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Abstract
The actor model is popular for many types of server applica-

tions. Efficient snapshotting of applications is crucial in the

deployment of pre-initialized applications or moving run-

ning applications to different machines, e.g for debugging

purposes. A key issue is that snapshotting blocks all other

operations. In modern latency-sensitive applications, stop-

ping the application to persist its state needs to be avoided,

because users may not tolerate the increased request latency.

In order to minimize the impact of snapshotting on re-

quest latency, our approach persists the application’s state

asynchronously by capturing partial heaps, completing snap-

shots step by step. Additionally, our solution is transparent

and supports arbitrary object graphs.

We prototyped our snapshotting approach on top of the

Truffle/Graal platform and evaluated it with the Savina bench-

marks and the AcmeAir microservice application. When per-

forming a snapshot every thousand AcmeAir requests, the

number of slow requests ( 0.007% of all requests) with latency

above 100ms increases by 5.43%. Our Savina microbench-

mark results detail how different utilization patterns impact

snapshotting cost.

To the best of our knowledge, this is the first system that

enables asynchronous snapshotting of actor applications,

i.e. without stop-the-world synchronization, and thereby

minimizes the impact on latency. We thus believe it enables

new deployment and debugging options for actor systems.

CCS Concepts • Software and its engineering → Soft-
ware testing and debugging; • Theory of computation
→ Concurrency.

MPLR ’19, October 21–22, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

This is the author’s version of the work. It is posted here for your personal

use. Not for redistribution. The definitive Version of Record was published in

Proceedings of the 16th ACM SIGPLAN International Conference on Managed
Programming Languages and Runtimes (MPLR ’19), October 21–22, 2019,
Athens, Greece, https://doi.org/10.1145/3357390.3361019.

Keywords Actors, Snapshots, Micro services, Latency

ACM Reference Format:
Dominik Aumayr, Stefan Marr, Elisa Gonzalez Boix, and Hanspeter

Mössenböck. 2019. Asynchronous Snapshots of Actor Systems for

Latency-Sensitive Applications. In Proceedings of the 16th ACM
SIGPLAN International Conference on Managed Programming Lan-
guages and Runtimes (MPLR ’19), October 21–22, 2019, Athens, Greece.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3357390.
3361019

1 Introduction
Snapshotting persists a program’s state so that the program

can be restored and continued later. Programming environ-

ments such as Lisp and Smalltalk use snapshotting to create

images of the system’s state. These images allow developers

to deploy a pre-configured system into production or con-

tinue development at a previous state. Snapshots can also

facilitate time-traveling and record& replay debugging [4, 5],

by restoring a program execution to an earlier point in time

to investigate events that lead to the occurrence of a bug.

Finally, snapshots enable quick crash recovery and moving

a program’s execution to a different machine.

This paper focuses on snapshotting support for actor-

based applications. Popular implementations of the actor

model such as Akka,
1
Pony [12], Erlang [2], Elixir [25], and

Orleans [9] are used to build complex responsive applications.

We present a novel technique to snapshot such responsive

actor-based applications avoiding stop-the-world pauses.

Creating a snapshot requires the program state to be per-

sisted. In Lisp, Smalltalk, and other systems [4], this is done

with heap dumps integrated with the garbage collector (GC).

This, however, requires virtual machine (VM) support and

usually stops the world to create a consistent snapshot, mak-

ing the program unresponsive. This is problematic for appli-

cations that aim to respond consistently with low latency.

Snapshotting is also common in high-performance com-

puting [8, 11, 14, 15, 20] to address distributed failures. These

approaches provide inspiration but in this work we do not

1Akka Website, https://akka.io/

https://doi.org/10.1145/3357390.3361019
https://doi.org/10.1145/3357390.3361019
https://doi.org/10.1145/3357390.3361019
https://akka.io/
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address such failures and focus on non-distributed actor ap-

plications, simplifying the problem significantly.

In this paper, we present an efficient approach for transpar-

ent asynchronous snapshots of non-distributed actor-based

systems. It is implemented on top of an unmodified Java VM

and does not rely on GC integration. By snapshotting the

state of each actor individually, we avoid stop-the-world syn-

chronization that blocks the entire application. We applied

our approach to communicating event loop (CEL) actors [22]

in SOMns. SOMns is an implementation of Newspeak [7]

built on the Truffle framework and the Graal just-in-time

compiler [28].We evaluated the performance of our approach

with the SOMns implementation. On the Savina benchmark

suite [18], we measure the run-time overhead and memory

impact of frequent snapshot creation. On the modern web-

application AcmeAir [26], wemeasure the effect of snapshot

creation on request latency, to ensure that user experience

remains acceptable, i.e. additional latency is below 500ms [1].

The main contribution of this paper is a novel snapshot-

ting approach for non-distributed actor programs that mini-

mizes latency by avoiding stop-the-world synchronization

and persisting program state asynchronously. Furthermore,

our approach does not require changes to the VM nor GC

integration. Our evaluation shows that for the Acme Air

experiment snapshotting increases the number of slow re-

quests with latency over 100ms by 5.43% while the maximum

latency is unchanged.

2 Background and Requirements for
Asynchronous Actor Snapshots

This section provides the background on actor concurrency

to show the challenges of designing an asynchronous snap-

shot mechanism for actor systems. We also briefly discuss

SOMns, a programming languagewith communicating event

loop actors, for which we implemented our approach.

2.1 Communicating Event Loops (CELs)
Originally, the actormodel was proposed byHewitt et al. [17].

Since then it has been used as an inspiration formany derived

variants [13]. In this work, we focus on programs written in

the communicating event loop (CEL) variant, which was first

described for the programming language E [22]. This variant

has all the characteristics typically associated with actor

models: isolation of state and message passing. Additionally,

it provides non-blocking promises as a high-level abstraction

for returning results of asynchronous computations. CELs

were also adopted by languages such as AmbientTalk [27]

and Newspeak [7], and correspond to the event loops in

widely used systems such as JavaScript and Node.js.

