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Introduction 

 During fertilization and the embryogenesis which follows, cells face the 

fundamental problem of navigating the precise genomic expression which will 

give rise to proper zygotic development. Organisms complete this difficult task 

through a complex interplay of numerous pathways which involve structures both 

inside and outside the genome itself. Until recent advances in scientific thinking 

brought about a greater understanding of organismal development, gene 

expression and cell fate were believed to be determined solely by enzymes located 

within the genome. These include regulatory elements such as promoters, 

enhancers, silencers, and transcription factors. Now, however, epigenetic 

elements found “above” the genome have emerged as major players in regulating 

gene expression during development (Weaver et al., 2004). Epigenetics, simply 

put, is the study of heritable changes in phenotype that result from modifications 

in access to the DNA by mechanisms outside the genome. These “epigenetic” 

mechanisms include DNA methylation and histone modifications, both of which 

alter transcription to facilitate proper gene expression during development.  

DNA methylation acts on the genome itself to regulate how accessible 

particular genes are to transcriptional machinery such as tissue-specific 

transcription factors and RNA polymerases. To prevent improper transcriptional 

initiation and the misexpression that would result, various DNA 

methyltransferases add methyl groups (-CH3) to the CpG islands of promoter 

regions (Weaver et al., 2004). As methyl groups accumulate, these regions 

physically close, blocking the binding of transcriptional machinery through steric 

hindrance. In other words, the methyl groups repress gene expression and turn 

genes “off” by marking regions of the genome which are to be silenced. 

Following this logic, to turn a gene “on,” promotor regions must be rid of 

methylation to allow transcriptional machinery to regain access to the DNA. This 

presence or absence of DNA methylation, thus, acts as a “switch” during 

development to regulate transcription and the later formation of gene products.  

Interestingly, methylation can also appear on histones, the unique proteins 

around which DNA wraps when chromatin is packed into the nucleus of every 

cell. Histones possess exposed “tails” which can be modified through the addition 

of a number of chemical groups (Ooi and Henikoff, 2007). These reversible 

modifications can reorganize chromatin packing into either open (euchromatin) or 

closed (heterochromatin) conformations. Euchromatin represents active regions, 

areas where chromatin is open and transcription can occur as machinery is able to 

access genes. Here, modifications such as the dimethylation of histone 3 at lysine 

residue 4 (H3K4me2) alter the physical properties of the previously compacted 

chromatin and cause it to unravel accordingly. H3K4me2 thus acts as an activate 

mark, opening chromatin and highlighting regions of the genome which are to be 

transcribed. If H3K4me2 is removed or dimethylation of histone 3 at lysine 

residue 9 (H3K9me2) is added, for example, chromatin may be modulated into its 

closed conformation. With this, heterochromatin is formed as chromatin becomes 

so condensed that transcriptional machinery are physically incapable of accessing 
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and binding with the genome. As such, H3K9me2 is a repressive mark, serving to 

create regions of chromatin which display an overall repressive environment and 

are said to be transcriptionally inactive (Ahringer and Gasser, 2018). Together 

with DNA methylation, dynamic histone modifications such as these function to 

epigenetically regulate gene expression and have been implicated to play a major 

role in mediating development, disease, and inheritance (Greer and Shi, 2012). In 

fact, several of these modifications have been shown to persist through 

fertilization events and alter gene expression in subsequent generations (Greer et 

al., 2011) (Greer et al., 2014).  

 With this in mind, the mechanism underlying inheritance of epigenetic 

marks has been the topic of much scientific debate in recent years. At fertilization, 

sperm and egg fuse and this newly formed genome acquires the epigenetic 

landscape of its mother. To erase this epigenetic memory and restore totipotency 

in the zygote, epigenetic factors, which have been deposited maternally, must 

reprogram the chromatin environment (Wasson et al., 2016). In other words, to 

transition from the highly specialized sperm or egg cells to an undifferentiated 

zygote able to form any cell in the body, the parental genome must be inactivated. 

Two such factors are LSD1 and SETDB1, both of which work together to 

remodel chromatin and prepare the zygotic genome for proper development by 

creating a transcriptional “ground state.” LSD1, an H3K4me2 demethylase, first 

removes these active marks to halt transcription and silence germ specific genes 

(Shi et al., 2004). SETDB1, an H3K9me2 methyltransferase, then adds a 

repressive mark to form heterochromatin and further inhibit transcription (Eymery 

et al., 2016). The chromatin landscape and resulting gene expression which 

previously formed sperm or egg is, thus, erased and totipotency is regained in the 

developing zygote. Unsurprisingly, this epigenetic reprogramming is vital to 

development. If this event is altered, however, such that reprogramming during 

fertilization is unsuccessful, developmental defects may arise due to the 

subsequent misexpression of genes. These defects and the significance of such 

reprogramming events have been extensively studied in Caenorhabditis elegans. 

