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RANGKAIAN NEURAL HOPFIELD YANG DIPERTINGKATKAN DENGAN

ALGORITMA SISTEM IMUN BUATAN UNTUK PENGATURCARAAN

LOGIK SATISFIABILITI

ABSTRAK

Kepesatan dalam masalah 3-Satisfiabiliti (3-SAT) telah menghasilkan banyak kaji-

an yang berpaksikan kepada bidang logik dan perlombongan data. Dalam kajian ini,

kaedah hibrid baharu dalam pengaturcaraan logik iaitu peraturan logik 3-SAT seba-

gai alat pengiraan akan dibentangkan. Oleh itu, sistem kepintaran yang tuntas de-

ngan mengintegrasikan rangkaian neural Hopfield dan teknik metaheuristik akan di-

bangunkan bagi mengekstrak maklumat tersembunyi bagi set data dalam bentuk per-

aturan logik 3-Satisfiabiliti. Rangkaian hibrid dipanggil HNN-3SATAIS telah dica-

dangkan dengan mengasimilasikan rangkaian neural Hopfield dengan algoritma sis-

tem imun buatan (AIS) sebagai medium latihan dalam melakukan pengaturcaraan lo-

gik 3-Satisfiabiliti. Prestasi rangkaian yang telah dicadangkan, HNN-3SATAIS telah

dibandingkan dengan rangkaian neural Hopfield dengan algoritma genetik yang diu-

bahsuai (HNN-3SATGA) dan algoritma carian lengkap dengan rangkaian neural Ho-

pfield (HNN-3SATES) sebagai satu rangkaian tunggal. Secara teorinya, teknik hibrid

HNN-3SATAIS dijangka akan mengurangkan kerumitan rangkaian kerana terdapat-

nya mekanisme pencarian yang lebih sistematik. Tambahan pula, HNN-3SATAIS ada-

lah satu kaedah lebih mantap di mana algoritma metaheuristik akan membantu proses

pencarian dan mendorong kepada penyelesaian global yang lebih layak. Kemampu-

an teknik-teknik hibrid ini telah diuji dengan menggunakan set data simulasi dan set

data sebenar. Perisian Dev-C ++ Versi 5.11 untuk Windows 10 telah digunakan se-

bagai platform untuk latihan, simulasi dan pengesahan prestasi rangkaian yang telah
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dicadangkan. Oleh itu, penilaian model pengkomputeran hibrid telah dijalankan seca-

ra eksperimen dengan menggunakan data 3-SAT rawak dan 15 set data sebenar yang

diarkibkan dari laman sesawang pembelajaran mesin UCI. 15 set data sebenar dengan

saiz yang berbeza dipilih daripada bidang yang berbeza seperti bidang kewangan, as-

tronomi dan data set penyakit kronik. Dalam kajian ini, paradigma analisis berbalik

berasaskan 3-Satisfiabiliti (3-SATERAP) telah diperkenalkan bagi mengekstrak pera-

turan logik terbaik daripada set data yang tertentu. Kemantapan HNN-3SATES, HNN-

3SATGA dan HNN-3SATAIS yang diintegrasikan dengan kaedah 3-SATERAP dalam

menghasilkan peraturan logik yang terbaik daripada 15 set data UCI telah dinilai da-

ri RMSE, MAE, SSE, SMAPE, SBC dan tempoh CPU. Menurut hasil eksperimen,

HNN-3SATAIS mempunyai prestasi yang lebih baik berbanding HNN-3SATES dan

HNN-3SATGA dalam pengaturcaraan logik 3-SAT. Selain itu, masalah pengesanan li-

tar satisfiabiliti (Circuit-SAT) dengan menggunakan kaedah yang dicadangkan, HNN-

C3SATAIS dan HNN-C3SATGA telah juga dibincangkan dengan lengkap. Seterus-

nya, teknik hibrid telah diuji bagi menyelesaikan kes satisfiabiliti yang sukar seperti

masalah maksimum 3-Satisfiabiliti (MAX-3SAT). Maka, HNN-MAX3SATAIS mem-

punyai prestasi yang lebih baik daripada HNN-MAX3SATGA dari segi indikator pe-

nilaian prestasi. Kesimpulannya, kajian yang dibentangkan di dalam tesis ini mampu

menyelesaikan pelbagai masalah satisfiabiliti. Oleh itu, rangkaian hibrid yang telah di-

cadangkan boleh digunakan sebagai alat perlombongan data dalam bidang-bidang lain

seperti transformasi ekonomi, masalah dalam sains sosial, pengurusan pelancongan,

sains komputer dan sebagainya.
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ENHANCED HOPFIELD NEURAL NETWORKS WITH ARTIFICIAL

IMMUNE SYSTEM ALGORITHM FOR SATISFIABILITY LOGIC

PROGRAMMING

ABSTRACT

The emergence of 3-Satisfiability (3-SAT) problem has produced a prolific number

of works devoted to the field of logic and data mining. In this study, a new hybrid

method in doing logic programming by incorporating 3-SAT logical rules as a com-

putational tool will be presented. Hence, a robust intelligence system that integrates

the Hopfield neural network and metaheuristic paradigm is constructed to extract the

data set hidden knowledge in the form of 3-Satisfiability logical rule. A hybrid net-

work called HNN-3SATAIS is proposed by assimilating the Hopfield neural network

with the enhanced artificial immune system (AIS) algorithm as a training tool in do-

ing 3-Satisfiability logic programming. The performance of the proposed network,

HNN-3SATAIS is compared with a modified genetic algorithm with Hopfield neu-

ral network (HNN-3SATGA) and the exhaustive search with Hopfield neural network

(HNN-3SATES). Theoretically, the proposed HNN-3SATAIS technique is expected to

reduce the complexity of the network due to the systematic searching mechanism. In

addition, HNN-3SATAIS is a robust method since the metaheuristic algorithm will

boost the searching process that will drive to more feasible global solutions. The per-

formances of the hybrid techniques were tested by using simulated and real data set.

