
Kent Academic Repository
Full text document (pdf)

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version.
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Gariano, Isaac Oscar and Roberts, Richard and Marr, Stefan and Homer, Michael and Noble,
James (2019) Which of My Transient Type Checks Are Not (Almost) Free? In: 11th ACM
SIGPLAN International Workshop on Virtual Machines and Intermediate Languages, 22 Oct
2019, Athens, Greece.

DOI

https://doi.org/10.1145/3358504.3361232

Link to record in KAR

https://kar.kent.ac.uk/77492/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/231836176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Which of My Transient Type Checks Are Not (Almost)
Free?

Isaac Oscar Gariano
Engineering and Computer Science
Victoria University of Wellington

New Zealand
Isaac@ecs.vuw.ac.nz

Richard Roberts
Computational Media Innovation

Centre
Victoria University of Wellington

New Zealand
rykardo.r@gmail.com

Stefan Marr
School of Computing
University of Kent
United Kingdom
s.marr@kent.ac.uk

Michael Homer
Engineering and Computer Science
Victoria University of Wellington

New Zealand
mwh@ecs.vuw.ac.nz

James Noble
Engineering and Computer Science
Victoria University of Wellington

New Zealand
kjx@ecs.vuw.ac.nz

Abstract
One form of type checking used in gradually typed lan-
guage is transient type checking: whenever an object ‘flows’
through code with a type annotation, the object is dynami-
cally checked to ensure it has the methods required by the
annotation. Just-in-time compilation and optimisation in
virtual machines can eliminate much of the overhead of run-
time transient type checks. Unfortunately this optimisation
is not uniform: some type checks will significantly decrease,
or even increase, a program’s performance.
In this paper, we refine the so called “Takikawa” proto-

col, and use it to identify which type annotations have the
greatest effects on performance. In particular, we show how
graphing the performance of such benchmarks when vary-
ing which type annotations are present in the source code
can be used to discern potential patterns in performance.
We demonstrate our approach by testing the Moth virtual
machine: for many of the benchmarks where Moth’s tran-
sient type checking impacts performance, we have been able
to identify one or two specific type annotations that are
the likely cause. Without these type annotations, the perfor-
mance impact of transient type checking becomes negligible.

Using our technique programmers can optimise programs
by removing expensive type checks, and VM engineers can
identify new opportunities for compiler optimisation.

VMIL ’19, October 22, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of the 11th ACM SIGPLAN International Workshop on Virtual
Machines and Intermediate Languages (VMIL ’19), October 22, 2019, Athens,
Greece, https://doi.org/10.1145/3358504.3361232.

CCS Concepts • Software and its engineering → Soft-
ware performance; Object oriented languages; Just-in-time
compilers.

Keywords dynamic type checking, gradual types, optional
types, Grace, performance evaluation, benchmarking, object-
oriented programming

ACM Reference Format:
Isaac Oscar Gariano, Richard Roberts, Stefan Marr, Michael Homer,
and James Noble. 2019. Which of My Transient Type Checks Are
Not (Almost) Free?. In Proceedings of the 11th ACM SIGPLAN Inter-
national Workshop on Virtual Machines and Intermediate Languages
(VMIL ’19), October 22, 2019, Athens, Greece. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3358504.3361232

1 Introduction
Gradual typing aims to add static type annotations to dy-
namic languages, increasing their safety while maintaining
flexibility [8, 31, 33], and/or, permitting dynamic type anno-
tations within static languages, increasing flexibility whilst
maintaining some safety [1].
There is a vast spectrum of different approaches to grad-

ual typing [10, 14]. Here we measure the performance of
“transient” or “type-tag” checks (as in Reticulated Python),
which offer first-order semantics: they check that an object’s
type constructor or names of supported methods match any
static types that the object flows through, but not the return
types or argument types of those methods [7, 15, 28, 32, 37].
Unfortunately most gradual systems with run-time se-

mantics, as opposed to type erasure as in TypeScript, impose
significant run-time performance overheads. This has lead
to a significant body of research to develop techniques to
optimise gradual typing [3, 15, 25, 27, 39].
This has also lead to a technique to evaluate the perfor-

mance of gradual typing, the “Takikawa” protocol [16, 36, 38].
The Takikawa protocol was created to measure the run-time
cost of gradual typing by testing various configurations of

https://doi.org/10.1145/3358504.3361232
https://doi.org/10.1145/3358504.3361232

VMIL ’19, October 22, 2019, Athens, Greece Isaac Oscar Gariano, Richard Roberts, Stefan Marr, Michael Homer, and James Noble

typed and untyped code. This approach was designed to
characterise how the amount of typed and untyped code in-
fluences performance. In particular, Takikawa protocol evalu-
ations often show that simply adding more type annotations
does not always produce a uniform effect on performance.
Here we adapt their approach in order to identify individual
type annotations that may be responsible for performance
effects.
This paper builds upon our recent work on optimising

transient type checks [29, 30] to make the following contri-
butions:

• an approach to identifying individual gradual type
annotations that cause significant performance effects

• an observation that the overhead of Moth’s transient
type checking on small benchmarks (with 10–250 type
annotations) is usually caused by only one or two type
annotations

The next section discusses dynamic type checks and grad-
ual typing in Moth (an implementation of the Grace lan-
guage), then section 3 describes our benchmarking protocol.
Section 4 then presents the overall results of our benchmarks,
while section 5 looks at the results of benchmarking individ-
ual type checks. Section 6 presents some additional related
work, and finally 7 summarises our results, and briefly con-
siders threats to validity.

2 Background
Our work is based on the Moth virtual machine [29, 30], an
implementation of the Grace programming language [5, 9].
Moth is based on the Graal and Truffle toolchain [41, 42],
and developed from a Newspeak implementation based on
the Simple Object Machine [12, 23].

