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ABSTRACT

BIOLOGICALLY INTERPRETABLE, INTEGRATIVE DEEP LEARNING FOR

CANCER SURVIVAL ANALYSIS

Jie Hao, Ph.D.

Kennesaw State University, 2019

Supervising Professor: Mingon Kang

Identifying complex biological processes associated to patients’ survival time

at the cellular and molecular level is critical not only for developing new treatments

for patients but also for accurate survival prediction. However, highly nonlinear and

high-dimension, low-sample size (HDLSS) data cause computational challenges in

survival analysis. We developed a novel family of pathway-based, sparse deep neural

networks (PASNet) for cancer survival analysis. PASNet family is a biologically in-

terpretable neural network model where nodes in the network correspond to specific

genes and pathways, while capturing nonlinear and hierarchical effects of biologi-

cal pathways associated with certain clinical outcomes. Furthermore, integration of

heterogeneous types of biological data from biospecimen holds promise of improving

survival prediction and personalized therapies in cancer. Specifically, the integration

of genomic data and histopathological images enhances survival predictions and per-

sonalized treatments in cancer study, while providing an in-depth understanding of

genetic mechanisms and phenotypic patterns of cancer. Two proposed models will

be introduced for integrating multi-omics data and pathological images, respectively.

Each model in PASNet family was evaluated by comparing the performance of cur-

rent cutting-edge models with The Cancer Genome Atlas (TCGA) cancer data. In
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the extensive experiments, PASNet family outperformed the benchmarking methods,

and the outstanding performance was statistically assessed. More importantly, PAS-

Net family showed the capability to interpret a multi-layered biological system. A

number of biological literature in GBM supported the biological interpretation of the

proposed models. The open-source software of PASNet family in PyTorch is publicly

available at https://github.com/DataX-JieHao/
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CHAPTER 1

PATHWAY-ASSOCIATED SPARSE DEEP NEURAL NETWORK FOR

PROGNOSIS PREDICTION FROM HIGH-THROUGHPUT DATA

1.1 Background

Predicting prognosis in patients from large-scale genomic data is a fundamen-

tally challenging problem in genomic medicine [1, 2, 3]. Along with the rapid advances

of high-throughput technologies and their effectivenesses, high-dimensional genomic

data provides more accurate and richer biological descriptions of clinical phenotypes

of interests than ever before. Therefore, translating large-scale genomic profiles to

clinical outcomes not only improves predicting patient prognosis but also helps in

identifying prognostic factors and biological processes.

The capabilities of high-level biological representation and interpretation of the

prognosis are often more desired in biomedical research rather than merely improv-

ing predictive performance. Pathway-based analysis is an approach that a number of

studies have been investigating to improve both predictive performance and biological

interpretability [4, 5, 6]. In pathway-based analyses, the incorporation of biological

pathway databases in a model takes advantage of leveraging prior biological knowl-

edge so that potential prognostic factors of well-known biological functionality can

be identified. Pathway-based analyses identify biological links between pathways and

clinical outcomes and enable the interpretation of biological processes where their cor-

responding genes and proteins are involved. Thus, pathway-based interpretation and

visualization provide an intuitive and comprehensive understanding of functionally-

related molecular mechanisms.

Moreover, pathway-based approaches have shown more reproducible analysis

results than gene expression data analysis alone [4, 7, 8, 9, 10]. High-level represen-

tations of gene co-expressions are considered in most pathway-based analyses; each
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of which represents a biological pathway while preserving the original information.

Thus, pathway-based analyses remedy the limitations of gene expression data, which

are intrinsically sensitive to stochastic fluctuations and are often caused by multiple

potential sources, such as inherent stochasticity of biochemical processes, environ-

mental differences, and genetic mutation [11]. Pathway-based markers were proposed

for classifying breast cancer metastasis and ovarian cancer survival time [5]. Cancer

subtypes were discovered with pathway-based markers via Restricted Boltzmann Ma-

chine (RBM) [8]. A group LASSO-based approach associated genes with pathways

and characterized them based on biological pathways [10]. Higher-order functional

representation of pathway-based metabolic features provided reproducible biomarkers

for breast cancer diagnosis [9].

However, reliable and accurate prognosis still remains poor in many diseases

due to the following challenges: high-dimension, low-sample size data and complex

nonlinear effects between biological components.

Genomic data are highly dimensional relative to their sample sizes. High-

dimension, low-sample size (HDLSS) data often make prediction models sensitive

to noise and false positive associations, which consequently make predicting accurate

prognoses difficult. LASSO-based approaches have been mainly considered to esti-

mate the effects of a gene set that are associated with various types of clinical out-

comes on HDLSS data. The LASSO-based approaches embed sparse coding schemes

into linear or logistic regression models for selecting few but greatly informative fea-

tures among the high-dimensional data. For instance, a logistic regression with sparse

regularization was applied for the prognostic model of mortality after acute myocar-

dial infarction [12]. Random LASSO was proposed to enhance the LASSO solution by

applying multiple bootstrapping and was applied to predict patients’ survival times

with glioblastoma gene expression data [13]. LASSO-based regression models as a

prediction model were validated with multiple imputed data in chronic obstructive

pulmonary disease patients [14].
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Pathway-based analysis also helps to reduce data dimensionality. The number of

biological pathways is relatively smaller than the number of genes, and a set of genes

in the same pathway can be represented by the pathway’s effect. Thus, pathways

can be used as summary variables for the input of the predictive model instead of

including all genes, which consequently reduces the model complexity.

Most association studies between a gene set and various clinical outcomes have

considered linear or logistic regression models for identifying prognostic factors as well

as understanding a biological mechanism of the progression of disease. However, non-

linear effects of genes or pathways may fail to be identified by linear-based approaches.

As a solution, kernel-based models have been proposed to capture nonlinear effects

of complex pathways [15, 16]. Multiple kernel learning models were introduced to

aggregate complex effects from multiple pathways [17, 18]. Kernel Principle Compo-

nent Analysis (KPCA) was applied to reduce the dimensionality of the feature space

by using the correlation structure of the pathways [18].

Recently, several attempts to capture hierarchical effects of genes and pathways

have been made. Inferences of multilayered hierarchical gene regulatory networks have

been considered to understand how pathways regulate each other hierarchically. A

bottom-up graphic Gaussian model [19] and a recursive random forest algorithm [20]

were proposed to construct multilayered hierarchical gene regulatory networks. More-

over, complex biological networks were modeled by inferring the multiple hierarchical

models (1) between gene expression and pathways and (2) within pathways [21]. How-

ever, complex hierarchical relationships between pathways have not been considered

for prognostic studies yet, to the best of our knowledge, although hierarchical effects

of pathways are prevalent in biological systems [22].

In this chapter, we propose a Pathway-Associated Sparse Deep Neural Network

(PASNet) to achieve the goals:

• to predict prognosis in patients accurately by incorporating biological pathways,
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• to provide a solution for hierarchical interpretation of nonlinear relationships

between biological pathways of disease systematically, and

• to handle with computational problems, such as HDLSS data.

An innovative aspect of our model is biological interpretability; we achieved this with

sparse coding and by constructing hidden layers with biological pathways, which op-

pose the black box nature of deep learning. Our new sparse deep learning architecture

represents multiple molecular biological layers, such as a gene layer and a pathway

layer, along with their hierarchical relationships, which use sparse regularization.

1.2 Related Works in Deep Learning

In recent years, deep learning has been spotlighted as the most active research

field in various machine learning communities, such as image analysis, speech recogni-

tion, and natural language processing as its promising potential is being actively dis-

cussed in bioinformatics and biomedicine [23]. Most deep learning-based approaches

have been developed for classification and association studies in bioinformatics. For

instance, D-GEX infers the expression of target genes from landmark genes, captur-

ing the nonlinear relationships by combining gene expression, DNA methylation, and

miRNA expression data [24]. A convolutional neural network (CNN) was adapted

to predict DNA-protein binding sites with Chromatin Immunoprecipitation sequenc-

ing (ChIP-seq) data [25]. Additionally, CNN-based DeepBind was proposed to pre-

dict whether a specific DNA/RNA binding protein will bind to a specific DNA se-

quence [26]. The functionality of non-coding variants was predicted by DeepSEA by

employing a CNN model [27].