Dev-C++ Version 5.11 for Windows 10 was used as a platform for training, simulat-

ing and validating the performances of the proposed network. Hence, the appraisal

of hybrid computational models was conducted experimentally by using the random-

ized 3-SAT instances and 15 real data sets archived from the UCI machine learning
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repository. 15 real data sets of different sizes are selected from different fields, rang-

ing from the finances, astronomy to the vigilant diseases data sets. In this research,

3-Satisfiability enhanced reverse analysis paradigm (3-SATERAP) is introduced as

a tool to extract the logical rule from the real life data sets. The robustness of the

HNN-3SATES, HNN-3SATGA and HNN-3SATAIS integrated with 3-SATERAP in

extracting the best logical rule of 15 UCI data sets were evaluated in terms of RMSE,

MAE, SSE, SMAPE, SBC and CPU Time. It can be observed from the experimen-

tal results, HNN-3SATAIS outperforms the other counterparts, HNN-3SATES and

HNN-3SATGA in doing 3-SAT logic programming. In addition, verification of the cir-

cuit satisfiability (Circuit-SAT) by using the proposed methods, HNN-C3SATAIS and

HNN-C3SATGA are discussed in detail. Then, the proposed techniques were tested to

withstand the vilest case satisfiability such as maximum 3-satisfiability (MAX-3SAT).

In this case, the HNN-MAX3SATAIS outclasses HNN-MAX3SATGA in terms of the

performance evaluation metrics. To sum up, the work presented in this thesis is able

to counter the variety of the satisfiability problem. Hence, the hybrid network can be

applied as a data mining tool in other fields such as economic transformation, social

sciences problems, tourism management, computer sciences and so forth.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to Artificial Neural Network

Artificial neural network is a staple computational field that produces a prolific

amount of research. It is a staple mathematical model, inspired by the way of the bi-

ological nervous system such as the brain process information (Hopfield, 1982; Park

et al., 1993; Zhu and Yan, 1997). One of the goals of the neural network or specif-

ically called as artificial neural network (ANN) was to comprehend and outline the

functional characteristics and computational power of the brain when it performs cog-

nitive processes such as concept cognition, sensorial perception, concept association,

and learning. Hence, the artificial neural network can be defined as an intelligent sys-

tem that impersonates the mechanism of human intelligence (Strong, 2016). In fact,

neural networks have been popularized as a computational tool. Historically, the work

on the ANN basically focused on the work of trying to model the neuron as a computa-

tional model. The earliest model of a neuron was crafted by physiologists McCulloch

and Walter Pitts (McCulloch and Pitts, 1943). The model they created had two inputs

and a single output. McCulloch and Pitts (1943) proposed that a neuron would not be

activated if only one of the inputs was active. The weights for each input were sym-

metric, and the output was binary. Until the inputs summed up to a certain threshold

level, the output was stable. The McCulloch and Pitts neuron has become the pioneer

in the development of the other variants of ANN. Strictly speaking, most of the ANN

model is inspired by the biological neurons (Basheer and Hajmeer, 2000; Wasserman,
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1989). Theoretically, the ANNs consist a set of interconnected entities called nodes

or units that usually operates in parallel (Takefuji, 2012). Figure 1.1 depicts the bi-

ological neural network that became the building block of numerous artificial neural

network up to today. There are many types of neural networks such as the Hopfield

Figure 1.1: Biological Neural Network Model (Takefuji, 2012)

neural network (HNN) presented by Hopfield and Tank (1985). The state-of-the-art

neural network model is the HNN. According to Hopfield (1982), HNN is a recurrent

and synaptic connection pattern, whereby there is a Lyapunov function for the activity

dynamics. The process of association and information retrieval is simulated by the

dynamical behavior of a highly interconnected system of non-linear circuit elements

with collective computational abilities. Park et al. (1993) asserted that the HNN can

be applied to tackle the electric power system problem. Pursuing that, Cheng et al.

(1996) implemented the HNN in medical image segmentation. By the same token,

Sathasivam (2009) introduced the implementation of HNN in the logic programming.

Additionally, Velavan et al. (2016) proposed the HNN incorporated with mean field

theory to solve higher-order logic programming. Thus, the developments in HNN are
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still mushrooming due to the flexibility of the HNN to be assimilated with other ANN

and machine learning techniques. The rapid development of ANN has produced an

array of neural network models that can be applied in numerous real life problems.