The structure and main components of CELs are shown

in fig. 1. Each actor contains a set of objects that are isolated

from those of other actors, a mailbox for receiving messages,

and an event loop. The event loop of an actor perpetually

Actor

Mailbox

Heap

Far Reference Near Reference

Event Loop

Object

Message

Figure 1. Main components of communicating event loops.

takes messages from the mailbox in the order of their arrival

and processes them one-by-one. Each message specifies a

receiver, i.e. an object of the actor which understands the

message, and executes the corresponding method defined in

the object. The processing of a message is an atomic opera-

tion with regard to other messages on the same actor and

defines a so-called turn.
To guarantee state isolation, each actor can only access its

own objects directly. Objects in other actors are accessed via

far references, which restrict interactions to asynchronous

messages. Objects given as parameters in messages are by

default passed by far reference to ensure isolation of state.

Asynchronous message sends immediately return a

promise (also known as future). The promise is a placeholder

for the result of the message send. The receiver of the mes-

sage promises to provide the result at a later time. When the

result becomes available the promise is resolved. Promises are

objects themselves and consequently can receive messages.

A promise handles messages differently from other objects:

instead of executing a method, received messages are ac-

cumulated in the promise while it is not resolved. When a

promise with stored messages is resolved, all the messages

are forwarded to the final value of the promise. It is also pos-

sible to resolve a promise with another promise (i.e. promise
chaining). In this case, the resolved promise is registered as a

dependent in the other promise. The promise is fully resolved

when the other promise is resolved, and only then forwards

stored messages. Similar to passing objects by far reference

when they cross actor boundaries, promise chaining is used

when promises are passed to other actors. For the receiver of

the message, a new promise is created that is resolved with

the original.

SOMns We implement our snapshotting approach for ac-

tor programs in SOMns, an implementation of Newspeak [7]

built on the Truffle framework and the Graal just-in-time

compiler [28]. SOMns implements a CEL actor model (cf.

section 2.1) and is designed for shared-memory multicore

systems. Shared memory is used for optimizations where

applicable. For instance, far references are placeholder ob-

jects that contain direct pointers to objects in other actors.

SOMns does not expose or modify the underlying GC and
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Actor A Promise Actor B

Resolve

Message #new

Promise creation

Snapshot Actor A

Figure 2. Race condition between serializing Promise as

part of Actor A, and its resolution by Actor B. In an opti-

mized implementation, the promise value may be lost.

VM platform. As such, it can be used on top of a stock JVM

with the JVM compiler interface (JVMCI).

2.2 Asynchronous Snapshotting for Actor Systems
As described in the introduction, our goal is to create trans-

parent asynchronous snapshots for actor programs with

isolated state. In the following, we describe the issues that

have to be considered in the design of a snapshotting so-

lution for CELs: (1) serialization of far references, (2) lost

promise resolution, and (3) serialization of messages. While

the serialization of far references and lost promise resolution

are specific to the CEL model, the serialization of messages

is required for any actor model variant.

Issue 1: Serialization of Far References As mentioned

before, objects are passed by far reference to maintain state

isolation, making all intra-actor communication asynchro-

nous. However, serializing objects by naively traversing the

object graph of an actor may reach state that belongs to

another actor via far references. Since the other actor may

concurrently change its state, snapshotting needs to account

for it. Specifically, there are two issues to tackle: (1) Data

races may occur when the owner of an object reached via far

reference is concurrently processing a message and changes

its state, when a snapshot is recorded. This can lead to incon-

sistent data in the snapshot. (2) Would the traversal not stop

in the referenced actors, but continue with the far references

present in those as well, the entire program state may be

potentially serialized at once. This would increase latency,

and thus, defeat the purpose of asynchronous snapshots.

Issue 2: Lost Promise Resolutions Recall from section 2.1

that promises are used to asynchronously return results of

message sends. Different implementation strategies can be

used to resolve promises. The classic approach is to resolve

them with an explicit asynchronous message that is handled

as any othermessage, avoiding race conditions. Alternatively,

to minimize the number of messages sent, promises can also

be resolved directly using locking at the implementation

level, e.g. in SOMns. This conceptually violates the state

isolation between actors, as one actor can change the state of

a promise owned by another actor. But, in practice, this data

race cannot be observed by a program, because the state (and

value) of a promise can only be accessed asynchronously by

sending a message. However, a snapshotting approach that

is applicable to optimized actor systems, such as SOMns,

needs to take special care with promise resolutions as this

data race could lead to inconsistent or incomplete snapshots.

Figure 2 shows a scenario where the resolution of a

promise is lost, because the snapshot takes place after the

actor’s state was serialized. This particular scheduling se-

rializes an unresolved Promise object which is owned by

Actor A. The promise is then resolved with an object belong-

ing to Actor B, but the snapshots do not reflect that promise

resolution, because there are no promise resolution messages

that could be captured. Hence, we refer to such a scenario

as a lost promise resolution. Its effect is that after snapshot
restoration, the promise is unresolved, and since the resolv-

ing message was not part of the snapshot, it remains unre-

solved indefinitely. Any messages sent to the Promise object
after the snapshot is restored would accumulate and never

be delivered.

Issue 3: Serialization ofMessages To successfully restore

a snapshot, it has to contain the messages that were about

to be executed by an actor, i.e., the mailbox contents. In the

context of asynchronous non-blocking snapshots this is a

challenge as actors finish processing their current messages

before snapshotting. For some time both snapshotted and

un-snapshotted actors may coexist. Snapshotted actors may

receive additional messages from un-snapshotted actors, and

vice-versa. A snapshotting approach therefore has to be able

to recognize messages that were sent from un-snapshotted

actors to snapshotted actors and add them to the snapshot.

