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Abstract—In this work we compare two models to calculate
the capacity of multihop wireless networks. The first model
utilizes the maximal independent sets of the conflict graph. The
problem in that model is formulated as a linear program. The
second model in our comparison utilizes the maximal cliques
of the conflict graph using integer programming. We see the
second model is much more efficient in calculating the capacity
for larger networks. We make no assumption on the interference
models and we only model it by assuming a conflict matrix.
First, we prove there is a periodic schedule for the flow, by using
that we formulate our integer programming model to attain
maximum capacity for the network. We consider one source of
data and one destination i.e. a single commodity network.

index terms - Maximal independent set, Maximal Clique, lin-
ear programming, binary programming, maximum throughput

I. INTRODUCTION

Wireless multihop networks are networks that have no
central entity to coordinate the communication between the
network nodes such as wifi networks. The nodes are free
to join and leave, and due to the limited wireless range
they communicate in a multihop manner, which means that
two far nodes may exchange data by forwarding the data
to intermediate nodes and the data moves from hop to hop
until reaching the destination without any central coordination.
There are many realizations for such networks with wide
range of applications. Such realizations include wireless mesh
networks, wireless sensor networks and ad hoc networks.
However, the models we deal with are for static wireless
multihop networks, i.e. the nodes are fixed without any motion
involved. Hence, they are more appropriate for mesh networks
and static sensor networks, unlike ad hoc networks which may
have moving nodes.

The capacity of multihop wireless network has been the
subject of intensive study by the research community. Indeed,
as it was shown by Jain et al [1] the general problem of finding
the capacity of such networks for a general interference model
characterized only by a conflict matrix is np-complete and
accordingly no conclusive solution to the problem is possible
unless P is equal to NP. Researchers have used information

theoretic approaches and linear, integer and mixed-integer
programming techniques to address the problem. In this work
we propose a maximal cliques binary programming model
which is far efficient than the independent sets linear program-
ming model. Our paper is organized as follows: Section I is
the introduction. Section II is the literature review shedding
light on some of the research carried out on the problem
of maximum capacity of multihop wireless network. Section
III is a summary of a maximal independent sets model to
calculate the capacity, namely Jain et al [1] model. In Section
IV we introduce our integer-programming model to calculate
the single-commodity exact capacity of multihop wireless
networks. A comparison between the maximal independent
sets model and the maximal cliques model is in Section V.
Finally, we give our conclusion in Section VI.

II. RELATED WORK

The capacity of multihop wireless networks is one of the
fundamental questions for such networks. An ultimate answer
of the question is not feasible unless P=NP because the prob-
lem is NP when interference is factor in the puzzle [1] . There
have been two approaches to attack the problem. The first
approach is information theoretic one, where bounds on the
capacity are derived. The second approach is flow models ap-
proach. We will summarize some results of the first approach
briefly as our main concern is the flow models approach. In
the information theoretic approach, usually assumptions about
the topology of the network, randomness and homogeneity of
the nodes are assumed and only bounds are derived; while
the flow models tend to make no restrictive assumptions apart
from the interference models used. The seminal work of Gupta
et. al. [2] found that for a multihop wireless network of a
randomly placed identical nodes the throughput of each node
is Θ( 1√

nlogn
) assuming a random communication pattern. If

an optimal communication pattern is used then each node
throughput is Θ( 1√

n
). They used two interference models:

protocol interference model which is a binary model such that
the nodes are either interfering or not based on nodes locations,
and a signal-to-noise interference model which they called
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physical model. In this work we assume no restriction on the
interference model, but only modeled by a conflict graph to
be explained in Section III. The capacity as derived by Gupta
et. al. is pessimistic and hence subsequent works searched
for alternatives for better bounds. By using percolation theory
and assuming pairwise coding and decoding at each hop, and
a time-division multiple-access (TDMA) scheme a capacity
of Θ( 1√

n
) was able to be obtained even under random nodes

locations assumption [3]. To optimize the bound some authors
assumed using directional antennas, such as the work of Yi et.
al. [4] and Peraki et. al. [5]. Our work can be generalized for
such scenarios by changing the conflict graph since our models
are general for any interference models. A gain in the capacity
is also possible by using multi-packet reception (MPR) as
proved in [6]. However, in the models we compare, we made
no such assumption, in spite of there are some flow models
for the capacity studied the MPR scenario [7]. Some authors
studied the effect of topology on the network capacity such
as [8]. We are studying mainly lattice topologies and random
topologies. The impact of traffic pattern was also a subject of
studies by considering multicast and broadcast traffic and not
only a unicast [9] [10] [11] [12]. we deal only with a unicast
traffic, but extensions are possible for other kinds of traffic.
A good survey paper of the information theoretic approach
in calculating bounds on the capacity of multihop wireless
networks is that by Ning Lu et. al. [13].