One of the recent development in the artificial neural network is a deep convolutional

neural network that deploys the deep learning algorithms. The development of this

artificial neural network is still new in the artificial intelligence field. Guo et al. (2016)

proposed the implementation of deep learning in image classification and human pose

estimation. Basically, the implementation of deep neural network revolves around the

computer vision (Bengio, 2009), automatic age estimation (Dong et al., 2016) and so

forth. The advancement of ANN can be seen in the development of the features in the

smartphone. Figure 1.2 demonstrates the example of neural network embedded in the

system for the face recognition in iPhone 6 Plus. Basically, the network will detect the

Figure 1.2: The Advancement of ANN in Face Recognition (Levy, 2016)

correct face or pattern by looking at the databases entrenched to the system. Thus, the

data mining in neural network plays an important role to many real life applications.
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1.2 Data Mining in Neural Network

Recent studies on data mining have been mushrooming especially with the emer-

gence of ANN and machine learning that can foster the process. Hence, the data min-

ing practitioners are assimilating the multidisciplinary knowledge such as mathemat-

ics, artificial intelligence, machine learning and statistics in order to establish an ideal

data mining technique. The competencies of the data mining have benefited numerous

fields such as improving the disease diagnosis based on the medical record, predicting

the finance trend, propelling the tourism industries, weather prediction and so on. In

theory, data mining is defined as the extraction of some significant information from

any databases. In layman terms, data mining can be defined as finding the underlying

information according to the behavior of databases or data sets. Similarly, the core

impetus of data mining is to extract some information that will provide insight about

a particular database. Kamruzzaman and Sarkar (2011) asserted that knowledge dis-

covery in databases refers to the process of automated extraction of hidden, previously

unknown and potentially useful information from large databases. Equally important,

Sawale and Gupta (2013) proposed the data mining system for climatology forecast-

ing by implementing the ANN with backpropagation rule. Henceforth, Wan Abdullah

and Sathasivam (2005) inaugurated the logic mining in HNN by extracting the logical

rule of a particular database via reverse analysis method. Pursuing that, Sathasivam

and Wan Abdullah (2011) has addressed the implementation of Conjunctive Normal

Form (CNF) clause as the logical rule in knowledge extraction from real life data set.

Sathasivam et al. (2014) introduced the reverse analysis for higher order HNN in de-

termining the optimum Horn logical rule entrenched in a particular data entry. Hence,

data mining in neural network can be improved to cater different problems.
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1.3 Problem Statement

The main drawback of a simple propositional logic is the limitation in representing

the attributes in a particular data set. Furthermore, a better logical rule is needed to

extract the hidden information in the data sets. Hence, the 3-SAT logic is proposed

to induce the real life data sets in a more precise way. The 3-SAT form was chosen

due to the flexibility of the logical problem to be entrenched in the logic programming.

Thus, the 3-SAT problem which is considered as non-horn clauses is embedded into

our logic programming. Additionally, 3-SAT programming will be encoded into the

hybrid HNN as a single computational model. Moreover, the 3-SAT programming is

expected to provide our network with sufficient symbolic instructions in order to fos-

ter the training and retrieval phase in the hybrid HNN. The drawback of the standard

reverse analysis method is the difficulties to unearth the relationship of the real data

sets. As a result, 3-Satisfiability enhanced reverse analysis paradigm (3-SATERAP) is

formulated in order to extract a solid logical rule from the attributes of real life data

sets. The attributes of the real data sets can be represented as the neurons in the 3-SAT

formula in a systematic manner. The proposed knowledge extraction method has the

flexibility to create many possibilities of 3-SAT logical rules according to the behavior

of the real data sets. Therefore, the proposed data extraction method can be applied to

tackle the problem with high complexity such as data sets with a huge number of in-

stances. The Hopfield neural network is not symbolic and requires another computing

system to assist the process. Henceforth, 3-SAT logic programming is incorporated in

Hopfield neural network to give the symbolic form to the existing network. In this the-

sis, the enhanced AIS algorithm is proposed to improve the performance of HNN. The

proposed hybrid HNN will overcome the circumstances associated with standalone
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non-symbolic HNN. However, there is still a problem in checking clause satisfaction

during the training phase. The network tends to deteriorate the solutions and requires

more iterations to achieve the convergence. In order to address the problem, the meta-

heuristics are proposed to foster the training process in doing logic programming. The

metaheuristic algorithm is usually robust because only focusing on selected searching

space in generating the correct interpretations. In fact, the optimization operator will

accelerate the process of generating the optimal output. In this case, HNN-3SATAIS,

HNN-3SATGA, and HNN-3SATES are formulated to address the problem in training

the network. Another problem with the standard HNN is when the complexity of the

system increases exponentially with the instances. Moreover, the computation bur-

den for the network will become higher. Some enhanced metaheuristic methods are

introduced to search for feasible solutions in more systematic search spaces. Hence,

HNN-3SATAIS and HNN-3SATGA are formulated based on a modification of the

previous metaheuristic. In order to develop a computational model, the model should

be able to counter the worst case problem. In this study, HNN-MAX3SATGA and

HNN-MAX3SATAIS are expected to be able to do MAX-3SAT programming. So, the

proposed hybrid model must be able to be the tool to solve various real life satisfiability

problem. One of the notable problems is the circuit verification problem.
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1.4 Research Objectives

The thesis is centered on the performance analysis of the hybrid HNN model in

3-SAT programming. The objectives of the thesis are:

1. To derive a brand new non-horn logic programming paradigm based on 3-SAT

logic programming embedded in the Hopfield neural network (HNN).

2. To compare the performance of hybrid Hopfield neural network with enhanced

artificial immune system algorithm (HNN-3SATAIS), modified genetic algo-

rithm (HNN-3SATGA) and exhaustive search (HNN-3SATES) in doing 3-SAT

logic programming.

