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Abstract 

The issue of interference in LTE networks and wireless networks, in general, is an 

important one. Wireless is a finicky paradigm to operate communications in when compared to 

wired networks. There are issues of loss, reflection, timing, and interference within all networks 

however, wireless adds a randomness to communications that makes it challenging to control. 

For mobile networks like LTE to reach their goal of true mobility, service must be nearly 

everywhere and be able to operate even in the worst possible case. Examining the literature, I 

found many sources of possible interference in both FDD and TDD-LTE networks. I also 

examined how these causes of interference can affect mature heterogeneous LTE networks 

especially those in urban areas that have been designed to support large amounts of traffic. These 

materials perfectly outline the problems faced in the urban networks of the four carriers in New 

York City. The tools I used to create this analysis were comparable to those used by radio 

frequency engineers at the major wireless carriers. I also tapped my experience in one of these 

roles (in an internship capacity) to make recommendations as to what the carriers could do to 

improve their networks. My findings concluded that in areas of high population density, the four 

carriers still need to further optimize their networks signal-wise in order to deliver high 

performing wireless services where users concentrate. Future research would include making 

improvements and then testing the impact they have on key performance indicators within the 

networks. 
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Introduction 

It should be noted that I will be approaching network performance as a fully external, 

third-party analyst. To perfect this report, it would be necessary to have network configuration 

and key performance indicator information which is only available to the network engineering 

employees at each network operator. This information is not shared with third parties including 

professional auditors like RootMetrics, who is contracted to report network performance data 

and regularly consults with the network teams at each operator on performance. The wireless 

industry in the US is very secretive and for good reason. Operators rarely directly collaborate on 

shared infrastructure projects and maintaining their own networks in such a way as to outshine 

the others is a wonderful game of cat and mouse. Network optimization, especially when it 

comes to coverage and quality of service, is a key differentiator in keeping subscribers happy and 

loyal.  

New York City being the largest market in the United States as well as the location of the 

corporate headquarters of Verizon Communications is one of the most important places for 

wireless networks in the country and requires network performance to act like it. Technologies 

that sometimes hit other parts of the country years later are deployed here first without hesitation. 

Operators regularly boast about their performance in New York through press releases and news 

snippets on industry blogs. Third party companies like RootMetrics and Nielsen regularly drive 

and walk-test the market with off-the-shelf devices to audit network performance here and create 

reports for both consumers and network engineering teams alike. 
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The trouble with these reports is typically granularity. While these third parties release 

the routes they walked or drove and the venues they visited, they do not repeat these 

examinations at different times of day to confirm consistent performance. Especially during 

times of peak network load in areas of high population density. This analysis aims to fix that by 

using population density data to select locations for closer examination. Unlike the third party 

companies, the report will also be providing specific recommendations on network adjustments 

rather than just presenting the findings and leaving it up to the reader to make up conclusions 

about how to improve service with interference analysis being the key topic examined due to its 

never-ending prevalence in the world of wireless. 

Literature Review 

In my research, I focused my attention towards more advanced interference studies in 

LTE networks that used propagation models and data from live networks. Using these papers as 

guidebooks, I tailored my methodology to fit the tools I had at my disposal. In Chamorro et al., 

(Chamorro et. al. 2018) the authors focus on issues related to interference within heterogeneous 

LTE networks, or LTE networks that have more than one type of cell site/transmitter involved in 

them. Specifically, they hone in on the issue of home femtocells and their interactions with 

macro cell sites at the cell edge. Home femtocells are commonly used in the US by all four 

carriers and are usually the main option for customers who find that coverage is lacking in their 

home. Often they are right on the edge of service, at the cell edge of two different cell sites, or 

are in an area where there is simply no coverage at all.  
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Chamorro et al. examine the issue of a femtocell at the cell edge and use the ICS 

Designer tool to create coverage plots of a mock network in Barcelona, Spain. The mock 

network contains 11 femtocells and one macro cell site. The macro cell site is sectored using 

antennas with a beamwidth of 120° while the femtocells utilize a much less efficient 

omnidirectional antenna (Chamorro, Reyes, & Paredes-Paredes, 2018). Such a configuration is 

not uncommon among live networks especially those using LTE UE Relay technology where the 

goal is to specifically enhance coverage.  The authors focused only on downlink scenarios due to 

the limitations of their design tool (Chamorro et al., 2018). By comparison, my work avoids this 

all together by examining a live network and its uplink traffic using a spectrum analyzer. 

Chamorro et al. focus on three measurements: RSSI (Reference Signal Strength Indicator), 

RSRQ (Reference Signal Received Quality), and SINR (Signal to Interference plus Noise Ratio). 

RSSI, while used in other technologies, is helpful in LTE for measuring the signal strength 

across an entire channel instead of only the resources allocated to a device. RSRQ and SINR are 

measures of the quality of the signal being received by a device. SINR is particularly important 

in heterogeneous networks as discussed later on in this thesis. 

Because of the high variability of radio frequency environments, models for propagation 

of wireless signals are standardized and used to design and construct wireless networks. These 

models are composed of terrain maps as reported by various governments as well as other GIS 

data sourced from the appropriate entities. Models for “clutter” are also used to simulate certain 

environments like urban, suburban, and rural spaces. The International Telecommunications 

Union as well as the 3rd Generation Partnership Project have both defined models that Chamorro 

et al. use in their paper. Specifically, ITU 525, a free space attenuation model and the 3GPP LTE 

https://www.zotero.org/google-docs/?jW7sgE
https://www.zotero.org/google-docs/?oDodRJ
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Urban Propagation model were used (Chamorro et al., 2018). The authors virtually simulate an 

environment where the femtocell is very close to the center of the cell site just a few hundred 

meters away. 

 

Fig. 1. FAP1 defines the 
femtocell site while 
MACRO 1a, 1b, and 1c 
define each sector of the 
macro cell site. The legend 
defines radiated power 
measurements as well as 
the RSSI at those radiated 
powers. (Chamorro et al.)  
 
 

This first scenario in Chamorro et al. examines a femtocell overlapping a macrocell 

causing interference on the downlink at a device connected to the femtocell. The signal strength 

of the macro cell is so large that it inadvertently drowns out the femtocell causing its coverage to 

vary. SINR on the macro cell site sector directly facing the femtocell experiences the greatest 

loss in performance because of its orientation. Femtocell performance is also poor in this area. 

