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PREFACE

JASP stands for Jeffrey’s Amazing Statistics Program in recognition of the pioneer of Bayesian
inference Sir Harold Jeffreys. This is a free multi-platform open-source statistics package, developed
and continually updated (currently v 0.10.2 as of July 2019) by a group of researchers at the University
of Amsterdam. Their aim was to develop a free, open-source programme that includes both standard
and more advanced statistical techniques with a major emphasis on providing a simple intuitive user
interface.

In contrast to many statistical packages, JASP provides a simple drag and drop interface, easy access
menus, intuitive analysis with real-time computation and display of all results. All tables and graphs
are presented in APA format and can be copied directly and/or saved independently. Tables can also
be exported from JASP in LaTeX format

JASP can be downloaded free from the website https://jasp-stats.org/ and is available for Windows,
Mac OS X and Linux. You can also download a pre-installed Windows version that will run directly from
a USB or external hard drive without the need to install it locally. The WIX installer for Windows
enables you to choose a path for the installation of JASP — however, this may be blocked in some
institutions by local Administrative rights.

The programme also includes a data library with an initial collection of over 50 datasets from Andy
Fields book, Discovering Statistics using IBM SPSS statistics! and The Introduction to the Practice of
Statistics? by Moore, McCabe and Craig.

Since May 2018 JASP can also be run directly in your browser via rollApp™ without having to install it
on your computer (https://www.rollapp.com/app/jasp). However, this may not be the latest version
of JASP.

Keep an eye on the JASP site since there are regular updates as well as helpful videos and blog posts!!

This document is a collection of standalone handouts covering the most common standard
(frequentist) statistical analyses used by students studying Biological Sciences. Datasets used in this
document are available for download from https://osf.io/bx6uv/

Dr Mark Goss-Sampson

Centre for Science and Medicine in Sport & Exercise
University of Greenwich

2019

L A Field. (2017) Discovering Statistics Using IBM SPSS Statistics (5™ Ed.) SAGE Publications.
2D Moore, G McCabe, B Craig. (2011) Introduction to the Practice of Statistics (7th Ed.) W H Freeman.
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USING THE JASP ENVIRONMENT

Open JASP.

The main menu can be accessed by clicking on the top-left icon.

=" +

4 JASP

* Free:

® Friendly:

* Flexible:

Welcome to JASP

1dly, and Flexible

JASP is an open-source project with structural support from the University
of Amsterdam.

JASP has an intuitive interface that was designed with the user in mind.
JASP pffers standard analysis procedures in both their classical and Bayesian

manifestations.

So open a data file and take JASP for a spin!

and a number

then check back tom

Open

Save

Save As

Export Results

Export Data

Sync Data

Close

Preferences

About

Recent Fies

Computer

Data Library

Open:

JASP has its own .jasp format but can open a variety of
different dataset formats such as:

| e .csv (comma separated values) can be saved in Excel
. .txt (plain text) also can be saved in Excel

° .sav (IBM SPSS data file)

. .ods (Open Document spreadsheet)

You can open recent files, browse your computer files,
access the Open Science Framework (OSF) or open the
wide range of examples that are packaged with the Data
Library in JASP.

Data Sets (*.jasp *.csv ".tt *.sav ¥

Open Cancel
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Save As

Export Results

Export Data

Sync Data

Close

Preferences

About

>

Preferences:

Save/Save as:

Using these options the data file, any annotations and the analysis
can be saved in the .jasp format

Export:

Results can be exported to an HTML file

Data can be exported to either a .csv or .txt file
Sync data:

Used to synchronize with any updates in the current data file (also
can use Ctrl-Y)

Close:

As it states - it closes the current file but not JASP

There are three sections that users can use to tweak JASP to suit their needs

Results

Advanced

Data Preferences o

Synchronize autormatically on data file save

Import threshold between Nominal or Scale == +

Missing Value List

Use default spreadsheet editor
Select custom editor  C:/Program Files/Microsoft Office/ Officel5/EXCEL.EXE

NaN
nan

NA

Reset

In the Data Preferences section users can:

Synchronize/update the data automatically when the data file is saved (default)

Set the default spreadsheet editor (i.e. Excel, SPSS etc)

Change the threshold so that JASP more readily distinguishes between nominal and scale data
Add a custom missing value code

3|Page
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Data . | Results Preferences

Table options
Results > prio
D Display exact p-values
Fix the number of decimals =~ == 2 +
Advanced >

Plot options
Use PPI of screen in plots: 26

Custom PPL: == 300 @<

Irmage background color
O white

Transparent

In the Results Preferences section users can:

e Set JASP to return exact p values i.e. P=0.00087 rather than P<.001

e Fix the number of decimals for data in tables — makes tables easier to read/publish
e Change the pixel resolution of the graph plots

e Select when copying graphs whether they have a white or transparent background.

Data . | Advanced Preferences
Results N User interface options
Zoom (%a): - 100 | 4
Advanced > scroll speed (pix/s): = +
Modules options

Developer mode (Beta version)

Logging options
Log to file

Max logfiles to keep: | == & | | show logs

In the Advanced Preferences section users will probably only ever change the user interface options
to change the system font size for accessibility and the scroll speeds.
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From v 0.10.0 JASP has a new streamlined interface to switch between the spreadsheet, analysis and
results views.

F
Descriptive Statistics o 0 J Results
Variables P s s
Descriptive Statistics
> %, Tnjuries
Descriptive Statistics
Injuries
. . Wales Tonga New Zealand Japan
Valid 1 il il Ll
Missing o 1] 1] 1]
Mean 4.00 6.9 391 291
Std. Deviation 118 114 181 1.76
Minimum 200 5.00 2.00 0.00
Maximum 6.00 9.00 7.00 6.00
Boxplots
S Injuries
< & Opponent
> < 104
Frequency tables (nominal and ordinal variables)
8
[ Plots
Distribution plots g 67
(=
=
< 4
Correlation plots
I Boxplots 2
Label Outliers
Color
. . 0-
. Boxplot element . 1 | | I
L i . L Wales Tonga New Zealand Japan
iolin elemen
Opponent
Jitter element
Statistics
E—

The vertical bars highlighted above allows for the windows to be dragged right or left by clicking and
dragging the three vertical dots |E|

The individual windows can also be completely collapsed using the right or left arrow icons > 4

If you hover the cursor over the Results a v icon appears, clicking on this provides a range of options
including:

e Remove all analyses from the output window
e Remove selected analysis

e Collapse the output

e Add notes to each output

e Copy

e Copy special (LaTeX code)

e Save image as
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The ‘add notes’ option allows the results output to be easily annotated and then exported to an HTML
file by going to File > Export Results.

ANOWA, - Number of England Injuries

Cases Sum of Squares df Idean Square F p
Cauntry code g7.08 3 32364 13.23 =001
Residual 97.82 40 2.445

Note. Type Il Sum of Squares

One way ANOVA of injuries received by England rugby players against Tonga, New Zealand, France and Wales

You can change the size of all the tables and graphs using ctrl+ (increase) ctrl- (decrease) ctrl= (back
to default size). Graphs can also be resized by dragging the bottom right corner of the graph.

As previously mentioned, all tables and figures are APA standard and can just be copied into any other
document. Since all images can be copied/saved with either a white or transparent background. This
can be selected in Preferences > Advanced as described earlier.

There are many further resources on using JASP on the website https://jasp-stats.org/

JASP 0.10.2 - Dr Mark Goss-Sampson
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DATA HANDLING IN JASP

For this section open England injuries.csv

All files must have a header label in the first row. Once loaded, the dataset appears in the window:

Y | # Opponent |\ Injuies | ==
1 Japan 4
2 Japan 1
3 Japan 3
4 Japan -]
5 Japan 2
& Japan 3
7 Japan 4
B Japan ]
g Japan 5
10 Japan 2
11 Japan 2
12 MNew Zealand 2
13 MNew Zealand 4

For large datasets, there is a hand icon which allows easy scrolling through the data. @

On import JASP makes a best guess at assigning data to the different variable types:

Nominal ‘ Ordinal ‘ Continuous \

If JASP has incorrectly identified the data type just click on the appropriate variable data icon in the
column title to change it to the correct format.

h &j Opponent \lru'urieg

% Scale
Japan 1
2 pa al Ordinal
3 Japan 3 & Mominal

If you have coded the data you can click on the variable name to open up the following window in
which you can label each code. These labels now replace the codes in the spreadsheet view. If you
save this as a .jasp file these codes, as well as all analyses and notes, will be saved automatically. This
makes the data analysis fully reproducible.
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In this window, you can also carry out simple filtering of data, for example, if you untick the Wales
label it will not be used in subsequent analyses.

Clicking this icon in the spreadsheet window opens up a much more comprehensive set of data

filtering options:

%G.e
& Cou...ode
& Number of... Injuries

0

Welcome to the drag and drop filter!

+-*fayf % =F< <>2AV | -

vl

oy

o’y

2y

[1v
min(Y)
max(y)
mean(Y)
round(Y)
length(Y)
median(y)

Using this option will not be covered in this document. For detailed information on using more
complex filters refer to the following link: https://jasp-stats.org/2018/06/27/how-to-filter-your-data-

in-jasp/

JASP 0.10.2 - Dr Mark Goss-Sampson
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By default, JASP plots data in the Value order (i.e. 1-4). The order can be changed by highlighting the
label and moving it up or down using the appropriate arrows:

Filter | Value Label
v 1 Tonga
v 2 New Zealand
v 3 France
v 4 Wales

a || Moveup

- Move down

Tl || Reverse order

Close

Injuries

104

Injuries

 »

1
Japan

| 1
New Zealand Tonga

Opponent

|
Wales

Filter | Value Label
\/ Japan Japan
\/ New Zealand New Zealand
\/ Tonga Tonga
\/ Wales Wales

Injuries

104

TREY

| I | |
Wales Tonga New Zealand Japan

Injuries

Opponent
Filter Value Label
Wales Wales
Tonga Tonga

New Zealand New Zealand

NN

Japan Japan

If you need to edit the data in the spreadsheet just double click on a cell and the data should open up
in the original spreadsheet i.e. Excel. Once you have edited your data and saved the original
spreadsheet JASP will automatically update to reflect the changes that were made, provided that you
have not changed the file name.

JASP 0.10.2 - Dr Mark Goss-Sampson
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JASP ANALYSIS MENU

Descriptives ~ T-Tests ANOVA  Regression Frequencies  Factor

The main analysis options can be accessed from the main toolbar. Currently (v0.10.0) offers the
following frequentist (parametric and non-parametric standard statistics) and alternative Bayesian
tests:

Descriptives Regression
e Descriptive stats e Correlation matrix
e Reliability analysis* e Linear regression
e Logistic regression
T-Tests Frequencies
e Independent e Binomial test
e Paired e Multinomial test
e Onesample e Contingency tables
e Log-linear regression*
ANOVA Factor
e Independent e Principal Component Analysis (PCA)*
e Repeated measures e Exploratory Factor Analysis (EFA)*
e ANCOVA e Confirmatory Factor Analysis (CFA)*
e MANOVA *

* Not covered in this document

BY clicking on the + icon on the top-right menu bar you can also access advanced options including;
Network analysis, Meta-Analysis, Structural Equation Modelling and Bayesian Summary stats.

Once you have selected your required analysis all the possible statistical options appear in the left
window and output in the right window.

Another feature introduced in v0.10.0 is the ability to rename and ‘stack’ the results output thereby
organising multiple analyses.

» Descriptive Statistics ® 0 ®
» ANOVA Q9 0
¥ Correlation Matrix Q@ 0O
10| Page
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The individual analyses can be renamed using the pen icon or deleted using the red cross.

> Descriptive Statistics of individual country injuries

» ANOVA - independent ANOVA of injuries

¥ Injury correlations - Spearmans

90
Q0 ®
Q00

By clicking on the analysis in this list will then take you to the appropriate part of the results output

window. They can also be rearranged by dragging and dropping each of the analyses.

The blue information icon provides detailed information on each of the statistical procedures used.

r@ JASP Help

=@ =/ |

|"|

Independent Samples T-Test

The independent samples t-test allows you to test the null hypothesis
that the population means of two independent groups are egual

Assumptions

Continuous dependent variable

The observations in both groups are a random sample from
the population

The dependent variable is normally distributed in both
populations

The population variances in the two groups are
hamogeneous

Default Options

Hypothesis:

Group 1 # Group 2: Two-sided alternative hypathesis that
the population means are equal

Group 1 = Group 2: One-sided alternative hypothesis that
the population mean of Group 1 is larger than the
papulation mean of Group 2

Group 1 = Group 2: One-sided alternative hypothesis that
the population mean of Group 1 is smaller than the
papulation mean of Group 2

Equality of Variances:

Assume equal: Assume that the variances of the two
groups are equal. The pooled variance is used as an
estimate of the population variance.

Mo assumption: Do not assume that the variances of the
two groups are equal. The degrees of freedom will be
computed using the Welch approximation.

Repart both: Report results assuming and not assuming the
equality of variances.

Missing Values:

JASP 0.10.2 - Dr Mark Goss-Sampson
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DESCRIPTIVE STATISTICS

Presentation of all the raw data is very difficult for a reader to visualise or to draw any inference on.
Descriptive statistics and related plots are a succinct way of describing and summarising data but do
not test any hypotheses. There are various types of statistics that are used to describe data:

e Measures of central tendency
e Measures of dispersion

e Percentile values

o Measures of distribution

e Descriptive plots

In order to explore these measures, load Descriptive data.csv into JASP. Go to Descriptives >
Descriptive statistics and move the Variable data to the Variables box on the right.

Y | # Gowp |\ variable @ = :
1 Group 1 26.4 & Group Variables m
. > \ Variable

2 Group 1 B4

3 Group 1 8.5

4 Group 1 229

5 Group 1 21.7

6 Group 1 141

7 Group 1 138

8 Group 1 15
Split

] Group 1 20.5 » |

10 Group 1 21.7

11 Group 1 323

17 Group 1 8.7

The Statistics menu can now be opened to see the various options available.

¥ Statistics

Percentile Values Central Tendency
Quartiles Mean
Cut points for: 4 equal groups Median
Percentiles: Mode

Sum

Dispersion Distribution
S. E. mean Std.deviation Skewness
MAD IOR Kurtosis
Variance Range Shapiro-Wilk test

Minimum Maxirnum

12| Page
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CENTRAL TENDENCY.

This can be defined as the tendency for variable values to cluster around a central value. The three
ways of describing this central value are mean, median or mode. If the whole population is considered
we the term population mean / median/mode is used. If a sample/subset of the population is being
analysed the term sample mean/ median/mode is used. The measures of central tendency move
toward a constant value when the sample size is sufficient to be representative of the population.

In the Statistics options make sure that everything is unticked apart from mean, median and mode.

Descriptive Statistics
Central Tendency -
Yariable
Mean

Medin Vz_llld_ 210
Missing 0
Mode Mean 17.71
sum Median 17.90
Mods 20.00

The mean, M or X (17.71) is equal to the sum of all the values divided by the number of values in the
dataset i.e. the average of the values. It is used for describing continuous data. It provides a simple
statistical model of the centre of distribution of the values and is a theoretical estimate of the ‘typical
value’. However, it can be influenced heavily by ‘extreme’ scores.

The median, Mdn (17.9) is the middle value in a dataset that has been ordered from the smallest to
largest value and is the normal measure used for ordinal or non-parametric continuous data. Less
sensitive to outliers and skewed data

The mode (20.0) is the most frequent value in the dataset and is usually the highest bar in a distribution
histogram

DISPERSION

In the Statistics options make sure that the following options are ticked

Dispersion
5. E. mean Std.deviation
MAD IQR
\Variance Range

Minimum Maxirmum

Standard deviation, S or SD (6.94) is used to quantify the amount of dispersion of data values around
the mean. A low standard deviation indicates that the values are close to the mean, while a high
standard deviation indicates that the values are dispersed over a wider range.

13 |Page
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Variance (S* = 48.1) is another estimate of how far the data is spread from the mean. It is also the
square of the standard deviation.

The standard error of the mean, SE (0.24) is a measure of how far the sample mean of the data is
expected to be from the true population mean. As the size of the sample data grows larger the SE
decreases compared to S and the true mean of the population is known with greater specificity.

MAD, median absolute deviation, a robust measure of the spread of data. It is relatively unaffected
by data that is not normally distributed. Reporting median +/- MAD for data that is not normally
distributed is equivalent to mean +/- SD for normally distributed data.

IQR - Interquartile Range is similar to the MAD but is less robust (see Boxplots).

Confidence intervals (Cl), although not shown in the general Descriptive statistics output, these are
used in many other statistical tests. When sampling from a population to get an estimate of the mean,
confidence intervals are a range of values within which you are n% confident the true mean is
included. A 95% Cl is, therefore, a range of values that one can be 95% certain contains the true mean
of the population. This is not the same as a range that contains 95% of ALL the values.

For example, in a normal distribution, 95% of the data are expected to be within £ 1.96 SD of the mean
and 99% within + 2.576 SD.

95% Cl =M £ 1.96 * the standard error of the mean.

Based on the data so far, M = 17.71, SE = 0.24, this will be 17.71 £ (1.96 * 0.24) or 17.71 £ 0.47.

Therefore the 95% Cl for this dataset is 17.24 - 18.18 and suggests that the true mean is likely to be
within this range 95% of the time

QUARTILES

In the Statistics options make sure that everything is unticked apart from Quartiles.

Descriptive Statistics

Percentile Values Variahle
4 Quartiles

Ga Yalid 210
Cut points for: 4 equal groups Missing i
Tt o 25th perc ent? (=] 13.05
&0th percentile 17.480
T5th percentile 22.30

Quartiles are where datasets are split into 4 equal quarters, normally based on rank ordering of
median values. For example, in this dataset

1]1]2]2[3]3]4]4a]4]4a] 5 [5|5][6]7] 8 |8]9]10]10]10
25% 50% 75%
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The median value that splits data by 50% = 50th percentile =5

The median value of left side = 25th percentile = 3
The median value of right side = 75th percentile = 8

From this the Interquartile range (IQR) range can be calculated, this is the difference between the 75th
and 25th percentiles i.e. 5. These values are used to construct the descriptive boxplots later. The IQR
can also be shown by ticking this option in the Dispersion menu.

DISTRIBUTION

Skewness describes the shift of the distribution away from a normal distribution. Negative skewness
shows that the mode moves to the right resulting in a dominant left tail. Positive skewness shows
that the mode moves to the left resulting in a dominant right tail.

A A

Negative skewness Positive skewness

Kurtosis describes how heavy or light the tails are. Positive kurtosis results in an increase in the
“pointiness” of the distribution with heavy (longer) tails while negative kurtosis exhibit a much more
uniform or flatter distribution with light (shorter) tails.

+ kurtosis

Normal

- kurtosis
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In the Statistics options make
Shapiro-Wilk test.

Skewness

Shapiro-Wilk test

sure that everything is unticked apart from skewness, kurtosis and

Descriptive Statistics

“ariable
Walid 310
Missing 0
Skewness -0.004
Sid. Error of Skewness 0036
Kuriosis -0.410
Sid. Error of Kurtosis 0172
Shapiro-Wilk 0.5585
P-value of Shapira-Wilk 0032

We can use the Descriptives output to calculate skewness and kurtosis. For a normal data distribution,
both values should be close to zero. The Shapiro-Wilk test is used to assess whether or not the data is
significantly different from a normal distribution. (see - Exploring data integrity in JASP for more

details).

DESCRIPTIVE PLOTS IN JASP

Currently, JASP produces four main types of descriptive plots:

Distribution plots
Correlation plot

Boxplots — with 3 options
Boxplot Element
o Violin Element
Jitter Element

Again, using Descriptive data.csv with the variable data in the Variables box, go to the statistics
options and under Plots tick Distribution plots, Boxplots — Boxplot Element and Q-Q plots.

¥ Plots

Distribution plots
Display density
Correfation plots
Boxplots
Label Qutliers
Color
Boxplot elermnent
Violin element

Jitter element

Q-Q plots

JASP 0.10.2 - Dr Mark Goss-Sampson
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The Distribution plot is based on splitting the data into frequency bins, this is then overlaid with the
distribution curve. As mentioned before, the highest bar is the mode (most frequent value of the
dataset. In this case, the curve looks approximately symmetrical suggesting that the data is
approximately normally distributed. The second distribution plot is from another dataset which shows

that the data is positively skewed.

=
7
-
[14]
(]
[ T T T 1
0 10 20 30 40
Variable
=
‘W
[y
1 4]
(]

The boxplots visualise a number of statistics described above in one plot:

e Median value

e 25and 75% quartiles

e Interquartile range (IQR) i.e. 75% - 25% quartile values

e  Maximum and minimum values plotted with outliers excluded
e Qutliers are shown if requested

17| Page
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Outlier
. »
Maximum value =

— Top 25%

J\

75% quartile

Median value ™~ IQR

J\

25% quartile

- Bottom 25%

Minimum value -

Go back to the statistics options, in Descriptive plots tick both Boxplot and Violin Element, look at how
the plot has changed. Next tick Boxplot, Violin and Jitter Elements. The Violin plot has taken the
smoothed distribution curve from the Distribution plot, rotated it 90° and superimposed it on the
boxplot. The jitter plot has further added all the data points.

T
20

T
10

Boxplot + Violin plot Boxplot + Violin + Jitter plot
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A Q-Q plot (quantile-quantile plot) can be used to visually assess if a set of data comes from a normal
distribution. Q-Q plots take the sample data, sort it in ascending order, and then plot them against
quantiles (percentiles) calculated from a theoretical distribution. If the data is normally distributed,
the points will fall on or close to the 45-degree reference line. If the data is not normally distributed,
the points will deviate from the reference line.

Q-Q Plot
Variable
4 —

Standardised Residuals
o
[

I T T T 1
-4 -2 0 2 4

Theoretical Quantiles

SPLITTING DATA FILES

If there is a grouping variable (categorical or ordinal) descriptive statistics and plots can be produced
for each group. Using Descriptive data.csv with the variable data in the Variables box now add Group
to the Split box.

