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INISIALISASI DAN SEGMENTASI KONTUR AUTOMATIK 
BERPANDUKAN PENGETAHUAN STRUKTUR-STRUKTUR 

ABDOMINAL DALAM IMEJ-IMEJ TOMOGRAFI 
BERKOMPUTER (CT) 

 
 

ABSTRAK  
 

Imbasan tomografi berkomputer (CT) merupakan sumber yang amat berharga dalam 

diagnosis struktur abdominal. Di dalam pengimejan abdominal, imbasan CT bagi 

sesuatu bahagian anatomi biasanya menghasilkan bilangan keratan 2D yang amat 

banyak. CT lebih digemari bagi pengimejan abdominal berbanding dengan teknik-

teknik lain yang lebih sensitif seperti MRI kerana mempunyai nisbah isyarat terhadap 

kebisingan yang tinggi dan resolusi ruang yang baik. Dalam bidang pemprosesan 

imej digital perubatan, perhatian tertumpu kepada analisa dan visualisasi automatik 

bahagian hati, limpa dan buah pinggang bagi membantu diagnosis, perancangan 

terapi radiasi dan pembedahan. Penyempadanan struktur-struktur yang masih 

merupakan masalah penyelidikan terbuka merupakan langkah asas pertama dalam 

kajian ini. Automasi proses segmentasi imej perubatan dapat mengurangkan tugasan 

interaktsi manual yang memakan masa, memenatkan dan subjektif, dan ini dapat 

membantu ahli radiologi yang biasanya terpaksa melihat beribu-ribu imej setiap hari. 

Oleh itu, segmentasi automatic merupakan fokus utama beberapa usaha 

penyelidikan. Dalam kajian ini, satu rangka kerja segmentasi berasaskan 

pengetahuan automatik berdasarkan kaedah-kaedah kontur aktif dicadangkan. Sistem 

segmentasi ini adalah generik dan menggunakan pelbagai sumber pengetahuan 

perubatan seperti atlas perubatan, peraturan-peraturan pakar, penglihatan pelbagai: 

axial, coronal dan saggital, ciri-ciri imej dan meta data imej DICOM. Kajian 

difokuskan kepada penggunaan kaedah-kaedah segmentasi kontur aktif level set yang 

menghasilkan keputusan memberangsangkan, yang mana ia teguh terhadap variasi 
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set data dan tidak memerlukan latihan awal yang ekstensif. Oleh itu, kaedah-kaedah 

ini boleh digunakan dengan penuh keyakinan untuk segmentasi struktur-struktur 

utama imbasan CT abdominal. Keputusan yang diperoleh amat memberangsangkan, 

menunjukkan peningkatan ketara berbanding dengan kaedah-kaedah lain, yang mana 

ralat pengukuran isipadu ialah 7% dan masa pemprosesan meningkat sebanyak 68%. 
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KNOWLEDGE GUIDED AUTOMATIC CONTOUR 
INITIALIZATION AND SEGMENTATION OF ABDOMINAL 

STRUCTURES IN CT IMAGES  
  
 

ABSTRACT 
 
Computed Tomography (CT) scans are becoming a priceless means of diagnosing 

abdominal structures. CT scans result in a huge number of 2D slices of the acquired 

anatomical part in abdominal imaging. CT are more preferred compared to sensitive 

imaging techniques such as MRI in abdominal imaging owing to their high signal to 

noise and good spatial resolution. In the area of medical image processing, the 

current interests are in the automated analysis and visualization of liver, spleen, and 

kidney to assist in diagnosis, radiation therapy planning and surgical planning. 

Delineation of these structures which is still an open research problem is the first and 

fundamental step in all of these studies. Automation of medical image segmentation 

reduces time-consuming, tedious, subjective human interaction tasks and may aid 

radiologists, who are normally required to view thousands of images daily. Thus, 

automatic segmentation is the main focus of several research efforts. In this research, 

we propose an automatic knowledge-based segmentation framework based on active 

contour methods. The proposed segmentation system is generic, and employs 

multiple sources of medical knowledge: medical atlas; expert’s rules; multiple 

views: axial, coronal and sagittal; image features and image DICOM Meta data. The 

focus in this research is on level set active contour segmentation methods which 

provide promising results, robust to dataset variations and do not require extensive 

prior training. As such, they can be reliably used for segmentation of major 

structures in abdominal CT scans. The obtained results are very promising showing 

significant improvements over other methods where the volume measurements error 

is 7% and the processing time was improved by 68%.  
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CHAPTER 1 

INTRODUCTION 

 

Image segmentation can be identified as the process of isolating different regions in 

an image having homogenous features such as intensity, texture, color etc. Image 

segmentation is considered as an essential and crucial preliminary processing 

analysis and one of the most challenging tasks in any computer vision systems 

(Gonzalez and Woods, 2008). Image segmentation plays a major role in various 

imaging fields. Medical imaging is one of the mostly referred fields by the imaging 

community.  