However, when moving further away from the macro cell site while still remaining within the 

coverage of the femtocell, the authors found that SINR improves greatly. RSSI, however, stays 

relatively constant and at reasonable levels due to this coverage overlap. RSSI is the only thing 

that won’t perform well in such a situation (Chamorro et al., 2018). The second scenario tested 

includes a femtocell installed at the edge of the macro cell (much farther away than the first). 

This would be an optimal case for installation of a femtocell as the user’s coverage from the 

macro network would be relatively weak. However, issues with clingy devices do plague 

operator’s networks and this scenario takes this into account by having a device stay connected 

https://www.zotero.org/google-docs/?ULFLzZ
https://www.zotero.org/google-docs/?aZTSow
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to the far away macro cell even when it comes within coverage of the femtocell. The result is 

poor signal quality and SINR when connected to the macro cell site (Chamorro et al., 2018). 

These three scenarios are the most relevant to my examination of service in high-traffic locations 

because they are the most likely to occur in a dense urban environment like Manhattan with 

certain effects even being amplified due to small cell/femtocell locations sometimes being within 

line of sight to the nearest macro cell site(s). Such a scenario is present in two of the locations I 

cover in my examination and is likely a key issue causing unstable performance at one in 

particular. 

Černý and Masopust (Černý and Masopust 2017) discuss the interference mitigation 

techniques that have been developed for the LTE standard in their paper Interference 

optimization and mitigation for LTE networks. The techniques covered in this paper are very 

commonly used in commercial LTE network development. Specifically, the authors cover 

adaptive frequency reuse, power control, MIMO, and beamforming. All are currently in use by 

AT&T, Sprint, T-Mobile, and Verizon in Manhattan in some form. One common issue that has 

plagued cellular wireless networks has been the issue of frequency reuse. In the era of AMPS, 

and later GSM, each sector of a cell site used a specific wireless frequency to communicate with 

each user. Cell sites would commonly have three sectors each of which would have its own 

frequency. Because each had their own frequency, site 1 with sector 1 with frequency A could 

overlap the coverage of site 2 with sector 2 with frequency B without any interference happening 

as illustrated with the diagram below: 
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Fig. 2. The “Cellular” model, illustrated by George Ou 

This model was fine for older technologies in times when cellular devices were less 

common and certainly less traffic-intensive. However, as the number of cellular users grew, so 

did the need to use allotted channels more efficiently. Today, LTE has revolutionized this with 

adaptive frequency reuse. Rather than have a channel, or path for transmitting or receiving data, 

dedicated to each sector of a cell site, LTE cell sites use all channels on all sectors at every cell 

site. This presents an issue of interference however, if all sites in a network are using the same 

channel to transmit. The problem becomes even more important if they are in close proximity to 

one another or, in the case of modern day urban networks like the ones examined in New York, 

transmitting inside the coverage areas of one another. Adaptive frequency reuse combats this 

issue by adjusting the network to more accurately accommodate individual devices. As Černý 

and Masopust state, “The network can dynamically adjust to any situation... When the eNodeB 

receives information about mobiles located near the cell borders with low SNR on the downlink, 

the eNodeB changes the frequency reuse scheme and gives information about it to neighboring 

cells to do the same... It means that the whole frequency band is used to cover the centre of the 
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cell ensuring maximum data rate. The problematic areas around cell borders are served by a 

part of the frequency band, which is different in each of 3 neighborhood cells.” (Černý & 

Masopust, 2017) The authors state that this kind of reuse can improve SINR even in high-density 

areas by as much as 10 dB (Černý & Masopust, 2017).  

Power control is another technique often used to adjust coverage and optimize 

performance in LTE networks. Černý and Masopust examine two techniques of power control 

that aim to help device battery life as well as conserve energy. Open and Closed Loop Power 

Controls are algorithms on the device-side that determine the correct transmission power to use 

based on situational conditions like path loss. They also take regular measurements of the 

device’s SINR conditions and report it to the eNodeB every 20 milliseconds and then tell the 

device to adjust its power accordingly. A fractional power control scheme is also implemented to 

allow device transmission power to be lower than needed even in situations of path loss. Using 

fractional power control schemes can allow throughput of a cell to increase by up to 40% 

especially for cell edge users (Černý & Masopust, 2017).  

MIMO, or multiple-input multiple-output, is another technique mentioned by Černý and 

Masopust that helps combat interference within the network. Not only does it help with 

interference but it also greatly increases throughput even in good network conditions. MIMO 

allows for multiple data streams to flow through multiple antennas on either side of the 

connection creating a more robust signal and drastically improving throughputs.  

https://www.zotero.org/google-docs/?jOdmPw
https://www.zotero.org/google-docs/?jOdmPw
https://www.zotero.org/google-docs/?cDNGkf
https://www.zotero.org/google-docs/?DmafOx
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Fig. 3. (Černý and Masopust) The connectivity between a transmitter and a receiver in a typical 
MIMO setup up to n antennas where, to reap the full benefits of MIMO, m and n are equal. Each 

h in the diagram is a separate spatial stream being received/transmitted. 
 

The benefits of higher-order MIMO on a network are numerous as it allows carriers to 

offer better service even to older devices further increasing network efficiency. Initial LTE 

networks offered a “2x2” setup indicating two antennas were dedicated to transmission and two 

were dedicated to reception. This was also the case on the device side. Now, with today’s 

networks and devices, “4x4” MIMO is a more common capability. 4x4 MIMO installation and 

activation can improve service for 2x2 MIMO cell edge users because, even though such devices 

are older or more limited, having four antennas to receive signals on the macro cell site side 

means device uplink transmissions are more likely to be received, and a device is able to stay 

connected to the network and receive some form of service, rather than be left with an unstable 

connection or being forced to fall back to an older technology. For devices that have 4x4 MIMO 

capability, service in areas of high interference is improved for the same reasons a cell site is 

able to better “hear” a 2x2 MIMO device transmitting.  

As mentioned in my methodology, I will be using the Moto X4 which is 2x2 

MIMO-capable. While many higher end devices today are compatible with 4x4 MIMO today, it 
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is important to note that a majority of devices on the market are still using 2x2 MIMO. Real 

world testing must reflect this as it leads to an inefficiency in the use of network resources and a 

notable loss of performance compared to if all devices on the network were using 4x4 MIMO. 