Variables

\ Yariable E]

Split
& Group ' 5
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The output will be as follows:

Descriptive Statistics ¥
“ariable

Group 1 Group 2
Walid Ky 4] 405
Missing 0 0
iean 16.021 18787
Median 15.800 19.400
Mode 20.000 20.200
Sid. Deviation 6.424 7.040
Variance 41,264 4% 555
Skewness 0.200 —0.176
Sid. Error of Skewness 0.137 0110
Kurtosis -0.101 —0.397
Sid. Error of Kurtosis 0.274 0.2149
Minimum 1.100 0.200
Maximum 35.800 36.500

= =
2 2
L4 [14]
a a
I T T T 1
0 10 20 30 40
Variable
40
30
@
& 20
@
==
10
[}_

I
Group 1

Group
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EXPLORING DATA INTEGRITY

Sample data is used to estimate parameters of the population whereby a parameter is a measurable
characteristic of a population, such as a mean, standard deviation, standard error or confidence
intervals etc.

What is the difference between a statistic and a parameter? If you randomly polled a selection of
students about the quality of their student bar and you find that 75% of them were happy with it. That
is a sample statistic since only a sample of the population were asked. You calculated what the
population was likely to do based on the sample. If you asked all the students in the university and
90% were happy you have a parameter since you asked the whole university population.

Bias can be defined as the tendency of a measurement to over- or under-estimate the value of a
population parameter. There are many types of bias that can appear in research design and data
collection including:

e Participant selection bias — some being more likely to be selected for study than others

e Participant exclusion bias - due to the systematic exclusion of certain individuals from the
study

e Analytical bias - due to the way that the results are evaluated

However statistical bias can affect a) parameter estimates, b) standard errors and confidence intervals
or c) test statistics and p values. So how can we check for bias?

IS YOUR DATA CORRECT?

Outliers are data points that are abnormally outside all other data points. Outliers can be due to a
variety of things such as errors in data input or analytical errors at the point of data collection Boxplots
are an easy way to visualise such data points where outliers are outside the upper (75% + 1.5 * IQR)
or lower (25% - 1.5 * IQR) quartiles

« outlier

Max —— 3
Boxplots show:

— Top 25% e Median value

e 25 & 75% quartiles

e IQR —Inter quartile range

e Max & min values plotted
with outliers excluded

75% quartile

JL

— |QR e Qutliers shown if requested
Median
5
o .
| 25% quartile L Bottom
Min 1 25%
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Load Exploring Data.csv into JASP. Under Descriptives > Descriptive Statistics, add Variable 1 to the
Variables box. In Plots tick the following Boxplots, Label Outliers, and BoxPlot Element.

% Group Variables
% Variable 2 > “ Variable 1
“ Varible 3

Split

Frequency tables (nominal and ordinal variables)
¥ Plots

Distribution plots

Correlation plots
Boxplots
Label Qutliers
Color
Boxplot element

Violin element

Jitker element

The resulting Boxplot on the left looks very compressed and an obvious outlier is labelled as being in
row 38 of the dataset. This can be traced back to a data input error in which 91.7 was input instead of
917. The graph on the right shows the BoxPlot for the ‘clean’ data.
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How you deal with an outlier depends on the cause. Most parametric tests are highly sensitive to
outliers while non-parametric tests are generally not.

Correct it? — Check the original data to make sure that it isn’t an input error, if it is, correct it, and
rerun the analysis.

Keep it? - Even in datasets of normally distributed, data outliers may be expected for large sample
sizes and should not automatically be discarded if that is the case.

Delete it? — This is a controversial practice in small datasets where a normal distribution cannot be
assumed. Outliers resulting from an instrument reading error may be excluded but it should be verified
first.

Replace it? — Also known as winsorizing. This technique replaces the outlier values with the relevant
maximum and/or minimum values found after excluding the outlier.

Whatever method you use must be justified in your statistical methodology and subsequent analysis.

WE MAKE MANY ASSUMPTIONS ABOUT OUR DATA.

When using parametric tests, we make a series of assumptions about our data and bias will occur if
these assumptions are violated, in particular:

e Normality
e Homogeneity of variance or homoscedasticity

Many statistical tests are actually an omnibus of tests of which some will check these assumptions.
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TESTING THE ASSUMPTION OF NORMALITY

Normality does not mean necessarily that the data is normally distributed per se but it is whether or
not the dataset can be well modelled by a normal distribution. Normality can be explored in a variety
of ways:

o Numerically
e Visually / graphically
e  Statistically

Numerically we can use the Descriptives output to calculate skewness and kurtosis. For a normal data
distribution, both values should be close to zero. To determine the significance of skewness or kurtosis
we calculate their z-scores by dividing them by their associated standard errors:

Skewness 7 = skewness Kurtosis , = kurtosis
z "~ Skewness standard error z " kurtosis standard error

Z score significance:  p<0.05 if z >1.96 p<0.01 if z >2.58 p<0.001 if z >3.29

Using Exploring data.csv, go to Descriptives>Descriptive Statistics move Variable 3 to the Variables
box, in the Statistics drop-down menu select Mean, Std Deviation, Skewness and as shown below with
the corresponding output table.

¥ Statistics Descriptive Statistics

Percentile Values Central Tendency “ariable 3
Quartiles Mean
Cut points for: 4 equal groups Median Walid 50
Percentiles: Mode Missing 0
< Mean 0.393
um o

Std. Deviation 0.673
Dispersion Distribution Skewness 0.839
5td.deviation Minirnum Skewness Std. Error of Skewness 0.337
Variance Maximum Kurtosis Kurtosis -0.407
Range S. E. mean Shapiro-Wilk test Std. Error of Kurtosis 0.6R2

It can be seen that both skewness and kurtosis are not close to 0. The positive skewness suggests that
data is distributed more on the left (see graphs later) while the negative kurtosis suggests a flat
distribution. When calculating their z scores it can be seen that the data is significantly skewed p<0.05.

Skewness Z = 089 _ 2.49 Kurtosis Z = 0407 _ 0.614
0337 0.662

[As a note of caution skewness and kurtosis many appear significant in large datasets even though the
distribution is normal.]

Now add Variable 2 to the Variables box and in Plots tick Distribution plot. This will show the following
two graphs:
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It is quite easy to visualise that Variable 2 has a symmetrical distribution. Variable 3 is skewed to the
left as confirmed by the skewness Z score.

Another graphical check for normality is a Q-Q plot. Q-Q plots are available in Descriptives and are
also produced as part of the Assumption Checks used in linear regression and ANOVA. Q-Q plots show
the quantiles of the actual data against those expected for a normal distribution.

If data are normally distributed all the points will be close to the diagonal reference line. If the points
‘sag’ above or below the line there is a problem with kurtosis. If the points snake around the line then
the problem is skewness. Below are Q-Q plots for Variables 2 and 3. Compare these to the previous
distribution plots and the skewness/kurtosis z scores above.

Variable 2 _ Variable 3

14

Standardized Residuals
[a=]
|
Standardized Residuals

3 -2 -

I T T T T T

-3 -2 -1 0 1 2 -1 0 1 2 3
Theoretical Quantiles Theoretical Quantiles

o -
|

(%]
1

A% ]

The Shapiro-Wilk test is a statistical way used by JASP to check the assumption of normality. It is also
used in the Independent (distribution of the two groups) and Paired (distribution of differences
between pairs) t-tests. The test results in a W value; where small values indicate your sample is not
normally distributed (the null hypothesis that your population is normally distributed if your values
are under a certain threshold can, therefore, be rejected).
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Descriptive Stafistics

el Variable 2 Variable 2
Skewness
) Walid &0 &0
Kurtoss Missing 0 0
Shapiro-Wik test Shapiro-Wilk 0932 0825
P-value of Shapira-Wilk 0850 = 001

In Descriptives, the Shapiro-Wilk test can be selected in the Distribution tests. The Shapiro-Wilk
output table shows no significant deviation in normality for Variable 2 but a significant deviation
(p<.001) for Variable 3.

The most important limitation is that the test has can be biased by sample size. The larger the sample,
the more likely you’ll get a statistically significant result.

Testing the assumption of normality — A cautionary note!

For most parametric tests to be reliable, one of the assumptions is that the data is approximately
normally distributed. A normal distribution peaks in the middle and is symmetrical about the mean.
However, data does not need to be perfectly normally distributed for the tests to be reliable.

So, having gone on about testing for normality — is it necessary?

The Central Limit Theorem states that as the sample size gets larger i.e. >30 data points the
distribution of the sampling means approaches a normal distribution. So the more data points you
have the more normal the distribution will look and the closer your sample mean approximates the
population mean.

Large datasets may result in significant tests of normality i.e. Shapiro-Wilk or significant skewness and
kurtosis z-scores when the distribution graphs look fairly normal. Conversely, small datasets will
reduce the statistical power to detect non-normality.

However, data that definitely does not meet the assumption of normality is going to result in poor
results for certain types of test (i.e. ones that state that the assumption must be met!). How closely
does your data need to be normally distributed? This is a judgment call best made by eyeballing the
data.

WHAT DO | DO IF MY DATA IS REALLY NOT NORMALLY DISTRIBUTED?

Transform the data and redo the normality checks on the transformed data. Common transformations
include taking the log or square root of the data.

Use non-parametric tests since these are distribution-free tests and can be used instead of their
parametric equivalent.
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TESTING HOMOGENEITY OF VARIANCE

Levene’s test is commonly used to test the null hypothesis that variances in different groups are equal.
The result from the test (F) is reported as a p-value, if not significant then you can say that the null
hypothesis stands — that the variances are equal; if the p-value is significant then the implication is
that the variances are unequal. Levene’s test is included in the Independent t-test and ANOVA in
JASP as part of the Assumption Checks.

Using Exploring data.csv, go to T-Tests>Independent Samples t-test move Variable 1 to the Variables
box and Group to the Grouping variable and tick Assumption Checks > Equality of variances.

% Variable 2 Dependent Variables | oK |
% Variable 3 P || Variable1

Grouping Variable
> ‘ o Group
Assumption Checks Missing Values
Normality O Excude cases analysis by analysis
Equality of variances Exclude cases listwise

Test of Eguality of Varances (Levene's)

F df p

Variable 1 0.218 1 0.643

In this case, there is no significant difference in variance between the two groups F (1) =0.218, p=.643.

The assumption of homoscedasticity (equal variance) is important in linear regression models as is
linearity. It assumes that the variance of the data around the regression line is the same for all
predictor data points. Heteroscedasticity (the violation of homoscedasticity) is present when the
variance differs across the values of an independent variable. This can be visually assessed in linear
regression by plotting actual residuals against predicted residuals
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¥ Plots

Residuals Plots
Residuals vs. dependent

Residuals vs. covariates
Residuals vs. predicted
Residuals vs. histogram

St

[=1)

dEed resiauals

ol

-0 plot standardized residuals

Partial plots

If homoscedasticity and linearity are not violated there should be no relationship between what the
model predicts and its errors as shown in the graph on the left. Any sort of funnelling (middle graph)
suggests that homoscedasticity has been violated and any curve (right graph) suggests that linearity
assumptions have not been met.
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DATA TRANSFORMATION

The ability to compute new variables or to transform data was introduced in version 0.9.1. In
some cases, it may be useful to compute the differences between repeated measures or, in
order to make a dataset more normally distributed, you can apply a log transform for

example. When a dataset is opened there will be a plus sign (+) at the end of the columns.

= ||
- | Li- - L2 Sa | e

Descriptives T-Tests AMOVA Regression Frequencies Factor
Y | SGowp | varabler | % variable2 | %, variable3 I +

il 1 912 2.78 0.29 k

2 1 826 4,80 0.55

3 1 1004 6.79 0.47

4 1 982 6.24 1.58

5 1 920 B.59 0.76

& 1 814 5.86 0.76

Clicking on the + opens up a small dialogue window where you can;

e Enter the name of a new variable or the transformed variable
e Select whether you enter the R code directly or use the commands built into JASP
e Select what data type is required

Create Computed Column

MName:

R |

“ Scale| gl Ordinal & Nominal & Text

Create

Once you have named the new variable and chose the other options — click create.
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If you choose the manual option rather than the R code, this opens all the built-in create and
transform options. Although not obvious, you can scroll the left and right-hand options to see
more variables or more operators respectively.

+* i A% =< <>2AV | =

4

&G..p lv|
“Var.el —_ Oy
% Var..e2 w O’y
% Var..e3 >y
+ Di.-3 Computed columns code dear(ed) H?
R Compute column ? %

For example, we want to create a column of data showing the difference between variable 2
and variable 3. Once you have entered the column name in the Create Computed Column
dialogue window, its name will appear in the spreadsheet window. The mathematical
operation now needs to be defined. In this case drag variable 2 into the equation box, drag
the ‘minus’ sign down and then drag in variable 3.

Diff 2-3
+-* A B =<K <D>2AV | -
&G..p S Var.e2- % Var.e3 Iyl
“Var.el / _ Gy
% Var...e 2 w Oy
% Var..e 3 >y
A Di..-3 Iy
ﬁ R Compute column ? %
Y  SGowp | varablet | Variable2 | %, Variable3 | %, JfiDiff2-3 +
1|1 912 278 0.29
2 |1 826 489 0.55
3 |1 1004 6.79 0.47

If you have made a mistake, i.e. used the wrong variable or operator, remove it by dragging
the item into the dustbin in the bottom right corner.
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entered.

When you are happy with the equation/operation, click compute column and the data will be

Diff 2-3
t-r A% =< <>2AV | -

&G..p “Var.e2- % Var.e3 vl
wVar.el — oy
“Var..e2 @' Oy
“Var..e3 : ZY
“Di.-3 Computed columns code applied l'lhf
iR Compute column ? x
Y | Scouw | variablel | % variable2 | % variable3 | %, fiDiff 23 +

1 1 012 2.78 0.29 249

2 |1 826 4.80 0.55 4.34

3 |1 1004 6.79 0.47 6.32

Log10 Variable 1

+* A% =< <>2 AV | -

If you decide that you do not want to keep the derived data, you can remove the column by
clicking the other dustbin icon next to the R.

Another example is to do a log transformation of the data. In the following case variable 1 has
been transformed by scrolling the operators on the left and selecting the log10(y) option.
Replace the “y” with the variable that you want to transform and then click Compute column.
When finished, click the X to close the dialogue.

log(y

:Ear: | lesto(svar.e1) |ug§:y;
“ Var..e 2 — log10(Y)
“Var.e3 Wﬂ logb(Y)
“ Log10..ble 1 Computed columns code applied exp(Y)
Y |#Gowp | Yvarablel | % variablez | % variable3 | % filogl0 Variable 1 4

1 (1 912 2.78 029 2.95999

2 ! L 489 0.55 291698

3 1 1004 6.79 047 3.00173
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The two graphs below show the untransformed and the logl0 transformed data. The
obviously skewed data has been transformed into a profile with a more normal distribution

Density

| | | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5

Untransformed

Density

| | | | | | |
-2 -1.5 -1 -0.5 0 0.5 1

Log10 transformed

The Export function will also export any new data variables that have been created.

JASP 0.10.2 - Dr Mark Goss-Sampson
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ONE SAMPLE T-TEST

Research is normally carried out in sample populations, but how close does the sample reflect the
whole population? The parametric one-sample t-test determines whether the sample mean is
statistically different from a known or hypothesized population mean.

The null hypothesis (H,) tested is that the sample mean is equal to the population mean.

ASSUMPTIONS
Three assumptions are required for a one-sample t-test to provide a valid result:

o The test variable should be measured on a continuous scale.

e The test variable data should be independent i.e. no relationship between any of the data
points.

e The data should be approximately normally distributed

e There should be no significant outliers.

RUNNING THE ONE SAMPLE T-TEST

Open one sample t-test.csv, this contains two columns of data representing the height (cm) and body
masses (kg) of a sample population of males used in a study. In 2017 the average adult male in the UK
population was 178 cm tall and has a body mass of 83.6 kg.

Go to T-Tests > One-Sample t-test and in the first instance add height to the analysis box on the right.
Then tick the following options and add 178 as the test value:

Tests Additional Statistics
Student Location parameter
Wilcoxon signed-rank Confidence interval 95 O
Z Test Effect Size
Test value: 178 Confidence intenval 25 %
Std. deviation: |1 Descriptives
Alt. Hypothesis Descriptives plots
O + Test value Confidence interval 95 %
~ Tect value Vovk-Sellke maximum p-ratio
= Test value
Assumption checks Missing Values
Mormality (O Exclude cases analysis by analysis

Exclude cases listwise
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UNDERSTANDING THE OUTPUT

The output should contain three tables.

Test of Marmality (Shapiro-Wilk)
W p

height 0.969 0.507

Note. Significant resulis suggest a
deviation from narmality.

The assumption check of normality (Shapiro-Wilk) is not significant suggesting that the heights are
normally distributed, therefore this assumption is not violated. If this showed a significant difference
the analysis should be repeated using the non-parametric equivalent, Wilcoxon’s signed-rank test
tested against the population median height.

One Sample T-Test ¥

1 df p Iean Difference Cohen's d

height -0.382 22 0.70g —-0.391 -0.030

MNote. Student's -test.
MNote. For the Student t-test, location parameter is given by mean difference d.
MNote. For the Student t-test, effect size is given by Cohen's d.

MNaote. For all tests, the altermative hypothesis specifies that the population mean is
different from 173.

This table shows that there are no significant differences between the means p =.706

Descriplives

M IMean sD SE

height 23.000 177609 4915 1.025

The descriptive data shows that the mean height of the sample population was 177.6 cm compared
to the average 178 cm UK male.

Repeat the procedure by replacing height with mass and change the test value to 83.6.

Test of Mormality (Shapira-Wilk)
W B

mass 0941 0135

MNote. Significant resulis suggesta
deviation from narmality.
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The assumption check of normality (Shapiro-Wilk) is not significant suggesting that the masses are
normally distributed.

One Sample T-Test

t df p Wean Difference Cohen's d

mass -7.159 22 = 001 -10.487 -1.403

Mote. Student's -test.
MNote. For the Student t-test, location parameter is given by mean difference a.
MNote. For the Student t-test, effect size is given by Cohen's d.

MNote. For all tests, the alternative hypothesis specifies that the population mean is
differant from 33.4.

This table shows that there is a significant difference between the mean sample (72.9 kg) and
population body mass (83.6 kg) p <.001

Descriptives

M Iean sD SE

mass 23.000 T2.913 7.025 1.465

REPORTING THE RESULTS

A one-sample t-test showed no significant difference in height compared to the population mean (t
(22) = -0.382, p= .706), however, the participants were significantly lighter than the UK male

population average (t (22) =-7.159, p<.001).
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BINOMIAL TEST

The binomial test is effectively a non-parametric version of the one-sample t-test for use with
dichotomous (i.e. yes/no) categorical datasets. This tests whether or not the sample frequency is
statistically different from a known or hypothesized population frequency.

The null hypothesis (H,) tested is that the sample data frequency is equal to the expected population
frequency.

ASSUMPTIONS

Three assumptions are required for a binomial test to provide a valid result:
e The test variable should be a dichotomous scale (such as yes/no, male/female etc.).
e The sample responses should be independent
e The sample size is less, but representative of the population

RUNNING THE BINOMIAL TEST

Open binomial.csv, this contains one column of data showing the number of students using either a
Windows laptop or a MacBook at University. In January 2018, when comparing just the two operating
systems, the UK market share of Windows was 86% and Mac 10S 14%.3

Go to Frequencies >Binomial test. Move the Laptop variable to the data window and set the Test value
to 0.86 (86%). Also, tick Descriptive plots.

v Binomial Test ®© 00

—p & Laptop

Test value: 0.86

Alt. Hypothesis Additional Statisics
O + Test value Confidence interval
> Test value Interval | 95 %
< Test value Vovk-Sellke maximum p-ratio
Plots

Descriptive plots
Confidence interval 95 %

3 https://www.statista.com/statistics/268237/global-market-share-held-by-operating-systems-since-
2009/
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The following table and graph show that the frequencies of both laptops are significantly less than
86%. In particular, these students are using significantly fewer Windows laptops than was expected
compared to the UK market share.

Binomial Test
Level Counts Tatal Proportion p
Laptop Mac 36 80 0.404 =.001
Windows 53 89 0.596 = .001

MNote. Proportions tested against value: 0.26.

Mac Windows
1.004 1.004
D8G—-=-=-=-=-=-===---- D8G—-=-=-=-=-=-===----
0.00- 0.00-
| |
Mac Windows

Is this the same for MacBook users? Go back to the Options window and change the test value to
0.14 (14%). This time both frequencies are significantly higher than 14%. This shows that students
are using significantly more MacBooks than was expected compared to the UK market share.

Binomial Test
Level Counts Total Proportion p
Laptop Mac 36 a8 0.404 = 001
Windows 53 a8 0.596 = 001

Note. Proportions tested against value: 0.14.
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Mac Windows

1.00+ 1.00+

044 =mmmmmmmmmn 044 =mmmmmmmmmn

0.00- 0.00-
I I
Mac Windows

REPORTING THE RESULTS

The UK proportion of Windows and MacBook users was reported to be 86% and 14% respectively. In
a cohort of University students (N=90), a Binomial test revealed that the proportion of students using
Windows laptops was significantly less (59.6%, p<.001) and those using MacBooks significantly more
(40.4%, p<.001) than expected.
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MULTINOMIAL TEST

The multinomial test is effectively an extended version of the Binomial test for use with categorical
datasets containing three or more factors. This tests whether or not the sample frequency is
statistically different from a hypothesized population frequency (multinomial test) or known a known
frequency (Chi-square ‘goodness-of-fit’ test).

The null hypothesis (Ho) tested is that the sample frequency is equal to the expected population
frequency.

ASSUMPTIONS

Three assumptions are required for a multinomial test to provide a valid result:
e The test variable should be a categorical scale containing 3 or more factors
e The sample responses should be independent
e The sample size is less, but representative of the population

RUNNING THE MULTINOMIAL TEST

Open multinomial.csv. This contains three columns of data showing the number of different coloured
M&Ms counted in five bags. Without any prior knowledge, it could be assumed that the different
coloured M&Ms are equally distributed.

Go to Frequencies > Multinomial test. Move colour of the M&Ms to Factor and the observed number
of M&Ms to counts. Tick Descriptives and Descriptives Plots.

¥ Multinomial Test o 00
% Expected Factor
% & Colour
Counts
- “ Observed

Expected Counts

Test Values
(O Equal proportions (multinormial test)

Expected proportions (¥ test)

Additional Statistics Display
Descriptives O counts
Confidence interval 25 %% Proportions
Vovk-Dellke maximum p-ratio Plots

Descriptives plot
Confidence interval 93 %
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As can be seen in the Descriptive table, the test assumes an equal expectation for the proportions of
coloured M&Ms (36 of each colour). The Multinomial test results show that the observed distribution
is significantly different (p<.001) to an equal distribution.

