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Crossed Tracks 
Mesolimulus, Archaeopteryx, and the Nature of Fossils 

 
Leonard Finkelman 

Linfield College 
dinosaurphilosophy@linfield.edu 

Abstract 
 
Organisms leave a variety of traces in the fossil record. Among these traces, vertebrate and 
invertebrate paleontologists conventionally recognize a distinction between the remains of 
an organism’s phenotype (body fossils) and the remains of an organism’s life activities 
(trace fossils). The same convention recognizes body fossils as biological structures and 
trace fossils as geological objects. This convention explains some curious practices in the 
classification, as with the distinction between taxa for trace fossils and for tracemakers. I 
consider the distinction between “parallel taxonomies,” or parataxonomies, which 
privileges some kinds of fossil taxa as “natural” and others as “artificial.” The motivations 
for and consequences of this practice are inconsistent. By comparison, I examine an 
alternative system of classification used by paleobotanists that regards all fossil taxa as 
“artificially” split. While this system has the potential to inflate the number of taxa with 
which paleontologists work, the system offers greater consistency than conventional 
practices. Weighing the strengths and weaknesses of each system, I recommend that 
paleontologists should adopt the paleobotanical system more broadly.  
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1. Introduction: A Day on the (Jurassic) Beach 

One hundred and fifty million years ago, the detritus of animal life accumulated on the 

shoreline of a Jurassic sea. A horseshoe crab took its last journey, literally stopping dead in 

its tracks. Beside the dead body, molted theropod feathers—carried by a soft Jurassic 

breeze—settled on the sand. Body and feathers both became part of a daily routine: each 

day’s tide would carry in mineral-rich sediments as it rose and carry out organic molecules 

from the animals’ remains as it fell. Consequently the remains hardened into rock and 

disappeared beneath developing limestone beds. 

The shoreline eventually became the German town of Solnhofen. Through two 

centuries of excavation from the town’s limestone quarries, paleontologists found a fossil 

bounty. Included among these fossils are the horseshoe crab’s shell, its tracks, and imprints 

of the theropod feathers. 

Lomax & Racay (2012) named the horseshoe crab Mesolimulus walchi, but one 

would be incorrect to say that the tracks are M. walchi tracks. M. walchi is a name that 

applies to body fossils, or the fossilized remains of organism. By contrast, the horseshoe 

crab’s tracks are fossilized evidence of the organism’s ‘life activities’ and so qualify as trace 

fossils (Ride, et al. 2012, article 23.7; Pemberton & Frey 1982). Lomax & Racay therefore 

classify the tracks in the trace fossil species Kouphichnium walchi. By convention, 

vertebrate and invertebrate paleontologists classify body fossils in taxa associated with 

biological kinds. This system excludes trace fossil taxa, which paleontologists regard as 

geological features (Carney, et al. 2012). The International Code of Zoological 
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Nomenclature (ICZN) therefore proscribes different taxonomies for body fossils and trace 

fossils. This distinction is clearly exemplified by the horseshoe crab’s shell and its 

associated trackway. 

By contrast, the feather imprints are a borderline case in the body fossil-trace fossil 

distinction. Herbert von Meyer named the first feather imprint found at Solnhofen 

Archaeopteryx lithographica (1861); when paleontologists recovered skeletal remains of 

feathered theropods from the same limestones, they applied the same name to those body 

fossils. However, in a 2011 review of the species A. lithographica the ICZN committee ruled 

that the species name should not apply to von Meyer’s feather impressions because each 

are the result of different historical processes. Impressions and body fossils preserve 

different kinds of information; consequently, the two kinds of fossil could not be 

definitively correlated with one another. So the committee argued; to the contrary, 

structural similarities between feather impressions and body fossils sometimes allows 

paleontologists to draw inferences about body fossil taxa from feather impressions 

(Carney, et al. 2012; Foth & Rauhut 2017; Rauhut, et al. 2018). The status of feather 

impressions as trace fossils therefore remains in dispute. 

The purpose of this essay is to dissolve the debate: recent paleontological work 

undermines traditional justifications for the body fossil-trace fossil distinction. Taxonomic 

practices based on that distinction might therefore be revised. I argue in favor of one 

potential revision. 

In the following section I explore different reasons given for distinguishing between 

body fossils and trace fossils. As we will see, these reasons highlight either historical or 

structural differences between fossil kinds. My goal in the third section is to refer to the 
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examples raised above to show how neither historical nor structural differences yield 

consistent distinctions between body fossils and trace fossils. Mesolimulus, Kouphichnium, 

and Archaeopteryx offer illustrative examples of the difficulties in distinguishing fossil 

kinds. These difficulties can be generalized to all vertebrate and invertebrate fossils. 

Following that, I show in the fourth section how paleobotanists offer a practical system that 

integrates fossil taxonomies by classifying all fossils as “artificial” morphological taxa. In 

the fifth section, I consider the advantages and disadvantages of adopting a similar strategy 

more broadly. The consequence would be a system that treats body fossils and trace fossils 

as equally “artificial” with respect to biological taxa. I endorse that view and conclude with 

recommendations for future work.  