The possibility of network interference and performance issues at the air interface 

permeate throughout. This is shown specifically in Interference analysis and performance 

evaluation for LTE TDD system. While most operators in the United States don’t currently utilize 

a TDD-LTE system in most of their markets, its use is becoming more prevalent as network 

needs change and the FCC distributes spectrum in new ways that depart from the common 

block-pair system with TDD becoming more important in upcoming 5G mmWave and 

high-midband networks. TDD offers increased spectral efficiency to the more commonly used 

FDD standard and one operator in the US, Sprint, does use it quite heavily due to the breakdown 

of their 2.5 GHz EBS/BRS spectrum holdings. The authors explore TDD interference issues 

from a network design perspective in section two of their paper. They outline intra-cell 

interference, inter-cell interference, self-noise, and crossed timeslot interference as the biggest 

threats to TDD-LTE systems. TDD systems require great precision in their timing of 

transmissions over a slice of spectrum because their spectral efficiency comes from using one 

channel to both transmit and receive data from the device and the cell site. These transmissions 

are separated in time. This is in contrast to FDD networks which use separate channels for 

downlink and uplink transmissions allowing a device to transmit at the same time it is receiving 

data from a cell site and vice-versa. 

The authors discuss the issue of self-noise in TDD systems as being caused by timing 

problems. LTE uses the OFDM digital signal modulation scheme to maximize efficiency and 
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create as many subcarriers as necessary for data to be transmitted on. These subcarriers are 

spaced at 15 kHz each. Each subcarrier overlaps; however, this overlap does not cause 

interference within the system. Instead, the overlapping portion of the subcarriers cancels each 

other out leading to lower interference while gaining higher network performance. This overlap 

“at right angles” is the source of the O in OFDM which stands for orthogonal. When using a real 

world system, the authors note there are likely to be slight issues in timing of the TDD system 

leading to issues with synchronization and channel estimation (when the eNodeB is able to 

“guess” the channel conditions based on that of the device’s uplink channel conditions) (Pei 

Chang et. al., 2010) (Lauro 2019). This failure in timing leads to subcarriers overlapping each 

other more than they should causing them to become less orthogonal and leading to worse 

network performance. This is, of course, worsened in conditions of poor SINR (Pei Chang et. al., 

2010). 

Intra-cell interference is also a major issue relating to the design of LTE networks. 

Within a common macro cell site, there are multiple sectors installed. Each sector is designed to 

provide coverage in the general direction it is pointing. This direction is determined by an 

azimuth set when designing the site in either an area gaining new coverage or fitting the site into 

an existing network for the purposes of adding capacity. Cell sites can have many sectors in 

order to create added capacity, guarantee coverage in specific locations, or both. As network 

usage grows, a cell site with three sectors might grow to have six or more depending on its 

location. Multi-sector designs are becoming increasingly common in urban areas where capacity 

is needed. While the boost in capacity is great, the issue of interference becomes more and more 

prevalent as the authors note. Intra-cell interference does exist in real world systems when 
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orthogonality is broken (as with the timing issues in self-noise). Having resource blocks shared 

among devices in multi-user MIMO schemes also causes intra-cell interference to become a 

greater concern (Pei Chang et. al., 2010). The other issue of inter-cell interference is also 

common within TDD systems and the authors note four scenarios in which inter-cell interference 

would occur and cause performance to worsen: when a device receives interference from a 

neighboring eNodeB, when an eNodeB receives interference from a device, when a device 

receives interference from another nearby device, and when an eNodeB receives interference 

from another eNodeB (Pei Chang et. al., 2010). Problems of received interference continue to 

plague TDD networks and improvement in the design of networks where these are common 

issues will result in lessened interference. 

The final interference issue the authors discuss is the problem of cross timeslot 

interference. As previously stated, TDD-LTE divides transmissions in time so timeslots 

dedicated to downlink and uplink. There is also a special slot dedicated to transmissions of 

control data which facilitates device handoffs within the cell site and between cell sites as well as 

requests and receives data on the device’s current network conditions. A table of the seven 

different configurations is shown below: 

 
Figure 4. TDD frame configuration options (Keysight Technologies) 
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Cross timeslot interference occurs when uplink and downlink transmissions collide. A 

device might be attempting to uplink on the same timeslot as a neighboring TDD cell site is 

trying to downlink resulting in a collision and strong interference. This issue can be exaggerated 

when using multiple frame configurations for the network in the same locale. Neighboring cell 

sites with different configurations will have different downlink and uplink timing leading to near 

unavailability of the network. As Wang et al. conclude, demodulation is impossible because 

SINR becomes even worse than -20 dB. Devices are no longer able to use the network at such a 

level of SINR. These three possible sources of interference in TDD systems are crucial to 

evaluating the performance of the networks I will be examining. Specifically the Sprint 2.5 GHz 

LTE band 41 network. Evaluating the performance of this part of the Sprint network keeping in 

mind these sources of interference is crucial. Examining network performance while only 

considering FDD interference factors would not be proper methodology when viewing a TDD 

system. 

Methodology 

For this project, I used a software-defined radio as a spectrum analysis tool to view 

downlink and uplink transmissions of the four major LTE, or Long Term Evolution, networks in 

New York City. These networks are built and managed by AT&T, Sprint, T-Mobile, and Verizon 

along with partner organizations like Transit Wireless. A software-defined radio approach was 

chosen for this project rather than using a conventional off-the-shelf WiFi network because of 

the flexibility they provide. Software-defined radios - or SDR’s - do what their name implies and 

provide a radio that can transmit and receive signals based on the software applied to them. The 
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SDR literature has a vast number of projects that can allow a user to run nearly any wireless 

technology from their radios. SDR’s are able to receive many different kinds of signals and 

utilize many different technologies because of their capabilities in a wide range of the radio 

frequency spectrum. The radio used for this project is the Ettus Research USRP-B210. It is rated 

for use on all frequency bands from 70 MHz to 6 GHz. Such a range covers everything from the 

FM band, used for audio broadcasting, to 6 GHz, which is home to fixed wireless connections. It 

was coupled with two Ettus Research VERT2450 omnidirectional antennas. Using two antennas 

to search for spectrum is optimal because it best simulates the setup of a consumer device 

capable of 2x2 MIMO as nearly all LTE devices are.  

The SDR will be driven by software running in a Ubuntu virtual machine environment 

within macOS Mojave. The spectrum analysis software I have chosen for the project is the 

Osmocom Spectrum Browser. It provides a set of capabilities comparable to a typical real-time 

spectrum analyzer that one might find available to carrier’s radio frequency engineering teams as 

well as in radio and communications research laboratories. Osmocom Spectrum Browser allows 

for adjustment of gain, sampling rate, bandwidth, as well as center frequency. I also used a newly 

purchased Android device, the Motorola Moto X4, as a network testing device.  