2.1 Grace and Transient Type Checking
Grace is an object-oriented, imperative, educational program-
ming language, with a focus on introductory programming
courses, but also intended for more advanced study and re-
search [5, 9]. While Grace’s syntax draws from the so-called
“curly bracket” traditions of C, Java, and JavaScript, the struc-
ture of the language is in many ways closer to Smalltalk: all
computation is done via dynamically dispatched “method re-
quests” where the object receiving the request decides what
code to run, control structures are built out of lambda ex-
pressions support “non-local” returns, i.e. they can return to
the point where execution first encountered the lambda [13].
In other ways, Grace is closer to JavaScript than Smalltalk:
Grace objects are created from object literals, rather than by
instantiating classes [6, 20] and objects and classes can be
deeply nested within each other [21].

Grace’s Typing In Grace, all declarations can be annotated
with types. As Grace is designed to support a variety of teach-
ing methods, implementation of Grace are free to check such
type annotations statically, dynamically, or not at all. The

type system of Grace is intrinsically gradual: type annota-
tions should not affect the semantics of a correct program
[33]. The type system includes a distinguished “Unknown”
type which matches any other type; this unknown type is
the default when type annotations are omitted.

Static typing for the core of Grace’s type system has been
described elsewhere [19]; here we explain how these types
can be understood dynamically, from the Grace program-
mer’s point of view. Grace’s types are structural [5], that is,
an object conforms to a type whenever it conforms to the
”structural“ requirements of a type, rather than requiring
classes or objects to explicitly declare their intended type.

In Grace, types specify a set of method signatures that an
object must provide. A type expresses the requests an object
can respond to, for example whether a particular accessor is
available, rather than a location in a class hierarchy.

Moth’s Transient TypeChecking Moth’s implementation
of transient type checks are only only first-order. Moth only
checks dynamically that an object has methods of the same
name and arity as are required by a type: any argument and
return types of such methods are not checked.

In particular, Moth performs the following type checks at
run time:

• when amethod is requested, arguments that are passed
are checked against the corresponding parameter type
annotations of the called method, this is done before
the body of the method is executed;

• when the body of a method has finished executing,
but before it returns to its caller, the method’s return
value is checked against the return type annotation of
the called method;

• whenever a variable is read or written to, its value
is checked against the type specified by the variables
declaration.

To see how this works in practice, consider this piece of
Grace code:

1 def o = object {

2 method three -> Number {3}

3 }

4 type ThreeString = interface {

5 three -> String

6 }

7 def t : ThreeString = o

8 printNumber (t.three)

Moth will perform dynamic type checks:

• on line 7, when the o object initialises the variable t,
Moth checks that o has a 0-argument method called
three;

• on line 8, when the value of t is read, Moth checks
that its value (o) still has a three method;

Which of My Transient Type Checks Are Not (Almost) Free? VMIL ’19, October 22, 2019, Athens, Greece

• on line 2, when the method requested by “t.three”
returns, Moth checks that returned value conforms
to the Number type; and (presumably) within the def-
inition of printNumber(n : Number) (not shown),
Moth will again check that the value is a Number.

Note that we never check whether the result of request-
ing “t.three” is actually a String (as one may expect from
line 5) because Moth only performs first-order type checks
(it checks whether objects have conforming methods) not
higher-order checks (whether the argument and result types
of methods’ conform). In addition, Moth only checks when
values flow through explicit type annotations. This is why
the type declared in lines 4-6 is checked only on line 7
(where it is mentioned explicitly); and the check only re-
quires the presence of a method called three, regardless of
the method’s declared return type.

Moth’s Optimisation We are developing Moth as a re-
search platform [30]. Like other VMs based on the Truffle
and Graal toolchain, Moth is a self-optimising AST inter-
preter [43]. The key idea is that an AST rewrites itself based
on a program’s run time values to reflect the minimal set
of operations needed to execute the program correctly. The
rewritten AST is then compiled into efficient machine code.
This rewriting often depends on the dynamic types of the
objects involved. In the simplest case, a “self” call (when
one method on an object requests a second method on the
exact same object) will always result in executing the exact
same method. Thus the called method can be inlined into
the callee, avoiding overhead of a machine-level subroutine
invocation and an object-oriented dynamic dispatch.
Moth relies on a number of standard techniques for opti-

mising object-oriented programs. “Shapes” [40] capture in-
formation about objects’ structures and (run time) field types,
allowing a just-in-time compiler to represent objects in mem-
ory similarly to C structs and, consequently, can generate
highly efficient code. “Polymorphic inline caches” [17] use
object shapes to cache the results of method lookups, avoid-
ing expensive class hierarchy searches or indirect jumps
through virtual method tables. Since Moth is built on the
Truffle framework, Graal comes with additional support for
partial evaluation, which enables efficient native code gener-
ation for Truffle interpreters [41].

3 Experimental Methodology
Our goal is to identify which type annotations in Grace pro-
grams cause performance effects. To this end, we built upon
the so-called “Takikawa” or “Takikawa-Greenman” evalu-
ation protocol [16, 36]. It uses 2N configurations of each
benchmark. A configuration is a particular mix of static and
dynamically typed code, forming a lattice of configurations.
We only test a relatively small sample of this lattice, which is
in our experience sufficient to pinpoint performance anom-
alies caused by type annotations.