2. Traces and Fossils 

Cleal & Thomas (2010) offer a useful distinction between organism fossils and fossil 

organisms. Organism fossils are geological objects (such as limestone slabs or 

permineralized skeletal elements) that preserve some trace of an organism or its activities. 

Fossil organisms are the once-living things from which organism fossils come (262). A 

single fossil organism may yield a variety of organism fossils. Lomax & Racay (2012), for 

example, describe two organism fossils (i.e., a shell and a trackway) that trace to the same 

fossil organism (i.e., a Jurassic horseshoe crab). Following Darwin (1859), vertebrate and 

invertebrate paleontologists (collectively, paleozoologists) collect evidence from organism 

fossils to reconstruct the evolutionary history of fossil organisms (Plavcan & Cope 2001; 

Bertling 2007; Bell 2012). 
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Paleozoologists traditionally distinguish organism fossils either as body fossils or as 

trace fossils (Pemberton & Frey 1982; Sarjeant 1990; Crimes & Droser 1992; Bromley 

1996; Bertling, et al. 2006; Falkingham, et al. 2016). While this distinction is widely 

accepted among researchers, paleozoologists offer many and varied reasons for 

recognizing and upholding it. Reasons for distinguishing body fossils from trace fossils (or 

“ichnofossils”) are generally either historical or structural. In this section I will recount both 

historical and structural arguments for distinguishing organism fossil kinds. 

Historical reasons for distinguishing body fossils from ichnofossils focus on how 

organism fossils relate to fossil organisms. In the horseshoe crab’s case, Lomax & Racay 

treat the shell as a direct representation of the fossil organism. The shell, after all, was once 

a part of the horseshoe crab’s body, hence the term “body fossil.” The trackway, by 

contrast, is an organism fossil that does not directly represent the fossil organism. Turner 

(2005) argues that the correlation between a trackway and its maker is underdetermined 

at fine taxonomic resolutions (220-221). Consequently, the trackway is less direct evidence 

of the fossil organism. It is one among many traces of the horseshoe crab, hence the term 

“trace fossil.”  

Paleozoologists who agree on this point nevertheless recognize that the distinction 

must be rendered in more precise terms. An organism fossil such as the feather impression 

described by von Meyer (1861) may not have been part of a fossil organism’s body per se, 

but the evidence it gives of the fossil organism is more “direct” than a trackway. More 

precise definitions of “body fossil” and “ichnofossil” would be necessary to determine what 

kind of fossil is the feather impression. 
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A common first step towards greater precision is to define “body fossils” as the 

fossilized remains of a fossil organism’s phenotype. This is meant to provide contrast with 

ichnofossils, defined as the fossilized remains of an organism’s ‘life activities’ (Pemberton & 

Frey 1982, 844), the fossilized ‘works of an organism’ (Ride, et al. 2012, article 10.5; cf. 

Bertling, et al. 2006), or structures ‘left in or on a soft sediment or in a hard substrate by a 

living organism’ (Crimes & Droser 1992, 340).  

Pemberton & Frey (1982) argue that this formulation of the historical distinction is 

also objectionably vague. For example, shells and their molds in surrounding substrate are 

equally well considered the remains of an organism’s phenotype and its “works” or “life 

activities” (845). Indeed, all organism fossils propagate information about a fossil 

organism’s life processes. If an ichnofossil is simply any object whose provenance yields 

information about past life processes, then all fossils should be ichnofossils (cf. Currie 

2018, 63-84). 

Frey (1973) argues that the distinction between body fossils and ichnofossils is 

better drawn in terms of structural differences between the two. He defines such structures 

as  

…tangible evidence of activity by an organism, fossil or recent, other than the 
production of body parts…[including] the entire spectrum of substrate traces or 
structures that reflect a behavioral function…[excluding] molds of body fossils that 
result from passive contact between body parts and the host substrate, but not 
imprints made by the body parts of active organisms. (quoted in Simpson 1975, 41) 
 

Bertling, et al. (2006) offer a refinement of the concept:  

Generally, a trace fossil is defined as follows: a morphologically recurrent structure 
resulting from the life activity of an individual organism (or homotypic organisms) 
modifying the substrate…[which] may be rock, soft to firm sediment, dead organic 
matter (peat, wood, shell, bone) or (then) living organic tissue. (266) 
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These definitions both highlight important structural features of ichnofossils that are not 

true of body fossils. Ichnofossils ‘exist only by virtue of the soft or hard substrate on or in 

which they formed... They are an integral part of the substrate’ (Crimes & Droser 1992, 

340). Since ichnofossils are ‘close to primary sedimentary structures,’ paleozoologists 

diagnose ichnofossils by geological features, rather than the biological traits with which 

they diagnose body fossils (Raup & Stanley 1971, 16-17; Bertling 2007, 82; Carney, et al. 

2012). Relevant structural differences therefore imply disciplinary and methodological 

differences in the study of body fossils and ichnofossils. 

Geological features by which researchers classify ichnofossils include weathering, 

strength, and density (Williamson 1984; Bertling, et al. 2006). Fossil tracks, also called 

ichnites, form one ichnofossil taxonomy (Alcalá, et al. 2016). Paleontologists diagnose 

ichnite ichnotaxa not only by overall track morphology, but also by physical properties 

such as substrate density and depth (Falkingham, et al. 2016, 6-8; cf. Bertling, et al. 2006). 