Remarkably, worms share much homologous DNA with humans and 

orthologs of Lsd1 and Setdb1, in the form of spr-5 and met-2, have provided great 

insight into the role these epigenetic factors play during fertilization. In fact, spr-5 

mutants have been shown to display progressive sterility along with decreasing 

brood size over many generations (Katz et al., 2009). Unable to remove 

H3K4me2 in the absence of SPR-5, chromatin immunoprecipitation (ChIP) assays 

showed that these animals accumulated H3K4me2 with each successive 

generation (Katz et al., 2009). A similar result was found in met-2 mutants, which 

phenocopied spr-5 animals and demonstrated increased sterility/decreased brood 

size (Kerr et al., 2014). Here, ChIP experiments revealed that, without MET-2 to 

add H3K9me2 and form heterochromatin, met-2 mutants showed decreased levels 

of H3K9me2 genome wide (Kerr et al., 2014). In both cases, mutants were unable 

to properly silence genes and quantitative reverse transcription PCR (qRT-PCR) 

indicated this misregulation resulted in the overexpression of spermatogenesis 

genes (Katz et al., 2009) (Kerr et al., 2014).  Upon seeing that spr-5 and met-2 
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mutants exhibited similar aberrant phenotypes and comparable misexpression, 

spr-5; met-2 double mutants were constructed to test for possible synergistic 

effects (Kerr et al., 2014). Interestingly, spr-5; met-2 mutants are completely 

sterile after a single generation and display severe developmental delay, often 

arresting at the first larval (L1) stage (Kerr et al., 2014). Knowing that epigenetic 

modifiers such as SPR-5 and MET-2 require the activity of other proteins to bind 

with histone tails, these observations led us to investigate the presence of an 

additional gene or complex of genes which regulate their enzymatic function.  

To the further understand the role of spr-5 during epigenetic 

reprogramming, we examined structures which have been suggested to interact 

with SPR-5 or its ortholog, LSD1. In mammals, LSD1 has been shown to 

physically associate with CoREST, among other proteins, and together they 

function to demethylate specific histone residues (Shi et al., 2005). In fact, 

CoREST appears, as a known repressor whose activity maintains nonneural cell 

identity in neural sodium channels, to collaborate with LSD1 in generating an 

overall repressive chromatin environment (Andres et al., 1999). Fascinatingly, 

depletion of CoREST in cell culture reduces the stability of LSD1 and impairs its 

function, suggesting LSD1 is dependent on CoREST (Shi et al., 2005). Much of 

this interaction remains unknown, however, even in the simple neuronal network 

that makes up C. elegans. In worms, the ortholog of human CoREST, SPR-1, has 

been found to co-immunoprecipitate with SPR-5, demonstrating the proteins 

physically interact in vitro (Eimer et al., 2002). Perhaps most striking is the 

finding that worms lacking spr-1, much like their spr-5 mutant counterparts, are 

able to rescue the egg-laying defect associated with sel-12 mutants (Jarriault et al. 

2002). 

In humans, sel-12 is connected with the presenilin genes which regulate 

Notch signaling and mutation has been implicated in the progression of 

Alzheimer’s disease (Eimer et al., 2002). In C. elegans, on the other hand, 

mutations in sel-12 produce transgenerational sterility defects and obvious vulva 

deformations. Previous screens for repressors of sel-12 identified spr-5 and spr-1 

as being able to rescue the mutant phenotype, suggesting both may function as 

part of a co-repressor complex (Wen et al., 2000). On top of that, SPR-5 

resembles the polyamine oxidase (PAO) component of human CoREST, further 

pointing to the idea that a convserved regulatory pathway exists where SPR-1 

interacts with SPR-5 to regulate its function (Jarriault et al. 2002). We 

hypothesize that, given the role LSD1 (SPR-5) plays in epigenetic reprogramming 

during fertilization, this interaction is required to ensure proper development. 

Despite the plausibility of this claim, however, the relationship between spr-1 and 

spr-5 has never been fully characterized. Here, we seek to investigate their 

potential interaction in hopes of determining whether LSD1 is dependent on 

CoREST to function.  

If LSD1 (SPR-5) requires CoREST (SPR-1) to function properly, loss of 

spr-1 should result in transgenerational epigenetic defects that resemble those of 

spr-5 mutants. As such, we ask whether mutants in spr-1 demonstrate 
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abnormalities that phenocopy spr-5 mutants. These phenotypes include 

progressive sterility and a lower brood size at around generation 25 (Katz et al., 

2009). Our germline mortality data show spr-1 animals produce progeny at levels 

intermediate to that of spr-5 and wildtype but never show evidence of increased 

sterility. As such, research is still ongoing as we work to further tease apart these 

inconclusive results. Experiments with met-2; spr-1 double mutants were far more 

promising, however. In the met-2 mutant background, spr-1 animals display many 

of the characteristic defects associated with spr-5; met-2 mutants, such as 

disorganized germlines, developmental delay, and maternal effect sterility. 