 

Medical imaging produces datasets that may require considerable amount of 

processing time for one particular human organ. A typical Magnetic Resonance 

Imaging (MRI) and Computed Tomography (CT) scan results in large number of 

slices of the acquired anatomical region. This  stack of 2D images are referred as 

dataset; these images appear in gray scale color with each gray scale value 

corresponding to an Hounsfield Units (HU), which is a measure of radiodensity that 

provides an accurate absolute density for the corresponding anatomical tissues 

(Möller, 2009).  

 

A typical processing of medical images includes pre-processing to remove 

noise and segmentation process that delineates a particular anatomy of interest. The 

highly complex nature of medical images makes segmentation difficult and time 

consuming. It also may require sophisticated segmentation algorithms to obtain 

reliable results. 



 
 

2 
 

Image segmentation plays a crucial role in medical imaging application, 

includes the  classification of different anatomies such as bone, soft tissues and 

muscles; visualization of medical image; volumetric measurement; shape 

representation and analysis; computer guided surgery; treatments planning and 

human organ changes detection. Besides, there has been a growing need for 

segmentation in anatomical structure studies in research and teaching (Withey and 

Koles, 2007, O’Donnell, 2001). 

 

Depending upon the case studies, medical image segmentation can be very 

complicated, tedious and time consuming. Moreover, manual delineation is a highly 

skilled, subjective and laborious task. Selecting each pixel manually for the desired  

anatomical structure in every slice of a dataset that may consist of more than 50 

slices could take hours or even days (Casiraghi et al., 2009). As the processing 

resources of the computers have seen some advancement, the automation of medical 

image segmentation can be performed with higher accuracy, repeatability, and 

efficiency (O’Donnell, 2001; Straka et al., 2004; ChangYang et al., 2010). Fast and 

accurate segmentation would allow physicians to analyze and visualize human 

anatomies and assist radiation therapy and surgical planning.  

 

1.1 Approaches in Medical Image Segmentation  

Many different image segmentation methods have been developed in the past several 

decades in medical imaging domain. However, image segmentation remains acutely 

problem centric. A given segmentation method may perform well on one problem 

but poorly on a different application. Thus, achieving a generic segmentation method 

that is universally applicable for a broad range of medical applications is a very 
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challenging task. The variety of medical applications encourages research interests 

on the segmentation process in order to develop, improvised and advanced methods 

for a given application.  

 

One of the main factors to be considered in segmenting the desired organ is 

either the 2D segmentation in which each desired organ is segmented from each of 

the slices in the dataset individually and then construction of 3D volume from these 

individual slices, or a 3D segmentation in which the desired organ is segmented from 

the whole dataset of a volume. An important point to be noted here is that in real 

clinical image acquisition procedure, it is common to have limited 2D image slices 

with large slice spacing, to reduce patient exposure to radiation, this show the need 

for 2D segmentation. With the availability of high resolution 3D datasets in public 

databases, many researchers have ventured into 3D segmentation. Although, there 

are many recent research efforts in 3D image segmentation, efficient and fast 2D 

segmentation procedures are still the main focus. The amount of extensive research 

has lead 2D segmentation as a well accepted process.  

 

Existing segmentation methods in medical domain include neural network 

learning methods which require training dataset to build the constraints such as 

intensity, texture, shape etc, that need to be given into neural network (Chien-Cheng 

et al., 2003); intensity-based methods that are based on similarity in intensity and 

need initialization value (Campadelli et al., 2009); rule-based recognition based on 

exploiting structure invariants and available features such as size, edge and location 

(Chien-Cheng and Pau-Choo, 2000); model-based methods that need training sets to 

build a model to guide the segmentation process (Heimann et al., 2007); active 
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contour methods that require initialization of contour inside target structure (Lee et 

al., 2007); atlas-based segmentation which requires registration between atlas and 

target dataset (Furukawa et al., 2007) and finally unsupervised methods such as 

clustering techniques produces clusters belonging to many different structures. It 

normally combines with other methods in order to isolate specific structure (Yuqian 

et al., 2010).   

