
Kennesaw State University
DigitalCommons@Kennesaw State University
KSU Proceedings on Cybersecurity Education,
Research and Practice

2019 KSU Conference on Cybersecurity Education,
Research and Practice

Oct 12th, 1:00 PM - 1:25 PM

Automated Reverse Engineering of Automotive
CAN Bus Controls
Charles Barron Kirby
University of North Georgia, cbkirb0968@ung.edu

Bryson Payne
University of North Georgia, bryson.payne@ung.edu

Follow this and additional works at: https://digitalcommons.kennesaw.edu/ccerp
Part of the Automotive Engineering Commons, Information Security Commons, Management

Information Systems Commons, and the Technology and Innovation Commons

This Event is brought to you for free and open access by the Conferences, Workshops, and Lectures at DigitalCommons@Kennesaw State University. It
has been accepted for inclusion in KSU Proceedings on Cybersecurity Education, Research and Practice by an authorized administrator of
DigitalCommons@Kennesaw State University. For more information, please contact digitalcommons@kennesaw.edu.

Kirby, Charles Barron and Payne, Bryson, "Automated Reverse Engineering of Automotive CAN Bus Controls" (2019). KSU
Proceedings on Cybersecurity Education, Research and Practice. 5.
https://digitalcommons.kennesaw.edu/ccerp/2019/research/5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@Kennesaw State University

https://core.ac.uk/display/231831809?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.kennesaw.edu/?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2019%2Fresearch%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/ccerp?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2019%2Fresearch%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/ccerp?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2019%2Fresearch%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/ccerp/2019?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2019%2Fresearch%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/ccerp/2019?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2019%2Fresearch%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/ccerp?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2019%2Fresearch%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1319?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2019%2Fresearch%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2019%2Fresearch%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2019%2Fresearch%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2019%2Fresearch%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/644?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2019%2Fresearch%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/ccerp/2019/research/5?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2019%2Fresearch%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

Abstract
This research provides a means of automating the process to reverse engineer an automobile’s CAN Bus to
quickly recover CAN IDs and message values to control the various systems in a modern automobile. This
approach involved the development of a Python script that uses several open-source tools to interact with the
CAN Bus, and it takes advantage of several vulnerabilities associated with the CAN protocol. These
vulnerabilities allow the script to conduct replay attacks against the CAN Bus and affect various systems in an
automobile without the operator’s knowledge or interaction.

These replay attacks can be accomplished by capturing recorded network traffic and resending them to find
which traffic conducts certain actions. Automobiles are becoming more reliant on computer systems and
networks to operate, including the integration of wireless interfaces to interact with these systems
(Avatefipour & Malik, 2018). These systems contain numerous vulnerabilities as they were not built with
consideration to hacking (Wolf, Weimerskirch, & Paar, 2004). Creating a tool to automate the reverse
engineering process allows for a better understanding of the CAN Bus and its vulnerabilities. The aim of this
script is to allow the user to identify what specific packets captured from CAN Bus traffic will initiate selected
actions in the automobile’s controls. The results show the user can repeatedly split and send log files to the
CAN Bus to narrow down the files to a single packet that is starting the selected outputs of the CAN Bus using
this script.

Location
KSU Center Rm 400

Disciplines
Automotive Engineering | Information Security | Management Information Systems | Technology and
Innovation

Comments
The authors are grateful to the reviewer, and have addressed the reviewer's comments and suggestions. Two
additional references are added with four previous examples of automotive hacks in recent literature at the
reviewer's suggestion. A photo of the Korlan USB2CAN device is added as Figure 1 per the reviewer's
comment. We have added a note on the future work we have begun by capturing data from three of four
vehicles successfully to date. The only recommendation we did not take was changing the name of the paper,
rather, we added two sections explaining the reverse engineering process in the paper.

This event is available at DigitalCommons@Kennesaw State University: https://digitalcommons.kennesaw.edu/ccerp/2019/
research/5

https://digitalcommons.kennesaw.edu/ccerp/2019/research/5?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2019%2Fresearch%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/ccerp/2019/research/5?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2019%2Fresearch%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages

INTRODUCTION

Computer systems are becoming increasingly integrated into modern cars to
improve their performance and safety. This results in an increasing scale and
complexity of the systems supporting these automobiles. Modern cars are currently

built upon several millions of lines of code in their software to run these systems
(Charette, 2009). Electronic Control Units (ECUs) are used to monitor sensors and

to control components of an automobile such as turn signals, doors, and the speed
of the car (Charette, 2009).