Multinomial Test

X df p

Multinomial 35832 5 = .001

Descriptives

Colaur Dhserved Expected: Multinomial

Blus 31 36
Brown 63 36
Green 43 3G
Crange 14 36
Red 41 36
Yellow 22 36

Blue -
Brown—
Green—
Crange —

Red-

Yellow—

1
20 40 60 80
Observed counts

i
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CHI-SQUARE ‘GOODNESS-OF-FIT’ TEST.

However, further research shows that the manufacturer produces coloured M&Ms in different ratios:

Colour Blue Brown Green Orange Red Yellow
Proportion | 24 1 16 20 13 14

w

These values can now be used as the expected counts, so move the Expected variable to the Expected
Counts box. This automatically runs the x2 ‘goodness-of-fit’ test leaving the Hypothesis options greyed
out.

As can be seen in the Descriptives table, JASP has calculated the expected numbers of the different
coloured M&Ms based on the manufacturers reported production ratio. The results of the test show
that the observed proportions of the different coloured M&Ms are significantly different (x2 =74.5,
p<.001) to those proportions stated by the manufacturer.

Multinomial Test

X df P

Expected 74535 5 = 001

Descriptives

Colour Chserved

Expected: Expected

Blus 31 52
Brown 63 28
Ereen 43 35
Qrange 149 43
Red 41 28
Yellow 22 30
Blue -
Brown—
S Green-—
=]
[=]
O Orange—
Red-
Yellow—

T T T 1
20 40 80 80

Observed counts

= -
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MULTINOMIAL AND X? ‘GOODNESS-OF-FIT’ TEST.

JASP also provides another option whereby both tests can be run at the same time. Go back to the
Options window and only add Colour to the Factor and Observed to the Counts boxes, remove the
expected counts if the variable is still there. In Hypotheses now tick the x2 test. This will open up a
small spreadsheet window showing the colour and H, (a) with each cell have 1 in it. This is assuming
that the proportions of each colour are equal (multinomial test).

In this window, add another column which will automatically be labelled H, (b). The expected
proportions of each colour can now be typed in.

Test Values
Equal proportions (multinomial test)
) Expected proportions (2 test)
Ha (3) He (b) Add Colurnn
Blue |1 24 Delete Column
Brown |1 13 Reset
Green |1 16
Orange | 1 20
Red |1 13
Yellow |1 14

Now when the analysis is run, the results of the tests for the two hypotheses are shown. H, (a) is
testing the null hypothesis that the proportions of each colour are equally distributed, while H, (b) is
testing the null hypothesis that the proportions are the same as those expected. As can be seen, both
hypotheses are rejected. In particular, evidence indicates that the colours of plain M&M's do not
match the manufacturers published proportions.

Multimomial Test

¥ df p
Hz(a) 35832 5 = 001
He (b) 74535 5 = 001
Descriptives
Expected

Colour Observed Ho(a)  Holb)

Blue 31 36 52
Brown 63 36 28
Green 43 3G 35
Crange 14 3G 43
Red 41 36 28
Yellow 22 36 30
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COMPARING TWO INDEPENDENT GROUPS

INDEPENDENT T-TEST

The parametric independent t-test, also known as Student’s t-test, is used to determine if there is a
statistical difference between the means of two independent groups. The test requires a continuous
dependent variable (i.e. body mass) and an independent variable comprising 2 groups (i.e. males and
females).

This test produces a t-score which is a ration of the differences between the two groups and the
differences within the two groups:

mean group 1 — mean group 2

standard error of the mean dif ferences

(X1—X2) X = mean
[=
(51)2 (S0)2 S = standard deviation
N1 N2 n = number of data points

A large t-score indicates that there is a greater difference between groups. The smaller the t-score,
the more similarity there is between groups. A t-score of 5 means that the groups are five times as
different from each other as they are within each other.

The null hypothesis (H,) tested is that the population means from the two unrelated groups are equal

ASSUMPTIONS OF THE PARAMETRIC INDEPENDENT T-TEST
Group independence:

Both groups must be independent of each other. Each participant will only provide one data point for
one group only. For example participant 1 can only be in either a male or female group — not both.
Repeated measures are assessed using the Paired t-test.

Normality of the dependent variable:

The dependent variable should also be measured on a continuous scale and be approximately
normally distributed with no significant outliers. This can be checked using the Shapiro-Wilk test. The
t-test is fairly robust and small deviations from normality are normally acceptable. However, this is
not the case if the group sizes are very different. A rule of thumb is that the ratio between the group
sizes should be <1.5 (i.e. group A = 12 participants and group B = >8 participants).

If normality is violated you can try transforming your data (for example log values, square root values)
or, and if the group sizes are very different, use the Mann-Whitney U test which is a non-parametric
equivalent that does not require the assumption of normality (see later).
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Homogeneity of variance:

The variances of the dependent variable should be equal in each group. This can be tested using
Levene's Test of Equality of Variances.

Uneaqual variance Eaqual variance

. ™

™

™
™ ° .
. 4 .
™ . :
[ ] . s

¢ H *
H .
| .
-4 .

. :

1 2 1 2

If the Levene's Test is statistically significant, indicating that the group variances are unequal we can
correct for this violation by using an adjusted t-statistic based on the Welch method.

RUNNING THE INDEPENDENT T-TEST

Open Independent t-test.csv, this contains weight loss on a self-controlled 10-week diet between men
and women. Its good practice to check the Distribution and boxplots in Descriptives to visually check
for distribution and outliers.

Go to T-Tests > Independent Samples t-test and put weight loss in the Dependent variable box and
gender (independent variable) in the Grouping Variable box.

Dependent Variables QK
> A Weight loss

Grouping Variable

[ 2 |£; Gender
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In the analysis window tick the following options:

¥ Independent Samples T-Test

Tests
Student
Welch
Mann-Whitney

Alt. Hypothesis
) Group 1 # Group 2
Group 1 = Group 2
Group 1 < Group 2

Assurmption Checks
Mormality
Equality of varances

UNDERSTANDING THE OUTPUT

The output should consist of four tables and one graph. Firstly we need to check that the parametric

assumptions required are not violated.

Variahles
> %, Weight loss
Grouping Variable
Z &% Gender

Additional Statistics
Location parameter
Confidence interval 25 %o
Effact Size
O cohen's d
Glass' delta
Hedges' g
Confidence intenval 25 %%
Descriptives
Descriptives plots
Confidence interval 95 %
Vovk-Sellke maximum p-ratio
Missing Values
O Excude cases analysis by analysis
Exclude cases listwise

Test of Normality (Shapira-Wilk)

W p
‘Weight loss Females 0263 0232
hales 0.971 0310

Mote. Significant resulis suggest a deviation from

normality.

Shapiro-Wilk test shows that both groups have normally distributed data, therefore, the assumption
of normality is not violated. If one or both were significant you should consider using the non-

parametric equivalent Mann-Whitney test.

JASP 0.10.2 - Dr Mark Goss-Sampson
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Test of Equality of Variances (Levene's)

F df p

Weight loss 2278 1 0.135

Levene’s test shows that there is no difference in the variance, therefore, the assumption of
homogeneity of variance is not violated. If Levene’s test was significant Welch’s adjusted t-statistic,
degrees of freedom and p values should be reported.

Independent Samples T-Test

Test Statistic df p Mean Differencea SE Difference Cohen's d
Weight loss Student 6.160 85.000 =001 3.209 0.521 1.322
Welch 6.191 54.544 =.001 3.209 0.518 1.325

This table shows the two computed t-statistics (Student and Welch). Remember the t-statistic is
derived from the mean difference divided by the standard error of the difference. Both show that
there is a significant statistical difference between the two groups (p<.001) and Cohen’s d suggests
that this is a large effect.

Group Descriptives

Group M Wean sD SE
Weight loss Females 42 220 2242 0.346
Males 45 2720 2588 0.385
8 —_
w
w
L=
=
[=]
o
=
2 -
Femlales Malles
Gender

From the descriptive data, it can be seen that females had a higher weight loss than males.

REPORTING THE RESULTS

An independent t-test showed that females lost significantly more weight over 10 weeks dieting than
males t(85)=6.16, p<.001. Cohen’s d (1.322) suggests that this is a large effect.
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MANN-WITNEY U TEST
If you find that your data is not normally distributed (significant Shapiro-Wilk test result) or is ordinal

by nature, the equivalent non-parametric independent test is the Mann-Whitney U test.

Open Mann-Whitney pain.csv which contains subjective pain scores (0-10) with and without ice
therapy. NOTE: make sure that Treatment is categorical and pain score is ordinal. Go to T-Tests >
Independent t-tests and put pain score in the Dependent variable box and use Treatment as the
grouping variable.

In the analysis options only tick:

v" Mann-Whitney
v" Location parameter
v Effect size

There is no reason to repeat the assumption checks since Mann-Whitney does not require the
assumption of normality or homogeneity of variance required by parametric tests.

UNDERSTANDING THE OUTPUT

This time you will only get one table:

Independent Samples T-Test

W p Hodges-Lehmann Estimate Rank-Biserial Correlation

Pain scare 207.000 =< . 001 3.000 0.240
MNote. Mann-Whitney LU test.

The Mann-Whitney U-statistic (JASP reports this as W since it is an adaptation of Wilcoxon’s signed-
rank test) is highly significant. U=207, p<.001.

The location parameter, the Hodges—Lehmann estimate, is the median difference between the two
groups. The rank-biserial correlation (rs) can be considered as an effect size and is interpreted the
same as Pearson’s r, so 0.84 is a large effect size.

For non-parametric data, you should report median and MAD values as your descriptive statistics and
use boxplots instead of line graphs and confidence intervals, SD/SE bars. Go to Descriptive statistics,
put Pain score into the variable box and Split the file by Treatment.
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Descriptive Stafistics

Fain score
Contral lce
Yalid 15 15
Missing 0 0
Median 7.000 3.000
MAD 2.965 1.483

Boxplots
Pain score

10+

E_

Pain score

[
Control

REPORTING THE RESULTS

Treatment

A Mann-Whitney test showed that Ice therapy significantly reduces pain scores (Mdn = 3) compared

to the control group (Mdn = 7), U=207, p<.001.

JASP 0.10.2 - Dr Mark Goss-Sampson
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COMPARING TWO RELATED GROUPS

PAIRED SAMPLES T-TEST

As with the Independent t-test, there are both parametric and non-parametric options available in
JASP. The parametric paired-samples t-test (also known as the dependent sample t-test or repeated
measures t-test) compares the means between two related groups on the same continuous,
dependent variable. For example, looking at weight loss pre and post 10 weeks dieting.

mean of the differences between group pairs

The paired t statistic =
P the standard error of the mean differences

With the paired t-test, the null hypothesis (H,) is that the pairwise difference between the two
groups is zero.

ASSUMPTIONS OF THE PARAMETRIC PAIRED SAMPLES T-TEST
Four assumptions are required for a paired t-test to provide a valid result:

e The dependent variable should be measured on a continuous scale.

e The independent variable should consist of 2 categorical related/matched groups, i.e. each
participant is matched in both groups

e The differences between the matched pairs should be approximately normally distributed

e There should be no significant outliers in the differences between the 2 groups.

RUNNING THE PAIRED SAMPLES T-TEST

Open Paired t-test.csv in JASP. This contains two columns of paired data, pre-diet body mass and post
4 weeks of dieting. Go to T-Tests > Paired Samples t-test. Ctrl-click both variables and add them to the
analysis box on the right.

¥ Paired Samples T-Test Q 00

“ Pre diet body mass Variables

“, Post 4 weeks diet * Pre diet body mass Post 4 weeks diet
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In the analysis options tick the following:

Tests
Student

Wilcoxon signed-rank

Alt. Hypothesis

(O Measure 1 + Measure 2
Measure 1 > Measure 2

Measure 1 < Measure 2

Assumption Checks
Normality

Additional Statistics
Location parameter
Confidence interval 25
Effect Size
Confidence interval 295
Descriptives
Descriptives plots
Confidence interval 95 %
Vovk-Selke maximum p-ratio
Missing Values
(O Exclude cases analysis by analysis

Exclude cases listwise

UNDERSTANDING THE OUTPUT

The output should consist of three tables and one graph.

Test of Marmality (Shapiro-Wilk)

W p

Pre diet body mass -

Post 4 weeks dief

0.975 0124

Note. Significant results suggest a deviation from normality.

The assumption check of normality (Shapiro-Wilk) is not significant suggesting that the pairwise
differences are normally distributed, therefore the assumption is not violated. If this showed a
significant difference the analysis should be repeated using the non-parametric equivalent,

Wilcoxon’s signed-rank test.

Paired Samples T-Test

1

Mean Difference

SE Difference

Cohen's d

Pre diet body mass Post 4 weeks diet 13.039

7 < .001 3.782

0.290

1.475

MNote. Student’s -test.

This shows that there is a significant difference in body mass between the pre and post dieting
conditions, with a mean difference (location parameter) of 3.783kg. Cohen’s d states that this is a

large effect.

JASP 0.10.2 - Dr Mark Goss-Sampson
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The descriptive statistics and plot show that there was a reduction in body mass following 4 weeks of

dieting.

Descriptives
M Mean sSD SE
Pre diet body mass Ta 72525 8723 0.538
Post 4 weeks diet e 68.744 5.009 1.020
734
68—

I |
Fre diet body mass  Post 4 weeks diet

REPORTING THE RESULTS

On average participants lost 3.78 kg (SE: 0.29 kg) body mass following a 4-week diet plan. A paired
samples t-test showed this decrease to be significant (t (77) =13.039, p<.001). Cohen’s d suggests that
this is a large effect
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RUNNING THE NON-PARAMETRIC PAIRED SAMPLES TEST

WILCOXON'S SIGNED RANK TEST

If you find that your data is not normally distributed (significant Shapiro-Wilk test result) or is ordinal
by nature, the equivalent non-parametric independent test is the Wilcoxon’s signed-rank test. Open
Wilcoxon’s rank.csv. This has two columns one with pre-anxiety and post hypnotherapy anxiety scores
(from 0 - 50). In the dataset view make sure that both variables are assigned to the ordinal data type.

Go to T-Tests > Paired Samples t-test and follow the same instructions as above but now only tick the
following options:

¥ Paired Samples T-Test o 00
&, preanxiety Variables
% Post-anxiety r Pre-anxiety Post-anxiety
Tests Additional Statistics
Student Location parameater
Wilcoxon signed-rank Confidence interval 25 %
Effect Size
Alt. Hypothesis Confidence interval 25 %%
() Measure 1 + Measure 2 Descriptives
Measure 1 = Measure 2 Descriptives plots
Measure 1 < Measure 2 Confidence interval | 95 Y
Vovk-Selke maximum p-ratio

There will be only one table in the output:

Paired Samples T-Test

W p Hodges-Lehmann Estimate Rank-Biserial Carrelation

Pre-anxiety - Post-anxiety 322.000 =001 2.000 0.450
Note. Wilcoxon signed-rank test.

The Wilcoxon W-statistic is highly significant, p<0.001.

The location parameter, the Hodges—Lehmann estimate, is the median difference between the two
groups. The rank-biserial correlation (rs) can be considered as an effect size and is interpreted the
same as Pearson’s r, so 0.48 is a medium to large effect size.

Effect size Trivial Small Medium Large
Rank -biserial (rg) <0.1 0.1 0.3 0.5
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For non-parametric data, you should report median values as your descriptive statistics and use
boxplots instead of line graphs and confidence intervals, SD/SE bars.

Descriptive Stafistics

Pre-anxiety Fost-anxiety

Walid 20 20
Missing L] 0
MMedian 22000 15.000
Sid. Deviation 5766 3.307
MAD 7413 2565
35+
30
254
20+
154
10+ —_—
5 —
| 1
Pre-anxiety Post-anxiety

REPORTING THE RESULTS

A Wilcoxon's signed-rank test showed that hypnotherapy significantly reduces anxiety scores (Mdn =
15) compared to pre-therapy (Mdn =22) scores, W=322, p<.001.
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CORRELATION ANALYSIS

Correlation is a statistical technique that can be used to determine if, and how strongly, pairs of
variables are associated. Correlation is only appropriate for quantifiable data in which numbers are
meaningful, such as continuous or ordinal data. It cannot be used for purely categorical data for which
we have to use contingency table analysis (see Chi-square analysis in JASP).

Essentially do different variables co-vary? i.e. are changes in one variable reflected in similar changes
to another variable? If one variable deviates from its mean does the other variable deviate from its
mean in either the same or opposite direction? This can be assessed by measuring covariance,
however, this is not standardised. For example, we can measure the covariance of two variables which
are measured in meters, however, if we convert the same values to centimetres, we get the same
relationship but with a completely different covariance value.

Covariance =4.7 Covariance =470

0.15 0.25 0.35 0.45 15 25 35 45
Meters Centimeters

In order to overcome this, standardised covariance is used which is known as Pearson’s correlation
coefficient (or "r"). It ranges from -1.0 to +1.0. The closer r is to +1 or -1, the more closely the two
variables are related. If r is close to 0, there is no relationship. If r is (+) then as one variable increases
the other also increases. If r is (-) then as one increases, the other decreases (sometimes referred to
as an "inverse" correlation).

The correlation coefficient (r) should not be confused with R? (coefficient of determination) or R
(multiple correlation coefficient as used in the regression analysis).

The main assumption in this analysis is that the data have a normal distribution and are linear. This
analysis will not work well with curvilinear relationships.
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RUNNING CORRELATION

The analysis tests the null hypothesis (Ho) that there is no association between the two variables

From the example data open Jump height correlation.csv which contains 2 columns of data, jump
height (m) and explosive leg power (W). Firstly run the Descriptive statistics and check the boxplots

for any outliers.

To run the correlation analysis go to Regression > Correlation matrix. Move the 2 variables to the

analysis box on the right. Tick

Pearson,

Report significance,

Flag significant correlations and
Correlation matrix under Plots.

ANENENEN

¥ Correlation Matrix

Correlation Coefficient
Pearson
Spearman

Kendall's tau-b

Alt. Hypothesis
O Correlated

Correlated positively
Correlated negatively

= “ Jump height
% Leg power

Additional Options
Display pairwise table
Report significance
Flag significant correlations
Confidence intervals
Interval |95 %
Vovk-Sellke maximum p-ratio
Plots
Correlation Matrix
Densities for variables

Statistics

JASP 0.10.2 - Dr Mark Goss-Sampson

55| Page



UNDERSTANDING THE OUTPUT

The first table shows the correlation matrix with Pearson’s r value and its p-value. This shows a highly
significant correlation (p<.001) with a large r value close to 1 (r= 0.984) and that we can reject the null
hypothesis.

Pearson Correlations

Jump height Leg power

Jump height Fearson'sr —

p-value —
Leq power Fearson's r 0,284 —
p-value = 001 —

“p=.05 *p=.01 = p= 001

For simple correlations like this it is easier to look at the pairwise table (go back to analysis and tick
the Display pairwise table option. This replaces the correlation matrix in the results which may be
easier to read.

Pearson Correlations

Fearson'sr p

Jump height - Leg power 0.934=* = 001
*p=05**p=01"*p= 00

The Pearson’s r value is actually an effect size where <0.1 is trivial, 0.1 -0.3 is a small effect, 0.3 - 0.5
a moderate effect and >0.5 a large effect.

The plot provides a simple visualisation of this strong positive correlation (r = 0.984, p<.001)

450
400
350 - 2
300 -
250
200
150 -
100 -
50

Leg power

T T I
025 0.35 045

Jump height

[
015
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GOING ONE STEP FURTHER.

If you take the correlation coefficient r and square it you get the coefficient of determination (R?). This
is a statistical measure of the proportion of variance in one variable that is explained by the other
variable. Or:

R2= Explained variation / Total variation
R%is always between 0 and 100% where:

e 0% indicates that the model explains none of the variability of the response data around its
mean and

e 100% indicates that the model explains all the variability of the response data around its
mean.

In the example above r = 0.984, so R? = 0.968. This suggests that jump height accounts for 96.8% of
the variance in explosive leg power.

REPORTING THE RESULTS

Pearson’s correlation showed a significant correlation between jump height and leg power (r = 0.984,
p<.001) jump height accounting for 96.8% of the variance in leg power.

RUNNING NON-PARAMETRIC CORRELATION - Spearman’s and Kendall’s tau

If your data is ordinal or is continuous data that has violated the assumptions required for parametric
testing (normality and/or variance) you need to use the non-parametric alternatives to Pearson’s
correlation coefficient.

The alternatives are Spearman’s (rho) or Kendall’s (tau) correlation coefficients. Both are based on
ranking data and are not affected by outliers or normality/variance violations.

Spearman's rho is usually used for ordinal scale data and Kendall's tau is used in small samples or when
many values with the same score (ties). In most cases, Kendall’s tau and Spearman’s rank correlation
coefficients are very similar and thus invariably lead to the same inferences.

The effect sizes are the same as Pearson’s r. The main difference is that rho? can be used as an
approximate non-parametric coefficient of determination but the same is not true for Kendall’s tau.

From the example data open Non-parametric correlation.csv which contains 2 columns of data, a
creativity score and position in the ‘World’s biggest liar’ competition (thanks to Andy Field).

Run the analysis as before but now using Spearman and Kendall’s tau-b coefficients instead of
Pearson’s.
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Correlation Coefficient

Pearson
Spearman
Kendal's tau-b

Additional Options
Display pairwise table
Report significance
Flag significant correlations
Confidence intervals
Intenval | 95 B
Vovk-Sellke rmaximurm p-ratio

Alt. Hypothesis Plots

O correlated Correlation Matrix
Correlated positively Densities for variables
Correlated negatively Statistics
Correlation Table

Spearman kendall
rho p tau B p
Creativity - Position -0.373" 0.002 -0.300" 0.001

*p=.05 *p=.01, = p= 001

As can be seen there is a significant correlation between creativity scores and final position in the
‘World’s biggest liar’ competition, the higher the score the better the final competition position.
However, the effect size is only moderate.

4 - coam OO

Position

Creativity
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NOTE OF CAUTION.

