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A patient-reported outcome (PRO) is a type of outcome reported directly from patients, 

and it has been widely used in medical research and clinical trials to measure a patient’s 

symptoms, health-related quality of life, physical functioning, and health status.  Previous studies 

have linked PROs to survival outcomes, but most of them only used the PRO information at 

baseline or at a specific clinical time point [1, 2].  Even though some of these studies collected 

longitudinal PROs, only few of them evaluated the association between the longitudinal PROs 

and a survival outcome.  One of the major challenges in longitudinal PRO studies is to address 

the individual heterogeneity in PRO repeated measurements.  Due to the fact that PRO is 

reported directly from patients, and different patients may have different experiences, 

longitudinal PROs have been often observed with individual heterogeneity, yet current methods 

[3-5] are not able to account for the individual heterogeneity.  Therefore, in this research, we 

developed three methods using two-state Continuous-Time Markov Chain (CTMC) to 

summarize longitudinal PRO.  The primary summary used is the estimated state transition rates, 

which serve as summary statistics to depict longitudinal PRO patterns at the individual level.  

These transition rates can also be incorporated into survival models as predictors or into factor 



analysis as observed variables.  Specifically, in the first two papers, we developed prognostic 

models that contained baseline covariates and a longitudinal process in two survival models, 

Weibull Regression and Cox Proportional Hazard Regression, with different estimation 

approaches.  Simulation studies were conducted to validate the proposed methods, and the 

proposed models were then applied to two PRO studies separately, with both using repeated 

PRO measurements during the treatment period in cancer patients to predict the survival 

outcomes that happened after the treatment.  In the third paper, we then integrated two-state 

CTMC with factor analysis to evaluate the usage of CTMC in PRO symptom clustering.  This 

study showed that CTMC could well summarize the longitudinal PRO information during the 

treatment period of cancer patients.  The underlying construct of patient-reported symptoms had 

also met our expectations from clinical experience. 
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1. BACKGROUND 

1.1 Introduction of Patient-Reported Outcome 

1.1.1 Patient-Reported Outcome in Cancer Research 

Patient-reported outcome (PRO) is a type of outcome that is measured not from 

physicians or caregivers, but directly from patients themselves.  It is based on the patients’ 

perceptions of the disease and treatment [6, 7].  Generally, PRO includes measures of symptoms 

(single or multi-dimension), health-related quality of life (HRQoL), physical functioning, and 

health status [6, 8].  

Patient-reported outcomes (PROs) have been widely used in biomedical research, 

especially in mental health, chronic illness, and oncology [9-12].  In clinical trials or 

observational studies, PROs have been used in many aspects and have provided different 

functionalities to researchers.  For example, PROs have been used as a tool to determine the 

eligibility of patients in the enrollment process when the screening outcome can only be reported 

by patients [7].  Also, PROs have been used to confirm and monitor disease status.  Because 

cancer patients always experience multiple symptoms (e.g., pain, fatigue, and distress) during 

their treatment, PROs can play a role as a surrogate to monitor patients’ reactions to the 

treatment and provide responsive symptom information to clinicians [13].  Additionally, to 

explain low patient compliance rates in clinical trials, PRO measures are often used [7].  For 

example, patients who have severe symptoms may drop out from clinical trials early.  PRO is 

also widely used as a study endpoint because it can provide a unique perspective on treatment 

effectiveness [14-16].  Studies have used PROs as primary endpoints or exploratory endpoints in 

clinical trials when the research questions can only be measured by PROs.  When the treatment 

has a negative implication for other aspects of life (e.g., side effects), PROs can also assess the 
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impact of the treatment on the patient’s quality of life.  Furthermore, Basch et al. [17] showed 

that a patient-reported symptom monitoring group had better survival compared to a usual care 

group while controlling other demographic and clinical factors.  Additionally, the development 

of a new biosimilar compound may need PROs to distinguish the benefit from the standard drugs 

when the biological benefits are comparable.  Therefore, it is believed that PROs will be as 

important as other types of outcomes, such as clinical outcomes, physiological outcomes, and 

care-giver reported outcomes.  In fact, in the past decades, PROs have been extensively applied 

to observational studies and clinical trials. The European Medicine Agency (EMA) published a 

guideline for the pharmaceutical industry, in which PRO is suggested to be included in oncology 

clinical trials to assist benefit-risk assessment and therapeutic claims [6, 18].  Similarly, the US 

Food and Drug Administration (FDA) released a guideline that recommended PROs for clinical 

trials and outlined the properties and components of PRO instruments [7]. 

 

1.1.2 Patient-Reported Outcome Instruments 

To better understand the difference between symptoms and HRQoL and elements of a 

PRO instrument, this section will introduce properties of a PRO instrument and some commonly-

used PRO instruments in oncology.    

Patient-reported Outcome Symptoms and Health-Related Quality of Life 

PRO symptoms and HRQoL are often studied and discussed together, yet they are not the 

same.  A symptom is a one-dimensional property related to a disease or treatment status that is 

directly reported from patients.  On the other hand, HRQoL is a multi-dimensional measure that 
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consists of several physical, psychological, social, economical factors, disease or treatment 

symptoms, and cultural set-up [19].      

Properties of PRO Instruments 

PRO instruments are the tools used to measure PROs, e.g., symptoms or HRQoL related 

to a disease or treatment.  According to Deshpande et al. [19], a good PRO instrument should 

possess the following properties:  First, it should be specific to the concept being measured [20].  

Depending on the purpose of the instrument, a PRO instrument usually only measures one 

general concept of a disease or treatment.  Second, a good PRO instrument should be based on 

an end-point model, a hierarchical model that considers all types of endpoints, non-PRO 

assessment and PRO assessment, to meet the requirements of a clinical trial’s objective, study 

design, and data analysis plan [20].  For example, a clinical trial following an end-point model 

may contain three types of endpoints that can be measured from a bio-chemical exam (non-PRO 

assessment), physical exam (non-PRO assessment), and symptoms of the disease (PRO 

assessment).  Third, a good PRO instrument should have conceptual equivalence, which means 

the instrument should measure the same concept equivalently in different languages and cultures.  

Fourth, a good PRO instrument should consist of a conceptual framework, an “item-domain-

concept” structure that defines how concepts should be measured by the instrument [20].  For 

example, a general QoL concept can be defined by several domains (physical, emotional, and 

social), and each domain can be measured by several items.  Fifth, a good PRO instrument 

should have easy and specific measurement properties and contain an optimum number of items.  

The scale system for the measurement and the number of total items in an instrument should be 

easy to understand and complete for patients.  Last, a good PRO instrument should maintain 
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patient confidentiality.  Patient confidentiality is important for all kinds of studies.  So, a good 

instrument should only collect the information that is necessary for each study objective.    

Common Oncology PRO Instruments  

A number of PRO instruments have been designed for oncology studies.  PRO 

instruments that are commonly used in cancer clinical trials are as follows: 

EORTC-QLQ-C30 

 Developed by the European Organization for Research and Treatment of Cancer 

(EORTC), the EORTC quality of life core questionnaire (QLQ-C30) consists of 30 items [21, 

22].  It is a general instrument that can be applied to all types of cancer patients through 5 

functional scales (physical, role, emotional, cognitive, and social), 9 single items, and two items 

on global health status and QoL.  It uses a 4-point numerical rating scale (not at all, a little, quite 

a bit, very much) in most questions and a 7-point numerical scale for global health status/QoL 

items.  The raw score in EORTC-QLQ-C30 can be transformed to a 0-100 scaling by following 

its scoring procedure.  A higher functional scale or QoL represents a healthy level of functioning 

or higher QoL; while a higher symptom item represents a higher level of 

symptomatology/problems.  This instrument also has several modules to supplement the core 

EORTC-QLQ-C30.  For example, QLQ-BR-23 contains 23 additional items measuring disease 

symptoms, side effects of a treatment, body image, sexual functioning, and future perspectives 

for breast cancer patients.  A QLQ-H&N-35 is a module for head and neck cancer patients that 

measures symptoms and side effects of a treatment, social function, and body image/sexuality 

through 35 additional questions.  The scoring approaches for these modules are identical with 

that for QLQ-C30. Thus, these modules can be easily applied to data analyses and reporting in 
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cancer studies.  The interpretation of scoring can be done by reporting the raw score in each 

functional scale or single symptom/QoL item, by comparing the difference of score (e.g., 

Cohen’s effect size) between groups, or by comparing scores at different time points. 

EQ-5D-5L 

The EuroQol Group developed EQ-5D-5L and released it in 2009 [23, 24].  It is a 

modified version based on the previous EQ-5D-3L, but EQ-5D-5L has improved the 

instrument’s sensitivity and reduced the ceiling effects.  This instrument contains 5 domains 

(mobility, self-care, usual activities, pain/discomfort, and anxiety/depression) using a 5-level 

scale (no problems, slight problems, moderate problems, severe problems, and extreme 

problems) and a visual analogue scale (EQ VAS) with a 0-100 scaling.  Specifically, the EQ 

VAS is a scale that asks the patient to mark their health condition of that day on a ruler graph, 

ranging from “worst possible” to “best possible” health.  The report for EQ-5D-5L may contain 

the distribution (frequency) of each domain, an overall index calculated from the domains (range 

in -0.1 to 1), and the EQ VAS.     

PRO-CTCAE 

The Patient-Reported Outcomes version of the Common Terminology Criteria for 

Adverse Events (PRO-CTCAE) [25, 26] was developed by National Cancer Institute (NCI) to 

capture the symptomatic adverse events (e.g., side effects of a treatment) in cancer patients 

enrolled in clinical trials.  It is recommended to be used with a Common Terminology Criteria 

for Adverse Events (CTCAE) score graded by physicians.  PRO-CTCAE includes an item library 

that consists of 124 items for 78 symptomatic toxicities.  Selection of items from the library is 

usually based on previous studies or previous pre-clinical data.  It uses a 0-4 scale for each item, 



6 
 

and each symptom is measured through three attributes: frequency, severity, and/or interference.  

The analysis of PRO-CTCAE depends on the design of each study, but every toxicity item is 

interpreted independently.   

FACT-G 

 Functional Assessment of Chronic Illness Therapy (FACIT) developed Functional 

Assessment of Cancer Therapy – General (FACT-G) that collects core quality of life items from 

patients [27, 28].  It consists of 27 items in 4 domains (physical, social/family, emotional, and 

functional well-being), and it is usually applied to cancer and other chronic diseases (e.g., 

HIV/AIDS).  It uses a 5-point scaling and contains some reversed items.  A higher score in 

FACT-G (range in 0-108) means a better quality of life.  FACIT also provides modules for 

various forms of cancer, which include an additional section with disease specific questions.  For 

example, FACT-Hep is an instrument for patients with hepatobiliary cancer (liver, bile duct, and 

pancreas), and FACT-O is one for patients with ovarian cancer.  In these modules, a Trial 

Outcome Index (TOI), a summary of 4 domains in FACT-G, and the subscale from a specific 

disease is usually reported to reflect the overall physical and functional condition of a patient.   

SF-36 

RAND Health Care developed Short Form Health Survey (SF-36) that contains 36 items 

to measure patients’ generic quality of life [29, 30].  SF-36 is part of the Medical Outcome Study 

(MOS), a multi-site study that explaines variations in patient outcomes.  SF-36 contains 8 health 

concepts: physical functioning, bodily pain, role limitations due to physical health problems, role 

limitations due to personal or emotional problems, emotional well-being, social functioning, 

energy/fatigue, and general health perceptions.  In this instrument, it uses a scaling system 
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ranging from a 2-point scale to a 6-point scale.  It interprets the results of each health concept 

(range in 0-100), and a higher score means a more favorable health state.      

MDASI 

The MD Anderson Symptom Inventory (MDASI) is a multi-symptom PRO instrument 

developed by The University of Texas MD Anderson Cancer Center [31, 32].  MDASI-Core 

contains 13 core symptom items and 6 interference items using a 0-10 numerical rating scale, 

where 0 represents no symptom present, and 10 represents the symptom that is as bad as a patient 

can imagine.  The simple feature and design make this instrument easy to understand, and it can 

be completed in 3-5 minutes.  MDASI also comprises multiple modules that are designed for 

different cancer diseases and treatment-specific purposes.  For example, MDASI-BT is a module 

for brain tumor patients that includes items in MDASI-Core and additional items specifically 

related to brain tumor.  The interpretation of MDASI depends on the study objective.  Both 

single-item scoring (score in 0-10) and composite scoring (e.g., mean of most 5 severe symptom 

items) are widely used in clinical studies.  In this dissertation, given the data availability, MDASI 

will be the only PRO instrument used to measure cancer patients’ symptom burden during the 

treatment period. 

 Most PRO instrument manuals provide a recommendation for PRO result presentation or 

instructions of PRO instrument administration.  Some instruments can report the result in single 

symptom item, while others can only report the subscale of each domain or a total index after 

designed transformation.  Besides, the frequency of administering a PRO instrument is also 

important, and it depends on the recall period.  For example, the recall period for EQ-5D-5L is 

the day when patients complete the survey.  MDASI, however, has a recall period for the last 24 

hours, and EORTC-C30, FACT-G, PRO-CTCAE have a recall periods for the past week (7 
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days).  Some instruments suggest a weekly collection during the study; other depend on the need 

and design of the study.  The more frequent a PRO instrument is distributed, the more costly the 

study will become.  In some studies [33], PROs are collected only 2-3 times across the study 

period, and PRO results are compared in a cross-sectional manner.  For example, a QoL score at 

baseline (before treatment) can be compared with the QoL score after the treatment.  However, 

more researchers start to collect longitudinal PROs (more than 3 times of collection) in their 

studies [34, 35] because longitudinal PRO can better explain patients’ experience on the cause of 

disease and treatment.  The analysis of longitudinal PRO results will be discussed in the 

following section.   

 

1.1.3 Longitudinal PRO Analysis 

 Longitudinal PROs can provide more symptom and HRQoL information realted to the 

disease, drugs, and operations involved.  For example, a comprehensive deisgn of longitudinal 

PRO collections records PRO at baseline, treatment cycles (weekly or bi-weekly), and post-

treatment follow-up (bi-weekly, monthly, or every 6 months) [36].  The PRO instruments; 

therefore, can measure symptom change over the study period, providing detailed information on 

the difference before and after the treatment; and capturing the variation of symptoms at a 

meaningful clinical time point.   

The trajectory of longitudinal PRO may not always be linear.  In most of the 

observational studies on cancer with chemotherapy [37, 38], a weekly measured PRO tends to 

show a non-linear pattern (waves) during the weeks when patients receive the chemotherapy.  