3.1 The Takikawa Protocol
The Takikawa evaluation protocol was originally proposed
for Typed Racket, where static vs dynamic typing is set
per-module, so N is the number of modules. The original
Takikawa protocol also suggested a sampling strategy, where
10N configurations are randomly chosen from the lattice,
however the lattice is a binomial distribution, meaning the
majority of chosen benchmarks will have around N /2 type
annotations.
Grace allows programmers to choose whether each in-

dividual declaration should be type-checked, and thus fol-
lows languages such as Reticulated Python [34, 37, 39]. This
means in Grace N is the number of type annotations in the
program, so it is infeasible to check an entire lattice, even
for a moderately sized benchmark. Vitousek et al. therefore
modified the Takikawa protocol for these kinds of languages
by using a different form of sampling [38]. The Takikawa-
Vitousek protocol divides the number of type annotations
in a fully-typed program into a maximum of 100 intervals,
and then randomly generates ten programs within each in-
terval by erasing type annotations. However, this approach
was designed for benchmarks with large numbers of type
annotations, as well as for a larger sample size than our work.

Refined Takikawa Protocol. Unlike prior work, we wish
to identify which type annotations cause anomalies, and
thus we adapted the Takikawa protocol and took inspiration
from the Takikawa-Vitousek variant. For each benchmark,
we generated 100 partially typed versions, or fewer if the
benchmark has less than 11 types. We did an even split so
that for each i ≥ 1 and i < N , we generated roughly the same
number of configurations with i type annotations. We used
Robert Floyd’s sampling algorithm [4] to randomly choose
the type annotations each configuration contained, and we
ensured that no duplicate configurations were generated. In
addition to these, we tested fully untyped and typed versions,
for a total of 102 configurations per benchmark (or 97 in the
case of our Storage benchmark, since it only has 10 type
annotations).

3.2 The Benchmarks
For this work, we rely on the benchmark suite compiled for
previous work [30]. It is a collection of 21 benchmarks in
total, derived from the AreWe Fast Yet benchmark suite [24]
and other benchmarks from the gradual-typing literature.
We added type annotations to every benchmark, aiming

to use the most appropriate (i.e. most specific) annotation
for each declaration.
In our previous work, we [30] we determined that the

overhead of type checking on Moth is on average of 5% (min.
-13%, max. 79%). This compares the peak performance of
Moth with all checks disabled against an execution that has
all checks enabled.

VMIL ’19, October 22, 2019, Athens, Greece Isaac Oscar Gariano, Richard Roberts, Stefan Marr, Michael Homer, and James Noble

3.3 Experimental Set Up
To account for the complex warmup behaviour of modern
systems [2] as well as the non-determinism caused by e.g.
garbage collection and cache effects, we ran each bench-
mark for 1000 iterations in the same invocation of Moth,
and discard the first 350 iterations to ignore warmup JIT
compilation. Our previous work identified this as a suitable
cut off [30].
Though outliers remain visible in the plots for each indi-

vidual benchmark, the largest 95% confidence interval we
obtained (over the mean time after warmup) for any of ex-
periments was ±8.3% (for the PyStone benchmark).
All our experiments used the same machine, Graal, and

Moth as previously; the machine has two Intel Xeon E5-2620
v3 2.40GHz, with 6 cores each, for a total of 24 hyperthreads.
The machine was running Ubuntu Linux 16.04.6, with Kernel
4.4, and we used ReBench 1.0 [22] and Java 1.8.0_191 Graal
0.43. Benchmarks were executed one by one to avoid inter-
ference between them. The analysis of the results and plots
where generated using Python 3.7.3 and PGFPLOTS 1.16. To
enable reproductions, the scripts we used to generate and
run our experiments, including the source code for all the
configurations tested, are available online.1
In our previous work [30], we also compared the per-

formance of untyped code on Moth against state-of-the-art
VMs: Java, Node.js using the V8 JavaScript VM, and the Higgs
JavaScript VM. Java was the fastest of these, and on average
V8 was about 1.8x slower than Java, Moth was 2.3x slower,
and Higgs was 10.4x slower. We believe this makes Moth
suitable for assessing the impact of type checking, because
Moth’s performance is close enough to state-of-the-art VMs,
which should make it harder to hide type checking overheads
in a slow baseline.

4 Performance of Benchmark
Configurations

Before we start to investigate specific type annotations, we
present the performance measurements of our sample of the
typing lattice configurations in figure 1. These results are
the foundation for a more detailed analysis.

Following [38], the points on each graph in figure 1 show
the average execution of each individual configuration. The
x-axis represents the proportion of type annotations for each
configuration, with the left- and right-most points showing
the times for the fully untyped and typed configurations
respectively. The execution time in milliseconds is shown
on the left y-axes, and time relative to the fully untyped
configuration is shown on the right y-axes.

Most of the graphs are essentially horizontal lines, indicat-
ing that the overhead of including type annotations is negli-
gible. The plots for CD and Richards show a roughly linear

1https://gitlab.ecs.vuw.ac.nz/isaac/Moth-Takikawa

increase, i.e. for these two benchmarks, adding type annota-
tions reduces performance linearly. On the other hand, the
plots for Go, Permute, DeltaBlue, and Storage show decreases:
i.e. adding more type annotations improves performance of
these benchmarks.
By inspecting the scatterplots, we observe that the per-

formance of Moth in almost any configuration of a bench-
mark is bounded by the performance in the untyped and
fully-typed configuration. That is, for these benchmarks on
transient type checks, measuring just the untyped and fully-
typed configurations would provide excellent estimates of a
benchmark’s performance bounds. This is different to the ex-
perience of other kinds of gradual typing, where the best, and
most importantly worst, configurations are not always those
fully typed or fully untyped [16]. However, the Richards
benchmark does have sections outside these bounds, and
isolated executions of a couple of others (Fannkuch and
DeltaBlue) are also outliers. We believe that the 0% and 100%
bounds are nonetheless a reasonable heuristic estimator in
most cases, and we will examine the outlying benchmarks
further.
Of particular note is that some of the graphs (Permute,

Storage, Towers, and Richards) show bimodal performance
profiles, that is, two separate roughly-horizontal lines. Pre-
sumably Moth can remove all the overhead from some con-
figurations, but in others there must be one or more type
checks that could not be optimised away. List shows three
performance modes: the graph consists of three mostly flat
lines, at about 1 times slower, 1.5 times slower, and 1.8 times
slower than untyped code.