 

Active contour segmentation methods (Liu et al., 2005; Lee et al., 2007; 

Martí et al., 2007; Furukawa et al., 2007; Pan and Dawant, 2001) have specific 

advantages over other methods, such as providing promising results, robustness to 

dataset variations, no prior training, and ability to capture the topology of shapes (Li 

et al., 2006). As such, they can be reliably used for segmenting structures in 

abdominal CT scans. However, active contour methods have some disadvantages, 

that is longer processing time due to the need of user interaction, to plot the contour 

of level set in each slice in the abdominal dataset, which is very time consuming and 

knowledge intensive task. In addition, performance of level set active contour 

methods relies heavily on having a good initialization of the contour curve close to 

the desired contour.  

 

Depending on user interaction and prior knowledge, medical image 

segmentation algorithms can be classified as manual, semi-automatic and automatic. 

Automatic methods still need prior knowledge such as shape, location and texture 

relating to the human organ to be segmented. In addition some of these methods also 

require initialization. As examples, active contour segmentation methods needs curve 

initialization; region growing segmentation methods need seed point initialization, 
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etc (Foo, 2006). Therefore, medical knowledge represented by variety of sources 

such as medical atlas, texture information, anatomical shape and location, is 

necessary for image processing, especially for image segmentation. 

 

Survey indicates that there are huge demands for automating the 

segmentation of abdominal structures. It includes measurement of kidney volumes, 

which is a good pointer of common body parameters and a reliable predictor of renal 

function (Shin et al., 2009); measurement of liver volume, which is useful for liver 

transplantation (Nakayama et al., 2006); constructing volume of abdominal 

structures helpful in surgical planning and radiation treatment (Harms et al., 2005). 

CT scans are preferred more than sensitive imaging techniques such as MRI in 

abdominal imaging owing to their high signal to noise and good spatial resolution 

(Linguraru et al., 2010). But it is noted that abdominal images segmentation is 

complex and challenging task due to several reasons contributed by high similarities 

in the gray levels among different structures, the surrounding soft tissues as well as 

inhomogeneity in shape and texture of the same structure in different image slices  

(Ding et al., 2005).  

 

This thesis addresses the challenges in improving the level of automation and 

reducing processing time while improving the accuracy of the segmentation. This 

thesis concentrates on adapting the medical knowledge to automate the segmentation 

of abdominal structures (liver, spleen, left kidney and right kidney) in CT scan using 

active contour segmentation methods.  
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1.2 Problem Statement 

A major concern in image segmentation is the manual initialization of contour curve 

in active contour methods. Active contour methods require manual interaction from 

the user to initialize the contour curve inside a region of interest. In addition, more 

computation is required for the active contour to reach the desirable borders if the 

contour curve is initialized farther from its possible final position (Pan and Dawant, 

2001; Lee et al., 2007; Martí et al., 2007; Lankton and Tannenbaum, 2008). 

Furthermore, the convergence of these methods is sensitive to the placement of initial 

contours. In other words, processing time of active contour methods heavily relies on 

the position and size of the initial curves (Li et al., 2006).  

 

Critical evaluation of literature regarding past approaches and frameworks for 

abdominal structures segmentation in CT scan using active contour methods has led 

to the identification of the following issues: 

 

1) Initialization of contour curve in a single slice inside abdominal structure: 

There are many existing active contour segmentation methods that have been 

applied in abdominal structures segmentation. These methods require the user 

to go through all dataset slices, and choose a suitable 2D slice that contains 

the target structure to initialize the contour curve inside the target structure, 

manually. These methods require a user with sufficient anatomical 

knowledge of abdominal structures to perform such process accurately (Lee 

et al., 2007; Pan and Dawant, 2001; Dawant et al., 2007).  
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2)  Initialization of contour curve in all abdominal structure slices: Some of 

active contour segmentation methods utilizes registration process to transfer 

contour curve from segmented medical atlas slices and target slices (Ding et 

al., 2005). These methods face issues such as, extensive preparation of 

special atlas or model, sensitivity to registration process, and can be only 

applied to a specific structure. In addition, active contour method is adapted 

as a post-processing step in many segmentation approaches to enhance the 

segmentation results (Linguraru et al., 2010; Yang et al., 2009; Komatsu et 

al., 2008; Furukawa et al., 2007). These methods are considered as time 

consuming by performing segmentation two times, one by proposed method 

and one by active contour method.  Some of the active contour segmentation 

methods require the user to go through all dataset slices, and to insert several 

landmark points at the topmost and bottommost slices (Lee et al., 2007). 

These points are used to specify the starting and ending of the target structure 

in order to reduce the number of slices, in need of processing and to know 

when the segmentation process should stop. Moreover, the user is required to 

initialize the contour curve inside the target structure in each axial slice which 

is a very time-consuming process and a knowledge intensive task (Lee et al., 

2007; Martí et al., 2007; Dawant et al., 2007; Pan and Dawant, 2001). 