3. To develop a knowledge extraction technique called 3-Satisfiability enhanced

reverse analysis paradigm (3-SATERAP) to explain and unearth the behaviour

real data sets. The performance analysis of 3-SATERAP with HNN-3SATAIS,

HNN-3SATGA, and HNN-3SATES will be validated by using real data sets.

4. To compare the performance of HNN-MAX3SATAIS and HNN-MAX3SATGA

in doing MAX-3SAT logic programming.

5. To compare the capability of HNN-C3SATGA and HNN-C3SATAIS in doing

circuit verification.
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1.5 Methodology

In this thesis, a hybrid Hopfield neural network in 3-SAT logic programming is

established with the metaheuristic technique such as exhaustive search (ES), modi-

fied genetic algorithm (GA), and enhanced artificial immune system (AIS) algorithm.

Since the previous data mining technique revolves around the Horn logical rule, the ad-

vantages of the 3-SAT form are used to map the real data sets. In this research, a data

extraction paradigm, namely 3-Satisfiability enhanced reverse analysis (3-SATERAP)

method is developed to address the weakness of the previous techniques. The pro-

posed knowledge extraction technique will unearth the relationship entrenched be-

tween the attributes by taking into account the 3-SAT logical rule. Hence, the solid

logical rule extracted by 3-SATERAP will be used to explain the hidden behavior of

the real data sets. In this research, the effectiveness of our hybrid computing paradigm,

namely HNN-3SATAIS, HNN-3SATGA, and HNN-3SATES to do 3-SAT logic pro-

gramming will be compared. The proposed algorithms are expected to withstand vig-

orous training and the complexity. The computing paradigms will be tested by using

simulated data set and real data set. The Dev-C++ Version 5.11 for Windows 10 is

used as the platform of training, simulating and validating for our hybrid network.

For the simulated data sets, the HNN-3SATAIS, HNN-3SATGA and HNN-3SATES

will train the randomized 3-SAT logical rule. Then, a knowledge extraction method,

3-SATERAP is proposed in order to extract the optimum logical rule from 15 data

sets obtained from UCI machine learning repository. In addition, the ability of hybrid

HNN models in MAX-3SAT logic programming and C-3SAT in circuit verification

will also investigated by using simulated data set. In this research, the HNN-3SATAIS,

HNN-3SATGA, HNN-3SATES, HNN-MAX3SATAIS, HNN-MAX3SATGA, HNN-
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C3SATGA, and HNN-C3SATAIS will be appraised in term of performance evaluation

metrics. The goodness of fit or error evaluations involved are root mean square er-

ror (RMSE), mean absolute error (MAE), sum of squared error (SSE) and symmet-

ric mean absolute percentage error (SMAPE). The performance evaluations such as

Schwarz Bayesian Criterion (SBC), global minima ratio, ratio of satisfied clauses, ac-

curacy and CPU time are vital in determining the robustness and effectiveness of the

hybrid model. The methodologies for this research are summarized in Figure 1.3 and

Figure 1.4.

Figure 1.3: The Methodology of Hybrid HNN Networks in 3-SAT, MAX-3SAT, and
C3-SAT Logic Programming

9



Figure 1.4: The Methodology of Hybrid HNN models in Logic Mining
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1.6 Scope and Limitations of Research

The logical semantics in our research only revolves around propositional logic such

as 3-SAT and MAX-3SAT problem to be entrenched into our non-symbolic hybrid

Hopfield systems. Other variants of logic such as predicate logic cannot be deployed

in the proposed models because it only complies with propositional logic. Hence, more

modifications are necessary to do the predicate logic programming due to more com-

plex operators. On the other hand, logic programming with complicated constraints

will require a massive change in the method developed by Wan Abdullah (1991) and

Sathasivam and Wan Abdullah (2011). The data mining technique is deployed in

this research, namely 3-Satisfiability enhanced reverse analysis method (3-SATERAP)

has only capability to classify the bipolar data sets. Hence, the model deals with 3-

dimensional decision problems with only bipolar decisions. However, the ternary de-

cision cannot be done by the proposed method. On the other hand, the technique cannot

cope with the data set containing missing values. The logical rule will become convo-

luted when the missing data being replaced with random values. In the simulated data

set, we limit the investigation until NN = 180 during the simulation of HNN-3SATAIS,

HNN-3SATGA and HNN-3SATES for simplicity. The networks require more compu-

tation time if we increase the complexity of the problem. On the other hand, the real

data set deployed is limited into 15 data sets obtained from UCI data set repository.

Hence, the 15 data sets will provide the network with the different levels of training

and testing that is crucial in assessing the performance of the hybrid networks. The

selection complies with the work of Hamadneh (2013) and Pwasong and Sathasivam

(2016). Although the capacity of discrete HNN is still satisfactory for our research,

the problem will arise when dealing with a more complex datum. The discrete HNN
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is sufficient in the research due to the ability of the network to blend with the other

training algorithms. This is because the HNN can be considered the building block

for the elegant neural network available in the market nowadays. Moreover, the circuit

design (C-3SAT) simulation is limited until 90 transistor for simplicity.