Correlation really only give information on the strength of association. It gives no information on the
direction i.e. which variable causes the other to change. So it cannot be used to state the one thing
causes the other. Often a significant correlation means absolutely nothing and is purely by chance
especially if you correlate thousands of variables. This can be seen in the following strange
correlations:

Pedestrians killed in a collision with a railway train correlates with rainfall in Missouri:

Pearson Correlations

Pearson's r p

Train Deaths - Rainfall 0.923 =001

Rainfall

T T T 1
40 60 80 100 120 140
Train Deaths

Number of honey-producing bee colonies (1000’s) correlates strongly with the marriage rate in
South Carolina (per 1000 marriages)

Pearson Correlations

Pearson's r p

Honey bees - Marriage rate 0,538 =001

4 4 o
o = N W
1 1 1 I

9 [5)

Marriage rate

T T
22 24 286 28 3
Honey bees

M —
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REGRESSION

Whereas correlation tests for associations between variables, regression is the next step commonly
used for predictive analysis, i.e. to predict a dependent outcome variable from one (simple regression)
or more (multiple regression) independent predictor variables.

Regression results in a hypothetical model of the relationship between the outcome and predictor
variable(s). The model used is a linear one defined by the formula;

y=c+b*x+¢

e y=estimated dependent outcome variable score,
e C=constant,

e b =regression coefficient and

e x=score on the independent predictor variable

e & =random error component (based on residuals)

Linear regression provides both the constant and regression coefficient(s).
Linear regression makes the following assumptions:

1. Linear relationship: important to check for outliers since linear regression is sensitive to their
effects.

Independence of variables

Multivariate normality: requires all variables to be normally distributed

Homoscedasticity: homogeneity of variance of the residuals

Minimal multicollinearity /autocorrelation: when the independent variables/residuals are
too highly correlated with each other.

vk wnN

With regard to sample sizes, there are many different ‘rules of thumb’ in the literature ranging from
10-15 data points per predictor in the model i.e. 4 predictor variables will each require between 40
and 60 data points each to 50 +(8 * number of predictors) for each variable. So for 4 variables that
would require 82 data point for each variable. Effectively the bigger your sample size the better your
model.

SUMS OF SQUARES (Boring, but the basis of evaluating the regression model.)

Most regression analysis will produce the best model available, but how good is it actually and how
much error is in the model?

This can be determined by looking at ‘the goodness of fit’ using the sums of squares. This is a measure
of how close the actual data points are close to the modelled regression line.
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Values above the
line are positive

Values below the
line are negative

The vertical difference between the data points and the predicted regression line are known as the
residuals. These values are squared to remove the negative numbers and then summed to give SSk.
This is effectively the error of the model or the ‘goodness of fit’, obviously the smaller the value the
less error in the model.

§-—-—-9

Fe=—====8
1
1

The vertical difference between the data points and the mean of the outcome variable can be
calculated. These values are squared to remove the negative numbers and then summed to give the
total sum of the squares SSr. This shows how good the mean value is as a model of the outcome
scores.
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The vertical difference between the mean of the outcome variable and the predicted regression line
are now determined. Again these values are squared to remove the negative numbers and then
summed to give the model sum of squares (SSwm). This indicates how better the model is compared to
just using the mean of the outcome variable.

So, the larger the SSmthe better the model is at predicting the outcome compared to the mean value
alone. If this is accompanied by a small SSg the model also has a small error.

R? is similar to the coefficient of determination in correlation in that it shows how much of the
variation in the outcome variable can be predicted by the predictor variable(s).

R®=  SSw
SSk

In regression, the model is assessed by the F statistic based on the improvement in the prediction of
the model SSm and the residual error SSg. The larger the F value the better the model.

F= Mean SSm
Mean SSg
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SIMPLE REGRESSION
Regression tests the null hypothesis (H,) that there will be no significant prediction of the dependent
(outcome) variable by the predictor variable(s).

Open Rugby kick regression.csv. This dataset contains rugby kick data including distance kicked,
right/left leg strength and flexibility and bilateral leg strength.

Firstly go to Descriptives > Descriptive statistics and check the boxplots for any outliers. In this case,
there should be none, though it is good practice to check.

For this simple regression go to Regression > Linear regression and put distance into the Dependent
Variable (outcome) and R_Strength into the Covariates (Predictor) box. Tick the following options in
the Statistics options:

¥ Statistics

Regression Coeffidents

Estimates Model fit
From |5000 bootstraps R squared change
Confidence intervals 25 % Descriptives
Covariance rmatrix Part and partial correlations

Collinearity diagnostics

Residuals

Dublin-Watson
Casewise diagnostics
Standard residual = |3
Cook's distance > |0

All

UNDERSTANDING THE OUTPUT

You will now get the following outputs:

Model Summary
IModel R F= Adjusted R® RMSE Durbin-\Watson
1 0.784 0.614 0.574 h3.285 1.524

Here it can be seen that the correlation (R) between the two variables is high (0.784). The R? value of
0.614 tells us that right leg strength accounts for 61.4% of the variance in kick distance. Durbin-
Watson checks for correlations between residuals, which can invalidate the test. This should be above
1 and below 3 and ideally around 2.
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lodel Sum of Sguares df WMean Sguare F p
1 Regressian R3580 263 1 F3RA0 263 17.833 0.002
Residual 33621.061 1 3056.460
Total 87210923 12

The ANOVA table shows all the sums of squares mentioned earlier. With regression being the model
and Residual being the error. The F-statistic is significant p=0.002. This tells us that the model is a
significantly better predictor of kicking distance that the mean distance.

Report as F (1, 11) = 17.53, p<.001.

Coefficients
Madel Unstandardized Standard Ermor Standardized 1 p
1 {Intercept) 57.105 103.588 0.551 0.502

R_Strength 6.425 1534 0.734 4187 0.002

This table gives the coefficients (unstandardized) that can be put into the linear equation.
y=c+b*x

y = estimated dependent outcome variable score,
c = constant (intercept)

b = regression coefficient (R_strength)

X = score on the independent predictor variable

For example for a leg strength of 60 kg the distance kicked can be predicted by the following:
Distance = 57.105 + (6.452 * 60) =454.6 m

FURTHER ASSUMPTION CHECKS
In Plots checks, tick the following two options:

¥ Plots

Residuals Plots
Residuals vs. dependent

Residuals vs. covariates
Residuals vs. predicted
Residuals vs. histogram

Q-0 plot standardized residuals
Partial plots
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This will result in two graphs:
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This graph shows a balanced random distribution of the residuals around the baseline suggesting that
the assumption of homoscedasticity has not been violated. (See Exploring data integrity in JASP for
further details.

Standardized Residuals
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The Q-Q plot shows that the standardized residuals fit nicely along the diagonal suggesting that both
assumptions or normality and linearity have also not been violated.

REPORTING THE RESULTS

Linear regression shows that right leg strength can significantly predict kicking distance F (1, 11) =
17.53, p<.001 using the following regression equation:

Distance = 57.105 + (6.452 * Right leg strength)
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MULTIPLE REGRESSION
The model used is still a linear one defined by the formula;

y=c+b*x+¢

= y=estimated dependent outcome variable score,
= C=constant,

= b =regression coefficient and

= x=score on the independent predictor variable

= g =random error component (based on residuals)

However, we now have more than 1 regression coefficient and predictor score i.e.

Yy =C+bi*x1 + ba*x2 + b3*x;......... ba*Xn

Data entry methods.

If predictors are uncorrelated their order of entry has little effect on the model. In most cases,
predictor variables are correlated to some extent and thus, the order in which the predictors are
entered can make a difference. The different methods are subject to much debate in the area.

Forced entry (Enter): This is the default method in which all the predictors are forced into the model
in the order they appear in the Covariates box. This is considered to be the best method.

Blockwise entry (Hierarchical entry): The researcher, normally based on prior knowledge and previous
studies, decides the order in which the known predictors are entered first depending on their
importance in predicting the outcome. Additional predictors are added in further steps.

Stepwise (Backward entry): All predictors are initially entered in the model and then the contribution
of each is calculated. Predictors with less than a given level of contribution (p<0.1) are removed. This
process repeats until all the predictors are statistically significant.

Stepwise (Forward entry): The predictor with the highest simple correlation with the outcome variable
is entered first. Subsequent predictors selected on the basis of the size of their semi-partial correlation
with the outcome variable. This is repeated until all predictors that contribute significant unique
variance to the model have been included in the model.

Stepwise entry: Same as the Forward method, except that every time a predictor is added to the
model, a removal test is made of the least useful predictor. The model is constantly reassessed to see
whether any redundant predictors can be removed.

There are many reported disadvantages of using stepwise data entry methods, however, Backward
entry methods can be useful for exploring previously unused predictors or for fine-tuning the model
to select the best predictors from the available options.
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RUNNING MULTIPLE REGRESSION

Open Rugby kick regression.csv that we used for simple regression. Go to Regression > Linear
regression and put distance into the Dependent Variable (outcome) and now add all the other
variables into the Covariates (Predictor) box.

¥ Linear Regression 9@ 0 0O

Dependent Variable
< “, Distance
Method
Enter v
Covariates
> “, R_Strength
%, L_Strength
% R_Flexibilty

% L_Flexibility
%, Bilateral Strength

WLS Weights (optional)

In the Variable section leave the Method as Enter. Tick the following options in the Statistics options,
Estimates, Model fit, Collinearity diagnostics and Durbin-Watson.

¥ Statistics

Regression Coefficients

Estimates Model fit
From |5000 bootstraps R squared change
Confidence intervals 25 Ua Descriptives
Covariance matrix Part and partial correlations

Collinearity diagnostics

Residuals
Dublin-Watson
Casewise diagnostics
(O standard residual = 3
Cook's distance > [

All
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UNDERSTANDING THE OUTPUT

You will now get the following outputs:

Model Summary
Madel [ = Adjusted R* RMSE Durbin-Watson
1 0.502 0.814 0.681 43132 1.325

The adjusted R? (used for multiple predictors) shows that they can predict 68.1% of the outcome
variance. Durbin-Watson checks for correlations between residuals is between 1 and 3 as required.

AMNCNVE
lodel Sum of Sguares df Mean Square F p
1 Regression 70994 075 A 14193.816 6129 0.017
Residual 16216.845 T 2316.692
Total 87210923 12

The ANOVA table shows the F-statistic to be significant p=0.017 suggesting that the model is a
significantly better predictor of kicking distance that the mean distance.

Coefficients
Collinearity Statistics
Model Unsiandardized Standard Error Standardized t 4] Tolerance VIF
1 {Intercept) -02.357 218.380 -0.423 0.685

R_Strength 1.747 3321 0.213 0.526 0.615 0.162 6.180
L_5trength 0.703 3.5080 0.088 0.195 0.850 0.138 T.231
R_Flexibility 4078 4759 0.373 0.857 0.420 0.140 T7.125
L_Flexibility -1.339 2.447 -0.135 -0.547 0.601 0.438 2.281
Bilateral Strength 1.665 0.948 0.423 1.758 0.122 0.458 2181

This table shows one model and the constant (intercept) and regression coefficients (unstandardized)
for all the predictors forced into the model. Even though the ANOVA shows the model to be significant
none of the predictor regression coefficients are significant!

The collinearity statistics, Tolerance and VIF (Variance Inflation Factor) check the assumption of
multicollinearity. As a rule of thumb if VIF >10 and tolerance <0.1 the assumptions have been greatly
violated. If the average VIF >1 and tolerance <0.2 the model may be biased. In this case, the average
VIF is quite large (around 5).

68| Page
JASP 0.10.2 - Dr Mark Goss-Sampson




The casewise diagnostics table is empty! This is good news. This will highlight any cases (rows) that
have residuals which are 3 or more standard deviations away from the mean. These cases with the
largest errors may well be outliers. Too many outliers will have an impact on the model and should be
dealt with in the usual way (see Exploring Data Integrity).

Casewise Diagnostics

Case Number Std. Residual Distance Predicted Value Residual Cook's Distance

As a comparison re-run the analyses but now choose Backward as the method of data entry.

The outputs are as follows:

Model Summary
Madel R F* Adjusted R® RMSE Durbin-Watson
1 0.502 0.814 0.681 43132
2 0.502 0.813 0.720 45 146
3 0.897 0.805 0.740 43,505
4 0.8384 0.7382 0.738 43618 1.676

JASP has now calculated 4 potential regression models. It can be seen that each consecutive model
increases the adjusted R?, with model 4 accounting for 73.5% of the outcome variance.
The Durbin-Watson score is also higher than with the forced entry method.

AMCWA
IModel Sum of Sguares df lMean Square F p

1 Regression 70004075 5] 14198.816 G.120 0.017
Residual 16216.845 T 2316.692
Total 87210923 12

2 Regression 70805329 4 17726.332 8.697 0.005
Residual 16305.594 & 2033199
Total 87210923 12

3 Regression T0176.855 3 23302 285 12.359 0.002
Residual 17034.068 g 18482 674
Total 87210823 12

4 Regression 68185712 2 34082 856 17.920 = 001
Residual 19025211 10 1902 521
Total 87210.923 12
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The ANOVA table indicates that each successive model is better as shown by the increasing F-value
and improving p-value.

Coeflicients
Collinearity Statistics
Model Unstandardized Standard Error Standardized t p Tolerance VIF

1 {Intercept) -92 367 218.389 -0.423 0.885
R_Strength 1.747 3321 0.213 0.526 0.615 0.162 6.180
L_Strength 0.703 3.500 0.088 0.196 0.850 0,135 7.231
R_Flexibility 4078 4758 0.373 0.857 0.420 0.140 7.125
L_Flexibility -1.339 2.447 -0.135 -0.547 0.601 0.435 2.281
Bilateral Strength 1.665 0.946 0.423 1.754 0.122 0.458 2181

2 {Intercept) =-110.347 185.840 -0.504 0.569
R_Strength 2218 2148 0.271 1.033 0.332 0.340 29835
R_Flexibility 4.501 3.978 0.411 1.131 0.291 0177 5.655
L_Flexibility -1.370 2201 -0.138 -0.508 0.566 0.440 2272
Bilateral Strength 1.605 0.840 0.408 1.910 0.092 0.512 1.954

3 (Intercept) -116.852 178.772 -0.654 0.530
R_Strength 2.710 1.911 0.331 1.415 0.190 0.399 2.505
R_Flexibility 2 886 2814 0.264 1.026 0.332 0.328 3.045
Bilateral Strength 1.642 0.807 0.418 2.033 0.073 0.515 1.944

4 (Intercept) 46.251 81.820 0.565 0.584
R_Strength 3.914 1.512 0.478 2.588 0.027 0.641 1.561
Bilateral Strength 2.009 0.725 0.511 2770 0.020 0.641 1.561

Model 1 is the same as the forced entry method first used. The table shows that as the least
significantly contributing predictors are sequentially removed, we end up with a model with two
significant predictor regression coefficients, right leg strength and bilateral leg strength.

Both tolerance and VIF are acceptable.

We now can report the Backward predictor entry results in a highly significant model F (2, 10) = 17.92,

p<.001 and a regression equation of

Distance = 46.251 + (3.914 * R_Strength) + (2.009 * Bilateral Strength)

TESTING FURTHER ASSUMPTIONS.

As for the simple linear regression example, tick the following options.

¥ Plots

Residuals Plots
Residuals vs. dependent

Residuals vs. covariates
# Residuals vs. predicted
Residuals vs. histogram

Q-Q plot standardized residuals
Partial plots

JASP 0.10.2 - Dr Mark Goss-Sampson
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Residuals vs. Predicted
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The balanced distribution of the residuals around the baseline suggests that the assumption of
homoscedasticity has not been violated.

The Q-Q plot shows that the standardized residuals fit along the diagonal suggesting that both
assumptions or normality and linearity have also not been violated.

REPORTING THE RESULTS

Multiple linear regression using backward data entry shows that right leg and bilateral strength can
significantly predict kicking distance F(2,10) = 17.92, p<.001 using a regression equation of

Distance = 57.105 + (3.914 * R_Strength) + (2.009 * Bilateral Strength)
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IN SUMMARY

R? provides information on how much variance is explained by the model using the predictors
provided.

F-statistic provides information as to how good the model is.

The unstandardized (b)-value provides a constant which reflects the strength of the relationship
between the predictor(s) and the outcome variable.

Violation of assumptions can be checked using Durbin-Watson value, tolerance/VIF values, Residual
vs predicted and Q-Q plots.
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LOGISTIC REGRESSION

In simple and multiple linear regression outcome and predictor variable(s) were continuous data.
What if the outcome was a binary/categorical measure? Can, for example, a yes or no outcome be
predicted by other categorical or continuous variables? The answer is yes if binary logistic regression
is used. This method is used to predict the probability of a binary yes or no outcome.

The null hypothesis tested is that there is no relationship between the outcome and the predictor
variable(s).

As can be seen in the graph below, a linear regression line between the yes and no responses would
be meaningless as a prediction model. Instead, a sigmoidal logistic regression curve is fitted with a
minimum of 0 and a maximum of 1. It can be seen that some predictor values overlap between yes
and no. For example, a prediction value of 5 would give an equal 50% probability of being a yes or no
outcome. Thresholds are therefore calculated to determine if a predictor data value will be classified
as a yes or no outcome.

1.0 * Ly I Xy X 7 . _J
Outcome = Yes

0.8

0.4

Probability of outcome

Outcome = No

0.0 O DI OO0OD b O @IOD O oD O L L

0 2 4 6 8 10

ASSUMPTIONS FOR BINARY LOGISTIC REGRESSION

e The dependent variable must be binary i.e. yes or no, male or female, good or bad.

e One or more independent (predictor variables) which can be continuous or categorical
variables.

e A linear relationship between any continuous independent variables and the logit
transformation (natural log of the odds that the outcome equals one of the categories) of the
dependent variable.

LOGISTIC REGRESSION METRICS

AIC (Akaike Information Criteria) and BIC (Bayesian Information Criteria) are measures of fit for the
model, the best model will have the lowest AIC and BIC values.
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Four pseudo R? values are calculated in JASP, McFadden, Nagelkerke, Tjur and Cox & Snell. These are
analogous to R? in linear regression and all give different values. What constitutes a good R? value
varies, however, they are useful when comparing different models for the same data. The model with
the largest R? statistic is considered to be the best.

The Wald test is used to determine statistical significance for each of the independent variables.

The confusion matrix is a table showing actual vs predicted outcomes and can be used to determine
the accuracy of the model. From this sensitivity and specificity can be derived.

Sensitivity is the percentage of cases that had the observed outcome was correctly predicted by the
model (i.e., true positives).

Specificity is the percentage of observations that were also correctly predicted as not having the
observed outcome (i.e., true negatives).

RUNNING LOGISTIC REGRESSION

Open Heart attack.csv in JASP. This contains 4 columns of data, Patient ID, did they have a second
heart attack (yes/no), whether they were prescribed exercise (yes/no) and their stress levels (high
value = high stress).

Put the outcome variable (2" heart attack) into the Dependent variable, add the stress levels to
Covariates and Exercise prescription to Factors. Leave the data entry method as Enter.

WD Dependent Variable
. & V2nd.Heart Attack

Method
Enter hd

Covariates

- ", Stress level

Factors

& Exercise prescription
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In the Statistics options tick Estimates, Odds ratios, Confusion matrix, Sensitivity and Specificity.

¥ Statistics
Descriptives Performance Diagnostics
Factor descriptives Confusion rmatrix
Proportions
Regression Coefficients Performance Metrics
Estimates AUC
From |5000 |bootstraps Sensitivity [ Recall
Standardized coefficients Specificity
Odds ratios Precision
Confidence intervals F-rmeasure
Interval | 95 2o Brier score
H-mieasure
Robust standard errors
Vovk-Sellke rmaximum p-ratio
UNDERSTANDING THE OUTPUT
The initial output should comprise of 4 tables.
Model summary
Model Deviance AlC BIC df x: p McFadden R® MNagelkerke R* Tjur R* Cox & Snell R®
He BL 452 57.452 55141 30
H 34195 40185 45 261 ar 21257 = 001 0333 0.550 0.126 0412

The model summary shows that H1 (with the lowest AIC and BIC scores) suggests a significant
relationship (X?(37) =21.257, p<.001) between the outcome (2" heart attack) and the predictor
variables (exercise prescription and stress levels).

McFadden's R? = 0.383. It is suggested that a range from 0.2 to 0.4 indicates a good model fit.

Coefficients
‘Wald Test
Estimats Standard Error Cdds Ratio z Wald Stafistic df p

(Intercept) -4 368 25580 0013 -1713 2533 1 0.037

Sitrass level 0.0849 0041 1.093 21549 4 662 1 0.031

Exercise prescription (Yes) -2043 02580 0130 -2.285 5268 1 0022
Note, W2nd Heart Attack level “es' coded as class 1.
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Both stress level and exercise prescription are significant predictor variables (p=.031 and .022
respectively). The most important values in the coefficients table are the odds ratios. For the
continuous predictor, an odds ratio of greater than 1 suggests a positive relationship while < 1 implies
a negative relationship. This suggests that high stress levels are significantly related to an increased
probability of having a second heart attack. Having an exercise intervention is related to a significantly
reduced probability of a second heart attack. The odds ratio of 0.13 can be interpreted as only having
a 13% probability of a 2" heart attack if undergoing an exercise intervention.

Confusion matrix Performance mefrics
Predicted Yalue
Observed Mo Yes Sensitivity 0.750
No 15000  5.000 Specificity 0.750
Yes 5000  15.000

The confusion matrix shows that the 15 true negative and positive cases were predicted by the model
while the error, false negatives and positives, were found in 5 cases. This is confirmed in the
Performance metrics where both sensitivity (% of cases that had the outcome correctly predicted) and
specificity (% of cases correctly predicted as not having the outcome (i.e., true negatives) are both
75%.

PLOTS
These findings can be easily visualised through the inferential plots.

¥ Plots
Inferential Plots Residual Plots
Display conditional estirmates plots Predicted - residual plot
Confidence interval 95 O Predictor - residual plots
Show data points Sgquared Pearson residuals plot
Residual Type
() Deviance
Pearson
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Exercise prescription

No exercise intervention increases the probability of a 2" heart attack while it is reduced when it had
been put in place.

REPORTING THE RESULTS

Logistic regression was performed to ascertain the effects of stress and exercise intervention on the
likelihood that participants have a 2™ heart attack. The logistic regression model was statistically
significant, x2 (37) = 21.257, p < .001. The model correctly classified 75.0% of cases. Increasing stress
was associated with an increased likelihood of a 2" heart attack, but decreasing stress was associated
with a reduction in the likelihood. The presence of an exercise intervention programme reduced the
probability of a 2" heart attack to 13%.