While modern cars have been greatly benefited by these advancements, these

systems are vulnerable to malicious attacks, because there have been few
safeguards added to prevent them from occurring (Wolf, Weimerskirch, & Paar,

2004). The vulnerabilities of the CAN bus include the lack of any encryption,
allowing the attacker to view these packets in plaintext, thus allowing attackers to
capture packets from the CAN bus to send back later (Pan, Zheng, Chen, Luan,

Bootwala, & Batten, 2017). Another serious vulnerability is the lack of
authentication inside the network, because without authentication an attacker can

conduct repay attacks without having to appear as a legitimate source (Wolf,
Weimerskirch, & Paar, 2004). This lack of encryption and authentication permits
even an attacker with no prior knowledge of the particular automobile’s controls to

reverse-engineer the CAN bus to determine message IDs and data values to
interfere with virtually any system connected to that vehicle’s CAN bus.

Significant prior work has been published on hacking particular vehicles, from a
2011 Chevy Malibu (Checkoway et al., 2011) to the 2015 Jeep Cherokee (Miller &
Valasek, 2018) to 2016 Tesla and 2018 BMW hacks (Payne, 2019). However, in

each case, a researcher must do extensive investigative work hands-on with each
vehicle, manually reverse-engineering each CAN bus ID and message value for the
various controls of each system in the vehicle. And CAN IDs and data values vary

not only across manufacturers, but between models from the same manufacturer,
and even between the same model across different model years. The purpose of this

paper is to provide an easy-to-use application capable of automating much of the
process, assisting the researcher in quickly discovering and documenting CAN IDs
and data values for relevant control systems in any automobile to which the

researcher has physical access.

Besides a direct physical connection to the on-board diagnostic type two (OBD-II)

port, wireless connections can be made to modern vehicles by using external
interfaces such as Bluetooth, 4G LTE, and GPS (Avatefipour & Malik, 2018). This
makes the vulnerabilities of the CAN bus more problematic, as it expands the

possible methods attackers can use to access the car's CAN bus (Avatefipour &

1

Kirby and Payne: Automated Reverse Engineering of Automotive CAN Bus Controls

Published by DigitalCommons@Kennesaw State University, 2019

Malik, 2018). The Python script developed in this paper exploits these
vulnerabilities to allow a researcher, or an attacker, to reverse engineer the CAN

bus inside the majority of automobiles sold in the US in the past twenty years.

SETTING UP THE ENVIRONMENT

The process begins with connecting to the car using an OBD-II converter, such as
a $40 CANtact CAN to USB converter, or a slightly more expensive $70 Korlan

USB2CAN adapter like the one shown in Figure 1 (Kirby, 2019).

Figure 1: The Korlan USB2CAN adapter ($70 USD) connects a laptop or desktop

computer to the OBD-II port in most cars and trucks sold in the US since 1996.

VirtualBox or VMware can be used to create a Kali or Ubuntu Linux virtual
machine in order to create an environment suitable for intercepting and replaying
CAN traffic (Payne, 2019). Once a Linux VM is installed, the proper tools needs to

be installed so the script can be run. Fortunately, the user only needs to install can-
utils. Can-utils is an open-source Linux tool that allows the user to interact with the

CAN bus by issuing commands on the terminal. This allows the user to interact
with the CAN bus by sending individual packets, sending entire log files, and
display CAN bus traffic. Can-utils can be installed with the following terminal

command:

sudo apt-get install can-utils

Next, the user needs to use an OBD-II Adapter cable, a CANtact v1.0 CAN to USB
Converter, and A-Male to B-Male USB 2.0 cable to hook up to the car. The OBD-

II Adapter is plugged into the OBD-II port of the vehicle. The OBD-II port is
commonly located beside or below the steering wheel. In order to use the CANtact