1.7 Organization of Thesis

The remaining parts of the thesis are organized as follows. Chapter 2 presents the

notable literature that became the building blocks of our research. The related liter-

ature involved are the fundamental concept of HNN, logic programming, activation

function, 3-SAT, MAX-3SAT, ES algorithm, GA, AIS algorithm, circuit verification,

and data mining in HNN. Then, Chapter 3 emphasizes on the existing model of Horn

logic programming in HNN. The chapter begins with a comprehensive overview and

architecture of the HNN, followed by the concept of Hyperbolic tangent activation

function that accelerates the HNN. The Hopfield content addressable memory and con-

vergence dynamic are also highlighted. In addition, the logic programming techniques

are discussed in this chapter. The proposed algorithms and contributions set the tone

for Chapter 4. This chapter starts with the implementation of 3-SAT logic program-

ming in HNN. Specifically, the algorithm for the implementation of ES, enhanced

GA and enhanced AIS are discussed in details. In this chapter, HNN-3SATGA and

HNN-3SATAIS are introduced to be compared with the state of the art model, HNN-

3SATES. Besides, the other counterpart of 3-SAT problems that involved is the MAX-

3SAT. In this section, HNN-MAX3SATAIS and HNN-MAX3SATGA are discussed.

The implementation of HNN-C3SATAIS and HNN-C3SATGA in circuit verification

is also highlighted. In order to extract the logical rule to be applied in data mining, the
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3-Satisfiability enhanced reverse analysis paradigm (3-SATERAP) method is also in-

troduced. Chapter 5 reveals the simulated results for HNN-3SATAIS, HNN-3SATGA

and HNN-3SATES based on the performance evaluation metrics such as RMSE, MAE,

SSE, SMAPE, SBC, global minima ratio, and CPU Time. In addition, the simulated

results of HNN-MAX3SATAIS, HNN-MAX3SATGA, HNN-C3SATAIS, and HNN-

C3SATGA are also discussed. Chapter 6 validates the effectiveness and robustness

of HNN-3SATES, HNN-3SATGA, and HNN-3SATAIS in training and testing 15 real

data sets from UCI repository. The training and testing errors can be used to signify

the performances of our model. To sum up, Chapter 7 concludes the thesis by summa-

rizing the findings in relations to the motivations and objectives fulfilled in this work

and outlining some suggestions for the future direction of our work. Lastly, additional

details are deferred to the appendices.
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CHAPTER 2

LITERATURE REVIEW

This chapter provides the fundamental overview of the HNN, logic programming,

3-SAT, MAX-3SAT, AIS algorithm, ES, GA, circuit satisfiability and data mining in

HNN. These domains are the building blocks of this research. Thus, the important

works of literature of these domains are discussed in detail.

2.1 Hopfield Neural Network

The emergence of HNN has produced a prolific amount of research since four

decades ago. Firstly, HNN was proposed by John Hopfield, a scientist from the Uni-

versity of California, Berkeley in 1982. Hopfield (1982) proposed an associative com-

putational model that made a tremendous breakthrough in the AI field. Pursuing that,

the HNN was implemented to the optimization and constraint satisfaction problems

(Gao and Liu, 2009; Hopfield and Tank, 1985; Liang, 1996; Mańdziuk, 2000). Since

then, tremendous modification and improvements have been applied to the HNN ar-

chitecture to solve any optimization problems. In theory, the HNN comprises of a

simple recurrent network that has an efficient associative memory and resembled the

biological brain. For instance, Wen et al. (2009) proposed that the HNN is one major

neural network specialized and crafted for solving constraint optimization or mathe-

matical programming problems. The main benefit of HNN is that its structure can be

realized on an electronic circuit, possibly on a very large-scale integration circuit, for

an on-line solver with a parallel-distributed process. The structure of HNN utilizes

14



three common methods, penalty functions, Lagrange multipliers, and primal and dual

methods to construct an energy function (Pinkas, 1991). Moreover, the HNN mini-

mizes Lyapunov energy by utilizing the physical Ising spin of the neuron states. On

top of that, the network produced global output by minimizing the network energy.

Pinkas (1991) and Wan Abdullah (1992) described a bi-directional mapping between

logic and energy function of symmetric neural network. Besides, both methods are the

building blocks for a corresponding logic program. Due to the effectiveness of energy

changes in HNN, several researchers have combined the idea of logic programming

with HNN. Several standard models were developed by Sathasivam and Wan Abdullah

(2011) and Kasihmuddin and Sathasivam (2016). The work by Velavan et al. (2016)

portrays the flexibility of HNN to amalgamate with the accelerating algorithm such as

Mean Field theory. On the other hand, recent work by Zhang et al. (2017) emphasizes

on the classification by using Hopfield associative memories. The work reported the

welding quality of Chernoff face image had been successfully classified even though

under abnormal welding conditions.

In this research, the HNN is hybridized with robust metaheuristic paradigms such

as ES, GA, and AIS algorithm as a network respectively. The newly hybrid HNN

networks called HNN-3SATAIS, HNN-3SATGA, and HNN-3SATAIS will serve as

computing network in logic programming. The selection of HNN is not only due to the

capability to blend with other networks but more primarily due to the power of CAM

that resembles the biological intelligence system. Furthermore, the related works on

HNN are shown in Table 2.1.
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Table 2.1: Related Literature on Hopfield Neural Network

Author Method Summary and Findings
Hopfield
(1984)

The computational
network based on
a stochastic model
of McCulloch-Pitts
neurons.

Thus, the computational power of HNN
was inaugurated by taking into account
the content addressable memories and
the stochastic properties of the primitive
McCulloch-Pitts neuron.