3 Snapshotting Actor Systems
We now present our snapshotting approach, which is de-

signed for actor systems with isolated state and atomic mes-

sage execution. The main idea of our approach is to perform

snapshotting asynchronously to avoid stop-the-world pauses

andminimize application latency. Furthermore, the snapshot-

ting mechanism is designed to be transparent to programs,

i.e., can be used without annotating code to specify state

that needs to be captured and to support arbitrary object

graphs. Since the actor model ensures that objects owned

by an actor remain unchanged when the actor is not pro-

cessing a message, our approach captures the state of actors

before they start processing messages after a snapshot was

triggered. In addition to the actor’s state, we persist all un-

processed messages that originate from before the snapshot.

When restoring a snapshot, the recorded messages are used

to restore an actor’s mailbox in the correct order. In this

section we detail how to capture snapshots and section 4

provides details on restoring snapshots.



MPLR ’19, October 21–22, 2019, Athens, Greece D. Aumayr, S. Marr, E. Gonzalez Boix, H. Mössenböck

3.1 Capturing Snapshots
To minimize latency when snapshotting an application, we

designed an asynchronous snapshotting mechanism that is

based on capturing partial state for each actor (cf. section 3.3).

Capturing partial state is possible due to the isolation of

state and atomic processing of messages in actor programs.

To ensure completeness of the snapshots, we capture the

following components of an actor’s state: (1) state directly

owned by an actor, (2) messages and near-referenced objects

reachable from them (cf. section 3.3), and (3) objects that are

far-referenced from other actors (cf. section 3.4).

Snapshotting can be triggered asynchronously either ex-

plicitly by user code or automatically. Automatic snapshots

can be created for example at regular time intervals or when

used alongside record & replay (cf. section 6) after the trace

size reaches a defined limit. For simplicity our approach cre-

ates only one snapshot at a time, i.e. snapshot creation has

to be completed before another snapshot can be initiated.

Before an actor starts processing the first message after a

snapshot was triggered, we persist its directly owned state.

As stated in issue 3 (cf. section 2.2), we also need to identify

messages that were sent before the snapshot request and

to serialize them whenever they are about to be processed

by an actor. We solve this issue by dividing the program

execution into phases. Each time a snapshot is triggered, a

new phase begins and a global phase counter is incremented.

When a message is sent, we attach the phase number of the

sending actor to it. Hence, finding out if a message needs to

be captured is a simple numeric comparison. All messages

that are about to be processed and whose send phase does

not match the global phase have to be serialized.

Note that actors only change phases at the beginning of

a turn, i.e., when they start processing a message. Because

the processing of messages is atomic, actors that are busy

executing a message cannot immediately observe a change

of the global phase counter and remain in the phase in which

they started processing their current message until it is com-

pleted. This means that such actors may send messages with

phase numbers smaller than the current global phase.

Figure 3 illustrates a program execution with snapshots. It

shows that different actors may be in different phases, Actor
1 is the last actor to finish processing of its current message

and to advance to Phase 1. Any messages sent by Actor 1
after the snapshot but before finishing the message are part

of Phase 0 and have to be captured by the receiving actor.

A snapshot is said to be complete when there are no more

actors in the previous phase, i.e., no more messages have

to be captured. As long as actors are in the previous phase,

additional messages may need to be captured by actors that

already advanced. We assume that actors finish processing

messages and do not remain in one phase indefinitely. Other-

wise, only state which is far referenced by other actors will

be part of the snapshot.

Actor 1 Actor 2 Actor 3

Phase 0

Phase 1

Phase 2

Trigger
snapshot

Trigger
snapshot

Figure 3. Asynchronous snapshots divide a program execu-

tion into different phases. Since actors only switch phases

when they are not executing a message, phases can overlap.

Event Loop

SnapshotBuffer

Take 
Message

Process

Check 
Phase

Needs to be 
Captured

Serialize

50

Phase: 1
Message #add:onError:
Arguments:

SnapshotBackend
Global Phase: 2

Snapshot 
File

Collect 
Buffers

Complete

Ensure 
Everything 
Serialized

Write 
Metadata

Write 
Buffers

Trigger 
Snapshot

Increment 
Phase

Figure 4. Architecture of our solution showing how the

components connect to produce snapshots.

As messages are assigned phase numbers when they are

originally sent, we have to update the phase numbers of

messages when they are forwarded to the result of a promise

resolution. Hence, these messages will not be captured for

the current snapshot, but are reproduced in the restored

execution when the promises containing them are resolved.

3.2 System Architecture
We now describe the architecture of our snapshotting ap-

proach which is shown in fig. 4. When an event loop is being

snapshotted, it will still take a message out of its mailbox but

then the event loop needs to perform additional steps before

processing a message. In the first step, the event loop checks

the phase of the message against the global phase in the
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snapshot backend and determines if the message needs to be

serialized. If that is the case, the message is then serialized

into a snapshot buffer. Snapshot buffers store the data as

byte arrays in memory.

As an optimization, in SOMns the actors are scheduled

flexibly on a thread pool. This can be used to reduce the

number of buffers needed. Instead of assigning a snapshot

buffer to each actor, buffers can be assigned to the processing

threads. Each buffer is used by only one actor at a time,

but may contain data of different actors. As actors can be

executed on different processing threads, their snapshot data

can be spread across multiple buffers.

The snapshot backend is responsible for triggering snap-

shots, maintaining metadata, collecting the snapshot buffers

from the threads, and writing the snapshot files. Snapshots

are written to disk by a separate thread once they are com-

plete. We detect if snapshots are complete by queuing a

special task in the thread pool used for actors. After the task

is executed, there are no more actors with messages that

need to be captured in the thread pool’s queue. Currently

executing actors may still contain messages from the previ-

ous phase. Hence, we have to wait for each thread to finish

processing it’s current task, i.e. actor, before the snapshot

can be persisted to disk. At this point, there may still be

some left-over deferred serializations (c.f. section 3.4) that

need to be handled before the snapshot can be persisted. We

have bookkeeping in place that tells us which actors have

unfinished deferred serializations, and proceed by schedul-

ing all those actors for execution so that they may serialize

missing objects. When all of them are done, we check if this

caused some new deferred serializations, and if yes repeat

the scheduling and checking. Only after there are no more

messages to capture and all deferred serializations have been

handled, we can persist the snapshot to disk.