Fossil burrows or dwellings, also called dominichids, form another ichnofossil taxonomy 

(Seilacher 1967). Paleontologists diagnose dominichid ichnotaxa by orientation, internal 

structure, and substrate (Ibid; cf. Bertling, et al. 2006, 274-280).  By contrast with these 

examples, body fossils preserve phenotypic traits shared with living or fossil organisms 

and so can be diagnosed with tools and methodologies shared with biologists (Crimes & 

Drosser 1992, 340). To wit: Mesolimulus fossils preserve traits easily compared with those 

of living horseshoe crabs, but Kouphichnium fossils do not. 

These historical and structural distinctions between body fossils from ichnofossils 

explain how paleontologists do or don’t identify body fossils and trace fossils with fossil 

organisms. When classified, fossil organisms (like living organisms) would sort into 
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biological taxa (or “biotaxa”). Biotaxa may be coextensive with body fossil taxa because 

researchers diagnose body fossil taxa by reference to biological traits. By contrast, 

ichnofossil taxa (or “ichnotaxa”) do not correlate with biotaxa because researchers classify 

ichnofossils by reference to geological properties. In attributing the fossil shell to the 

species M. walchi, then, Lomax & Racay tacitly name both a body fossil taxon and a putative 

biotaxon. The name K. walchi, however, denotes an ichnotaxon uncorrelated with a 

particular biotaxon. 

It is for these reasons that the ICZN asserts that an ichnotaxon name ‘does not 

compete’ with a body fossil taxon name. Names applying to geological kinds should not be 

applied to biological kinds, even when the rules of nomenclature (such as rules of priority) 

might dictate otherwise (Ride, et al. 2012, article 23.7). Ichnotaxon names and biotaxon 

names therefore designate entities in non-overlapping taxonomic systems. These systems 

run “parallel” to one another, hence the term parataxonomy (Pemberton & Frey 1982; 

Serjeant 1990; Bromley 1996; McNeill, et al. 2012).  

3. The Problems with Parataxonomy 
 
One significant borderline case in the body fossil-trace fossil distinction is von Meyer’s 

feather impression. Impressions preserve biological traits useful in the classification and 

analysis of biotaxa (Carney, et al. 2012). For this reason, paleozoologists recognize the 

taxon upon which the fossil was built, A. lithographica, as a biotaxon (von Meyer 1861; 

Senter & Robins 2003; Foth & Rahut 2017; Rahut, et al. 2018). A. lithographica is a biotaxon 

and the first A. lithographica specimen was a feather impression; logically, then, feather 

impressions ought to qualify as body fossils.  
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As philosophers say, one theorist’s modus ponens is another’s modus tollens. In 2011, 

the ICZN ruled that another specimen should replace von Meyer’s feather impression as a 

neotype for the species because feather impressions are not body fossils: 

The name Archaeopteryx lithographica von Meyer, 1861 is…a nomen dubium 
because it is not possible to determine whether the type specimen (the original 
feather impression) belongs to any of the generic or specific taxa of fossil bird 
recognized from the Solnhofen limestones. …The number of [fossil bird] species 
recognized is not relevant to the question of whether the feather impression can be 
assigned to a known specific taxon…[the name] cannot be used for any of the avian 
fossils from the Solnhofen limestones except for the feather impression. (2011, 183) 
 

To summarize the reasoning given here: no feather impression taxon could be coextensive 

with a biotaxon since disparate kinds of fossil organism could yield morphologically similar 

feather impressions. A. lithographica is a biotaxon and feather impressions do not belong in 

biotaxa; logically, then, the feather impression initially named as an A. lithographica 

specimen ought to be reclassified.  

The implication of the ICZN’s ruling must be that feather impressions are 

ichnofossils. While it is necessary that body fossils preserve biological traits, the 

preservation of biological traits is not sufficient for an organism fossil to qualify as a body 

fossil (Bertling, et al. 2006, 266). The fossil must also preserve by means of some historical 

process that permits correlation of the organism fossil with some fossil organism. In 

particular, body fossils form by direct replacement of organic body elements with minerals, 

i.e., permineralization. Feather impressions (and other organism fossils such as feeding 

traces, nests, coprolites, and eggs) may form through permineralization of organic material, 

but rarely in direct association with the fossil organism’s body. The consequent lack of 

direct association is a feature shared with the geological processes that yield other 

ichnofossils such as feeding traces, nests, coprolites, and eggs. Paleozoologists classify 
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these fossils in parataxonomies (Pemberton & Frey 1982; Sarjeant 1990; Mikhailov, et al. 

1996; Falkingham, et al. 2016; Gatesy & Falkingham 2017). None of these parataxonomies 

correlate with biotaxa (Ride, et al. 2012, article 23.7). Since feather impressions share 

salient features of preservation with other paradigmatic trace fossils, it should follow that 

feather impressions do not correlate with biotaxa, either. 