Pinkas (1991) Energy function of
HNN.

The work described a bi-directional
mapping between propositional logic
and energy function of a symmetric
neural network.

Wan Abdullah
(1993)

Higher order HNN for
Horn logic program.

The HNN has minimized the logical in-
consistencies in the interpretation of the
logic program. Logical contents were
obtained by the synaptic strength com-
puted of the network.

Joya et al.
(2002)

The dynamic of dis-
crete HNN for opti-
mization.

The proposed discrete HNN was proven
in the avoidance of tremendous lo-
cal minima solutions obtained after the
computation.

Wen et al.
(2009)

HNN in mathemat-
ical programming
problem.

The work pinpointed the computational
ability of HNN in doing mathematical
programming such as VLSI simulation.

Sathasivam
and Wan Ab-
dullah (2011)

Logic mining by using
discrete HNN.

The logic mining can be done by ex-
tracting the information entrenched in
the Horn clauses.

Sathasivam
and Fen
(2013)

Logic programming in
the HNN by agent
based modelling.

The values of global minima ratio and
Hamming distance provide solid evi-
dence of the effectiveness of logic pro-
gramming in HNN by using agent based
modelling.

Zhou et al.
(2015)

Bipolar auto-
associative memory
model in discrete
HNN.

The external input patterns were mem-
orized accurately, stable, robust and
more generalized by learning through a
discrete recurrent neural network com-
pared to the existing methods.

Velavan et al.
(2016)

Discrete HNN with
mean field theory
paradigm.

The results have been proven in accel-
erating the computational ability of the
existing mean field theory. The mean
field theory with HNN outperforms the
standalone mean field network when be-
ing simulated by Agent Based Mod-
elling (ABM).

Bansal and
Dixit (2016)

The pattern recalling
as content addressable
memories by HNN
and genetic algorithm.

This work proves that the HNN can be
blended with the other metaheuristic al-
gorithms to accelerate the computation
and memory.
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2.2 Logic Programming

Generally, logic program is an important concept in HNN. In general, logic pro-

gramming has emerged as an essential field to model some real life problem. Accord-

ing to Kowalski (1979), the logic program provides a genuine and flexible way for

problem-solving. Hence, logic program is easier to understand and verify compared

with neural network which is a black-box model. Thus, logic program will provide

neural network with symbolic instructions. As was mentioned, logic programming can

be seen as a problem in combinatorial optimization and thus it can be carried out on

a neural network. The HNN model proposed by Hopfield (1982) is a standard model

for associative memory and widely incorporated with logic programming. In addition,

logic program can be applied in HNN. Pinkas (1991) and Wan Abdullah (1992) defined

a bi-directional mapping between propositional logic formulas and energy functions of

symmetric neural networks. Both methods are concerned in finding whether the solu-

tions complying with the logic program. Hence, both researchers are interested with

Hopfield network. The findings are crucial in applying logic program in HNN. The

activation function and McCulloch-Pitts function usually applied in logic program-

ming. Besides that, both approaches can handle non-monotonicity of logic. Pinkas

(1991) introduced preferred interpretation concept than Wan Abdullah (1992) in han-

dling non-monotonicity. Kowalski and Sergot (1984) describe the motivation behind

logic programming is the idea suits for both logic and computation. Basically, the

idea of logic and computing has been emerging since the yesteryears inspired by the

Turing machine (Petzold, 2008). Computing involves some computational modes such

as programming, databases, and artificial intelligence. Specifically, Lloyd (2012) as-

serts the logic programming as an array of axioms, clauses or rules that blend together
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to form literals. Inevitably, the logic programming has emerged as a platform for

knowledge extraction and data mining. In fact, the earliest was the propositional logic

programming that being done by using Horn clauses. The most direct case of logic

programming is when information is disclosed by means of Horn clauses and deduc-

tion is carried out by backward reasoning embedded in solution (Robinson, 1965). But

logic programming can also be understood more generally such as, to include negation

failure (Clark, 1978) or set construction (Miller and Nadathur, 1986). A logic program

consists of Horn clauses and is activated by an initial statement. The propositional

logic programming emphasizes on the propositional logic formula used to describe the

relations. Since, the logical knowledge is symbolic, the logic act as the programming

instructions. Hence, a propositional logic program consists of a set of logic clauses.

Recent work by Riguzzi et al. (2017) proposes probablistic logic programming under

distribution semantics. In this thesis, a brand new logic programming called 3-SAT

logic programming is proposed as a core knowledge instructions to be embedded to

the hybrid HNN. Thus, 3-SAT logic programming is different from the previous works

due to the capability to solve the constraint optimization problem and the power of

logic knowledge to be used in data mining. Hence, the 3-SAT logic programming will

serve as a building block for the newly proposed 3-SATERAP to be used as a classi-

fication approach. Additionally. the 3-SAT logic program will be utilized to map and

unearth the relationship between the attributes in the real data set. Moreover, Table 2.2

summarizes the related literatures and developments on logic programming.
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Table 2.2: Related Literature on Logic Programming

Author Method Summary and Findings
Pinkas (1991) Propositional logic

programming in sym-
metric connectionist
model.

The propositional logic was trans-
formed into the energy equation for op-
timization deployed by the symmetric
connectionist model. HNN is a sym-
metric connectionist model due to the
symmetric weights.