Although only a small subset of deep learning research has been reported in

bioinformatics due to the difficulty of structure definition and interpretation, the fu-

ture of deep learning in biology and medicine is promising [28]. First, since a neural

network is inspired by the neurons in the human brain, a neuron network architecture

is applicable to modeling a mechanism for a complex biological system. Specifically,
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deep learning approaches take advantage of flexible representation of hierarchical

structures from inputs to outputs. The representation of nonlinear effects of neurons

in multiple layers in neural networks may be able to model hierarchical biological

signals. DCell constructs a multi-layer neural network based on extensive prior bio-

logical knowledge to simulate the growth of a eukaryotic cell [29]. However, DCell’s

network architecture is entirely based on well-known prior biological knowledge, so

the model was applied to relatively simple biological system of yeast. Moreover, deep

learning captures nonlinear effects of variables with high-level feature representation,

which allows deep learning to outperform other state-of-the-art methods.

However, training deep neural networks with HDLSS data poses a computa-

tional problem. A large number of parameters are involved in deep neural networks,

and it often makes the training infeasible or causes a model overfit on HDLSS data.

Particularly, backpropagation gradients in neural networks are of high variance on

HDLSS data, which consequently causes the model overfit [30]. In order to tackle

the HDLSS problem, the leave-one-out approach was used to avoid the overfitting

problem in backpropagation [31]. Regarding backpropagation, the risk of overfitting

was examined with validation data by the leave-one-out approach and terminates

the training early when overfitting occurs. For an alternative solution, an attempt to

reduce the dimensionality of the input space to a feasible size has been made [32]. Di-

mension reduction techniques, such as subsampled randomized Hadamard transform

(SRHT) and Count Sketch-base construction, were utilized to reduce the dimensional

size of the input data. Then, the projected data into the lower space were introduced

to a neural network for training.

For HDLSS data, feature selection is one of the conventional approaches. Deep

Feature Selection (DFS) was developed to select a discriminative feature subset in a

deep learning model [33]. Although DFS is not the optimal solution to low-sample

size data, DFS shows that deep learning can detect informative and discriminative

features of nonlinearity effects through multiple layers with high-dimensional data.
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Then, Deep Neural Pursuit (DNP) improved the solution of the feature selection in

deep learning, taking the HDLSS data problem into account [30]. DNP iteratively

augments features in the input layer by performing multiple dropouts. The multiple

dropouts grant the ability to train a small-sized sub-network at a time and to compute

gradients with low variance for alleviating the overfitting problem.

1.3 Methods

Pathway-Associated Sparse Deep Neural Network (PASNet) identifies a subset

of genes and pathways involved in a disease as prognostic biomarkers, as well as their

interactions. PASNet models a multilayered, hierarchical biological system of genes

and pathways on a disease, while leveraging the strengths of deep learning for com-

petitive predictive performance. The sparsity of PASNet allows one to interpret the

model, which is what conventional fully-connected networks lack. The architecture of

PASNet and the strategies for training a sparse neural network model with HDLSS

and imbalanced data are described.

1.3.1 The Architecture of PASNet

PASNet incorporates biological pathways and the concept of sparse modeling

based on Deep Neural Network (DNN). The neural network architecture of PASNet

consists of a gene layer (an input layer), a pathway layer that represents the bio-

logical pathways linked with input genes, a hidden layer that represents hierarchical

relationships among biological pathways, and an output layer that corresponds with

clinical outcomes, e.g. binary classes of long-term and short-term survival, stages of

cancer (see Figure 1.1).

In PASNet, sparse coding is considered on the connections between layers for

model interpretability. Sparse coding provides a solution to capture significant com-

ponents of a biological mechanism in the model, since biological processes may involve
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Gene layer Pathway
layer

⋮

⋮ ⋮

Hidden
layer

𝐡(0) 𝐡(1) 𝐡(2)

𝐖(0) 𝐖(1) 𝐖 2

𝐡(3)

Output
layer

Figure 1.1: Architecture of PASNet. The structure of PASNet is constructed by a gene
layer (an input layer), a pathway layer that represents the biological pathways linked
with input genes, a hidden layer that represents hierarchical relationships among
biological pathways, and an output layer that corresponds with clinical outcomes,
e.g. a binary class that has long-term survival and short-term survival, stages of
cancer.

only a few biological components. On the other hand, conventional fully-connected

networks lack to represent biological mechanisms.

Gene Layer

The gene layer (as an input layer) corresponds to gene expression data. A

patient sample of m gene expressions is formed as a column vector, which is denoted

by x = {x1, x2, ..., xm}. Each input node represents one gene.

Pathway Layer

The pathway layer represents biological pathways, where each node indicates

an individual pathway. The connections between the gene layer and the pathway

layer are established by well-known pathway databases (e.g., Reactome and KEGG).

Pathway databases contain associations between pathways and genes; each of which
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provides a set of gene components. Therefore, the pathway layer makes it possible to

interpret the model as a pathway-based analysis.

To begin with initializing the connections between the gene layer and the path-

way layer, we consider a binary bi-adjacency matrix (A) from biological pathway

databases. The bi-adjacency matrix can be defined as A ∈ Bn×m, where n is number

of pathways and m is number of genes. Then, an element of A, i.e., aij, is set to one

if gene j belongs to pathway i; otherwise, zero. Sparse coding is applied based on the

matrix A to represent the relationships between genes and pathways in the model.

1.3.1.1 Hidden Layer

Biological components may cooperate with others instead of functioning alone.

A biological system involves multiple pathways which have interactions together,

whereas a node in the pathway layer indicates a biological pathway. The associative

interactions between pathways can be represented in the hidden layer. In PASNet,

the hidden layer represents biological nonlinear associations between the pathways to

outputs.

Sparse coding between the pathway and the hidden layers enables one to in-

terpret these relationships. Although we consider only a single hidden layer in this

study for simplicity’s sake, multiple hidden layers can be used for deeper hierarchical

representations of pathways. For example, if there are two hidden layers, the second

hidden layer will represent deeper hierarchical associations of the nodes of the first

hidden layer, which are association effects of pathways.

1.3.1.2 Output Layer

The output layer shows clinical outcomes for which nodes compute the posterior

probabilities. In this layer, sparse coding allows to distinguish hierarchical groups of

pathways (which are detected from hidden layers) to predict clinical outcomes. In

8



PASNet, more than two clinical outcomes can be easily represented with multiple

nodes in the output layer.

Consequently, PASNet can dissect biological processes of hierarchical nonlinear

relationships and associations of genes and pathways to predict clinical outcomes.

This generative model-based approach would be useful to predict prognosis accurately

with complex HDLSS data. Furthermore, the integration of the biological structures

and prior knowledge to the model would produce a robust solution.

1.3.2 Overall Description of PASNet Training

The main challenge in training PASNet is to reduce both risk of overfitting and

computational complexity of training on HDLSS data. The related works that have

handled the HDLSS data problem are discussed in Section Related Work in Deep

Learning. To unravel the problems, PASNet optimizes a small sub-network, which

involves feasible nodes and parameters to train instead of the whole network and

then makes the sub-network sparse. Figure 1.2 illustrates the overall training flow of

PASNet.

First, we initialize the connections between the gene layer and the pathway

layer with prior biological knowledge of pathways (see Figure 1.2(a)). Active/inactive

connections are determined by the bi-adjacency matrix, A. The weights of active con-

nections and biases are randomly initialized from standard normal distribution, while

the weights of inactive connections are set to zero. The sparsity of the connections

between the gene layer and the pathway layer is invariant over the entire training.

The remaining layers are fully interconnected as the initial.

In the training phase, we repeat training sub-networks and applying sparse cod-

ing on the sub-networks until convergence (Figure 1.2(b) – (c)). A sub-network is

selected by a dropout technique, where neurons are randomly dropped in the inter-

mediate layers. In Figure 1.2(b), a small sub-network is shown with bold solid circles

and lines. Then, the small sub-network is trained by feed-forward and backpropaga-
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tion. Note that only weights and biases of the sub-network are trained. Upon the

completion of the sub-network’s training, sparse coding is applied to the sub-network

by trimming the connections that do not contribute to minimize the loss. In Fig-

ure 1.2(c), the dropped connections and nodes are marked as bold, dashed lines. The

details of the training are elucidated in the following sections.