5 Identifying Type Annotations With
Signification Performance Impact

We hypothesise that the previously identified bi/tri-modal
performance behaviour as seen in the graphs for Permute and
others (cf. figure 1) are caused by only a few type annotations:
i.e. there are a very few annotations that determine each
benchmark’s performance.
To verify this hypothesis for each type annotation we

measured one additional configuration, with only that single
type annotation present.We did this to compare the overhead
of each type annotation in isolation against the no-typecheck
baseline.

Figure 2 shows the results of these experiments. It shows
a pair of graphs for a selection of ten benchmarks: it’s associ-
ated typing lattice scatter plot and a column graph showing
the results of these single type annotation experiments.
The column graphs, to the right of the corresponding

scatter plot, show the execution time of configurations with
only a single type annotation, the x-axis indicates the index
of this annotation, thus the first column represents the first
annotation, and the last column represents the last one (in

https://gitlab.ecs.vuw.ac.nz/isaac/Moth-Takikawa

Which of My Transient Type Checks Are Not (Almost) Free? VMIL ’19, October 22, 2019, Athens, Greece

0% 20% 40% 60% 80% 100%
0
20
40
60
80
100

Av
er
ag
e
Ti
m
e
(m

s)

Bounce (22 Type Annotations)

0
0.2
0.4
0.6
0.8
1

0% 20% 40% 60% 80% 100%
0

100

200

300

CD (250 Type Annotations)

0
0.2
0.4
0.6
0.8
1
1.2

0% 20% 40% 60% 80% 100%
0

50

100

DeltaBlue (243 Type Annotations)

0
0.2
0.4
0.6
0.8
1
1.2

Re
la
tiv

e
to

0%
Ty

pe
d

0% 20% 40% 60% 80% 100%
0

200

400

600

Av
er
ag
e
Ti
m
e
(m

s)

Fannkuch (27 Type Annotations)

0
0.2
0.4
0.6
0.8
1
1.2

0% 20% 40% 60% 80% 100%
0
50
100
150
200

Float (30 Type Annotations)

0
0.2
0.4
0.6
0.8
1

0% 20% 40% 60% 80% 100%
0
50
100
150
200
250

Go (230 Type Annotations)

0
0.2
0.4
0.6
0.8
1

Re
la
tiv

e
to

0%
Ty

pe
d

0% 20% 40% 60% 80% 100%
0
20
40
60
80
100
120

Av
er
ag
e
Ti
m
e
(m

s)

GraphSearch (58 Type Annotations)

0
0.2
0.4
0.6
0.8
1

0% 20% 40% 60% 80% 100%
0

100
200
300
400
500

Havlak (210 Type Annotations)

0
0.2
0.4
0.6
0.8
1

0% 20% 40% 60% 80% 100%
0

50

100

150

Json (134 Type Annotations)

0
0.2
0.4
0.6
0.8
1

Re
la
tiv

e
to

0%
Ty

pe
d

0% 20% 40% 60% 80% 100%
0

100
200
300
400

Av
er
ag
e
Ti
m
e
(m

s)

List (23 Type Annotations)

0
0.5
1
1.5
2

0% 20% 40% 60% 80% 100%
0
20
40
60
80
100
120

Mandelbrot (23 Type Annotations)

0
0.2
0.4
0.6
0.8
1

0% 20% 40% 60% 80% 100%
0

50

100

150

NBody (65 Type Annotations)

0
0.2
0.4
0.6
0.8
1

Re
la
tiv

e
to

0%
Ty

pe
d

0% 20% 40% 60% 80% 100%
0

50

100

150

Av
er
ag
e
Ti
m
e
(m

s)

Permute (14 Type Annotations)

0
0.2
0.4
0.6
0.8
1
1.2

0% 20% 40% 60% 80% 100%
0

20

40

60

PyStone (85 Type Annotations)

0
0.2
0.4
0.6
0.8
1

0% 20% 40% 60% 80% 100%
0

50

100

150

Queens (22 Type Annotations)

0
0.2
0.4
0.6
0.8
1

Re
la
tiv

e
to

0%
Ty

pe
d

0% 20% 40% 60% 80% 100%
0

200

400

600

Av
er
ag
e
Ti
m
e
(m

s)

Richards (177 Type Annotations)

0

0.5

1

1.5

0% 20% 40% 60% 80% 100%
0

50

100

150

Sieve (13 Type Annotations)

0
0.2
0.4
0.6
0.8
1

0% 20% 40% 60% 80% 100%
0

50

100

150

Snake (70 Type Annotations)

0
0.2
0.4
0.6
0.8
1
1.2

Re
la
tiv

e
to

0%
Ty

pe
d

0% 20% 40% 60% 80% 100%
0
50
100
150
200
250

Proportion of Type Annotations

Av
er
ag
e
Ti
m
e
(m

s)

SpectralNorm (39 Type Annotations)

0
0.2
0.4
0.6
0.8
1

0% 20% 40% 60% 80% 100%
0
50
100
150
200
250

Proportion of Type Annotations

Storage (10 Type Annotations)

0
0.2
0.4
0.6
0.8
1

0% 20% 40% 60% 80% 100%
0
50
100
150
200
250

Proportion of Type Annotations

Towers (30 Type Annotations)

0
0.2
0.4
0.6
0.8
1
1.2

Re
la
tiv

e
to

0%
Ty

pe
d

Figure 1. Graphs of (at most) 102 configurations in the typing lattices for each benchmark. Time is measured as the mean of
the 351st to the 1,000th benchmark iteration under a single invocation of Moth (lower is better).