The Moto X4 is a low-cost Android device running Android 9.0 Pie. It is built on the 

Qualcomm Snapdragon 630 processor and uses 3GB of RAM. The Snapdragon system-on-a-chip 

is important to this project because of its LTE modem. The X12 modem used by the Moto X4, 

while slightly dated, is more than capable of accessing all of the necessary frequencies that 

modern day LTE networks in the United States use. It is also capable of aggregating up to three 

LTE carriers at once allowing for theoretical download speeds of 600 Mbps (assuming 256 
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QAM). This modem also has all of the primary 3GPP frequency bands for the four national 

carriers in New York. Using this device, I conducted measurements of various LTE reference 

signal performance indicators to show radio frequency performance on each network at a given 

time of day.  

Measurements were taken using the Network Signal Guru app from QtRun Technologies. 

Network Signal Guru, when combined with root access to control a device’s Qualcomm modem, 

is an incredibly useful tool equivalent to the industry-standard TEMS Pocket, Accuver XCAL 

Solo, and Rohde & Schwarz QualiPoc tools used by RF engineering teams at all four major 

carriers. I will be looking at three main measurements in this thesis - RSRP, SINR, and RSSI. 

Each has its own specific use in LTE networks. RSRP, or Reference Signal Receive Power, is 

the measured received power across the bandwidth of an LTE carrier allocated to a specific 

device in the form of resource blocks. RSRP is the most accurate measurement of LTE “signal” 

in a given location. It’s accuracy comes from measuring based on allocated resource blocks at a 

given location during a given time gives an accurate representation of service with multiple users 

on a network. Resource blocks, or groups of frequency resources assigned to devices, are 

allocated dynamically in LTE on a per-frame, or per-time period, basis and are only allocated if a 

device is using them. Therefore, taking a measurement of received power of only the resource 

blocks allocated to a device at a given time is a more accurate measurement relative to 

performance.  

The second measurement I looked at is SINR. SINR is a measure of the amount of 

interference that the network causes to itself as well as the general electromagnetic noise floor 

present on the frequency bands it is running on. SINR is a key performance indicator in LTE 
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because a network that has an high SINR in a majority of its coverage area will subsequently 

perform well both coverage-wise and reliability-wise. Network features like higher-order 

quadrature amplitude modulation or QAM - a technique used to communicate more bits per 

transmission - lead to a 33% gain in spectral efficiency over previous QAM, allowing users to be 

better served while on the network (Howald et. al., 2009). The better the SINR across the 

network, the higher the number of users using higher order QAM leading to a major gain in 

network efficiency. SINR optimization is important for the overall health of the network setting 

aside the benefits that can be gained from QAM. In urban environments, SINR optimization 

becomes much more difficult because of two main factors: a more dense, often heterogeneous 

network and more users moving traffic over the network. The networks of the four major carriers 

in New York are a perfect example of this.  

The Manhattan cell grid is hugely dense, along with the rest of the city leading New York 

to be one of the best-performing cities for wireless infrastructure in the US. Consequently, 

because of the massive population in the city, carriers have invested heavily in the latest 

technologies to ensure high quality of service. In particular, this includes small cells and 

distributed antenna systems. In addition to the rooftop-mounted sites, network infrastructure is 

also installed on light poles and inside buildings to allow for better capacity and guarantee proper 

coverage even inside massive steel structures. Controlling the SINR of all of these different 

elements in the network, especially when coverage between each of the elements often overlaps, 

is a challenge that engineers are careful not to ignore. 

The third and final measurement on the Moto X4 I looked at is the RSSI. The RSSI is a 

measurement of received power across the entire bandwidth received. Not just a few resource 
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blocks. Reading RSSI is more of just an exercise in coverage. If the RSSI is low, then RSRP is 

going to be even worse. Indeed, RSSI is used to calculate the RSRP using the equation RSRP = 

RSSI - 10log(12N) where N is the number of resource blocks based on the LTE carrier size. The 

areas where I conducted measurements and analyzed spectrum in are not ones without signal 

however because RSSI can influence RSRP. It is important to check to make sure that each value 

is the expected one based on the other. 

To choose locations for this project, I used the Manhattan Population Explorer map and 

data visualization model developed by Justin Fung (Fung 2018). The map displays population 

density data over the course of a week at specific times of day. This data is sourced from the 

MTA’s free turnstile information database distributed in plaintext format as well as spatial data 

from the CUNY Graduate Center’s mapping and GIS service (Fung 2018). The NYU Wagner 

Center also contributed estimations on the upper bounds of populations during each time of day. 

Using this data, I targeted areas that saw the highest change in population based on time of day. 

With the exception of one, my location choices leaned heavily on stations within the transit 

system as these tend to concentrate large groups of people at very specific times of day and then 

are nearly deserted at other times leaving a more noticeable dichotomy when all the data is 

assembled. The final list of indoor locations included New York Penn Station and the World 

Trade Center PATH station. Outdoor locations included Union Square and Queensboro Plaza. 

All four of these locations experience dramatically different network conditions in terms of total 

tonnage, or traffic carried, on both the downlink and uplink. Each location also has varied 

network setups causing service to act differently at each. These setups will be covered later in the 

thesis when detailing the results of my findings. 
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Using the tools mentioned above, I collected data using screen recording and capture 

software already installed on each device. I analyzed walk test logs from Network Signal Guru to 

ensure consistency of the readings I’ve taken. Use of walk-testing also places my methodology 

more in line with industry standard practices at the four national carriers. The table below 

describes the ideal ranges for each of the three aforementioned measurements: 

 

 RSRP (dBm) RSSI (dBm) SINR (dB) 

Great -90 to -30 -85 to 0 15 to 40 

Acceptable -105 to -90 -95 to -85 -3 to 15 

Poor -140 to -105 -130 to -95 -30 to -3 

Table 1. Baseline ranges for RSRP, RSSI, and SINR 

RSRP and RSSI use dBm or decibel-milliwatts because they are reference signals based 

on the received power by the device. In fact, dBm measure the number of decibels as a ratio to 

one milliwatt of power. On the other hand, SINR is measured in decibels alone because it is the 

difference in decibels between the received signal power and the network interference and noise 

floor. 

