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Abstract 

 Road traffic crashes threaten thousands of drivers every day and significant efforts have 

been put forth to reduce the number of traffic crashes and their impact. Traffic congestion could 

be both a result of and a contributing factor to traffic crashes. The aim of this study is to 

investigate spatiotemporal traffic congestion and crash patterns to gain a better understanding of 

the causation of congestion and accidents, and their interaction.  The Interstate 285 (I-285) in 

Georgia was used as a case study.  With the aid of Geographic Information Systems (GIS), 

spatial clustering and densities of accidents were performed by following Anselin Local Moran’s 

I method of spatial autocorrelation. The results indicated that the location of high-high accident 

clusters was in the northern half of the I-285 for all crash types.  Additionally, geometric and 

traffic-related variables were correlated with accidents using logistic regression. The results 

showed that road segments involving merging, diverging, or weaving lanes had a positive 

correlation with the number of accidents. Specifically, the merging segments exhibited the 

highest crash frequency, followed by weaving and diverging segments. On the other hand, the 

road curvature did not play a significant role in crash occurrence, which is likely due to the 

gentleness of the road curvatures along the I-285 loop. However, the impact of acceleration on 

crash frequency remained inconclusive. It appeared that a lower average traffic speed correlated 

with a higher crash frequency, which may be due to a slow-down condition prior to crash 

occurrence.  
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Introduction 

Traveling by personal automobile has become the dominant mode of travel in the United 

States. As the population and the demand for mobility continue to grow, large metropolitan areas 

in the U.S. share two common issues: congestion and motor vehicle crashes. These two issues 

are closely related to each other because accidents cause congestion, and congestion could also 

cause accidents. The exact nature of this interaction is still somewhat unclear. 

Motor vehicle accidents are the fourth most likely cause of injuries and deaths in the U.S. 

as of 2017 (National Safety Council, 2017). One of the first steps towards decreasing accident 

frequency is to examine the traffic conditions surrounding accidents. This thesis aims to better 

understand the relationship between road traffic conditions and accidents by focusing on the 

traffic congestion and rate of accidents occurring on Interstate 285 in the state of Georgia. 

Interstate 285, when opened in 1969, was a four-lane beltway surrounding the city of 

Atlanta, Georgia. Today, I-285 has grown to be a large 63.98-mile highway consisting of eight to 

12 lanes and having 62 exits (“Interstate 285,” 2004; FHWA, 2019). Though I-285 has provided 

a greater degree of mobility for the residents in Atlanta and the surrounding area, the number of 

privately-owned vehicles registered in Georgia has also increased from around 2.5 million in 

1969 to 9.6 million as of 2019 (OHPI, 2018; Department of Revenue, 2019). Unfortunately, the 

growth of Atlanta as a major metropolitan area in the last few decades has inevitably resulted in 

I-285 becoming well known for its traffic problems. 

Atlanta ranked the 11th most congested city in the United States according to INRIX's 

2018 Global Traffic Scorecard (INRIX, 2018). The overcrowded roads can be attributed to many 
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factors such as a large commuting population, several bottleneck locations, and lack of 

carpooling and connectivity of public transportation. The congestion is generally associated with 

the entrance and exit lanes at interchanges. The interchange of I-285 and I-85 (North) has been 

ranked the number one worst truck bottleneck location in the U.S.A. It has the lowest daily speed 

of only 15 mph (ATRI, 2018). Several other Atlanta interchanges, such as I-75 and I-285 (North) 

interchange also made the 2018 top 100 for worst congestion rankings for truck-borne freight 

(ATRI, 2018). 

Traffic accidents are related to congestion as both a potential cause and result of road 

congestion. Traffic crashes are a major cause of injury and death and are thus a major threat to 

public health. According to the World Health Organization, injuries from road traffic accidents 

are the leading cause of death for people aged 5 to 29 and around 1,350,000 people die yearly 

worldwide. In addition, an average of 20 to 50 million people suffer yearly non-fatal injuries 

from crashes (WHO, 2018). During the year of 2018, on Interstate 285 in Georgia there were 

8,456 accidents, 2,230 injuries and 17 fatalities (GDOT, n.d.; National Center, 2019). The human 

pain and suffering associated with loss of life and injuries is well documented.  

In addition to the cost of human life and injuries, traffic accidents also contribute to 

economic loss. During 2018 in the U.S.A. there were around 40,000 fatalities and an estimated 

cost of $412.8 billion for motor-vehicle deaths, injuries and property damage (NSC, n.d.). 

Atlanta and surrounding areas lost an average of 108 hours to congestion in 2018 at an average 

cost of $1,505 per driver (INRIX, 2018). By improving road conditions financial loss can also be 

reduced. 
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Government agencies have engaged in numerous efforts to improve road conditions and 

reduce traffic accidents. These efforts would benefit from a deeper and better understanding of 

the various potential factors that are associated with traffic accidents. Identifying these factors 

may help transportation agencies in their continuing work to improve the interstate highways to 

make them safer for motorists. 