If the root cause of an error is before the latest snapshot,

earlier snapshots have to be used. Otherwise, only the effects

can be reproduced and observed.

Compared to a thread-based concurrency model, we rely

on CEL actor turns to terminate. This means, we assume

that turns do not contain infinite loops. Infinite loops are

generally considered a bug in CEL actor programs, since they

impact latency and performance more generally. In a thread-

based system, such an infinite loop could continuously add

elements to a data structure, which would make it difficult

to persist the data structure.

3.3 Capturing Partial Heaps
The actor state, i.e., the object graph that can be reached

from different messages in the mailbox of an actor is typi-

cally partial. For some actors, the whole object heap can be

reached via a single message, while for others state may con-

sist of multiple disjoint or partially-connected object graphs.

The latter is depicted in fig. 5a. To minimize the impact on

message latency, we capture only partial state per message

(a) The state of

Actor 3 at the

snapshot.

Actor 1 Actor 2 Actor 3

Trigger
Snapshot

(b) Execution of an actor program around the

time of a snapshot. Messages marked grey

were sent before the snapshot.

Figure 5. Example where partial heaps can be snapshot.

if possible. The idea is to first persist the state a message

depends on and to process that message afterwards. This

is done incrementally for subsequent messages, i.e. before

processing another message, we capture the state that was

not persisted before. Splitting the serialization enables actors

to make progress and be more responsive, as they gradually

complete the snapshot. State that is only reachable from far

references is also captured as we explain in section 3.4.

In the example in fig. 5b, two messages (marked grey)

were sent to Actor 3 before a snapshot. As these messages

are processed after the snapshot, they need to be captured.

The state of Actor 3 that is reachable from these messages

can be seen in fig. 5a. Different parts of the actor’s state

can be reached from each of them, but they also have a

common subgraph. This means that the state of the actor

does not have to be captured all at once, instead we can

capture the state incrementally message by message, each

message completing the snapshot with the reachable state

that was not captured before. This incremental capturing of

the state can increase the responsiveness of actors after a

snapshot was triggered, but only if there is an overlap in the

object graph reachable from the messages, as in fig. 5a.

3.4 Far References – Deferring Serialization
As described in the problem statement (section 2.2), far refer-

ences connect the object graphs of different actors. To ensure

correctness, i.e. prevent data races, far-referenced objects

have to be serialized by their owner. We call this deferred
serialization. As our solution is asynchronous, we cannot

wait for another actor to serialize a far-referenced object and

return its location. In addition to the far-referenced object,

the owner is handed a buffer plus offset where the refer-

ence information has to be filled in after serialization. If the

object was already serialized, it is not added to the queue

of deferred serializations. Instead the reference information

is written to the buffer immediately. Before an actor starts

processing a message it handles all the serializations that

were deferred to it. As actors can be idle for longer periods

of time, we have to consider the possibility that an actor has
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deferred serializations when a snapshot is written to disk. To

avoid having missing pieces in our snapshot we keep track of

actors with deferred serializations. We force those actors to

perform the deferred serializations until the snapshot is com-

plete, i.e. there are no more deferred serializations. Hence,

even actors that were not active between triggering a snap-

shot and writing it to disk are captured and can be used after

restoring the snapshot. We achieve forced serialization by

scheduling all the actors with deferred serializations on the

thread pool we use for execution, even if they do not have

any messages to process. This avoids data races that could

happen if the forced serialization was, for example, done in

the snapshot writer thread.

3.5 Promises
Promises require special treatment when they are serialized

as they can contain an arbitrary number of messages and

references to other promises (cf. section 2.1). The referenced

promises typically belong to a different actor. We therefore

defer the serialization of those promises to the respective

owners as explained above (cf. section 3.4).

Promises are local to their owner. When sent to another

actor, a new promise is created for the receiver and chained

with the original one (cf. section 2.1). Thus, all messages that

a promise receives were sent by its owner, i.e. there is no

race regarding the messages contained in a promise.

Note that when serializing a promise, it can be either a

promise that was already resolved, or an unresolved one.

The messages referenced by an unresolved promise can be

serialized like any other object since they are owned by the

actor that owns the corresponding promise. Messages related

to resolved promises were already sent to another actor and

are instead captured by the receiver if necessary.

As discussed in section 2.2, we need to handle promise

resolutions that race with the snapshotting, which otherwise

could get lost. This could occur when a promise is serialized

as unresolved, but is then resolved by an actor in a previous

phase, which would not be reflected in the snapshot. We

detect such racy resolutions by comparing the resolving

actor’s phase number with the global one. If they do not

match, the resolution is captured separately in the snapshot.

3.6 Snapshot Format
An important part of serialization is to use a format that can

be efficiently recorded and read, while preserving data in

the correct order. We now briefly detail the snapshot format

used and relevant correctness concerns.

Listing 1 shows a representation of our binary snapshot

format. It consists of two kinds of data. First, it has a section

of metadata with a registry of the snapshot messages, offsets

of the snapshot buffers within the snapshot file, and data

to reconstruct promise resolutions that are otherwise lost.

The rest of the format consists of interconnected heaps that

represent the serialized object graphs.

We now detail the different components of the metadata.

To ensure correct execution when loading a snapshot, we

need to restore the snapshotted messages to the mailboxes of

their respective actor in the original order. As such, for each

snapshot message, the MessageRegistry contains the loca-

tion where the message object is stored in the snapshot. To

ensure that the messages are restored correctly, the registry

also contains the id of the actor, and an ordering number.

Promise resolutions are also part of the metadata and

can be found as Resolutions. This part links unresolved
promises to a result and identifies the actor that performed

the resolution in the original execution as well as whether

it was successful or erroneous. Section 3.5 details why we

need to capture promise resolutions separately.

The ClassEnclosures are used to support nested classes.

This is necessary to support the Newspeak semantics [7] but

would apply to other languages such as Java, too. It contains

a mapping of class ids to the object that enclosed the class

in the original execution.