1.3.3 Sparse Coding

Once the small sub-network is trained with the HDLSS data, the sub-network

is imposed to be sparse for the model interpretation. The sparsity of the sub-network

is determined by the mask matrix M on each layer as:

h(`+1) = a
(

(W(`) ?M(`))h(`) + b(`)
)
, (1.1)

where ? denotes element-wise multiplication, and a(·) is an activation function. h(`)

denotes an output vector on the `-th layer, and W(`) and b(`) are a weight matrix

and a bias vector, respectively. An element value of M is either one or zero, which

determines whether the associated weights are dropped in the current epoch.

The mask matrix M is generated with respect to a sparsity level (S) that

indicates the proportion of weights to be dropped in a single layer. S is a value

between 0 to 100 (e.g. [0, 10, ..., 100)), where zero creates a fully-connected layer while

100 causes no connection. The optimal S∗ is approximated on each layer individually

in the sub-network, while most related methods consider a single hyper-parameter for

the sparsity of all layers [34, 35]. The individual setting of the sparsity on each layer

shows different levels of biological associations on the genes and pathways.

We obtain the optimal sparsity level S∗ that minimizes the cost score. For

efficient computation, the cost scores are computed with a small number of finite

sparsity levels. Then, the optimal sparsity level is estimated by applying a cubic-

spline interpolation to the cost scores with the assumption that the cost function,

with respect to the sparsity level, is continuous.
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In particular, an element of M is set to one if the absolute value of the corre-

sponding weight is greater than threshold Q; otherwise, the element is zero, where Q

is an S-th percentile of absolute values of W. Note that the mask between the gene

layer and the pathway layer, i.e. M(0), is determined by the bi-adjacency matrix A

of biological pathways. Thus, the mask matrices are formulated as

M(`) =

1(|W(`)| ≥ Q(`)), if ` 6= 0

A, if ` = 0

(1.2)

where Q(`) is the S-th percentile of |W(`)| if ` 6= 0.

1.3.4 Cost-sensitive Learning for Imbalanced Data

We refine the cost function and the backpropagation for cost-sensitive learning,

since imbalanced data causes bias of the predictions towards the majority class. We

adapt the Mean False Error (MFE) method [36], which penalizes the errors of the

majority class.

Let K be the number of clinical outcomes. The normalized cost is computed

separately for each class by:

L =
K∑
k=1

Ck +
1

2
λ‖W‖2, (1.3)

Ck =
1

nk

nk∑
i=1

c(yi, ỹi), (1.4)

where Ck denotes mean error on the class k, and nk is the number of samples in

the class k. yi is a vectorized ground truth class label of the i-th sample, and ỹi is

its vectorized prediction. c(·) denotes a cost function (e.g., cross-entropy loss), and

L is the total cost. ‖W‖2 denotes a L2-norm of W, and λ > 0 is a regularization

hyperparameter.
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In the backpropagation phrase, the gradient is also computed separately for

each class. Hence, the weights and biases on the `-th layer are updated by:

W(`) ← (1− ηλ)W(`) − η
K∑
k=1

∂Ck
∂W(`)

, (1.5)

b(`) ← b(`) − η
K∑
k=1

∂Ck
∂b(`)

, (1.6)

where η is a learning rate. The algorithm of PASNet is briefly described in Algo-

rithm 1.

Algorithm 1 Training of PASNet

1: Initialize weights W(`) and biases b(`)

2: W(0) ←W(0) ?M(0)

3: repeat

4: Select a small sub-network via dropout

5: Train the sub-network by Eq. (1.5) and Eq. (1.6)

6: Sparse coding with the optimal M(`) by Eq. (1.2)

7: W(`) ←W(`) ?M(`)

8: until convergence

1.4 Results

We conducted experiments to evaluate PASNet’s predictive performance for

long-term survival prediction in Glioblastoma multiforme (GBM). The capability of

the prediction was assessed by comparing our model with the classifiers that have been

used for long-term survival prediction. Furthermore, we will describe how PASNet

can represent the biological system of GBM in the following sections.
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1.4.1 Data

GBM is a primary brain cancer that shows poor prognosis performance. Com-

prising more than half of all brain tumors, GBM is the most prevailing and ag-

gressive malignant type of primary astrocytomas [37]. Patients with GBM have a

median survival time of approximately 15 months with intensive treatments [38].

Furthermore, long-term survival patients with GBM are rare as more than 90% of

patients are deceased within three years of diagnosis. Although treatments in neu-

rosurgery, chemotherapy, and radiotherapy have improved, the prognosis of GBM

remains poor [39]. Hence, the advancement in understanding molecular mechanisms

and related biological pathways of GBM is significant to accelerating the progress for

new treatments [38].

We used the gene expression data of GBM patients, which is available at The

Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov). The dataset in-

cludes the gene expression data of 522 samples and 12,042 genes and provides survival

time and status. We considered patients who survived past 24 months (regardless of

survival status) as long-term survivals (LTS) and patients that deceased in less than

24 months as short-term survivals (non-LTS). Living patients with a survival time of

less than 24 months were excluded in the experiments and considered censored data.

Finally, we obtained 99 LTS and 376 non-LTS samples, where around 20% of the

samples were LTS patients.

For pathway-based analysis, we utilized a biological pathway database from the

Molecular Signatures Database (MSigDB) [40, 41, 42]. In MSigDB, we extracted the

biological pathways of Reactome. Then, we excluded the pathways that include less

than ten genes, because small pathways are often redundant with larger pathways [43].

As the input features, we considered the genes that belong to at least one pathway,

since pathway annotations of genes are essential to construct the mask matrix M

between the gene layer and the pathway layer. Finally, we considered 574 pathways

13
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and 4,359 genes in the experiments. The gene expression data were standardized to

a mean of zero and a standard deviation of one.

1.4.2 Experimental Design

We followed a typical design of conventional deep neural networks for PAS-

Net. A sigmoid function and cross-entropy were considered for the activation and

the cost function, respectively. A softmax function was used in the output layer

so that the probabilities of output nodes add up to one. For the optimal tuning

of PASNet’s training, we empirically determined the hyper-parameters by random

search before cross-validation experiments. The learning rate (η) was set to 1e−4,

and L2 regularization (λ) was set to 3e−4. Adaptive Moment Estimation (Adam)

was performed as the stochastic optimizer [44]. The dropouts for two intermedi-

ate layers were also applied with a dropping probability of 0.8 and 0.7, respec-

tively. PASNet was implemented by PyTorch, and the source code is available at

https://github.com/DataX-JieHao/PASNet.

1.4.3 Comparison

We evaluated PASNet by comparing the performance with classifiers that have

been used for prognosis prediction: Support Vector Machine (SVM), Random LASSO [13],

LASSO Logistic Regression (LLR) [1], and neural network with dropout (Dropout

NN).

Specifically, we used a SVM with a radial basis function (RBF) kernel (γ = 2−16

and C = 23.9 by two-step grid search [45]). Random LASSO was trained so that every

feature could be selected 20 times on average by bootstrapping, and the L1 regular-

ization parameter was determined by 10-fold cross-validation. The LASSO parameter

for LLR was also selected by 10-fold cross-validation. The fully-connected Dropout

NN was designed with the same numbers of intermediate layers and neurons as the

proposed PASNet as well as the dropout probabilities. The learning rate was 0.01
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and the L2 regularization was 0.005. Note that PASNet has less number of weights

to be trained in each epoch because of sparse coding, compared to Dropout NN.

Hence, the optimal hyper-parameters of L2 regularization and learning rate should

be different between PASNet and Dropout NN. We empirically searched the optimal

hyper-parameters for PASNet and Dropout NN separately through multiple experi-

ments. Dropout NN was implemented by PyTorch (https://pytorch.org/).

The experiments were carried out by stratified 5-fold cross-validation for main-

taining the same proportions of the imbalanced samples in the classes. The cross-

validation experiments were repeated ten times for performance reproducibility. Data

preprocessing, such as data normalization, was separately applied on each fold. The

testing data on each fold was scaled with the mean and standard deviation of the

training data of the same fold.

The predictive performances of the five models were evaluated with two metrics:

Area Under the Curve (AUC) and F1-scores. The Receiver Operating Characteristic

(ROC) curve (see Figure 1.3) was traced over the thresholds of scores to examine the

trade-off between True Positive Rate (TPR = TP/(TP + FN)) and False Positive

Rate (FPR = FP/(FP + TN)), where LTS was considered positive. An AUC was

computed by the area under the ROC curve. An F1-score, an average of Positive

Predicted Value (PPV = TP/(TP + FP )) and TPR, is calculated by 2(PPV ×

TPR)/(PPV + TPR). The F1-score was computed for the LTS class.