This type of data can indicate whether a symptom is changed by the influence of the disease or 

by the effectiveness/burden of the treatment.      
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Longitudinal PROs as Outcomes  

There are many ways to analyze longitudinal PROs; however, most of the methods 

consider longitudinal PROs as outcome variables.  For example, Fairclough [39] described the 

common considerations for analyzing a longitudinal PRO as an outcome in her book; and 

provided examples and programing codes with detailed instructions.  Below are some examples 

of longitudinal PROs analyzed as outcomes: 

Lin et al. [40] used a Linear Mixed-effect Model (LMM) to analyze longitudinal HRQoL 

data from patients who had lumber spine surgery in Taiwan.  A series of PRO instruments were 

distributed (e.g., Taiwanese version of World Health Organization Quality of Life-BREF and 

Numerical Rating Scale for leg and back pain) to the patients 1 week before their lumber spine 

surgery, as well as during the first, sixth, and twelfth month after the surgery.  Two domains in 

the HRQoL, physical health and social health, were fitted in the LMM with random intercept and 

random slope at a subject level to account for the variation within subjects.  Lin et al. found 

neurological functions, sleep quality, and depressive symptoms were the key factors affecting the 

QoL.  This is a typical example that treats longitudinal PRO as a repeated outcome, and how it is 

analyzed directly in a statistical model (LMM).  In fact, because of the simplicity of the 

modeling and the clarity of interpretation and model assumption, LMM has been widely used in 

PRO research.  

Another approach to analyzing longitudinal PROs is to transform longitudinal 

information into a one-dimensional variable and analyze it using regular models depending on 

the type of the transformed variable.  For example, Shi et al. [41] showed an example using 

Group-Based Trajectory Modeling (GBTM) to transform longitudinal PROs into binary or 

ordinal variables, and then these variables were treated as outcomes in an (ordinal) logistic 
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regression.   The GBTM is a model often used in psychology to identify clusters of subjects that 

follow a particular pattern (trajectory) related to the outcome over time.  Shi et al. applied the 5 

most severe symptom items (taking mean of 5 items) to GBTM and determined 2 or 4 groups of 

patients that followed the distinguished trajectories.  Once the clustering of subjects was 

identified, the predictors to this outcome were examined by the Generalized Linear Model 

(GLM).  Comparing with Lin et al.’s approach, this approach is based on the assumption that 

subjects have different patterns (groups) of longitudinal PROs, while Lin et al. [40] assumed 

their longitudinal PROs followed a general linear trend.  

PROs as Covariates 

 Other studies treat PROs as covariates and investigate the association between PROs and 

one type of outcome.  For example, Quinten et al. [42] suggested the patients-reported symptoms 

(measured from EORTC-QLQ-C30) plus clinical rating (CTCAE) could better predict overall 

survival.  They used data from 14 clinical trials that compared models with or without PROs in 

the Cox Proportional Hazard Model using Harrell concordance index (C-index).  It turned out 

that models with both patent-reported symptoms and clinical-rated variables showed a higher C-

index value.   

Armstrong et al. [43] also showed how PROs could be treated as covariates to predict the 

overall survival in patients with brain tumors.  They linked the PROs (using both EORTC-QLQ-

C30/BN20 and MDASI-BT) to examine the progression-free survival (PFS) and overall survival 

(OS) in a phase III clinical trial.  They found that PROs were associated with the risk of OS and 

PFS.  Besides, higher symptom burden on patients showed a higher risk of OS and PFS, while a 

higher QoL score showed a lower risk of OS and PFS. 
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However, most studies only used PROs at a specific time point as covariates in their 

model.  None has applied longitudinal PROs as covariates directly in models to predict 

outcomes.  Therefore, in this dissertation, we want to develop methods that incorporate 

longitudinal PROs as covariates in survival models.     

 

1.2 Models for Longitudinal covariates 

General Approaches to Repeated Measurements 

Longitudinal data analysis has been developed for years when the structure of the data 

includes repeated measurements.  The mixed-effects model and marginal model are the most 

popular methods applied to longitudinal data.  Among these methods, the mixed-effects model 

has used quite widely because it models characteristics on subject specific interpretation.  It can 

incorporate fixed-effects, random effects, and time-dependent covariates in the model while 

accounting for the correlation from repeated outcomes (continuous or categorical type).   

In contrast, survival analysis (also known as “time-to-event” type of data) also collects 

information over time, but it models the survival outcome as a function of the covariates.  

Besides, time-dependent covariates can be included in the survival model when the covariates 

are assumed to be measured without error.  For more information about general longitudinal 

analysis and survival analysis, please read Diggle et al. [44] and Klein and Moeschberger’s [45] 

books.   

Joint Models for Longitudinal Outcomes  

 Joint modeling is often used when two or more outcomes (/processes) are correlated or 

associated.   The main advantage of this modeling technique is its ability to reduce the bias of 
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estimation [46].  When one of the outcomes is a time-to-event variable, modeling a longitudinal 

process and a time-to-event outcome can improve the inference for both outcomes [47, 48] 

because the relationship of both outcomes is considered.  Several methods modeling a time-to-

event outcome and longitudinal outcomes are discussed in Hickey’s research [47] including the 

mechanism of joint modeling.  One popular type of joint model for longitudinal data and the 

time-to-event outcome is expressing survival outcomes in hazard function (e.g., Cox 

Proportional Hazard (Cox PH) model) [49].  The difference between groups (e.g., a binary 

variable) or a unit increment in a continuous variable can be easily interpreted as a risk increase 

or decrease to the survival event.  For example, Tsiatis and Davidian [5] proposed a joint model 

modeling longitudinal data (as covariates) as a function of time in the Cox PH model; and 

estimating parameters from the partial-likelihood.   

 Another class of longitudinal data in joint modeling deals with situations when the 

outcome is not time-to-event.  For example, Wang et al. [50] proposed a joint model that is a 

combination of a longitudinal model and a generalized linear model (GLM).  The first submodel 

is a random-effect model for repeated measurements, and the second one (considered as the 

primary model) is a GLM that takes random effects from the first submodel as covariates.  The 

limitation of this model is that the normality assumption for longitudinal covariates (random 

effects in the primary model) is not applicable to most real world situations.  Wang and Huang 

[51] and Li [52] modified the method and proposed similar methods that did not require the 

distribution assumption for the random effects, but through the longitudinal process.  In 

summary, these models [50-52] manage the longitudinal process as covariates and treat the 

process as a continuous variable in the primary model (e.g., a GLM).  It is true that one or more 
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features from the longitudinal submodel may also be evaluated in the primary models; however, 

not all of these features will represent individual behaviors.   

Functional Data Analysis 

 Another category of analyzing longitudinal covariates is through dimension reduction.  

When the longitudinal data include multiple variables, an approach to analyze this type of data is 

using Functional Data Analysis (FDA) while treating longitudinal data as smoothed curves, 

surfaces, or even hypersurfaces [53-56].  The concept here is to extract the proper information 

from the larger dimensions and compress it into smaller features.  Functional Principal 

Component Analysis (FPCA) is one of the FDA techniques that select meaningful components 

from the multiple longitudinal covariates.  FPCA also needs to select suitable basis functions 

(usually expects an orthogonal relationship amongs the features) and to determine the number of 

eigenfunctions to be chosen.  For more information, Ramsy [55] provides a comprehensive 

introduction and detailed statistical methodology in FDA. 

 

1.3 Markov Chain as Covariate Processes 

Markov Chain models have been used to study the progression process for neurological 

diseases such as Alzheimer's disease [57, 58] and Parkinson's disease [59, 60] because the nature 

of these diseases’ process can be assumed to follow the Markov Property.  The Markov Property 

is that for a collection of events, the state of a future event only depends on the current state, not 

the past state.  Therefore, the Markov Chain, a collection of variables over time that follows the 

Markov Property, is usually considered as an outcome in the study.  Karisson [61] used the first-

order Markov model to describe the change of sleep level (lighter sleep and deeper sleep) from 



14 
 

patients who had insomnia with comparison of treatment effect.  However, not many studies in 

the literature modeled the longitudinal process as a covariate and integrated it in the outcome of 

interest.   

Ho [62] modeled a longitudinal DNA-damage process as a Discrete Time Markov Chain 

(DTMC) to predict the occurence of lung cancer in a case-control study.  This method used the 

information that is repeatedly measured from genetic testing and modeled it as DTMC with 

transition probabilities estimated, and then applied these traisition probabilities in a logistic 

regression to esitmate the odds of the lung cancer.  Later on, Rubin et al. [63] extended this 

concept to the Continuous Time Markov Chain (CTMC) and modeled longitudinal intracranial 

pressure (ICP) with CTMC as covariates in the logistic regression to predict the status of patients 

with traumatic brain injuries.  In constrast to Ho and Rubin’s research, our proposed models in 

this dissertation will model longitudinal PROs as CTMC and then use the transition rates as 

covariates in a survival model framework.  To the best of our knowledge, no research published 

has ever applied CTMC to the longitudinal PRO data analysis.   

 

1.4 Public Health Significance 

The patient-reported outcome (PRO) is a tool that has been widely applied to biomedical 

research and clinical trials, and it is expected to be used more intensively in the future.  Hassett et 

al. [36] outlined the high-priority topics that were discussed during the 2012 American Society 

of Clinical Oncology (ASCO) Quality Care Symposium, and developing patient-centered quality 

measures is one of them.  Symptom measurement in cancer patients also needs to be conducted 

more comprehensively before, during, and after the treatment.   Therefore, the methodology that 

can utilize the information of longitudinal PROs in cancer studies is important; especially when 
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no methodology has linked longitudinal PROs with survival type of outcome in single statistical 

technique.  The proposed methods in this dissertation fill the gap in current PRO cancer research 

to fully link the patients-reported symptom burden experience in the treatment period with the 

overall survival. 

Furthermore, our prognostic models have significant impacts on clinical research and real 

world clinical practices especially when the concept of personalized medicine is a common goal 

to achieve.  In particular, our prognostic models can add value to treatment decisions, quantify 

the disease status, identify the patient’s condition, and predict clinical outcomes.  Basch et al. 

[17, 64] reported that routine symptom monitoring could prolong the survial time when 

compared to a usual care group without PRO monitoring because caregivers could respond to the 

patients when PRO symptom burden increment was detected.  The caregivers could then provide 

symptom management conselling, supportive medications, chemotherapy dose modifications, 

and referrals to doctors.  As a result, a methodology that can analyze PRO monitoring data (a 

longitudinal PRO structure) is essential and is useful when the primary outcome of interest is 

survial.  We expect the proposed methodologies to provide clinicians meaningful and 

interpretable results on the association between longitudinal PROs and survival outcome.  It is 

also believed that these methods could improve quality care of cancer patients in the future. 

 

1.5 Specific Aims 

The specific aims of this research study are described as follows: 

Aim 1.  To develop a fully-parametric time-to-event model using a two-state continuous-

time Markov Chain (CTMC) as predictors and other clinical/demographic risk factors as 

covariates. 
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In this aim, a joint model of full-parametric survival model that follows a Weibull 

distribution and a two-state CTMC was developed when the primary study outcome is the “time” 

to an event (e.g., overall survival time).  This approach models a longitudinal patient-reported 

outcome (PRO) measured during the treatment period as a CTMC to predict a survival outcome 

(survival time) that occurred after the treatment period.  The focus of this aim is to evaluate the 

prognostic value of a single longitudinal PRO score (a single item score) dichotomized as 

none/mild or moderate/severe to overall survival time.  Other covariates, such as demographic 

and clinical variables, can be adjusted in the survival submodel as well as in the CTMC 

submodel.  The sets of covariates adjusted in each submodel can contain different components of 

variables.  This method was applied to an observational study of non-small cell lung cancer 

(NSCLC) patients (named as NSCLC study), recruited from 2004-2009 at The University of 

Texas MD Anderson Cancer Center.   

 

Aim 2.  To develop a semi-parametric time-to-event model using a two-state continuous-

time Markov Chain (CTMC) as predictors and other clinical/demographic risk factors as 

covariates. 

In this aim, a joint approach of semi-parametric survival model and a two-state CTMC 

was developed when the primary study outcome is “risk” of the event (e.g., the risk of death in 

overall survival or risk of a disease progression).  A longitudinal PRO measured during treatment 

period was modeled as a CTMC to predict a survival risk using Cox proportional hazard model 

when the survival event occurs after the treatment period.  This aim targets the association 

between a longitudinal PRO score and risk of a survival event.  Similarly, as that in Aim 1, the 

sets of covariates included in the survival submodel and CTMC submodel can consist of 
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different variables.  This method was applied to an observational study of head and neck (HN) 

cancer patients (named as HN study), recruited from 2006-2007 at The University of Texas MD 

Anderson Cancer Center.   

 

Aim 3.  To conduct factor analysis of multiple two-state continuous-time Markov Chains 

(CTMCs) on individual longitudinal patient-reported outcomes.   

Each longitudinal PRO was modeled as two-state CTMC, and their transition rates were 

utilized for factor analysis that identified the latent factor on PRO items.  Unlike most studies 

that applied factor analysis to PRO items at a single occasion, we summarized each longitudinal 

PRO as CTMC by its transition rates and applied to factor analysis to reduce dimensions of 

longitudinal PROs.  This method was applied to data from HN studies.  The factors of symptoms 

provided hidden information on the sources of symptom burden and classification of symptom 

items such as treatment-related or disease-induced items. 
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2. Journal Article 1 

A Joint Model of Time to Event and Continuous-Time Markov Chain 

Statistics in Medicine 

Keywords: Continuous-Time Markov Chain (CTMC), longitudinal data analysis, patient-

reported outcome (PRO), survival analysis, Weibull regression 

 

2.1 Background 

In biomedical research, linking a patient’s longitudinal measurements to time-to-event 

types of outcome is essential since patients’ repeated measurements may contain more 

information on impact from disease and/or treatment.  Available approaches so far include a 

proportional hazard model with time-dependent covariates [1-3] and a joint model that comprises 

a longitudinal model and a survival model [4, 5].  In these two approaches, the former evaluates 

time-dependent covariate effects by truncating time-to-event to pieces based on the time points 

when covariates change, but it does not take into account any information of the longitudinal 

pattern of covariates.  The latter approach, on the other hand, models a longitudinal covariate as 

an overall trend and specifies the correlated nature of both outcomes, and the longitudinal 

submodel may include another set of covariates that are correlated to the longitudinal outcome 

resulting in a more complex model structure.  However, when individual heterogeneity exists in 

longitudinal measurements, neither of these two approaches could adequately fit the data.  Under 

such circumstance, a more flexible method, such as Markov Chain [6, 7] at an individual patient 

level, may be more suitable to explain the distinct trajectories at individuals.  Therefore, in this 

study, we propose a joint Continuous-Time Markov Chain (CTMC) and Weibull model (also 

called Weibull Regression model [2, 3]) that treats the transition rates of CTMC as covariates in 
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Weibull Model to predict a survival outcome that happens after the longitudinal process, while 

both submodels permit other baseline information as covariates. 