Objective 

As discussed previously, both congestion and traffic crashes are issues of significance 

because they reduce the efficiency of transportation systems and threaten the safety of motorists. 

Traffic congestion is also linked to an increase in accidents. For example, rear-end collisions, 

which are the most common crash type, are more likely to occur during heavy traffic conditions 

due to traffic instability in congested road condition (Tanaka et al., 2008). This in turn could lead 

to more congestion from the lane being blocked by a crash, creating a cycle of accidents and 

congestion on the road. 

The aim of the current study is to examine measurable variables that are related to traffic 

conditions, including congestions and driving speed, on interstate I-285. 

The specific objectives of this research are: 

1) Determine the spatial-temporal distribution of traffic speed on I-285. 

2) Visually identify and examine its relationship with traffic accidents to 

determine potential patterns. 

3)  Analyze traffic speed data and historical crash data on I-285. 

4)  Examine correlations among variables such as acceleration of traffic, time, location, 

lighting condition, road surface condition, injuries, and the manner of collision. 
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Literature Review 

 Previous studies on the prediction of accidents examined contributing factors of 

accidents. Research focused on traffic flow dynamics, such as speed and acceleration. One main 

reason is because traffic flow data are not always collected with crash data, making it difficult to 

examine these variables. Understanding the relationship between traffic dynamics and traffic 

accidents is imperative to understand the relationship between traffic crashes and congestion.  

The literature was analyzed by comparing different statistical models for prediction of 

crashes. The consensus was that determining the effect of both spatial and temporal variables in 

traffic crashes can be important in accounting for correlation due to unobserved heterogeneity. In 

other words, the data may not show why so many crashes are occurring, but if there is a 

significant correlation between crashes and other variables at a specific place and time, then that 

is helpful in finding out where the problem may lie. This can help narrow down where the road 

safety resources should be directed to be most effective (Liu & Sharma, 2018). A review of the 

literature indicated that most studies conducted data analyses of traffic crashes using both spatial 

and temporal effects, spatial or temporal, or neither. The benefits of each method are discussed. 
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Overview of factors 

Many studies have been conducted to examine factors that contribute to road crashes. 

Identifying factors affecting road accidents help create informed decisions for making safer 

roads. Some factors may be difficult to quantify or collect large scale data on such as driver 

attentiveness or emotional states. This can lead to unobserved heterogeneity that requires a more 

sociological approach to study. Other factors such as traffic speed, time of day, or weather 

conditions are easier to identify and analyze. Many factors  have been found by researchers to 

correlate with crash frequency; for example, curvature of road segment, freeway exit and 

entrance ramps, traffic volume, lighting, weather, work zones, speed, and deceleration rate (Kim 

et al., 2016; Zhang et al., 2016; Li et al., 2015; Glennon et al., 1983). Examining a wide range of 

potential factors surrounding accidents may lead to findings on which specific variables 

contribute to traffic crashes and need more focus in future studies. 

The link between congestion and accidents is well documented. A study of the effect of 

the congestion charge on London traffic by Green et al. (2016) compared the accident rates and 

congestion of Central London before and after the implementation of a driving fee. The results 

show that after the city of London added a charge the congestion decreased, which in turn 

resulted in reduced accidents (Green et al., 2016).  

A study by Pasidis (2019) on the two-way effect of accidents and congestion found there 

was a significant effect on each other. Pasidis examined the Highways Agency data in England, 

which included the average speed and journey times of ‘A’ roads on the Strategic Road Network 

from 2009 to 2015. There was evidence of a significant effect accidents had on congestion. There 

was a negative effect that accident occurrence had on traffic flow with a decrease in average 
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speed on of 7.8 km/h (4.85 mph). A suggested reason is that drivers slow down to view an 

accident (‘rubbernecking’) (Pasidis, 2019).  

Traffic congestion can be inferred from one of the three traffic stream variables: speed, 

traffic density, and traffic flow, whose relationship is often described by the classic traffic flow 

models. 

Speed has an interesting association with accidents. Higher speeds are associated with 

more fatal crashes, but the studies have found both a positive and negative association for 

average speed with accident frequency (Wang, 2010). A possible explanation for this is that since 

most accidents involve another car, more cars lead to more accidents. But if there are more cars it 

results in the average traffic speed decreasing according to the flow-density relationship. 

Another explanation is the variance of speed increases safety more than the speed itself 

(Lave, 1985). Part of the danger of congestion could be due to the deceleration of vehicles. 