The average AUC and the average F1-score of the five methods on the test

datasets are shown in Table 1.1. PASNet outperformed others as both AUC and

F1-score are relatively high. PASNet produced AUC of 0.6622±0.013 (mean±std)

and F1-score of 0.3978±0.016. Following PASNet, Dropout NN produced AUC of

0.6408±0.014, and SVM produced AUC of 0.6337±0.015.

To statistically assess the performance of PASNet (AUC) as compared to others,

we conducted the Wilcoxon signed-rank test: a non-parametric paired, two sided

test for the null hypothesis that states the median difference in paired samples is

15
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Table 1.1: Comparison of AUC and F1-score in over ten stratified 5-fold cross-
validations

Model AUC F1-Score

Logistic LASSO 0.5899±0.020 0.3347±0.025

Random LASSO 0.6209±0.020 0.3370±0.020

SVM 0.6337±0.015 0.3446±0.015

Dropout NN 0.6408±0.014 0.2957±0.025

PASNet 0.6622±0.013 0.3978±0.016

zero. Specifically, the null hypothesis is that the benchmark classifier has equal or

better performance than our proposed algorithm. Table 1.2 shows the performance

of PASNet is significantly better than others, where the null hypotheses are rejected

at the 5% significance level (p-value < 0.05). Hence, the outperformance of PASNet

was statistically significant compared to the benchmark classifiers.

Table 1.2: The Wilcoxon signed-rank tests for comparing PASNet with the Bench-
mark Classifiers

W Statistic P-value

PASNet vs. Dropout NN 146.5 2.13e-06

PASNet vs. RBF-SVM 137.0 1.35e-06

PASNet vs. Random LASSO 45.0 1.06e-08

PASNet vs. Logistic LASSO 43.0 9.52e-09

SVM and Dropout NN showed a higher AUC than LASSO logistic regression

and Random LASSO, probably because of their capability of capturing nonlinear

effects of genes. Compared to Dropout NN, PASNet is a relatively thin network,

where the connections between layers are very sparse. However, PASNet interestingly

produced higher performance than Dropout NN. It shows that PASNet builds a robust
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network model, which is simplified to represent the biological processes for prognosis

prediction by incorporating biological prior knowledge.

1.5 Model Interpretation in GBM

Although PASNet yielded competitive predictive performance in the experi-

ments, a more promising contribution of PASNet is in the model’s interpretability. In

this section, we demonstrate a plausible biological mechanism inferred by PASNet for

long-term survival prediction in GBM. The graphical representations of the PASNet

model are illustrated in Figures 1.4–1.6 in the top-down order. The heatmaps were

generated by sorting the weights and node values of LTS, and positive and negative

weight values are colored in red and blue, respectively.

First, Figure 1.4 manifests the posterior probability of the samples in the clinical

outcomes. The dark block on the top shows the output node values (−log2(node value))

of the LTS samples, while the remaining ones are non-LTS samples. The weight

values of the connections from hidden nodes to the output nodes are depicted in

Figure 1.5(a), where dropped connections are colored in white. The figure reveals

distinct patterns of weights (opposite signs) to the two output neurons. Note that

there are hidden nodes disconnected to the neurons in the output layer (colored in

white) by sparse coding, which shows that the hidden nodes are insignificant.

The hidden node values of the samples are shown in Figure 1.5(b). The values of

the hidden nodes indicate the intensity of the group effects on the pathways, which are

connected to the hidden nodes. For instance, the first 16 hidden nodes in Figure 1.5(b)

show distinguishable intensities on LTS and non-LTS patients. The LTS patients

present significant intensities of the group effects of the 16 pathways while non-LTS

patients show significant lower values.

The weights between the pathway nodes and the hidden nodes are exhibited

in Figure 1.5(c), and the top-10 ranked pathways among them are zoomed in Fig-

ure 1.6(a). It appears that a small number of pathways mainly contribute to the
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hidden nodes simultaneously, which implies that the cohort of the pathways may

be candidates of prognostic biomarkers in long-term survival of GBM. The top-10

ranked pathways include signaling by GPCR, GPCR downstream signaling, innate

immune system, adaptive immune system, metabolism of carbohydrates, transmem-

brane transport of small molecules, developmental biology, metabolism of proteins,

class A/1 (rhodopsin-like receptors), and axon guidance. Most of the pathways are

referred to as significant pathways in GBM in biological literature. The pathways and

the references are listed in Table 1.3. Since the top-10 ranked pathways are all large

(gene numbers > 200), we further explored small pathways as well. Class B/2 (Se-

cretin family receptors) pathway which includes 88 genes is ranked 14th. One of the

subgroups in Class B/2 family is categorized as brain-specific angiogenesis inhibitors

that are growth suppressors of glioblastoma cells [46]. Hence, Class B/2 pathway may

play an important role in inhibition of GBM.

The genes of the pathways are illustrated by the weight values in Figure 1.6(b).

Since the connections between the gene layer and the pathway layer are given by

pathway databases, e.g., Reactome, they are very sparse. It also shows that multi-

ple pathways share genes in common. The genes, which are most frequently shown

in the ten pathways, include CDC42, PRKCQ, RAC1, AKT1, AKT2, AKT3, C3,

CREB1, GRB2, HRAS, KRAS, NRAS, PRKACA, PRKACB, PRKACG, RAF1, and

YWHAB, where CDC42, PRKCQ, and RAC1 are shown in six pathways and others

are in five pathways. Among them, several genes have been reported as biomarkers

in GBM. For instance, AKT1, AKT2, and AKT3, belonging to the five pathways of

signaling by GPCR, GPCR downstream signaling, innate immune system, adaptive

immune system, and developmental biology, are three isoforms of AKT in PI3K/AKT

pathway, which is an important drug target in many cancers including GBM [54]. In

particular, AKT2 is a well-known proto-oncogene that promotes the growth of tumors

and reduces the survival of patients in GBM [55, 56].
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Finally, we demonstrate a hierarchical representation of genes and pathways in

PASNet. In Figure 1.7(a), PASNet is partially visualized, where positive and nega-

tive weights are colored in red and blue respectively. The pathways are represented

by the corresponding genes in the pathway layer, and then the nonlinear effects of

the pathways are described in the hidden layer. The hierarchical representations can

be captured in the output layer, which produces a posterior probability for progno-

sis prediction. Although we considered a single hidden layer to simplify the model

with HDLSS data in this study, multiple hidden layers may be able to capture the

biological processes and their effects more accurately if a sufficient number of sam-

ples are available. Figure 1.7(b) – (c) illustrate distinctive representations of LTS

and non-LTS samples in PASNet. The color of nodes in the figures shows the values

computed with LTS/non-LTS samples in average. Note that node values between

the pathway layer and the output layer are between zero and one. The node with

a high value may be a potential prognostic biomarker in the group. Figure 1.7(b)

shows that pathways including aquaporin-mediated transport, signaling by BMP, and

cytokine signaling in immune system are activated with LTS samples. The second

node in the hidden layer is triggered by the active pathways, and the hidden node

activates the LTS node in the output layer. On the other hand, Figure 1.7(c) shows

that additional pathways of signaling by GPCR and innate immune system are also

activated for non-LTS samples. The other two hidden nodes take the active pathways

into account, and they activate the non-LTS node in the output layer. Hence, the

two pathways of signaling by GPCR and innate immune system may be potential

prognostic biomarkers for predicting LTS/non-LTS. Pathway of signaling by GPCR

has been investigated as a potential therapeutic target to inhibit the progression of

glioblastomas. [47]. Activating the innate immune system, i.e. immunotherapy, is

a promising strategy for the treatment of GBM [57]. Vascular endothelial growth

factor (VEGF), a modulator of the innate immune system, is reported crucial for the

tumor progression [49]. Moreover, aquaporin-mediated transport, signaling by BMP,
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and cytokine signaling in immune system may play an important role in GBM, since

they are shown in common as active in both LTS and non-LTS. Note that the activa-

tion/inactivation of a node in PASNet does not directly represent biological activation

in the system, whereas it indicates different states of the biological components in the

groups.