Joint Models for Longitudinal Covariates and Time-to-event Outcome 

Joint modeling is regularly applied when two or more outcomes or processes are 

associated, and their relationship with other covariates needs to be simultaneously considered.  

The major advantage of this modeling technique is its ability to reduce estimation bias [8].  

Moreover, modeling a longitudinal process and a time-to-event outcome can improve the 

inference for both outcomes [5, 9] because this model is able to consider the relationship of both 

outcomes.  In the literature, several methods modeling a time-to-event outcome and longitudinal 

outcomes including the mechanism of the joint modeling have been discussed in Hickey’s 

research [9].  Tsiatis and Davidian [4] also proposed a joint model modeling longitudinal data (as 

covariates) as a function of time in the Cox PH model and estimated parameters from the partial-

likelihood.  Nevertheless, these models do not address change of the longitudinal process over 

time at the individual level. 

Markov Chain in Medical Research 

Markov Chain models have been used to study the progression process for neurological 

diseases such as Alzheimer's disease (AD) [10, 11] and Parkinson's disease [12, 13] because the 

nature of these diseases’ process can be appropriately assumed to follow the Markov Property, in 

which the states of future events only depend on the current state, not the past state.  Therefore, 

Markov Chain, a collection of variables over time that follows the Markov Property, is usually 

considered as a longitudinal outcome in medical studies.  For example, the first-order Markov 

model has been used to describe the change of sleep level (lighter sleep vs. deeper sleep) from 

patients who had insomnia, and the treatment showed an improved time in sleep [14].  Wu [15] 
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proposed a joint model that consists of two three-state CTMCs, and applied it to two 

neuropsychological markers in AD to understand the transition probability among disease 

severity levels.  Yu et al. [16] illustrated a similar joint model with two two-state CTMCs in a 

stress study, and explored the association between mothers’ stress level and children's illness 

status.  However, not many Markov Chain studies in the literature modeled the longitudinal 

process as a covariate and integrated it to the outcome of interest.   

One of the few Markov Chain studies that examined the longitudinal process as a 

covariate was found in a dissertation work.  Ho [17] modeled the longitudinal DNA-damage 

process as a Discrete Time Markov Chain (DTMC) to predict the occurrence of lung cancer in a 

case-control study.  This method used the information that is repeatedly measured from genetic 

testing and modeled them as a DTMC with transition probabilities estimated, and the estimated 

transition probabilities are then applied into a logistic regression to estimate the odds of 

developing lung cancer.  This concept was later extended to the CTMC that modeled 

longitudinal intracranial pressure (ICP) as a CTMC with the transition rates as covariates in a 

logistic regression to predict the status of patients with traumatic brain injuries [18].  However, 

to our knowledge, no studies have modeled longitudinal process as covariates through Markov 

Chain and linked to the time-to-event outcome.  

Therefore, in this paper, to provide a solution to the condition when individual 

heterogeneity was observed in a longitudinal process with a time-to-event outcome, we propose a 

joint model of a Markov Chain and a Weibull regression that describes a longitudinal process as 

CTMC and treats the generated transition rates as covariates in the Weibull regression model to 

predict a survival event occurring after the longitudinal process.  We will apply this model to a 

completed patient-reported outcome (PRO) study using the MD Anderson Symptom Inventory 
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(MDASI) [19] for lung cancer patients who received chemotherapy at the MD Anderson Cancer 

Center.  In this application, the repeated patient-reported symptom severity during the 

chemotherapy periods are handled as a CTMC and are used to evaluate its association with post-

treatment overall survival in the Weibull regression model. 

The remainder of this paper is organized as follows: In Section 2, we describe the 

proposed joint model including the likelihood function and its estimation procedures.  Section 3 

provides validation of the estimating procedure through simulation.  Application of the proposed 

model to the real world PRO research is demonstrated in Section 4.  In the last section, we 

discuss the advantages and limitations of the proposed model. 

  

2.2 Methods 

We develop a joint model which consists of a combination of a time-to-event model and 

a two-state CTMC.  Through this joint model, we are able to consider simultaneously the effect 

of baseline covariates on the time-to-event outcome as well as on the longitudinal covariate 

process that is dependent on other covariates and is associated with the time-to-event outcome. 

2.2.1 The Joint Weibull Model and Two-state CTMC Model with Covariates 

In the CTMC submodel, let  be a time-to-event outcome, and  be a homogeneous 

CTMC with a state space 1, 2  characterized by the transition rates  and .  The transition 

rates matrix can then be defined as  

 

where  represents the transition rate from State 1 to State 2, while  represents the transition 

rate from State 2 to State 1.    
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In the Weibull submodel, let  be a vector of covariates directly related to the time-to-

event outcome .  Also, vector   is the vector of covariates related to  through the transition 

rate , and vector  is the vector of covariates related to  through the transition rate .  The 

survival function of  can then be expressed as  

e e  

where , , ⋯ ,  is the effect of the baseline covariates vector  on the outcome .   

is the Weibull shape parameter.  and  are the overall multiplicative effects of the transition 

rates  and , respectively, on the survival outcome.  Because of the stationary assumption of 

CTMC, the probability of moving from one state to another in a unit time  is the same at any 

time point.  Note that, because  and  are both positive, we rewrite the transition rates as an 

exponential form and allow the regression expression on each form’s exponent.  Therefore,  is 

the effect of the covariate vector  on the transition rate , and  is the effect of the covariate 

vector  on the transition rate .   

2.2.1.1 Interpretation of the transition rates 

The association of the covariates  and  with the outcome  can be interpreted as 

follows: For each unit increment in the transition rate , the outcome  is expected to change by 

a multiplicity of , while holding other covariates constant.  Similarly, for each unit increment 

in the transition rate , the outcome  is expected to change by a multiplicity of , while other 

covariates remain as constants.  The interpretation of other parameters including , , and  is 

provided in Section 2.4.3.2 and Section 2.4.3.3. 

2.2.2 The Likelihood Function of the Proposed Joint Model 

The joint likelihood function for the longitudinal covariate process and the Weibull 

outcome model for n subjects can be written as 
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, , , 	 ,  

0

, ,		 , , ,
, ,  

 is a family of random variables that describes the state of a continuous process at time  

with state space 1, 2 .   is the probability of transition from  to  for a fixed time 

interval, which can be explicitly expressed in transition rates  and .  Also, ,

,  is the vector of the transition rates.  Note that the set of covariates ,  can be 

identical or different from the vector .  Besides,  is the state that specifies in state space , and  

 is the number of transitions measured in the CTMC process for subject i, and  is the indicator 

of occurrence of a survival event. 

2.2.3 Estimation and Initial Values for Iterative Procedures 

The maximum likelihood method was used to maximize the formula in Section 2.2.2 with 

respect to , , , and  in a one-stage procedure.  This is a nonlinear optimization problem 

where there is no closed-form solution for parameter estimators.  Newton-Raphson optimization 

was used in the study to maximize the likelihood and obtain the estimators of interest.  It did not 

require any calculation of derivatives for each parameter, so it was adequate for problems with 

non-smooth functions and applicable to most statistical software.  For analyses and simulation in 

the study, PROC NLMIXED in SAS 9.4 (SAS Institute, Cary NC) was applied. 
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To speed up the computational time and increase the likelihood of reaching a global 

maximum, we selected the initial values for numerical estimation by implementing  the 

following two-step algorithm: 

1. A usual two-state CTMC model with covariate sets  and  was fit to find the parameter 

value sets  and .  At this step, time-to-event outcome  and baseline characteristics  

were ignored.   

2. Following Step 1, the transition rates  and  were calculated with covariates  and  

and parameter values  and .  The transition rates were then incorporated to the Weibull 

Model with survival outcome  to obtain the estimators for , , and .  Once this model 

was fitted, the initial values for all parameters were ready for the joint model. 

 

2.3 Simulation and Validation of the estimation procedure 

2.3.1 Description of the Simulation Study 

To validate the estimation procedure of the joint models, we also conducted simulations 

to examine our proposed model.  The “true” parameters in this simulation study were obtained 

from the application of the proposed model to PRO studies.  The data simulation procedure was 

a two-step process (see Figure 2.1). The covariates were first simulated following each variable’s 

specified distribution.  The transition rates and the Weibull distribution dependent on these rates 

were then simulated accordingly. A complete description and a flowchart of the simulation 

mechanism are as follows: 

2.3.1.1 Simulation of covariates 

The goal of this study is to develop prognostic models to predict survival in patients with 

cancer.  Therefore, the type of covariates and the distributions of chosen for the simulation study 
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should mimic those in PRO studies.  For simplicity, we simulated a few covariates that might be 

encountered in real-world data. 

Figure 2.1. Simulation procedure of Markov Chain and time-to-event outcome. 

 

1. Covariates in Markov Chain:  Two covariates, one continuous ( ) and one binary ( ) 

were simulated as predictors directly associated with the transition rate .   followed a 

normal distribution, and  followed a Bernoulli distribution.  Similarly, one continuous 

variable ( ) and one binary variable ( ) were simulated for the transition rate .   

2. Baseline covariates in the survival model:  In the Weibull model, we simulated two 

covariates (one continuous ( ) and one binary ( )) to explain the effect of baseline 

characteristics on the survival outcome.   followed a normal distribution, and  

followed a Bernoulli distribution.    

2.3.1.2 Simulation of Markov chain 

The simulation for a two-state CTMC required fixed transition rates  and  for each 

subject.  The transition rates were calculated based on the covariate sets ,  and 
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,  generated from the procedures presented in Section 2.3.1.1.  Once  and  were 

obtained, the CTMC was simulated, and its states were observed at prespecified time points for 

each subject in the study [20]. 

2.3.1.3 Simulation of time-to-event outcome  

The survival outcome was simulated based on the covariates , , , and  obtained 

from the previous steps.  The Weibull distribution type of survival time  can be expressed as 

[21] 

exp	 ′ /  

where  is a pre-specified baseline hazard;  is the scale parameter; and  is the shape 

parameter.  The dependency of covariates has been adjusted through log-linear transformation, 

indicating the survival time  followed the Weibull distribution with varying scale parameter 

∙ exp	 ′ .  The shape parameter  was set at 1.2. 

2.3.2 Implementation and simulation results 

 We examined our proposed joint model when: (i) the transition rates were associated with 

the survival outcome, and (ii) the transition rates did not affect the survival outcome.  In both 

scenarios, we ran 1,000 times of simulations with 150 subjects in the simulated data, yet we 

burned-in the first ten times of the simulated data.  The length of the Markov Chain was set as 30 

weeks.  

In Scenario (i), when the transition rates were associated with the main outcome (i.e. 

0, 0), the proposed joint model performed well in both accuracy and precision (see 

Table 2.1).  Except that the estimate of the transition rate  had a slightly higher bias, the 

estimates of the parameter were close to the true value.  The coverage probability for each 

parameter ranged from 83% to 96%, which was acceptable.  Besides, the standard deviation (SD) 
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of the estimates across all simulation runs were close to the average of the square root of 

estimated variance (SE) for each run, indicating the number of simulation runs was appropriate.   

 
Table 2.5 Simulation results of the proposed model (N=150 subjects, R=1,000, Weeks=30) 

Covariates in joint 
model 

Parameter true 
value 

Estimate Bias SDa SEb 
Coverage 

Probability 
for 95% CI 

Intercept 2.5 2.31 -0.19 1.88 2.15 0.85 
 (binary) 0.3 0.30 0.00 0.19 0.19 0.94 
 (continuous) 1 1.00 0.00 0.09 0.09 0.93 

 (Weibull shape) 1.1 1.13 0.03 0.08 0.08 0.94 
	  -0.5 -0.70 -0.20 0.99 0.90 0.96 

     (intercept) -0.7 -0.81 -0.11 0.11 0.11 0.83 
     (binary) 0.1 0.09 -0.01 0.10 0.09 0.94 
     (continuous) 0.3 0.27 -0.03 0.07 0.06 0.91 
	  0.6 1.26 0.66 4.28 4.98 0.86 

     (intercept) -0.8 -0.85 -0.05 0.11 0.11 0.85 
     (binary) -0.15 -0.14 0.01 0.09 0.09 0.87 
     (continuous) -0.2 -0.19 0.01 0.40 0.41 0.86 
aStandard deviation of the point estimates. 
bStandard error, calculated from the average of squared root of estimated variance for each run. 

 

Moreover, to evaluate the performance of the proposed model in the condition of null 

transition rates effect on the outcome (i.e. Scenario (ii)), we set 0 and 0 when we 

simulated the survival outcome.  Table 2.2 shows the result of Scenario (ii).  Similar to Scenario 

(i), the estimates were close to the true parameters except for the transition rate , and SD was 

also close to SE at each parameter while the coverage probability ranged from 0.85 to 0.96.  As a 

result, the proposed model could become a regular Weibull model when there was no effect from 

the transition rates. 

We also tested the simulated data in each scenario in the regular Weibull model for 

model performance.  When the transition rates exert no effect on the survival outcome (Scenario 

(ii)), the regular Weibull model should perform better as compared to the model performance in 

Scenario (i).  The bias in Scenario (i) should be larger, and the coverage probability would be 
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lower.  Table 2.3 shows the summary of the Weibull model performance in each scenario.  

Overall, the model performance in Scenario (i) included higher bias, especially in the intercept 

with a lower coverage probability at 88%.  However, the rest of the parameters,  , , and , 

had the same performance in each scenario. 

 
Table 6.2 Simulation results using the proposed model to analyze data with no Markov 
Chain effect included on the survival outcome (N=150 subjects, R=1,000, Weeks=30) 

Covariates in joint 
model 

Parameter true 
value 

Estimate Bias SDa SEb 
Coverage 

Probability 
for 95% CI 

Intercept 2.5 2.19 -0.31 1.89 2.23 0.85 
 (binary) 0.3 0.30 0.00 0.20 0.19 0.94 
 (continuous) 1 1.00 0.00 0.09 0.09 0.93 

 (Weibull shape) 1.1 1.13 0.03 0.08 0.08 0.94 
	   0 -0.01 -0.01 0.98 0.91 0.96 

     (intercept) -0.7 -0.81 -0.11 0.11 0.11 0.84 
     (binary) 0.1 0.09 -0.01 0.10 0.09 0.93 
     (continuous) 0.3 0.27 -0.03 0.07 0.06 0.91 
	   0 0.76 -0.76 4.33 5.18 0.86 

     (intercept) -0.8 -0.85 -0.05 0.11 0.11 0.85 
     (binary) -0.15 -0.14 0.01 0.09 0.09 0.86 
     (continuous) -0.2 -0.19 0.01 0.41 0.42 0.86 
aStandard deviation of the point estimates. 
bStandard error, calculated from the average of squared root of estimated variance for each run. 