Nevertheless, body fossils share important structural similarities with some 

ichnofossils. Because of these similarities, ichnofossils such as feather impressions 

sometimes convey information useful for inferences about fossil organisms (Carney, et al. 

2012; Foth & Rauhut 2017; Rauhut, et al. 2018). While sedimentation processes that 

account for the preservation of ichnofossils are necessary for the preservation of feather 

impressions, carbonization of the feathers from which impressions originate may preserve 

features normally associated with the permineralization of bone (Davis & Briggs 1995, 

783). Furthermore, A. lithographica body fossils include associated feather impressions 

that are considered biological structures because of their direct association with 

uncontroversial body fossils (Carney, et al. 2012; Rauhut, et al. 2018). Feeding traces, nests, 

coprolites, and eggs similarly preserve biological traits and may be found in direct 

association with body fossils (although coprolites directly associated with body fossils are 

technically known as “cololites”) (Bertling, et al. 2006). It is therefore logically possible, if 

conventionally discouraged, to correlate some ichnofossils with fossil organisms; there is 

no necessary dissociation between ichnofossil taxa and biotaxa. 

Conversely, skepticism of the correlation between body fossil taxa and biotaxa is 

sometimes warranted. Fossil organisms for which we have incomplete understanding of 

ontogeny or dimorphism may sort into several distinct body fossil taxa. Poor 
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understanding of ontogenetic variation in dinosaur groups, for example, may lead 

paleontologists to split dinosaur fossil organisms into “artificial” body fossil taxa (Lehman 

1990; Horner & Goodwin 2009; Rauhut, et al. 2018). Sexual dimorphism in fossil organism 

populations would imply a similar problem: paleontologists’ inability to reconstruct 

intraspecific interactions from body fossil data problematizes correlation between body 

fossil taxa and true biotaxa (Lehman 1990; cf. Barden & Maidment 2011). Body fossil taxa 

therefore need not bear a one-to-one correlation with any particular biotaxon. 

One might argue that biotaxa correlate more closely with body fossil taxa than they 

do with ichnotaxa, but this need not be theoretically significant. Instead, the observation 

may reflect non-theoretical values in taxonomic practice. All taxonomic systems codify 

some implicit bias by preferentially including information as relevant or excluding 

information as irrelevant (Schuh & Brower 2009, 124). If paleontologists diagnose body 

fossil taxa by biological characters and ichnotaxa by geological characters, then the body 

fossil-trace fossil distinction is less informative of categorical distinctions than it is of 

differing research interests (cf. Kitcher 1984). Commercial, agricultural, and engineering 

interests tend to motivate selection of characters for geological taxa such as rocks or soils 

(Ibid; Soil Survey Staff USA 1975; Williamson 1984; DuBois, et al. 2007). If geological 

characters diagnose ichnotaxa, then, the exclusion of biologically significant characters 

(e.g., size, geographic location, or geological age) implies little about the nature of 

ichnofossils (cf. Bertling, et al. 2006). One might be correct in concluding that 

ichnotaxonomic distinctions are often ‘artificial’ by biotaxonomic standards, but only 

because biologists are not always interested in geologically relevant distinctions (Ibid, 

272). 
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We may find a more theoretically substantive reason for greater correlation 

between biotaxa and body fossil taxa rather than between biotaxa and ichnotaxa, but it 

does not necessarily resolve the foregoing inconsistencies in distinguishing body fossil taxa 

from ichnotaxa. One reason often given for maintaining that distinction is that theorists are 

more commonly capable of tracing body fossils to a biotaxon than they are of tracing 

ichnofossils to biotaxa (see, e.g., ICZN 2011; Lockley, et al. 2011; Alcalá, et al. 2016; Gatesy 

& Falkingham 2017). Currie (2018) suggests this is because ‘midrange’ inferences 

connecting body fossils and fossil organisms are more robust than theories connecting 

ichnofossils and tracemakers (79-82): our understanding of permineralization and 

taphonomy consistently allows us to reconstruct a fossil organism from body fossils, but 

there is no general account that allows us to reconstruct a fossil organism from footprints 

or feather impressions. If it is the strength of midrange inferences that justifies 

parataxonomic practices, however, then we should find the same inconsistencies found in 

other justifications. Paleontology is rife with examples of strong inference from trace fossils 

to fossil organisms, including tracks (Lockley & Hunt 1994; Lockley, et al. 2011), burrows 

(Crimes & Droser 1992), skin impressions (Bell 2012), and feather impressions (Foth & 

Rauhut 2017; Rauhut, et al. 2018). Again, structural and historical differences between 

body fossils and ichnofossils—some of which do allow robust inferences from ichnofossils 

to fossil organisms—do not consistently track with parataxonomic distinctions.  

To summarize the points discussed in this section: (1) paleontologists may 

successfully correlate ichnotaxa with biotaxa; (2) body fossil taxa need not correlate with 

biotaxa; (3) observations that there are in fact stronger correlations between body fossils 

and biotaxa do not imply a theoretically significant distinction between ichnofossils and 
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body fossils. Points (1) and (2) undermine the justification for parataxonomic practices 

(see Section 2 above). What this discussion should show is that there are no particular 

structural or historical features that consistently distinguish body fossils from ichnofossils. 