1.6 Conclusions

In this chapter, we proposed pathway-associated sparse deep neural network

for prognosis predictions (long-term survivals in GBM in this study). PASNet builds

a network model by leveraging prior biological knowledge of pathway databases and

by taking hierarchical nonlinear relationships of biological processes into account. To

improve the model interpretability, PASNet introduces sparse coding. Moreover, we

developed a training strategy to avoid the overfitting problem with HDLSS data and

the imbalanced problem.

To investigate the performance of PASNet, we used gene expression data of

GBM patients in TCGA. PASNet was assessed by comparing the predictive per-

formance with support vector machine, random LASSO, LASSO logistic Regression,

and neural network with dropout that have been widely used for prognosis prediction.

PASNet outperformed them with respect to both AUC and F1-score in the multiple

stratified 5-fold cross-validation experiments. Furthermore, we discussed how PASNet

can describe the biological system of GBM.

PASNet is the first deep neural network-based model that represents hierarchical

representations of genes and pathways and their nonlinear effects, to the best of

our knowledge. Additionally, PASNet would be promising due to its flexible model

representation and interpretability, embodying the strengths of deep learning.
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Figure 1.3: ROC Curves. PASNet produces the highest AUC of 0.6622 while the
AUC of Dropout NN, SVM, random LASSO, and LLR is 0.6408, 0.6337, 0.6209, and
0.5899, respectively.
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Figure 1.4: Graphical representation of the output node values over the samples by
PASNet. LTS samples obtain higher node values in LTS node than non-LTS samples.
Similarly, non-LTS samples obtain higher node values in non-LTS node than LTS
samples.
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Figure 1.5: Graphical representation among the output layer, hidden layer, and path-
way layer in PASNet. (a) The weights between the hidden layer and the output layer.
Hidden nodes are sorted in a descending order. (b) The node values in the hidden
layer. The horizontal dotted lines indicates LTS/non-LTS samples. The vertical dot-
ted lines indicates LTS/non-LTS samples are significantly distinguished by top 16
pathways. (c) The absolute weights between the pathway layer and the hidden layer.
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Figure 1.6: Graphical representation of the 10 top-ranked pathways by PASNet. (a)
The absolute weights between the 10 top-ranked pathway nodes and the hidden layer.
It is a zoom-in view of Figure 1.5(c). (b) Weights between the gene layer and the 10
top-ranked pathway nodes. The connections are determined by Reactome database.
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Figure 1.7: Hierarchical representation of pathways in PASNet. (a) PASNet is par-
tially visualized showing the five pathways. Distinct neural network activations be-
tween LTS (b) and non-LTS (c) are shown via PASNet. The nodes of the neural
network of (b) and (c) correspond to (a). For instance, the nodes in the pathway
layer of (b) and (c) represent signaling by GPCR, innate immune system, aquaporin-
mediated transport, signaling by BMP, and Cytokine signaling in immune system.
The pathways of signaling by GPCR and innate immune system are inactive with
LTS patients, whereas the both pathways are active with non-LTS patients.
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CHAPTER 2

INTERPRETABLE DEEP NEURAL NETWORK FOR CANCER SURVIVAL

ANALYSIS BY INTEGRATING GENOMIC AND CLINICAL DATA

2.1 Background

Dissecting complex biological processes associated to clinical outcomes (e.g.,

patients survival time) at the cellular and molecular level provides in-depth biological

insights not only for developing new treatments for patients, but also for accurate

prediction of clinical outcomes [58]. Advanced molecular high-throughput sequencing

platforms produce high-dimensional genomic data (e.g., gene expression data) that

can provide rich biological descriptions of molecular profiles of human diseases (e.g.,

cancer) as well as supporting clinical decision-making [59].

Survival analysis estimates survival distribution and investigates the effects of

biological and clinical features on a patient’s survival time, while handling censored

data. The most widely used method for survival analysis is the Cox Proportional

Hazards model (Cox-PH), a semi-parametric model that computes the effects of co-

variates on the risk of event [60, 61]. Cox-PH assumes that the linear combination of

patients covariates may be associated with the hazard function (instantaneous rate

of occurrence of the event).

However, traditional Cox-PH models have limitations: (1) analyzing high-

dimension, low-sample size (HDLSS) data or (2) highly nonlinear data. Training

models with HDLSS data is a challenging problem in bioinformatics, because most

biological data have many more features (p) than the number of samples (n), i.e.,

p >> n. HDLSS data often make model training infeasible [62]. Thus, low dimen-

sional data, such as clinical data (e.g., age, sex, and body-mass-index), have been

analyzed with the Cox-PH model for survival analysis. However, recently, an in-

creasing number of research studies have examined high-dimensional genomic data
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to unveil the molecular mechanisms that cause different survival rates. To tackle

the HDLSS problem on the Cox-PH model, feature selection techniques and regu-

larization have been considered. Lasso (L1-norm) and elastic net penalizations were

introduced in the Cox-PH model [63, 64, 65, 66], whereas in another study a feature

selection approach was performed to reduce the number of covariates [67].

The relationship between genomic data and a patient’s survival is often highly

nonlinear in complex human diseases, whereas a hazard in the Cox-PH model assumes

linear relationships between the predictors and a function of the outcome and time

of the outcome. Kernel trick is a standard solution to convert nonlinear effects to

linear, for linear learning algorithms. Kernel Cox-regression was proposed to capture

nonlinear effects between gene expression data and survival data [68]. In the kernel

Cox-regression model, regularized Cox-PH was considered in a reproducing kernel

Hilbert space. Survival SVM model was developed with sparse regularization for

high-dimensional and nonlinear data [69]. However, it is difficult to identify the

optimal kernel function of the data, because a kernel function has to be specified in

advance.

Lately, deep learning approaches have been successfully adapted due to the

capability of modeling highly nonlinear systems and the flexibility of architecture

design. In survival analysis, a number of deep learning approaches have been devel-

oped coupled with a Cox proportional hazards output layer. DeepSurv introduced

a Cox proportional hazards function into a deep fully-connected feed-forward neu-

ral network for survival analysis and personalized treatment recommendation [70],

and it showed competitive performance with Cox-PH and random survival forests.

However, DeepSurv considered only low-dimensional clinical data, where only a small

number of covariates (p < 20) were examined on simulation data and clinical data.

Cox-nnet was constructed based on an artificial neural network with a Cox propor-

tional hazards node in the output layer [71]. High-throughput transcriptomics data

of RNA-Seq were introduced to Cox-nnet, and it produced better performance than
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Cox-proportional hazards regressions, random survival forests, and CoxBoost. Cox-

nnet reported that the high-level representations of gene expression at the top nodes

of the hidden layer are correlated to survival rates, and each of the nodes in the

hidden layer may implicitly reflect biological processes. SurvivalNet optimizes deep

survival models via Bayesian optimization based on Cox-nnet for high-throughput

different types of genomic data such as gene expressions, protein expressions, copy

number variations, and mutations [72]. SurvivalNet automatically found the optimal

network (e.g., numbers of layers and nodes), and the performance of SurvivalNet was

slightly better than Cox elastic net (Cox-EN) and random survival forests when the

dimension of the data is high. The risk backpropagation analysis enabled SurvivalNet

to be interpretable by generating risk scores for each feature.

However, applying deep learning approaches to high-dimensional genomic data

for survival analysis is still challenging due to (1) the problem of overfitting when

training a deep learning model with HDLSS data and (2) lack of explicit model

interpretation. Deep learning typically requires a large number of samples, since deep

neural network models involve a number of parameters. Particularly, when training

a deep learning model with HDLSS data, gradients tend to have high variance in

backpropagation, which consequently causes model overfitting. Both Cox-nnet and

SurvivalNet introduced only significant genomic data by feature selection approaches

to avoid the overfitting problem. In order to tackle the HDLSS problem in deep

learning, dimension reduction techniques were employed to reduce the dimension of

the input data, and the results were introduced to a neural network [32]. Deep

Feature Selection was developed to identify discriminative features in a deep learning

model [33]. Deep Neural Pursuit trained a small-sized sub-network and computed

gradients with low variance for feature selection [30].