Vehicles encountering congestion must sometimes make sudden decelerations to match the new 

speed. Sudden deceleration is a big correlating factor with rear-end type crashes (Kim et al., 

2016). The National Highway Traffic Safety Administration advises that cars should be at least 

100 feet away from each other at 30 mph and 400 feet away at 70 mph, but this advice is not 

followed enough.  

A study in North Carolina on rear-end crashes used micro-scale driving behavioral data 

gathered through an in-vehicle sensing system. They were able to get speed data at a resolution 

of one-minute from cars with the INRIX GPS-enabled probes. The speed data of the location of 

identified crash hotspots was analyzed for travel time, acceleration, and trip or driver-based 
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coefficient of variation. The study found high rates of deceleration correlated with road segments 

with high crash rates (Kim et al., 2016).  

A higher number of vehicles present is associated with a greater risk for accidents. 

Previous research on the relationship between the density of cars and accidents have mixed 

conclusions. Lord et al. (2005) conducted an analysis on the freeways in Montreal, Quebec, on 

the relationship between accidents and density, where density is measured as number of vehicles 

per lane per kilometer. The analysis indicates a negative relationship with density and accidents 

that did not involve collision with another vehicle or resulted in fatalities. The accident rate was 

found to follow a U-shaped curve where as the density increases, accidents decrease, but then 

increase again at higher densities (Lord et al., 2005). Then once the traffic has reached absolute 

congestion where the density of vehicles has reached its critical point, there is no movement and 

no accidents occur. 

The conclusions about the relationship between traffic flow and accidents are varied as 

there is a wide range of traffic flow and accident types. For example, hourly traffic flow was 

found to be positively correlated with accidents involving multiple vehicles, yet hourly traffic 

flow was found to be negatively correlated for single vehicle accidents (Wang, 2010). In a study 

on road bridges, traffic volume was the most important factor influencing road accidents (Elvik, 

2019). The southeast region in China has a high traffic volume due to the major developed cities 

located there and is responsible for 25.6% of the serious casualty crashes from 2009-2013, 

providing support for a positive relationship between traffic volume and road accidents (Xu et 

al., 2018). 
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Certain types of road segments are more accident prone than others, especially the road 

segments on interchanges. The study by Kim et al. (2016) on the relationship between driver 

behavior and accidents on I-40 in North Carolina found 85% of all rear-end crashes examined 

occurred within 2000 feet of an entrance ramp to the freeway (Kim et al., 2016).  

There is evidence that roads with more curvature are likely to have more accidents as 

well. Road alignment such as curves were a contributing factor in bridge accidents (Elvik, 2019). 

Vogt and Bared (1998) evaluated highway segments for Washington and found that increasing 

lane widths and less horizontal curvature reduces total crashes. Another study found 55.6% of 

serious casualty crashes occurred on roads with curves or slopes (Xu et al., 2018). Xu et al. 

postulated this could be due to drivers not being able to see ahead in curved roads as far or 

clearly as they could otherwise on straight stretches.  

Weather condition and its impact on the road has also been studied by researchers. A 

study investigated the frequency of accidents in Finland from 2014 to 2016 by different weather 

and road conditions by road type and accident type (Malin et al., 2019). The analysis identifies 

five categories of dangerous road conditions based on road surface condition, visibility, and icy 

rain. Results suggested that adverse road conditions such as wet or icy surfaces, were correlated 

with increased accidents. The highest risk was for two-lane and multiple-lane roads and slippery 

roads. Multiple-vehicle accidents had the highest relative accident risk on multiple-lane roads 

(Malin et al., 2019). 
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Statistical Methods 

 There have been several methods developed that can be used to study traffic issues. 

Researchers use these measures in their studies to analyze the probability and severity of road 

accidents within a city or province using GIS and find hotspots using GIS spatial statistic tools, 

Moran’s I, Getis-OrdGi* , and/or point kernel density function (Aghajani, 2016; Shafabakhsh, et 

al., 2017; Liu and Sharma, 2017; Prasannakumar et al., 2011). The Global Moran’s I statistic 

determines if a pattern is clustered, dispersed, or random, compared to nearby features (Esri). 

Getis-OrdGi* is a spatial auto-correlation method finds high or low value clusters (Getis & Ord, 

1992). Kernel density estimation (KDE) is the most common way to determine the density of 

each data point in a defined area (Plug et al., 2011).  The results from these studies provide 

useful information. The drawback from the above methods is that the data is examined on spatial 

correlation or on temporal and spatial factors separately (Prasannakumar et al., 2011). 

 Research shows that the Local Moran’s I tool is especially useful as it doesn’t use the 

total aggregate of the data. By examining crashes as outliers compared to nearby road segments 

it can better illustrate potential correlation from unobserved heterogeneity, assuming nearby 

locations generally share similar qualities.  It doesn’t limit hotspots to road segments which have 

high traffic volume as compared to the mean volume of every segment (Abdulhafedh, 2017).  