 
Table 2.7 Simulation results of Weibull model in two scenarios (N=150 subjects, R=1,000, 
Weeks=30) 

Covariates in joint 
model 

Parameter true 
value 

Estimate Bias SDa SEb 
Coverage 

Probability 
for 95% CI 

Scenario (i). Markov Chain effect on survival outcome. ( , ) 
Intercept 2.5 2.38 -0.12 0.17 0.16 0.88 

 (binary) 0.3 0.30 0.00 0.19 0.19 0.95 
 (continuous) 1 1.01 0.01 0.09 0.09 0.94 

 (Weibull shape) 1.1 1.11 0.00 0.08 0.08 0.95 
Scenario (ii). No Markov Chain effect on survival outcome. ( , ) 
Intercept 2.5 2.49 -0.01 0.17 0.16 0.94 

 (binary) 0.3 0.30 0.00 0.19 0.19 0.95 
 (continuous) 1 1.01 0.01 0.09 0.09 0.93 

 (Weibull shape) 1.1 1.11 0.01 0.08 0.08 0.95 
aStandard deviation of the point estimates. 
bStandard error, calculated from the average of squared root of estimated variance for each run. 



29 
 

2.4 Application 

2.4.1 Study Population and Description of the Proposed Joint Model 

We also applied the proposed model to a study called NSCLC study in this paper, which 

includes non-small cell lung cancer (NSCLC) patients recruited between 2004-2009 at The 

University of Texas MD Anderson Cancer Center (MDACC) thoracic medical oncology clinic.  

The patients were at least 18 years old and they all had with late-stage IIIB and IV NSCLC.  The 

inclusion criteria of the study included English speaking ability, performance score between 0-2, 

and first-line chemotherapy scheduled.  A total of 94 patients were eligible for the study.  The 

PROs were collected using the MD Anderson Symptom Inventory (MDASI) before and after 

chemotherapy treatment cycles. Two additional common symptom items in NSCLC, coughing 

and constipation, were also collected through MDASI.  The patients were scheduled to complete 

the MDASI assessment at baseline, chemotherapy treatment (weekly), and post-treatment 

follow-up.  The survival data were then collected from the MDACC medical record system or 

followed up by the research coordinators.   

In a previous publication [22] using the NSCLC data, it was stated that baseline coughing 

score (a binary variable using score 4 as cut-point) could predict the overall survival with a 

hazard ratio (HR) at 8.69 (95% CI: 3.53 - 21.38) while adjusting for patients’ performance score 

and race in the model.  Fatigue and shortness of breath were also found associated with the 

overall survival in the study.  The symptoms change (treated as continuous variables) between 

baseline and at the end of first chemotherapy cycle showed the HR was 2.41 (95% CI: 1.32 – 

4.37) and 2.30 (95% CI: 1.19 – 4.43) for fatigue and shortness of breath, respectively.   

The motivation of this application is to fully utilize the longitudinal PRO data in the 

survival analysis when individual heterogeneity in longitudinal PRO symptoms is observed.  Our 
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proposed joint model with Markov Chain and the Weibull model may provide a different 

solution to this type of study by using PROs at baseline and complete chemotherapy cycles to 

predict survival outcome happened after the treatment period.   

2.4.1.1 Markov Chain Submodel 

 We used fatigue in this application because the previous study showed that changes in 

fatigue score were associated with overall survival [22].  We dichotomized the MDASI-fatigue 

scoring system (score 0 - 10) into a binary variable using a cut-point at 4, where score greater 

than or equal to 4 indicated symptoms at the moderate/severe state, and score less than 4 

indicated symptoms at the none/mild state [23, 24].  For each symptom, we excluded subjects 

who had never reported a symptom change across the two states (moderate/severe vs. 

none/mild).  The transition from none/mild to moderate/severe was called worsening rate 

represented by , and the transition from moderate/severe to none/mild was called as improving 

rate, and represented by .  The longitudinal fatigue data were also transformed into the 

transition types of data to fit the Markov Chain submodel.   

2.4.1.2 Main outcome model (Weibull model) 

 The post-treatment survival is the outcome in the Weibull regression model.  It is 

calculated from the end of treatment date to the date of death, or the last date followed up.  The 

Weibull regression model included individual transition rates (  and  must be included), 

demographic variables, and some clinical variables.   

2.4.2 Model selection 

During the model selection process, both Markov Chain submodel and the Weibull 

submodel could adjust with demographic variables and clinical variables.  Demographic 

variables included age, gender (female vs. male), race (white vs. non-white), marital status 
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(currently married vs. not married), and job (currently employed vs. not employed).  Clinical 

variables included baseline cancer stage (IV vs. III), previous treatment (Yes/No), solid tumor 

(Yes/No), Charlson Comorbidity Index (CCI, 1 or higher vs. 0), Eastern Cooperative Oncology 

Group Performance Status (ECOG-PS, 2 vs 0-1), ever smoke (Yes/No), and length of smoking 

before study.   

For the model selection process, we applied a backward selection strategy in two steps: 

Step 1. Model selection in the Markov Chain submodel.  We considered all variables 

(demographic or clinical) in the transition rates and selected an optimal model when only 

transition rates were included as covariates in the Weibull model.   

Step 2. Model selection in the Weibull model.  After Step 1, we conducted another model 

selection process in the Weibull model which included both demographic variables and clinical 

variables.  However, the significance of covariates in transition rates might change after the 

covariates were incorporated in the Weibull model. 

2.4.3 Results of the joint model 

We excluded one patient who had no changes in fatigue score between the two states 

(none/mild vs. moderate/severe), and we also excluded patients who had missing data in any of 

the demographic variables and clinical variables during the model selection.  As a result, there 

were 81 patients used in the analysis.  70% of these patients died in the study, with a median 

post-treatment survival time of 43 weeks.  Besides, the average treatment period was 17.2 weeks, 

ranging from 6 to 42 weeks.   

Table 2.4 shows the results of the optimal model of the joint Markov Chain and Weibull 

model.   Worsening rate was associated with covariates such as age, previous surgery, and 

ECOG-PS, while improving rate was associated with the length of smoking, previous treatment, 
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and CCI.  The Weibull submodel included both transition rates adjusted by other covariates like 

age, cancer stage, race, gender, previous treatment, and ECOG-PS.  The worsening rate  

showed a negative association with the survival time, but the improving rate  showed a positive 

association with on the survival outcome.   

2.4.3.1 Interpretation of the transition rate effect on the outcome 

 For a unit increment in the worsening rate ( ), meaning the time from none/mild to 

moderate/severe was shorter, or the patient reported more often in the moderate/severe state 

during the chemotherapy cycles, the overall survival time was expected to change by a 

multiplicity of exp 0.04 0.96 while holding other covariates as constants.  This indicated a 

4% decrease for a unit increment in the worsening rate when the time unit in the Markov Chain 

was a week (7 days).  On the other hand, a unit increase in improving rate ( ), meaning a patient 

reported more frequently in the none/mild state during treatment cycles, the survival time would 

change by a multiplicity of exp 2.19 8.94 while adjusting with other covariates.  Even 

though both transition rates were not statistically significant at a 0.05 level, the directions of 

estimates for transition rates were estimated as expected.  A higher worsening rate shortened the 

survival time, and a higher improving rate would prolong the survival time.  We expect the 

proposed model to perform better in estimation when the length of Markov Chain (longitudinal 

PRO observations) is longer.  Both transition rates followed the proportional hazard assumption. 

2.4.3.2 Interpretation of covariates to the outcome 

  When interpreting the effect of covariates on the survival outcome, special attention was 

paid because some covariates were included in both the Weibull submodel and in the Markov 

Chain submodel.  For example, age was selected in both the Weibull model and the worsening 

rate in the Markov Chain model.  Since age was standardized before it was used in the model, 
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when a unit of a standard deviation increase on age (i.e. 9.1 years), the survival time would 

change by a multiplicity of exp 0.33 0.04 exp	 0.70 0.001 1 1.36 when 

holding other covariates as constants.   

 For the covariates selected only for the Weibull submodel, the interpretation is the same 

as that for any standard Weibull model.  For instance, female patients (variable gender, using 

male as the reference group) had 46% (exp 0.48 1.62) longer survival time than male 

patients while controlling other variables as constants. 

 

Table 2.8 Result of the joint Markov Chain and Weibull model applied to the NSCLC 
study 

Covariates in the joint model Estimate SE* Pr > |t| 
Weibull submodel 
Intercept 4.84 1.05 < 0.01 
Agea 0.33 0.22 0.14 
Stageb -2.09 0.61 < 0.01 
Racec -0.83 0.55 0.14 
Genderd 0.48 0.40 0.24 
Previous Treatmente -0.80 0.59 0.17 
ECOG-PSf 0.58 0.43 0.17 
Weibull shape 0.89 0.12 < 0.01 

  -0.04 0.51 0.93 
  2.19 1.62 0.18 

Markov Chain submodel for transition rate  
 (intercept) -0.70 0.15 < 0.01 

Agea 0.001 0.12 0.92 
Previous Surgeryg 1.29 0.32 < 0.01 
ECOG-PSf 0.30 0.18 0.10 
Markov Chain submodel for transition rate  

 (intercept) -0.44 0.20 0.03 
Smoking lengthh 0.08 0.09 0.42 
Previous Treatmente 0.43 0.19 0.03 
CCIi -0.52 0.20 0.01 
*SE: Standard error, aper 9.1 years, bstage IV vs. III, cwhite vs. non-white, 
dfemale vs. male, eYes vs. No, f2 vs. 0-1, gYes vs. No, hper 7.9 years, i1+ vs. 0 

 

2.4.3.3 Interpretation of covariates to the transition rates 
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 In order to account for the baseline covariates effect on the longitudinal PRO trend in the 

Markov Chain model (i.e., the transition rates), our proposed model allows covariates to be put 

into the Markov Chain submodel.  For example, the dichotomized Charlson Comorbidity Index 

(CCI) was selected in the improving rate with a negative sign (est 0.52), indicating a lower 

improving rate (exp 0.52 0.59) would be expected when the CCI was larger than and equal 

to 1.  This association is expected because a higher CCI means the worse condition on the patient 

and then reduce the improving rate.    

 

2.5 Discussion 

In previous sections, we have developed a new methodology that can incorporate 

longitudinal covariates in a survival framework.  We proposed a joint Markov Chain and 

Weibull model that could adjust a longitudinal covariate in the Weibull model when individual 

heterogeneity is found in the longitudinal covariate.  Our simulation results have shown the 

model estimation procedure is valid and model performance is good in both accuracy and 

precision.  We also applied the proposed method in a PRO study that examined longitudinal PRO 

during the treatment period with the post-treatment overall survival of lung cancer patients.  

Even though the transition rates did not show statistical significance, the direction of estimates 

for transition rates and other covariates aligned with our expectations. 

When comparing our proposed joint modeling to the time-dependent covariate approach 

in survival model or another joint modeling approach that combine a longitudinal model with a 

survival model, our proposed approach has a fundamental difference in ability to model the data 

we analyzed from those other approaches.  In our proposed approach, we modeled the 

longitudinal process (e.g., longitudinal PRO during the treatment cycles) using a CTMC, and 
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included the generated transition rates as covariates similar to other baseline covariates.  The 

survival event would only happen after the longitudinal process, so we use the post-treatment 

survival time (calculated from time of treatment completion to the survival event) in the 

application.  The usage of the transition rates, therefore, will behave like other baseline 

covariates, and these transition rates can perform as predictors to the survival time.  Other joint 

modeling approaches or time-dependent survival model are not appropriate in analyzing this type 

of dataset because they usually require a longer longitudinal pattern of data and for it continue 

until the survival event happened. 

 There are some advantages in this joint Markov Chain and Weibull model.  First, 

modeling longitudinal data in Markov Chain can reduce the dimension of covariates in the main 

effect model.  By using two transition rates in the Weibull submodel to explain the longitudinal 

effect of the covariate on survival outcome, we are able to interpret the longitudinal trend at the 

individual level.  Second, CTMC tends to be more suitable for clinical data since they are often 

collected at unequal time intervals due to patients’ missing appointments or scheduling 

problems.  Third, the Weibull model is a common parametric approach in the survival analysis 

that can explain the association between a factor and survival outcome.  The nature of this 

parametric approach also makes it easily to apply the joint model approach using popular 

statistical software such as SAS or R by outlining the likelihood of the model.  Additionally, to 

our best knowledge, this is the first time that a method integrates CTMC with a Weibull model.   

One of the disadvantages of this method is that we may lose some information from the 

longitudinal covariates when dichotomizing a continuous score into a binary variable.  However, 

this particular disadvantage could also be a benefit for PRO research.  For instance, some PRO 

instruments [19, 25-27] scoring can be considered as an ordinal or a continuous variable, but it is 
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always a challenge to interpret a unit difference in the original scoring system.  Therefore, in the 

NSCLC study, we transformed the original score from 0 to 10 into a two-level variable based on 

previous research [24], leading this method to be more clinically meaningful.    

Besides, the identifiability problem in Markov Chain could be a challenge when the joint 

model method is applied to real-world data.  If the longitudinal trends (transition between the 

two states in Markov Chain) are the same in individuals and the number of covariates adjusted is 

limited, the identifiability problem may cause estimation difficulty and incompleteness in model 

optimization (e.g., Newton-Raphson optimization).   

Moreover, Like other joint model approaches, initial values are important for model 

optimization.  In the simulation process to validate our methodology, the estimates of parameter 

were the same when using our initial value approach (see Section 2.2.3) or setting initial values 

as non-informative value as 1.  These identical results indicate the proposed computational 

approach is robust to the specification of initial values.  The optimization (i.e., Newton-Raphson 

optimization) was able to find the global maximum of the likelihood function. 

Furthermore, there are other limitations to this model.  The length of Markov Chain is 

also crucial to the model performance.  Section 2.3.2 showed the simulation result in 30 unit (in 

weeks) of time.  We also tested the model performance in a longer length of Markov Chains and 

observed smaller bias and better coverage probability.  Besides, in the application, we excluded 

one subject reported no change in fatigue between none/mild and moderate/severe level.  The 

result of our approach may be biased if the proportion of this group of patients is large.   