The final piece of metadata is the HeapMap; it is a map-

ping of buffer ids to offsets in the snapshot file. HeapMap is
used to decode our reference representations. Each reference

consists of a 16-bit buffer id, and a 48-bit offset. Referenced

objects can be found in the snapshot file by getting the start

location of the containing buffer and then adding the offset.

Snapshot = MetaData Heaps.

MetaData = MessageRegistry Resolutions

ClassEnclosures HeapMap.

MessageRegistry = msgCnt {actorId msgNo

msgLocation }.

ClassEnlosures = cnt {classId outerObject }.

Resolutions = cnt {resolver result actor

state}.

HeapMap = nHeaps {heapId offset }.

Heaps = {Object }.

Object = classId ObjectData.

ObjectData = Message Promise Array ...

Listing 1. EBNF grammar for our binary snapshot format.

4 Restoring Snapshots
Restoring snapshots boils down to deserializing all captured

objects, recreating actors, and initializing the mailboxes with

the snapshot messages in the right order. The first step in

the deserialization is to parse the MetaData section of the

snapshot, which contains the storage locations of the mes-

sages and the start locations of the different heaps in the

snapshot file. Afterwards, the messages can be deserialized

using the MessageLocations. The messages are then put

into the mailboxes of the respective actors in the same order

they are in the snapshot, which ensures they are processed

in the original execution order. For simplicity, actors are not
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allowed to process messages until after all messages are de-

serialized and in a mailbox. Otherwise the actors would start

sending each other messages and altering their state while

we are still restoring the program state.

Note that a snapshot does not contain a list of actors.

Instead, actors are created implicitly when their ids are en-

countered during snapshot parsing.

4.1 Deserializing Messages and Object Graphs
We now provide further details on the deserialization. Mes-

sages, like any other object in the snapshot, are encoded as

seen in listing 1, and their entry starts with a classId. The
deserialization of an object starts by looking up the class with

that id. Previously unknown classes are loaded lazily, i.e., the

first time they are encountered during deserialization. The

looked-up class allows us to deserialize its instances trans-

parently, similar to serialization during snapshot-creation,

and transitively deserializes any other referenced objects.

As different messages may reference the same object, and

the object graphs may have circles, we keep track of which

objects were already deserialized. In the case of cyclic object

graphs, we omit the cyclic reference and fix it later when

both objects are available. Our implementation uses a map of

an object’s snapshot address to its instance. We can therefore

check if an object was already deserialized and can maintain

object identity by using the map entry instead of deserial-

izing it again. For handling cycles, we install a placeholder

in the map before deserialization of an object. When dur-

ing deserialization a reference is encountered for which a

placeholder exists, instead of deserializing it and causing an

infinite loop, we leave the reference uninitialized and add

some fixup information to the placeholder. This can be, for

example, a tuple of the object and the field that needs to be

fixed. Finally, when a placeholder is replaced by the actual

object, all the fixups that accumulated are performed, i.e.,

references to the object are initialized.

5 Evaluation
This section evaluates the performance of our snapshotting

approach. Since SOMns is a research language, we first com-

pare its performance to other language implementations to

provide sufficient context. We measure the run-time over-

head and memory impact of snapshotting using the Sav-

ina [18] benchmark suite. We assess the impact on request

latency with the AcmeAir microservice application, Follow-

ing Arapakis et al. [1], snapshots should not increase request

latency by more than 500ms, otherwise the delay will be

noticed by users. In short, we will assess SOMns’ baseline

performance, the snapshot overhead on microbenchmarks,

and their impact on a microservice application.

5.1 Methodology
SOMns relies on dynamic compilation to reach its peak per-

formance. Thus, to account for the VM’s warmup behav-

ior [6], we executed each of the Savina and Are We Fast

Yet [21] benchmarks for 1000 iterations within a single pro-

cess. Manual inspection of the complete run-time plots in-

dicates that the performance of the benchmarks stabilizes

after 100 iterations (cf. Appendix A for plots showing these

first 100 iterations). We thus discarded the first 100 iterations

to discount warmup and be more representative for longer

running applications.

For AcmeAir, we use JMeter [16] to produce a predefined

workload of HTTP requests. The workload was defined by

the Node.js version of AcmeAir. JMeter is configured to use

8 threads for making requests and executes a mix of about 2

million randomly generated requests based on the predefined

workload pattern. After inspecting the latency plots, we

discarded the first 100,000 requests to exclude warmup.

The Savina and Are We Fast Yet benchmarks were exe-

cuted on a machine with two quad-core Intel Xeons E5520,

2.26 GHz with 8 GB RAM, Ubuntu Linux with kernel 4.4,

Java 8.171 and Graal version 1.05. AcmeAir experiments

were executed on a machine with a four-core Intel Core

i7-4770HQ CPU, 2.2 GHz, with 16 GB RAM, a 256 GB SSD,

MacOS Mojave (10.14.3), Java 8.151 and Graal version 0.41.

5.2 Baseline Performance of SOMns

To show that the baseline performance of SOMns is compet-

itive with other language implementations, we evaluate the

sequential performance of SOMns, Node.js, and Java with

the Are We Fast Yet benchmarks. The results shown in fig. 6

indicate that SOMns’s performance is at the level of Node.js,

a similar dynamic language, but is not as fast as Java.

To show that the CEL implementation of SOMns has a

performance that is similar to other actor implementations,

we used the Savina benchmark suite. This benchmark suite

was originally designed for impure actor languages with

shared memory, such as Akka, Jetlang, and Scalaz. Hence,

some of the benchmarks rely on shared memory, which is

not supported in SOMns. As a consequence, only 18 out of 28

benchmarks could be ported to SOMns. Our results from run-

ning this subset of the Savina benchmark suite are shown in

fig. 7 and suggest that the actor model of SOMns reaches per-

formance comparable to other JVM-based implementations,

despite its lower sequential performance.

Considering SOMns overall performance, we argue that it

is a suitable platform for the discussed research, and allows

us to draw conclusions about performance that are applicable

to other state-of-the-art language implementations.