 A method for analyzing crashes against other variables is ordered probit (OP) model, 

where the marginal effects of each explanatory variable such as curvature or weather conditions 

are computed based on if they are correlated with an increase in severity of crashes (Zhang et al., 
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2011). The researchers report that this is an effective model when examining more than one 

outcome with a natural ordering. 

Other researchers find that for variables that have more than two outcomes, the logit 

model, also known as the logistic model, can be used to model the probability of an occurrence 

(Greene 2012; Xu et al., 2018). A multinomial logistic regression can assign more than two 

choices to a prediction model, making this a useful tool (Greene, 2012).   

Studies comparing various traffic crash prediction models found that when comparing the 

multivariate Poisson-lognormal model, multivariate spatial Poisson-lognormal model, and 

multivariate spatiotemporal Poisson-lognormal model using WinBUGs software, the multivariate 

spatial-temporal model had the best fit for crash frequency prediction when the crashes were 

ranked by severity (Zhan et al. 2015; Ma et al. 2017). But univariate spatial-temporal modeling 

has been found to be the best fit when only one type of crash is examined (Liu & Sharma, 2017).  

 Most previous studies have examined the accident data at a yearly or daily level.  It’s 

been suggested that accident data may be more useful at the micro level (Plug et al., 2011). 

Further, using a higher resolution time scale can help better visualize the patterns found in the 

data. Therefore, the current research, focusing on data at 5-minute time interval, would provide a 

level of resolution that could result in a better understanding of traffic dynamics and the 

associated safety implications, which could be beneficial for future safety initiatives. 
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Data Acquisition and Processing 

 For this research, historical accident data from January 1, 2016 to December 31, 2018 

was obtained from the Georgia Department of Transportation (GDOT).  GDOT uses the 

Navigator’s Video Detection System (VDS) as the primary source of real-time transportation 

information. Approximately 1,645 VDS stations were installed every 1/3 mile along most 

interstates around Atlanta. These VDS cameras provide continuous speed and volume data to the 

GDOT Transportation Management Center.  The xml file containing traffic information from 

those VDS cameras was downloaded from the GDOT Navigator system. An excerpt of the XML 

file is shown in Figure 1.  

 

Figure 1. An example of the XML file of traffic data 
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The traffic data were collected from October 1, 2017 to June 25, 2018 at five-minute 

intervals. Then the specific values from the extracted xml files were written to an SQLite 

database using a Python program. An inventory file, containing information on camera name, the 

latitude and longitude of each camera, was used to map traffic information to a GIS roadway 

layer.  

 From the SQLite database, the speed data was visually illustrated by coding the speed as 

a pixel value using Python as seen in Figure 2. The y axis represents data organized by physical 

placement of cameras. The x axis represents the time of day by five-minute increments. Each 

pixel color represents the speed of traffic with white pixels meaning no movement and black 

pixels showing high speed with a range from 1 to 189 km/h. The cameras would not record speed 

data if there were no movement, so null speed values were set to -2 for ease of processing. 

Camera status was classified as 1, 2, or 3 to signify if the camera was operational at the time it 

was accessed. There was a total of 384 cameras but only 365 were consistently functioning for 

the duration of the eight months the data was collected. There are 180 cameras on 

counterclockwise traffic and 185 on clockwise traffic around I-285. In Figure 2, the top half of 

the image shows the clockwise traffic and the bottom half counterclockwise traffic. Due to the 

numbering system 11 clockwise cameras were placed in the bottom half, though only 5 were 

consistently functional. Additionally, there are 288 five-minute intervals in 24 hours but only 278 

pixels are represented due to the cameras tending to provide no speed data from 23:35 to 00:25 

for unknown reasons. The resulting image can be seen in Figure 2, where the red tinted area 

shows clockwise direction of I-285 and the purple tinted area shows counterclockwise direction 

of I-285.  
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.  

Figure 2. Initial image created from collected speed data from I-285 cameras on March 28, 2018. 
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Though there would be deviation from day to day, a clear pattern regarding the ‘clouds’ 

of traffic congestion revealed itself based on day of week. It appears that Saturday and Sunday 

show far less congestion than weekdays on average.  The averaged images (Figure 3, Figure 4, 

and Figure 5) based on each day of the week were created using the GNU Image Manipulation 

Program (GIMP) to show a clearer visual representation of congestion by weekdays and 

weekends. The color scale goes from white which represents the lowest speed and to black which 

represents the highest speed.  

Figure 3. Average speed from October 1, 2017 to June 25, 2018 on Monday and Tuesday. 
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Figure 4. Average speed from October 1, 2017 to June 25, 2018 for Wednesday through Friday. 
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Figure 5. Average speed from October 1, 2017 to June 25, 2018 separated by Saturday and 

Sunday. 