Wan Abdullah
(1992)

Logic programming
implemented on a
neural network.

The work had developed a state-of-the-
art model of logic programming on the
HNN. Hence, the method of comput-
ing the connections strength has been
outlined from the logic program. This
work provides a better insight of synap-
tic strengths computation for the dis-
crete HNN.

Hölldobler
et al. (1999)

Logic program by
recurrent neural
network.

The recurrent neural network was
proven to work effectively with the
logic program. Hence, the logic pro-
gram has provided the semantics or in-
structions to the non-symbolic recurrent
neural network.

Sathasivam
(2010)

Enhanced logic pro-
gramming in HNN.

The performance of the logic program-
ming in HNN was consistently good in
term of the global minima ratio, Ham-
ming distance, fitness energy landscape
and computational time even though the
number of neurons increases.

Hamadneh
et al. (2014)

Satisfiability logic
programming.

The satisfiability logic programming
was carried out in radial basis function
neural network (RBFNN). The find-
ings showed a good agreement with the
HNN. However, the implementation of
RBFNN requires a single operator prob-
lem.

Sathasivam
(2015)

The logic program-
ming in HNN by us-
ing acceleration tech-
nique.

The robustness of logic programming
in HNN was accelerated by using the
modified Hyperbolic tangent activation
function (HTAF). Hence, the mecha-
nism could benefit the computation of
more complex problems.

Velavan et al.
(2016)

The Horn logic pro-
gramming using mean
field theory with
HNN.

The hybrid mean field theory with HNN
has proven to work with the higher or-
der horn logic programming in terms of
global convergence.
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2.3 Hyperbolic Tangent Activation Function

Generally, the activation functions are widely utilized to transform the activation

level of a unit (neuron) into an output signal in a particular neural network (Karlik and

Olgac, 2011). In layman’s term, it is also known as the transfer function or squashing

function due to the capability to squash the permissible amplitude range of output sig-

nal to some finite value. In this research, the Hyperbolic tangent activation function

(HTAF) is applied to the system due to the effectiveness in accelerating logic program-

ming in HNN for the Horn clauses (Sathasivam, 2015). Hence, the HTAF is expected

to work well with 3-SAT logic programming. The process of training and getting the

global solutions for 3-SAT will become tedious and more expensive due to the com-

plexity. Hence, a post optimization paradigm is proposed to counter the circumstances

due to the complexity of the network during the process of doing logic programming

in Hopfield network. Obviously, the default activation function incorporated as the ac-

celerator of 3-SAT logic programming will set the tone of the research. Therefore, the

desired output can be generated systematically when doing the logic programming in

Hopfield network. Theoretically, it will lead to produce global solutions. In addition,

it will assist the Hopfield’s content addressable memories to recall the correct global

states. In essence, the HTAF is explained in the work of (Karlik and Olgac, 2011) as

the ratio between the Hyperbolic sine and Hyperbolic cosine functions expanded as the

ratio of half-difference and half-sum of two exponential functions. Next, the HTAF is

essential to optimize the output of the network. In theory, the HTAF is a differentiable

function and produced a bounded output (Mathias and Rech, 2012). These properties

are essential to maintain non-linearity in neuron’s state classification. The important

literatures on the HTAF are highlighted in Table 2.3.
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Table 2.3: Related Literature on Hyperbolic Tangent Activation Function

Author Method Summary and Findings
Mathias and
Rech (2012)

HTAF in three-
dimensional HNN.

The HTAF outperformed the piece-
wise function in modelling the three-
dimensional HNN based on perfor-
mance evaluation metrics. The capabil-
ity of HTAF in accelerating the HNN
has improved the computational power
of HNN.

Sibi et al.
(2013)

HTAF for backpropa-
gation neural network.

The HTAF was proven as one of the
best activation function to be applied in
the neural network. It was supported
by the magnitude of error obtained at
the last Epoch during training for Mush-
room data set. The HTAF has enhanced
the conventional backpropagation new-
tork.

Zamanlooy
and Mirhas-
sani (2014)

HTAF for VLSI im-
plementation.

It was proven that the VLSI implemen-
tation can be done with the HTAF as the
transfer function. The simulated results
portrayed the compatibility of the acti-
vation in digital networks.

Sathasivam
and Velavan
(2014)

HTAF for higher order
Hopfield network.

The HTAF outperformed the
McCulloch-Pitts function in terms
of global minima ratio, complexity,
CPU Time and Hamming distance for
higher order Hopfield network. Both
activation functions are integrated with
Boltzmann machine and HNN.

Pwasong and
Sathasivam
(2015)

HTAF as an accelera-
tor for reverse analysis
paradigm.

The hyperbolic tangent activation func-
tion had proven the effectiveness in ac-
celerating the data mining process. In
this work, the hyperbolic tangent activa-
tion function had accelerated the reverse
analysis paradigm even though encoun-
tering higher complexity.

da Silva et al.
(2017)

Enhanced HTAF for
associative memories
mapping.