VMIL ’19, October 22, 2019, Athens, Greece Isaac Oscar Gariano, Richard Roberts, Stefan Marr, Michael Homer, and James Noble

0% 20% 40% 60% 80% 100%
0

50

100

150

Av
er
ag
e
Ti
m
e
(m

s)

Snake

0
0.2
0.4
0.6
0.8
1
1.2

10 20 30 40 50 60 70
0

50

100

150

(70 Type Annotations)

0
0.2
0.4
0.6
0.8
1
1.2

0% 20% 40% 60% 80% 100%
0

100

200

300

CD

0
0.2
0.4
0.6
0.8
1
1.2

40 80 120 160 200 240
0

100

200

300

(250 Type Annotations)

0
0.2
0.4
0.6
0.8
1
1.2

Re
la
tiv

e
to

U
nt
yp

ed

0% 20% 40% 60% 80% 100%
0
50
100
150
200
250

Av
er
ag
e
Ti
m
e
(m

s)

Towers

0
0.2
0.4
0.6
0.8
1
1.2

5 10 15 20 25 30
0
50
100
150
200
250

(30 Type Annotations)

0
0.2
0.4
0.6
0.8
1
1.2

0% 20% 40% 60% 80% 100%
0

50

100

150

Permute

0
0.2
0.4
0.6
0.8
1
1.2

5 10
0

50

100

150

(14 Type Annotations)

0
0.2
0.4
0.6
0.8
1
1.2

Re
la
tiv

e
to

U
nt
yp

ed

0% 20% 40% 60% 80% 100%
0

50

100

Av
er
ag
e
Ti
m
e
(m

s)

DeltaBlue

0
0.2
0.4
0.6
0.8
1
1.2

40 80 120 160 200 240
0

50

100

(243 Type Annotations)

0
0.2
0.4
0.6
0.8
1

0% 20% 40% 60% 80% 100%
0
50
100
150
200
250

Go

0
0.2
0.4
0.6
0.8
1

35 70 105 140 175 210
0
50
100
150
200
250

(230 Type Annotations)

0
0.2
0.4
0.6
0.8
1

Re
la
tiv

e
to

U
nt
yp

ed

0% 20% 40% 60% 80% 100%
0

100
200
300
400

Av
er
ag
e
Ti
m
e
(m

s)

List

0
0.5
1
1.5
2

5 10 15 20
0

100
200
300
400

(23 Type Annotations)

0
0.5
1
1.5
2

0% 20% 40% 60% 80% 100%
0

200

400

600

Richards

0

0.5

1

1.5

25 50 75 100 125 150 175
0

200

400

600

(177 Type Annotations)

0

0.5

1

1.5

Re
la
tiv

e
to

U
nt
yp

ed

0% 20% 40% 60% 80% 100%
0

50

100

150

200

Proportion of Type Annotations

Av
er
ag
e
Ti
m
e
(m

s)

Json

0
0.2
0.4
0.6
0.8
1
1.2

20 40 60 80 100 120
0

50

100

150

200

Type Annotation Index

(134 Type Annotations)

0
0.2
0.4
0.6
0.8
1
1.2

0% 20% 40% 60% 80% 100%
0

20

40

60

Proportion of Type Annotations

PyStone

0
0.2
0.4
0.6
0.8
1

10 20 30 40 50 60 70 80
0

20

40

60

Type Annotation Index

(85 Type Annotations)

0
0.2
0.4
0.6
0.8
1

Re
la
tiv

e
to

U
nt
yp

ed

Figure 2. Pairs of colour coded scatter and column graphs. The scatter graphs represent the performance of a sample of the
typing lattices. The column graphs show the performance of every configuration with only one type annotation. The scatter
plots and column graphs are colour coded based on whether a particular type annotation or two are present in the source code.

the order they appear in the source code). The y-axes for the
column graphs are the same as the associated scatter graphs.
For each benchmark we highlighted one or two type an-

notations that seem to show a pattern for the typing lattice
performance scatter plots, or in the case of SpectralNorm
and Json had higher than usual columns. The identified types
are those represented by the red and blue columns. The scat-
ter plots are colour-coded accordingly: a red or blue circle
represents configurations with the given type annotation
present, but not both, purple circles represent configurations
with both type annotations present, and grey circles repre-
sent those with neither. Though we exhaustively inspected
such colour coded scatter plots for all 1,775 type annotations

across all 21 benchmarks, the only patterns we noticed are
those shown in 2.

As can be seen, most of the patterns we found in the typ-
ing lattice graphs correspond to outliers in the single type
annotation column graphs. For the Snake, Towers and CD
benchmarks, there is clearly a pattern where an individual
type annotation (highlighted in red) appears responsible for
the upper/slowest half of the typing lattice graphs. For Per-
mute there is actually a significant performance increase,
indicated by the lower half of the lattice being highlighted
in red. DeltaBlue and Go also show a slight increase in per-
formance, but here this is caused by two type annotations
(in red and blue); this effect is not cumulative, however: the

Which of My Transient Type Checks Are Not (Almost) Free? VMIL ’19, October 22, 2019, Athens, Greece

purple dots are about the same height as the red and blue
ones, so either annotation is sufficient for the full benefit.
List is interesting as it demonstrates that the red and

blue type annotations both cause a significant decrease in
performance, which is even greater when both are present.
Richards is particularly odd as it shows a performance de-
crease that occurs when the red type annotation is present,
but not the blue one. We had previously identified this bench-
mark and the aforementioned type annotations [30] as being
the worst case for Moth.
For Json and PyStone, although we found outliers in the

column graphs (such as types #112 and #16, highlighted
in red), we were unable to find a matching pattern in the
configuration performance. Finally, for DeltaBlue there is a
noticeable spike in the column graphs (at #198), however we
again found no apparent relation between this outlier and
the overall performance.
In particular, observe that the grey dots for Snake, Tow-

ers, DeltaBlue, Go, and List are mostly flat horizontal lines,
this indicates that by simply deleting the red and blue type
annotations, the performance impact of transient type check-
ing becomes negligible. However for CD and Richards, the
transient type checking overhead of the grey dots is roughly
linear, albeit still less than with the red and blue type an-
notations present. Thus we can observe that usually, only a
couple of type annotations are responsible for the overhead
caused by Moth’s transient typed checking, whereas the rest
are “free”.