 

The images were first denoised by averaging the images by weekday. Then, the horizontal 

white lines of missing data were masked and inpainted using the surrounding pixels. Finally, the 

selective gaussian tool from the GNU Image Manipulation Program (GIMP) was applied. Those 

successive steps result in a 278x365 image, as shown in Figure 6. 
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Figure 6. The averaging and denoising of Wednesday traffic. 

 

 The eight ‘clouds’ of congestion found were marked and numbered in Figure 7, occurring 

mostly in the northern half of the I-285 loop as seen in Figure 8 and Figure 9. Clouds 1, 4, 5, and 

8 appeared from around 6:00 to 10:00 and clouds 2, 3, 6, and 7 appeared from roughly 13:00 to 

19:00. Based on this pattern, it would be most beneficial to direct congestion relieving policies to 

these specific locations and times. 
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Figure 7. Averaged weekday speed map with identified congestion. 
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Figure 8. Location of congestion clouds for Clockwise traffic. 

Figure 9 Location for congestion clouds for Counter-clockwise traffic. 
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In order to visualize the spatial-temporal relationship between congestion and accident 

occurrence, red pixels denoting crashes were placed in the “cloud” map based on the date, time 

and nearest camera of the crash. An example can be seen in Figure 10. As shown, the majority of 

crashes occurred within or at boundaries of the clouds.  

 

 To further examine the relationship between traffic speed and accidents, a random 

weekday, Monday, was picked as the point of analysis. The total number of crashes for Monday 

from 2016 to 2018 was compared to the averaged traffic speed map for Monday in Figure 11. 

Figure 10. A visualization of the 42 traffic accidents (in red, size increased for clarity) on a 

denoised cloud map representing speed of traffic on March 28, 2018. 
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There appeared to be a correlation between traffic speed and accidents as evidenced by the 

accidents appearing to be positioned near or within the clouds, as shown in Figure 11. 

 
Figure 11. All Monday accidents from 2016 to 2018 on I-285 (left) and averaged Monday I-285 traffic 

speed map (right). 

 



SPATIO-TEMPORAL ANALYSIS OF HIGHWAY ACCIDENTS 

 

   

27 

 

To investigate possible correlation between acceleration and accidents, an acceleration 

plot of the speed data was created using Python. It was hypothesized that areas of high 

deceleration would result in more crashes on freeways. 

Then the crashes were graphed to the image as seen in Figure 12. Dark blue represents 

high deceleration and yellow represents high acceleration. 

Figure 12. Acceleration plot of March 28, 2018 with image in scale to show relation of crashes 

(red pixels) 
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Applying crash data to averaged data did not illustrate an accurate image of the possible 

relationship between traffic acceleration and accidents. A simple visual observation did not 

reveal an obvious connection between acceleration and crashes. This might be because the 

spatial resolution is not high enough due to each camera being roughly three miles away from 

each other. Additional analysis would provide insight on the possible significance of a correlation 

between accidents and traffic acceleration.  

 The camera and crash data were transferred to a MySQL database for additional clean up 

and processing. The acceleration values for each segment of time at a given location were 

calculated and accident data was merged to the table based on time and location.  

The crash data from 2016-2018 contained 25,875 accidents that happened on the I-285. 

Most of the accidents, with 14,390 instances, are categorized as 'Rear End', meaning a vehicle 

impacted the rear bumper of the vehicle in front of it. The second most numerous crash type, 

with 6,728 instances, was 'Sideswipe-Same Direction', where the sides of two vehicles traveling 

in the same direction make impact. The category of 'Angle' collisions is third most common with 

2,387 occurrences and is when a vehicle impacts another vehicle at an angle. The 'Not A 

Collision with Motor Vehicle' category is when a vehicle hits something like the road railing or a 

tree and happened 2,135 times. 'Head On' collisions are when two cars in opposite directions 

collide. ‘Head On’ collisions are relatively uncommon with only 138 reported cases but are the 

deadliest type of collision (Georgia Governor’s, n.d.). 'Sideswipe-Opposite Direction' crashes are 

the same as the 'Sideswipe-Same Direction' crashes, but the vehicles are traveling in opposite 

directions and only happened 48 times. For 49 accidents there was no manner of collision 

recorded and was labeled as 'Unknown'. Figure 13 presents these data. 
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In order to perform any statistical analysis on the relationship between traffic accidents 

and road variables, the ArcGIS software was selected due to familiarity and widespread use for 

spatial statistics. In ArcGIS Desktop the edited accident data was uploaded and further modified 

by adding a column with a binary choice, created for identifying direction of traffic, position 

regarding interchange location, severity of crash, and other variables. Then each accident was 

Unknown Angle Head On

Not A
Collision

with Motor
Vehicle

Rear End
Sideswipe-
Opposite
Direction

Sideswipe-
Same
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Figure 13. Distribution of I-285 Crashes from 2016 to 2018 by collision category. 
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mapped according to crash type. Figure 14. Heat map of Crashes on I-285 in 2018 by Collision 

type 1-4. and Figure 15.  Heat map of Crashes on I-285 in 2018 by Collision type 5 and 6 

presents the results.  