Interestingly, these phenotypes do not fully manifest themselves after just one 

generation. Instead, the deformations worsen over time and eventually reach a 

penetrance which phenocopies the defects seen in spr-5; met-2 mutants. This 

build up has proved difficult to quantify but these data suggest the absence of 

SPR-1 lowers the activity of SPR-5. Unable to fully remove H3K4me2, active 

marks accumulate over generations, leading to the misexpression of disease-

causing genes. While this idea is promising, we must use RNAseq to rule out the 

activity of other complexes and confirm the overexpression of similar genes is 

found in both spr-5; met-2 and met-2; spr-1 mutants. These findings will 

highlight the role of CoREST (SPR-1) in regulating epigenetic reprogramming 

and ensuring proper development, in addition to informing the future 

development of drug therapeutics which target epigenetic abnormalities.  

Results 

Germline Mortality of spr-1 

 Based on the hypothesis that SPR-5 function is dependent on the activity 

of CoREST (SPR-1), we believe spr-1 mutants should phenocopy spr-5 and, as 

such, the same characters should be seen in both worms. These phenotypes 

include progressive sterility due to misregulation of H3K4me along with an 

ability to rescue the sel-12 egl defect. As Eimer et al (2002) previously 

demonstrated, spr-1 mutants can rescue the egl phenotype, we turned to the 

germline morality of spr-1 to determine if lower brood sizes are observed over 

many generations. Given that Katz et al (2009) reported increased sterility in spr-

5 mutants at generation 25 with the misexpression of germline germs, we sought 

to test whether spr-1 also showed similar defects. Using the spr-1 (ar200) allele 

from Jarriault et al (2002), we found our mutant displays a “hypermorphic” or 

intermediate phenotype. In other words, we see an incomplete phenocopy, with 

average progeny counts across generations hovering somewhere in between those 

of wildtype and spr-5 (Figure 1). In fact, despite continuing the experiment well 

beyond 50 generations, no evidence of apparent sterility was found in spr-1 

mutants. Instead of rapidly declining as with spr-5 mutants, the brood size of spr-

1 animals remained relatively stable throughout. In spite of several noticeable dips 

and an overall downward trend, the length of this experiment made reaching a 

definitive conclusion on the potential transgenerational accumulation of H3K4me 

difficult. With that in mind, we turned to another tool in the laboratory in hopes of 

creating a more easily scoreable phenotype. 
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Figure 1 – Germline mortality of spr-1 mutant worms against spr-5 and wildtype (N2) 

with average progeny counts plotted over generations 

 

 

RNAi Knockdown of spr-1 in met-2 mutants 

 

 Using our knowledge of spr-5; met-2 double mutants and their severe 

sterility after a single generation (Kerr et al. 2014), we set out to construct met-2; 

spr-1 double mutants and observe if any phenotype whatsoever was present in this 

improved system. A preliminary RNAi experiment was first used to search for 

evidence of a phenotype comparable to that of spr-5; met-2 double mutants. This 

opportunity was also taken to verify many of the constructs from the Ahringer 

RNAi library (data not shown) and, as a result, the assay was not entirely 

optimized for following worms on a variety of RNAi. Nevertheless, met-2 worms 

were placed on L4440, spr-5, and spr-1 backgrounds and kept at 16oC. After nine 

days, the experiment was scored simply by counting the number of embryos 

present on each plate (Figure 2). This scheme was chosen given the fact that, after 

nine days under these conditions, the second generation (which is sterile in spr-5; 

met-2 mutants) would be depositing embryos. Compared to the wildtype control, 

a decreased number of embryos were laid by adults on SPR-1 RNAi, a finding 

which suggested a fertility defect. As expected, worms on SPR-5 were almost 

completely sterile, demonstrating that the constructs and procedure worked well 

(see Materials and Methods). Thus, in a fashion similar to the spr-1 single 

mutants, a complete phenocopy of spr-5; met-2 was not seen and, instead, a sort 

of intermediate phenotype became evident. Perhaps the RNAi was inconsistent or 
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this is simply how the biology manifests itself but, in either case, the data gave us 

reason to construct the met-2; spr-1 double mutant genetically.  

 
Figure 2 – RNAi knockdown of spr-1 vs spr-5 in met-2 mutant worms 

 

 

Developmental Delay of first generation met-2; spr-1 double mutants 

 

 Upon building the met-2; spr-1 double mutant strain (see Materials and 

Methods), we asked whether these organisms phenocopied those of spr-5; met-2. 