 

3) Discontinuity (multiple lobes) regions in the liver: The disconnected regions 

appear in some of the axial slices because of the structure of the liver which 

contains multiple lobes, thus different lobes appear as different regions in a 

single image slice. Discontinuity regions (multiple lobes) in liver need a user 
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to point these regions and initialize the contour curve inside each of these 

regions manually (Dawant et al., 2007; Pan and Dawant, 2001).  

 

4) Intensity similarity between abdominal structure and surrounding muscles 

tissue: The high similarity in intensity between liver tissue and muscles tissue 

affects the accuracy of segmentation results, and thus segmentation methods 

that are based on gradient or intensity values may not be able to differentiate 

the liver from its neighboring structures (ChangYang et al., 2010).  

 

This research attempts to find solutions to the above mentioned problems in 

an automatic manner to advance and speed up active contour methods in segmenting 

the abdominal structures.   

 

1.3 Significance of the Study  

The significance of this study is attributed by its close association with several 

applications related to abdominal structures. Some examples of these applications 

are: organ classification, visualization of 3D abdominal structure volume, volumetric 

measurement, shape representation and analysis, computer guided surgery, 

treatments planning, changes detection, teaching and research. Medical doctors and 

radiologists also benefit from this study to automatically delineate the abdominal 

structures in CT scan. Image segmentation is considered as the heart of such 

applications, and the degree of success is mainly dependent upon the level of 

automation, segmentation results and processing speed. In many of these 

applications, active contour methods seem to be the most popular choice for image 

segmentation. However, due to shortcomings in active contour methods abdominal 
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structures segmentation as mentioned in section 1.2, the results are still quite 

unsatisfactory. These methods will be a full benefit if they can produce segmentation 

results with higher accuracy and speed.  

 

This study introduces a knowledge based system that integrates multiple 

sources of medical knowledge to automate medical image active contour 

segmentation method, which shall be described later. The knowledge sources include 

medical atlas; expert’s rules; image features; multiple image views and image 

DICOM Metadata. It is believed that the automatic segmentation of abdominal 

structures in CT scans will have significant contribution in the development of a 

user-friendly and knowledge-guided medical image segmentation tool which may be 

used in Computer Aided Diagnosis (CAD) systems.  

 

1.4 Research Objectives 

The primary aim of this study is to propose a knowledge based framework that will 

allow the incorporation of the medical knowledge to increase the level of automation 

in active contour segmentation methods in isolating abdominal structures. The 

objectives of this research can be further summarized as follows: 

 

• To automatically localize the desired abdominal structure and initialize 

contour curve inside one slice of abdominal structure slices in the CT dataset. 

 

• To automatically propagate and initialize the curve of active contour 

segmentation methods in all axial slices in an abdominal CT scans dataset.   
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• To automatically localize discontinuity (multiple lobes) regions of liver and 

initialize contour curve in each region.   

 

• To improve the segmentation and visualization of abdominal structures with 

faster computation time. 

  

1.5 Research Scope  

The scope of the study is outlined as follows: 

 
1. The focus of the present research will be on 2D level set active contour 

segmentation methods suitable for abdominal structures.  

 

2. The methods developed in this research are applicable to abdominal 

structures (liver, spleen, right kidney and left kidney) in normal CT scans 

without any excessive abnormalities as many appear with massive tumor or 

trauma cases.   

 

1.6 Research Contributions 

The main contributions of this thesis can be summarized as follows: 

 

• This thesis introduces an efficient and simple method for abdominal 

structures localization based on the similarity of texture features represented 

by Scale Invariant Feature Transform (SIFT) feature between dataset slices 

and annotated atlas image. The introduced method eliminates the need for 3D 

atlas registration by using a simple annotated 2D atlas. This helps to 

overcome the problems related to possible lack of atlases especially in the 
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abdominal part in addition selecting the optimal geometry for 3D registration 

and minimizing time consumption in the registration process. 

 

• Developing an efficient method to automatically propagate the contour curve 

in abdominal dataset slices based on the knowledge provided by dataset 

images represented by multiple views ( axial, coronal and sagittal) views, 

which lead to time reduction of active contour segmentation methods used to 

segment abdominal structures.  

 

• Developing an efficient localization method for multiple lobe regions in liver 

structure based on Haralick texture features represented by Gray Level Co-

occurrence Matrices (GLCM), Principle component Analysis (PCA) classifier 

and experts’ rules. 

 

• Initiating a method to eliminate muscles tissues between ribs to solve the 

problem of intensity similarity between abdominal structures and the muscle 

tissues.  