 

 

Figure 14. Heat map of Crashes on I-285 in 2018 by Collision type 1-4. 
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Due to limitations in file upload size, only the crashes on I-285 from 2018 were mapped 

to ArcGIS. There were not enough data points for Head On, Sideswipe-Opposite Direction and 

Unknown type crashes to provide a comprehensive idea of high concentration areas. However, 

Angle, Not a Collision, Rear End, and Sideswipe-Same type crashes showed some similarities in 

areas of highest crash concentration, most notably the northwestern corner of the I-285 loop. 

The heatmap generated for each type of collision showed different areas of high 

concentrations with some patterns emerged. There appeared to be a tendency for accidents to 

happen around interchanges, especially rear end crashes. An example of how the crashes 

appeared to congregate near an interchange with empty areas before and after is shown in the 

close-up of an interchange below in Figure 16

Figure 15.  Heat map of Crashes on I-285 in 2018 by Collision type 5 and 6. 



 

 

 

This observation was confirmed by grouping the crashes based on road segment type. 

There were 377 separate road segments with 158 segments not having any interchange 

association and 219 that did. In ArcGIS each segment that was observed to contain either an exit 

and/or an entrance ramp(s) was marked. In the attribute table a new column was named intersect 

and if a road segment had an exit ramp it was given a value of -1 to signify a diverging lane, a 1 

if there was an entrance ramp resulting in a merging lane, a 2 if the segment contained both an 

exit and entrance ramp or the segment was within an interchange between exit and entrance 

ramps, and left 0 for all other road segments. 

Figure 16. Map of I-285 accident data with closeup of interchange. 
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An illustration of the classification of different road segments can be found in Figure 17.  

Merging road segments with an entrance lane are marked in dark blue, diverging road segments 

with an exit lane are marked in red, weaving road segments that have both exit and entrance 

lanes or are within an interchange between diverging and merging road segments are marked in 

light blue. All other road segments are in beige. 

 

It is clear from Figure 18, most crashes occurred in a road segment with an entrance ramp 

creating a merging lane. Rear end crashes especially showed a dramatic amount of crashes in a 

merging road segment compared to the other crash types. 

Figure 17. Classification of road segment based on position in interchange. 
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Figure 18. Bar graphs of number of crashes by crash type and road segment type. 
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Analysis 

 Two statistical techniques, the Local Moran’s I measure and logistic regression, are used 

to examine the relationship between congestion and road accident frequency. The Local Moran’s 

I measure determines if there are significant clusters or outliers from the accident frequency and 

the location of the accident hotspots found. The logistic regression tested the strength of the 

association between chosen variables and their significance level.  

Local Moran’s I 

 The ArcGIS spatial statistics Local Moran’s I tool analyzes data for hotspots based on the 

number of crashes. Local Moran’s I is computed by Eq. 1. The results show low-low clusters, 

where low value features are surrounded by low value neighbors, and high-high clusters, where 

high value features are surrounded by high value neighbors. Low-high clusters signify significant 

low value when compared to high value neighboring features and high-low clusters signify 

significant high value when compared to low value neighboring features (“How Cluster,” n.d.).      

𝐼𝑖 =
𝑥𝑖−�̅�

𝑆𝑖
2  ∑ 𝑤𝑖,𝑗(𝑥𝑗 − �̅�)𝑛

𝑗=1,𝑗≠𝑖        (1)  

𝑆𝑖
2 =

∑ (𝑥𝑗−�̅�)2𝑛
𝑗=1,𝑗≠𝑖

𝑛−1
         (2)  

where, 

�̅�: mean of x; 

xi: value of x at location i; 

xj: value of x at location j; 

wij: the elements of the weight matrix; 

n: number of observations; 
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Index values range from -1.0 to 1.0, with a negative value indicating a negative spatial 

correlation and a positive value indicating a positive spatial correlation.  The expected Moran’s Ii 

is computed by Eq. 3. 

 𝐸[𝐼𝑖] = −
∑ 𝑤𝑖𝑗 𝑛

𝑗=1,𝑗≠𝑖

𝑛−1
         (3)  

When Ii, the Moran’s I value, is greater than E[Ii], it indicates a positive spatial correlation. If  Ii 

is less than E[Ii] then it indicates a negative spatial correlation. If location j is next to location i, 

then Wij has a weight of 1.0, if else 0.0. The z-score of Ii is calcuated by Eq. 4, 

𝑧𝐼𝑖
=  

𝐼𝑖−𝐸[𝐼𝑖]

√𝑉[𝐼𝑖]
          (4) 

The variance of Ii is calculated by Eq. 5. 