Again, if SPR-5 is truly dependent on SPR-1 for its function, the same characters 

should be seen in both double mutants. These include phenotypes such as severe 

developmental delay, complete sterility after one generation, and malformed 

germlines due to upregulation of gametes in the soma. Using a four hour 

synchronized lay, we first investigated developmental delay (Figure 3). At 48 

hours after embryos arose, N2 worms all appeared in the L4 stage with 

characteristic crescent moon mark in the vulval region while spr-5; met-2 mutants 

arrested at the L1/L2 stage with reduced proliferation of germ cells. The met-2; 

spr-1 mutants, on the other hand, again display an intermediate phenotype and 

appear in the L3 stage. At 72 hours, N2 could be found in the adult stage and met-

2; spr-1 lagged slightly behind at L4, with incomplete germlines. As such, a delay 

is apparent when compared with wildtype, though certainly not as severe as that 

seen in spr-5; met-2 double mutants. This finding, despite not being a complete 

phenocopy, supported our previous RNAi results and further pointed toward the 

presence of a defect-causing genetic interaction.  
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Figure 3 – Developmental time course of met-2; spr-1 double mutants alongside N2 and 

spr-5; met-2 at 24, 48, and 72 hour time points. Hashed areas indicate germ cells 

 

 

Sterility of first generation met-2; spr-1 double mutants 

 

 After confirming the developmental abnormality of first generation spr-5; 

met-2 double mutants during both our RNAi and time course experiments, we 

turned to the sterility of met-2; spr-1 double mutants. Among first generation (F2) 

organisms, approximately 25 percent of worms were sterile, with another 26 

percent dying before reaching the adult stage (Figure 4). Interestingly, many of 

these double mutants appear to “bag” before releasing larvae, suggesting a vulva 

deformation. This bagging phenotype is associated with egl, an egg laying defect 

which occurs during vulva formation and prevents worms from depositing 

embryos. Embryos then hatch inside the parent, killing the organism. Despite the 

widespread bagging, sterility in met-2; spr-1 animals was much less prominent 

than that of spr-5; met-2 as nearly 50 percent of our mutants were able to lay 

embryos, with progeny counts ranging from <20 to well over 100. Seeing that 

many met-2; spr-1 worms were fertile, however, we maintained the strain for 

several generations in an effort to monitor whether sterility counts varied over 

time. Theoretically, if H3K4 methylation accumulates with each generation, the 

aberrant chromatin should result in misexpression of the germline and increased 

sterility. 
 Fertile Sterile Dead 

met-2; spr-1 DM 122/253 64/253 67/253 

GEN 1 48.22% 25.30% 26.48% 
Figure 4 – Sterility of first generation met-2; spr-1 double mutants 
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Capturing the germline deformations of late generation met-2; spr-1 double 

mutants 

 

Given the “hypomorphic” phenotype seen in each assay and the idea that 

misregulation of H3K4me would build up with each successive generation, we 

asked whether sterility in met-2; spr-1 double mutants would worsen over time. 

As the strain was passaged, we noted that, at first glance, the number of progeny 

on each plate decreased and, by generation 10, extreme sterility could be 

observed. In fact, differential interference contrast (DIC) microscopy captured 

squat, under developed germlines which appear very similar to those seen in spr-

5; met-2 double mutants (Figure 5). With disorganized sperm/oocytes and 

obvious protruding vulva, it appears as if the misregulation of germline genes that 

we see immediately in spr-5; met-2 accumulates in met-2; spr-1 double mutants 

to where they become increasingly sterile with time. To investigate this idea and 

follow this increase more closely, a germline mortality assay was needed to 

document progeny size at every generation. 

 
Figure 5 – Differential interference contrast (DIC) microscopy of generation 10 met-2; 

spr-1 double mutants in comparison to generation 1 spr-5; met-2. Hashed areas indicate 

germ cells 

 

 

Germline mortality of met-2; spr-1 double mutant 

 

Seeing that a transgenerational sterility phenotype became more prominent 

in late generation met-2; spr-1 double mutants, we used this initial observation as 

rationale to complete a germline mortality experiment. Following a similar 

procedure to that used with spr-1 single mutants (see Materials and Methods), the 

average brood size of met-2; spr-1 double mutants appeared to progressively 
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decrease starting at generation 6, while that of wildtype and met-2 remained at 

previously established levels (Figure 6). Given that roughly 25 percent of double 

mutants initially displayed a sterility defect after just one generation, we 

simultaneously worked to monitor sterility over time by recording the number of 

sterile worms at each generation. Unsurprisingly, met-2; spr-1 progeny counts 

declined as the amount of sterile worms increased, with this percentage increase 

beginning at generation 6 (Figure 7). Thus, it was at this generation (GEN 6) that 

we began isolating L1 material to run RNAseq analysis or other molecular 

biology on each strain at a later date (see Materials and Methods). We continued 

to isolate larvae through to generation 8, where it was noted that sterility had 

reached a maximum and it became difficult to takedown adequate numbers of 

L1s. In fact, percent sterility plateaued upon reaching generation 8 and remained 

at a relatively stable level throughout the end of the assay (Figure 7). Average 

brood size, on the other hand, was found to continually decrease until we were no 

longer able to clone out adequate numbers of met-2; spr-1 at generation 10 

(Figure 6). With nearly sixty percent of worms completely sterile and progeny 

counts well below 30 at this point, the experiment further supported the idea of a 

“hypermorphic” phenotype, with sterility due to germline misregulation building 

up over several generations.  