In conclusion, we built a joint two-state CTMC model and a Weibull model to the 

situation when a longitudinal covariate effect exists on time-to-event types of outcome.  Our 

proposed method is especially useful when individual heterogeneity is observed in longitudinal 
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covariates.  The model is appropriate for clinical data collection setting, and it is easy to 

implement using standard statistical software.  Our method provides a more flexible alternative 

to modeling PRO data when patients’ longitudinal measurements show distinct trajectories. 
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3. Journal Article 2 

The Relationship Between the Longitudinal Covariates During the Treatment Period as a 

Markov Chain and The Post-Treatment Survival in Cox Regression 

Statistical Methods in Medical Research 

Keywords: Continuous-Time Markov Chain (CTMC), longitudinal data, patient-reported 

outcome (PRO), survival analysis, Cox PH regression 

 

3.1 Background 

Patient-reported outcome (PRO) has become a popular mechanism for measuring patient 

experience in medical research when more and more clinical trials use it as their primary 

outcome or exploratory outcome [1-3].  Government agencies such as US Food and Drug 

Administration (FDA) and the European Medicine Agency (EMA) have provided guidelines for 

PRO research and specified the considerations of PRO application [4-7].  So far, PRO has been 

linked to survival outcomes and research has shown that PRO monitoring during chemotherapy 

can improve survival in patients with advanced cancer diagnosis [8].  Also, baseline PRO has 

been used to predict survival outcome in previous studies [9, 10].  Nevertheless, when PRO 

contains repeated measurements, the effect of longitudinal PRO on the survival outcome 

becomes complex, and its relevant statistical models need more sophisticated considerations.  

Due to the nature of PRO that collects clinical response directly from the patients and can be 

varied across patients, it is common to observe distinct trajectories of PRO on each patient in a 

longitudinal study.  However, current methods, such as a linear mixed model approach in joint 

modeling [11], are not able to account for distinct trajectories in individuals.  Therefore, in this 

paper, we propose a joint approach that utilizes the transition rates of a Continuous-Time 
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Markov Chain (CTMC) generated from longitudinally observed PROs during the treatment 

period as covariates in a Cox Proportional Hazard Regression (Cox PH model) [12] to evaluate 

the effect of longitudinal PRO on post-treatment survival.    

Longitudinal PRO Analysis 

 Longitudinal PROs can provide more symptom and health-related quality of life 

(HRQoL) information related to the disease and treatment involved.  A comprehensive design 

collecting longitudinal PRO data at baseline, treatment visits (weekly or bi-weekly), and post-

treatment follow-up (bi-weekly, monthly, or every six months) [13].  Therefore, PRO 

instruments can measure symptom change over the whole study period, provide detailed 

information on the differences before, during, and after treatment, and capture variation of 

symptoms.  The trajectory of longitudinal PRO may not always be linear.  In fact, in most of the 

observational studies on cancer with chemotherapy [14, 15], a weekly measured PRO during the 

chemotherapy cycles tends to show a non-linear pattern (waves).  This type of non-linear data 

can actually indicate whether a symptom is changed by the influence of the disease and/or by the 

effectiveness/burden of a treatment.      

Longitudinal PROs as Outcomes  

There are many approaches to analyzing longitudinal PROs, and most of them consider 

longitudinal PROs as outcome variables.  Lin et al. [16], for example, used a Linear Mixed-effect 

Model (LMM) to analyze the longitudinal HRQoL data from patients who had lumbar spine 

surgery in Taiwan.  They found neurological functions, sleep quality, and depressive symptoms 

were the key factors affecting quality of life.  In fact, LMM has been widely used in longitudinal 

PRO research because the model accounts for within-subject correlation, random data 
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missingness, and is easily interpreted.  For more information, Fairclough has described how to 

analyze a longitudinal PRO as an outcome [17]. 

Another approach to analyzing longitudinal PROs is to transform longitudinal 

information into a one-dimensional variable and analyze it using regular models depending on 

the type of the transformed variable.  For example, Shi et al. [18] transformed longitudinal PROs 

into binary or ordinal variables using Group-Based Trajectory Modeling (GBTM), and then 

treated these variables as outcomes in an (ordinal) logistic regression.   Compared with Lin et 

al.’s approach [16] which assumed the longitudinal PROs followed a general linear trend, Shi et 

al.’s approach was based on the assumption that the subjects had different patterns of 

longitudinal PROs. 

PROs as Covariates to Survival Outcome 

 A number of other studies also treated PROs as covariates and investigated the 

association between PROs and outcomes: Quinten et al. [19] suggested patients-reported 

symptoms (measured by EORTC-QLQ-C30) plus clinical rating (CTCAE) could more 

accurately predict overall survival.  Also, Armstrong et al. [9] linked the PROs (using both 

EORTC-QLQ-C30/BN20 and MDASI-BT) to examine the progression-free survival (PFS) and 

overall survival (OS) in patients with brain tumors.  They found that higher symptom burden on 

patients had a higher risk of OS and PFS, yet a higher QoL score was associated with a lower 

risk of OS and PFS.  In addition, Wang et al. [10] found baseline coughing and symptom 

worsening from baseline to the end of the first chemotherapy cycle on fatigue and shortness of 

breath (measured by MD Anderson Symptom Inventory, MDASI) increased the risk of death in a 

study on late-stage non-small cell lung cancer patients.  However, most studies conducted so far 
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only used PROs at a specific time point as covariates in their models.  None of them has directly 

applied longitudinal PROs as covariates in the model to predict survival outcomes.   

Markov Chain Model 

One useful statistical approach to modeling a longitudinal covariate process is Markov 

Chain, and it has already been used to describe the progression of Alzheimer's disease [20, 21] 

and Parkinson's disease [22, 23] when the diseases' process follows the Markov Property, in 

which the state of the future events only depends on the current state, not any past state.  

Previous studies have included a Markov Chain as covariates in their models for cross-sectional 

outcomes.  Ho [24] modeled a longitudinal DNA-damage process as a Discrete Time Markov 

Chain (DTMC) to predict the occurrence of lung cancer in a case-control study.  Rubin et al. [25] 

later extended this concept to a Continuous Time Markov Chain (CTMC) and modeled 

longitudinal intracranial pressure (ICP) with CTMC as covariates in a logistic regression model 

to predict the future status of patients with traumatic brain injuries.   

In this paper, we developed a joint approach that uses CTMC as a longitudinal covariate 

to predict a survival type of outcome that happens after the longitudinal process in a two-stage 

procedure.  The model description, the likelihood function, and the estimation procedure are 

illustrated in Section 3.2.  Sections 3.3 shows the simulation results of the proposed method, 

while Section 3.4 shows an application on a study with head and neck cancer patients.  The 

advantages and challenges of the proposed method and conclusion of the study are presented in 

Section 3.5. 

 

3.2 Methods 

3.2.1 Continuous-Time Markov Chain 
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Ross [26] and Pinsky and Karlin [27] have illustrated Continuous-Time Markov Chain 

with detailed specification and methodology.  In this paper, we used the transition rates of a two-

state time-homogeneous CTMC as covariates into a Cox PH model.  For a CTMC, the transition 

probabilities can be determined by solving a system of differential equations.  When the number 

of the states is equal to 2, the explicit formulas of transition probabilities are as follows:  

 

 

 

 

Where  is the transition probability from state  to state , , 1,2.   is the transition rate 

from State 1 to State 2, and  is the transition rate from State 2 to 1.  Given that there are N 

subjects in the study sample, the parameters  and  can be estimated using the maximum 

likelihood method.  The likelihood function can then be written as 
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and 0  is the probability when the initial state is equal to .  

In clinical studies, researchers are usually interested in studying the effect of different 

subject characteristics on a particular outcome.  To achieve this goal, in a Markov model, the 

dependency of covariates on the transition rates can be modeled through a log link:  

e , and e , where  represents a vector of coefficients for a covariate vector 

, and  represents a vector of coefficients for a covariate vector .  Note that the vectors  and 

 can be identical, completely different, or partially overlapped in their components. 

3.2.2 Cox Proportional Hazard Model (Cox PH Model) 

The Cox PH model has been widely used in clinical research because it is easy to 

interpret a survival type of outcome as a risk of disease.  Klein and Moeschberger [28] and 

Hosmer and Lemeshow [29] have described the model specification and estimation procedure of 

the Cox PH model in detail.  Here, we briefly outline the components of the Cox PH model: 

Let  denote the time to the event, and  be the event indicator ( 1 if the event 

occurs, and 0 if the event is right-censored).   is a vector of baseline covariates which may 

affect the survival distribution of T.  The Cox PH model can be expressed as  
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| exp	 ′  

where |  is the hazard at time  given the covariate set .  Also,  is the baseline hazard, 

and  is a vector of coefficients with respect to covariate set .  Since the baseline hazard, , 

is usually not the interest of a study, we can only estimate the covariate effect  through the 

partial likelihood method. The partial likelihood for the Cox PH model can be written as  

exp	 ′
∑ exp	 ′∈

 

where D represents the set of subjects when an event occurs, and  is the set of subjects at 

risk at time .   

3.2.3 A Joint Two-Stage Approach 

We developed a prognostic modeling approach that is a combination of the Cox PH 

model with a two-state CTMC.  This approach allowed us to study the effect of a longitudinal 

covariate process on a survival type of outcome in terms of the hazard rate while controlling for 

other baseline covariates in both CTMC and the Cox PH model.   

Let  be a time-to-event outcome, and Z(t) be a homogeneous CTMC with a state space 

1, 2  characterized by the transition rates  and .   is a vector directly related to the 

outcome .   is a vector of covariates related to  through the transition rate , and  is a 

vector of covariates related to  through the transition rate .  The proposed joint approach can  

be expressed as  

| exp exp ⋯

exp	 ⋯ e e  
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where  is the effect of the baseline covariate vector  on the outcome ; ,  is the 

effect of unobservable transition rates ,  on the outcome, and  is the baseline 

hazard. 

We can acquire the estimates through the partial likelihood function.  For a study with N 

subjects, the partial likelihood of the proposed model can be expressed as  

, , , 	  

exp	
∑ exp	∈

exp	 e e
∑ exp	 e e∈

 

The notations here are the same as those in Section 3.2.1 and Section 3.2.2.   

In terms of the estimation procedure, we proposed a two-stage approach as follows: 

Stage 1. Estimate the unobservable transition rates  and  for a longitudinal covariate in 

a two-state CTMC.  First, we transformed a longitudinal covariate into transition type of data and 

applied the method that has been described in Section 3.2.1 and built the complete likelihood 

function.  With the log link function, we incorporated baseline covariates at each transition rate.  

After that, we used the maximum likelihood method to obtain the estimates of transition rates  

and  at the individual level.   

Stage 2. Model the transition rates  and  as covariates in the Cox PH model.  We used 

the partial likelihood method to evaluate the covariate effects on the survival outcome including 

transition rates from Stage 1 and baseline covariates. 

3.2.4 Interpretation of Transition Rates 

Transition rates represented the speed of transition from one state to another in a 

longitudinal process.  Thus, evaluating the longitudinal covariate effect on the survival outcome 

and interpreting the transition rate correctly are important to this joint approach.  The association 
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of the transition rates  and  with the hazard rate at time , ( | ), can be interpreted as 

follows: For each unit increment in the transition rate , the hazard rate is expected to change by 

a multiplicity of , while holding other covariates as constants.  Similarly, for each unit 

increment in the transition rate , the hazard rate is expected to change by a multiplicity of , 

while other covariates are held as constant.   

 

3.3 Validation of the Estimation Procedure and Simulation 

3.3.1 Description of the Simulation Study 

We examined our proposed joint approach through simulations to validate our two-stage 

estimation procedure.  The parameter values were obtained from a PRO study [10] where limited 

covariates were adjusted in the model as described below.  Three majot steps were involved in 

the simulation procedure: simulation of covariates, simulation of Markov Chain, and simulation 

of time-to-event outcomes.  Figure 3.1 outlines the scheme of the simulation procedure. 

Figure 3.1. Simulation procedure of Markov Chain and time-to-event outcomes 
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3.3.1.1 Simulation of Covariates 

To reflect the situation of real-world data, we incorporated a set of covariates (a binary 

variable and a continuous variable) in both CTMC and the Cox PH model. 

In CTMC:  Two covariates, one continuous ( ) and one binary ( ) are simulated as 

predictors directly associated with the transition rate .   followed a Normal distribution, and 

 followed a Bernoulli distribution.  Similarly, one continuous variable ( ) that followed a 

Normal distribution, and one binary variable ( ) that followed a Bernoulli distribution were 

simulated for the transition rate .   

In the Cox PH model:  Two covariates (one continuous type ( ) and one binary ( ) 

type) were also simulated to explain the effect of baseline characteristics on the survival 

outcome.  Similar to the setting of CTMC,  followed a Normal distribution, and  followed a 

Bernoulli distribution.    

3.3.1.2 Simulation of Markov Chain 

 Once the covariate sets ,  and ,  were generated from Section 

3.3.1.1, the individual transition rates  and  could be calculated through the log link function 

described in Section 3.2.1.  Next, CTMC was also simulated [30] based on individual transition 

rates.  As a result, each subject had their own simulated longitudinal observations with covariates 

adjusted. 

3.3.1.3 Simulation of Time-To-Event Outcome 

When the covariates , , , and  were simulated and calculated from the previous 

steps, we then simulated survival outcome that followed a Weibull distribution.  Survival time  

which followed a Weibull distribution could be expressed as  

exp	 /  
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where  is a pre-specified baseline hazard [29, 31], and  is the shape parameter in the Weibull 

distribution.  The dependency of covariates had been adjusted through a log-linear 

transformation, so the scale parameter  varied with covariates.  The shape parameter  was 

set at 1.2 in the simulation. 

3.3.2 Implementation and Simulation Results 

Two simulation situations, Scenario (i) and Scenario (ii), were set up to examine the 

proposed joint approach.  In Scenario (i), we simulated the survival outcome when CTMC had 

an association with the survival outcome.  In contrast, we assumed a situation when there was no 

CTMC effect on the survival outcome in Scenario (ii), and set 0 and 0.  For each 

scenario, we ran 1,000 replicates, and for each of replicate, the length of CTMC was set at 10 

weeks with 150 subjects at each run.  

Table 3.1 shows the results of the proposed joint approach in Scenario (i) when 0, 

and 0.  The bias, difference between the estimate and true parameter value, of all 

parameters was small, and the coverage probabilities were appropriate and ranged from 0.90 to 

0.96.  The standard deviation (SD) of all the estimates across all simulation runs were close to 

the average of the square root of the estimated variance (SE) at each run for all parameters, 

indicating the number of simulation runs was appropriate.   