2

KSU Proceedings on Cybersecurity Education, Research and Practice, Event 5 [2019]

https://digitalcommons.kennesaw.edu/ccerp/2019/research/5

or Korlan converter to look at the car's CAN bus traffic, the slcand daemon needs
to run and a CAN interface should be enabled using the following commands:

sudo modprobe can

sudo slcand /dev/ttyACM0 can0

sudo ip link set up can0 type can bitrate 500000

Issuing a candump command like the one below helps capture all traffic in the CAN
bus and inserts it into a log file for the user to use in the script:

 candump -L can0 > action.log

It is important to note that the candump command must be issued before doing
anything in the car that the user wishes to record to the log file, otherwise the actions

will not be captured. More than one action can be performed in a single candump.
For example, the user can turn on the headlights, use both turn signals, turn on the

radio and air conditioning, press the brake pedal, and rev the engine during a single
logging session. The same log file can then be replayed to determine the CAN
message IDs and data values for each of the controls captured, one at a time. The

user can press CTRL-C to stop the capture.

In many cases, a control will remain active after it is initiated (like turning on the

headlights or radio), so a second short candump capture is required to serve as a
“baseline” to reset the control to its off state:

 candump -L can0 > baseline.log

After issuing this command, the user can turn off the relevant controls—including
turning off more than one system at a time. This baseline file will be replayed after

each successful replay of the first log file to turn off the appropriate controls for
each successive round of refinement. (Again, press CTRL-C to stop the capture.)

IMPLEMENTATION

A Python script is used to automate the reverse engineering process by sending

repeated replay attacks using a binary search to replay recursively smaller halves
of the log file until only a single CAN bus message remains. Python is used because
it was faster and more flexible to design the script with and the requirements do not

demand the fast execution of compiled languages.

The script only needs the user to provide two log files: the log file containing

captured traffic with the original output and a log file to toggle off any functions
turned on by the previous log file. The syntax to run the script is:

python CANReverseEngineer.py action.log baseline.log

where action.log is the log file containing the actions the user wishes to reverse-

3

Kirby and Payne: Automated Reverse Engineering of Automotive CAN Bus Controls

Published by DigitalCommons@Kennesaw State University, 2019

engineer into CAN IDs and message values, and baseline.log is the log file
containing a clear (off) signal for the same control.

The script uses a straightforward binary search approach, cutting the log file into
halves and playing these halves for the user across the CAN bus cable to the vehicle,

or to the emulator if preferred. After a half is played, the user decides if the file sent
the output the user is looking for (like brake lights, radio turned on, turn signals,
etc.). If the desired control is activated, that file’s half is split into smaller halves

and those halves are played until there is only one line remaining, containing the
command that generates the desired output.

If the first half is played with no desired output the user can play the second half to
find if the desired output is in the second half instead. If the user finds the desired
output from the car, the half that was played is set as the file to be split again at the

start of the while loop, the number of lines is updated for the new half-file, and the
file counter is incremented to match the number of times the file was split . But, if

at any point both halves are played and no desired response is found, the script will
stop, requiring the researcher to start from the original file, or possibly recapture
the CAN bus data from the source.

Once a log file with only one line is generated, the while loop stops, and the script
returns the name of the log file that contains the packet the user is looking for. The

user can check the final log file to see the packet that triggers the desired output,
and they can check if it really gives this desired output by sending the following
command:

 cansend [packet from final log file]

A binary search method to split the files into halves and run those halves was used

for this script. The script checks for an even number of lines before splitting in half.
If the number of lines in the log file is not even, the middle of the file is pushed to

one more line before spitting. A variable that increments after each cycle through
the while loop is used to keep track of how many times the file has been split and
is used as part of the naming convention for newly split log files. The naming

convention goes x followed by the number of files played followed by aa if it’s the
first half or ab if it is the second half. For example, file “x1aa” would be from the

first time a file was split and is the original file’s first half. The code below
demonstrates how the files are split:

if (numberOfLines % 2 == 0):

 os.system("split -l %i %s x%i" % (findMiddleOfFile(file), file,
fileCounter))

 firstHalf = "x%iaa" % fileCounter

 secondHalf = "x%iab" % fileCounter

4

KSU Proceedings on Cybersecurity Education, Research and Practice, Event 5 [2019]

https://digitalcommons.kennesaw.edu/ccerp/2019/research/5

elif (numberOfLines % 2 == 1):

 os.system("split -l %i %s x%i" %
(findMiddleOfFile(file)+1, file, fileCounter))

 firstHalf = "x%iaa" % fileCounter

 secondHalf = "x%iab" % fileCounter

A line of code is presented below showing the terminal command to replay a log
file across the CAN bus.

canplayer -I [file name]

The current implementation inside the Python script wraps this terminal command

in a Python os.system() command that sends this command automatically through
the Linux terminal without user interaction (Kirby, 2019).