Results and Recommendations 

My examination of New York’s wireless infrastructure across the four major networks 

yielded somewhat varied results in the way of LTE RF network performance. The locations 

tested - New York Penn Station, WTC PATH Station, Union Square, and Queensboro Plaza - 

were all covered by the four major network operators. Covered in this sense means that a 
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customer would be able to use LTE data and place or receive a VoLTE call as expected. 

However, all four networks were not equal in these locations. RSRP, RSSI, and SINR all varied 

from network to network with performance on each being somewhat distinct even in conditions 

where one might not expect that to be the case.  

While it might seem more appropriate to consider this a performance report of wireless 

service at transit system stations, these four locations are hubs that cater well outside the needs of 

just local transit riders. Union Square sees foot traffic from shoppers, tourists, office workers, 

students, residents, and others. Its park hosts events of all kinds during all seasons. All of this in 

addition to a major hub for the NYC subway on Manhattan’s east side. The WTC PATH station 

is directly underneath 1 World Trade Center and is itself a tourist attraction due to its unusual 

architecture. It plays host to a high-end mall and connects with the NYC Subway Fulton St 

Station - another major transit station. An underground pathway connects it to Brookfield Place, 

a separate high-end mall, food court, and office space for major corporations as well. New York 

Penn Station serves mostly as a transit hub with a few eateries and stores however its national 

reach with connections to Amtrak makes it unique. The station is also owned by Amtrak and thus 

has network infrastructure that is not cohesive with the rest of the transit systems in New York. 

Queensboro Plaza is another transit hub and a purely local one at that. However, it differs from 

Penn Station and WTC PATH in that it is fully elevated and the Long Island City neighborhood 

it serves is in a period of rapid growth and construction. New construction is constantly 

happening in cities and building materials and locations change how the networks perform in a 

given area not only by altering the coverage (new buildings block and reflect signal in new ways 
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not previously accounted for in the network design) but also by creating capacity needs as 

tenants move from elsewhere into their new spaces. 

Penn Station 

New York Penn Station is the regional hub for four major transit systems. Locally, it 

offers subway service on six different lines. Regionally, it is a major station for NJ Transit and 

Long Island Rail Road commuter trains. Nationally, it offers service via Amtrak with service on 

one of the nation’s only high-speed rail lines. The Regional Planning Authority notes that while 

Penn Station’s original design capacity was for a weekday ridership of 200,000 people, it has far 

exceeded that reaching an average weekday ridership of 650,000 (Regional Planning Authority 

2018). While examining network usage during rush hour inside Penn Station, the results were not 

unexpected.  

The station’s location underneath Madison Square Garden means it requires some kind of 

alternative coverage solution to guarantee service where customers expect it during their journey. 

Inside, I was able to spot indoor distributed antenna systems (DAS) for three of the four major 

networks specifically AT&T, Sprint, and Verizon. Each network has designed its own DAS for 

the station including separate antennas to adequately cover specific areas. Interestingly, the 

carriers have also taken to labeling their antennas with their logos. A rare move for infrastructure 

that generally attempts to keep a low profile. Notably absent from Penn Station’s main concourse 

was infrastructure for T-Mobile. Unlike Transit Wireless in the NYC Subway system, Penn 

Station does not have shared wireless infrastructure leading each carrier to build out their own 

antennas systems. AT&T and Verizon have opted to use typical omnidirectional ceiling mounted 
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antennas for their system while Sprint opted to use directional ones leading to indoor coverage 

being focused in specific areas while still allowing for general coverage throughout the station. 

The absence of a DAS for T-Mobile is not completely unprecedented as service from outdoor 

macro sites and the Transit Wireless DAS installed for the NYC Subway stop bring moderate 

coverage onto the main concourse. However, LTE band 4 service available on T-Mobile’s AWS 

spectrum, falling in the 2100 MHz and 1700 MHz bands is limited compared to the other AWS 

user in New York, Verizon. The figure below illustrates this weakness even with a heightened 

gain of 64 dB from the spectrum analyzer. 

 

Fig. 5. Verizon (center freq. 2120 MHz) vs. T-Mobile (center freq. 2140 MHz), downlink-only. 

RSRP, RSSI, and SINR averages for the carriers with DAS present fell into the “great” 

range generally. Because of the proximity of the antennas to my spectrum analyzer and test 

device, RSSI and SINR were especially strong while RSRP was strong but could have been 

reproducible outdoors with a macro site.  
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B# denotes 3GPP 
frequency band number 

AT&T Sprint T-Mobile Verizon 

RSRP (dBm) B2: -75 to -69 
B5: N/A 
B12: -60 to -50 

B25: -77 to -69 
B26: -60 to -53 
B41: -80 to -73 

B2: -118 to -112 
B4: -114 to -110 
B12: -105 to -102 

B2: -110 to -108 
B4: -78 to -70 
B13: -60 to -50 

RSSI (dBm) B2: -35 
B5: N/A 
B12: -30 

B25: -36 
B26: -30 
B41: -39 

B2: -79  
B4: -75 
B12: -65 

B2: -75 
B4: -40 
B13: -30 

SINR (dB) B2: 15 to 23 
B5: N/A 
B12: 13 to 22 

B25: 16 to 25 
B26: 12 to 22 
B41: 20 to 26 

B2: -3.0 to 0.7 
B4: -2.6 to 1.0 
B12: -2.0 to 0.7 

B2: 3.0 to 7.0 
B4: 15 to 22 
B13: 13 to 20 

 

Table 2. Penn Station recorded RSRP, RSSI, and SINR values by carrier and frequency band 

T-Mobile did not perform as well and my test device often fluctuated between LTE band 

4 (AWS) and band 12 (700 MHz). Availability of LTE band 2 was limited indoors. Verizon’s 

DAS had LTE band 4 and 13 installed allowing those bands to produce results on-par with Sprint 

and AT&T however their band 2 network seemed to either be coming from an outdoor macro 

site or the Transit Wireless DAS resulting in worse performance when compared to its other two 

frequency bands. AT&T’s dual-band DAS produced solid results however LTE band 5 was not 

yet present at this location. This is either due to the spectrum still being used to support AT&T’s 

3G HSPA+ network or macro sites outdoors not yet broadcasting the band. 

At this location, improving service to keep up with network demand at Penn Station is 

“easy” for T-Mobile. The best path to improvement with the least amount of design and 

construction work would be to reach an agreement with Verizon or AT&T to share antennas 

while setting up separate infrastructure such as eNodeBs and remote radio heads to support their 

network. However, this could be costly and getting permission from other carriers poses a 
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problem. It has been done before but, generally, sharing infrastructure with other carriers is best 

done through a neutral-host vendor that is impartial to competition in the wireless market. 