 
Figure 6 – Germline mortality of met-2; spr-1 double mutant worms against met-2 and 

wildtype (N2) with average progeny counts plotted over generations 
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Figure 7 – Percent sterility of met-2; spr-1 double mutant worms over many generations 

in comparison with wildtype (N2) and met-2 

 

 

Developmental Delay of late generation met-2; spr-1 double mutants 

 

 In addition to this obvious progressive sterility, we sought to quantify 

something slightly less evident; we hoped to capture whether the developmental 

delay seen in first generation met-2; spr-1 worms also increased after the strain 

had been maintained for many generations. Using the same synchronized lay 

protocol as previously mentioned (see Materials and Methods), seventh 

generation double mutants were cloned out alongside that of wildtype (N2), spr-1, 

and met-2 and all were allowed to lay embryos for four hours. Twenty-four hours 

after progenitor worms were removed from the plates and embryos began to 

appear, little variance could be seen between the genotypes as all appeared to be 

in the L1/L2 stage (data not shown). At the 48 hour timestamp, however, 

differences became increasingly evident. Both wildtype and spr-1 worms looked 

remarkably similar and are L3/L4 across the board. met-2 and met-2; spr-1, on the 

other hand, displayed much more variability, with most organisms delayed at 

L2/L3. This pattern continued at 72 hours, when all visible N2 worms and about 

90% of spr-1 had reached the adult stage. In other words, roughly one in ten 

mutants picked for imaging could be found at L4, with the rest being young 

adults. For met-2, approximately 30% of all worms were still L4, and this estimate 

swelled to nearly 50% for met-2; spr-1. In fact, despite being difficult to detect 

from the representative images, very few embryos had been deposited on the 

double mutant plate and several L3s were also present. As such, met-2; spr-1 
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again displayed an intermediate phenotype that worsened over a number of 

generations to bring about a developmental delay somewhere between that of met-

2 and the L1 arrest of spr-5; met-2. While variability could be seen throughout, 

some overlap between genotypes did exist, a phenomenon we will work to 

quantify more concretely in future experiments. 
 
 

Discussion and Future Directions 

With our research question in mind, we expected to see spr-1 mutant 

Caenorhabditis elegans phenocopy those of spr-5 over the course of each 

experimental manipulation. In other words, if SPR-5 is truly dependent on 

CoREST (SPR-1) to function, we expected to observe the same characters in both 

mutants, with spr-1 organisms displaying increased sterility and lower brood sizes 

around generation 25. Building on that, we anticipated met-2; spr-1 double 

mutants would phenocopy spr-5; met-2 and show malformed germlines, 

developmental delay, and extreme sterility after just one generation. Given the 

fact that SPR-5 is similar to the polyamine oxidase component of CoREST and 

has been implicated to physically associate with two DNA binding sites that can 

be found within the complex (Eimer et al 2002), this idea was entirely plausible. 

However, despite being able to rescue sel-12 in a mode similar to spr-5, each 

experiment uncovered an incomplete phenocopy as spr-1 organisms displayed a 

type of intermediate, almost “hypermorphic” phenotype.  

In single mutants, for example, spr-1 showed an average brood size in 

between that of wildtype and spr-5. Counts remained as such throughout the 

entirety of the germline mortality experiment and, instead of finding extreme 

sterility at generation 25 as in spr-5, our mutant of interest did not go germline 

mortal until after generation 55 (Figure 1). Thus, the progressive sterility 

phenotype seen in spr-5 mutants was much less severe and took longer to 

manifest in spr-1. For met-2; spr-1 double mutants, we observed a developmental 

delay which increased over time, but never quite reached the L1 arrest of spr-5; 

met-2. Initially, met-2; spr-1 was delayed one larval stage behind N2 (Figure 3) 

and, by generation 8, the delay was even more evident (data not shown). A similar 

trend could be seen in terms of double mutant sterility. Again, met-2; spr-1 

displayed a type of intermediate phenotype, with sterility that worsened over 

every generation yet never reached the level of spr-5; met-2 (Figure 7). Though 

the severity was difficult to quantify, we were able capture images of squat, sterile 

germlines in spr-1; met-2 double mutants at generation 10 (Figure 5). With 

disorganized germlines and unrecognizable sperm/egg, it appears as if the 

misexpression of germline genes present in first generation spr-5; met-2 double 

mutants builds up over time in met-2; spr-1.  

