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KEBERKESANAN KAEDAH PEMBAIKAN MENGGUNAKAN POLIMER 

GENTIAN HIBRID KE ATAS TIANG KELULI DWI LAPISAN BERISI 

KONKRIT PASCA KEBAKARAN 

 

ABSTRAK 

Tiang keluli dwi lapisan berisi konkrit (CFDST) menjadi semakin popular pada masa 

kini di sebabkan oleh prestasinya yang tinggi berbanding dengan tiang komposit 

konvensional dan tiang keluli berisi konkrit (CFST). Walau bagaimanapun, 

penggunaan tiang jenis ini terhad kepada pembinaan luar seperti jambatan dan 

menara penghantaran (transmission tower) di mana api bukan merupakan satu 

kebimbangan utama. Tambahan pula, kajian sedia ada mengenai tiang CFDST hanya 

memberi tumpuan kepada prestasi tiang terhadap api dan kajian mengenai kekuatan 

sisa tiang CFDST pasca-kebakaran adalah terhad. Kekuatan sisa boleh digunakan 

untuk menentukan kaedah pembaikan yang paling sesuai supaya tiang tersebut 

kembali berfungsi seperti sediakala. Oleh itu, kajian ini bertujuan untuk mengkaji 

kesan parameter yang berbeza terhadap kekuatan sisa tiang CFDST. Antara 

parameter yang di bincangkan ialah ketebalan tiub keluli luar dan masa pendedahan 

kepada api. Kajian ini juga menilai keberkesanan kaedah pembaikan menggunakan 

polimer gentian (FRP) tunggal dan Hibrid terhadap prestasi tiang CFDST yang rosak 

akibat api. Tiang CFDST dibakar mengikut ASTM E119-11: Standard Test Methods 

for Fire Tests of Building Construction and Materials sehingga mencapai suhu 

600°C. Selepas itu, suhu dimalarkan untuk dua jangka masa yang berbeza, iaitu, 60 

minit dan 90 minit. Spesimen itu kemudian dibiarkan menyejuk pada suhu bilik di 

dalam relau sebelum ia dibawa keluar dan dibaiki sama ada dengan menggunakan 

FRP tunggal atau Hibrid. Spesimen dikategorikan kepada 3 kumpulan iaitu (1) 

spesimen tidak dibakar atau kawalan, (2) dibakar dan tidak dibaiki dan (3) dibakar 

dan dibaiki. Semua spesimen dibebankan dengan beban mampatan paksi sehingga 

gagal. Kategori pertama dan kedua spesimen gagal disebabkan oleh lengkokan 

tempatan ke arah luar daripada tiub keluli luar, kehancuran konkrit dan lengkokan 

tempatan daripada tiub keluli dalaman; manakala, spesimen daripada kategori ketiga 

gagal disebabkan oleh kegagalan FRP diikuti oleh lengkokan tempatan dan 

kehancuran konkrit seperti kategori pertama dan kedua. Kekuatan, kekukuhan sekan 

dan Indeks Kemuluran (DI) berkurang apabila suhu specimen meningkat. RSI dan 
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Kekukuhan Sekan meningkat apabila masa pendedahan meningkat. Menariknya, RSI 

tertinggi yang dicapai hanya 22% yang bermaksud, spesimen masih mampu 

membawa lebih daripada 70% daripada beban asal selepas terdedah kepada api 

selama 90 minit dengan hanya 3 mm ketebalan tiub keluli luar. Pembaikan tiang 

CFDST yang rosak akibat api dengan menggunakan FRP tunggal dan Hibrid berjaya 

menambahkan kekuatan muktamad tiang. Peningkatan kekuatan muktamad adalah 

lebih ketara apabila spesimen dibaiki dengan kaedah Hubrid FRP bersama spesimen 

yang mempunyai ketebalan tiub keluli luar yang nipis. Walau bagaimanapun, 

kenaikan dalam Kekukuhan Sekan dan Indeks Kemuluran (DI) spesimen yang 

dibaiki tidak mencapai nilai asal.  
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EFFECTIVENESS OF REPAIR METHOD USING HYBRID FIBER 

REINFORCED POLYMER FABRIC ON CONCRETE-FILLED DOUBLE 

SKIN STEEL TUBULAR COLUMNS EXPOSED TO FIRE 

 

ABSTRACT 

Concrete-filled double skin steel tubular (CFDST) column is becoming more popular 

nowadays due to its superior performance compared to conventional composite 

column and concrete-filled steel tubular (CFST) column. However, the use of this 

type of column is still limited to outdoor construction such as bridge piers and 

transmission tower where fire is not a main concern. Moreover, existing research 

studies on CFDST column only focused on fire performance and limited research 

studies can be found on residual strength of the CFDST column. Residual strength 

can be used to determine the most suitable repair method needed in order to retrofit 

the column. Therefore, this study aims to study the effect of different parameter 

towards residual strength of CFDST column. Among discussed parameter is 

thickness of outer steel tube (  ) and fire exposure time. In addition, this study is also 

aim to determine the effectiveness of repair method using Single and Hybrid fiber 

reinforced polymer (FRP) of fire-damaged CFDST columns. CFDST columns were 

heated in accordance of ASTM E119-11: Standard Test Methods for Fire Tests of 

Building Construction and Materials until the temperature reached 600°C. 

