Conversely, the greatest 

variation in ACI and AEve values was during afternoon. 

 

Traditional approaches to biodiversity assessment are time-consuming, expensive and often 

limited to a small geographic area. Automated recording and analysis of soundscapes can be 

conducted at far greater spatial and temporal scales, potentially at lower costs. Soundscape analysis 

has been used as a tool for rapid biodiversity assessment; acoustic indices have been linked with 

measures of bird species richness, compositional shifts in bird communities, and songbird phenology 

(Buxton et al. 2016; Fuller et al. 2015; Lellouch et al. 2014; Towsey et al. 2014a). Increased forest 

disturbance has been associated with lower acoustic diversity in Tanzania (Sueur et al. 2008b), and 

lower acoustic saturation in Papua New Guinea (Burivalova et al. 2017). Yet it is unclear whether 

such results are representative of more general relationships between soundscapes and habitat 

integrity (Burivalova et al. 2019; Gibb et al. 2018; Merchant et al. 2015). There are inconsistent 

patterns in the literature, which have led some to question the efficacy of acoustic indices for 

biodiversity monitoring (Browning et al. 2017; Eldridge et al. 2016; Servick 2014). We argue that 

variations in collection and processing methodologies probably underlie some of these uncertainties. 

Further research is needed to elucidate the complementarity of standard biodiversity monitoring 

methods and ecoacoustics, but a key aspect of integrating these approaches will be consistency in 

both data collection and analysis. 
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Figures 

Fig. 1. Map of the study region in central Republic of Panama showing the 117 sites where audio 

recordings were collected. 

 

Fig. 2. Reduction in variance of standard errors for seven acoustic indices, from a total of 154 

recordings sets. Curves for each index show predicted values from nonlinear regression models with 

a Weibull distribution +/- 1 standard deviation. 

 

Fig. 3. Effect of collecting audio recordings on a schedule. Reduction in variance of standard errors 

for six temporal recording schedules with increasing lengths of recording. Total dataset includes 

seven acoustic indices from 154 recording sets. Curves show predicted values from nonlinear 

regression models with a Weibull distribution +/- 1 standard deviation. 

 

Fig. 4.  Ordination plot showing the strong diel and seasonal divisions between soundscapes. 

Ordination was performed using non-metric multidimensional scaling (NMDS) with the Horn-

Morisita dissimilarity index (Horn 1966). Stress value 0.002. Each point represents the soundscape of 

a habitat during one hour. This soundscape is composed of the mean hourly values and standard 

deviations for each of the seven acoustic indices. Circles show dry season soundscapes, triangles wet 

season soundscapes. 

 

Fig. 5. Diel patterns in mean acoustic indices, with predicted values and standard errors from GAM 

output for each habitat. Solid line shows dry season values, dashed line wet season. Values 

calculated for each 10-minute recording window over 24 hours, from 154 recording sets.  
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Fig. 6. Variables ranked by importance for classifying habitat type in a random forest model, showing 

decline in predictive accuracy if a predictor is removed. Random forest constructed with the hourly 

mean and standard deviation values of seven acoustic indices, season (wet or dry), and diel phase 

(day or night). Internally estimated error rate was 20.8%, while testing with an independent dataset 

showed the classifier to be 84.7% accurate. 
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Tables 

Table 1. Summary of the indices used in this study, the general soundscape patterns they reflect, and 

examples from this study. Further information including how the indices are calculated is detailed in 

Table S2. 

Index and 

reference 

Soundscape patterns Patterns in this study 

Acoustic 

Complexity 

Index (ACI) 

 

(Pieretti et al. 

2011) 

Based on difference in amplitude between 

one time sample and the next within a 

frequency band, relative to the total 

amplitude within that band. 

Designed to quantify the inherent irregularity 

in biophony, while being relatively impervious 

to persistent sound of a constant intensity. 

High values indicate storms, intermittent 

rain drops falling from vegetation, 

stridulating insects, or high levels of bird 

activity.  

Lowest values came from recordings with 

consistent cicada noise that fills the whole 

spectrogram. 

Acoustic 

Diversity Index 

(ADI) 

 

(Villanueva-

Rivera et al. 

2011) 

Increases with greater evenness across 

frequency bands. An even signal (either noisy 

across all frequency bands or completely 

silent) will give a high value, while a pure tone 

(i.e. all energy in one frequency band) will be 

closer to 0. 

Highest values were from recordings with 

high levels of geophony or anthrophony 

(wind, helicopters or trucks) blanketing the 

spectrogram with noise, or from very quiet 

recordings with little variation among 

frequency bands. 

Lowest values reflect dominance by a 

narrow frequency band, usually by 

nocturnal insect noise. 

Acoustic 

Evenness 

(AEve) 

Higher values indicating greater unevenness 

among frequency bands, i.e. most of the 

sound intensity appears in a restricted range 

Reverse of ADI patterns. High values 

identify recordings with dominance by a 

narrow frequency band of insect noise. 
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(Villanueva-

Rivera et al. 

2011) 

of frequencies. 

Acoustically rich habitats may produce low 

values because there is little variation in 

intensity among frequency bands in saturated 

soundscapes. 

Low values are associated with windy 

recordings with many occupied frequency 

bands, or near silent recordings with no 

acoustic activity. 

Bioacoustic 

Index (Bio) 

(Boelman et al. 

2007) 

A function of both amplitude and number of 

occupied frequency bands between 2 – 11 

kHz. Value is relative to the quietest 1 kHz 

frequency band; higher values indicate 

greater disparity between loudest and 

quietest bands. 

Highest values produced by blanket cicada 

noise, with high amplitude and minimal 

variation among frequency bands. 

Low values arise when there is no sound 

between 2 and 11 kHz, although there is 

sometimes insect biophony outside these 

bounds. 

Acoustic 

entropy (H) 

 

(Sueur et al. 

2008b) 

Increases with greater evenness of amplitude 

among frequency bands and/or time steps. 

Returns a value between 1 (an even signal, 

either noisy across frequency bands or 

completely silent) and 0 (a pure tone with all 

energy in one frequency band). 

Highest values from near-silent recordings, 

with no wind, and only faint bird calls. 

Lowest values produced when insect noise 

dominated a single frequency band. 

Median of the 

amplitude 

envelope (M) 

 

(Depraetere et 

al. 2012) 

Reflects the amplitude of a recording. Louder 

recordings will give higher values, reflecting 

noisier soundscapes. 

Highest values associated with high levels 

of geophony, particularly storms.  

Low levels of M produced by very quiet 

recordings, little biophony or geophony. 

Normalised Relies on a theoretical frequency split High values reflect high levels of insect 
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Difference 

Soundscape 

Index (NDSI) 

 

(Kasten et al. 

2012) 

between anthrophony (1-2 kHz) and biophony 

(2-11 kHz). The ratio of the two components 

give values of -1 to +1, with +1 indicating no 

anthrophony in the soundscape. 

biophony, with minimal noise in the 1 – 2 

kHz range. 

Low values arise when insect biophony 

dominates the 1 – 2 kHz band. 
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