Conventionally, deep neural networks consist of multiple fully-connected layers,

which make it difficult to interpret. In survival analysis, model interpretation (e.g.,

identifying prognosis factors) is often more important than simply predicting patient
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survival with high accuracy. However, fully-connected hidden layers lack to represent

explicit biological components. Also, biological processes may involve only a small

number of biological components rather than all input features. Thus, the capability

of explicit model interpretation with sparse deep neural networks is highly desired in

survival analysis.

Furthermore, high-level biological interpretation (e.g., hierarchical relationship

between molecular pathways) has seldom been highlighted, whereas biological in-

terpretation at low levels (e.g., gene expression level) has been often considered.

Pathway-based model interpretation can provide better biological intuitive and inter-

pretable solutions. Pathway-based analysis often produces significantly reproducible

power in genomic study by incorporating well-known biological knowledge. For in-

stance, higher-order functional representation of pathway-based metabolic features

provided robust and highly reproducible biomarkers for breast cancer diagnosis [9].

Complex biological systems may involve hierarchical relationships between bio-

logical pathways. The hierarchical linkages of biological pathways may cause different

survival rates. For instance, the hierarchical representation with receptor pathways

and gene ontology was studied for antiviral signaling [73]. Therefore, the incorpora-

tion of the effects of inhibition and propagation of a pathway component to others in

deep learning can allow the model to be interpretable.

Data integration of multiple types of data (e.g., multi-omics data or clinical

data) in deep learning model is also challenging. A number of studies have reported

that leveraging multi-omics and clinical data improves predictive performance in sur-

vival analysis [72, 1, 74]. A naive approach to integrate multi-omics data is to combine

all types of data into a single matrix and perform survival analysis [75, 72]. The ap-

proach assumes that the heterogeneous data can be represented by an augmented

matrix form. However, the augmented matrix causes problems: (1) generates much

higher dimension of HDLSS data, (2) makes the sample size smaller due to missing

values, and (3) ignores data types having a smaller number of covariates. Note that
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multi-omics data on The Cancer Genome Atlas (TCGA) present substantial missing

values; e.g., 160 samples of mRNA-Seq are available, while 595 clinical samples are

in glioblastoma multiforme (GBM) dataset in TCGA.

In this chapter, we propose a novel method, Cox-PASNet, a pathway-based

sparse deep neural network, for survival analysis integrating high-dimensional genomic

data and clinical data. Our main contributions of Cox-PASNet for survival analysis

are:

• to explicitly model nonlinear and hierarchical relationships in a biological path-

way level,

• to enable one to interpret the model, where nodes in layers correspond to bio-

logical components of genes and pathways,

• to integrate clinical data in a deep learning model, and

• to provide an efficient solution to train the complex neural network model with

HDLSS data without overfitting problem.

2.2 Methods

2.2.1 The Architecture of Cox-PASNet

We introduce our proposed model, Cox-PASNet, a pathway-based sparse deep

neural network for survival analysis with genomic and clinical data. Cox-PASNet

combines a Cox proportional hazards regression with a deep neural network, incorpo-

rating prior knowledge of biological pathways. The architecture of Cox-PASNet (see

Figure 2.1) is comprised of (1) a gene layer, (2) a pathway layer, (3) multiple hidden

layers, (4) a clinical layer, and (5) a Cox layer.

Gene Layer

The gene layer is an input layer of Cox-PASNet introducing gene expression

data with n patient samples of p gene expressions. For pathway-based analysis, only

the genes that belong to at least one pathway are considered in the gene layer.
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Figure 2.1: The architecture of Cox-PASNet. The structure of Cox-PASNet is con-
structed by a gene layer (an input layer), a pathway layer, multiple hidden layers, a
clinical layer (additional input layer), and a Cox layer.

Pathway Layer

The pathway layer represents biological pathways where a node indicates a

specific biological pathway. The pathway layer incorporates prior biological knowledge

so that the model can be biologically interpretable. Pathway databases (e.g., KEGG

and Reactome) contain a set of genes that are involved in a pathway, and each pathway

characterizes a biological process. The knowledge of the given association between

genes and pathways explicitly forms sparse connections between the gene layer and

the pathway layer in Cox-PASNet, rather than fully-connecting the layers.

To implement the sparse connections between the gene and the pathway lay-

ers, we consider a binary bi-adjacency matrix. Given pathway databases containing

pairs of m genes and n pathways, the binary bi-adjacency matrix (A ∈ Bn×m) is

constructed, where an element aij is one if gene j belongs to pathway i, otherwise

zero, i.e., A = {aij|1 ≤ i ≤ n, 1 ≤ j ≤ m} and aij = {0, 1}.

Hidden Layers

The hidden layers model the nonlinear and hierarchical effects of pathways.

Node values in the pathway layer indicate the active/inactive status of a single path-
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way in a biological system, whereas the hidden layers show the interactive effects of

multiple pathways. The deeper hidden layer expresses the higher level representations

of biological pathways.

Clinical Layer

The clinical layer introduces clinical data to the model separately from genomic

data. The dimension of clinical data is usually much smaller than genomic data, so

clinical data tend to be easily ignored if introducing them to the input layer with

genomic data. In Cox-PASNet, the complex genetic effects of gene expression data

are captured from the gene layer to the hidden layers, whereas the clinical data are

directly introduced into the output layer along with the highest-level representation

of genomic data (i.e., node values on the last hidden layer). Therefore, Cox-PASNet

takes the effect of genomic data and clinical data separately into account in the neural

network model.

Cox Layer

The Cox layer is the output layer that has only one node. The node value

produces a linear predictor, a.k.a. Prognostic Index (PI), from both genomic and

clinical data, which is introduced to a Cox-PH model. Note that the Cox layer has

no bias node according to the design of the Cox model.

Furthermore, we introduce sparse coding so that the model can be biologically

interpretable and mitigate overfitting. In a biological system, a few biological com-

ponents are involved in biological processes. The sparse coding enables the model to

include only significant components for better biological model interpretation. Sparse

coding is applied to the connections from the gene layer to the last hidden layer by

mask matrices. The details of sparse coding are described in Section 2.2.4.
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2.2.2 Objective Function

In order to perform Cox proportional hazards regression on the Cox layer, Cox-

PASNet defines the objective function using average negative log partial likelihood

with L2 regularization:

`(Θ) =− 1

nE

∑
i∈E

(
hI
iβ − log

∑
j∈R(Ti)

exp(hI
jβ)
)

+ λ(‖Θ‖2), (2.1)

where Θ = {β,W} is a set of parameters, β is the Cox proportional hazards coeffi-

cients (weights between the last hidden layer and the Cox layer), W is a union of the

weight matrices on the layers before the Cox layer, and hI is the integrative layer that

integrates the second hidden layer’s outputs and the clinical inputs from the clinical

layer. E is a set of uncensored samples, nE is the total number of uncensored samples,

and R(Ti) = {i|Ti ≥ t} is a set of samples at risk of failure at time t. ‖W‖2 and ‖β‖2
are the L2-norms of W and β respectively, and λ is a regularization hyperparameter

to avoid overfitting (λ > 0).

2.2.3 Training Cox-PASNet

We propose an optimization strategy to train Cox-PASNet with HDLSS data

along with L2 regularization in the objective function. We optimize the model by par-

tially training small sub-networks with sparse coding. Training a small sub-network

guarantees the feasible optimization with a small set of parameters in each epoch.

The overall training flow of Cox-PASNet is illustrated in Figure 2.2. Layers are

initially set to be fully connected, where weights and biases are randomly initialized.

Particularly, the connections between the gene layer and the pathway layer are forced

to be sparse by the bi-adjacency matrix, and the Cox layer includes no bias node.

A small sub-network is randomly chosen by a dropout technique in the hidden

layers excluding the Cox layer (Figure 2.2a). Then, the weights and the biases of the

sub-network are optimized by backpropagation. Once training of the sub-network

completes, sparse coding is applied to the sub-network by trimming the connections
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Figure 2.2: Training of Cox-PASNet with high-dimensional, low-sample size data. (a)
A small sub-network is randomly chosen by a dropout technique in the hidden layers
and trained. (b) Sparse coding optimizes the connections within the small network.

within the small network that do not contribute to minimizing the loss. In Figure 2.2b,

the connections and the nodes dropped by sparse coding are marked with bold and

dashed lines. The algorithm of Cox-PASNet is briefly described in Algorithm 2.