To tease this apart further, we isolated met-2; spr-1 double mutants at 

generation 6, 7, and 8 to complete molecular biology.  Using L1 material, we can 

run RT-PCR/ChIP-seq on selected candidate targets or RNAseq/ChIP-seq on 

genome-wide H3K4me2 levels to determine SPR-5 activity in spr-1 mutants. 
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RNAseq in particular may demonstrate that SPR-5 is less active in the absence of 

SPR-1 and will allow us to evaluate the potential expression of germline genes in 

the soma of spr-1 mutants. Given the hypermorphic phenotype seen across all 

spr-1 mutants, our data supports the idea that SPR-5 function is negatively 

affected by the complex and organisms are no longer able to properly remove 

K4me, allowing it the accumulate over time. Upregulated genes in both spr-5 and 

spr-1 mutants should overlap as such, ruling out any genetic interaction. If this is 

not the case, RNAseq would help point to something outside of CoREST; the 

NURD complex, for example, could also play a role in regulating SPR-5 function 

and may be a logical alternative. In sum, along with our unconfirmed data, these 

steps would answer our research question and establish whether there exists an 

interaction between SPR-1 and SPR-5 which affects protein stability by way of 

H3K4me2 demethylase activity. 

 

Materials and Methods 

Strain Maintenance 

 Throughout experimentation, N2 (wild-type), spr-1 (ar200v), spr-5 

(by101), met-2 (n4256) III, and et1 III ; et1 (umnls 81) V C. elegans strains were 

provided by the Caenorhabditis Genetics Center and used to construct spr-1 

(ar200v) / et1 [umnls 81 (myo-2p :: GFP + NeoR, III: 9421936) V] and met-2 

(n4256) III / et1 [umnls 81 (myo-2p :: GFP + NeoR, III: 9421936) V] ; spr-1 

(ar200v) / et1 [umnls 81 (myo-2p :: GFP + NeoR, III: 9421936) V] (see 

mechanism below). Each stock was maintained on Nematode Growth Media 

(NGM) 6 cm petri plates. OP50 was utilized as a nutrition source and all plates 

were spotted with three equidistant drops of liquid culture in a lily pad 

arrangement. Plates were allowed to dry overnight at room temperature following 

spotting with OP50. L4 larvae were then transferred to these spotted plates, placed 

in the 20oC incubator, and left to self-fertilize. After four days, three L4 worms 

from the subsequent generation were transferred to fresh NGM plates and the line 

was allowed to continue. For both the spr-1 and met-2; spr-1 double mutant 

strains, the stocks were maintain as balanced heterozygous organisms. 

 In these strains, the et1 balancer was incorporated into the mutant 

background in order to eliminate homologous recombination events involving the 

mutation-bearing alleles on chromosome 3 (met-2) and 5 (spr-1). Because the 

balancer chromosome completely spanned both mutant loci, the met-2 and spr-1 

alleles could be maintained with certainty across many generations. However, due 

to the nonlethal nature of et1, some green worms would remain wildtype (et1/et1) 

even after attempting the incorporate the spr-1 or met-2; spr-1 mutant 

background. As such, the longevity of the balanced lines was ensured by cloning 

out eight green worms from plates which showed evidence of non-green progeny. 

Always conscious to monitor for the presence of mutant (non-green) worms, this 

process served to verify that heterozygosity was successfully being passed on 

with each generation. 

 

RNAi for F2 sterility of met-2; spr-1 mutants 
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 RNAi feeding was used to evaluate, in a preliminary manner, if spr-1 and 

met-2 interacted such that sterility results in a manner similar to that seen in spr-5; 

met-2 double mutants. Genes were inactivated by placing met-2 (n4256) III 

worms on spr-1 RNAi. Constructs were taken from the Ahringer RNAi library 

(Kamath and Ahringer, 2003) and transformed into bacterial Escherichia coli. 

This bacteria was then seeded onto NGM plates containing 50 ug/ml ampicillin 

and 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) and the dsRNA was 

allowed to induce at room temperature for two days as detailed previously 

(Kamath et al., 2000). After two days, the plates were “super-induced” by placing 

at 37oC for 1 hour immediately prior to transferring L2/L3 larvae onto the lawn 

and moving to a 16oC incubator. There, the progenitor worms remained for two 

days before being picked to fresh plates. This procedure was repeated an 

additional two instances as organisms were followed through to the second 

generation, screening for sterility and developmental arrest along the way. After 

192 hours, F2 progeny were scored for numbers of embryos present. 

 

Building the met-2; spr-1 double mutant strain 

 To compare the phenotype of spr-1 to that which has been heavily 

documented in spr-5; met-2 double mutants, it was necessary to build a similar 

strain incorporating spr-1 (ar200v). As such, 6 met-2 (n4256) III males were 

crossed with two spr-1 hermaphrodites. When male progeny began crawling out, 

several males were plucked to genotype by Polymerase Chain Reaction (PCR) 

and confirm their predicted met-2/+; spr-1/+ genotype. When PCR confirmed 

this double heterozygous genotype, showing both mutant and wild-type bands for 

met-2, 6 males were crossed with 2 et1 III ; et1 (umnls 81) V hermaphrodites. As 

progeny became increasingly visible on these plates, 22 green L4 hermaphrodites 

were cloned out and allowed to lay before being plucked off to genotype. 