 

• Establishing a framework to build knowledge guided medical image 

segmentation tool with user-friendly workflow. This knowledge guidance 

facility automatic initialization of contour curve determines the slices of the 

dataset, in each view slice, where the selected anatomical structure is present.   
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1.8 Organization of Thesis  

This thesis is divided into five main parts as shown in Figure 1.1. Part I, which is the 

introductory part of this research represented in chapter 1. Following the introductory 

part is Part II, which presents critical review of related literature pertaining on this 

research as describe in Chapter 2. After this, Part III discusses the framework of 

proposed work, the methodology and proposed modules and algorithms as describe 

in chapter 3, 4, 5 and 6. Part IV contains two chapters. These two chapters are 

chapter 7 and 8 represent the evaluation performance of segmentation results. Part V 

is final part, represents the summary of this thesis including the conclusions have 

drawn from the research and suggests several ideas for related future work. 

Following this concluding chapter are the references and several appendices. 

Different categories of active contour segmentation methods are described in 

Appendix A. Appendix B shows the additional experimental results for the liver 

spleen and kidney structures.  Appendix C contains the list of medical knowledge 

sources used in the thesis. Appendix D describes the parameters used to run the 

methods proposed in this thesis. More details in the content of these chapters as 

follows: 

Chapter 2: This chapter provides a background to CT scan, focusing on abdominal 

regions and a review on medical image segmentation methods. It also provides an 

exhaustive description about the past abdominal image segmentation methods and 

medical knowledge sources.  

 

Chapter 3:  This chapter covers one of the contribution of this thesis which is the 

knowledge based system framework as well as the methodology of the proposed 

work. Detailed discussions on the modules of the proposed system and a systematic 
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study of the overall flow of the proposed system are provided as well. Detailed 

information on abdominal datasets used in this research and the evaluation criteria 

are provided too.  

 

Chapter 4: This chapter presents the first module of the proposed system which is 

abdominal structure localization. Two contributions introduced in this module are the 

automatic localization of abdominal structure and isolation of the muscles tissue, 

which is usually similar to abdominal structure. Detailed descriptions on the steps 

taken and results of this module are provided.      

 

Chapter 5: This chapter provides the discussion on the second module in named 

contour curve propagation process. This module contributes to the automatic 

initialization of contour curve in all slices using multiple views. Performance of this 

module is presented in the results section.   

  

Chapter 6: This chapter presents the third module of the proposed system. Multiple 

lobes localization module automates the initialization of contour curve inside 

multiple lobes in liver. Discussion on the process and obtained results is covered 

extensively.       

 

Chapter 7: This chapter reports the results obtained through a set of experiments that 

were carried out to evaluate the performance of 2D segmentation by the proposed 

knowledge based system for some of the abdominal structures namely liver, spleen, 

left kidney and right kidney.        
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Chapter 8: This chapter reports the results obtained through a set of experiments that 

were carried out to evaluate the 3D performance of proposed knowledge based 

system for some of the abdominal structures liver, spleen, left kidney and right 

kidney.        

 

Chapter 9: This chapter summarizes this thesis by presenting the findings and 

concluding this work by detailing the limitations faced by the proposed system. 

Suggestions on possible future extensions are also given.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Overview of the thesis organization. 
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CHAPTER 2 

LITERATURE REVIEW  

 

2.1 Introduction 

This chapter introduces Computed Tomography (CT) imaging as a modality for 

medical imaging and segmentation of medical images, with emphasis on abdominal 

structures. A critical discussion on the related literatures is also presented, outlining 

the current state-of-the art in performing medical image segmentation, specifically, 

abdominal CT image segmentation tasks. This is followed by a discussion on how 

the medical knowledge sources are incorporated into image segmentation, in specific 

active contour segmentation methods. Based on the discussion on existing works, the 

chapter ends with presenting the research direction for this thesis. 

 

2.2 Computed Tomography Imaging (CT Scans) 

Computed tomography (CT) has been introduced into medical imaging in the 1970s 

(Hofer, 2007). Today CT scans have become an essential integral part of hospital 

care especially after having passed through enormous improvements in terms of 

technology, performance and clinical applications (Baert et al., 2008). It has a wide 

dynamic range in use as a medical examination procedure in many specialties (Hofer, 

2007). A photograph of a modern CT scan machine is provided in Figure 2.1. 

 

CT scans depend on the technique of tomography which refers to the cross-

sectional imaging of the patient’s body from either the transmission or reflection of 

data collected by enlightening the patient’s body from many different views. Figure 
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2.2 shows the various views available from a typical CT scan machine (Kak and 

Slaney, 1988). 