77| Page
JASP 0.10.2 - Dr Mark Goss-Sampson



COMPARING MORE THAN TWO INDEPENDENT GROUPS

ANOVA

Whereas t-tests compare the means of two groups/conditions, one-way analysis of variance (ANOVA)
compares the means of 3 or more groups/conditions. There are both independent and repeated
measures ANOVAs available in JASP. ANOVA has been described as an ‘omnibus test” which results in
an F-statistic that compares whether the datasets overall explained variance is significantly greater
than the unexplained variance. The null hypothesis tested is that there is no significant difference
between the means of all the groups. If the null hypothesis is rejected, ANOVA just states that there
is a significant difference between the groups but not where those differences occur. In order to
determine where the group differences are, post hoc (From the Latin post hoc, "after this") tests are
subsequently used.

Why not just multiple pairwise comparisons? If there are 4 groups (A, B, C, D) for example and the
differences were compared using multiple t-tests:

e Avs.B P<0.05 95% no type | error
o Avs.C P<0.05 95% no type | error
e Avs.D P<0.05 95% no type | error
e Bvs.C P<0.05 95% no type | error
e Bvs.D P<0.05 95% no type | error
e C(Cvs.D P<0.05 95% no type | error

Assuming that each test was independent, the overall probability would be:
0.95 *0.95 *0.95 * 0.95 * 0.95 * 0.95 =0.735

This is known as familywise error or, cumulative Type | error, and in this case results in only a 73.5%
probability of no Type | error whereby the null hypothesis could be rejected when it is in fact true. This
is overcome by using post hoc tests that make multiple pairwise comparisons with stricter acceptance
criteria to prevent familywise error.

ASSUMPTIONS
The independent ANOVA makes the same assumptions as most other parametric tests.

e The independent variable must be categorical and the dependent variable must be
continuous.

e The groups should be independent of each other.

e The dependent variable should be approximately normally distributed.

e There should be no significant outliers.

e There should be homogeneity of variance between the groups otherwise the p-value for the
F-statistic may not be reliable.

The first 2 assumptions are usually controlled through the use of appropriate research method design.

If the last three assumptions are violated then the non-parametric equivalent, Kruskal-Wallis should
be considered instead.

78| Page
JASP 0.10.2 - Dr Mark Goss-Sampson


https://en.wikipedia.org/wiki/Latin_language
https://en.wikipedia.org/wiki/Post_hoc_(disambiguation)

CONTRASTS

Contrasts are ‘a priori’ tests (i.e. planned comparisons before any data were collected). As an
example, researchers may want to compare the effects of some new drugs to the currently
prescribed one. These should only be a small set of comparisons in an attempt to reduce
familywise error. The choice must be based on the scientific questions being asked, and
chosen during the experimental design. Hence the term planned comparisons. Therefore
they are looking at specified mean differences and therefore can be used if the ANOVA F test
is insignificant.

JASP provides 6 planned contrast enabling different types of comparisons:

Deviation: the mean of each level of the independent variable is compared to the overall
mean (the mean when all the levels are taken together).

Simple: the mean of each level is compared to the mean of a specified level, for example with
the mean of the control group.

Difference: the mean of each level is compared to the mean of the previous levels.
Helmert: the mean of each level is compared to the mean of the subsequent levels.

Repeated: By selecting this contrast, the mean of each level is compared to the mean of the
following level.2

Polynomial: tests polynomial trends in the data.

POST HOC TESTING

Post hoc tests are tests that were decided upon after the data have been collected. They can
only be carried out if the ANOVA F test is significant.

JASP provides 5 alternatives for use with the independent group ANOVA tests:

Bonferroni — can be very conservative but gives guaranteed control over Type | error at the risk of
reducing statistical power. Does not assume independence of the comparisons.

Holm — the Holm-Bonferroni test which is a sequential Bonferroni method that is less conservative
than the original Bonferroni test.

Tukey — one of the most commonly used tests and provides controlled Type | error for groups with
the same sample size and equal group variance.

Scheffe — controls for the overall confidence level when the group sample sizes are different.

Sidak — similar to Bonferroni but assumes that each comparison is independent of the others. Slightly
more powerful than Bonferroni.
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JASP also provides 4 Types of post hoc

Standard — as above
Games-Howell — used when you are unsure about the equality of group variances
Dunnett’s — used to compare all the groups to one group i.e. the control group

Dunn — a non-parametric post hoc test used for testing small sub-sets of pairs.

EFFECT SIZE
JASP provides 3 alternative effect size calculations for use with the independent group ANOVA tests:

Eta squared (n?) - accurate for the sample variance explained but overestimates the population
variance. This can make it difficult to compare the effect of a single variable in different studies.

Partial Eta squared (n,?) — this solves the problem relating to population variance overestimation
allowing for comparison of the effect of the same variable in different studies.

Omega squared (w?) — Normally, statistical bias gets very small as sample size increases, but for small
samples (n<30) w? provides an unbiased effect size measure.

Measure Trivial Medium

ANOVA Eta <0.1 0.1 0.25 0.37
Partial Eta <0.01 0.01 0.06 0.14
Omega squared <0.01 0.01 0.06 0.14

RUNNING THE INDEPENDENT ANOVA

Load Independent ANOVA diets.csv. This contains A column containing the 3 diets used (A, B and C)
and another column containing the absolute amount of weight loss after 8 weeks on one of 3 different
diets For good practice check the descriptive statistics and the boxplots for any extreme outliers.

Go to ANOVA > ANOVA, put weight loss into the Dependent Variable and the Diet groupings into the
Fixed Factors box. In the first instance tick both Assumption Checks and in Additional Options tick
Descriptive statistics and w? as the effect size;
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¥ ANOVA @ 00
Dependent Variable
* %, Weight loss kg
Fixed Factors
> & Diet
WLS Weights
>
» Model
¥ Assumption Checks
Homogeneity tests
Homogeneity corrections
Mone Brown-Forsythe Welch
Q-Q plot of residuals
This should result in 3 tables and one Q-Q plot.
UNDERSTANDING THE OUTPUT
ANOVA - Weight loss kg
Cases Homogeneity Correction Sum of Sguares df Mean Square F 1]
Diet Mone 9237 2.000 46.184 10.83 = 001
Diet Brown-Forsythe 9237 2.000 46.184 10.83 = 001
Diet Welch 9237 2.000 46.184 11.45 = 001
Residual Mone 294 37 &9.000 4 266
Residual EBrown-Farsythe 29437 G4.352 4574
Residual Welch 294 37 44 987 6.544

Note. Type |l Sum of Sguares

The main ANOVA table shows that the F-statistic is significant (p<.001) and that there is a large effect
size. Therefore, there is a significant difference between the means of the 3 diet groups.
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TESTING ASSUMPTIONS

Before accepting this any violations in the assumptions required for an ANOVA should be checked.

Test for Equality of Variances {Levene's)
F df1 df2 p

1.288 2.000 £5.000 0.230

Levene's test shows that homogeneity of variance is not significant. However, if Levene’s test shows
a significant difference in variance, the Brown-Forsythe or Welch correction should be reported.

L; (] —_ (%]
1 | | 1

Standardized Residuals
P
|

T 1 T !
-2 -1 0 1 2

Theoretical Quantiles

The Q-Q plot shows that the data appear to be normally distributed and linear.

Descriptives - Weight loss kg

Diet Mean sSD M
Diet A 3.008 1.668 24.000
Diet B 3413 2.361 24.000
Diet C 55348 2108 24.000

The descriptive statistics suggest that Diet 3 results in the highest weight loss after 8 weeks.
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CONTRAST EXAMPLE

If for example, one planned to compare the effects of diets B and C to diet A. Click on the drop-

down menu and select ‘simple’ next to diet. This will test the significance between the first category
in the list with the remaining categories.

¥ Contrasts
Factors
& Diet simple v
Simple Contrast - Diet
Comparison Estimate SE df t p
Diet B-Diet A 0.404 0.524 69.000 0g7a 0.500
Diet C - Diet A 2574 0.524 69.000 4 326 = 001

As can be seen, only diet C is significantly different from diet A (t(69) = 4.326, p<.001.

If the ANOVA reports no significant difference you can go no further in the analysis.

POST HOC TESTING

If the ANOVA is significant post hoc testing can now be carried out. In Post Hoc Tests add Diet to the
analysis box on the right, tick Effect size and, in this case, use Tukey for the post hoc correction.

¥ Post Hoc Tests

Confidence intervals 95

From |1000 bootstraps

Correction
Tukey
Scheffe
Bonferroni
Holm

Siddk

% & Diet

%o Effect Size

Type
Standard

Games-Howell
Dunnett

Dunn
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Also in Descriptive Plots add the Factor Diet to the horizontal axis and tick display error bars.

Fost Hoc Comparisons - Diet

Mean Difference SE t Cohen's d Prukey
Diet A Diet B -0.404 0.596 -0.678 —-0.153 0.777
Diet C —-2.579 0.596 —-4.326 —1.357 = 001
Diet B Diet C -2.175 0.596 -3.648 -0.972 0.001

Mote. Cohen's d does not correct for multiple comparisons.

Post hoc testing shows that there is no significant difference between weight loss on diets A and B.
However, It is significantly higher in diet C compared to diet A (p<.001) and diet B (p=.001). Cohen’s d
shows that these differences have a large effect size.

? —
]
=
w
w
=
=
=2
[1H]
=

2 -

I | 1
Diet A Diet B Diet C
Diet

REPORTING THE RESULTS

Independent one way ANOVA showed a significant effect of the type of diet on weight loss after 10
weeks (F (2, 69) =46.184, p<.001, w2 = 0.214.

Post hoc testing using Tukey’s correction revealed that diet C resulted in significantly greater weight
loss than diet A (p<.001) or diet B (p=.001). There were no significant differences in weight loss

between diets A and B (p=.777).
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KRUSKAL-WALLIS - NON-PARAMETRIC ANOVA

If your data fails parametric assumption tests or is nominal in nature, the Kruskal-Wallis H test is a
non-parametric equivalent to the independent samples ANOVA. It can be used for comparing two or
more independent samples of equal or different sample sizes. Like the Mann-Whitney and Wilcoxon's
tests, it is a rank-based test.

As with the ANOVA, Kruskal-Wallis H test (also known as the "one-way ANOVA on ranks") is an
omnibus test which does not specify which specific groups of the independent variable are statistically
significantly different from each other. To do this, JASP provides the option for running Dunn’s post
hoc test. This multiple comparisons test can be very conservative in particular for large numbers of
comparisons.

Load Kruskal-Wallis ANOVA.csv dataset into JASP. This dataset contains subjective pain scores for
participants undergoing no treatment (control), cryotherapy or combined cryotherapy-compression
for delayed onset muscle soreness after exercise.

RUNNING THE KRUSKAL-WALLIS TEST

Go to ANOVA >ANOVA. In the analysis window add Pain score to the dependent variable and
treatment to the fixed factors. Check that the pain score is set to ordinal. This will automatically run
the normal independent ANOVA. Under Assumption Checks tick both Homogeneity tests and Q-Q
plots.

AMNOVA - Pain Score

Caszes Sum of Squares df WMean Sguare F p
Treatment G2.2344 2.000 49 422 16.457 = .001
Residual 126.133 42.000 3.003

MNote. Type Il Sum of Squares

w 2
©
=

Test for Equality of Variances (Levene's) 'E 14
F a1 ar2 o -
N

3832 2.000 42000 0.030 =) 07
=
=

I 14
n

2 4 0 1 2
Theoretical Quantiles
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Although the ANOVA indicates a significant result, the data has not met the assumptions of
homogeneity of variance as seen by the significant Levene’s test and only shows linearity in the middle
of the Q-Q plot and curves off at the extremities indicating more extreme values. Added to the fact
that the dependent variable is based on subjective pain scores suggest the use of a non-parametric
alternative.

Return to the statistics options and open the Nonparametrics option at the bottom. For the Kruskal-
Wallis test Move the Treatment variable to the box on the right. In Post Hoc tests move treatment to
the right box and tick Dunn’s post hoc test.

[~ Norparametrs ]

Kruskal-Wallis test

&p Treatment

¥ Post Hoc Tests
2 &% Treatment
Confidence intervals 95 U Effect Size
From | 1000 bootstraps
Correction Type

Tukey Standard
Scheffe Games-Howell
Bonferroni Dunnett
Holm Dunn
Sidak

UNDERSTANDING THE OUTPUT

Two tables are shown in the output. The Kruskal-Wallis test shows that there is a significant difference
between the three treatment modalities.
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kruskal-Wallis Test

Factor Statistic df p
Treatment 19,693 2 = 001
Dunn's Post Hoo Comparisons - Treatment
z Wi W p Dpant Phaim
Control Cryo+Compression 4317 34800 14.200 = 001 = 001 =< 001
Cryotherapy 3.048 34 600 20.200 0.001 0.003 0.002
Cryo+Compression Cryotherapy -1.270 14200 20.200 0.102 0.306 0.102

The Dunn’s post hoc test provides its own p-value as well as those for Bonferroni and Holm’s
Bonferroni correction. As can be seen, both treatment conditions are significantly different from the

controls but not from each other.

REPORTING THE RESULTS

Descriptive Statistics
Pain Score
Contral Cryo+Compression Cryotherapy
Walid 15 15 15
Missing 0 0 0
Median 7.000 3.000 3.000
MAD 2965 1.483 1.483

Pain scores were significantly affected by treatment modality H (2) = 19.693, p<.001. Pairwise
comparisons showed that both cryotherapy and cryotherapy with compression significantly reduces
pain scores (p=.001and p<.001 respectively) compared to the control group. There were no significant
differences between cryotherapy and cryotherapy with compression (p=.102).

B_

Pain Score

Control
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COMPARING MORE THAN TWO RELATED GROUPS

RMANOVA

The one-way repeated measures ANOVA (RMANOVA) is used to assess if there is a difference in
means between 3 or more groups (where the participants are the same in each group) that have been
tested multiple times or under different conditions. Such a research design, for example, could be that
the same participants were tested for an outcome measure at 1, 2 and 3 weeks or that the outcome
was tested under conditions 1, 2 and 3.

The null hypothesis tested is that there is no significant difference between the means of the
differences between all the groups.

The independent variable should be categorical and the dependent variable needs to be a continuous
measure. In this analysis the independent categories are termed levels i.e. these are the related
groups. So in the case where an outcome was measured at weeks 1, 2 and 3, the 3 levels would be
week 1, week 2 and week 3.

The F-statistic is calculated by dividing the mean squares for the variable (variance explained by the
model) by its error mean squares (unexplained variance). The larger the F-statistic, the more likely it
is that the independent variable will have had a significant effect on the dependent variable.

ASSUMPTIONS
The RMANOVA makes the same assumptions as most other parametric tests.

e The dependent variable should be approximately normally distributed.

o There should be no significant outliers.

e Sphericity, which relates to the equality of the variances of the differences between levels of
the repeated measures factor.

If the assumptions are violated then the non-parametric equivalent, Friedman’s test should be
considered instead and is described later in this section.

SPHERICITY
If a study has 3 levels (A, B and C) sphericity assumes the following:
Variance (A-B) = Variance (A-C) = Variance (B-C)

RMANOVA checks the assumption of sphericity using Mauchly’s (pronounced Mockley’s) test of
sphericity. This tests the null hypothesis that the variances of the differences are equal. In many
cases, repeated measures violate the assumption of sphericity which can lead to Type | error. If this is
the case corrections to the F-statistic can be applied.

JASP offers two methods of correcting the F-statistic, the Greenhouse-Geisser and the Huynh-Feldt
epsilon (€) corrections. A general rule of thumb is that if the € values are <0.75 then use the
Greenhouse-Geisser correction and if they are >0.75 then use the Huynh-Feldt correction.
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POST HOC TESTING
Post hoc testing is limited in RMANOVA, JASP provides two alternatives:

Bonferroni — can be very conservative but gives guaranteed control over Type | error at the risk of
reducing statistical power.

Holm — the Holm-Bonferroni test which is a sequential Bonferroni method that is less conservative
than the original Bonferroni test.

If you ask for either Tukey or Scheffe post hoc corrections JASP will return a NaN (not a number) error.

EFFECT SIZE

JASP provides the same alternative effect size calculations that are used with the independent group
ANOVA tests:

Eta squared (n?) - accurate for the sample variance explained but overestimates the population
variance. This can make it difficult to compare the effect of a single variable in different studies.

Partial Eta squared (n,?) — this solves the problem relating to population variance overestimation
allowing for comparison of the effect of the same variable in different studies. This appears to be the
most commonly reported effect size in repeated measures ANOVA

Omega squared (w?) — Normally, statistical bias gets very small as sample size increases, but for small
samples (n<30) w? provides an unbiased effect size measure.

Levels of effect size:

Test Measure Trivial Small Medium Large
ANOVA  Ea <01 01 025 037
Partial Eta <0.01 0.01 0.06 0.14
Omega squared <0.01 0.01 0.06 0.14

RUNNING THE REPEATED MEASURES ANOVA

Load Repeated ANOVA cholesterol.csv. This contains one column with the participant IDs and 3
columns one for each repeated measurement of blood cholesterol following an intervention. For good
practice check the descriptive statistics and the boxplots for any extreme outliers.

Go to ANOVA > Repeated measures ANOVA. As stated above, the independent variable (repeated
measures factor) has levels, in this case, there are 3 levels. Rename RM Factor 1 to Time post-
intervention and then rename 3 levels to Week 0, week 3 and week 6 accordingly.
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Once these have been done they will appear in the Repeated Measures Cells. Now add the appropriate
data to the appropriate level.

¥ Repeated Measures ANOVA ® 0 ©
%, Participant Repeated Measures Factors
% Week = Time post intervention

Week 0

Week 3

week 6 %]

Level 4

RM Factor 2

Repeated Measures Cells

4 Wweek 0 Wweek 0
Week 3 Week 3
> Week 6

Under Assumption Checks tick Sphericity tests and all Sphericity correction options.

¥ Assurmption Checks

Sphericity tests

Sphericity corrections
Mone Greenhouse-Geisser Huynh-Feldt
Homogeneity tests

Under Additional Options tick Descriptive Statistics, Estimates of effect size and w?.

Display
Descriptive statistics
Estimates of effact size
n* partial n= general n
w?

WVovk-Selke maximum p-ratio

The output should consist of 4 tables. The third table, between-subject effects, can be ignored for this
analysis.
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UNDERSTANDING THE OUTPUT

Within Subjects Effects

Sphericity Correction Sum of Squares df Mean Square F p we
Time post intervention Nane 4320 2.000= 2.160= 212.321= =.001= 0.055

Graenhousa-Geisser 4.320= 1.235= 3.497= 212.321= < .001= 0.058

Huynh-Feldt 4320 1.284= 3.365= 212.321= = 001= 0.058
Residual None 0.346 34.000 0.010

Greenhouse-Geisser 0.346 21.001 0.016

Huynh-Feldt 0.346 21.822 0.016

Note. Type Il Sum of Squares
= Mauchly's test of sphericity indicates that the assumption of sphericity is violated (p = .05).

The within-subjects effects table reports a large F-statistic which is highly significant (p<.001) and has
a small to medium effect size (0.058). This table shows the statistics for sphericity assumed (none) and
the two correction methods. The main differences are in the degrees of freedom (df) and the value of
the mean square. Under the table, it is noted that the assumption of sphericity has been violated.

The following table gives the results of Mauchly’s test of sphericity. It can be seen that there is a
significant difference (p<.001) in the variances of the differences between the groups. Greenhouse-
Geisser and the Huynh-Feldt epsilon (g) values are below 0.75. Therefore the ANOVA result should be
reported based on the Greenhouse-Geisser correction:

Test of Sphericity

Mauchly's W p Gresnhouse-Geisser £ Huynh-Feldt £

Time post intervention 0331 = 001 0618 0642

To provide a cleaner table, go back to Assumption Checks and only tick Greenhouse-Geisser for
sphericity correction.

Within Subjects Effecis

Sphericity Correction Sum of Squares df Iean Square F p w®
Time post intervention Greenhouse-Geisser 4320= 1.235= 3.497= 212.321= =.001= 0.058
Residual Greenhouse-Geissar 0.346 21.001 0.016

MNote. Type Il Sum of Squares
= Mauchly's test of sphericity indicates ihat the assumption of sphericity is violated (p = .05).

There is a significant difference between the means of the differences between all the groups F (1.235,
21.0) =212.3, p<.001, w? = 0.058.
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Descriptives

Time post intenvention Iean sSD M

Week 0 6.408 1.191 18.000
Week 3 5842 1123 18.000
Week 6 5770 1.102 18.000

The descriptive data suggest that blood cholesterol levels were higher at week 0 compared to weeks

3 and 6.

However, if the ANOVA reports no significant difference you can go no further in the

analysis.

POST HOC TESTING

If the ANOVA is significant, post hoc testing can now be carried out. In Post Hoc Tests add Time post-
intervention to the analysis box on the right, tick Effect size and, in this case, use Holm for the post

hoc correction.

¥ Post Hoc Tests

Confidence intervals 25 U
Effect size Pool error term for RM factors

Correction
Holm
Bonferroni
Tukey
Scheffe

Time post intervention

Also in Descriptive Plots add the Factor — Time post-intervention to the horizontal axis and tick display

error bars.

Post hoc testing shows that there are significant differences in blood cholesterol levels between all of
the time point combinations and are associated with large effect sizes.

JASP 0.10.2 - Dr Mark Goss-Sampson
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Fost Hoo Comparisons - Time post intervention

IM=an Difference SE t Cohen's d Dhaim
Week 0 Week 3 0.566 0.037 15.4349 3.630 = 001
Week 6 0.629 0.042 14.945 3.523 = 001
Week 3 Week 6 0.063 0.017 3.781 0.891 0.001

Note. Cohen's d does not correct for multiple comparisons.
Note. Bonferroni adjusted confidence intervals.

REPORTING THE RESULTS

6.6

56-

| | 1
Week 0 Week 3 Week 6
Time post intervention

Since Mauchly’s test of sphericity was significant, the Greenhouse-Geisser correction was used. This
showed that cholesterol levels differed significantly between F (1.235, 21.0) =212.3, p<.001, w? =
0.058.

Post hoc testing using the Bonferroni correction revealed that cholesterol levels decreased
significantly as time increased, weeks 0 — 3 (mean difference=0.566 units, p<.001) and weeks 3 — 6
(mean difference = 0.063 units, p=.004).