Candidates which showed evidence of mutant bands were prepped with a Qiagen 

PCR Purification Kit and the PCR products were sent to sequencing with spr-1 

forward and reverse primers. Analysis of sequencing data proved that several 

green worms were both mutant and wild-type for spr-1, demonstrating the 

expected met-2/et1; spr-1/et1 balanced double heterozygous phenotype. The non-

green progeny which could be seen consistently arising from such worms were, in 

turn, the met-2/met-2; spr-1/spr-1 double mutant. 
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Resetting the spr-1 strain  

 Upon receiving the spr-1 (ar200v) allele from Caenorhabditis Genetics 

Center, we sought to reset and balance the strain such that both balanced 

heterozygotes and true 1st generation spr-1 mutants could be maintained with 

confidence. As such, 6 spr-1 (ar200v) males, generated by heat shock, were 

crossed with two et1 III ; et1 (umnls 81) V hermaphrodites and male progeny was 

allowed to arise. From there, 8 green L3/L4 hermaphrodites were cloned out and 

plates were monitored for evidence of non-green progeny. Plates which displayed 

such non-green offspring were selected and 8 green L3/L4 hermaphrodites were 

again cloned out from these plates. This process was repeated for five generations, 

after which both green, balanced heterozygotes (spr-1/et1) and non-green, 1st 

generation spr-1 mutants (spr-1/spr-1) were cloned out and the progeny of which 

was frozen down. Additionally, the progenitor worms were plucked for PCR in 

order to genotype and confirm the mutants had been successfully balanced. To 

freeze down, the plates, once starved, were washed with M9 buffer, pipetting up 

and down to create a suspension of worms. 0.5 mL of this solution was deposited 

in a number of 1.5 mL conical and each was then placed in the -80oC freezer.  

 

Confirmation of Genotypes by Polymerase Chain Reaction 
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In order to confirm the genotype of worms after each cross in the strain 

building process,  

L4 larvae were cloned out onto fresh NGM plates and these progenitor worms 

were allowed to lay embryos for at least 48 hours. After sufficient numbers of 

eggs could be seen, worms were plucked into PCR tubes filled with worm lysis 

buffer. For every 2 mL of lysis buffer, 100 μL of 1 M KCL, 20 μL of 1 M Tris at 

pH 8.3, 5 μL of 1 M MgCl2, 90 μL of 10% NP-40, 90 μL of 10% Tween-20, 10 

μL of 2% gelatin, and 1685 μL of molecular grade water were mixed. 5 μL of 20 

mg/mL Proteinase K was then added to each 100 uL aliquot of buffer and 10 μL 

of this mixture was added to each PCR tube. After picking worms into the lysis 

buffer and ensuring excess bacteria was avoided, PCR tubes were placed in a -

80oC freezer overnight. Upon freezing, tubes were moved into the PCR machine 

and lysis reaction was performed at 60oC for 1 hour, 95oC for 30 minutes, and 

10oC forever.  

 Whilst the lysis reaction ran, PCR Master Mix was prepared with the 

amount of reagents varying based on the number of reactions. For each 25 μL 

reaction, 2.5 μL of 10x PCR buffer, 1.5 μL of 25 mM MgCl2, 0.4 μL of 10 mM 

dNTP, 1 μL of 5 μM forward and reverse primer, 5 μL of 5x loading dye, 11.52 

μL of molecular grade water, and 0.08 μL of Taq polymerase were mixed. 

Forward and reverse primers for met-2 reaction 1 were 5’-

GTCACATCACCTGCATCA GC-3’ and 5’-ATTTCATTACGGCTGCCAAC-3’ 

respectively. To run met-2 reaction 2, the forward primer 5’-

ATTCGAAAAATGGACCGTTG-3’ and reverse primer 5’-TCTATTCCCAG 

GAGCCAATG-3’ were used. Immediately after completion of lysis, 23 μL of the 

above mix was pipetted into labeled PCR tubes, to which 2 μL of lysate was 

added as template for PCR. Tubes were returned to the PCR machine and 

amplification conditions for both met-2 reaction 1 and 2 were programmed to 

94oC for 5 minutes. This initial denaturation was followed by 44 cycles of 94oC 

for 30 seconds of denaturation, 59.5oC for 30 seconds of annealing, and 72oC for 

90 seconds of extension. Final extension was run at 72oC for 5 minutes and the 

PCR products were maintained at 12oC until results could be read by gel 

electrophoresis.  

 While PCR occurred, 2% agarose gel in 1x TAE was poured by mixing 

7.5 grams of agar with 450 mL of TAE into the mold and allowed to cool. 16-18 

μL of ethidium bromide was also added to this mixture to aid in the visualization 

of bands. 1.5 μL of 100 bp DNA ladder was then measured into the first lane. 

Reactions were removed from the PCR machine and 10 μL of each sample was 

pipetted into the lanes. Gel electrophoresis was allowed to run for 35 minutes at 

110 V, after which the gel was imaged under UV light.  

 

Preliminary sterility and progeny counts of met-2; spr-1 mutants 

 To quantify the sterility of first generation met-2; spr-1 mutants, non-

green L4 worms where plucked off the balancer and allowed to lay embryos. The 

progeny were then cloned out onto one spot NGM and followed into adulthood. 