Hence our difficulty in classifying feather impressions: the distinction between body fossils 

and ichnofossils is inconsistent. 

4. Grafting a Solution 
 
Darwin (1859) argued that taxonomy ought to be informed by evolutionary history (or 

phylogeny). Paleozoologists tend to construct taxonomies with that goal in mind (Gaffney 

1979; Benton 2015); however, maintaining parataxonomic systems may be 

counterproductive towards that end. Ichnofossils yield information that would be lost if 

body fossils provided our only record of extinct life. Phylogenetic hypotheses therefore 

benefit from integration of ichnofossil data with body fossil data, but the practice of 

maintaining parataxonomies has the potential to hinder these efforts. A system that 

integrates biotaxonomy with ichnotaxonomy is worth some consideration. 

Paleobotanists have already adopted such a system. Ironically, the goal of 

integration is achieved not by correlating ichnofossils with biotaxa, but instead by 

divorcing “body” fossils from biotaxa. In this sense, paleobotanists deny the 

paleozoologists’ distinction between body fossils and trace fossils—all kinds of organism 

fossil are on a categorical par. Although paleobotanists distinguish fossil taxa from biotaxa, 

the flexibility of their fossil monotaxonomy permits easier integration of fossil taxonomy 

with biotaxonomy. 
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A single plant may leave a variety of fossil traces—ranging from fossilized pollen to 

petrified tissue to leaf imprints—and paleobotanists are rarely in a position to correlate 

fossils of one kind with another. It is therefore ‘impossible to name taxa of fossils in exactly 

the same way as taxa of living plants’ (Cleal & Thomas 2010, 261). Paleobotanists have 

consequently adopted the concept of the “fossil-taxon” as distinct from biotaxa. Article 1.2 

of the International Code of Nomenclature for Algae, Fungi, and Plants defines fossil-taxa 

as: ‘the remains of one or more parts of the parent organism, or one or more of their life 

history stages, in one or more preservational states, as indicated in the original or any 

subsequent description or diagnosis of the taxon’ (McNeill, et al. 2011). Botanical fossil taxa 

are what have elsewhere been called “taxonomic species”: groups defined by a variety of 

‘purely taxonomic criteria’ and explicitly not by evolutionary descent (Cleal & Thomas 

2010, 266; Mayden 1997). Paleobiologists thereby formalize the distinction between fossil 

plants (sorted by phylogeny) and plant fossils (not necessarily sorted by phylogeny). Since 

fossil plants ‘no longer exist as realities’ in paleobotanical taxonomy, the goal of sorting 

plant fossils need not be constrained by standards of identifying biotaxa (Cleal & Thomas 

2010, 262). 

Cleal & Thomas argue that the strength of this approach is in its flexibility. The 

paleobotanists’ approach is to let a hundred flowers blossom and a hundred schools 

contend, as it were. “Fossil-taxa” diagnosed by different characters—e.g., by morphologies 

from different parts of a plant—are kept distinct, even though the result is an artificially 

inflated number of taxa. Paleobotanists are therefore forced to take an intentional 

approach to establishing consistent criteria for correlating fossil-taxa with biotaxa. 

Paleobotanists may diagnose fossil-taxa by a variety of taxonomic standards, so character 
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choice for taxon diagnosis need not be constrained by the differing goals or methods of 

biology or geology; both can be accommodated (Ibid, 266). As a result, some fossil-taxa 

may be coextensive with biotaxa while others will not. Paleobotanists must take explicit 

steps to establish independent theoretical criteria for correlating fossil-taxa with biotaxa 

(cf. Plavcan & Cope 2001). Doing so ideally gives paleobotanists consistent criteria for 

extracting phylogenetic information from fossils (Cleal & Thomas 2010, 266). 

 The primary difference between the paleobotanical and paleozoological approaches 

lies in assumptions of “artificiality.” Paleobotanists assume that all fossil-taxa are 

“artificial,” i.e., not coextensive with biotaxa. In order to demonstrate otherwise, they must 

apply explicitly stated theoretical criteria for correlating a fossil-taxon with a biotaxon. As 

we have already seen, paleozoologists’ correlations of fossil taxa with biotaxa are often 

inconsistent. This inconsistency is a result of the assumption that body fossil taxa are 

coextensive with biotaxa where ichnotaxa are not necessarily so: since the distinction 

between body fossils and ichnofossils is often drawn inconsistently, it follows that 

consequent distinctions between “artificial” and phylogenetically natural taxa should also 

be inconsistent. 

Could paleozoologists adopt the paleobotanical system? There are reasons to think 

so. Gong, et al. (2002) and Jensen, et al. (2007) argue that ichnofossils convey enough 

biological information to be useful in phylogenetic reconstruction; Bell (2012) also argues 

that skin impressions, which are structurally similar to ichnofossils (see section four 

above), may nevertheless provide a ‘positive phylogenetic signal’ (1). If these examples can 

be generalized, then the biological information encoded within ichnotaxon diagnoses may 
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be sufficient to yield useful biological inferences. That conclusion could justify 

reconsideration of parataxonomic conventions. 