The other methods that were used to study the capacity
are flow models. The first flow model that sparked off a
whole research direction using these techniques to calculate
the capacity of multihop wireless networks is that of Jain et.
al. [1].We will summarize that model in Section III and we will
use it as our base model for maximal independent sets models
that calculate the capacity after listing maximal independent
sets of the conflict graph. Although the authors discussed
two interference models, i.e. the protocol interference model
and the physical interference model, similar to those in [2],
their model is quiet general to any interference model since
it is modeled by the adjacency matrix of a conflict graph.
Kumar et. al. [14] studied the problem of maximum capacity
under different constraints, namely fairness and energy con-
sumptions. However, their model is based on the geometric
properties of three interference models, one of which is the
protocol model. Their model is not applicable to the general
case of interference characterized by a general conflict matrix.
In [15] the authors suggested an algorithm that provides 68%
of the optimal throughput in worst scenarios and up to 80%
practically. However, their interference model is very limited
by considering nodes that can transmit to and receive from
one node at a time. They also suggested an extension to
a limited version of IEEE 802.11 like interference protocol
without specifying how close their found throughput to the
optimal value. Here, we are interested in exact throughputs or
network capacity. Some authors studied directional antennas
and reconfigurable antennas such as [16]. Although we don’t
refer to that, we assume a general conflict graph which can
accommodate for such scenarios. Moreover, the maximum

throughput problem was studied under physical interference
model as in [17].

III. MAXIMAL INDEPENDENT SETS MODELS FOR
CAPACITY CALCULATION

We assume we have a network modeled by a graph of N
vertices and L links, G(N,L). The vertices represent the nodes
and the links represent the communication channels between
the nodes. Interference is modeled by a conflict graph H where
each vertex in the graph corresponds to a link in the network
graph, two vertices in the conflict graph are connected if the
links in the network graph are interfering, i.e. cannot be active
at the same time. See Fig. 1 which shows a 5 node network
with the interference zones. Link12 is in the same interference
zone of Link13 and Link24 is in the same interference zone
of Link45 hence we see them connected by an edge in the
conflict graph in Fig. 1-b. By assuming there is one flow from
node ns to node nd, the maximum flow problem is given by:

max
∑
lsi∈L

fsi (1)

Subject to: ∑
lij∈L

fij =
∑
lji∈L

fji ni ∈ N\{ns, nd} (2)

∑
lis∈L

fis = 0 (3)

∑
ldi∈L

fdi = 0 (4)

fij ≤ Cij ∀i, j|lij ∈ L (5)

fij ≥ 0 ∀i, j|lij ∈ L (6)

K′∑
i=1

λi ≤ 1
(because only one maximal independent
set can be active at a time)

(7)

fij ≤
∑
lij∈Ii

λi.Cij

(because the fraction of time for which
a link may be active is constrained by
the sum of activity periods of the
independent sets it is a member of)

(8)
where λi ≥ 0 is the time allocated to maximal independent

set Ii, K
′

is the total number of maximal independent sets and
Cij is the capacity of link ij.The objective, Equation 1, is to
maximize the outward flow from the source node ns. Equation
2 is the flow conservation condition which means the inward
flow equals to the outward flow for all nodes except the source
or destination. The third Equation 3 states that the inward flow
at the source node is zero; and similarly Equation 4 states that
the outward flow from the destination node is zero. Equation
5 is a restriction on each link flow to be less than the link
capacity, and Equation 6 obviously states each flow is either



Fig. 1: Conflict graph.(a) A 5 node network with their inter-
ference zones, and (b) the conflict graph of the network.

positive or zero. This is a single commodity formulation since
we have a single source - destination flow. Equations 7 and
8 are constraints due to interference. Please refer to [1] for
details.