In Scenario (ii), when there was no transition effect on the survival outcomes (i.e. 0 

and 0), the proposed method detected the null transition rate effect in the simulated data 

(see Table 3.2).  The biases for all the parameters were small, and coverage probabilities were 

good with a range from 90% to 97%.  In terms of stability, SD and SE in Scenario (ii) were close 

to each other for all the parameters.  Therefore, the proposed approach became the regular Cox 

PH model without the covariate effect from the transition rates. 
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Table 3.1. Simulation results of the proposed model (N=150 subjects, R=1,000, weeks=10) 

Covariates in joint 
model 

Parameter true 
value 

Estimate Bias SDa SEb 
Coverage 

Probability 
for 95% CI 

 (binary)  = 0.03 0.30 0.00 0.21 0.21 0.95 
 (continuous)  = -0.2 -0.21 -0.01 0.09 0.09 0.96 
	   = 0.6 0.74 0.14 0.84 0.70 0.93 

     (intercept)  = -0.5 -0.62 -0.12 0.19 0.19 0.90 
     (binary)  = 0.1 0.10 0.00 0.16 0.16 0.96 
     (continuous)  = 0.3 0.28 -0.02 0.11 0.11 0.95 
	   = -0.5 -0.55 -0.05 0.98 0.67 0.92 

     (intercept)  = -0.4 -0.43 -0.03 0.30 0.29 0.97 
     (binary)  = -0.16 -0.15 0.01 0.16 0.16 0.95 
     (continuous)  = 0.5 0.47 -0.03 0.25 0.24 0.96 
aStandard deviation of the point estimates. 
bStandard error, calculated from the average of squared root of estimated variance for each run. 

 

Table 3.2. Simulation results using the proposed model to analyze data with no Markov 
Chain effect included on the survival outcome (N=150 subjects, R=1,000, weeks=10) 

Covariates in joint 
model 

Parameter true 
value 

Estimate Bias SDa SEb 
Coverage 

Probability 
for 95% CI 

 (binary)  = 0.03 0.30 0.00 0.21 0.21 0.95 
 (continuous)  = -0.2 -0.21 -0.01 0.09 0.09 0.96 
	   = 0 0.00 0.00 0.81 0.70 0.94 

     (intercept)  = -0.5 -0.62 -0.12 0.17 0.18 0.90 
     (binary)  = 0.1 0.10 0.00 0.15 0.15 0.96 
     (continuous)  = 0.3 0.28 -0.02 0.10 0.10 0.95 
	   = 0 0.01 0.01 0.87 0.67 0.94 

     (intercept)  = -0.4 -0.43 -0.03 0.24 0.25 0.97 
     (binary)  = -0.16 -0.15 0.01 0.15 0.14 0.97 
     (continuous)  = 0.5 0.47 -0.03 0.20 0.21 0.96 
aStandard deviation of the point estimates. 
bStandard error, calculated from the average of squared root of estimated variance for each run. 

 

Additionally, we evaluated the performance of the simulated data (Scenario (i) and (ii)) in 

a regular Cox PH model.  The goal for this additional analysis was to further examine the 

simulated data and expect to observe the differences in the longitudinal covariate effect on the 

survival outcome in two scenarios.  When the effect of transition rates on the survival outcome is 

null (i.e., Scenario (ii)), the regular Cox PH model is expected to perform better in Scenario (ii) 
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than in Scenario (i).  Table 3.3 shows the summary of the regular Cox PH model performance in 

each scenario.  Overall, the result in Scenario (i) showed a slightly higher bias on the binary 

variable , while all the other results remained the same in both scenarios. 

 

Table 3.3. Simulation results of the Cox PH model in two scenarios (N=150 subjects, 
R=1,000, weeks=10) 

Covariates in joint 
model 

Parameter true 
value 

Estimate Bias SDa SEb 
Coverage 

Probability 
for 95% CI 

Scenario (i). Markov Chain effect on survival outcome. ( , ) 

 (binary) 0.3 0.29 -0.01 0.21 0.21 0.95 

 (continuous) 0.2 -0.20 0.00 0.09 0.09 0.96 

Scenario (ii). No Markov Chain effect on survival outcome. ( , ) 

 (binary) 0.3 0.30 0.00 0.21 0.21 0.95 

 (continuous) 0.2 -0.20 0.00 0.09 0.09 0.96 
aStandard deviation of the point estimates. 
bStandard error, calculated from the average of squared root of estimated variance for each run. 

 

3.4 Application 

3.4.1 Study Population and Description of the Joint Approach 

 We used a longitudinal PRO study (called HN study) with head and neck cancer patients 

recruited from the Head and Neck Clinic at MD Anderson Cancer Center (MDACC) from 

February 2006 to August 2007.  All the patients were 18 years old or older.  Due to the limited 

data collected on patients with other ethnicities (less than 10% of the originally collected data), 

we only used non-Hispanic white patients as a cohort in the analysis.  The study was approved 

by the MD Anderson Institutional Review Board, and all the patients had completed the 

informed consent before the first evaluation of PRO.  The PROs were collected by MDASI-HN 

[32].  Patients completed their MDASI-HN assessment weekly at baseline and the treatment 
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(radiotherapy (RT) or chemoradiotherapy (CRT)) period.  The survival outcome was collected 

from the MDACC medical record system.   

 One hundred eighty one non-Hispanic white patients participated in the study.  Among 

them, 21 patients were excluded from the analysis because the length of PRO repeated 

measurements were not long enough (less than six).  Thus, 160 patients were included in the 

application of the proposed joint approach.  Among these patients, about half (51.52%) received 

radiotherapy (RT) only, and the other half received chemoradiotherapy (CRT).  The average age 

of the selected patients was 58.88 years old, and 21.9% of them were female.  Additionally, one 

fourth (27.81 %) of these patients had late stage (tumor stage III and IV) head and neck cancer.  

The median progression-free survival time was 270 weeks, and the median length of repeated 

PRO measurements was 7 observations. 

In the literature, several studies had been published using this HN cohort.  For example, 

Shi et al. [18] used GBTM (see Section 3.1) to characterize the subjects into several symptom 

severity groups with the average of the top five severe symptoms.  Specially, they used the 

modeled severity membership from GBTM as an outcome in logistic regression to find the 

clinical factors that were associated with the outcome.  Moreover, Rosenthal et al. [33] used 

LMM to evaluate the linear pattern of the symptoms in MDASI-HN between the treatment arms 

(RT vs. CRT), and differences in symptoms such as fatigue, nausea, and disturbed sleep were 

found.  

3.4.1.1 Markov Chain model 

 In order to build a prognostic model, we only selected PRO at baseline and PRO during 

the treatment period in CTMC.  Symptom scores (0-10) were dichotomized to a binary variable 

with a cutpoint at 4 based on previous research [34, 35].  Scores equal to and larger than 4 were 
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defined as moderate/severe level, and scores less than 4 were identified as none/mild level.  The 

transition from none/mild to moderate/severe was termed the worsening rate ( ), and the 

transition from moderate/severe to none/mild was called the improving rate ( ).  Baseline 

demographical variables and baseline clinical variables were evaluated in CTMC through model 

selection.  The CTMC model was conducted in PROC NLMIXED on SAS 9.4 (SAS Institute 

Inc., Cary, NC, USA). 

3.4.1.2 Cox PH model 

 Progression-free survival (PFS) was used as the main outcome of interest in this 

application.  The survival time is calculated from the end of the treatment period to a survival 

event (progression-free) or to the end of the study (as censored).  We modeled the transition rates 

of a symptom (must be included) and adjusted with baseline covariates in the Cox PH model.   

3.4.2 Model Selection 

 In both CTMC and the Cox PH model, we considered covariates such as demographic 

variables and clinical variables in our model selection.  Demographical variables included age, 

gender (female vs. male), education (high school and above vs. below high school), and 

employment status (employed vs. not employed).  Clinical variables included treatment (CRT vs. 

RT), Eastern Cooperative Oncology Group Performance Status (ECOG-PS, 0 vs. 1+), tumor 

stage, previous induction chemotherapy (yes/no) and radiation dose (standardized). 

The model selection of the proposed joint approach was separated into two steps:   

 Step 1. Covariates in CTMC.  We selected covariates in CTMC using a backward 

approach based on Wald’s test statistics.   

Step 2. Covariates in the Cox PH model.  This step is to identify meaningful clinical 

covariates to the survival outcome while the transition rates of a symptom were included.   
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3.4.3 Results of the Proposed Model 

Table 3.4. Result of the proposed joint approach of Markov Chain 
and Cox PH model applied to the HN study on fatigue 
Covariates in the joint model Estimate SE* Pr > |t| 
Cox PH model 
Gendera  -0.29 0.30 0.34 
Ageb 0.14 0.15 0.36 
Treatmentc -0.73 0.35 0.04 

 (1 10⁄  of a unit) 0.11 0.17 0.52 
 (1 10⁄  of a unit) -0.51 0.21 0.01 

Markov Chain for transition rate  
 (intercept) -1.00 0.11 <0.01 

Ageb 0.14 0.11 0.19 
Gendera -0.36 0.23 0.12 
Previous induction chemotherapyd -0.64 0.28 0.02 
Markov Chain for transition rate  

 (intercept) -1.52 0.25 <0.01 
Ageb 0.10 0.14 0.49 
Radiation dosee -0.07 0.12 0.52 
Educationf 0.42 0.26 0.11 
Treatmentc -0.55 0.25 0.03 
*Standard error,  afemale vs. male,  bper 11.5 years,  cCRT vs RT,  dyes/no, eper 4.4 
gray,  fhigh school and above vs. below high school. 

 

Several symptoms were used as an application for the proposed joint approach.  

However, to better demonstrate a clinical application of our method, we only present one model 

involving one symptom fatigue which demonstrated strong associations between the transition 

rates and PFS (see Table 3.4).  Age, gender, and treatment were selected to the model for the 

worsening rate , while age, education, radiation dose, and treatment were included for the 

improving rate .  In the Cox PH model, the worsening rate  had a positive association with the 

risk of disease progression.  However, the improving rate  had a negative effect on the risk of 

disease progression.  Other covariates that were adjusted in the Cox PH modeling included 

gender, age, and treatment.   
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3.4.3.1 Interpretation of the Transition Rate Effect on the Outcome 

 Transition rates represent the speed of a process from one state to another.  In other 

words, transition rates can also be interpreted as the time consumption between states.  If the 

worsening rate becomes larger, the time of transition from none/mild to moderate/severe will be 

shorter, the patients should also have reported more frequently moderate/severe symptoms.  In 

contrast, if a patient had reported more frequently none/mild levels of a symptom, his/her 

improving rate should be larger.   

In Table 3.4, for a one-tenth of a unit increment of worsening rate ( ), a patient’s risk of 

head and neck cancer progression was expected to change by a multiplicity of exp 0.11 1.12 

when other covariates remained constant.  This means the hazard rate of disease progression 

would increase by 12% when there was a 0.1 unit change in the worsening rate.  Similarly, if the 

improving rate ( ) increased by a one-tenth unit, a patient’s risk of cancer progression would 

decrease by 40% (exp 0.51 0.60).  Based on Wald’s test statistics, the p-value of 

improving rate was statistically significant (pvalue=0.01), while the worsening rate did not show 

a significant result (p-value=0.52).  Both transition rates followed proportional hazard 

assumption. 

3.4.3.2 Interpretation of Covariate Effects on the Outcome 

 The interpretation of covariate effects on the outcome in this joint approach depended on 

the inclusion of covariates in each submodel.  If the covariate only existed in the Cox PH model, 

the interpretation of that covariate effect was the same as the regular Cox PH model.  However, 

if a covariate existed in both CTMC and the Cox PH model, the interpretation should include the 

covariate effect through the transition rates in CTMC.  For example, for a unit of standard 

deviation change on age (i.e., 11.5 years), the effect of the progression risk of head and neck 
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cancer is expected to change by a multiplicity of exp 0.13 0.11 exp 1.00 0.14 1

0.51 exp 1.52 0.10 ∗ 1 1.05.  Therefore, the older the patient, the higher the risk will 

be. 

3.4.3.3  Interpretation of the Covariates to the Transition Rates  

 Some baseline covariates were adjusted in the transition rates of CTMC, and their effect 

on the transition rates was easy to interpret.  For example, treatment was selected only in the 

improving rate at CTMC.  The improving rate was expected to change by a multiplicity of 

exp 0.55 0.58 when comparing CRT to RT.  The patients who received CRT tended to 

report less none/mild state of fatigue as compared to those receiving RT.  This result is consistent 

with the previous research by Rosenthal et al. [33], who found that CRT patients reported more 

symptom burden than RT patients.  

 

3.5 Discussion 

In this paper, we developed a joint approach of CTMC and the Cox PH model that 

models an observed longitudinal process as covariates to evaluate the effect of the covariates on 

survival.  We validated the two-stage joint approach through simulations and found the model 

performed well in terms of accuracy and precision for two different scenarios.  We also applied 

the proposed joint approach to a PRO study.  The results showed our model was adaptable in 

clinical research, and the interpretation of the transition rates provide a comprehensive way to 

interpret longitudinal PRO when distinct trajectories are observed for each subject.   

 It is noteworthy to discuss the differences among our method, the time-dependent 

covariates in a Cox PH model [29, 36], and the joint modeling that comprised a longitudinal 

model and a survival model [11, 37].  Time-dependent covariates approach in the Cox PH model 
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evaluates the association between a longitudinal covariate and the survival outcome in different 

periods, and the longitudinal process is followed until the survival event occurs.  Similarly, in the 

joint modeling approach, previous studies [11, 37] have built different joint models from a 

longitudinal model (e.g., LMM) and a Cox PH model.  This joint modeling approach also 

measures the longitudinal covariate process along with the survival time.  The survival outcome 

may happen at the same time as the longitudinal process modeled by LMM.  In contrast, we used 

the longitudinal covariate information during the treatment period that would only happen before 

the survival event.  The longitudinal process at the treatment period is considered as the 

information collected before the measurement of the survival time, like other baseline covariates, 

and then this information is used to predict the post-treatment survival events, which makes our 

proposed method a prognostic model.    

Moreover, our proposed method could reduce the dimension of data information in two 

ways.  First, the original scale is reduced from a continuous variable to a binary variable.  When 

the PRO score originally with a 0-10 scale was dichotomized to a binary variable, the 

interpretation of PRO in research becomes more practical in clinical practice.  For example, 

patients who reported score 3 and score 4 were not considered as the same severity level because 

a score 4 would generate further clinical action per the clinical guidance even though there was 

just a one unit difference in scores [38].  With our proposed method, even though we lost some 

information due to the transformation from a continuous variable to a binary variable, this loss is 

acceptable because the binary variable could still provide information on the differences of 

symptom severity levels.  Second, the repeated PRO measurements are reduced to a set of 

transition rates as summary statistics, and then incorporated to the Cox PH model.  This makes 

the proposed joint approach more acceptable to clinical researchers because they can summarize 
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longitudinal PRO as baseline covariates in the Cox PH model as the approach they commonly 

conducted. 