 

 

Figure 2.1: Modern CT scan machine. (viamedica, 2011)  

 

 

Figure 2.2: Various views of human body. (anatomy.tv, 2011) 

 

CT is a special type of medical imaging modality procedure that involves the 

indirect measurement of the attenuation of the X-rays at numerous positions located 

around the patient being investigated to obtain structural and functional information 

about him (Hofer, 2007; Prince and Links, 2008). Figure 2.2 shows the various views 
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available from a typical CT scan machine (Kak and Slaney, 1988). X-ray is used in 

CT scan because of its property that all tissues differ in their ability to absorb X-ray. 

Such property has enabled radiologists to view internal human structures with 

exceptional precision. Typically, bone tissues appear in white color, soft tissues such 

as brain or liver appear in gray color and the structures filled with air appear in black 

color such as the lungs (Prince and Links, 2008; Kak and Slaney, 1988) in CT 

images. CT scans can be used to diagnose a disease and its progress as well as 

compare different parts of the body in its normal state though with some disorders. 

 

2.2.1 Abdominal CT Scanning 

In general, CT scans is less costly than MRI, more readily available, and the 

radiologists and specialists have a relatively high degree of confidence in looking at 

CT scans (Linguraru et al., 2010). CT is a sensitive and highly-relevant method for  

the diagnosis of abdominal diseases (Linguraru et al., 2010). It is frequently used to 

determine stages of cancer and its progression in colon, liver and pancreas. It is also 

a useful test to investigate sensitive abdominal pain such as renal stones, 

appendicitis, pancreatitis, diverticulitis, abdominal aortic aneurysm, and lymphoma.  

CT is also the first way for detecting solid structure injury after a trauma (Hofer, 

2007).  

 

2.2.2 The Artifacts Present in Abdominal CT Scans   

Difficulties are encountered when dealing with CT scans that have low contrast and 

blurred edges, due to partial volume effects resulting from spatial averaging, patient 

movements, beam hardening and reconstruction artifacts, as well as heartbeat and 



 
 

18 
 

breathing (Varshney, 2002). Despite of these difficulties CT scans are extensively 

used in medical studies of the abdomen (Prince and Links, 2008).  

 

2.3 Medical Image Segmentation Methods 

Image segmentation in medical applications is used to delineate different human 

structures (bone, muscles, and soft tissues) based on features such as intensity, shape 

and texture. The ultimate goal of medical image segmentation is to provide richer 

information than which exists in the original medical images alone. Segmentation is 

commonly used to support tasks such as visualization and registration and to allow 

quantitative measurements of anatomical structures. It is also helpful in image guided 

surgery, tracking anatomical changes over time, assessing the progress of the 

anatomical structure disease and constructing medical atlases (O’Donnell, 2001; 

Wirjadi, 2007).   

 

2.3.1 Categories of Medical Image Segmentation Methods 

Methods for performing medical image segmentations vary widely depending on the 

specific application, imaging modality (MRI, CT, Ultrasound, etc.), and other 

factors. For example, the segmentation of brain tissue has different requirements 

from that of abdominal structures. This review categorizes segmentation techniques 

from the medical image processing point of view.  

 

2.3.1.1 Manual Image Segmentation  

Manual medical image segmentation is a difficult and time consuming task, normally 

used to get reference data to train a classifier, neural network or build an atlas or 

model. Several segmentation methods in the literature are proposed to minimize the 
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need for manual interaction in the segmentation process (Linguraru et al., 2010; 

Kaus et al., 1998).  

    

2.3.1.2 Histogram-based Segmentation  

One of the simplest segmentation techniques in this category is thresholding. The 

threshold segmentation divides the image pixels/voxels based only on their grey-

level histogram. Threshold segmentation can be defined as a filtering method that is 

used to label pixel/voxel whose grayscale values are in a desired range, defined by an 

expert user.  The gray levels of pixels belonging to the object are significantly 

different from the gray levels of the pixels belonging to the background (Wirjadi, 

2007; Gonzalez and Woods, 2008). Thresholding techniques are useful in 

segmenting X-ray images and CT scan images (Tian et al., 2001). 

 

The success of threshold approach depends on the successful selection of a 

threshold value. Thresholding then becomes a simple but effective method to isolate 

objects from the background. However, thresholding is very sensitive to noise, 

intensity homogeneities and is affected by the presence of artifacts. Thresholding 

technique tends to produce spread groups of pixels rather than connected regions. In 

addition, thresholding does not typically take into account the spatial features of an 

image. All of these shortcomings lead to use thresholding methods only as an initial 

step in a sequence of image processing steps (Lee et al., 1998; Ramesh et al., 1995). 