FRIEDMAN’S REPEATED MEASURES ANOVA

If parametric assumptions are violated or the data is ordinal in nature you should consider using the
non-parametric alternative, Friedman’s test. Similar to the Kruskal-Wallis test, the Friedman’s test is
used for one-way repeated measures analysis of variance by ranks and doesn’t assume the data comes
from a particular distribution. This test is another omnibus test which does not specify which specific
groups of the independent variable are statistically significantly different from each other. To do this,
JASP provides the option for running Conover’s post hoc test if Friedman’s test is significant.
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Load Friedman RMANOVA.csv into JASP. This has 3 columns of subjective pain ratings measured at
18, 36 and 48 hours post-exercise. Check that the pain scores are set to ordinal data.

RUNNING THE FRIEDMAN’S TEST

Go to ANOVA > Repeated measures ANOVA. The independent variable (repeated measures factor)
has 3 levels. Rename RM Factor 1 to Time and then rename 3 levels to 18 hours, 36 hours and w48
hours accordingly.

Once these have been done they will appear in the Repeated Measures Cells. Now add the appropriate
dataset to the appropriate level.

¥ Repeated Measures ANOVA © 00
& subject Repeated Measures Factors
il Pain 18 hours Time
g1l Pain 36 hours 18 hours
sl Pain 48 hours 36 hours
48 hours @
Level 4
RM Factor 2

Repeated Measures Cells

i Pain 18 hours 18 hours
Pain 36 hours 36 hours
Pain 48 hours 48 hours

This will automatically produce the standard repeated measures within-subjects ANOVA table. To run
the Friedman’s test, expand the Nonparametrics tab, move Time to the RM factor box and tick
Conover’s post hoc tests.

¥ MNonparametrics

Factars RM Factor

Time

Optional Grouping Factor

Conover's post hoc tests
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UNDERSTANDING THE OUTPUT

Two tables should be produced.

Friedman Test
Factar Chi-Squared df p Kendall's W
Time 26772 2 =.001 0.754

Connover's Post Hoo Comparisons - Time

T-Stat df W Wi P Blanf Dhalm
18 hours 36 hours 15171 28 17.000 44 500 =001 = 001 = 001
43 hours 6.344 28 17.000 28500 = 001 = 001 = 001
36 hours 43 hours 8827 28 44 500 28500 = 001 = 001 = 001

Friedman’s test shows that time has a significant effect on pain perception. Connor’s post hoc pairwise
comparisons show that all pain perception is significantly different between each time point.

REPORTING THE RESULTS

Time has a significant effect on subjective pain scores x? (2) = 26.77, p<.001. Pairwise comparisons
showed that pain perception is significantly different between each time point (all p<0.001).

?'_

| | 1
18 hours 36 hours 48 hours
Time
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COMPARING INDEPENDENT GROUPS AND THE EFFECTS OF COVARIATES
ANCOVA

ANOVA can be used to compare the means of one variable (dependent) in two or more groups,
whereas analysis of covariance (ANCOVA) sits between ANOVA and regression and compares the
means of one (dependent) variable in two or more groups while taking into account the variability of
other continuous variables (COVARIATES). ANCOVA checks for differences in ‘adjusted’ means (i.e.
adjusted for the effects of the covariate). A covariate may not usually be part of the main research
question but could influence the dependent variable and therefore needs to be adjusted or controlled
for. Aslong as a good covariate is used ANCOVA will have improved statistical power and control over
error.

Control for — to subtract statistically the effects of a variable (a control variable) to see what a
relationship would be without it (Vogt 1977).

Hold constant —to “subtract” the effects of a variable from a complex relationship so as to study what
the relationship would be if the variable were, in fact, a constant. Holding a variable constant
essentially means assigning it an average value (Vogt 1977).

Statistical control — using statistical techniques to isolate or “subtract” variance in the dependent
variable attributable to variables that are not the subject of the study (Vogt, 1999).

For example, when looking for a difference in weight loss between three diets it would be appropriate
to take into account the individuals pre-trial bodyweight since heavier people may lose
proportionately more weight.

ANCOVA
A
[ \
ANOVA
A
( \
Independent Type of diet Starting body weight
variables (Factor) (Covariate)
Dependent Weight loss
variable
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The null hypothesis tested is that there is no significant difference between the ‘adjusted’ means of
all the groups.

ASSUMPTIONS

ANCOVA makes the same assumptions as the independent ANOVA makes. However, there are two
further assumptions:

e The relationship between the dependent and covariate variables are linear.
o Homogeneity of regression i.e. the regression lines for each of the independent groups are
parallel to each other.

Homogeneity of regression Assumption violated
Diet 1 Diet 1
Diet 2 Diet 2

2 (]
o) =

0
= Diet 3 o
3 @
2 g
< +—
(] c
2 o
2 ;
Q
-] ) Diet 3
3 g

Covariate Covariate

POST HOC TESTING
JASP provides 4 alternatives for use with the independent group ANOVA tests:

Bonferroni — can be very conservative but gives guaranteed control over Type | error at the risk of
reducing statistical power.

Holm — the Holm-Bonferroni test which is a sequential Bonferroni method that is less conservative
than the original Bonferroni test.

Tukey — one of the most commonly used tests and provides controlled Type | error for groups with
the same sample size and equal group variance.

Scheffe — controls for the overall confidence level when the group sample sizes are different.

JASP also provides 4 Types

Standard — as above

Games-Howell — used when you are unsure about the equality of group variances
Dunnett’s — used to compare all the groups to one group i.e. the control group
Dunn — a non-parametric post hoc test used for testing small sub-sets of pairs.
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EFFECT SIZE

JASP provides 3 alternative effect size calculations for use with the independent group ANOVA tests:

Eta squared (n?) - accurate for the sample variance explained but overestimates the population
variance. This can make it difficult to compare the effect of a single variable in different studies.

Partial Eta squared (n,?) — this solves the problem relating to population variance overestimation
allowing for comparison of the effect of the same variable in different studies.

Omega squared (w?) — Normally, statistical bias gets very small as sample size increases, but for small
samples (n<30) w? provides an unbiased effect size measure.

Test Measure Trivial Small Medium Large

ANOVA Eta <0.1 0.1 0.25 0.37
Partial Eta <0.01 0.01 0.06 0.14
Omega squared <0.01 0.01 0.06 0.14

RUNNING THE INDEPENDENT ANCOVA

Load ANCOVA hangover.csv. This dataset has been adapted from the one provided by Andy Field
(2017). The morning after a Fresher’s ball students were given either water, coffee or a Barocca to
drink. Two hours later they reported how well they felt (from 0 — awful to 10 —very well). At the same
time, data were collected on how drunk they were the night before (0-10).

Initially, run an ANOVA with wellness as the dependent variable and the type of drink as the fixed
factor.

AMOWVA - wellness

Cases Sum of Sguares df IMean Sguare F p w?
drink 4267 2 2133 1.714 0199 0.045
Residual 33.600 27 1244

MNote. Type Il Sum of Squares

Test for Equality of Variances (Leveng's)

F df df2 5]

1.744 2 27 0.194

As can be seen from the results, homogeneity of variance has not been violated while the ANOVA
shows that there is no significant difference in the wellness scores between any of the morning drinks.
F(2,27)=1.714, p=.199. However, this may be related to how drunk the students were the night before!
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Go to ANOVA > ANCOVA, put wellness as the dependent variable and the type of drink as the fixed
factor. Now add drunkenness to the Covariate(s) box. In the first instance:

¥ ANCOVA

Dependent Variable
\ welness

Fixed Factors

& drink

Covariates

% drunkeness

In Assumption Checks tick both options

¥ Assumption Checks

Homogeneity tests
0-0 plot of residua

ls

In Additional Options, move drink to the right of the Marginal means, tick Descriptive statistics and w?

as the effect size;

¥ Additional Options

Marginal Means

From |1000 | bootstraps

Compare marginal means to 0
Confidence interval adjustment | N
Display
Descriptive statistics
Estimates of effect sze
n* partial n*
Vovk-Selke maximurm p-ratio
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This should result in 4 tables and one Q-Q plot.

UNDERSTANDING THE OUTPUT

AMCOWVA - wellness

Cases Sum of Squares df Mean Square F p w®
drink 2503 2 4352 7470 0.003 0173
drunkeness 18.801 1 12.801 33.032 =001 0427
Residual 14799 26 0 559

Note. Type Il Sum of Squares

It can be seen that the covariate (drunkenness) significantly predicts wellness (p<.001). The effects of
the type of drink on wellness, when adjusted for the effects of drunkenness are now significant

(p=.003).

r w
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Standardized Residuals
| |
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f | | | I | |
30 -2 A 0 1 2 3

Theoretical Quantiles

It can be seen that Levene’s test is significant, unlike in ANOVA, no homogeneity of variance
corrections (i.e. Welch) are provided. For ANCOVA this can be ignored. The Q-Q plot appears to be

normal.

Descriptives - wellness

drink ean sD M
Barocca &.000 1.414 10
Coffes 6.000 0.667 10
Water 5.200 1.135 10

The descriptive statistics show the unadjusted means for wellness in the three drink groups.
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Warginal Means - drink

drink Marginal Mean SE Lower Cl Upper Cl
Barocca 6.571 0.258 6.040 7.103
Cofiee 5273 0.270 4718 5.&828
Walar 5.358 0.240 4 862 5840

The marginal means are now the wellness means having been adjusted for the effects of the covariate

(drunkenness).

TESTING FURTHER ASSUMPTIONS

As previously mentioned the assumption of homogeneity of regression is important in ANCOVA. This
can be tested by looking at the interaction between the type of drink and the drunkenness scores. Go
to Model, drink and drunkenness will have been automatically added as individual Model terms. Now

highlight both drink and drunkenness and add them both to Model terms.

[ * | Model

Companents Model terms
idrink [ [ » | [drink

| drunkeness drunkeness

ey | TNk * drunkeness

ANCOWA - wellness

Cases Sum of Sguares df IMean Sguare F p w®
drink 2.290 2 1.145 1.876 0175 0.047
drunkeness 4865 1 4 365 7.971 0.009 0.189
drink = drunkeness 0.150 2 0.075 0.123 0.835 0.000
Residual 14.640 24 0.610

MNote. Type Il Sum of Sguares

The ANOVA table now has an extra row showing the interaction between the type of drink and
drunkenness. This is not significant (p=.885), i.e. the relationships between drunkenness and wellness
are the same in each drink group. If this is significant there will be concerns over the validity of the

main ANCOVA analysis.

Having checked this, go back and remove the interaction term from the Model terms.

JASP 0.10.2 - Dr Mark Goss-Sam
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If the ANCOVA reports no significant difference you can go no further in the analysis.

POST HOC TESTING

If the ANCOVA is significant post hoc testing can now be carried out. In Post Hoc Tests add Drink to
the analysis box on the right, tick Effect size and, in this case, use Tukey for the post hoc correction.

¥ Post Hoc Tests
= & drink
Confidence intervals 95 % Effect size
From | 1000 bootstraps
Correction Type
Tukey Standard
Scheffe Games-Howell
Bonferroni Dunnett
Holm Dunn
Siddk
Paost Hoo Comparisons - drink
Mean Differance SE t Cohen's d Prukey
Barocca Coffee 1.293 0.406 3198 1.174 0.010
Water 1.215 0.345 3523 0.948 0.004
Coffee ‘Water -0.033 0371 -0.224 -0.0389 0473

Nate. Cohen's d does not correct for multiple comparisons.

Post hoc testing shows that there is no significant difference between coffee and water on wellness.
However, wellness scores were significantly higher after drinking a Barocca.

This can be seen from the Descriptive plots.

102 | Page
JASP 0.10.2 - Dr Mark Goss-Sampson



¥ Descriptives Plots
Factors Horizontal Axis
= % drunkeness
Separate Lines
2 & drink
Separate Plots
[ ]
Display
Display error bars
() confidence intervals 95 Yo
Standard error
drink
8 % - Barocca
- Coffee
= Water

wellness

[ 1 [ [ [ 1 |

1 2 3 4 5 6 7
drunkeness

REPORTING THE RESULTS

The covariate, drunkenness, was significantly related to the morning after wellness, F (1,26) = 33.03,
p<.001, w? = 0.427. There was also a significant effect of drink on wellness after controlling for

drunkenness, F (2, 26) = 7.47, p=.003, w? = 0.173.

Post hoc testing using Tukey’s correction revealed that drinking a Barocca resulted in significantly
greater wellness compared to water (p<.004) or coffee (p=.01). There were no significant differences

in wellness between water and coffee (p=.973).
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TWO-WAY INDEPENDENT ANOVA
One-way ANOVA tests situations when only one independent variable is manipulated, two-way
ANOVA is used when more than 1 independent variable has been manipulated. In this case,
independent variables are known as factors.

FACTOR 1 FACTOR 2

CONDITION 1 Group 1 Dependent variable
Group 2 Dependent variable

CONDITION 2 Group 1 Dependent variable
Group 2 Dependent variable

CONDITION 3 Group 1 Dependent variable
Group 2 Dependent variable

The factors are split into levels, therefore, in this case, Factor 1 has 3 levels and Factor 2 has 2 levels.

A “main effect” is the effect of one of the independent variables on the dependent variable, ignoring
the effects of any other independent variables. There are 2 main effects tested both of which are
“between-subjects”: in this case comparing differences between factor 1 (i.e. condition) and
differences between factor 2 (i.e. groups). Interaction is where one factor influences the other factor.

The two-way independent ANOVA is another omnibus test that is used to test 2 null hypotheses:

1. There is no significant between-subject effect i.e. no significant difference between the
means of the groups in either of the factors.

2. There is no significant interaction effect i.e. no significant group differences across
conditions.

ASSUMPTIONS

Like all other parametric tests, mixed factor ANOVA makes a series of assumptions which should either
be addressed in the research design or can the tested for.

e The independent variables (factors) should have at least two categorical independent groups
(levels).

e The dependent variable should be continuous and approximately normally distributed for all
combinations of factors.

e There should be homogeneity of variance for each of the combination of factors.

e There should be no significant outliers.

RUNNING TWO-WAY INDEPENDENT ANOVA

Open 2-way independent ANOVA.csv in JASP. This comprises on 3 columns of data, Factor 1 — gender
with 2 levels (male and female), Factor 2 - supplement with 3 levels (control, carbohydrate CHO and
protein) and the dependent variable (explosive jump power. In Descriptive statistics check the data
for significant outliers. Go to ANOVA >ANOVA, add Jump power to the Dependent variable, Gender
and Supplement to the Fixed factors.
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¥ ANOVA

% Jump power
Fixed Factors

& Gender
& Supplement

WLS Weights

Dependant Variable

Descriptive plots, add supplement to the horizontal axis and Gender to separate lines. In Additional

Options, tick Descriptive statistics and Estimates of effect size (w?).

¥ Descriptives Plots

Factors Horizontal Axis
= &% supplement
Separate Lines
= & Gender
Separate Plots
[ 2
Display

Display error bars
) confidence interval 95 %
Standard error

Display
Descriptive statistics
Estimates of effect size
n: partial n? w2
Vovk-Selke rmaxirmum p-ratio

UNDERSTANDING THE OUTPUT

JASP 0.10.2 - Dr Mark Goss-Sampson
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The output should comprise 2 tables and one plot.

AMCWVA - Jump power

Cases Sum of Squares df Mean Sguare F p P
Gender 119108.037 1.000 119108.037 G 5359 0.003 0.058
Supplement B896116.137 2.000 443053.068 36.071 = 001 0.477
Gender % Supplement 275806 435 2.000 137803.2149 11.102 = 001 0.138
Residual R21712.054 42.000 12421.716

MNote. Type Il Sum of Sguares

The ANOVA table shows that there are significant main effects for both Gender and Supplement
(p=0.003 and p<.001 respectively) with medium and large effect sizes respectively. This suggests that
there is a significant difference in jump power between genders, irrespective of Supplement, and
significant differences between supplements, irrespective of Gender.

There is also a significant interaction between Gender and Supplement (p<.001) which also has a
medium to large effect size (0.138). This suggests that the differences in jump power between genders
are affected somehow by the type of supplement used.

The Descriptive statistics and plot suggest that the main differences are between genders when using
a protein supplement.

Descriptives - Jump power ¥

Gender Supplement Mean sD M
Female Control a77.500 134 5683 3.000
CHO T892 235 102.233 7.000
Protein Q8B BET 01.924 2.000
iale Confrol 788.125 64.417 8.000
CHO 901.875 117.502 8.000
Protein 1263.125 140.863 8.000
1400+
Gender
2 Female
o @ Male
@
=
(=]
=R
=R
=
=1
=5
Go0-
[ T ]
Control CHO Frotein
Supplement
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TESTING ASSUMPTIONS

In Assumption Checks, tick Homogeneity tests and Q-Q plot of residuals.

Assumption Checks

Test for Equality of Variances (Levene's)

F df1 df2 p

1.100 5.000 42.000 0.375

Levene’s test shows no significant difference in variance within the dependent variable groups, thus
homogeneity of variance has not been violated.

2
]

—
1

Standardized Residuals
o o
| |
.

m
]
]

1 ] 1 | 1
-2 -1 0 1 2

Theoretical Quantiles

The Q-Q plot shows that the data appear to be normally distributed and linear. We can now accept
the ANOVA result since none of these assumptions has been violated.

However, if the ANOVA reports no significant difference you can go no further with the
analysis.

SIMPLE MAIN EFFECTS
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Go to the analysis options and Simple Main Effects. Here add Gender to the Simple effect
factor and Supplement to the Moderator Factor 1. Simple main effects are effectively limited
pairwise comparisons.

¥ Simple Main Effects

Factors

Simple Effect Factor
& Gender
Moderator Factor 1

& Supplement

Moderator Factor 2

Simple Main Effects - Gender

Level of Supplement Sum of Sguares df Mean Square F p

Contfral 31951 563 1 31051 563 2572 0116
CHO 47325030 1 47325030 3810 0.058
Protein 323700.154 1 323700.184 26.050 = 001

This table shows that there are no gender differences in jump power between the control or
CHO groups (p=.116 and p=0.058 respectively). However, there is a significant difference
(p<.001) in jump power between genders in the protein supplement group.

1400

Jump power

600-

Gender
O Female
® lale

I
Control

POST HOC TESTING

CHO
Supplement

1
Protein

If the ANOVA is significant post hoc testing can now be carried out. In Post Hoc Tests add Supplement
and the Gender*Supplementto the analysis box on the right, tick Effect size and, in this case, use Tukey

for the post hoc correction.
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Post hoc testing is not done for Gender since there are only 2 levels.

Post Hoc Comparisons - Supplement

Mean Difference SE t Cohen's d Ptukey
Contral CHO -12.768 40102 -0.318 -0.104 0545
Protein -202 033 38.853 7518 -1.8149 = 001
CHO Protein 279315 35561 -7.080 -1.732 = 001

Naote. Cohen's d does not correct for multiple comparisons.

Post hoc testing shows no significant difference between the control and CHO, supplement group,
irrespective of Gender, but significant differences between Control and Protein (p<.001) and between
CHO and Protein (p<.001).

The post hoc comparisons for the interactions decomposes the results further.

Post Hoo Comparisons - Gender = Supplemeant

Mean Difference SE t Ptukey
Female CHO Male, CHO -112 5249 57.682 -1.852 0.335
Female, Conirol —-88.214 57 682 -1.5249 0.648
Male, Control 1.161 57.682 0.020 1.000
Female, Protein —197.381 5G.167 -3.514 0.013
Male,Protein -473.838 57.682 -8.215 = 001
Male, CHO Female, Conirol 24 375 E.T26 0.437 0.935
Male, Control 113.750 5R.T25 2.041 0.337
Female, Protein -34.7592 54 156 —1.566 0.625
Male,Protein —361.250 5R.T25 -6.483 = 001
Female, Conirol Male, Control 88375 E.T26 1.604 0.601
Female Protein —108.167 A4 156 -2.014 0.351
Male,Protein —-385.625 E.T26 -6.8920 = 001
ale Control Female, Frotein —108.542 A4 156 -3.666 0.008
Male,Protein —475.000 E.T26 -8.524 = 001
Female Frotein Wale Protein —-276.458 A4 156 -5.1056 = 001

REPORTING THE RESULTS

A two-way ANOVA was used to examine the effect of gender and supplement type on explosive jump
power. There were significant main effects for both gender (F (1, 42) = 9.59, p=.003, w? = 0.058) and
Supplement (F (2, 42) = 30.07, p<.001, w? = 0.477). There was a statistically significant interaction
between the effects of gender and supplement on explosive jump power (F (2, 42) = 11.1, p<.001, w?
=0.138).

Tukey’s post hoc correction showed that explosive leg power was significantly higher in the protein
group compared to the control or CHO groups (t=-1.919, p<.001 and t=-1.782, p<.001 respectively).

Simple main effects showed that jump power was significantly higher in males on a protein
supplement compared to females (F (1) =28.06, p<.001).

109 | Page
JASP 0.10.2 - Dr Mark Goss-Sampson



TWO-WAY REPEATED MEASURES ANOVA

Two-Way Repeated Measures ANOVA means that there are two factors in the experiment, for
example, different treatments and different conditions. "Repeated-measures” means that the same
subject received more than one treatment and/or more than one condition.

Independent Independent variable (Factor 1) = time
variable (Factor 2) | Participant Time 1 Time 2 Time 3
Condition 1 1 Dependent Dependent Dependent
variable variable variable
2 Dependent Dependent Dependent
variable variable variable
3 Dependent Dependent Dependent
variable variable variable
Condition 2 1 Dependent Dependent Dependent
variable variable variable
2 Dependent Dependent Dependent
variable variable variable
3 Dependent Dependent Dependent
variable variable variable

The factors are split into levels, therefore, in this case, Factor 1 has 3 repeated levels and Factor 2 has
2 repeated levels.

A “main effect” is the effect of one of the independent variables on the dependent variable, ignoring
the effects of any other independent variables. There are 2 main effects tested both of which are
“between-subjects”: in this case comparing differences between factor 1 (i.e. condition) and
differences between factor 2 (i.e. groups). Interaction is where one factor influences the other factor.

The two-way repeated ANOVA is another omnibus test that is used to test the following main effect
null hypotheses:

HO1: the dependent variable scores are the same for each level in factor 1 (ignoring factor 2).
HO02: the dependent variable scores are the same for each level in factor 2 (ignoring factor 1).
The null hypothesis for the interaction between the two factors is:

HO03: the two factors are independent or that interaction effect is not present.