Neutral-host vendor agreements mean carriers can share infrastructure owned by the vendor 

while getting cheaper access to said infrastructure and faster, more consistent maintenance of the 

equipment. This is to say nothing of the red tape and right-of-way that would be needed from 

Amtrak in order to add service. T-Mobile’s other option would be to construct a DAS on their 

own as the other carriers have done albeit with more red tape and leasing costs from Amtrak as 

well as time-consuming design and intrusive construction work. Improving Verizon service is a 

much more simple project that would require only the addition of new band 2 remote radio heads 

to their existing DAS. Antenna replacements might be necessary depending on the capabilities of 

the existing hardware but because hurdles with Amtrak leasing are already cleared, construction 

aspects of the project could be completed in a matter of hours or days. 

World Trade Center PATH Station 

The World Trade Center PATH station sees about 62,000 commuters per day (Port 

Authority of New York and New Jersey 2019). While this is higher than all of the other 

Manhattan PATH stations combined, it might sound low when compared to Penn Station and 

even many NYC Subway stations. However, this station has connections to Fulton St as well as 

the newly reopened WTC-Cortlandt St station. This in mind, transit ridership through this 

location is much higher than the Port Authority’s numbers might indicate. Keeping in mind all 

the tourist traffic due to the site’s unique architecture and high-end mall, it’s not hard to see how 

important wireless service is here. Thankfully, the station and surrounding complex have a 
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neutral-host DAS in place that is more than capable of handling the large amount of traffic. The 

DAS was designed and installed by Boingo Wireless as part of the construction of the Oculus 

complex and PATH station, both of which are owned by Port Authority (Port Authority of New 

York and New Jersey 2014). Boingo’s neutral-host position has allowed all four carriers to 

install their equipment within the station and share Boingo’s antennas seamlessly. The result is 

consistent, functional service and similar coverage no matter the network. The station is also 

connected to Brookfield Place (which has its own DAS installed) via an underground pathway. 

Handoff between the two occurs seamlessly with no performance problems. Given that the 

station is not completely belowground, the outdoor network did not seem to cause much if any 

interference. The noise floor remained low according to the spectrum analyzer while the signal 

was high even with 0 dB of gain applied. Notice even in the crowded PCS band, each carrier is 

well-defined in this DAS environment with relatively low noise. 

 

Fig. 6. AT&T (1935 MHz, 1962.5 MHz, 1967.5 MHz), T-Mobile (1945 MHz), Sprint (1955 
MHz), and Verizon (1975 MHz). Downlink spectrum only. Also note the T-Mobile GSM carriers 

(1939 MHz, 1949 MHz) in the guard bands of the LTE carrier. 
 

While the noise floor between 1930 MHz and 1960 MHz was higher, above 1960 MHz 

noise was low and service was of high quality. It is important to realize that though the shift to 

LTE has caused capacity reductions for many legacy 2G and 3G services, the PCS band is still 
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commonly used to offer these services especially for Sprint and T-Mobile. Even with limited 

amounts of spectrum in this band, the carrier’s networks are relatively well-controlled. Carriers 

in the position of having to run multiple technologies in a limited amount of spectrum are getting 

creative with its use. T-Mobile’s two 200 kHz-wide GSM carriers shouldering its larger, more 

critical 10 MHz LTE carrier are a testament to this creativity. T-Mobile also employed a 

dynamic spectrum sharing system from Ericsson in their part of the PCS band several years ago 

in order to run a 5 MHz 3G HSPA+ carrier and a 10 MHz LTE carrier in addition to two GSM 

carriers all within the same 10 MHz of PCS spectrum. Meanwhile, AT&T’s first 5 MHz LTE 

carrier operates with a smaller guard band between Sprint’s 10 MHz LTE carrier and it than 

T-Mobile does using LTE and GSM. This raises the noise between AT&T and Sprint’s LTE 

carriers slightly and might point to poor filtering or misconfiguration on AT&T’s part. 

RSRP, RSRQ, and SINR generally fell within the “great” range for all networks due to 

the station’s DAS. SINR in the PCS band was slightly higher for some carriers due to the 

aforementioned multi-generational set of networks occupying the band.  

B# denotes 3GPP 
frequency band 
number 

AT&T Sprint T-Mobile Verizon 

RSRP (dBm) B2: -74 to -69 
B5: -110 to -98 
B12: -60 to -50 

B25: -79 to -70 
B26: -59 to -53 
B41: -80 to -73 

B2: -80 to -70 
B4: -82 to -70 
B12: -105 to -101 

B2: -81 to -69 
B4: -78 to -70 
B13: -60 to -50 

RSSI (dBm) B2: -30 
B5: -65 
B12: -30 

B25: -31 
B26: -30 
B41: -32 

B2: -30  
B4: -35 
B12: -72 

B2: -29 
B4: -34 
B13: -30 

SINR (dB) B2: 10 to 20 
B5: -3.0 to 0.5 
B12: 9 to 15 

B25: 11 to 22 
B26: 7 to 14 
B41: 20 to 26 

B2: 9 to 21 
B4: 15 to 25 
B12: -2.0 to 0.7 

B2: 10 to 23 
B4: 15 to 24 
B13: 10 to 17 

Table 3. WTC PATH Station recorded RSRP, RSSI, and SINR by carrier and frequency band 
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As previously stated, all networks generally performed well in the PATH station. The only 

inconsistencies that appear are from LTE bands that were not added to the Boingo DAS 

specifically AT&T’s band 5 (850 MHz) and T-Mobile’s band 12 (700 MHz). These bands were 

absent from the DAS due to either their rollout being limited or the carrier’s design decision to 

exclude it from the system. 

Recommendations for future capacity improvements could come from the addition of the 

two bands mentioned for both AT&T and T-Mobile. AT&T might be wise to adjust the 

frequency of their 5 MHz LTE carrier at 1962.5 MHz so as to further reduce noise for both 

Sprint and themselves. It would also be beneficial to consider upgrades in which the 5 MHz 

carriers centered at 1962.5 MHz and 1967.5 MHz are combined into a single 10 MHz carrier 

centered around 1965.2 MHz. Because AT&T isn’t currently already doing this, I suspect that an 

equipment limitation is preventing them from expanding capacity this way. As generations of 

mobile wireless technology push forward into 5G, T-Mobile should look to shut down their 2G 

GSM services completely so as to lower noise in their portions of the PCS band specifically in 

high-traffic locations such as this were the performance benefits of LTE are greater than the cons 

of leaving a location without GSM. Sprint should look to activate 256 QAM here especially on 

band 41 to take advantage of the great SINR conditions the DAS provides for its customers. This 

would result in up to 33% more network capacity assuming otherwise ideal conditions. 