There are other advantages in applying the proposed joint approach.  First, compared to 

GBTM which transformed longitudinal data into membership of grouping, the proposed joint 

approach still presents the change of a longitudinal variable, which makes it suitable to consider 

the longitudinal variable as covariates in the survival model.  Second, CTMC is adequate to the 

random missingness in clinical data collection.  It is true that most studies have pre-specified 

timeline/schedule to collect clinical/PRO data, but a patient may miss a visit/response to the 

study.  When data are missing at random in a longitudinal covariate, CTMC can model the time 

between states.  Third, the proposed joint approach can be easily applied to common statistical 

software such as SAS or R through the two-stage procedure. 

Nevertheless, this joint approach is subject to several limitations.  First of all, lack of 

enough repeated observations in a longitudinal covariate and a small number of covariates 

adjusted in transition rates may lead to an identifiability problem [39, 40] because some patients 

may have the same profile in covariates and the same longitudinal pattern in CTMC.  Moreover, 

the baseline covariates may diminish the effect of transition rates.  In Section 3.4, we opted to 

keep transition rates in the model to maintain the relationship between the longitudinal variable 

and the survival outcome.  However, users can apply different model selection approaches based 

on their research question.      

To conclude, we developed a joint approach of the CTMC and Cox PH model and 

demonstrated that the estimation procedure is valid.  We also applied this approach to a study 

using longitudinal PRO fatigue at baseline and during treatment course on patients with head and 

neck cancer.  The application results indicate the trajectory of fatigue during the treatment period 
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is associated with post-treatment PFS.  Therefore, when distinct trajectories are observed among 

subjects in a longitudinal process, our proposed joint approach is expected to provide an 

alternative to evaluate the effect of a longitudinal process on survival outcomes. 
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4. Journal Article 3 

A Dimension Reduction on Multiple Continuous-Time Markov Chains with Application to 

Longitudinal Patient-Reported Outcomes  

Journal of Applied Statistics 
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dimension reduction, patient-reported outcome (PRO) 

 

4.1 Background 

 Factor analysis (FA) has been widely applied to patient-reported outcome (PRO) research 

as a tool when developing PRO instruments to identify unobserved domains.  Most PRO 

instrument validation studies are cross-sectional studies, but PRO studies collecting longitudinal 

data can also be used to examine the unobserved domains over time [1-3].  Specifically, some 

studies [4, 5] used Longitudinal Factor Analysis (LFA) [6] to examine the hidden factors on 

different occasions, but LFA could not address the longitudinal pattern of the original item.  To 

address this issue, in this paper, we propose a novel approach that integrates a two-state 

Continuous-Time Markov Chain (CTMC) to FA, which not only models longitudinal PRO data 

as CTMCs at the individual level but also incorporates the generated transition rates into FA.  

Because the proposed approach applied FA on summary statisticsof longitudinal PRO changes, 

our method is a more comprehensive approach that interprets the underlying construct of 

longitudinal variables.  

Factor Analysis in PRO research  

There are two types of FA, Exploratory Factor Analysis (EFA) and Confirmatory Factor 

Analysis (CFA).  The former is used to explore potential unobserved factors from the observed 
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variables without imposing a preconceived number of factors.  On the other hand, CFA is used to 

test the underlying structure of the observed variables when the unobserved factor structure is 

usually known [7-9].  In this paper, to discover the underlying construct among longitudinal 

variables, we will mainly focus on EFA in PRO research and our proposed method. 

EFA, in fact, has been extensively used in the development of PRO instruments to test 

the reliability of items in an instrument.  For example, Rosenthal et al. [10] have used EFA to 

identify the underlying structure of the cancer symptom items in the MD Anderson Symptom 

Inventory-Head and Neck Module (MDASI-HN).  They found the module items could be 

classified into two factors: one factor included problems with mouth/throat sores, tasting food, 

constipation, problems with teeth or gum, and skin pain/burning/rash; the other factor included 

difficulty with voice or speech, choking or coughing, problems with chewing or swallowing, and 

problems with mucus.  Two other studies [11, 12] also applied EFA in a similar strategy to 

explore the underlying factors among the symptom items in different modules.  Furthermore, 

EFA is also employed in other PRO instrument development or validation studies, such as the 

Medical Outcomes Study Short Form-36 (SF-36) [13, 14],  Functional Assessment of Cancer 

Therapy-General (FACT-G) [15, 16], and Patient-Reported Outcomes Measurement Information 

System (PROMIS) [17, 18].  All of these studies performed EFA on a single occasion, even 

though some [10-12] collected PRO data at more than one event.  However, if longitudinal PRO 

data were analyzed, the underlying structure of the items in the instrument could have provided 

more useful information. 

Longitudinal Factor Analysis   

 Longitudinal factor analysis (LFA) is a special version of structural equation modeling 

(SEM), which is a general statistical modeling technique where a latent factor construct is of 



68 
 

interest.  In general, LFA can perform factor analysis across time in a single modeling 

framework by incorporating the correlation among the repeated measurements and 

simultaneously estimating the unobserved factors over time [6].  The result of LFA could show 

the underlying factor structure at each occasion as well as the correlation within the observed 

variables.  LFA has been extensively utilized in psychology.  For example, Corballis and Traub 

[19] proposed a model that can simultaneously estimate two constructs of FA for two occasions, 

and the model considered the relationship between observed variables at two different time 

points.  Then, Joreskog and Sorbom [20], extended the concept and developed a program 

(LISREL), which can perform LFA for multiple occasions (more than two occasions).  

Longitudinal Factor Analysis in PRO Research 

However, only few studies have applied LFA in PRO research.  So far, the Longitudinal 

Analysis of Patient-Reported Outcomes Working Group has summarized their discussion related 

to the methodologies that could be used in future PRO research and commented on the usage of 

LFA in longitudinal PRO work [21].  For example, LFA can be applied to item response theory 

(IRT) [22] models to access the variability of latent structure over time, and distinguish response 

changes due to response shift or true changes.  Another study then used LFA to test the stability 

of the 13-item sense of coherence (SOC) in a longitudinal study on breast cancer patients [4].  In 

this study, Lindblad et al. applied LFA to examine the change of the underlying constructs on 

two occasions.  They concluded that the SOC scale was stable, so it was suitable to measure life 

stress in women with breast cancer.  On the other hand, LFA requires complete data over time, 

and the length of occasions should be the same.  So, if patients have different lengths of repeated 

measurements (such as PROs during the treatment period), only those data that overlapped at the 

same time points can be used in LFA.   
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Continuous-Time Markov Chain 

To accommodate the situation when the lengths of the repeated measurements are 

different for patients, one solution is to apply Continuous-Time Markov Chain at the individual 

level.  Markov Chain models have been applied to studies such as Alzheimer's disease [23, 24] 

and Parkinson’s disease [25, 26] in describing disease progression.  When the disease 

progression status follows the Markov Property, and can be expressed as changes among 

different states, a Markov Chain becomes an appropriate model to estimate those changes among 

the states.  For example, Karlsson et al. used the first-order Markov model to describe changes of 

different sleep levels (lighter sleep vs. deeper sleep) from patients who had insomnia [27], and 

they found the insomnia treatment (temazepam) improved patients’ sleep.  In other applications, 

Markov Chains can also be used to describe the changes of a patient’s disease status over time, 

and then transition rates estimated from these Markov Chains can be incorporated into a second 

model as covariates.  For example, Rubin et al [28] modeled longitudinal intracranial pressure 

(ICP, high ICP vs. normal/low ICP) with Continuous Time Markov Chain (CTMC) as covariates 

in a logistic regression which allowed them to predict the future status of patients with traumatic 

brain injuries.   

In this paper, we will apply CTMC to longitudinal PRO data and describe the changes of 

symptom severity during the treatment period.  Specifically, we will apply a two-state CTMC to 

a longitudinal PRO study that has collected symptom changes in head and neck cancer patients, 

and then incorporates the estimated transition rates from the two-state CTMC to FA to explore 

the underlying factors representing structure in the transition rates.  These factors may be helpful 

because they could reflect longitudinal PRO process during the treatment period, and they may 

indicate whether a symptom change is related to the treatment or to the disease.   
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Next, in Section 4.2, we will describe the two-state CTMC and its estimation procedure.  

FA will also be briefly described in the same section.  Section 4.3 will show how the proposed 

approach could be applied to a real-world study and examines the usage of CTMC in FA.  A 

comprehensive discussion of our proposed method will be held in Section 4.4.  

 

4.2 Method 

4.2.1 Two-State CTMC 

Let 1, 2 denote the two-state values for a two-state homogeneous CTMC, and let  

be its associated transition rate matrix given by  

 
   

where  is the transition rate from State 1 to State 2, and  is the transition rate from State 2 to 

State 1.  For detailed specification and methodology of CTMC, see textbooks by Ross [29] and 

Pinsky and Karlin [30].  In this paper, we will calculate the transition rates of a two-state time-

homogeneous CTMC for each longitudinal variable and integrate them to FA.  For a CTMC, the 

transition probabilities can be determined by solving a system of differential equations.  When 

the number of states is equal to 2, the explicit formulas for these probabilities are as follows:  
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where  is the transition probability from State  to State , , 1, 2.  Given a length  for 

a longitudinal variable of a subject, the parameters  and  can be estimated using the maximum 

likelihood method.  The individual level likelihood function for a longitudinal variable can be 

written as 

0  

, ,	 , , ,
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where 1, 2,  

1, 	
0,

 

0  is the probability when the initial state is equal to .  For each subject, we will fit a 

two-state CTMC for a longitudinal variable.  Therefore, each subject will have a pair of 

transition rates ( , ), representing the changes of the longitudinal variable. 

Interpretation of transition rate 

 By definition, the transition rate has to be larger than 0 because it represents a moving 

force from one state to another.  When a transition rate increases, the time from one state to 
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another will be shorter.  For example, let  be the transition rate from State 1 to State 2.  If  is 

higher in one subject, it means time has elapsed 1/ from State 1 to State 2. 

4.2.2 Factor analysis 

Let  be an observed random vector with dimension 1.  An orthogonal factor model 

can be expressed as 

 

where , and  is the number of observed variables.   is the number of hypothesized 

factors.   is the mean vector for observed random variable .   is the loading matrix for 

factors.   is a vector with dimension 1.   is a vector for error terms.   

An important assumption of factor analysis is that the hypothesized factors are 

uncorrelated.  This purpose can be achieved by using rotation of the loading matrix.  A 

commonly used rotation method, orthogonal varimax rotation, was applied to this study to ensure 

each variable loads highly on one and only one factor.  Such factor structure will result in each 

factor representing a distinct construct.  The number of  factors can be selected by the methods 

proposed by Bartholomew et al. [31] or Johnson and Wichern [32].  In this paper, the observed 

variables are the transition rates  estimated from the CTMC for each symptom measured in a 

PRO instrument.  Detailed descriptions will be shown in Section 4.3. 

 

4.3 Application 

4.3.1 Study Population and Description of the Proposed Approach 

 We applied the proposed approach, which integrated individual two-state CTMC into FA, 

to a head and neck cancer study.  The study recruited head and neck cancer patients who 

received radiotherapy (RT) or concurrent chemoradiotherapy (CCRT) at MD Anderson Cancer 
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Center from February 2006 to August 2007.  PRO was followed using MDASI-HN [10] at 

baseline (before the treatment) and during each week of treatment.  In the analysis, we only 

included non-Hispanic white patients because less than 10% of subjects were of other 

racial/ethnic background.  All patients signed the informed consent before the first PRO 

evaluation, and the study was approved by the MD Anderson Institutional Review Board. 

 In summary, 181 non-Hispanic white patients were recruited in the study, but 21 patients 

were later excluded because only five repeated measurements of PRO were available.  So, only 

160 patients remained in the final analysis.  Among these 160 patients, about 22% of them were 

female, and the average age was 59 years old.  Also, about half (51%) received the RT in the 

study. 

4.3.2 Implementation 

Individual Two-State Continuous-Time Markov Chain 

 In order to fit the longitudinal PRO in a two-state CTMC, we first dichotomized the 

original scale from 0-10 to a binary variable, according to previous research [33, 34].  The scores 

0-3 were defined as the none/mild level, and scores 4-10 were defined as the moderate/severe 

level.  As a result, the transition rate from none/mild to moderate/severe was called the 

worsening rate (λ), and the transition rate from moderate/severe to none/mild was called the 

improving rate (μ).   

 We used the PRO response collected at baseline and weekly measurements during the 

treatment period to fit the two-state CTMC at the individual level.  Following the methods 

described in Section 4.2.1, we estimated the transition rates for all the symptom items in the 

MDASI-HN of each patient.  That is, for each symptom item, we used two transition rates to 

represent the original repeated measurements.  Note that some patients may not report changing 
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symptom severity levels (none/mild vs. moderate/severe) during the treatment period.  For 

example, a patient may only report disturbed sleep at none/mild level across the entire treatment 

period.  The CTMC, as a result, cannot estimate the worsening rate because no data were 

reported at the moderate/severe level.  In this case, we set a minimum boundary 0.01 for 

transition rates which could not be estimated due to missing transitions.  Additionally, because 

FA assumes normality, we took the natural log of each transition rates before running FA. 

Factor Analysis 

 Once the individual transition rates were generated for each symptom item, we examined 

the proposed approach in two scenarios.  First, we ran FA with both improving rates and 

worsening rates of all symptoms.  This is to test whether the transition rates from CTMC can 

reasonably explain the changes in longitudinal RPO.  Second, we ran FA only with worsening 

rates for all symptoms.  Since the PRO was measured through questions regarding patients’ 

symptom severity, the worsening rates probably could better capture the change of symptoms 

over time for each patient.  All analyses were performed by SAS 9.4 (SAS Institute, Cary, NC). 

4.3.3 Results 

As described in Section 4.3.2, each patient had two transition rates (worsening rate and 

improving rate) for each longitudinal symptom.  Since the distributions of the transition rates are 

not the interest of this paper, we only list the descriptive statistics of the transition rates of each 

symptom in Appendix A.   

Figure 4.1 then showes the result of FA when both worsening rates and improving rates 

were considered in the analysis.  We selected the first two factors because we expected FA to 

distinguish the transition rates by their nature.  It was clear that the majority of the worsening 

rates comprised Factor 1, while the majority of the improving rates comprised Factor 2 except 
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for the symptoms shortness of breath and vomiting.  The loadings for shortness of breath were 

low: 0.16 in Factor 1 and 0.03 in Factor 2, and the loadings for vomiting were also low: 0.12 in 

Factor 1 and 0.06 in Factor 2.  Therefore, FA differentiated the worsening rates and the 

improving rates into different factors.  Detailed loadings on each factors are presented in 

Appendix B.  