Algorithm 2 Training of Cox-PASNet

1: Initialize weights W(`), biases b(`), and β

2: W(0) ←W(0) ?M(0)

3: repeat

4: Select a small sub-network via dropout

5: Train the sub-network

6: Sparse coding with the optimal M(`) by Eq. (2.3)

7: Update weights

8: until convergence

2.2.4 Sparse Coding

Sparse coding is implemented by mask matrices. A binary mask matrix M

controls a sparsity level of each layer on the sub-network, where an element indicates

35



whether the corresponding weight is dropped or not. Then, the outputs in the layer

are computed by:

h(`+1) = a
(

(W(`) ?M(`))h(`) + b(`)
)
, (2.2)

where ? denotes an element-wise multiplication operator, and a(·) is a nonlinear

activation function (e.g., sigmoid or Tanh). h(`) is the outputs on the `-th layer, and

W(`) and b(`) are a weight matrix and a bias vector, respectively, with 1 ≤ ` ≤ L−2,

where L is the number of layers.

In particular, an element of M is set to one if the absolute value of the corre-

sponding weight is greater than threshold s(`), otherwise it is zero. Note that the mask

between the gene layer and the pathway layer, i.e., M(0), is determined by the bi-

adjacency matrix A of biological pathways. Thus, the mask matrices are formulated

as

M(`) =

1(|W(`)| ≥ s(`)), if ` 6= 0

A, if ` = 0.

(2.3)

The optimal sparsity level (s(`)) is estimated on each layer in the sub-network to

generate the mask matrix. For efficient approximation of the optimal sparsity level,

cost scores are computed with various finite sparsity levels in a range of s = [0, 100)

where zero generates a fully-connected layer while 100 shows disconnected layers.

Then, we approximate the cost function with respect to sparsity levels by applying a

cubic-spline interpolation to the cost scores computed by the finite set of s. Finally,

the sparsity level that minimizes the cost score is considered for the optimal sparsity

level. The optimal s(`) is approximated on each layer individually in the sub-network.

The individual optimization of the sparsity on each layer represents different levels of

biological associations on genes and pathways.
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2.3 Results

2.3.1 Datasets

In this study, we considered GBM and ovarian serous cystadenocarcinoma

(OV) to assess Cox-PASNet. GBM is the most aggressive malignant type of brain

tumor, which shows poor prognosis [37]; OV is one of the most common cancer

types among women in the world, and OV is usually diagnosed at a late stage [76].

Gene expression and clinical data of GBM and OV were obtained from the TCGA

(http://cancergenome.nih.gov). The samples that lack survival time or survival status

were filtered out.

The prior knowledge of biological pathways was taken from the Molecular

Signatures Database (MSigDB) [40, 41, 42], where KEGG and Reactome pathway

databases were considered for the pathway-based analysis. We excluded small path-

ways (i.e., less than fifteen genes) and large pathways (i.e., over 300 genes), since

small pathways are often redundant with other larger pathways and large pathways

are related to general biological pathways rather than specific to a certain disease [43].

Moreover, only the genes that belong to at least one pathway were investigated.

For the integrative analysis, we included the clinical information of both GBM

and OV patients. We incorporated only age in the clinical layer of Cox-PASNet,

because age has been reported as a significant covariate for prognostic prediction in

GBM [1] and most other clinical data have substantial missing values. Although

Karnofsky Performance Score (KPS) is also reported as significant as well as age,

KPS is highly correlated to age, and there are many missing values. Finally, we used

5,404 genes, 659 pathways, and clinical data of age from 523 GBM samples and 532

OV samples.

2.3.2 Experimental Design

Cox-PASNet was assessed by comparing the performance with Cox-EN [65],

Cox-nnet [71], and SurvivalNet [72]. The performance of the four models was eval-
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uated by C-index, which is a non-parametric metric that calculates concordance be-

tween predicted and actual survival curves. The value range of C-index is between

zero and one, where one indicates a perfect model prediction and 0.5 means a random

guess.

The dataset was randomly split into training (64%), validation (16%), and test

(20%) data, while preserving the proportion of the censor status between censored

and uncensored samples. The gene expression and clinical data in the training data

were standardized to mean of zero and standard deviation of one. The validation and

the test data were normalized with the mean and standard deviation from the training

data. Each model was trained by the training data; the optimal hyper-parameters

were obtained with the validation data; and the model performance was evaluated by

the test data. The experiments were repeated over twenty times for reproducibility

of model performance.

Cox-PASNet followed a modern deep learning design. We used the Tanh func-

tion as the activation function. Both dropout and L2 regularizations were considered.

Adaptive Moment Estimation (Adam) was performed for the optimization to ap-

proximate first-order gradients [44]. The optimal initial learning rate (η) and the L2

regularization (λ) were estimated by the grid search technique. η and λ that minimize

the cost function with validation data were selected as the optimal hyper-parameters.

Dropout rates were empirically set to be 0.7 and 0.5 for the pathway layer and the fol-

lowing hidden layers, respectively. The open source code of Cox-PASNet implemented

by PyTorch is available at https://github.com/DataX-JieHao/Cox-PASNet.

Cox-EN models were implemented using Glmnet Vignette package in Python [65].

The hyper-parameters of α and λ were optimized by grid search. We considered val-

ues of α between 0 and 1 with a step of 0.01 and 200 λ values. Then, Cox-EN

was performed with the optimal hyper-parameters that minimize the cost function.

Cox-nnet was conducted based on open source codes provided by the authors. The

tuning setting of the model followed their recommendation. Grid search for L2 was
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applied. The optimal hyper-parameters of SurvivalNet were optimized by Bayesian

Optimization technique, BayesOpt [77]. We also considered the hyper-parameters of

L1 and L2 regularizations for the Bayesian optimization in addition to their default

setting. SurvivalNet was carried out by its open source in GitHub.

For the data integration, both the clinical data of age and gene expression data

were combined into an input matrix and introduced to Cox-EN, SurvivalNet, and

Cox-nnet at the input level for the experiments, whereas Cox-PASNet introduced gene

expression data into the gene layer and clinical data into the clinical layer separately.

2.3.3 Experimental Results

The experimental results with GBM and OV data are shown in Figure 2.3 and

Table 2.1–2.3. Cox-PASNet showed the highest C-index of 0.6347 ± 0.0372 in GBM,

whereas the second highest C-index of 0.5903 ± 0.0372 was shown in Cox-nnet (Fig-

ure 2.3a and Table 2.1). Cox-nnet is a simplified model of SurvivalNet that includes

only a hidden layer. On the other hand, SurvivalNet is a generalized fully-connected

neural network model for survival analysis with Cox-model, where the optimal archi-

tecture is determined by Bayesian optimization technique. Cox-nnet reported that

the simple neural network architecture often produces better performance than deeper

networks [71]. Cox-EN produced a C-index of 0.5151 ± 0.0336, which is close to a

random guess. It may be due to the highly nonlinear HDLSS data of 5,404 features of

523 samples. The statistical significance of the performance was assessed by Wilcoxon

rank-sum test. The distributions of C-index scores produced by Cox-PASNet were

significantly higher than others in Table 2.2.

Moreover, we evaluated Cox-PASNet with OV data. Cox-PASNet showed the

highest C-index of 0.6343 ± 0.0439 as well; Cox-nnet retained the second rank with

C-index of 0.6095 ± 0.0356; Cox-EN was the last place with C-index of 0.5276 ±

0.0482 (Figure 2.3b and Table 2.3). The statistical testing of Wilcoxon rank-sum test

showed that Cox-PASNet also statistically outperformed others in OV in Table 2.4.
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Table 2.1: Comparison of C-index with GBM in over 20 experiments

Model C-index

Cox-EN 0.5151 ± 0.0336

Cox-nnet 0.5903 ± 0.0372

SurvivalNet 0.5521 ± 0.0295

Cox-PASNet 0.6347 ± 0.0372

Table 2.2: Statistical assessment with GBM

Wilcoxon rank-sum test (P-value)

Cox-PASNet vs. Cox-EN 8.85e-05∗

Cox-PASNet vs. Cox-nnet 4.49e-4∗

Cox-PASNet vs. SurvivalNet 1.40e-4∗

∗ shows the statistical significance with significance level = 0.05.