Afterwards, the temperature was kept constant for two different durations, i.e., 60 

minutes and 90 minutes. The specimen was then left to cool down to room 

temperature inside the furnace before it was taken out and repaired by Single and 

Hybrid FRP. The specimens were categorized into the following three groups: (1) 

unheated or control specimens, (2) heated and unrepaired and (3) heated and 

repaired. All specimens were subjected to axial compression loading until failure. 

The first and second category specimens failed by local outward buckling of outer 

steel tube, crushing of concrete and local buckling of inner steel tube; whereas, 

specimens in third category failed by rupture of FRP followed by similar local 

buckling and concrete crushing as those observed in first and second category 

specimens. Ultimate strength, secant stiffness and Ductility Index (DI) decreased as 

temperature of the specimen increased. The lost in secant stiffness of thinner CFDST 
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specimens exposed to 60 minutes of fire exposure time is similar to thicker CFDST 

specimens exposed to 90 minutes of fire exposure time regardless of its diameter. In 

addition, CFDST specimens exposed to 90 minutes of fire exposure time were more 

ductile than control specimen. RSI and secant stiffness increased with the increased 

in fire exposure time. Interestingly, the highest RSI achieved is only 22% which 

means the specimens were still able to carry more than 70% of its initial load after 

being exposed to 90 minutes of fire exposure time with only 3 mm thickness of outer 

steel tube. Repairing the fire-damaged CFDST columns with Single and Hybrid FRP 

are proven to improve ultimate compressive strength significantly. The increment in 

ultimate compressive strength is more pronounced in specimen with Hybrid FRP and 

thinner outer steel tube. The secant stiffness and Ductility Index (DI) of repaired 

specimens were however not able to be restored to those of control specimen. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1  Background 

 Steel hollow structural section (HSS) are widely used in high rise building 

and as bridge pier because of their resistance to lateral movement in addition to its 

lighter weight compared with solid steel section and reinforced concrete columns 

(Lam & Williams 2004). HSS columns are also known to be very effective in 

resisting compression loads and are widely used especially in industrial building as 

framed structures (Kodur and Lie, 1995). Filling this hollow column with plain 

concrete leads to a number of benefits such as increasing the load bearing capacity of 

the columns, higher fire resistance compared with HSS without concrete filling, 

preventing spalling of concrete when subjected to fire due to existence of steel and 

finally, the presence of steel eliminates the need of formwork (Han et al. 2002; Han 

et al. 2003; Han et al. 2003) thus, leading to a rapid (Han et al. 2005; Yang et al. 

2008) and economical construction (Tao et al. 2007). Over time, engineers began to 

use concrete-filled hollow steel column or also known as concrete-filled steel tubular 

(CFST) column to replace HSS due to the above mentioned advantages. Overalls, 

CFST column are proven to be more economical than HSS (Lam & Williams 2004).  

 The profile of concrete-filled double skin steel tubular (CFDST) column is 

similar to CFST except for the void in the middle of the column as shown in Figure 

1. 1. CFDST columns have been used bridge piers in Japan, owing to its good 

damping and energy absorption properties as well as light weight cross-section (Zhao 

et al. 2002). More recently, Han et al. (2014) reported that CFDST columns have 

been used as an electric pole in China (Figure 1.2). Unlike CFDST columns, CFST 
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columns have been widely used in China for almost 50 years. Among the examples 

are 1) Ruifeng building in Hangzhou, 2) Zhaohua Jialing River Bridge and 3) 

Qianmen subway station in Beijing (Han et al. 2014). Furthermore, CFDST columns 

are used only in outdoor construction where fire is not the main concern. 