IV. MAXIMAL CLIQUE MODELS FOR CAPACITY
CALCULATION

This section states our integer programming model to cal-
culate the capacity of wireless multihop networks. We firstly
state some opening definitions and prove there is a periodic
schedule that attains the maximum capacity for the network
which is crucial for our model correctness.

A. Preliminary Definitions

As before, we assume a wireless multihop network of N
nodes and L links. The links are interfering according to
any interference model, which is modeled by a conflict graph
characterized by a conflict matrix (graph adjacency matrix). C
is a column vector of links capacities. The network is a single
commodity network with one source ns and one destination
nd.

a) A feasible schedule of a link: : it is a set of successive
time periods such that in each time period the link is either
active (transmitting data) or idle (not transmitting data). How-
ever when the link is active in a period, all other interfering
links are idle.

b) A feasible schedule of the network: : it is a schedule
where all links schedule are feasible on the same time scale
and the flow conversation rules are satisfied.

c) Maximum flow of the network: : it is the maximum
flow from ns to nd such that the network schedule is feasible.
See Fig. 2 for illustration of theses definitions.

Fig. 2: Link 1 is interfering with link 2, but link 2 is not
interfering link 3.(a) A feasible schedule of 5 periods, and
(b)infeasible schedule.

d) Flow of a link: Let
∑t

0 x
i is the sum of successful

active time on link i in the period [0, t] when schedule x is
used, flow of link i (fi) is defined as:fi = limt→+∞

∑t
0 xi

t .
e) Feasible flow vector of the network: is an assignment

of flows (fi), i = 1, 2, .., l where the schedule of the network
is feasible.

B. Proof of the Existence of a Periodic Schedule

We prove here that there is always a periodic schedule that
attains a maximum flow for the network from node ns to node
nd.

a) lemma 1: Let gi =
∑t2

t1
xi

t2−t1 be the average of the sum
of active periods on link i in the period t1 to t2 when feasible
schedule x is used, and let (f∗i ) be the maximum flow of the
link i, i = 1, 2, ..., l when the network flow is maximum, then
gi is less than or equal to (f∗i ) for any feasible schedule x
and link i = 1, 2, ..., l.

b) proof: Let f∗i = limt→+∞

∑t
0 xi

t be the maximum
link i flow when the network flow is maximum.

Now if gi > f∗i then divide the time line into slots of
size t2 − t1 and use schedule x in each of these slots, we
have fi = limt→+∞

∑t
0 xi

t = limn→+∞

∑n
i=1 gi(t2−t1)
n(t2−t1) =

limn→+∞
ngi(t2−t1)
n(t2−t1) = gi. If gi > f∗i , we have a flow greater

than f∗i , which is clearly a contradiction since f∗i is the
maximum attainable flow. Accordingly gi ≤ f∗i .



Fig. 3: A schedule that attains maximum flow for two nodes
network.(a) The network, (b) The conflict graph, (c) schedule
with period equal 10 time units, and (d) the period in c
shrunken by factor of 2.

c) Theorem: There is always a periodic schedule to
maximize the network flow in single commodity or multicom-
modity wireless multihop networks.

d) proof: Let f∗i = limt→+∞

∑t
0 xi

t be the maximum
feasible flow for link i = 1, 2, ..., l. Now divide the time
line into slots of size T , i.e. [0, T ], [T, 2T ], [2T, 3T ] ,...etc

we have f∗i = limn→∞

∑n
j=1

∑jT
j−1 xi

nT . Now if the schedule

is periodic in T that is all what we need and f∗i =
∑T

0 xi

T .
In case it is not periodic then based on the Lemma 1, we
have the average flow in every T equals or less than f∗i .
Hence either

∑T
0 x

i =
∑2T

T xi =
∑3T

2T x
i = ... = f∗i T then

replace the schedule of [T, 2T ], [2T, 3T ], ... by the schedule of
[0, T ] and by that we have a periodic schedule; or if we have∑T

0 x
i,
∑2T

T xi,
∑3T

2T x
i all or some less than f∗i T then we

have
∑n

j=1

∑jT
j−1 x

i < nTf∗i dividing by nT and taking the
limit as n tends to infinity we have f∗i < f∗i which is clearly
a contradiction. Accordingly, the schedule is periodic.

e) A remark on the period T: It is clear T can be arbitrary
as can be seen from the pervious proof. For example if we
take T = 10 time units, we can extend the time scale by 2 or
shrink by 0.5 and the schedule used is extended or shrunken
proportionally. See Fig. 3 for an example.