The remaining benchmarks, which we have not shown in
figure 2, have even flatter column graphs than PyStone, and
we could not identify any patterns in the typing lattices. Of
those we did not show, the greatest difference in single-type
configurations relative to the untyped configuration was
5.07% (for the Float benchmark).

6 Related Work
The high-performance computing community has been in-
vestigating how tools and visualisations can help developers
to utilise their systems more efficiently [11, 26]. Their focus
is typically on parallelisation opportunities, guided by run-
time feedback, cost models, or heuristics. Their large body
of work [18] uses various approaches, though, we are not
aware of work that has used an approach similar to ours.

At the moment, our approach to identifying type annota-
tions that cause performance anomalies is not integrated into
a development environment. Though, for instance Optimiza-
tion Coaching [35] is a promising direction. Optimization
Coaching uses feedback from the runtime to guide develop-
ers to insert or change type declarations to enable a compiler
to generate a more optimal program. In this spirit, we would
eventually want to achieve the same, although in our case,
we need to run full experiments to get the necessary infor-
mation.

7 Discussion and Conclusion
In this paperwe have investigated how benchmarks can be re-
purposed to determine precisely which transient type checks
are likely to cause performance effects, and are currently
not optimised away by the just-in-time compiler. However,
detailed analysis will be needed in order to identify exactly
what causes such performance effects: we previously under-
took such an analysis for the List benchmark [30].
We observed that many of our benchmark results con-

ducted under the Takikawa protocol showed a character-
istic bimodal performance profile: some of the benchmark
configurations ran significantly slower than the remaining
configurations. We also observed trimodal profiles, as well as
performance increases when type annotations where added.
By inspecting graphs of the performance of where only

one type annotation is present, we can easily identify type
annotations that likely have a significant effect on perfor-
mance. By then inspecting the typing lattice graphs colour
coded based on whether such type annotation was present
or not, we were often able to notice patterns. In particular,
these patterns suggested the just one or two type annota-
tions are likely responsible for the bimodal performance and
most of the overhead caused by Moth’s transient type check-
ing. Though every type annotation that showed a significant
effect across the typing lattice also showed a significant per-
formance effect when no other typing annotations where
present, the converse did not hold.
This is preliminary work, in particular we have not yet

identified exactly why these type annotations show an ef-
fect on performance. There are also a number of threats to
validity. Regarding construct validity, our underlying im-
plementation may contain undetected bugs that affect the
semantics or performance of the gradual typing checks. Re-
garding internal validity, our benchmarking harness runs
on the same implementation and therefore is subject to the
same issues. Regarding external validity, Moth is built on
the Truffle and Graal toolchain, so we expect to resemble
other Graal VMs doing similar AST-based optimizations of
transient type checks. Because we rely on common tech-
niques, we expect our results to be transferable to other JIT
implementations as well.
Finally, it is not clear how our results would transfer to

other gradually typed-languages or other semantics for grad-
ual typing. Our benchmarks do not depend on any features
of Grace that are not common in other object-oriented lan-
guages, but as Grace lacks a large corpus of programs the
benchmarks are necessarily small and artificial. The advan-
tage of Grace for this research is that their relative simplicity
means we have been able to build an implementation that
features competitive performance with significantly less ef-
fort than would be required for larger and more complex
languages.

VMIL ’19, October 22, 2019, Athens, Greece Isaac Oscar Gariano, Richard Roberts, Stefan Marr, Michael Homer, and James Noble

In the future, we hope to investigate statistical techniques
to determine the significance of each type annotation’s con-
tribution to a programs overall performance. We would also
like to investigate whether this approach can assist with
optimisations for programmers’ day-to-day development,
or help VM engineers identifying performance bugs in the
underlying virtual machines.

Acknowledgments
The authors would like to thank the anonymous review-
ers for their valuable comments and helpful suggestions.
This work is supported in part by the Royal Society of New
Zealand (Te Apārangi) Marsden Fund (Te Pūtea Rangahau a
Marsden) under grant VUW1815.

References
[1] Martín Abadi, Luca Cardelli, Benjamin C. Pierce, andGordonD. Plotkin.

1991. Dynamic Typing in a Statically Typed Language. ACM Trans.
Program. Lang. Syst. 13, 2 (1991), 237–268.

[2] Edd Barrett, Carl Friedrich Bolz-Tereick, Rebecca Killick, Sarah Mount,
and Laurence Tratt. 2017. Virtual Machine Warmup Blows Hot and
Cold. Proc. ACM Program. Lang. 1, OOPSLA, Article 52 (Oct. 2017),
27 pages.

[3] Spenser Bauman, Carl Friedrich Bolz-Tereick, Jeremy Siek, and Sam
Tobin-Hochstadt. 2017. Sound Gradual Typing: Only Mostly Dead.
Proc. ACM Program. Lang. 1, OOPSLA, Article 54 (Oct. 2017), 24 pages.

[4] Jon Bentley and Bob Floyd. 1987. Programming Pearls: A Sample
of Brilliance. Commun. ACM 30, 9 (Sept. 1987), 754–757. https:
//doi.org/10.1145/30401.315746

[5] Andrew P. Black, Kim B. Bruce, Michael Homer, and James Noble.
2012. Grace: the absence of (inessential) difficulty. In Onward! ’12:
Proceedings 12th SIGPLAN Symp. on New Ideas in Programming and
Reflections on Software. ACM, New York, NY, 85–98.