ASSUMPTIONS

Like all other parametric tests, two-way repeated ANOVA makes a series of assumptions which should
either be addressed in the research design or can the tested for.

e The independent variables (factors) should have at least two categorical related groups
(levels).

e The dependent variable should be continuous and approximately normally distributed for all
combinations of factors.

110 | Page
JASP 0.10.2 - Dr Mark Goss-Sampson



e Sphericity i.e. the variances of the differences between all combinations of related groups
must be equal.

e There should be no significant outliers.

RUNNING TWO-WAY REPEATED MEASURES ANOVA

Open 2-way repeated ANOVA.csv in JASP. This comprises of 4 columns of data (“sit and reach”
flexibility scores for two factors, Factor 1 with 2 levels (stretch and no stretch) and Factor 2 with 2
levels (warm-up and no warm-up). In Descriptive statistics check the data for significant outliers. Go
to ANOVA > Repeated Measures ANOVA. Firstly each Factor and its levels should be defined, for RM
Factor 1 — define this as Stretching and its levels as stretch and no stretch. Then define RM Factor 2 as
Warm-up and its levels as warm-up and no warm-up. Then add the appropriate column of data to the

assigned repeated measures cells.

¥ Repeated Measures ANOVA

&m

Repeated Measures Factors

Stretching
Stretch
Mo stretch
Level 3
warm up %)
Warm up
Mo warm up ||

Repeated Measures Cells

Stretch+warm up

Stretch+no warm .
Mo stretch+warm ...
Mo stretch+no wa...

Stretch,\Warm up

Stretch,No warm up
Mo stretch,Warm up
Mo stretch,Mo war...

In Additional options tick Descriptive statistics and estimates of effect size - w?.

Display
Descriptive statistics
Estimates of effect size
n2 partial nz

Vovk-Selke rmaxirmum p-ratio

M w

n Descriptive plots add the Stretching factor to the horizontal axis and Warm-up factor to

separate lines. Tick the display error bars option.
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¥ Descriptives Plots

Factors

Label y-axis
Display
Display error bars
) Confidence interval 95
Standard error

%

Average across unused RM factors

Horizontal Axis

Stretching

Separate Lines

Warm up

Separate Plots

UNDERSTANDING THE OUTPUT

The output should comprise 3 tables and one plot.

in this analysis.

Within Subjects Effects

The Between-Subjects Effects table can be ignored

Sum of Squares df IMean Sguare F p w*
Strefch 246.43 1 246432 123.40 = 001 0.647
Residual 2197 11 1.997
Warm up 85.71 1 85707 63.68 = 001 0.404
Residual 13.72 1 1.248
Stretch = Warm up 34,99 1 34237 259.64 = 001 0.215
Residual 12,98 1 1180

MNaote. Type Il Sum of Sguares

The ANOVA within-subject’s effects table shows that there are significant main effects for both stretch
(p<.001) and warm-up (p<.001) on sit and reach distance. Both of these are associated with large effect
sizes. There is also a significant interaction between stretch and warm-up (p<.001), this suggests that
that the effects of performing a stretch on sit and reach distance are different depending on whether
or not a warm-up had been performed. These findings can be seen in both the descriptive data and

plot.
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Descriptives

Siretch Warm up ean sD M
Stretch ‘Warm up 15.0249 1.551 12
Mo warm up 10.6449 2421 12
Mo stretch ‘Warm up B.750 1.68592 12
Mo warm up 7825 1.750 12
16 Warm up
O Warm up
® No warm up
6 —
I |
Stretch No stretch
Stretching p

TESTING ASSUMPTIONS

In this case, there are no assumption checks. Sphericity can only be tested when there are at
least three levels and homogeneity requires at least two unrelated data sets. If a factor has
more than 2 levels Mauchly’s test of Sphericity should also be run and the appropriate
corrected F value used if necessary (See Repeated Measures ANOVA for details).

However, if the ANOVA reports no significant difference you can go no further with the

JASP 0.10.2 - Dr Mark Goss-Sampson

analysis.
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SIMPLE MAIN EFFECTS

Now go to the analysis options and Simple Main Effects. Here add Warm up to the Simple effect factor
and Stretch to the Moderator Factor 1. Simple main effects are effectively pairwise comparisons.

¥ Simple Main Effects
Factors Simple Effect Factor
Warm up

Moderator Factor 1

2 Stretching

Moderator Factor 2

Pool error terms

Simple Main Effects - Warm up

Level of Streich Sum of Squares df IMean Sguare F p
Stretch 115.106 1 115.106 12673 = 001
Mo sirefch 5.587 1 5.587 3873 0.072

Mote. Type Il Sum of Sguares

This table shows that when moderating for warm-up there is a significant difference (p<.001) in sit
and reach performance when a stretch was also carried out but not without a stretch (p=.072).

16

]
Stretch No stretch
Stretch
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We can now moderate for stretch by changing the Simple Main Effects to use Stretch as the simple
effect factor and warm up as the moderator factor. We can also replot the descriptives with a warm-
up on the horizontal axis and stretch as separate lines.

Simple Main Effects - Stretch

Level of Warm up Sum of Sguares df IMean Sguare F p
Warm up 233.55 1 233.55 23418 = 00
No warm up 47 .86 1 47.86 21.85 = 001

MNaote. Type Il Sum of Sguares

In this case, when controlling for Stretch there were significant differences between both warm-up
and no warm-up.

16 Stretching
O Stretch
® No stretch
6 -

I |
Warm up No warm up

Warm up

Both of these simple main effects can be visualised in their descriptive plots.

POST HOC TESTING

If the ANOVA is significant post hoc testing can now be carried out. In Post Hoc Tests add stretch,
warm-up and the Stretching*warm-up interaction to the analysis box on the right, tick Effect size and,
in this case, use Holm for the post hoc correction.
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¥ Post Hoc Tests

= Stretching
Warm up
Stretching * Warm up

Confidence intervals 95 %

Effect size Pool error term for RM factors

Correction
Holm
Bonferroni
Tukey
Scheffe

FPost Hoo Comparisons - Stretch

IMl=an Difference 5E 1 Cohen's d Phaim

Stretch Mo stretch 4532 0.408 11.11 3207 = 001
Note. Cohen's d does not correct for multiple comparisons.

Fost Hoo Comparisons - Warm up

Mean Difference SE t Cohen's d Bhalm

Warm up Mo warm up 2872 0.322 5238 2353 = 001
Note. Cohen's d does not correct for multiple comparisons.

Post hoc testing for the main effects confirms that there are significant differences in sit and reach
distance when comparing the two levels of each factor. This is further decomposed in the Post hoc

comparisons for the interaction.

Post Hoo Comparisons - Sirefching = WWarm up

IMean Difference SE t Phaim
Mo stretch, Mo warm up Mo stretch, Warm up -0.865 0.450 -2.145 0.043
Stretch,No warm up -2.824 0.515 -5 4388 = 001
Stretch, Warm up =7.204 0.520 -13.854 = 001
Mo stretch, Warm up Stretch,No warm up -1.859 0.520 —3.575 0.004
Stretch, Warm up -5.239 0.515 -12.125 =001
Stretch,No warm up Stretch, Warm up -4 380 0.450 9737 = 001
MNote. Bonferroni adjusied confidence intervals.
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REPORTING THE RESULTS

A two-way ANOVA was used to examine the effect of stretch and warm-up type on sit and teach
performance. There were significant main effects for stretch (F (1, 11) = 123.4, p<.001, w? = 0.647) and
warm-up (F (1, 11) = 68.69, p<.001, w? = 0.404). There was a statistically significant interaction
between the effects of stretch and warm up on sit and reach performance (F (1, 11) = 29.64, p<.001,
w?=0.215).

Simple main effects showed that sit and reach performance was significantly higher when both a
stretch and warm-up had been done (F (1) =112.6, p<.001).
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MIXED FACTOR ANOVA
Mixed factor ANOVA (another two-way ANOVA) is a combination of both independent and
repeated measures ANOVA involving more than 1 independent variable (known as factors).

Independent variable Independent variable (Factor 1) = time or condition

(Factor 2) Time/condition 1 Time/condition 2 Time/condition 3
Group 1 Dependent variable  Dependent variable Dependent variable
Group 2 Dependent variable  Dependent variable  Dependent variable

The factors are split into levels, therefore, in this case, Factor 1 has 3 levels and Factor 2 has
2 levels. This results in 6 possible combinations.

A “main effect” is the effect of one of the independent variables on the dependent variable,
ignoring the effects of any other independent variables. There are 2 main effects tested: in
this case comparing data across factor 1 (i.e. time) is known as the “within-subjects” factor
while comparing differences between factor 2 (i.e. groups) is known as the “between-
subjects” factor. Interaction is where one factor influences the other factor.

The main effect of time or condition tests the following i.e. irrespective of which group the
dataisin:

Independent variable Independent variable (Factor 1) = time or condition

(Factor 2) Time/condition 1 Time/condition 2 Time/condition 3
Group 1 All data All data All data
Group 2
l % J | * J
| J
t 3

The main effect of group tests the following i.e. irrespective of which condition the data is in:

Independent variable Independent variable (Factor 1) = time or condition

(Factor 2) Time/condition 1 Time/condition 2 Time/condition 3
Group 1 All data
Group 2 All data j *

Simple main effects are effectively pairwise comparisons:

Independent variable Independent variable (Factor 1) = time or condition

(Factor 2) \ Time/condition 1 Time/condition 2 Time/condition 3

Group 1 Data Data Data

Group 2 ‘ Data j * Data j * Data j *
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A mixed factor ANOVA is another omnibus test that is used to test 3 null hypotheses:

3. There is no significant within-subject effect i.e. no significant difference between the
means of the differences between all the conditions/times.
4. There is no significant between-subject effect i.e. no significant difference between
the means of the groups.
5. There is no significant interaction effect i.e. no significant group differences across
conditions/time
ASSUMPTIONS

Like all other parametric tests, mixed factor ANOVA makes a series of assumptions which
should either be addressed in the research design or can the tested for.

The “within-subjects” factor should contain at least two related (repeated measures)
categorical groups (levels)

The “between-subjects” factor should have at least two categorical independent
groups (levels).

The dependent variable should be continuous and approximately normally distributed
for all combinations of factors.

There should be homogeneity of variance for each of the groups and, if more than 2
levels) sphericity between the related groups.

There should be no significant outliers.

RUNNING THE MIXED FACTOR ANOVA

Open 2-way Mixed ANOVA.csv in JASP. This contains 4 columns of data relating to the type
of weightlifting grip and speed of the lift at 3 different loads (%1RM). Column 1 contains the
grip type, columns 2-4 contain the 3 repeated measures (30, 50 and70%). Check for significant
outliers using boxplots then go to ANOVA > Repeated measures ANOVA.

Define the Repeated Measures Factor, %1RM, and add 3 levels (30, 50 and 70%). Add the
appropriate variable to the Repeated measures Cells and add Grip to the Between-Subjects
Factors:
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¥ Repeated Measures ANOVA

Repeated Measures Factors

Ya1RMax
30%
50%
70%
Level 4
RM Factor 2

Repeatad Measures Cells

RM30 30%
RM50 0%
RM70 70%

Between Subject Factors
& Grip

In Descriptive plots, move %1RM to the horizontal axis and Grip to separate lines. It is now

possible to add a title for the vertical axis.

¥ Descriptives Plots
Factors Horizontal Axis
%e1RMax
Separate Lines
Grip
Separate Plots
Label y-axis Velocity
Display
Display errar bars Average across unused RM factors
O confidence interval 95 %
Standard error

In Additional Options, tick Descriptive statistics and Estimates of effect size (w?).

Display
Descriptive statistics
Estimates of effect size
nz partial n2
w?

Vovk-Selke rmaxirmum p-ratio

general n
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UNDERSTANDING THE OUTPUT

Within Subjects Effects

Sum of Squares df Mean Square F p e
%W1RM 5.605= 2= 2303 115.450= = .001= 0.744
%ARM = Grip 0.583= i 0.291= 12.003= = 001= 0218
Residual 0.874 36 0.024

Nate. Type Il Sum of Sguares
= Mauchly's test of sphericity indicates that the assumption of sphericity is violated (p < .05).

The output should initially comprise of 3 tables and 1 graph.

For the main effect with respect to %1RM, the within-subjects effects table reports a large F-
statistic which is highly significant (p<.001) and has a large effect size (0.744). Therefore,
irrespective of grip type, there is a significant difference between the three %1RM loads.

However, JASP has reported under the table that the assumption of sphericity has been
violated. This will be addressed in the next section.

Betwesn Subjects Effects

Sum of Sguares df hMean Sguare F p we
Grip 1.085 1 1.085 20.925 = 001 04959
Residual 0.942 18 0.052

MNote. Type Il Sum of Squares

Finally, there is a significant interaction between %1RM and grip (p<.001) which also has a
large effect size (0.499). This suggests that the differences between the %1RM loads are
affected somehow by the type of grip used.

For the main effect with respect to grip, the between-subjects table shows a significant
difference between grips (p< .001), irrespective of %1RM.

From the descriptive data and the plot, it appears that there is a larger difference between
the two grips at the high 70% RM load.

Descriptives

1R Max Grip Mean S0 M

0% Reverse 1270 0178 10.000
Traditional 1.482 Q217 10.000

50% Reverse 1.114 0.198 10.000
Traditional 1.183 0.256 10.000

T0% Reverse 0.379 0.105 10.000
Traditional 0817 0.035 10.000
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1.6 - Grip

O  Reverse
® Traditional

=

O

L

[+7]

e

0.2 -

| | |
30% 50% 70%
% 1RMax

TESTING ASSUMPTIONS

In Assumptions Checks, tick Sphericity tests, Sphericity corrections and Homogeneity tests.

¥ Assumption Checks

Sphericity tests
Sphericity corrections
Mone Greenhouse-Geisser Huynh-Feldt

Homogeneity tests

Test of Sphericity
Mauchly's W p Greenhouse-Geisser £ Huynh-Feldt £

%01 RMax 0649 0.025 0.740 0.7

Mauchly’s test of sphericity is significant so that assumption has been violated, therefore, the
Greenhouse-Geisser correction should be used since epsilon is <0.75. Go back to Assumption
Checks and in Sphericity corrections leave Greenhouse-Geisser only ticked. This will result in

an updated Within-Subjects Effects table:

Within Subjects Effects

Sphericity Correction Sum of Squares df Mean Square F p w*
% 1RM Greenhouse-Geisser 5.605= 1.430= 3.787= 115.450= = .001= 0.744
%1RM = Grip Greenhouse-Geisser 0583 1.480= 0.384= 12.003= = 001= 0218
Residual Greenhouse-Geissear 0.874 26.639 0.033
MNote. Type 1l Sum of Squares
= Mauchly's test of sphericity indicates that the assumption of sphericity is violated {p =< 05).
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Test for Equality of Variances (Levene's)

F df1 df2 p
RM30 0.523 1.000 12.000 0.479
RM50 0.346 1.000 12.000 0.564
RMTO 01233 1.000 12.000 0.674

Levene’s test shows that there is no difference in variance in the dependent variable between

the two grip types.

However, if the ANOVA reports no significant difference you can go no

further in the analysis.

POST HOC TESTING

If the ANOVA is significant post hoc testing can now be carried out. In Post Hoc Tests add
%1RM to the analysis box on the right, tick Effect size and, in this case, use Holm for the post
hoc correction. Only Bonferroni or Holm’s corrections are available for repeated measures.

¥ Post Hoc Tests

& Grip > o5 1RMax

Confidence intervals 95 %

Effect size Pool errar term for RM factors

Correction
Holm

Bonferroni
Tukey
Scheffe

Post Hoo Comparisons - % 1RMax

Mean Difference SE t Cohen's d Phans
0% 50% 0.232 0.060 3.856 0.862 0.003
T0% 0.733 0.050 14533 3.261 = 001
50% T0% 0.500 0.073 6.839 1.529 = 001
Note. Cohen's d does not correct for multiple comparisons.
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The post hoc tests show that irrespective of grip type each load is significantly different from each of
the other loads, and as seen from the plot, lift velocity significantly decreases as load increases.

1.6 Grip
O Reverse
@ Traditional
>
[E)
L
Q
e
0.2 -

| | |
30% 50% 70%
% 1RMax

Finally, In Simple main effects add Grip to the Simple effect factor and %1RM to Moderator

factor 1

¥ Simple Main Effects
Factors Simple Effect Factor
z Grip
Moderator Factor 1
% %1RMax

Moderator Factor 2

Pool error terms

Simple Main Effects - Grip
Level of %1RM Sum of Sguares df Wean Square F p
0% 0.206 1 0.208 52249 0.035
50% 0.024 1 0.024 0.461 0.506
T0% 1.447 1 1.447 157212 = 001

These results show that there is a significant difference in lift speed between the two grips at
30% 1RM and also at the higher 70% 1RM loads (p=0.035 and p<0.001 respectively).
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REPORTING THE RESULTS

Using the Greenhouse-Geisser correction, there was a significant main effect of load (F=(1.48,
26.64) = 115.45, p<.001). Bonferroni corrected post hoc testing showed that there was a
significant sequential decline in lift speed from 30-50% 1RM (p=.035) and 50-70% 1RM
(p<.001).

There was a significant main effect for grip type (F (1, 18) = 20.925, p<.001) showing an overall
higher lift speed using the traditional rather than the reverse grip.

Using the Greenhouse-Geisser correction, there was a significant %1RM x Grip interaction (F
(1.48, 26.64) = 12.00, p<.001) showing that the type of grip affected lift velocity over the
%1RM loads.
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CHI-SQUARE TEST FOR ASSOCIATION

The chi-square (x?) test for independence (also known as Pearson's x2 test or the x2 test of association)
can be used to determine if a relationship exists between two or more categorical variables. The test
produces a contingency table, or cross-tabulation, which displays the cross-grouping of the categorical
variables.

The x2 test checks the null hypothesis that there is no association between two categorical variables.
It compares the observed frequencies of the data with frequencies which would be expected if there
was no association between the two variables.

The analysis requires two assumptions to be met:

1. The two variables must be categorical data (nominal or ordinal)
2. Each variable should comprise two or more independent categorical groups

Most statistical tests fit a model to the observed data with a null hypothesis that there is no difference
between the observed and modelled (expected) data. The error or deviation of the model is calculated
as:

Deviation =3 (observed -model)?2

Most parametric models are based around population means and standard deviations. The x2 model,
however, is based on expected frequencies.

How are the expected frequencies calculated? For example, we categorised 100 people into male,
female, short and tall. If there was an equal distribution between the 4 categories expected frequency
=100/4 or 25% but the actual observed data does not have an equal frequency distribution.

Equal Male Female | Row Observed Male Female | Row
Distribution Total Distribution Total
Tall 25 25 50 Tall 57 24 81
Short 25 25 50 Short 14 5 19
Column Total | 50 50 ColumnTotal |71 29

The model based on expected values can be calculated by:

Model (expected) = (row total x column total)/100
Model — tall male =(81x71)/100=57.5

Model — tall female =(81x29) /100 = 23.5

Model — small male =(19x71) /100 =13.5

Model — small female =(19x29)/100=5.5
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These values can then be added to the contingency table:

Male (M) Female (F) Row Total
Tall (T) 57 24 81
Expected 57.5 23.5
Short (S) 14 5 19
Expected 13.5 5.5
Column Total 71 29

(observed —expected) 2

the x2 statistic is derived from . expected

Validity

X2 tests are only valid when you have a reasonable sample size, that is, less than 20% of cells have an
expected count of less than 5 and none have an expected count of less than 1.

RUNNING THE ANALYSIS

The dataset Titanic survival is a classic dataset used for machine learning and contains data on 1309
passengers and crew who were on board the Titanic when it sank in 1912. We can use this to look at
associations between survival and other factors. The dependent variable is ‘Survival’ and possible
independent values are all the other variables.

&;Class &b survived &b name &;sm{ \ age
Third Mo Abbing, Mr. Anthony male 42
Third Mo Abbott, Master, Eugene Joseph male 13
Third Mo Abbott, Mr. Rossmore Edward male 16
Third Yes Abbott, Mrs, Stanton (Rosa Hunt) female 35
Third ez Abelseth, Mizz, Karen Marie female 16
Third Yes Abelseth, Mr. Olaus Jorgensen male 25
Second Mo Abelson, Mr. Samuel male 30
Second Yes Abelson, Mrs, Samuel (Hannah Wizosky) female 28
Third Yes Abrahamsson, Mr, Abraham August Johannes male 20
Third Yes Abrahim, Mrs, Joseph (Sophie Halaut Easu) female 18
Third Mo Adahl, Mr. Mauritz Mils Martin male 30
Third Mo Adams, Mr. lohn male 26
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By convention, the independent variable is usually placed in the contingency table columns and the
dependent variable is placed in the rows.

Open Titanic survival chi square.csv in JASP, add survived to rows as the dependent variable and sex

into columns as the independent variable.

¥ Contingency Tables

& Chss

& name

“ age

% spouses on board
%, parents with children
& embarked

Rows

" & survived
Colurnns

- & sex

Then tick all the following options:

¥ Statistics

X2

w2 continuity correction
Likelhood ratio
Morninal

Contingency coefficient
Phiand Cramer's

¥ Cels

Counts
Expected

Log odds ratio (2x2 only)
Confidence interval 95 D

Vovk-Sellke maxirmum p-ratio

Ordinal

Gamma

Kendall's tau-b

Percentages
Row
Colurmn

Total

JASP 0.10.2 - Dr Mark Goss-Sampson
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UNDERSTANDING THE OUTPUT

First, look at the Contingency table output.

Contingency Tables
Sex

survived famale male Tatal

Mo Count 127.0 G820 anao
Expected count 28580 521.0 309.0
%o within row 157 % 84.3% 100.0 %
% within column 27T 3% B0.9% 61.8%
% of Total 87 % 2.1 % 61.8%

Yes Count 3380 161.0 5000
Expected count 1780 3220 500.0
%% within row 67.8% 322 % 100.0 %
% within column T27% 18.1 % 382 %
% of Total 259 % 123 % 382 %

Total Count 46a.0 2430 13090
Expected count 466.0 843.0 13048.0
% within row 356 % G4 4 % 100.0 %
% within column 100.0 % 100.0 % 100.0 %
% of Total 356 % G4 4 % 100.0 %

Remember that )’ tests are only valid when you have a reasonable sample size, i.e. less than 20% of
cells have an expected count of less than 5 and none have an expected count of less than 1.

From this table, looking at % within rows, it can be seen that more males died on the Titanic compared
to females and more females survived compared to males. But is there a significant association
between gender and survival?