 𝑉[𝐼𝑖] = 𝐸[𝐼𝑖
2] − 𝐸[𝐼𝑖]

2        (5) 

 

Logit Regression 

Logit regression, also known as logistic regression, is a popular algorithm for solving a 

classification problem. A binomial logistic regression is when the dependent variable is 

dichotomous. The logistic regression estimates the probability of one of two outcomes. This 

method was chosen since the crash data has a discrete outcome, either a crash happens, or it 

doesn’t. If a crash occurred, it was coded as 1, if not, then it was coded as 0.  

 A logit regression model was fitted using the statsmodel package from Python. The 

resulted coefficients were considered significant when p<0.05. 
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Explanatory variables would include curvature of the road, if the road segment has an exit 

or entrance ramp, current lighting, and road condition. For this experiment, data from March 

2018 was used. March 2018 had the most accidents of the eight-month period of camera data 

recording. This resulted in 649 crashes from the police data and 2 million rows of traffic speed 

from the cameras.  

The vehCount per lane was calculated by taking the number of vehicles recorded by the 

camera every five minutes divided by the number of lanes at the road segment the camera was 

located. 

Lag_speed was the speed of traffic during the previous five-minute interval before the 

crash was recorded to have occurred. Lag_acc was the acceleration of traffic during the previous 

five-minute interval before the crash. 

Table 1. Descriptive statistics of variables 

VARIABLES Min Mean Max 

LAG_SPEED (m/s) 0 28.64 52.5 

LAG_ACC (m/s^2) -0.1574 0.0014365 0.1481 

CURVA 0 0.0009032 0.01042 

VEHCOUNT/LANENUM 0 4.667 24.5 
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If the road segment was positioned along an interchange, it was sorted into three 

categories. Merging was denoted with a 1 and meant the road segment was receiving incoming 

traffic from an entrance ramp. Diverging was coded as a -1 and meant traffic was decreased from 

an exit ramp leading off the interstate. Weaving was coded as a 2 and meant the road segment 

was either between a Merging and Diverging segment within the interchange or contained both 

entrance and exit ramps. Non-interchange aligned road segments were coded as 0. 
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Results 

The hot-spot analysis of the spatial pattern of the traffic crashes on the I-285 from 2016 to 

2018 focused on identifying high-high clusters, road segments with high accident numbers and 

neighboring segments with high accident numbers, or high-low outliers, road segments with high 

accidents numbers and neighbors with low accident numbers. Both would identify areas with a 

concentration of high accidents with can then be compared to the areas of congestion mapped 

above. 

The logistic regression for crash occurrence on I-285 used crash data from October 1, 

2017 to June 25, 2018 to match the time limits of the collected speed data. The speed and 

acceleration of traffic, traffic density, and three road segment types based on their position 

regarding interchanges were the variables modeled for correlation with accident occurrence per 

road segment. The information was segregated spatially. 

Using the Local Anselin Moran’s I method, the results showed the high-high clusters in 

Table 2 and Figure 19 below. Interestingly there were no high-low clusters, meaning there were 

no road segments with a high number of accidents compared with neighboring low accident 

number road segments.  
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The positive Local Moran’s I index (LMiIndex) value indicates the value is part of a 

cluster, the higher the number the more similar the neighboring values. All the clusters had 

positive LMiIndex values which meant no outliers. The Count_1 column shows number of 

accidents that occurred in that road segment. The NNeighbors value is the number of neighbors, 

all neighbors were limited to road segments within 1km to maintain local adjustment weight. 

Only values with a Local Moran’s I p-value (LMiPValue) of less than 0.05 were considered 

significant. 

  

Table 2. High-high clusters of accidents. 
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The location of the clusters are highlighted in Figure 19. Road segment location of high-

high clusters of crashes highlighted in blue. below. None of the identified clusters were in the 

southern half of the I-285 loop. There are 11 high-high clusters total but only nine appear show 

on the map. This is due to the proximity of two pairs of segments, where one is clockwise and 

one counter-clockwise that leads to overlapping when the map scale adjusts. The two 

overlapping segments are located to the east on the far right of Figure 19 near Doraville. Every 

segment was located on a road segment with an entrance or exit ramp. 