5.3 Savina: Worst Case Cost of Creating Snapshots
To assess our snapshotting approach for a range of actor

programs, we compare the warmed-up execution time of
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Figure 6. Boxplot comparing the

performance of SOMns other lan-

guages, showing SOMns performs
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Figure 7. Boxplot comparing the performance of Savina benchmarks in different

actor languages for different numbers of cores. It shows that the performance of

SOMns is comparable to other actor implementations.

benchmark iterations with and without snapshotting using

the Savina benchmarks.

The overhead of running a program with snapshots en-

abled depends on the number of snapshots, the number of

snapshot messages, and the object graph. Production sys-

tems run for a long time and trigger snapshots infrequently.

As a result, the overall overhead of creating snapshots is

distributed over a larger time frame and is averaged out.

Our Savina benchmarks, on the other hand, have a short

run time. The overhead of infrequent snapshots might get

lost in the noise, while selecting high snapshot frequencies

automatically increases the measured overhead. To compare

benchmark iterations it is important that the number of snap-

shots per iteration is constant for each benchmark. Hence,

we decided to do trigger a snapshot every second benchmark

iteration, which can be considered a worst case scenario. In

the Savina benchmarks, workload is often generated by send-

ing a large number of messages (up to hundred thousands)

in a loop. If a snapshot is triggered after the generation of

the workload was started, an equally large number of mes-

sages has to be captured due to their phase number. This

means that depending on the benchmark, a large share of

the overall messages has to be snapshot, increasing over-

head. This is especially noticeable for non-computational-

intensive benchmarks with short run time, such as Count-
ing, ForkJoinActorCreation and Chameneos, which have large

numbers of messages. Hence, the Savina benchmark suite

presents more of a worst-case scenario for our snapshotting

implementation. However, it does not represent real-world

latency-sensitive applications for which we use the AcmeAir

application in section 5.4.

Performance differences between benchmarks can be ex-

plained by their different object graphs, snapshot sizes, and

the number of messages and actors. Figure 8 shows that for
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Figure 8. Boxplot comparing the run-time performance of

Savina benchmarks when snapshotting, as well as when

snapshotting is combined with record & replay. Snapshotting

performance varies depending on the benchmark, but is for

most of the microbenchmarks in the 1x to 1.5x range.

snapshotting Savina benchmarks, the run time normalized

to the mean of baseline iterations is generally in the 1x to

1.5x area, with a few outliers up to 5x. For the more compu-

tationally intensive benchmarks of the Savina suite, such as

TrapezoidalApproximation, overhead can be as low as 0.04%.
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Memory Impact of Snapshotting Savina Benchmarks
We also evaluated memory metrics using the Savina bench-

mark suite as additional data structures and objects have an

impact on memory usage and GC behavior of an application.

We captured the metrics between benchmark iterations to

analyze their behavior over all iterations. Due to our snap-

shotting, we expected to find that the application has more

and larger temporary objects, larger heap, and more time

spent on GC. Figure 9 shows that the number of collected

bytes is higher, and fulfills our expectations on temporary

objects. We can observe that over the course of 1000 itera-

tions the number of collected bytes increases roughly linear

for both configurations. However, for snapshotting the in-

clination is higher, causing the number of collected bytes to

diverge. Like runtime overhead, the rate of divergence de-

pends on the individual benchmark and ranges from close to

zero (e.g. SleepingBarber) to more than double (e.g. FJActor-
Creation). For more memory metrics we refer to appendix A.

Performance of Snapshots Combined with Record & Re-
play Finally, we used the Savina benchmarks to assess how

record & replay interacts with snapshotting. In previous

work, we evaluate the performance of record & replay [3].

Since snapshotting allows us to limit the size of recorded

traces, the two techniques should work well together.

As expected, adding record & replay comes at a higher

overall performance cost than snapshotting alone. Figure 8

shows that overhead increases only minimally. The average

overhead (geometric mean) increases from 49.35% with only

snapshotting to 54.88% with additional record & replay.

5.4 AcmeAir: Impact on User Experience
User experience is a critical factor for the success of respon-

sive server applications. Unresponsive websites or interfaces

can discourage their use. The latency between request and

response is a key component for the user experience. We use

AcmeAir, a web application simulating the booking system

of a fictive airline, to show the impact of our snapshots on the

latency of web requests. Additionally, we aim to show that

the maximum impact is still acceptable. According to Ara-

pakis et al. [1], occasional delays of up to 500ms are barely

noticed by users. Thus, the impact of our snapshots should

be below this threshold.

For this experiment, we decided to trigger a snapshot once

every 1000 requests. Every incoming request is represented

by a message in the actor system and may be serialized to

be part of the snapshot. Because AcmeAir’s implementation

uses a cache for flights and airports to reduce database access,

the snapshots reach a size of up to 5MB for the last snapshots.

Figure 10 shows the results of this experiment. In particu-

lar, it shows the latency profile of the different requests. We

use a logarithmic scale for the y-axis, so individual requests

with high latency, for example due to GC, are still visible.

Latency spikes, i.e. individual requests with high latency did

not increase dramatically compared to baseline, and are dis-

tributed across the different requests. As the different request

types are not equally common, there are some differences in

the distribution of spikes.

With snapshotting enabled, the number of requests with

latency above 100ms increases by 5.43%. These requests make

up only 0.007% of all 20 million requests.

When looking at the slowest requests over 200ms, we

observe that the number of such requests increases from

250 to 385 requests with snapshotting enabled. We conclude

that the latency distribution is similar to the unmodified

benchmark execution, but there is a shift towards higher

latency, which we attribute to the frequent snapshot creation.

Figure 11 shows the average latency of the different re-

quest types. The effect of snapshotting is most noticeable in

QueryFlight requests, where the average latency with snap-

shots is up to 2.28% higher than the average latency of the

baseline. Hence, snapshotting has a small impact on the av-

erage latency of requests, while the frequenzy and latency of

the slowest requests, which we attribute to GC, remains simi-

lar to the original execution. We conclude that the additional

latency for individual requests is below 500ms, therefore

our performance goal is reached and the user experience for

AcmeAir is not significantly impacted.