Any function of the car that toggles on and off requires the function to be turned
off before commands to turn on the feature can be used again, so a file of captured
traffic containing packets to turn off the turn signals is used as well. The command

to play the log file is placed inside of a for loop to repeat the command multiple
times. The current implementation is seen in the code below:

for x in range(0, 5):

 os.system("canplayer -I %s" % firstHalf)

os.system("canplayer -I %s" % baseline)

The final resulting line of a CAN log file after several rounds of halving the file

and indicating “Y” or “n” should look like the one below. The featured CAN
message shown here is the command used to turn on the right side turn signal inside

a simulated CAN network:

vcan0 188#02000000

Finding the packets that trigger the acceleration and deceleration in a CAN bus can
be more difficult, as they do not represent a simple toggle on and off like turn
signals (Payne, 2019). This means the response will be harder to see by the user as

the responses will mean smaller upward movements from the speedometer. Finding
harder to detect desired outputs can be done with a for loop as it replays the output

multiple times, so it gives the user multiple chances to detect the output (Kirby,
2019). To take full advantage of this script, it is recommended that the user create
a database to hold CAN bus data of reverse-engineered cars to use at a later time.

RESULTS

The resulting seventy-line Python script can successfully reverse engineer many of

the functions controlled by an automobile’s CAN bus. The user interaction required

5

Kirby and Payne: Automated Reverse Engineering of Automotive CAN Bus Controls

Published by DigitalCommons@Kennesaw State University, 2019

is limited to capturing the original CAN bus log with the desired controls activated
and a “baseline” log with all controls turned off, then selecting “Y” or “n” to

indicate whether the automated analysis script was able to activate the control
during the replay phase. Using a binary search approach to split the files is fast.

However, the speed that the script can narrow down the log files to one line varies
by the log (base 2) of the number of lines in the capture file.

Another factor to consider is user error. If the user misses any input coming from

the CAN bus, the user needs to delete all the files generated by the script and restart
with the original log file. Many functions were easy to discover with the script

including functions that toggled on and off such as the turn signals, door locks, and
so on (Kirby, 2019). We have begun testing on a range of production automobiles
to amass a database of CAN IDs and message values for future work, and

successfully captured control signals in three of four vehicles tested (a 2006
Volkswagen Jetta failed to connect successfully to the laptop). The user can

successfully discover which arbitration ID belongs to a particular control along with
the data field values that can be manipulated to send different commands.

SOURCE CODE

from subprocess import check_output

import os, sys

"""

 --CANReverseEngineer.py--:

 Reverse engineers CAN bus systems

 to find a specific CAN bus ID and

 message values corresponding to a

 particular automitive control msg

 by automating replay attacks.

"""

Global Variables

if arguments provided at command line, set log and baseline files

if len(sys.argv) > 2:

 log = sys.argv[1]

 baseline = sys.argv[2]

else:

6

KSU Proceedings on Cybersecurity Education, Research and Practice, Event 5 [2019]

https://digitalcommons.kennesaw.edu/ccerp/2019/research/5

 print("Usage: python CANReverseEngineer.py {logfilename}
{baselinefilename}")

 print("--
---------")

 print(" Where {logfilename} is a candump of the desired CAN
messages,")

 print(" and {baselinefilename} is candump of all controls
turned off.")

def countNumberOfLines(file):

 return int(check_output(["wc", "-l", file]).split()[0])

def findMiddleOfFile(file):

 return int(countNumberOfLines(file)/2)

#Sends automated replay attack against CAN bus

def sendReplayAttack(file):

 numberOfLines = countNumberOfLines(file)

 fileCounter = 1

 correctOutput = True

 while(numberOfLines > 1):