5. Weighing the Options 
 

Theorists have already debated adoption of a monotaxonomic system for paleozoology. 

Gatesy & Falkingham (2017), for example, argue against a categorical distinction between 

body fossils and ichnofossils on the grounds that the only valid characters of ichnofossils 

should be those associated with organisms’ phenotypes (cf. Bertling, et al. 2006). To the 

contrary, Van Valen (1978) offers strong resistance to the same idea. He argues that 

ichnotaxon diagnoses must include geological characters to be informative and so any 

system combining those with body fossil taxa would be objectionably artificial (286-287). 

These arguments focus on methodologies and practical consequences; the conceptual 

points raised above may contribute to progress in this ongoing discussion.  

One possibility is that “progress” is not necessary. As noted above, paleontologists 

are already capable of drawing from ichnofossil data for their research goals without 

resorting to wholesale taxonomic revision (Gong, et al. 2002; Jensen, et al. 2007; Bell 2012). 

In fact, paleontologists already have the tools necessary for integrating systems with 

different taxonomic standards, as evidenced by consideration of “problematic taxa.” 

Problematic taxa, or problematica, are biotaxa that include fossils of uncertain affinity 

(Häntzschel 1962). These uncertainties may be the result of poor or incomplete 

preservation, significant phenotypic disparity from known organisms, or artificial 

taxonomic splitting. Problematica are therefore taxonomically isolated from other biotaxa. 
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Häntzschel notes epistemic similarities in consideration of ichnotaxa and problematica: in 

particular, phenotypic analysis of each is limited by the informational gap between the 

described fossil and the organism from which the fossil originated. Conodonts, a collection 

of taxa that include tooth-like index fossils, provide a clear example of how paleontologists 

bridge the informational gap (Benton 2015, 52-53). Through careful selection of 

biologically informative characters, paleontologists determined the phylogenetic affinities 

of conodonts with early chordates (Donoghue, et al. 2000; cf. Gatesy & Falkingham 2017). 

Successful identification of the “conodont animal” shows how paleontologists have 

developed tools for inference across divisions between taxonomic systems.  

On one hand, the conodont example demonstrates how a monotaxonomic system 

like the one used by paleobotanists may hinder theoretical progress. Paleontologists 

regarded conodont taxa as problematica until Briggs, et al. (1983) described a fossil 

including specimens from several apparently disparate conodont taxa. The specimens’ 

association showed that different conodonts were, in fact, different phenotypes from the 

same animal. The earlier classification of conodonts is therefore an unintentional 

application of the paleobotanists’ “fossil-taxon” concept. To borrow a distinction from Cleal 

& Thomas (2010), paleontologists had classified organism fossils rather than fossil 

organisms. As a result, the true affinities of the “conodont animal” remained obscure for 

decades longer than they might have otherwise (Donoghue, et al. 2000; Benton 2015, 52). 

On the other hand, paleontologists resolved the phylogeny of conodonts and 

chordates precisely because they came to regard conodont taxa as “artificial” and 

consequently modified their approach to those taxa. The more intentional analyses that 

followed—those that reframed consideration of characters—yielded the theoretical 
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progress that remained elusive for so long. By acknowledging that biotaxa and ichnotaxa 

may be equally artificial (or not), as a monotaxonomy would imply, paleontologists might 

make similar progress. 

Indeed, there are already good reasons to embrace assumptions similar to those 

made by paleobotanists and regard body fossil taxa as artificial to the same degree as 

ichnotaxa. Fossil organism taxa for which we have incomplete understanding of ontogeny 

or dimorphism may have a one-to-many relation with body fossil taxa (see Section 3). In 

those cases, the informational gap between fossil organism and biotaxon may therefore be 

as wide as that between fossil organism and ichnotaxon. In other cases, such as 

Mesolimulus and Kouphichnium, the gap between fossil organism and ichnotaxon may even 

be smaller than the gap between other fossil organisms and biotaxa (see also Lockley, et al. 

2011).  

Our initial example might provide an analogous case. Clearly, the Mesolimulus 

organism was the tracemaker of the Kouphichnium tracks. Why recognize two organism 

fossil taxa for one fossil organism? The answer traditionally given by paleozoologists, 

rooted in their commitment to parataxonomies, would be: because Mesolimulus is a body 

fossil taxon, Kouphichnium is an ichnotaxon, and body fossil taxa are natural where 

ichnotaxa are artificial. As we have already seen, that answer is too quick—body fossil taxa 

may be artificial or ichnotaxa may be natural. As answer rooted in monotaxonomic practice 

would be: because each taxon is diagnosed by different characters and we should minimize 

the number of a priori judgments we make about which characters are more significant 

than others. Such an answer implies the necessity of explicit justifications of significance, 

which is to the advantage of all researchers. 
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One might argue against this apparent taxonomic oversplitting. Krell (2004) 

demonstrates that the kind of sorting that I suggest tends to overestimate biotaxon 

numbers significantly. If we count both body fossil taxa and ichnotaxa, then, we should 

expect overstatement of past biodiversity in the fossil record. In other words: it is the 

nature of ichnotaxa to split biotaxa and so a monotaxonomic reading of the fossil record 

will artificially inflate biotaxon counts. This may be so, but only if one reads the fossil 

record with the expectation that organism fossil taxa correlate with fossil organism taxa. 