As many of these progenitor worms deposited embryos, those which died or 

appeared sterile were recorded as a percentage of the total number of clones. To 
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further investigate the fertility of these double mutants, the above protocol was 

followed, but N2 and met-2 (n4256) III worms were cloned out alongside the first 

generation met-2; spr-1 mutants. To prevent overcrowding and increase the ease 

of counting progeny, progenitor worms were moved to fresh NGM plates two 

days later. After an additional two days, worms were transferred again to a third 

plate. In the meantime, the initial plates were counted twice to ensure all progeny 

had been recorded and sucked off with a suction apparatus. Once the progenitor 

worm ceased depositing embryos, the total number of progeny from each plate 

was recorded and the average brood for each strain was calculated.  

 

Germline mortality assay of spr-1 and met-2; spr-1 mutants 

 Following a procedure similar to that outlined by Katz et al. (2009), 

worms were maintained at 20oC and three fertile young adults with visible 

embryos were transferred to new NGM plates every four days. Given the 

translucent nature of C. elegans, only those worms which displayed healthy, 

ordered embryos within the germline were selected. Before beginning the spr-1 

experiment, each strain was thawed from -80oC in M9 buffer and homozygoused 

for one generation, with progeny of the thaw being deemed Po, the progenitor 

generation. These worms gave rise to the first experimental generation when 

brood counts began. Brood sizes of wild-type (N2), spr-1 (ar200v), and spr-5 

(by101) were counted every third generation until generation 17, after which 

counts were completed every other generation. Average brood size for spr-5 was 

calculated from the progeny of 10 worms until counts were stopped at generation 

41. For N2, average brood size was determined from the progeny of 5 worms until 

generation 41 when it was increased to 6 through the end of the experiment. 

Average brood counts for spr-1 were maintained at 10 worms throughout the 

entirety of the experiment. In order to complete RNAseq or CHIPseq analysis, 

mixed stage worms of each experimental line were collected from early, middle, 

and late generations. 

 This protocol was adapted to evaluate the germline mortality of the double 

mutants by using wild-type (N2), spr-1 (ar200v), met-2 (n4256) III, and met-2; 

spr-1. Here, brood sizes were counted every generation through the end of the 

experiment, save for spr-1 which was counted every fourth generation. Average 

brood size for spr-1 and met-2 was calculated using the progeny of 10 worms, 

while that of met-2; spr-1 and wild-type was calculated from 30 and 10 worms 

respectively. Starting at generation 6 until completion of the experiment, L1 

larvae from each strain were isolated to complete RNAseq analysis at a later date.  

 

L1 isolation of late stage met-2; spr-1 Double Mutants 

 To gather the material necessary for RNAseq analysis, met-2; spr-1 L1 

larvae were isolated at generation 6, 7, and 8. Approximately 40 N2, 50 spr-1, 60 

met-2, and 120 met-2; spr-1 L4 worms were first moved to new plates and kept at 

20oC overnight. The next day, adults were plucked and washed in 300 μL of M9 

buffer three times before being transferred into 2 mL conical microcentrifuge 

tubes in preparation for the overnight lay. Specifically, 3-4 gravid N2, 4-5 spr-1, 

and 5-6 met-2 adults were placed in ten individual tubes while 10-12 met-2; spr-1 
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double mutants were pipetted into 12-14 appropriately labeled tubes. Each 

genotype was allowed to shake overnight at room temperature. Following the lay, 

L1s were taken down by sequentially pipetting the contents of each individual 

tube into a separate glass well plate and removing progenitor worms with a scoop. 

L1s were then pipetted into a fresh tube, 25 μL at a time, and the process was 

repeated until all larvae had been consolidated into the new 2 mL conical. This 

tube was spun down for 5 minutes at 3,000 rcf before aspirating the excess M9 

buffer down to 0.25 ml. The conical was then spun again and submerged in liquid 

nitrogen to snap freeze the material. From there, tubes were placed in a -80oC 

freezer for storage until completion of RNAseq or other biochemistry. 

 

Developmental time course of late generation met-2; spr-1 DMs 

 A developmental time course experiment was used to document the 

progressive developmental delay of late generation met-2; spr-1 double mutant 

worms. Here, 6 GNE 7 gravid N2, 8-10 spr-1, 8-10 met-2, and 12-15 met-2; spr-1 

adult worms with visible embryos were transferred onto separate plates and 

allowed to lay for 3-4 hours. Following this synchronized lay, progenitor worms 

were plucked off and the time was noted. We then returned 24 hours later to 

sample several progeny from each plate and capture representative larval stage 

images of each population using MetaMorph Microscopy Automation and Image 

Analysis Software. This procedure was repeated at the 48 and 72 hour time 

stamps in order to track the relative development of each genotype. 
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