[6] Andrew P. Black, Norman C. Hutchinson, Eric Jul, and Henry M. Levy.
2007. The development of the Emerald programming language. In
Proceedings of the Third ACM SIGPLAN History of Programming Lan-
guages Conference (HOPL-III), San Diego, California, USA, 9-10 June
2007. 1–51.

[7] Bard Bloom, John Field, Nathaniel Nystrom, Johan Östlund, Gregor
Richards, Rok Strniša, Jan Vitek, and Tobias Wrigstad. 2009. Thorn:
Robust, Concurrent, Extensible Scripting on the JVM. In Proceedings of
the ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL). 117–136.

[8] Gilad Bracha. 2004. Pluggable Type Systems. OOPSLA Workshop on
Revival of Dynamic Languages. , 6 pages.

[9] Kim Bruce, Andrew Black, Michael Homer, James Noble, Amy Ruskin,
and Richard Yannow. 2013. Seeking Grace: a new object-oriented
language for novices. In Proceedings 44th SIGCSE Technical Symposium
on Computer Science Education. ACM, 129–134.

[10] Benjamin Chung, Paley Li, Francesco Zappa Nardelli, and Jan Vitek.
2018. KafKa: Gradual Typing for Objects. In 32nd European Conference
on Object-Oriented Programming, ECOOP 2018, July 16-21, 2018, Ams-
terdam, The Netherlands. 12:1–12:24. https://doi.org/10.4230/LIPIcs.
ECOOP.2018.12

[11] Anderson B. N. da Silva, Daniel A. M. Cunha, Vitor R. G. Silva, Alex F.
de A. Furtunato, and Samuel Xavier-de Souza. 2019. PaScal Viewer: A
Tool for the Visualization of Parallel Scalability Trends. In Program-
ming and Performance Visualization Tools, Abhinav Bhatele, David
Boehme, Joshua A. Levine, Allen D. Malony, and Martin Schulz (Eds.).
Springer International Publishing, Cham, 250–264.

[12] Benoit Daloze, Stefan Marr, Daniele Bonetta, and Hanspeter Mössen-
böck. 2016. Efficient and Thread-Safe Objects for Dynamically-Typed
Languages. In Proceedings of the 2016 ACM International Conference
on Object Oriented Programming Systems Languages & Applications
(OOPSLA’16). ACM, 642–659.

[13] Adele Goldberg and David Robson. 1983. Smalltalk-80: The Language
and its Implementation. Addison-Wesley.

[14] Ben Greenman and Matthias Felleisen. 2018. A spectrum of type
soundness and performance. PACMPL 2, ICFP (2018), 71:1–71:32. https:
//doi.org/10.1145/3236766

[15] Ben Greenman and Zeina Migeed. 2018. On the Cost of Type-Tag
Soundness. In Proceedings of the ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation (PEPM’18). ACM, 30–39.

[16] Ben Greenman, Asumu Takikawa, Max S. New, Daniel Feltey,
Robert Bruce Findler, Jan Vitek, and Matthias Felleisen. 2019. How
to evaluate the performance of gradual type systems. Journal
of Functional Programming 29 (2019), 45. https://doi.org/10.1017/
S0956796818000217

[17] Urs Hölzle, Craig Chambers, and David Ungar. 1991. Optimizing
Dynamically-Typed Object-Oriented Languages With Polymorphic
Inline Caches. In ECOOP ’91: European Conference on Object-Oriented
Programming (LNCS), Vol. 512. Springer, 21–38. https://doi.org/10.
1007/BFb0057013

[18] Katherine E. Isaacs, Alfredo Giménez, Ilir Jusufi, Todd Gamblin, Abhi-
nav Bhatele, Martin Schulz, Bernd Hamann, and Peer-Timo Bremer.
2014. State of the Art of Performance Visualization. In EuroVis - STARs,
R. Borgo, R. Maciejewski, and I. Viola (Eds.). The Eurographics Associ-
ation. https://doi.org/10.2312/eurovisstar.20141177

[19] Timothy Jones. 2017. Classless Object Semantics. Ph.D. Dissertation.
Victoria University of Wellington.

[20] Timothy Jones, Michael Homer, James Noble, and Kim Bruce. 2016.
Object Inheritance Without Classes. In 30th European Conference on
Object-Oriented Programming (ECOOP 2016), Vol. 56. 13:1–13:26.

[21] Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Nygaard.
1993. Object-Oriented Programming in the BETA Programming Lan-
guage. Addison-Wesley.

[22] Stefan Marr. 2018. ReBench: Execute and Document Benchmarks
Reproducibly. https://doi.org/10.5281/zenodo.1311762 Version 1.0.

[23] Stefan Marr. 2018. SOMns: A Newspeak for Concurrency Research.
https://doi.org/10.5281/zenodo.3270908

[24] Stefan Marr, Benoit Daloze, and Hanspeter Mössenböck. 2016. Cross-
Language Compiler Benchmarking—AreWe Fast Yet?. In Proceedings of
the 12th Symposium on Dynamic Languages (DLS’16). ACM, 120–131.

[25] Fabian Muehlboeck and Ross Tate. 2017. Sound Gradual Typing is
Nominally Alive and Well. Proc. ACM Program. Lang. 1, OOPSLA,
Article 56 (Oct. 2017), 30 pages.