C. Integer Programming Model

Taking the period equals to 1, we can easily have maximum
network flow is given by the solution of the following integer

programming problem given that the period is divided into n
equal slots and after dividing the solution by n and taking n
tends to infinity.

max
∑

lnsi∈L

n∑
r=1

Cnsiθ
r
nsi (9)

∑
lij∈L

n∑
r=1

Cijθ
r
ij =

∑
lji∈L

n∑
r=1

Cjiθ
r
ji (10)

∑
lins∈L

n∑
r=1

Cins
θrins

= 0 (11)

∑
ndi∈L

n∑
r=1

Cndiθ
r
ndi

= 0 (12)

and at each maximal clique q∑
lij∈q

θrij ≤ 1 r = 1, 2, ..., n (13)

θrij ∈ 0, 1 (14)

where θrij is the time allocated in slot r for link ij, r =
1, 2, 3, ...n. The first equation is maximizing the outward flow
from source node ns and equations 10, 11 and 12 are the flow
conversation equations and equation 13 is a restriction on θ
variables, allocated time, in order to have a feasible schedule
free of conflicts. We illustrate that by a sample network of five
links as shown in the Fig. 4. It is true we need large value
of the slots number to confirm converging to the maximum
flow of the network, but we can try smaller number of the
slots starting by 1, 2, 3, 4, ...etc until we hit the period of
the network as we will see for many networks. This will be
clear when we discuss the results in section V, and when
we apply the algorithm in Procedure I to the network in
Fig. 4 at end of this section. Indeed the calculated capacity
for whatever number of slots, by Lemma 1, is less than the
calculated capacity, when the number of slots is the period of
the schedule. Additionally when we use double the period we
have again the maximum attained flow. Hence we have the
algorithm in procedure 1.

In table I we see the obtained throughput for different values
of slots when we use our integer programming model, for n=1
to 10, It can be seen that the throughput is less than 0.4 in all
values of slots expect at n=5 and n=10. Hence it is concluded
the period is 5 and the maximum throughput is 0.4. To check
we took n large values, for example when n= 99 we found
throughput equal to 0.3939 which is close to 0.4. Indeed when
n tends to infinity we gets a throughput equals to 0.4. When
we took n=100, the obtained throughput is 0.4 since 100 is a
multiple of 5, i.e. we are repeating the period more than one
time.



Procedure 1 Integer programming algorithm to calculate
capacity

1: numberofslots : n← 1, 2, 3, 4, 5, 6, 7, ...
2: if calculated flow changes and reaches maximum at M

slots then
3: check flow at slots number 2M and less and more than

2M
4: if flow is maximum at 2M and less at number of slots

less and more 2M then
5: the period is M and maximum capacity is flow at M

or 2M
6: else
7: Keep trying for increasing value of number of slots
8: end if
9: end if

Fig. 4: Example Network. (a) The network topology,ns=1 and
nd = 6, (b) the conflict graph, and (c) a feasible schedule that
attain maximum flow of 10 slots, with θ variables shown for
some slots. The period is 5.

V. RESULTS

We run both the maximal independent sets model and the
maximal cliques models using MacBook Pro, late 2012, 2.5
GHz Intel Core 5 processor and 8 GB RAM. The networks
we run the modes on to calculate the capacity are lattice
networks with 802.11 MAC protocol, i.e. the interference at
the transmitter and the receiver of the packet and with one
source laying at the lower corner and the destination at the
upper right corner, See Fig. 5. Transmission range in all
networks (d) is 1 and interference range (R) is the same, with
a capacity of each link (C) equals to 1. In table II, m is the
length of the side so m = 32 means 1024 nodes, ISMT1,