The statistical results are shown below:

Chi-Sguared Tests

“alue df p
XF 36540 1 < 001
X* continuity correction J63.6 1 < .001
Likelihood ratio arza 1 = 001
M 1309

X? statistic (x?(1) = 365.9, p <.001) suggest that there is a significant association between gender and
survival.

x> continuity correction can be used to prevent overestimation of statistical significance for small
datasets. This is mainly used when at least one cell of the table has an expected count smaller than 5.
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As a note of caution, this correction may overcorrect and result in an overly conservative result that
fails to reject the null hypothesis when it should (a type Il error).

The likelihood ratio is an alternative to the Pearson chi-square. It is based on maximum-likelihood
theory. For large samples, it is identical to Pearson x2. It is recommended in particular for small
samples sizes i.e. <30.

Nominal measures, Phi (2 x 2 contingency tables only) and Cramer's V (most popular) are both tests
of the strength of association (i.e. effect sizes). Both values are in the range of 0 (no association) to 1
(complete association). It can be seen that the strength of association between the variables is of a
large effect size.

Maminal
“Walue
Contingency coefficient 0.5
Phi-coefficient 0.5
Cramer's 05

The Contingency coefficient is an adjusted Phi value and is only suggested for large contingency tables
such as 5 x 5 tables or larger.

Effect size * df Small Moderate Large
Phi and Cramer’s V (2x2 only) 1 0.1 0.3 0.5
Cramer’'s V 2 0.07 0.21 0.35
Cramer’'s V 3 0.06 0.17 0.29
Cramer’'s V 4 0.05 0.15 0.25
Cramer’'s V 5 0.04 0.13 0.22

JASP also provides the Odds ratio (OR) which is used to compare the relative odds of the occurrence
of the outcome of interest (survival), given exposure to the variable of interest (in this case gender).

Log Odds Ratio w

95% Confidence Intervals

Log Odds Ratio Lower Upper
Odds ratio -2.425 -2.602 -2.150
Fisher's exact fest —2.423 -2.701 -2.150

4 Kim HY. Statistical notes for clinical researchers: Chi-squared test and Fisher's exact test. Restor. Dent.
Endod. 2017; 42(2):152-155.
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For some reason, JASP calculates OR as a natural log. To convert this from a log value calculate the
natural antilog value (using Microsoft calculator, input number then click on Inv followed by e¥), in this
case, itis 11.3. This suggests that male passengers had 11.3 times more chance of dying than females.

o L el

View Edit Help

powe(2.425)

11.302229419279581084945760496796

@ Degrees () Radians @Erads” MC || MR || MS || M= || M-

B e[ [ L= e ] e JL= L

How is this calculated? Use the counts from the contingency table in the following:

Odds[males] = Died/Survived = 682/162 =4.209
Odds[females] = Died/Survived =127/339 =0.374

OR = Odds[males] / Odds [females] =11.3

GOING ONE STEP FURTHER.

We can also further decompose the contingency table as a form of post hoc testing by converting the
counts and expected counts in each cell to a standardised residual. This can tell us if the observed
counts and expected counts are significantly different in each cell.

The standardized residual for a cell in a table is a version of the standard z-score, calculated as

zZ= observed — expected
Vexpected

In the special case where df = 1, the calculation of the standardized residual incorporates a correction
factor:
z= |observed — expected| — 0.5
Vexpected

The resulting value of z is then given a positive sign if observed>expected and a negative sign if
observed<expected. Z-score significances are shown below.

z-score P value
<-1.96 or >1.96 <0.05
<-2.58 or > 2.58 <0.01
<-3.29 or > 3.29 <0.001
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Contingency Tables

sex
survived female male Total
No Count 127.0 682.0 809.0
Expected count 2880 521.0 309.0
% within row 15.7% 84.3% 100.0%
% within column 273% 80.9% 61.8%
% of Total 97% 62.1% 61.8%
Yes Count 3390 161.0 500.0
Expected count 175.0 3220 500.0
% within row 67.8% 322% 100.0%
% within column 727% 19.1% 38.2%
% of Total 259% 123% 38.2%
Total Count 466.0 8430 1309.0
Expected count 466.0 8430 1309.0
% within row 356% 64.4% 100.0%
% within column 100.0% 100.0 % 100.0%
% of Total 356% 64.4% 100.0%

Female No Male No
z=-95 z=7.0
Female Yes Male Yes
z=12.0 z=-89

When the z-scores are calculated for each cell in the contingency table we can see that significantly
fewer women died than expected and significantly more males died than expected p<.001.

JASP 0.10.2 - Dr Mark Goss-Sampson
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EXPERIMENTAL DESIGN AND DATA LAYOUT IN EXCEL FOR JASP IMPORT.

Independent t-test
Design example:

Independent variable Group 1 Group 2
Dependent variable Data Data
Independent variable Dependent variable
Categorical Continuous

A A B

1| Group Data
2 | 1 0

3 | 1 0

4 1 3.8
5 | 1 [

6 | 1 0.7
7 | 1 29
8 | 1 2.8
9 | 1 2

10 | 1 2

11 1 85
12 | 1 1.9
13 1 2.1
14 1 1.5
15 | 1 3

16 | 1 3.6
17 | 1 0.9
18 | 1 -2.1
19 | 2 2

20 2 1.7
21 2 4.3
22 2 7

23 2 0.6
24 2 2.7
25 2 3.6

More dependent variables can be added if required

JASP 0.10.2 - Dr Mark Goss-Sampson
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Paired samples t-test
Design example:

Independent variable Pre-test | Post-test
Participant Dependent variable
1 Data Data
2 Data Data
3 Data Data
..n Data Data
Pre-test Post-test

Y| A B

1 Pre-test Post-test

2 | 60 60

3 103 103

4 | 58 54

5 | 60 54

6 | 64 63

7 64 61

8 | 65 62

9 66 64

10 | 67 65

11 69 61

12 70 68

13 70 67

14 72 71

15 72 69

16 | 72 68

17 82 81

18 | 58 60

19 58 56

20 | 59 57

21 61 57

22 | 62 55

23 63 62

24 | 63 60

25 63 59
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Correlation
Design example:

Simple correlation

A

JASP 0.10.2 - Dr Mark Goss-Sampson

[ |
Participant Variable 1 Variable 2 ' | Variable3 | Variable 4 | Variable ..
1 Data Data Data Data Data
2 Data Data Data Data Data
3 Data Data Data Data Data
..n Data Data Data Data Data
\
|
Multiple correlation

A A | B | L | ] | E | F

1 | Participant Variablel Variable2 Variable3 Variable4 Variable5

2 | 1 533 7 ¥7 106 106

3 | 2 472 63 39 92 93

4 | 3 484 82 ¥7 93 78

2 | 4 336 72 72 103 93

6 | 5 630 7 63 104 93

7 | 6 263 63 68 101 87

8 | 7 531 7 82 108 106

9 | ) 344 a0 a0 86 92

10 9 346 54 50 a0 86

11 | 10 386 a9 34 853 80

12 11 460 54 63 89 83

13 | 12 452 63 39 92 94
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Regression

Design example:

Simple Regression

JASP 0.10.2 - Dr Mark Goss-Sampson

A
[ |
Participant Outcome Predictor 1 | Predictor 2 | Predictor 3 | Predictor ..n
1 Data Data Data Data Data
2 Data Data Data Data Data
3 Data Data Data Data Data
N Data Data Data Data Data
\ )
|
Multiple regression
A A | B | C | D E | F |
1 | Participant  Outcome Predictorl Predictor2 Predictor3 Predictor4
2 | 1 333 7 7 106 106
3 | 2 472 63 39 92 93
4 | 3 484 82 7 93 78
EN 4 536 72 72 103 93
6 | 5 630 7 63 104 93
7 6 563 68 68 101 87
8 | 7 5331 7 82 108 106
9 | 8 344 30 20 86 92
10 9 346 4 S0 a0 86
11 10 386 a9 4 85 80
12 11 460 4 63 89 83
13 12 492 63 39 92 94
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Logistic Regression
Design example:

Dependent Variable Factor Covariate
(categorical) (categorical) (continuous)

Participant Outcome Predictor 1 Predictor 2
1 Data Data Data
2 Data Data Data
3 Data Data Data
o Data Data Data

A A B C | D |

1 | 1D Outcome Factor Covariate

2_ 1 Yes Yes 70

3 | 2 Yes MNo 20

4_ 3 Yes Yes S0

2 | 4 Yes MNo 60

6_ 5 Yes Mo A0

7 | 6 Yes MNo 65

B_ 7 Yes Mo 75

9 8 Yes MNo 20

1£ 9 Yes Mo 70

11 | 10 Yes MNo 60

]i 11 Mo Yes 65

13 | 12 Mo Yes a0

11 13 Mo Yes 45

15| 14 Mo Yes 35

1£ 15 Mo Yes A0

17 | 16 Mo Yes a0

li 17 Mo Mo a5

19 17 Yes MNo 65

Ei 18 Mo Yes 45

More factors and covariates can be added if required
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One-way Independent ANOVA
Design example:

Independent variable Group 1 Group 2 Group 3 Group...n
Dependent variable Data Data Data Data
Independent variable Dependent variable
(Categorical) (Continuous)

A A | E

1 Group Dependent variable

2 | Group 1 3.8

3 | Group 1 6

4 | Group 1 0.7

EN Group 1 2.9

6 | Group 1 2.8

7 Group 1 2

8 | Group 1 2

9 | Group 1 3.5

10 Group 2 1.9

11 Group 2 3.1

12 Group 2 1.5

13 | Group 2 3

14 | Group 2 3.6

15| Group 2 0.9

16 Group 2 -0.6

17 Group 3 1.1

18 Group 3 4.5

19 Group 3 6.1

20 | Group 3 5

21 Group 3 2.4

22 Group 3 3.9

23 | Group 3 3.5

24 | Group 3 3.1

25 Group 3 3.5

More dependent variables can be added if required
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One-way repeated measures ANOVA
Design example:

Independent variable (Factor)

Participant Level 1 Level 2 Level 3 Level..n
1 Data Data Data Data
2 Data Data Data Data
3 Data Data Data Data
4 Data Data Data Data
..n Data Data Data Data
Factor (time)
A
|
A A B | C | D
- Levels

1 | Participant Week 0 Week 3 Week g ¢

2 1 6.42 5.83 5.75 (Related groups)

3_ 2 6.76 6.2 6.13

4 | 3 6.56 5.83 271

5_ 4 4.8 a4.27 4.15

b | 5 8.43 .71 7.67

]"_ 6 7.49 7.12 7.05

8 | 7 8.05 7.25 7.1

9_ ) 5.05 4.63 a4.67

10 | 9 5.97 5.31 5.33

li 10 3.91 3.7 3.66

12 | 11 6.77 6.15 5.96

li 12 6.44 5.59 5.64

14 | 13 6.17 5.56 5.51

li 14 7.67 711 6.96

16 | 15 7.34 6.84 6.82

ll 16 6.85 6.4 6.29

18 17 5.13 4.52 4.45

]i 18 5.73 5.13 5.17

More levels can be added if required
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Two-way Independent ANOVA
Design example:

Factor 1 Supplement 1 Supplement 2
Factor 2 Dose 1 Dose 2 Dose 3 Dose 1 Dose 2 Dose 3
De;-aendent Data Data Data Data Data Data
variable
Factorl Factor2 Dependent variable

4 A B C |

1 | supp dose len

2_ ol 1000 15.7

3_ ol 1000 23.3

4_ ol 1000 23.6

5_ ol 1000 260.4

E_ ol 1000 20

?_ ol 1000 25.2

B_ ol 1000 23.8

9_ ol 1000 21.2

1& ol 1000 14.5

li ol 1000 27.3

11 ol 2000 23.5

li ol 2000 260.4

li ol 2000 22.4

li ol 2000 24.5

1£ ol 2000 24.8

ll ol 2000 30.9

1£ ol 2000 260.4

]i ol 2000 27.3

ZE ol 2000 29.4

E ol 2000 23

E VC 1000 16.5

21 WC 1000 16.5

1& VC 1000 15.2

& WC 1000 17.3

More factors and dependent variables can be added if required
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Two-way Repeated measures ANOVA
Design example:

Factor 1 Level 1 Level 2
Interventions i.e. intervention 1 i.e. intervention 2
Factor 2 Levell | Level 2 | Level 3 Level 1 Level 2 | Level 3
Time i,etimel | i.etime2 | i.etime3 | i.,etimel | i.,etime2 | i.etime3
1 Data Data Data Data Data Data
2 Data Data Data Data Data Data
3 Data Data Data Data Data Data
..n Data Data Data Data Data Data
Factor 1 levels 1-n Factor 2 levels 1-n
A
| |l |
Y | A | B | |0 | D E
1 | Subject Factor 1 level 1 Factor 1 level 2 Factor 2 level 1 Factor 2 level 2
2 | A 7.38 6.2 9.27 14.32
3_ B 771 10.83 11.48 16.28
4 C 6.19 10.42 9.77 15.45
5_ D 9.27 11.78 15.45 16.96
6_ E 11.41 9.52 11.65 15.64
7| F .29 2.82 9.22 13.01
B_ G 8.54 59.43 10.92 17.35
g | H 7.89 2.43 2.26 12.57
11 | 249 b.64 11.329 14.02
11 1 9.26 9.36 13.03 16.24
11 K 6.9 7.09 9.02 14.7
li L 8.7 9.64 B8.33 13.71
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Two-way Mixed Factor ANOVA
Design example:

Factor 1 Group 1 Group 2
(Between subjects)
Factor 2 levels Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3
(Repeated measures)
1 Data Data Data Data Data Data
2 Data Data Data Data Data Data
3 Data Data Data Data Data Data
..n Data Data Data Data Data Data
Factor 1 Factor 2 levels
(Categorical) (Continuous)
A
|

A A | B C | )

1| Group Level 1 Level 2 Level 3

2 Group 1 1.31 0.9 0.9

3_ Group 1 1.29 0.89 0.72

4 | Group 1 1.3 0.9 0.96

5_ Group 1 14 1.26 0.97

B Group 1 1.49 1.18 0.88

}'_ Group 1 1.35 1.15 0.92

g | Group 1 1.45 1.19 1

g Group 1 1.21 1.2 0.85

10 | Group 1 1.79 1.45 0.99

11 Group 1 1.73 1.68 0.98

12 Group 2 1.55 0.9 0.55

li Group 2 1.27 0.95 0.41

14 Group 2 1.53 0.87 0.42

15 | Group 2 1.26 1.15 0.44

16 Group 2 1.14 1.12 0.38

ll Group 2 1.11 1.08 0.34

18 Group 2 1.1 1.07358 0.18

]i Group 2 1.08 1.18 0.24

20 | Group 2 1.3 1.26 0.39

El Group 2 1.45 1.55 0.44
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Chi-squared - Contingency tables
Design example:

JASP 0.10.2 - Dr Mark Goss-Sampson

Participant Response 1 Response 2 Response 3 Response...n
1 Data Data Data Data
2 Data Data Data Data
3 Data Data Data Data
..n Data Data Data Data
All data should be categorical

Y A | B C D E |

1] Respondant Response 1 Response 2 Response 3 Response 4

2 1 Female clay Morning yes

3 2 Male astro Morning Mo

4 | 3 Female grass Evening Mo

5 | 4 Male clay Afternoon Mo

& 5 Male clay Morning Mo

7] ] Male grass Evening No

g8 7 Female grass Evening yes

9 | 8 Male clay Morning yes

10 9 Female grass Maorning Mo

11 | 10 Male clay Afternoon Mo

12 | 11 Female clay Afternocon Mo

13 | 12 Male astro Afterncon Mo

14 13 Male astro Afternocon Mo

15 | 14 Male astro Afternoon yes

16 | 15 Female clay Morning Mo

17 | 16 Male astro Afternoon yes

18 17 Female astro Afternocon yes

19 18 Male grass Morning No

20 15 Male clay Afternocon Mo
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SOME CONCEPTS IN FREQUENTIST STATISTICS

The frequentist approach is the most commonly taught and used statistical methodology. It
describes sample data based on the frequency or proportion of the data from repeated
studies through which the probability of events is defined.

Frequentist statistics uses rigid frameworks including hypothesis testing, p values and
confidence intervals etc.

Hypothesis testing

A hypothesis can be defined as “a supposition or proposed explanation made on the basis of
limited evidence as a starting point for further investigation”.

There are two simple types of hypotheses, a null hypothesis (Ho) and an alternative or
experimental hypothesis (H1). The null hypothesis is the default position for most statistical
analyses in which it is stated that there is no relationship or difference between groups. The
alternative hypothesis states that there is a relationship or difference between groups has n
a direction of difference/relationship. For example, if a study was carried out to look at the
effects of a supplement on sprint time in one group of participants compared to the placebo
group:

Ho = there is no difference in sprint times between the two groups
Hi = there is a difference in sprint times between the two groups
H, = group 1 is greater than group 2

Hs = group 1 is less than group 2

Hypothesis testing refers to the strictly predefined procedures used to accept or reject the
hypotheses and the probability that this could be purely by chance. The confidence at which
a null hypothesis is accepted or rejected is called the level of significance. The level of
significance is denoted by a, usually 0.05 (5%). This is the level of probability of accepting an
effect as true (95%) and that there is only 5% of the result being purely by chance.

Different types of hypothesis can easily be selected in JASP, however, the null hypothesis is
always the default.

Hypothesis
@ Groupl # Group2
(") Groupl > Group 2

(") Group 1 < Group 2
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Type | and Il errors

The probability of rejecting the null hypothesis, when it is, in fact, true, is called Type | error
whereas the probability of accepting the null hypothesis when it is not true is called Type Il
error.

Not guilty (Ho) Guilty (Hi)
Type | error
Guilty (Hi) An innocent person | Correct decision
The verdict goes to prison
Not guilty (Ho) Type Il error
Correct decision A guilty person goes free

Type | error is deemed the worst error to make in statistical analyses.

Statistical power is defined as the probability that the test will reject the null hypothesis when
the alternative hypothesis is true. For a set level of significance, if the sample size increases,
the probability of Type Il error decreases, which therefore increases the statistical power.

Testing the hypothesis

The essence of hypothesis testing is to first define the null (or alternative) hypothesis, set
the criterion level a, usually 0.05 (5%), collect and analyse sample data. Use a test statistic to
determine how far (or the number of standard deviations) the sample mean is from the
population mean stated in the null hypothesis. The test statistic is then compared to a critical
value. This is a cut-off value defining the boundary where less than 5% of the sample means
can be obtained if the null hypothesis is true.

If the probability of obtaining a difference between the means by chance is less than 5% when
the null hypothesis has been proposed, the null hypothesis is rejected and the alternative
hypothesis can be accepted.

The p-value is the probability of obtaining a sample outcome, given that the value stated in
the null hypothesis is true. If the p-value is less than 5% (p < .05) the null hypothesis is
rejected. When the p-value is greater than 5% (p > .05), we accept the null hypothesis.

Effect size

An effect size is a standard measure that can be calculated from any number of statistical
analyses. If the null hypothesis is rejected the result is significant. This significance only
evaluates the probability of obtaining the sample outcome by chance but does not indicate
how big a difference (practical significance), nor can it be used to compare across different
studies.
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The effect size indicates the magnitude of the difference between the groups. So for example,
if there was a significant decrease in 100m sprint times in a supplement compared to a

placebo group, the effect size would indicate how much more effective the intervention was.
Some common effect sizes are shown below.

Test Measure Trivial Small Medium Large

Between means Cohen’s d <0.2 0.2 0.5 0.8

Correlation Correlation coefficient (r) <0.1 0.1 0.3 0.5
Rank -biserial (rs) <0.1 0.1 0.3 0.5
Spearman’s rho <0.1 0.1 0.3 0.5

Multiple Regression | Multiple correlation | <0.10 | 0.1 0.3 0.5
coefficient (R)

ANOVA Eta <0.1 0.1 0.25 0.37
Partial Eta <0.01 |0.01 0.06 0.14
Omega squared <0.01 |0.01 0.06 0.14

Chi-squared Phi (2x2 tables only) <0.1 0.1 0.3 0.5
Cramer’s V <0.1 0.1 0.3 0.5
Odds ratio (2x2 tables only) <1.5 1.5 35 9.0

In small datasets, there may be a moderate to large effect size but no significant differences.
This could suggest that the analysis lacked statistical power and that increasing the number
of data points may show a significant outcome. Conversely, when using large datasets,
significant testing can be misleading since small or trivial effects may produce statistically
significant results.

PARAMETRIC vs NON-PARAMETRIC TESTING

Most research collects information from a sample of the population of interest, it is normally
impossible to collect data from the whole population. We do, however, want to see how well
the collected data reflects the population in terms of the population mean, standard
deviations, proportions etc. based on parametric distribution functions. These measures are
the population parameters. Parameter estimates of these in the sample population are
statistics. Parametric statistics require assumptions to be made of the data including the
normality of distribution and homogeneity of variance.

In some cases these assumptions may be violated in that the data may be noticeably skewed:
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Density
Density

Normal Skewed

Sometimes transforming the data can rectify this but not always. It is also common to collect
ordinal data (i.e. Likert scale ratings) for which terms such as mean and standard deviation
are meaningless. As such there are no parameters associated with ordinal (non-parametric)
data. The non-parametric counterparts include median values and quartiles.

In both of the cases described non-parametric statistical tests are available. There are
equivalents of most common classical parametric tests. These tests don’t assume normally
distributed data or population parameters and are based on sorting the data into ranks from
lowest to highest values. All subsequent calculations are done with these ranks rather than
with the actual data values.
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WHICH TEST SHOULD | USE?
Comparing one sample to a known or hypothesized population mean.

1

-

2 categories >2 categories
v ‘
Testing relationships between two or more variables

T 1
* | Ordnal

Are parametric

assumptions met?

.

Yes No

l
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Predicting outcomes

More than one
predictor variable?

|

No Yes

! .
e
s

Testing for differences between two independent groups

1 = 1

Are parametric
assumptions met?

}

Yes No
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Testing for differences between two related groups

1 l
= i

Are parametric
assumptions met?

:

Yes No

} !
I N

Testing for differences between three or more independent groups

1 = 1

Are parametric
assumptions met?

}

Yes No

! !
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Testing for differences between three or more related groups

Are parametric
assumptions met?

.

Yes No

!

Test for interactions between 2 or more independent variables

Are parametric
assumptions met?

|

Yes No

! !
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