[26] E. Papenhausen, K. Mueller, M. H. Langston, B. Meister, and R. Lethin.
2016. An Interactive Visual Tool for Code Optimization and Par-
allelization Based on the Polyhedral Model. In 45th International
Conference on Parallel Processing Workshops (ICPPW’16). 309–318.
https://doi.org/10.1109/ICPPW.2016.52

[27] Gregor Richards, Ellen Arteca, and Alexi Turcotte. 2017. The VM
Already Knew That: Leveraging Compile-time Knowledge to Optimize
Gradual Typing. Proc. ACM Program. Lang. 1, OOPSLA, Article 55 (Oct.
2017), 27 pages.

[28] Gregor Richards, Francesco Zappa Nardelli, and Jan Vitek. 2015. Con-
crete Types for TypeScript. In 29th European Conference on Object-
Oriented Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech
Republic. 76–100. https://doi.org/10.4230/LIPIcs.ECOOP.2015.76

[29] Richard Roberts, Stefan Marr, Michael Homer, and James Noble. 2017.
Toward Virtual Machine Adaption Rather than Reimplementation.
In MoreVMs’17: 1st International Workshop on Workshop on Modern
Language Runtimes, Ecosystems, and VMs at <Programming> 2017. Pre-
sentation.

https://doi.org/10.1145/30401.315746
https://doi.org/10.1145/30401.315746
https://doi.org/10.4230/LIPIcs.ECOOP.2018.12
https://doi.org/10.4230/LIPIcs.ECOOP.2018.12
https://doi.org/10.1145/3236766
https://doi.org/10.1145/3236766
https://doi.org/10.1017/S0956796818000217
https://doi.org/10.1017/S0956796818000217
https://doi.org/10.1007/BFb0057013
https://doi.org/10.1007/BFb0057013
https://doi.org/10.2312/eurovisstar.20141177
https://doi.org/10.5281/zenodo.1311762
https://doi.org/10.5281/zenodo.3270908
https://doi.org/10.1109/ICPPW.2016.52
https://doi.org/10.4230/LIPIcs.ECOOP.2015.76

Which of My Transient Type Checks Are Not (Almost) Free? VMIL ’19, October 22, 2019, Athens, Greece

[30] Richard Roberts, Stefan Marr, Michael Homer, and James Noble. 2019.
Transient Typechecks are (Almost) Free. In ECOOP.

[31] Jeremy G. Siek andWalid Taha. 2006. Gradual typing for functional lan-
guages. In Seventh Workshop on Scheme and Functional Programming,
Vol. Technical Report TR-2006-06. University of Chicago, 81–92.

[32] Jeremy G. Siek and Walid Taha. 2007. Gradual Typing for Objects. In
ECOOP 2007 - Object-Oriented Programming, 21st European Conference,
Berlin, Germany, July 30 - August 3, 2007, Proceedings. 2–27.

[33] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang
Boyland. 2015. Refined Criteria for Gradual Typing. In 1st Summit on
Advances in Programming Languages (SNAPL 2015) (Leibniz Interna-
tional Proceedings in Informatics (LIPIcs)), Thomas Ball, Rastislav Bodik,
Shriram Krishnamurthi, Benjamin S. Lerner, and Greg Morrisett (Eds.),
Vol. 32. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 274–293.

[34] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, Sam Tobin-
Hochstadt, and Ronald Garcia. 2015. Monotonic References for Effi-
cient Gradual Typing. In European Symposium on Programming (ESOP).
432–456.

[35] Vincent St-Amour, Sam Tobin-Hochstadt, and Matthias Felleisen. 2012.
Optimization Coaching: Optimizers Learn to Communicate with Pro-
grammers. In Proceedings of the ACM International Conference on Ob-
ject Oriented Programming Systems Languages and Applications (OOP-
SLA’12). ACM, 163–178. https://doi.org/10.1145/2384616.2384629

[36] Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan
Vitek, and Matthias Felleisen. 2016. Is Sound Gradual Typing Dead?.
In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’16). ACM, 456–468.

[37] Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker.
2014. Design and evaluation of gradual typing for Python. In DLS’14,
Proceedings of the 10th ACM Symposium on Dynamic Languages, part

of SPLASH 2014, Portland, OR, USA, October 20-24, 2014. 45–56.
[38] Michael M. Vitousek, Jeremy G. Siek, and Avik Chaudhuri. 2019. Opti-

mizing and Evaluating Transient Gradual Typing. CoRR abs/1902.07808
(2019). arXiv:1902.07808 http://arxiv.org/abs/1902.07808

[39] Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. 2017. Big
Types in Little Runtime: Open-world Soundness and Collaborative
Blame for Gradual Type Systems. In Proceedings of the 44th ACM SIG-
PLAN Symposium on Principles of Programming Languages (POPL’17).
ACM, 762–774.

[40] Andreas Wöß, Christian Wirth, Daniele Bonetta, Chris Seaton, Chris-
tian Humer, and Hanspeter Mössenböck. 2014. An Object Storage
Model for the Truffle Language Implementation Framework. In Pro-
ceedings of the 2014 International Conference on Principles and Practices
of Programming on the Java Platform: Virtual Machines, Languages,
and Tools (PPPJ’14). ACM, 133–144.

[41] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas
Wöß, Lukas Stadler, Chris Seaton, Gilles Duboscq, Doug Simon,
and Matthias Grimmer. 2017. Practical Partial Evaluation for High-
performance Dynamic Language Runtimes. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI’17). ACM, 662–676.

[42] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler,
Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and
Mario Wolczko. 2013. One VM to Rule Them All. In Proceedings of the
2013 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software (Onward! 2013). ACM, 187–204.

[43] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq,
Doug Simon, and Christian Wimmer. 2012. Self-Optimizing AST In-
terpreters. In Proceedings of the 8th Dynamic Languages Symposium
(DLS’12). 73–82. https://doi.org/10.1145/2384577.2384587

https://doi.org/10.1145/2384616.2384629
http://arxiv.org/abs/1902.07808
http://arxiv.org/abs/1902.07808
https://doi.org/10.1145/2384577.2384587