 #Splits files

 if(numberOfLines % 2 == 0):

 os.system("split -l %i %s x%i" %
(findMiddleOfFile(file),file,fileCounter))

 firstHalf = "x%iaa" % fileCounter

 secondHalf = "x%iab" % fileCounter

 elif(numberOfLines % 2 == 1):

 os.system("split -l %i %s x%i" %
(findMiddleOfFile(file)+1,file,fileCounter))

 firstHalf = "x%iaa" % fileCounter

7

Kirby and Payne: Automated Reverse Engineering of Automotive CAN Bus Controls

Published by DigitalCommons@Kennesaw State University, 2019

 secondHalf = "x%iab" % fileCounter

 print("[*]Playing first half of %s" % file)

 for x in range(0, 5):

 os.system("canplayer -I %s" % firstHalf)

 os.system("canplayer -I %s" % baseline)

 answer1 = input("[*]Did the first half %s send correct output?
[Y/n]?" % file)

 if(answer1 == "Y"):

 file = firstHalf

 numberOfLines = countNumberOfLines(file)

 fileCounter+=1

 elif(answer1 == "n"):

 print("[*]Sending second half of %s" % file)

 for y in range(0, 5):

 os.system("canplayer -I x%iab" % fileCounter)

 os.system("canplayer -I %s" % baseline)

 answer2 = input("[*]Did the second half of %s send the
correct output?? [Y/n]?" % file)

 if(answer2 == "Y"):

 file = secondHalf

 fileLength = countNumberOfLines(file)

 fileCounter+=1

 elif(answer2 == "n"):

 print("[*]Desired output is not in file.")

 correctOutput = False

 break

 if(correctOutput == True):

8

KSU Proceedings on Cybersecurity Education, Research and Practice, Event 5 [2019]

https://digitalcommons.kennesaw.edu/ccerp/2019/research/5

 print("[*]%s contains correct output" % file)

#Executes script

sendReplayAttack(log)

REFERENCES

Avatefipour, O., & Malik, H. (2018). State-of-the-Art Survey on In-Vehicle Network

Communication (CAN-Bus) Security and Vulnerabilities. Retrieved from

http://search.ebscohost.com.libproxy.ung.edu/login.aspx?direct=true&db=edsarx&AN=edsarx

.1802.01725&site=eds-live&scope=site

Charette, R. N. (2009, February 01). This Car Runs on Code. Retrieved from

https://spectrum.ieee.org/transportation/systems/this-car-runs-on-code

Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S., ... & Kohno, T.

(2011, August). Comprehensive experimental analyses of automotive attack surfaces. USENIX

Security Symposium (pp. 77-92). http://www.autosec.org/pubs/cars-usenixsec2011.pdf

Kirby, C. B. (2019, March). Automating Reverse Engineering of Automotive Networks. UNG 24th

Annual Research Conference, Poster Session. March 22, 2019.

Miller, C. & Valasek, C. (2018). Securing Self-Driving Cars. Presentation at Black Hat USA 2018.

Retrieved September 9, 2019 from http://illmatics.com/securing_self_driving_cars.pdf

Pan, L., Zheng, X., Chen, H. X., Luan, T., Bootwala, H., & Batten, L. (2017). Cyber security attacks

to modern vehicular systems. Journal of Information Security and Applications, 36, 90–100.

https://doi-org.libproxy.ung.edu/10.1016/j.jisa.2017.08.005

Payne, B. R. (2019). Car Hacking: Accessing and Exploiting the CAN Bus Protocol. Journal of

Cybersecurity Education, Research and Practice, 2019(1), 5.

Wolf, M., Weimerskirch, A., & Paar, C. (2004). Security in Automotive Bus Systems. Retrieved

from http://www.weika.eu/papers/WolfEtAl_SecureBus.pdf

9

Kirby and Payne: Automated Reverse Engineering of Automotive CAN Bus Controls

Published by DigitalCommons@Kennesaw State University, 2019

	Kennesaw State University
	DigitalCommons@Kennesaw State University
	Oct 12th, 1:00 PM - 1:25 PM

	Automated Reverse Engineering of Automotive CAN Bus Controls
	Charles Barron Kirby
	Bryson Payne
	Abstract
	Location
	Disciplines
	Comments

	tmp.1568329084.pdf.62zSg