6 Discussion
In our snapshotting approach, we capture a transitive clo-

sure of all objects that are reachable from active actors and

messages processed after the snapshot. However, external

resources also need to be considered for snapshots. SOMns

supports extension modules that can keep state, such as ref-

erences to objects and actors, which might be unreachable

and therefore not part of any snapshot. Since there is no gen-

erally correct strategy, we leave it up to the implementers of

such modules to ensure unreachable state is persisted. For

instance, for our HTTP server as well as time-out actors, we

register their roots explicitly with the snapshotting mecha-

nism, so that they are recorded correctly in the snapshot.

Integration with Record & Replay Our snapshotting ap-

proach is integrated with the SOMns record & replay imple-

mentation [3]. Both components can be used individually or

together. When combined, the snapshot backend notifies the

record & replay that a new snapshot is created. Any recorded

trace data afterwards is part of a new trace file relative to the

new snapshot. Old trace files can be deleted to free-up disk

space if needed. This allows record & replay to support long-

running applications by forgoing the ability to reproduce

the execution before a snapshot. While our snapshotting

approach captures state, messages, and their order, it is not

a record & replay solution on its own. It ensures that the

captured messages are restored in order, but does not enforce

any specific interleaving with un-captured messages. As all

actors remain suspended until the entire state is restored
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Figure 9. Plot of total collected bytes (GB) over 1000 iterations for the Savina benchmarks, with and without snapshotting.

Most benchmarks indicate that the collected bytes increase by a small constant factor for each iteration, which is within

expectations.

from a snapshot, captured messages are not interleaved with

un-captured messages, which limits the number of observ-

able behaviors. In combination with record & replay, one can

however ensure that the order of all messages is identical to

the previously recorded one.

Applicability to other systems Our approach for asyn-

chronous snapshotting of actor programs should be generally

applicable to actor systems with isolated state and atomic

message processing in FIFO order. We integrated our proto-

type directly with the language implementation on top of

Truffle/Graal. However, this is not a requirement, and instru-

mentation techniques, such as Java bytecode transformation,

can be used as an alternative to achieve similar results.

7 Related Work
In this section we discuss related work to provide context

for our contributions. We compare our work to two types of

approaches that aim to solve similar issues: snapshotting so-

lutions for distributed systems, and back in time debugging.

7.1 Checkpointing in Distributed Systems
Checkpointing in distributed systems has been explored ex-

tensively. According to Elnozahy et al. [14], the two main

approaches are coordinated and uncoordinated checkpoints.

In uncoordinated checkpointing, the distributed entities

perform checkpoints independent from each other. When

the state of one of those entities is restored to a checkpoint,

e.g. due to a failure, other entities may be forced to rollback

to one of their snapshots to keep the systems state consis-

tent. As the snapshots are uncoordinated, rollback may be

propagated through the system. In the worst case, rollback

is performed until the initial state is reached. To avoid this

effect in distributed systems, coordinated checkpointing was

developed by Chandy and Lamport [11]. The original coordi-

nated approach is based on persisting a processes state and

then propagating marker messages when a checkpoint is

created. A process then records incoming messages for each

channel, until it receives a marker back, and adds them to

the state to counteract inconsistencies. In the following, we

further discuss variants of coordinated checkpointing.

Blocking vs. NonBlocking Buntinas et al. [8] imple-

mented and compared blocking and non-blocking variants

of coordinated checkpointing based on the algorithm by

Chandy and Lamport [11]. In the blocking variant, after

checkpointing and propagating markers to all neighbors, a

process waits for all neighbors to send back a marker before

execution continues. Hence, blocking coordinated check-

points prevent the system from making progress until all
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processes have performed a checkpoint, and consequently

has a high latency. The non-blocking variant, on the other

hand, assumes that the communication channels are guar-

anteed to be FIFO, and allows execution to continue after

propagating markers, while recording messages on incoming

channels until markers are received back. Their implemen-

tation optimized capturing a process’ state by forking, and

having the clone persist its state. This benefits non-blocking

checkpoints the most, as execution can continue almost in-

stantaneous.

Our snapshotting solution is non-blocking as we allow for

messages to be processed before the entire program state is

persisted. Furthermore, we do not require synchronization

between actors before they capture their state. As we target

non-distributed applications, coordination is not an issue.

We instead use a global phase number (cf. section 3.1), that

actors check before they process a message. Hence, capturing

state is done lazily when an actor processes a message.

Checkpoint Optimizations Disk-less checkpointing [24]

avoids costly disk access by keeping checkpoints in mem-

ory. or sending them over the network. The checkpoint can

be encoded and split into small chunks, that can then be

sent to a checkpoint processor, which is responsible for re-

covering the state of a failed process. Only the state of the

failed process needs to be decoded, other processes go back

to the checkpoint they already have in their memory. In con-

trast, our solution keeps snapshots in memory until they are

complete, and then writes them to disk.

Another optimization for distributed systems is incre-

mental checkpointing [23], where full checkpoints are cre-

ated infrequently, with incremental checkpoints of changed

memory pages captured in-between. The incremental check-

points are smaller and can be created faster than full snap-

shots, reducing network usage when transmitting check-

points. Restoring incremental checkpoints requires the last

full checkpoint and all incremental checkpoints up to the

selected point to be processed. For our approach to perform

incremental checkpoints we would need write barriers that

update an object’s entry in the snapshot. However, because

our solution does partial heap snapshots, we still keep la-

tency similar to incremental approaches.