 

 2.3.1.3 Edge-based Techniques 

Edge-based segmentation methods are based on some discontinuity property of the 

image’s pixels, detection of edges i.e. boundaries which separate distinct regions. 



 
 

20 
 

The result of the edge detection can be used as a pre-processing step in the 

segmentation process. Edge information that can be extracted by many operators 

such as Roberts, Laplacian, Prewitt or Sobel are integrated with other image 

segmentation method such as region based segmentation methods (Mohamed Ben 

Ali, 2009; Mueller et al.; 2004, Jordi et al., 2002). 

 

There are alternate edge based segmentation methods such as edge relaxation, 

border detection, Hough transform based, etc. However, these methods are known to 

be sensitive to noise, affected by the presence of image artifacts and presence of 

some weak edges during edge detection process. It should be emphasized that the 

linking process of detected edges to produce a bounded region is not an easy task 

(Celebi et al., 2009; Sekhar et al., 2008; Kalvian et al.; 1995, Pal and Pal; 1993, Xu 

and Oja, 1993; Liow, 1991; Hancock and Kittler, 1990). 

 

2.3.1.4 Region-based Techniques 

Region-based image segmentation techniques group pixels or sub-regions into 

meaningful regions based on a predefined homogeneity criterion. Region growing, 

region splitting, split and merge, and watershed methods are classified under region 

based techniques. Region growing works in a different manner than split/merge yet 

they share the elementary concept of the homogeneity test (Gonzalez and Woods, 

2008). In region growing methods, a user defined seed points representing prominent 

image regions are followed by the growth process for each seed point until the whole 

image is covered (Yufei et al., 2009; Sharma and Ray, 2006). Region growing 

methods are considered as simple methods and used to delineate small and simple 

structures. In split and merge methods the entire image is considered as one region 
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and the splitting process is initiated. The homogeneity criterion (for example, 

intensity value) for this region is then tested. If it is not satisfied, the region is split 

into sub-regions and each region is tested in the same way; this process is recursively 

repeated until no further splitting of a region is possible. After that, the merging step 

takes place where all adjacent regions with similar properties may be merged 

following some criteria (Ng et al., 2008; Liow, 1991). Watershed method uses 

concept from mathematical morphology to partition images into homogeneous 

regions (Ng et al., 2008; Ng et al., 2006). Region based techniques have some 

disadvantages that make them not suitable as a  standalone method, but by integrate 

them with other segmentation methods acceptable results can be achieved (Mueller et 

al., 2004). The disadvantages are summarized as follows (Pham et al., 2000): 

a) Region growing methods require manual interaction to select the seed point 

for each region that needs to be isolated. 

b) Under and over segmentation of regions in the image can occur. 

c) Sensitivity to noise causing extracted regions to have holes or disconnected 

regions. 

d) Difficulty to select the suitable intensity value to start the segmentation. 

 

2.3.1.5 Visualization Techniques 

Visualization techniques are demonstration of data from simulations or experiments, 

as geometric structure, to allow analyzing and understanding of the data. These 

techniques are considered as segmentation techniques due to their ability to visualize 

some individual human structures. In medical domain visualization techniques are 

used to view the medical imaging (CT and MRI) 2D slices as 3D volume and to 

construct the result of 2D segmentation as 3D volume. Under this category there are 
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two methods: marching cube which is a technique to rapidly construct a 3D polygon 

model (David and Li, 2010; Christensen et al., 1997) and volume rendering which is 

a technique used to visualize some anatomies based on visualization functions such 

as raycasting and Maximum Intensity Projection (MIP) (Xiang et al., 2011; de 

Araujo Buck et al., 1995). Volume rendering is considered to be a superior technique 

to marching cube due to its ability to look through the volume. However, they need 

huge amount of memory to visualize the structure (Xiang et al., 2011; David and Li, 

2010; Christensen et al., 1997; de Araujo Buck et al., 1995).        

 

2.3.1.6 Active Contour Techniques 

Active contours (also referred to deformable models) are considered as one of the 

most popular image segmentation methods that are used to obtain a clear boundary of 

the target object. This is achieved through placing closed parametric or geometric 

curves near object or region boundaries, followed by iterative evolution process of 

these curves to match with the object boundaries. The forces which change the 

curve’s shape are external forces controlled by the image attributes to guide the curve 

towards the desired image features like lines, edges, intensity, texture and color and 

the internal forces to control the curve smoothness (Kass et al., 1988; Osher and 

Sethian, 1988).  