Union Square 

Union Square’s hustle and bustle does tone down late at night as I discovered while 

examining conditions during peak time midday and late at night around 2:00 AM. Union 



Analysis of LTE network RF performance in a dense urban environment Krawczeniuk 29 

Square’s setting is unique as it is fully outdoors and fully mixed-use. The network at Union 

Square is fully heterogeneous as one might expect from networks in an urban core of a large city. 

Macro cell sites for each carrier surround the Square from rooftops and downtilt to focus 

coverage on this busy area. Carriers are also using multi-sector cell sites to serve the Union 

Square area while meeting capacity needs. The area is also dotted in nodes for a neutral-host 

outdoor DAS created by NextG Networks, now part of Crown Castle. Some of these have been 

converted into small cells and separate small cells mounted on buildings are also present. The 

result is an incredible tapestry of network gear all hidden in plain sight and quickly serving 

customers with the connections they need no matter the situation in the surrounding area. 

My goal in examining service at both peak times and off-peak was to view the change in 

SINR between the two. I expected SINR levels to be worse during peak time due to the amount 

of traffic being transmitted in a heterogeneous network environment with multiple sources of 

interference. This turned out to be true but most of the time did not have the dramatically 

different results I expected. Because of Union Square’s importance and population density, all 

networks were running using all available spectrum allocated to them to offer superior capacity. 

It is important to note that not all bands were active on all cell sites (macro/small/DAS) in the 

area. This led to better SINR on some bands and slight differences in RSSI and RSRP within the 

networks of each carrier. Often, small cells and outdoor DAS might only be single-band or 

dual-band leading to less interference (and therefore improved SINR) on the bands not on every 

site. At Union Square, this was the case with some of the macro cell sites on AT&T’s band 2 and 

5 network. 
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Fig. 7. AT&T B5 (left) and B2 (right) at peak time (12:22 PM) versus off-peak (1:47 AM), please 
note the PCI and ECellID pattern on B5 implies service is coming from the same site but not 

necessarily the same sector. B2 carriers are different carriers but coming from the same sector 
and are subject to similar interference and noise conditions. 

 
AT&T’s band 2 and 5 network examined above showed improved SINR in peak versus 

off-peak hours especially on band 2. The band 2 network showed improvements in SINR for 

service from the same sector as well as improvements in RSRP for the same exact carrier as can 

be seen in the LTE cell table of the second screenshot. Band 5 showed a slight loss of RSRP and 

RSSI but saw gains in RSRQ for the same sector and carrier as well as a noticeable SINR 

improvement off-peak for the band.  

Other carriers saw similar changes in SINR and minor fluctuations in RSRP and RSSI as 

illustrated below. SON, or self-optimizing network, functions might alter network performance 

to optimize service based on conditions such as number of connected devices and the channel 

conditions for each. As of writing, all carriers have implemented some features of SON in their 

LTE networks (Parker 2014) (Alleven 2017) (Dano 2016) (Goldstein 2013). 
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B# denotes 3GPP 
frequency band 
number, formatted 
peak/off-peak 

AT&T Sprint T-Mobile Verizon 

RSRP (dBm) B2: -67 / -68 
B5: -64 / -67 
B12: -66 / -71 

B25: -78 / -71 
B26: -57 / -65 
B41: -84 / -84 

B2: -62 / -63 
B4: -73 / -69 
B12: -54 / -59 

B2: -60 / -59 
B4: -66 / -65 
B13: -78 / -78 

RSSI (dBm) B2: -36 / -45 
B5: -36 / -45 
B12: -36 / -42 

B25: -52 / -48 
B26: -31 / -41 
B41: -52 / -57 

B2: -28 / -35 
B4: -32 / -40 
B12: -27 / -39 

B2: -31 / -30 
B4: -36 / -35 
B13: -46 / -46 

SINR (dB) B2: 5.0 / 27 
B5: 2.9 / 9.1 
B12: 4.7 / 2.7 

B25: 12.4 / 27 
B26: 12.5 / 18 
B41: 6.0 / 17 

B2: 0.9 / 10.4 
B4: -5.9 / 8.2 
B12: 20.2 / 
24.3 

B2: 9.6 / 19.2 
B4: 8.5 / 18.3 
B13: -3.5 / -1.4 

 

Table 4. Union Square RSRP, RSSI, and SINR values by carrier and frequency band 

In the figure above, the difference between peak time and off-peak SINR is typically very 

great with only minor outlying degradation for AT&T band 12. In some cases such as T-Mobile 

band 4, the change in SINR could mean the difference between dropping or continuing a VoLTE 

call. RSRP between the four carrier’s sub-1 GHz networks was also noticeable and reflects the 

greater network density T-Mobile and Sprint originally designed their networks for in 

Manhattan. The near-1:1 overlay of band 26 and band 12 on Sprint and T-Mobile’s PCS 

networks respectively shows in the high RSRP the test device received at Union Square both 

during peak time and off-peak. These values are especially good when compared with AT&T 

band 5 and 12 as well as Verizon band 13. All of these bands fall into the same 700 MHz and 

800 MHz ranges. 

The networks at Union Square were able to handle traffic well and reacted to different 

conditions as expected in terms of SINR. Changes in RSRP and RSSI were not expected 
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however. RSSI degradation off-peak was a surprising discovery and of interest to the analysis in 

this paper. Recommendations for Union Square can’t really be made because carriers are already 

maximizing their existing resources in this location and trying to add new cell sites, small cells, 

or DAS nodes might only cause the law of diminishing returns to kick in and ultimately not be 

worth the cost. The addition of LAA-LTE technology (LTE service using the unlicensed 5 GHz 

band) might help ease network congestion and improve RF performance on certain carriers if 

only due to a lightened network load. Given Union Square’s size as well as the unlicensed nature 

of the band - which necessitates sharing spectrum with all of the 5 GHz WiFi networks in a given 

area - this might not be an optimal solution. Continuing to obtain spectrum licenses in the 

mid-band as well as mmWave range would be the best way to grow capacity for all networks in 

this area. 