Figure 4.2 showed the result of FA when only the worsening rates of symptoms were 

used.  Based on the inflection point in the scree plot, we selected the first two factors.  Factor 1 

included symptoms such as pain, fatigue, nausea, lack of appetite, drowsy, dry mouth, problems 

with mucus, difficulty chewing or swallowing, skin pain/burning/rash, problems with tasting 

food, mouth/throat sores, and problems with teeth or gum.  Overall, Factor 1 represented those 

symptoms that were worse when receiving the treatments (RT or CCRT).  In contrast, Factor 2 

contained symptoms such as disturbed sleep, distress, shortness of breath, remembering, drowsy, 

sadness, vomiting, numbness/tingling, choking/coughing, difficulty in voice or speech, skin 

pain/burning/rash, and constipation.  So, unlike Factor 1, Factor 2 represented the local or 

systemic symptoms that were commonly reported by head and neck cancer patients.   
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Figure 4.1. Factor analysis with both worsening rate and improving rate 
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Figure 4.2. Factor analysis with worsening rates only 

 

 

4.4 Discussion 

 In the previous sections, we showed how to apply individual two-state CTMC with FA.  

Using the individual two-state CTMC to summarize the longitudinal PRO symptoms, we were 

able to decrease the dimension from a longitudinal variable to a set of variables (transition rates) 

as that in a cross-sectional study.  We also inputted these transition rates into FA to explore the 

performance of transition rates and evaluate their representation in the unobserved factors. 
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 When we included both worsening rates and improving rates in FA, the FA could well 

identify the nature of the transition rate.  Worsening rates and improving rates were separated to 

different factors.  The first factor represented worsening rates, and the second represented 

improving rates.  This result validated the application of using two-state CTMC in longitudinal 

variables, and it showed that the transition rates could well represent longitudinal patterns.  Even 

though there were two symptoms, shortness of breath and vomiting, that had low loadings on 

both factors, the overall representation for each factor was still recognizable.   

On the other hand, when we only included the worsening rates in FA, the result of FA 

showed CTMC could sufficiently summarize information from the longitudinal PRO.  As 

indicated in Figure 4.2, Factor 1 represented those worsening rates of symptoms related to the 

treatment (radiotherapy or chemoradiotherapy), and the remaining worsening rates of symptoms 

were categorized to Factor 2, which may represent the systemic symptoms of head and neck 

cancer.  Notably, the worsening rate of drowsiness and the worsening rate of skin 

pain/burning/rash had effects on both factors.  In particular, the result from Figure 2 was 

consistent with the previous literature.  For example, Bossi et al. [35, 36] reported pain (called 

breakthrough cancer pain) were observed during the RT or CCRT among head and neck cancer 

patients.  Also, another study found fatigue was related to the dose of RT [37].  In that study, 

patients who received higher dose of radiation reported fatigue after the treatment.  Other 

symptoms including mouth sores, dry mouth, difficulty in swallowing, change in tasting food, 

lack of appetite, rash on skin, and stiff jaw were also common side effects for patients who 

received RT.  Moreover, a previous study [1] that used the same dataset as ours reported the 

distribution of each MDASI-HN symptom item during the treatment period.  Compared with 

their distributions, the symptom worsening rates in the first factor in our study (Figure 4.2) were 
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actually the items that had been significantly increased during the treatment period in their study.  

Patients were asymptomatic at baseline and experienced worsening symptoms during their 

treatment course.  This means those worsened symptoms may have been caused by side effects 

of the treatment.  Furthermore, in Figure 2, we only used the worsening rate in FA because 

patients who filled MDASI-HN were only asked to report the most severe symptom level in the 

past 24 hours.  Thus, the worsening rate alone could disclose patients’ symptom severity during 

the treatment period and help to simplify the interpretation of results in FA.   

  Compared to the LFA [6], our method provides a simpler, more comprehensive 

interpretation when conducting a factor analysis in a longitudinal study.  LFA could produce the 

underlying construct at different occasions by adjusting the correlation from repeated 

measurements.  Thus, the way to interpret of the result from LFA is like interpreting the result 

from FA multiple times.  In contrast, our proposed method summarizes the longitudinal 

information as a set of variables (transition rates), and then applies these variables to FA as those 

in a cross-sectional study.  Therefore, the interpretation of the results from our method is the 

same as the interpretation in other studies applying FA in a cross-sectional study.  However, our 

interpretation is based on the worsening rate or improving rate of a symptom.   

There are other advantages of our proposed method.  First, our method can handle the 

missing data in the repeated measurements.  The CTMC models the transition based on the time 

between two observed states, and the length of the longitudinal data can be different because we 

model CTMC at the individual level.  Besides, the two-state CTMC can be easily modeled using 

popular statistical programs such as SAS and R by specifying the likelihood described in Section 

4.2.1, and the factor analysis is supported in most statistical programs. 
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 One of the limitations of our proposed approach is information loss through 

dichotomization of the original scale on PRO.  In the two-state CTMC, we dichotomized the 

original scale (0-10) to a binary variable (none/mild vs. moderate/severe).  So, we may lose 

information on the original scale, but a binary ordinal scale can still provide sufficient 

information on the severity of patients’ symptoms.  Second, the cut point selected for the 

dichotomization of the symptom scales is critical and needs more consideration.  In this study, 

we used score 4 as the cut point because previous studies [33, 34] showed score 4 performed 

well when differentiating symptoms such as fatigue and pain.  However, if a symptom or a PRO 

measurement has other preferable cut points, users can apply different cut points based on their 

research interest.  As the cutpoint 4 has been recommended by multiple NCCN and ASCO 

guidelines for symptom management [33, 38-41], the current results are interpretable for further 

clinical application when symptom monitoring is implemented for patients under active cancer 

treatments.  Third, for patients who only reported symptoms in the same severity level, we set an 

arbitrary boundary 0.01 for the corresponding transition rates based on the length of the 

treatment period in the study.  As a result, some of transition rate estimates may not directly 

reflect the true change in the longitudinal process.  However, this situation may be improved 

when PRO is collected over longer periods because, in this scenario, the probability of no 

transition will be substantiously reduced.    

To conclude, we propose a new approach that can comprehensively summarize 

information from longitudinal PRO studies.   Our method uses the two-state CTMC at the 

individual level to summarize the changes of longitudinal PRO information, and then integrates 

those estimated transition rates into FA to explore the underlying construct among symptoms.  

We showed that our approach could provide meaningful clinical information through the 
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transition rates, and the result of FA proved the utility of CTMC in longitudinal PRO data.  It is 

expected that this approach can help researchers who are developing PRO instruments and 

needing a solution to explain the underlying construct of instrument items when the longitudinal 

PRO process is considered.  
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Appendix A  

Table 4.1. Distributions of worsening rate and improving rate 
of symptoms in MDASI-HN 

Transition rate Mean Std. Q1 Median Q3 

  2.00 3.30 0.19 0.38 2.09 

  2.09 3.49 0.01 0.53 2.39 

  2.56 3.68 0.20 0.55 4.40 

  1.86 3.34 0.01 0.49 1.83 

  1.43 2.43 0.01 0.22 1.84 

  2.72 4.18 0.44 0.56 3.67 

  1.85 3.17 0.01 0.35 2.48 

  2.41 3.77 0.34 0.56 3.14 

  1.30 2.38 0.01 0.01 1.57 

  2.59 4.12 0.52 0.56 2.55 

  0.72 2.20 0.01 0.01 0.01 

  1.47 2.56 0.53 0.55 0.59 

  0.76 2.02 0.01 0.01 0.07 

  1.78 3.53 0.53 0.55 0.61 

  2.49 3.68 0.08 0.39 3.91 

  1.92 3.12 0.01 0.54 1.97 

  1.75 3.17 0.01 0.32 1.76 

  2.10 3.55 0.01 0.54 1.43 

  2.49 4.08 0.23 0.39 4.43 

  1.58 3.08 0.01 0.16 1.19 

  1.01 2.16 0.01 0.01 0.60 

  1.90 3.49 0.52 0.55 0.63 

  0.95 2.10 0.01 0.01 0.39 

  2.51 4.41 0.53 0.56 0.75 

  0.44 1.19 0.01 0.01 0.01 
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  1.62 2.82 0.53 0.56 0.61 

  2.08 3.64 0.19 0.35 2.63 

  2.02 3.41 0.01 0.47 1.92 

  2.23 3.66 0.19 0.34 2.26 

  1.84 3.40 0.01 0.53 1.94 

  1.25 2.35 0.01 0.14 1.67 

  2.66 4.15 0.52 0.56 2.47 

  1.08 2.09 0.01 0.19 0.63 

  2.20 3.92 0.50 0.55 1.20 

  1.34 2.23 0.01 0.28 1.66 

  2.85 4.67 0.01 0.56 2.89 

  1.44 2.82 0.01 0.01 1.48 

  2.57 3.81 0.53 0.57 2.78 

  2.16 3.80 0.23 0.38 2.17 

  1.10 2.54 0.01 0.01 0.58 

  2.03 3.39 0.18 0.33 2.78 

  2.18 3.72 0.01 0.54 2.05 

  1.10 2.13 0.01 0.15 1.32 

  2.70 4.15 0.53 0.57 3.83 

      
 

  



89 
 

Appendix B. 

Table 4.2. Rotated Factor Loading in Figure 4.1 

Variables Factor1 Factor2 

  0.56 0.10 

  0.58 0.13 

  0.54 -0.13 

  0.68 -0.11 

  0.64 -0.21 

  0.39 -0.36 

  0.48 -0.28 

  0.64 -0.02 

  0.63 -0.09 

  0.64 0.06 

  0.64 -0.31 

  0.47 -0.34 

  0.39 -0.32 

  0.65 0.13 

  0.68 0.08 

  0.55 0.00 

  0.49 -0.09 

  0.59 -0.05 

  0.53 -0.19 

  0.60 0.09 

  0.61 0.09 

  0.50 -0.14 

  -0.13 0.52 

  -0.28 0.52 

  0.02 0.50 

  -0.04 0.44 
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  -0.01 0.44 

  0.16 0.03 

  0.12 0.13 

  -0.01 0.45 

  -0.15 0.48 

  -0.19 0.53 

  0.10 0.39 

  0.12 0.06 

  0.10 0.21 

  -0.11 0.57 

  -0.07 0.50 

  0.08 0.46 

  -0.11 0.48 

  0.09 0.55 

  0.16 0.27 

  -0.13 0.47 

  -0.07 0.50 

  0.07 0.37 
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5. CONCLUSION AND FUTURE RESEARCH 

We have developed models using two-state CTMCs to depict longitudinal PRO 

trajectories and incorporated transition rates in survival modeling and factor analysis.  The 

novelty of our research is that the dynamic longitudinal process has been transformed to cross-

sectional transition rates.  These rates can be interpreted as the inverse of average durations taken 

during the transitions from one state to another.  Additionally, these transition rates adjusted with 

baseline covariates will also help to explain the change over time for each individual patient.  

Specifically, in this research, we built a joint model that combines the longitudinal PRO process 

in a two-state CTMC with a parametric survival model (Weibull Regression) when the survival 

time is the outcome of interest.  Besides, another semi-parametric modeling involving a two-state 

CTMC and the Cox PH model was also developed when the risk of a survival event is the 

primary outcome.  Moreover, CTMCs were integrated to factor analysis when the unobserved 

symptom construct was the main interest such as that in a PRO instrument development process.   

In simulation studies, we validated the estimation procedures of our proposed models and 

demonstrated the application of our models in the setting when a longitudinal process was used 

to predict time to an event.  Specifically, in Section 2, we used a two-state CTMC to describe the 

longitudinal symptom (cancer fatigue) during the chemotherapy period in lung cancer patients.  

The transition rates were used as covariates to predict the overall survival in a joint modeling 

framework.  In Section 3, the longitudinal patient-reported fatigue during the 

radiation/chemoradiation period was then modeled as a CTMC and used to model the risk of 

head and neck cancer progression in a joint approach.  Both applications showed that our 

proposed models could be applicable in clinical research to address the association between the 

longitudinal PRO and survival outcomes.     
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What is more, we further illustrated the usage of CTMC in longitudinal PROs for the 

method of dimension reduction in Section 3.  We built the individual two-state CTMC for each 

patient to describe their symptoms during treatment and used the generated transition rates for 

each symptom as summary statistics, which function as the observed variables in factor analysis.  

The results showed that the transition rates could explain the longitudinal symptom patterns 

appropriately and provide sufficient information in the factor analysis for the underlying 

symptom construct.   

In this dissertation, the major limitations of our research are discussed.  However, some 

of them can be addressed in future research.  First of all, we lost partial information when we 

dichotomized the longitudinal variable (a continuous or ordinal variable) into a binary variable in 

the two-state CTMC.  Even though we have addressed this issue before (see discussion in 

Section 2 and Section 3), categorizing more states in the CTMC and turning it to a three-state 

CTMC or four-state CTMC could mitigate the problem.  In fact, if large variation among the 

states was observed, a three-state CTMC, for example, may be more appropriate to illustrate the 

longitudinal process.  Therefore, a future joint modeling method that combines a three-state 

CTMC and the survival model may be of interest.  Second, we adjusted baseline covariates in the 

two-state CTMC, but the missing data mechanism of the baseline covariates was not discussed in 

this research.  It is common that a missing clinical variable may occur in real-world data 

collection; therefore, it is worth exploring further different approaches used for missing data 

mechanisms and their effect on parameter estimation in the joint modeling.  Third, we linked a 

longitudinal process to a survival outcome in this research; however, a broader joint modeling 

approach could include two or more longitudinal processes may accommodate the needs of PRO 
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research when multiple PROs are of interest at the same time.  Lastly, we used a two-step 

backward selection strategy for model selection in the joint model we proposed, but the 

comprehensive associations among the longitudinal process, baseline covariates, and the survival 

outcome were not discussed in this research.  For example, the PRO (the longitudinal process) 

may serve as a confounder or serve as a mediator to the survival outcome.  Therefore, further 

research that explicitly studies the association among the longitudinal process, baseline 

covariates, and survival outcome can help to guide the strategy used in the model selection.           

 So far, to our knowledge, this is the first study where CTMC was applied to PRO 

symptom research.  Most of the previous studies used a linear mixed model to describe the 

longitudinal PRO trend, but they were incapable of fitting the data when distinct trajectories 

were observed.  In contrast, CTMC could better depict the longitudinal PRO pattern, and it is 

also suitable and practical for it to be applied to other statistical models in clinical research. 

 In summary, we developed statistical methods that model a longitudinal PRO process as a 

two-state CTMC and integrate it to the survival models or factor analysis.  The applications 

showed that the covariate-adjusted transition rates could summarize longitudinal PROs 

appropriately and serve as predictors in the survival analysis.  Furthermore, we also 

demonstrated an alternative to reduce the dimension of longitudinal patient-reported symptoms 

using CTMC.  Therefore, with our proposed method, researchers can better understand the 

unobserved longitudinal symptom construct in a much simpler manner.    
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