TABLE I: Integer programming model throughput for different
number of slots n

n throughput

1 0
2 0
3 0.333
4 0.25
5 0.4
6 0.333
7 0.2857
8 0.3750
9 0.333
10 0.4
99 0.3939
100 0.4

ISMT2 and ISMT3 are the maximal independent sets listing
time , linear solver time and total time respectively. S, CMT1,
CMT2, CMT3 and T are the cliques model number of slots
used, cliques listing time, binary solver time, total time and
calculated throughput, respectively. All times are in minutes.
As can be seen from the table the independent sets model
can calculate the throughput when the number of nodes is
maximum 25, m = 5. It completely fails when we increase
the nodes for 49, 529 and 1024. This failure is due to the
excessive time needed to list independent sets as can be seen
when m = 7; after 22 hours of running the complete set
of independent sets is still not complete. The clique model
outperforms the independent set model due to the very short
time in listing cliques and the bottleneck is the binary solver
time; however, it is quite reasonable and when the solver takes
excessive time for a slot number you may try a different slot
number or tweak the binary solver. The solver we used is
cplex 12.7.1 for matlab. In table II we reported the time for
some values of m in an aggregated manner due to space such
as m = 3, but detailed for other values such as m = 7. The
periods found for m=3, 5, 7, 23 and 32 are 5, 6, 3, 3 and
3 respectively. Even when estimating the period is hard, the
calculated throughput is quite close to the exact value when S
is large such as S=100 for m = 23 in a fairly short time. Our
last example is a random network of 42 nods and 188 links (see
Fig. 6). The protocol used is 802.11 and hence interference is
at transmitter and receiver. It is deployed in an area of 5 X 5
meters and transmission and interference ranges are both 1m.
capacity is 1 for each link. The source is the node at the lower
left corner and the destination at the upper right corner. After
running the maximal independent sets model for two hours
we don’t see a convergence to all maximal independent sets
and hence we couldn’t calculate the exact capacity. The time
required is expected to be much more than 2 hours. With our
Clique model we found a period of 3 and were able to find
an exact throughput of 0.3333 in 0.0626 minutes using slots
from 1 to 6 and a throughput of 0.33 in 0.0573 minutes using
100 slots.
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Fig. 5: Lattice networks of 9 nodes , m=3

TABLE II: lattice networks of different sizes, d=1,R=1, C=1

m ISMT1 ISMT2 ISMT3 S CMT1 CMT2 CMT3 T

3 0.0015 6.6887e-4 0.0024 1-8 6.796e-4 0.0103 0.0772 0.5
5 6.5969 0.0071 6.7217 1-12 0.0054 0.239 0.2462 0.6667
7 22*60 - - 1 0.0201 0.005 0.0253 0
- - - - 2 0.0148 0.0014 0.0162 0
- - - - 3 0.0151 0.0025 0.0177 0.6667
- - - - 4 0.0147 0.034 0.0183 0.5
- - - - 5 0.0183 0.0109 0.0257 0.4
- - - - 6 0.0141 0.0059 0.0201 0.6667

total 0.1233 0.6667

100 0.1168 0.1374 0.6600
23 - - - 1-6 0.7834 85.082 88.9233 0.6667
- - - - 100 4.5041 5.452 0.66
32 - - - 1 4.336 0.0108 4.3473 0
- - - – 2 4.0076 0.04 4.055 0
- - - – 4 4.0097 0.2587 4.2806 0.5
- - - – 6 4.1316 0.3451 4.5193 0.6667
- - - – 12 4.2209 0.707 4.9927 0.6667

total 22.195 0.6667

- - - – 105 4.1301 9.3944 13.8378 0.6667

Fig. 6: random network of 42 nodes and 188 links

VI. CONCLUSION AND FUTURE WORK

We compared two models to calculate the maximum single
commodity throughput in multihop wireless networks. The
maximal independent sets model gives exact throughput but
only for very small networks due to the excessive time required
to list maximal independent sets; while the maximal cliques
model calculates the exact throughput for far larger networks
due to smaller time in listing maximal cliques. By taking a
large number of slots, the maximal cliques model gives results
very close to the exact value. We are planning to estimate the
difference from the exact value for a large number of slots, by
considering the the estimated values of throughput for small
values of slots when the period cannot be guessed.
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