 

Figure 1. 1: Typical profile of concrete-filled double skin tubular column        

        (Lu, Han, et al. 2010) 

 

 

 

Figure 1.2: A CFDST pole in China (Han et al. 2014) 
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1.2  Problem Statement 

 Over the years, many types of composite columns have been proposed in 

order to keep up with advance and complex design of new buildings. However, the 

columns need to be tested for their fire endurance before they can be widely used and 

accepted in actual construction because fire is one of the primary design 

consideration in building construction (Chowdhury et al. 2007). So far, many 

literatures can be found on concrete-filled steel tubular (CFST) columns exposed to 

standard fire but very few focused on concrete-filled double skin tubular (CFDST) 

columns (Lu et al. 2010). Since there is increasing interest on the use of CFDST 

columns, the needs to study their behavior when exposed to fire and their behavior 

after exposure (i.e., post-fire behavior) has become very crucial. Understanding of 

the behavior under fire exposure is crucial for use by engineers not only for outdoor 

construction but also indoor construction with confidence. 

 In order to repair fire-damaged CFDST columns, engineer need to understand 

their residual strength after exposed to fire. Residual strength of damaged columns 

needs to be determined in order to predict the approximate strength gained after 

retrofitting the damaged columns. In the case of structural steel, the main concern of 

engineers is usually on residual deformation and distortion of steel members. 

According to Kodur et al. (2010), if the maximum temperature of steel do not exceed 

550˚C, upon cooling steel retain almost 100% of its original room temperature 

strength. On contrary, 300˚C is taken as threshold temperature for concrete to start 

losing its compressive strength (Ingham 2009 and Liu 2009). Nevertheless, concrete 

in CFDST columns, acts as an insulator to inner steel tube. While outer steel tube is 

scarified during fire exposure, the load bearing capacity of the column shifts to 
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concrete and inner steel tube. Therefore, in order to achieve this, temperature of inner 

steel tube needs to kept as low as possible. 

There are many existing research studies on repairing or retrofitting of 

reinforced concrete columns and CFST columns with FRP, however, research study 

on CFDST columns is very limited. To date, only three research studies deals with 

repairing of fire-damaged CFST columns/beam-columns with FRP (Tao et al. 2008, 

Tao & Han 2007 and Tao et al. 2007). Two of them (Tao et al. 2008 and Tao & Han 

2007) deals with repairing work using more than one layer of FRP. However, the 

above mentioned research studies used similar type of FRP which is CFRP and none 

of them is using Hybrid FRP. CFRP is known to increase the ultimate compressive 

strength; nevertheless GFRP can endure larger strain than CFRP (Talaeitaba et al. 

2015). Combination of CFRP and GFRP will result in superior performance as repair 

method for fire-damaged CFDST columns. Therefore, there is an urgent need to 

study the post-fire behavior of CFDST columns for the purpose of repairing this kind 

of composite columns after being exposed to fire. 

 In CFDST columns, the thickness of the concrete is greatly reduced due to the 

presence of void in the middle of the columns. Therefore, it is expected that the 

temperature of the concrete is much higher than ordinary CFST or reinforced 

concrete columns. On the other hand, the presence of inner steel tube has proven to 

be of great benefit to CFDST column. Concrete acts as the insulator thus increases 

the fire resistance of CFDST column, enabling the steel to continuously resist loading 

even though the outer tube has already begun to lose its strength due to fire (Lu et al. 

2011). Steel can withstand at least 15 to 20 minutes of load before reaching its 

critical temperature and starting to lose its strength (Schaumann et al. 2009). After 

that, the load will be transferred to concrete. In the case of CFDST, the load will be 
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transferred to both concrete and inner steel tube. However, in depth study regarding 

the contribution of inner steel tube to the overall capacity of CFDST after fire 

exposure needs to be carried out. In addition to that, the role of concrete that acts as 

heat sink as well as insulator need to be understood. 

 There has been a contradictory finding concerning the role of thickness of 

outer steel tube of CFST when exposed to fire. Similar situation also applies to the 

case of CFDST. In a parametric study done by Kodur (1999), the influence of outer 

tube thickness was found to be very small to the point that it can be neglected. On the 

contrary, Yin et al.( 2006) showed that thinner steel tube was able to slow down the 

heat transfer from the surface of exposure to concrete core. Therefore, this matter 

needs to be further investigated. 

1.3  Research Objective 

 The aim of this research study is to investigate the residual strength of 

CFDST columns after exposure to fire. It is also aimed at investigating the 

performance of fire-damaged CFDST columns after repair. With these aims, the 

objectives of this research are established to be as follows: 

1) To identify the relationship between thickness of outer steel tube and maximum 

temperature of concrete in concrete-filled double skin steel tubular (CFDST) 

columns exposed to fire  

2) To determine the residual strength of concrete-filled double skin steel tubular 

(CFDST) columns exposed to fire 

3) To determine the effectiveness of repair method using Single and Hybrid Fiber 

Reinforced Polymer (FRP) fabric on fire-damaged concrete-filled double skin 

steel tubular (CFDST) columns 
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