My recommendations explicitly reject this assumption. In assuming that all organism fossil 

taxa are “artificial,” i.e., uncorrelated with particular biotaxa, we would not expect fossil 

taxon counts to represent biodiversity per se. Distinguishing fossil taxon diversity from 

biodiversity need not imply any inability to estimate past biodiversity: Oliver & Beattie 

(1996) argue that parataxon counts correlate with biotaxon counts after controlling for 

taxonomic splitting and lumping. “Control” for splitting and lumping includes use of the 

tools recommended by Gatesy & Falkingham (2017) for inference across parataxonomies 

(cf. Donoghue, et al. 2000; Gong, et al. 2002; Jensen, et al. 2007; Bell 2012). Since my 

recommendations include intentional application of these inferential tools, taxonomic 

splitting may be less a bug than a feature.  

In this way, a clear benefit of monotaxonomy would be the greater intentionality 

with which paleozoologists, like paleobotanists, would have to approach phylogenetic 

analyses. As with paleobotanists, allowing a hundred flower taxa to bloom puts the onus on 

researchers to develop more consistent tools for correlating various organism fossils with 

fossil organisms. High-power phylogenetic analyses require careful and intentional 

character selection to diagnose relevant taxa (Chippendale & Wiens 1994; Poe & Wiens 
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2000). Unfortunately, body fossil taxa—the relevant taxa for a majority of phylogenetic 

history—preserve only low-resolution morphological data (Scotland, et al. 2003). 

Qualitatively similar characters encoded in ichnotaxon diagnoses may provide valuable 

supplemental information that improves the quality of phylogenetic research (Gatesy & 

Falkingham 2017). This is the case in paleobotany: since fossil-taxon diagnoses are not 

biased by assumptions of artificiality, a wide variety of diagnostic characters improve the 

system’s flexibility (Cleal & Thomas 2010). Similar flexibility would benefit paleozoology: 

by assuming that Mesolimulus, Koupichnium, and Archaeopteryx are all equally “artificial” 

taxa, proving otherwise would require paleozoologists to develop explicit standards for 

privileging a horseshoe crab shell over the tracks upon which it rests (see, e.g., Plavcan & 

Cope 2001). 

This, then, suggests actionable consequences of adopting a monotaxonomy in 

paleozoology. In a monotaxonomic system wherein Mesolimulus, Koupichnium, and 

Archaeopteryx are all on an ontological par, all organism fossil taxa are equally “artificial.” 

Taxa are prima facie equally likely (or unlikely, as the case may be) to be coextensive with 

biotaxa. To intentionally bias diagnostic character selection for or against biological traits 

would therefore misrepresent the nature of fossil-taxa. Monotaxonomic fossil taxon 

diagnosis encodes a wider variety of information, potentially including both biological and 

geological characters in all cases (cf. Ibid). Sorting these characters for qualitatively similar 

information (e.g., biological traits for phylogenetic analysis or geological traits for 

taphonomic research) requires a more intentional approach to character choice and 

weighting, forcing researchers to consider more carefully research goals and the relevance 

of particular structures and features. Careful consideration of character selection and 
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weighting is among the set of best practices in phylogenetic analysis, to cite one example 

raised above (Schuh & Brower 2009, 124-130). Consequently, adoption of a 

monotaxonomy would motivate best practices in at least one important paleontological 

research domain. 

One may be left to wonder, then, why paleontologists haven’t already adopted such 

a system. It is not for lack of trying. The differences in paleontological and paleobotanical 

approaches to taxonomy can be attributed primarily to historical accident. A variety of 

paleontologists argued in favor of a monotaxonomy through the development of current 

taxonomic standards (Pemberton & Frey 1982). Ultimately, those who argued in favor of 

parataxonomic standards prevailed. They did so because of epistemic limitations: tools for 

inference from one taxonomy to another were at the time limited and so caution was the 

watchword in correlating ichnotaxa with biotaxa (Sarjeant 1990). That caution informed 

the system now encoded in the ICZN (Bertling, et al. 2006). Paleobotanists engaged similar 

debates throughout the twentieth century with proponents of monotaxonomy ultimately 

winning the day, in part because paleobotanists had already developed tools for stronger 

inference between different kinds of fossil (Cleal & Thomas 2010). The evolution of 

attitudes towards parataxonomy seems at least as contingent as evolutionary history itself.  

6. Conclusion 
 
The following points summarize the argument given above. 

• Paleozoologists recognize structural and historical differences that 
distinguish body fossils from ichnofossils. The structural and historical traits of 
body fossils mark them as biological entities whereas the structural and historical 
traits of ichnofossils mark them as geological objects. 
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• Because of the nature of these differences, biotaxonomy includes body fossil 
taxa and excludes ichnotaxa. Biotaxonomy includes biological kinds and so body 
fossil taxa may correlate with biotaxa. Ichnotaxa, being geological kinds, cannot. 