 

The key advantages of active contour methods are their ability to capture the 

topology of shapes and their incorporation of a smoothness constraint that provides 

robustness to noise and spurious edges (Pham et al., 2000). Because of these 

advantages, many active contour-based segmentation methods were proposed in the 

literature such as (Chan and Vese, 2001; Lankton and Tannenbaum, 2008; Martí et 



 
 

23 
 

al., 2007). However, active contour methods are not directly suitable for medical 

image segmentation due to several factors. Firstly, active contour methods have high 

computational cost. Secondly, the convergence of these methods is sensitive to the 

placement of initial contours. In other words, the performance of the active contour 

method heavily relies on the position and size of initial curves (Lankton and 

Tannenbaum, 2008). Generally, the performance of active contour methods is 

associated with performing good initialization of the contour curve. Thirdly, they 

lack automatic operation and require interactions from the user to initialize the 

contour (Li et al., 2006; Varshney, 2002). Further details of active contour based 

techniques are provided in Appendix A.  

 

2.3.1.7 Supervised Techniques 

Supervised techniques include four well known techniques such as: classification 

methods, artificial neural network methods, atlas based segmentation and model 

based segmentation. Classification is a pattern recognition technique that seeks to 

partition a set of features derived from the image using data with known labels 

(Kroon et al., 2008; Pham et al., 2000; Bezdek et al., 1993). Artificial neural network 

is composed of large number of consistent processing elements working in a 

harmonious manner to solve the problem in hand (Iscan et al., 2009; Vijayakumar et 

al., 2007; Engeland et al., 2006; Jain et al., 2000). The main advantages of 

classification and artificial neural network methods are their ability to learn 

adaptively, capability of self-organization depending upon the information received 

during learning time, parallel configuration capability improves the performance to 

work in real time. The disadvantages of classification and artificial neural network 

methods can be summarized as follows: 
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a) Sensitive to noise occurrence and training parameters. 

b) A manual intervention is required to obtain and build training datasets.  

c) Difficult to correctly select and label training datasets. 

d) Training datasets suitable for specific type of images. 

 

In Atlas based segmentation methods, segmentation processes is guided by 

previously constructed medical atlas containing information such as shape, size, and 

features of the anatomical structure that require segmentation. These methods deal 

with the segmentation process as a registration process (Xiahai et al., 2008; Withey 

and Koles, 2007). Registration is a procedure to transfer information between 

medical atlas and patient dataset images (Bernd Fischer and Modersitzki, 2008). 

Some of the weaknesses of these methods are the performance affected by the quality 

of the built atlas, the registration process and the human interaction required in 

constructing the atlas (Xiahai et al., 2008; Withey and Koles, 2007; Thompson and 

Toga, 1997; Christensen et al., 1997). This will be discussed in more detail in section 

2.5.1.   

 

In model based segmentation methods it is assumed that the shape of human 

organ has a repetitive form of geometry and the shape is modeled probabilistically 

from training datasets. The modeled shape can be used as a constraint while 

segmenting the target image or volume. The segmentation process in these methods 

requires registration in two phases. First phase is to build a model from training data. 

Second phase is to transfer anatomical information or statistical influence from 

constructed model to target dataset. Some of the difficulties and weaknesses of these 

methods are image features must be extracted first before the fitting can take place. 
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The performance of segmentation in model based methods depends on the number of 

training datasets, with more training datasets yielding more accurate results. Also the 

performance is affected by registration process, used for specific structure, and 

human interaction is required to place the initial model and to choose appropriate 

parameters (Vincent et al., 2010; Saddi et al., 2007; Pham et al., 2000; Pathak et al., 

1998).  

 

2.3.1.8 Unsupervised Techniques 

Clustering methods are unsupervised techniques which are concerned with clustering 

pixels (or voxels) of a 2D (or 3D) image into regions (or volumes) of interest 

according to certain features of these pixels (or voxels) (Tseng and Bien Yang, 2001, 

Pham and Prince, 1999). Clustering methods most commonly used in the image 

segmentation problems in MRI images are: FCM, K-means and EM algorithms. 

These methods are relatively computationally efficient and do not depend on training 

dataset. But, similar to previously mentioned image segmentation techniques, these 

methods have some weaknesses such as initialization sensitivity; non-availability of 

the number of clusters that should be determined a priori, sensitivity to noise and 

outliers, and stopping criterion (Yuqian et al., 2010; Jiayin et al., 2009; Kannan, 

2008). 

 

Table 2.1 lists these categories, methods, provides a brief description on 

categorization of the methods based on user interaction, and discusses the advantages 

and disadvantages of each.   
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