Associative memories mapping has
been improved tremendously with the
assistance of HTAF that squashes the in-
put effectively. Thus, the results have
a good agreement with the computation
time obtained by the standalone Hop-
field associative memories.
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2.4 General Concept of 3-Satisfiability

The work on 3-SAT is still mushrooming even though it can be classified as a clas-

sical NP hard problem (Johnson, 1989). Basically, 3-Satisfiability (3-SAT) problem

is a mapping problem from a logic programming in 3-CNF to truth values. In theory,

3-SAT can be defined as a formula in a conjunctive normal form with a collection of

clauses where each comprises strictly 3 literals per clause (Kutzkov, 2007). Therefore,

a 3-SAT paradigm can allow two choices for the value of each variable, which are 1

or -1. In addition, the 3-SAT problem is an example of a non-deterministic problem

and constraint satisfaction problem (CSP). Therefore, solving the CSP problem such

as 3-SAT is a notoriously expensive due to the complexity.There are limitless of ways

to solve 3-SAT problem ranging from exact to the approximation algorithm. Bünz and

Lamm (2017) studied the implementation of Graph neural network (GNN) in 3-SAT

as a classifier in 3 randomized data sets. However, the result obtained was encouraging

with the accuracy in a range of 65% to 71% in terms of training error. In this the-

sis, the idea of incorporating 3-SAT logic programming is inspired by the Horn logic

programming proposed by Sathasivam (2010). The 3-SAT logic will be encoded to the

non-symbolic HNN as the main language of knowledge to the system. Apart from that,

3-SAT serves as a constraint optimization problem that requires some approximation

algorithm such as metahueristic paradigms as the training method. Overall, 3-SAT log-

ical rule is utilized as a logical representation to study the behaviour of the data sets and

serve as a classification method in data mining. The HNN-3SATAIS, HNN-3SATGA,

and HNN-3SATES will train the 3-SAT problem before being retrived by the CAM in

HNN. The other notable works on 3-SAT are dicussed in Table 2.4.
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Table 2.4: Related Literature on 3-Satisfiability

Author Method Summary and Findings
Johnson
(1989)

A neural network
method to the 3-SAT
problem.

The inaugural work of solving 3-
SAT by using neural network approach
proved the hardness of the problem.
The work outlined the similarity of 3-
SAT and the circuit problem.

Freeman
(1996)

Solving a hard 3-SAT
problem with David-
Putnam procedure
(DPP).

The DPP solved the under constrained
and over constrained 3-SAT problem.
The DPP is a primitive exact method in
solving the hard 3-SAT problem under
certain constraints.

Brueggemann
and Kern
(2004)

Deterministic local
search for 3-SAT.

The deterministic local search works ef-
fectively in solving the 3-SAT problem.

Dahllöf et al.
(2005)

Counting models for
3-SAT formula.

The counting model proposed for 3-
SAT formula outperforms the conven-
tional model.

Sathasivam
and Abdullah
(2010)

Satisfiability logic on
Little Hopfield net-
work.

The satisfiability aspect in terms of CNF
logic was proposed on Little Hopfield
network. The results were encourag-
ing based on the Hamming distance and
global minima ratio obtained after the
simulation.

Hamadneh
et al. (2014)

Satisfiability of logic
programming based
on RBFNN.

The satisfiability problem presented in
the form of logic programming in
RBFNN. The logic programming deals
with a single operator and a small num-
ber of clauses only.

Aiman and
Asrar (2015)

Solving the 3-SAT
problem by binary
GA.

The effectiveness of the binary GA in
solving the 3-SAT problem was com-
pared with the local search approach.
The binary GA was reported as a good
method in improving the solutions even
though searching spaces are evolving.

Hen and
Spedalieri
(2016)

Quantum annealing
approach in solving
constrained optimiza-
tion problem.

The work highlighted the feasibility of
quantum annealing approach in solving
the satisfiability problem. The quantum
annealing method was applied to accel-
erate the process of solving the 3-SAT.

Doerr et al.
(2016)

Time complexity of
randomized satisfiable
k-CNF formula.

The analysis of the time complexity for
randomized 3-CNF or 3-SAT formula is
described. Thus, the time complexity is
influenced by the number of clauses in-
volved in the computation of 3-SAT for-
mula.
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2.5 General Concept of Maximum 3-Satisfiability

Since a few decades ago, Boolean satisfiability has emerged from a classical prob-

lem into a bunch of various hard problems. Hence, MAX-3SAT is a counterpart of

classical Boolean satisfiability that has captured the attention of many researchers in

the optimization field (Berg and Järvisalo, 2015; Layeb, 2012). Specifically, the MAX-

3SAT can be delineated as the maximum number of satisfied clauses achieved by any

complete assignment. Maximum 3-Satisfiability (MAX-3SAT) is a notable counter-

part of the 3-SAT problem, denoted in Conjunctive Normal Form (CNF) form (Layeb

et al., 2010). Zhang (2004) asserted the Max-3SAT problem as the generalized and dif-

ficult form of decision problem whereby not the entire constraints are satisfiable. Even

though the MAX-3SAT ought to be harder than the normal 3-SAT problem, both are

demarcated as a NP-complete problem. This has been demonstrated by Cook (1971),

Goemans and Williamson (1994) and Zhou (2016). In this research, the MAX-3SAT

is addressed as the logical rule for the logic programming. The selection of MAX-

3SAT logic programming was made in order to authenticate the proposed hybrid HNN

in dealing with harder satisfiability logic. Hence, HNN-MAX3SATAIS and HNN-

MAX3SATGA are formulated to be simulated by using the randomized MAX-3SAT

instances. The capability of our proposed models in doing MAX-3SAT logic program-

ming will be investigated by using different complexity of the neurons. So, the related

works of MAX-3SAT are shown in Table 2.5.
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