Coordinated Checkpointing with Relaxed Synchroniza-
tion Losada et al. [20] explored coordinated checkpoint/re-

start that enables rollback of individual processes without

having to rollback others. To achieve such a rollback, they

replay messages between restarted and non-restarted pro-

cesses. To replay messages, a message logging protocol is

used to capture non-deterministic events and messages after

a process checkpoints. When a process is rolled back, the

events in the log are replayed to bring it to a state consistent
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with the other processes. The message logging introduces

additional overhead but avoids rollback of all processes to

the last consistent state, which compensates the overhead

with faster recovery. Our approach only captures messages

that are part of the programs state, but this can be augmented

with lightweight record & replay to deterministically replay

events after the snapshot. However, as our solution is non-

distributed, record & replay does not need to record message

contents as reproducing message order is sufficient.

Asynchronous Local Checkpointing for Actors To the

best of our knowledge, the only checkpointing approach for

actors is for SALSA [19]. Compared to our approach, it is not

transparent and it is integrated with a programming model

called transactor. The programming model allows for some

transactional behavior including rolling back actors, which

is implemented using local checkpoints. Since we focus on

snapshotting, we do not offer this kind of functionality.

Asynchronous Barrier Snapshotting Asynchronous

Barrier Snapshotting (ABS) [10] is an approach for Apache

Flink, that propagates snapshot barriers through a program.

After a process’ input receives a barrier, the input is blocked

until a barrier was received on all inputs, which also causes

the state of a process to be captured. To be able to handle

communication cycles, ABS relies on static analysis to

identify back-edges. Similar to our approach, after a process

receives a barrier it does not process inputs until its state

is captured. A big difference to our solution is in ABS’s

blocking behavior. Our solution does not require actors

to wait for others before they can snapshot and continue

processing messages.

7.2 Back-in-Time Debugging
Back-in-time debugging relies on snapshots of the program

state at certain intervals, and offers time travel by replay-

ing execution from the checkpoint before the target time.

We now compare our approach to back-in-time debugging

solutions for actor-based systems.

Jardis Jardis [5] provides both time-travel debugging and

replay functionality for JavaScripts event loop concurrency.

It combines tracing of I/O and system calls with regular

heap snapshots of the event loop. It keeps snapshots of the

last few seconds, allowing Jardis to go back as far as the

oldest snapshot, and discard trace data from before that point.

While this keeps the size of traces and snapshots small, it

limits debugging to the last seconds before a bug occurs.

When our snapshotting is combined with record & replay,

it provides a similar functionality for a CEL system without

relying on GC piggybacking or a modified VM. In contrast

to Jardis, our system is designed for multiple event loops and

needs to ensure correct snapshots for each event loop.

Event Sourcing Event sourcing is a technique for actors,

where all state changes are logged incrementally. It has been

used to create snapshots of actor programs [15]. Their retro-

spective snapshots are based on processing an event sourcing

log and aggregating the individual state changes up to a cer-

tain point in time into one independent snapshot. This gives

them the ability to extract arbitrary snapshots by doing post-

processing. While our solution is designed to take snapshots

infrequently during program execution, it can be combined

with SOMns ordering-based replay [3] to achieve similar

results. By restoring a snapshot and replaying the program

execution based on the compact trace, we can reproduce the

state at any point after the snapshot without having to log

all state changes in the original execution.

8 Conclusion and Future Work
The actor model has become popular for implementation of

responsive server applications. Unfortunately, many snap-

shotting approaches are blocking, and cause applications to

become unresponsive for the duration of snapshot creation.

In this paper, we presented a novel approach for creating

asynchronous snapshots of actor programs transparently

and without VM modifications or GC integration. Our ap-

proach uses the isolation of state of the actor model to reduce

snapshot latency by capturing partial heaps and allowing

actors to make progress before all their state is persisted.

We evaluated the impact of our snapshotting approach

on application latency with the AcmeAir benchmark. Our

results show that with frequent snapshotting enabled, the la-

tency of most requests remains below 100ms. Only 0.007% of

20 million requests had a latency over 100ms. While the num-

ber of such requests did increase by 5.43%, their total is still

small. We conclude that our approach does not negatively

impact the user experience of such a web service.

Future Work As future work, we plan to apply our ap-

proach to JavaScript with a wider range of benchmarks. This

would also enable a direct comparison with Jardis.

Time Travel Debugging. While our snapshotting can al-

ready be combined with record & replay, further research is

needed to enable time travel debugging. For example, restor-

ing a snapshot currently requires a fresh start of the program.

This is a problem as time travel debugging requires frequent

snapshot restoration, which means, we need to be able to

replace the whole application state within a VM.

Application Redeployment.To be practical for moving appli-

cations between machines, our approach has to be enhanced

so that required resources are also moved. This could be

achieved by bundling the source code of all loaded classes

with the snapshot and tracking all used external resources

so they can be made available in the new environment.

A Appendix
In this section, we present supplemental warmup and mem-

ory metrics for the evaluation of our snapshotting approach
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Figure 12. Warmup behaviour of Savina benchmarks with and without snapshotting.
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Figure 13. Development of total time spent on GC over 1000 iterations of Savina benchmarks, with and without snapshotting.
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Figure 14. Development of the max heap size for Savina benchmarks with and without snapshotting.

in the Savina benchmark suite. Figure 12 shows the devel-

opment of the absolute run time of the benchmarks over

the first 100 iterations, which we discarded to account for

warmup. The regular spikes visible in benchmarks such as

Chamenos are caused by the creation of snapshots every

second iteration.

Figure 13 shows how the GC time of the different bench-

marks develops, like the number of collected bytes and the

run time overhead. We observe that GC time varies greatly

between the different benchmarks. For some benchmarks

the GC time itself contributes significantly to the measured

overhead. ForkJoinThroughput, for example, with an average

execution time of 40.36ms per iteration has a GC time over-

head of 19.22ms per iteration. As the average overhead of

the benchmark is 2.25x, GC itself is responsible for 39.82%

of the overhead.

Figure 14 shows how the maximum heap size stabilizes

over the course of 1000 iterations. As before, there is a high

variation between the different benchmarks. While bench-

marks such as ConcurrentList do not need additional memory

when snapshotting, benchmarks like AStarSearch need more

than double the heap size and use all of the available 1GB

memory.
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