Queensboro Plaza 

Queensboro Plaza might initially seem like a strange choice for an analysis of network 

performance on first glance. The station is 118th in ridership out of 472 stations within the NYC 

Subway system (Metropolitan Transit Authority 2019). Not one of the most pressing places to 

address network performance issues. However, the growth of the area around Queensboro Plaza 

has it rapidly rising as a transit hub for far-west Queens. Development in the Long Island City 

area has been exploding since 2015. Between July 2017 and 2018, the NYC Department of 

Buildings approved some 1,436 new residential housing units for the neighborhood (Localize 

Labs 2018). Placing it as far-and-away the most under-development neighborhood across the 

whole city including the newly-opened Hudson Yards. All of the new development leaves the 
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networks in Long Island City in a major predicament. A formerly low-rise neighborhood with a 

network built to cover low-rise buildings and streets has started to become a major center of 

skyscraper development leading to new signal-blocking materials being used and new reflections 

causing signals to attenuate and network interference to rise. Often, engineers in large urban 

markets have to make major changes to the network because of new development and other 

issues outside of their control such as lease expirations. Queensboro Plaza is one such example in 

which new development and growth have outpaced the redesign process of the networks.  

Queensboro Plaza’s network performance issues have existed for a long time and the 

addition of alternative coverage solutions like Transit Wireless haven’t helped the situation like 

one might expect. Upon further inspection, it would appear as though all carriers either have 

elected not to activate service on the DAS at this station or have not optimized handoff settings 

in such a way that allows devices at the station to use it (such as the scenario in Chamorro et al. 

describes, leading to interference). Verizon was the only network that recorded acceptable SINR 

performance on bands 2 and 4 at the station. Even though performance was acceptable, SINR 

levels would fluctuate by up to 5 dB quite often. AT&T, Sprint, and T-Mobile recorded SINR of 

less than 1 dB for each of the frequency bands within their networks (with the exception of 

Sprint’s B25). This poor performance on AT&T and T-Mobile was in spite of their activation of 

4x2/4x4 MIMO support.  
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Fig. 8. PCS band spectrum analysis at Queensboro Plaza. Downlink only. 
Notice in Figure 11 with 0 dB gain applied, each carrier is barely visible with Verizon 

being only marginally stronger at 1975 MHz. This severe disparity, when compared to the other 

locations tested, is even more obvious when you look at the RSRP and RSSI values at 

Queensboro Plaza. Both of these values are quite strong and even comparable to the other 

locations tested indicating received power and signal are good however, in Fig. 11, interference 

keeps a clear signal from being easily found. This is also indicated in the SINR values in Fig. 12. 

Due to this issue, the carriers might have opted not to activate service on the Transit Wireless 

DAS for fear that it would only add to the issue.  

B# denotes 3GPP 
frequency band 
number 

AT&T Sprint T-Mobile Verizon 

RSRP (dBm) B2: -90 to -83 
B5: -83 to -78 
B12: -92 to -79 

B25: -89 to -84 
B26: -89 to -80 
B41: -110 to -103 

B2: -92 to -91 
B4: -96 to -92 
B12: -87 to -84 

B2: -80 to -74 
B4: -80 to -67 
B13: -79 to -73 

RSSI (dBm) B2: -54 
B5: -49 
B12: -45 

B25: -57 
B26: -55 
B41: -70 

B2: -53 
B4: -51 
B12: -53 

B2: -46 
B4: -43 
B13: -45 

SINR (dB) B2: -1.0 to -0.1 
B5: -4.9 to -1.2 
B12: -4.0 to 0.3 

B25: 1.0 to 7.1 
B26: -5.3 to -4.9 
B41: -3.4 to -0.9 

B2: -9.5 to -6.4 
B4: -7.4 to -5.5 
B12: -5.0 to -3.0 

B2: 8.5 to 18.1 
B4: 10 to 18 
B13: 5.0 to 7.0 

Table 5. Queensboro Plz recorded RSRP, RSSI, and SINR values by carrier and frequency band 

What’s interesting here is that, unlike the issue of service in suburban and rural areas 

where a device might be on the edge of multiple very weak signals causing interference and 

making it difficult to latch onto just one, the issue at Queensboro Plaza appears to be the opposite 

issue yet with the same effect. Too many strong sectors for each network all overlap at this one 

location leading to good availability of signal (RSRP, RSSI) but incredibly poor SINR resulting 
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in poor network performance overall. SINR seemed to be further compounded when two trains 

were pulled into the station at the same time creating a temporary wall and further interfering 

with service. Users commonly complain about dropped, robotic, and generally, near-failing 

VoLTE calls as well as slow data speeds. 

Queensboro Plaza is a very tricky problem to solve and has been for several years now 

for engineers at the major carriers. Verizon’s design seems to have resulted in a solid level of 

service at the station and surrounding area. With the rapid development happening in Long 

Island City, any recommendations might become outmoded quickly. However, a proliferation of 

DAS in the large new developments going up might be the key to serving the rest of Long Island 

City with fewer issues. More indoor DAS in these buildings means less of a need to try to cover 

them with macro cell sites and more of a focus on outdoor neighborhood coverage areas for said 

sites. While on-platform at Queensboro Plaza, applying downtilting to certain sectors would 

reduce interference. This would have to be done in a balancing act to avoid making capacity 

suffer due to only one or two sectors serving the station. Much more drastic measures could be 

taken in the form of site relocation. This would also be a step in redesigning the network to 

accommodate the new development in the neighborhood. Carriers should also work with Transit 

Wireless to test their DAS at the station itself. Creating a high-power DAS to overpower the 

macro sites would at least provide users at the station with good service. There is potential for 

that to come at the expense of users on the macro network however.  
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Conclusion 

While wireless carriers continue the endless process of network improvement and 

optimization to keep pace with the exploding demand for wireless services, it is clear that areas 

of high-traffic and high population density still pose somewhat of a problem in the nation’s 

largest market. Service across New York is quite good and rarely are any of the carriers without 

service while aboveground. The findings and recommendations in this report show simply that it 

could potentially be even better. Interference problems will always be a sticking point for 

operators as their networks grow. With 5G, density of the sites in a network will become even 

greater issue for carriers and New York’s already dense, heterogeneous network is a sign of what 

is to come to smaller cities and suburbs across the nation. Controlling interference and coverage 

of the network is key to creating networks that everyone can access and share without concerns 

of data slowdowns or dropped calls. These networks are critical infrastructure and will become 

an even more primary source of communications as time goes on. Carriers should realize the 

position they are in and optimize the networks in New York to reflect that by whatever means 

necessary.  
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