 

Figure 19. Road segment location of high-high clusters of crashes highlighted in blue. 
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Table 3 . Logit Regression Results for all crashes 

 

                           Logit Regression Results                            

============================================================================ 

Dep. Variable:  crash      No. Observations: 1724 

Model:   Logit      Df Residuals:  1718 

Method:  MLE      Df Model:  5 

Date:   Tue, 30 Jul 2019   Pseudo R-squ.: 0.1183 

Time:    01:08:29     Log-Likelihood:  -791.54 

converged:   True      LL-Null:        -897.79 

Covariance Type: nonrobust     LLR p-value:      6.003e-44 

============================================================================ 

                          Coef  std err    z        P>|z|       [0.025      0.975] Odds ratio 

------------------------------------------------------------------------------------------------------------------------------------- 

Intercept  -1.5050       0.281  -5.354       0.000       -2.056      -0.954 0.2220 

vehCount/lane    0.1258       0.023       5.445       0.000        0.081       0.171 1.1341 

lag_speed  -0.0536       0.008      -7.139       0.000       -0.068      -0.039 0.9478 

Merging                1.6401       0.170       9.676       0.000        1.308       1.972 5.1557 

Diverging              0.9650       0.194       4.974       0.000        0.585       1.345 2.6248 

Weaving                1.4577       0.198       7.352       0.000        1.069       1.846 4.2961 

============================================================================ 
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The crash prediction model based on traffic density, traffic speed five minutes before the 

crash, and type of road segment based on exit and/or entrance ramp presence can be seen above 

in Table 3.  

The acceleration of traffic of the road segment five minutes before a crash was not 

statistically significant. The curvature of the road segment was also not statistically significant.  

The vehcount/lane, merging, diverging, and weaving are significant, and all had positive 

correlations with crash numbers while lag_speed had a negative correlation.  

The highest odds ratio was for road segments with merging lanes and was 5.1557. This 

can be interpreted as the presence of an entrance ramp increases the risk of crashes more than 

five-fold based on the given data selection. Diverging road segments had an odds ratio of 2.6248 

which was around half of merging road segments. Though diverging road segments are less 

likely to have crashes compared to merging road segments there is still an associated 2.6248 

increase of crashes. The odd ratio for weaving road segments was 4.2961 which was between 

5.1557 and 2.6248.  

The traffic volume, represented by vehicle count divided by number of lanes 

(vehcount/lane), showed a positive coefficient, which is as expected, since higher volume 

indicates a higher exposure.  

The lag_speed had an odds ratio of 0.9478, so the odds of a crash are 5.22% less for 

every 1 m/s increase in traffic speed.  

Therefore, according to this model, the increase in traffic volume and presence of 

interchanges were correlated with an increase in crash frequency and an increase in traffic speed 

five minutes before the crash was correlated with a decrease in the probability of a crash. 
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Conclusions and Recommendations 

There are two main congestion patterns on I-285, separated by weekday and weekends. 

The congestion 'clouds' during the weekday last several hours and occur in the northern half of 

the I-285 loop. The congestion periods occur twice a day from around 6:00-11:00am and 1:00-

8:00pm. During congestion periods the direction of traffic travels north in the morning and 

south-bound in the afternoon. The implication is the high congestion periods are from the 

commuting traffic heading toward Atlanta via Interstates 285 and 85 North in the morning and 

then returning home in the evening. 

The hot-spot analysis shows clusters of road segments with high crash numbers occur in 

areas that also have high congestion. Further analysis should be focused on the 11 road segments 

with high accident rates for causation diagnosis. The hotspots appear in the same locations as the 

identified congestion. This supports the idea that congestion and accidents are positively linked. 

The hotspots occurred on road segments with interchanges meaning there is evidence of 

interaction in the relationship between the two variables and crash frequency. 

The correlation coefficients obtained from the logistic regression confirm the positive 

correlation between low speed with crash probability. The probability of a crash is higher if there 

is already congestion present. This is evidence that congestion has a greater effect on accident 

frequency than accident frequency does on congestion. 

  The road segments near or within an interchange are positively correlated with crash 

frequency. The correlation makes sense as vehicles entering traffic may not be able to merge 

easily. Diverging road segments had a positive relationship but are less correlated than merging 
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road segments. This may be due to it being easier to exit the interstate than entering as exiting 

ramps allow a gradual deceleration.   

Further research should explore a nested logit model structure to reveal the effect based 

on different types of crashes. A nested logit model can be used to isolate factors such as crash 

occurrence by type which could reveal specific factors contributing to different types of 

accidents.  

Research Limitations 

 There are two main limitations in this study. First, speed data from the I-285 cameras are 

missing due to periods of malfunctioning of some cameras. The acceleration is calculated over 

inconsistent time intervals and is not a perfect representation of real time changes. Second, the 

recorded time of accident from the crash data might not be accurate as it reflects the officer’s 

arrival time more than the time the accident occurred.  

Second, the analysis model used in the study has limitations. Although the logit model 

provides insight into the influential variables on crash frequency, it did not capture heterogeneity 

across space, time, and crash type. A multivariate spatio-temporal model should be investigated 

in future studies to provide a more comprehensive analysis.   
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