• The differences between body fossils and ichnofossils have been overstated. 
Some ichnofossils have the structural and historical qualities of body fossils and 
some body fossils have the historical properties of ichnofossils. As a result, either 
biotaxonomy should include ichnotaxa or exclude body fossil taxa. 

• Paleobotany offers a practical example of biotaxonomy that excludes both 
body fossil taxa and ichnotaxa. In constructing a fossil monotaxonomy, 
paleobotanists do not distinguish standards of classification for different kinds of 
fossil. The flexibility of this system allows a wide range of phylogenetic inferences. 

• The differences between taxonomic practices in paleobotany on the one hand 
and vertebrate and invertebrate paleontology on the other hand are historical 
rather than theoretical. Paleozoologists could reasonably adopt a similar system 
now that inferential tools have developed to improve inference between kinds of 
taxa. 

 
I therefore recommend the following two revisions to current taxonomic practice: 

• Recognize all fossil taxa as equally “artificial” relative to biotaxa. Neither body 
fossil taxa nor ichnotaxa need bear a one-to-one relation with any biotaxon. Body 
fossil taxa may seem less likely to split or to lump biotaxa, but this is not a consistent 
consequence of structural or historical features of body fossil taxa. 

• Include a wider variety of character traits in fossil taxon diagnosis. This would 
mark an actual shift in practice. The consequences of the shift ought to be salutary 
given that a less discriminating approach to character selection demands explicit 
consideration of research goals and character weighting when diagnosing fossil 
taxa. 

 

These recommendations offer some purely philosophical benefits. It is straightforwardly 

false, after all, to call a body fossil a “bone” or a “shell” or some other part of a fossil 

organism’s body. Body fossils may preserve phenotypic traits, but the permineralization 

process fundamentally alters the body element’s chemical structure. The current 

parataxonomic system diminishes that fundamental change through the implication that 

body fossils are biological whereas ichnofossils are not. A monotaxonomic system that 

unites body fossil taxa and ichnotaxa emphasizes that all organism fossils share a 



 23 

fundamental similarity and that the differences between them are differences in degree 

rather than differences in kind (cf. Currie 2018, 63-84). 

Against this suggestion, one might argue that any such system implies unnecessary 

vagueness or arbitrariness. For extant biotaxa that have a fossil record, for example, there 

seems no clear line where the biotaxon should give way to fossil taxa. This is of particular 

concern for so-called “living fossils,” or biotaxa that seem relatively unchanged from fossil 

ancestors. In fact, these cases are less a risk than an opportunity on the current account 

(see also Turner, this volume). I have argued that a monotaxonomic system requires 

intentional application of tools for inference between different kinds of organism fossil; 

living fossils may help to develop those tools. Lidgard & Love (2018) argue that living 

fossils are best understood as suites of characters, or parts of organisms, that remain 

constant through geological time. The oversplitting concern raised above suggests that 

fossil taxa would carve biotaxa “between the joints,” so to speak: fossil taxa may represent 

only part of a biotaxon or part of an organism belonging to a biotaxon. If so, then living 

fossils offer a kind of Rosetta Stone that gives insight into the relation between fossil taxa 

and biotaxa. The tools paleontologists require for inference between taxonomic kinds are 

improved through recognition that the relation between fossil taxa and living fossil biotaxa 

is less a Sorites paradox and more a part-whole relationship. 

To be clear, I do not intend to endorse anything like a “mixed taxon” concept, i.e., 

one wherein a single taxon includes both body fossils and ichnofossils. Lomax & Racay 

(2012) are correct to distinguish Kouphichnium from Mesolimulus, despite the clear 

association between the fossils, because those taxa are diagnosed by different characters. 

Furthermore, the 2011 ICZN ruling is correct in its conclusion that a body fossil taxon such 
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as Archaeopteryx should not include feather impressions. Different kinds of organism 

fossils belong in different fossil taxa. Fossil taxa in this sense are similar to “morphotaxa” 

distinguished by simple morphological difference (cf. Plavcan & Cope 2001); per the 

suggestions above, however, fossil taxon diagnosis may also include geological characters 

currently associated with various ichnotaxa. In many cases track fossil taxa will split or 

lump body fossil taxa; in some cases (as with Kouphichnium and Mesolimulus) they will not, 

but that does not diminish differences between the fossil taxa themselves. My point here is 

that no fossil taxon ought to be treated as coextensive with any biotaxon ex hypothesi—

again, all are equally “artificial” in this respect. There may be cases wherein a fossil 

organism taxon correlates with all and only the elements of particular kind of organism 

fossil, but these cases must be proved even when body fossils are involved. 

In the naming and study of animal fossils, the difference between body fossils and 

ichnofossils is currently considered a distinction with a real difference. To be sure, there 

are examples wherein that appears to be the case: Mesolimulus and Kouphichnium, for 

example. As we have seen, however, there are a variety of issues and other examples—A. 

lithographica, for one—showing that the categorical difference between body fossils and 

ichnofossils is a distinction without a difference. Paleobotanists have already adopted the 

latter view and encoded it within their practices. This essay has (hopefully) shown that the 

ICZN should adopt a similar view. Doing so would offer few difficulties and open new paths 

for paleozoological research. 
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