Cox-PASNet shares the cost function of negative log partial likelihood with Cox-

nnet and SurvivalNet. However, Cox-PASNet constructs the neural network based

on prior knowledge of biological pathways, and the biologically inspired architecture

produced better performance reducing noise that comes from the data complexity.

Cox-PASNet also trains the model with sub-networks to avoid overfitting problem

with HDLSS data. The outstanding performance supports the contributions of the

new architecture Cox-PASNet and the training strategy.

2.4 Model Interpretation in GBM

For the biological model interpretation of Cox-PASNet, we re-trained the model

with the optimal pair of hyper-parameters from 20 experiments using all available

GBM samples. The samples were categorized into two groups of high-risk and low-

risk groups by the median Prognostic Index (PI), which is the output value of Cox-

PASNet. The node values of the two groups in the integrative layer (i.e., the second

hidden layer (H2) and the clinical layer) and the pathway layer are illustrated in
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Table 2.3: Comparison of C-index with OV in over 20 experiments

Model C-index

Cox-EN 0.5276 ± 0.0482

Cox-nnet 0.6095 ± 0.0356

SurvivalNet 0.5614 ± 0.0524

Cox-PASNet 0.6343 ± 0.0439

Table 2.4: Statistical assessment with OV

Wilcoxon rank-sum test (P-value)

Cox-PASNet vs. Cox-EN 1.03e-4∗

Cox-PASNet vs. Cox-nnet 0.04∗

Cox-PASNet vs. SurvivalNet 2.93e-4∗

∗ shows the statistical significance with significance level = 0.05.

Figure 2.4 and Figure 2.5, respectively. In Figure 2.4a, the node values of 31 covariates

(30 from the genomic data and age from the clinical data) were sorted by the average

absolute partial derivatives with respect to the integrative layer. Age (the first column

in Figure 2.4a) is shown as the most important covariate in Cox-PASNet with GBM

data in terms of the partial derivatives.

The top ranked covariates show distinct distributions between high-risk and

low-risk groups. For instance, the first three covariates in H2 (the 2nd, 3rd and 4th

columns in Figure 2.4a) were activated in the high-risk group, but inactivated in

the low-risk group. Moreover, we performed logrank test by grouping node values

of the covariate into two groups individually again by their median. The -log10(p-

values) computed by logrank test are depicted in the above panel aligning with the

covariates in Figure 2.4a. The red triangle markers show significant covariates (-

log10(p-value) > 1.3), whereas the blue markers show insignificant ones. The logrank

tests revealed that the top ranked covariates by the absolute weight are associated to

survival prediction. Figure 2.4b – 2.4c present Kaplan-Meier curves for the top two

41



covariates, where survivals between the two groups are significantly different. Thus,

the top ranked covariates can be considered as prognostic factors.

In the same manner, the nodes in the pathway layer are partially illustrated in

Figure 2.5. The heatmap in Figure 2.5a depicts the top 10 pathway node values of

the high-risk and low-risk groups, where the pathway nodes are sorted by the average

absolute partial derivatives with respect to the pathway layer. We also performed

logrank tests on each pathway node, and 304 out of 659 pathways were statistically

significant on the survival analysis. The two top-ranked pathways were further in-

vestigated by Kaplan-Meier analysis, shown in Figure 2.5b–2.5c. The Kaplan-Meier

curves of the two top-ranked pathways imply the capability of the pathway nodes as

prognostic factors.

The statistically significant nodes in the integrative layer and the top ten ranked

pathway nodes are visualized by t-SNE [78] in Figure 2.6, respectively. The nonlin-

earity of the nodes associated with PI is illustrated. The integrative layer represents

the hierarchical and nonlinear combinations of pathways. Thus, the more distinct

associations with survivals are shown in the integrative layer than the pathway layer.

The ten top-ranked pathways by the partial derivatives are listed with related

literature in Table 2.5. The p-values in the table were computed by logrank test

with the pathway node values of the two groups of high and low risks. Among them,

five pathways were reported as significant pathways in biological literature of GBM.

Jak-STAT signaling pathway, which is usually called as an oncopathway, is activated

for the tumor growth of many human cancers [79]. Inhibition of Jak-STAT signaling

pathway was shown to reduce the malignant tumors using animal models of glioma.

Neuroactive ligand-receptor interaction was explored as one of the most significant

pathways in GBM [80]. PI3K cascade is also a well-known pathway that is highly

involved in proliferation, invasion, and migration in GBM [81].

The ten top-ranked genes by partial derivatives with respect to each gene are

listed with their p-values and related literature in Table 2.6. PRL is known as be-
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ing associated with occurrence of neoplasms and central nervous system neoplasms,

and the assessment with PRL expression in primary central nervous system tumors

was investigated [86]. MAPK9 was identified as a novel potential therapeutic marker

along with RRM2 and XIAP, which is associated with biological pathways involved

in the carcinogenesis of GBM [87]. IL22 was reported to promote the malignant

transformation of bone marrow-derived mesenchymal stem cells, which exhibit po-

tent tumoritropic migratory properties in tumor treatment [88]. FGF5 contributes to

the malignant progression of human astrocytic brain tumors as an oncogenic factor

in GBM [89]. The activation of JUN along with HDAC3 and CEBPB may form

resistance to chemotherapy and radiation therapy of hypoxic GBM, and the down-

regulation of the genes appeared to inhibit temozolomide on hypoxic GBM cells [90].

Low expression of DRD5 was presented as being associated with relatively superior

clinical outcomes in glioblastoma patients with ONC201 [91]. HTR7 involved in neu-

roactive ligandreceptor interaction and calcium signaling pathway was reported to

contribute the development and progression of diffuse intrinsic pontine glioma [92].

It is worth noting that only IL22 and FGF5 are statistically significant (i.e.,

p-value < 0.05) by logrank test on each gene, which means that only the two genes

can be identified as significant prognostic factors by conventional Cox-PH models.

However, other genes such as PRL, MAPK9, JUN, DRD5, and HTR7 have been bio-

logically identified as significant prognostic factors, even though significantly different

distributions are not found on gene expression (i.e., p-value ≥ 0.05). The average ab-

solute partial derivatives with respect to each gene measure contribution to patients’

survival through the pathway and hidden layers in Cox-PASNet when gene expres-

sion varies on the gene. Therefore, the gene biomarker identification by Cox-PASNet

allows one to capture significant genes nonlinearly associated to patients’ survival.

Figure 2.7 illustrates the overall hierarchical representation of biological path-

ways in Cox-PASNet. A pathway node is represented by nonlinear effects of the

associated gene nodes, and a hidden node expresses the high-level representation of
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a set of pathways. The following hidden layers describe the hierarchical representa-

tion of the previous hidden nodes. Then, the last hidden nodes are introduced to a

Cox-PH model with clinical data.

A pathway node value shows active or inactive status of the corresponding

pathway, which may be associated to different survivals (e.g., Jak-STAT signaling

pathway). The significance of the genes involved in the active pathway can be ranked

by the average absolute partial derivatives with repect to the gene layer (e.g., AKT1

and AKT3). A set of the active pathways are represented in an active node in the

following hidden layer, which improves the survival prediction. For instance, the

Kaplan-Meier plots of Node 19 and PI show more similar estimation of the survival

than Jak-STAT signaling pathway in Figure 2.7.

2.5 Conclusion

We developed a pathway-based sparse deep neural network, Cox-PASNet, for

survival analysis coupled with Cox-PH model on a deep neural network. Cox-PASNet

builds a neural network model that can describe nonlinear and hierarchical effects of

biological pathways and provide significant prognostic factors for accurate prediction

of patients’ survival. A new strategy to train the deep neural network model with

HDLSS data was also introduced in the paper. Cox-PASNet outperformed the current

cutting-edge survival methods such as Cox-nnet, SurvivalNet, and Cox-EN, and its

predictive performance was statistically assessed.

Negative log-partial likelihood with a single node in the output layer is consid-

ered in Cox-PASNet as Cox-nnet and SurvivalNet also adapted. Using Cox log-partial

likelihood function may raise several concerns with respect to the model assessment,

which is commonly applied in conventional Cox-PH models. One concern is if there is

multicollinearity in the last hidden layer’s nodes and the clinical layer’s node, which

are the covariates in the Cox-PH model. The covariates are hierarchically derived

high-level representations from gene expression data (inputs) rather than input data
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introduced to the model directly. Therefore, we used partial derivatives with respect

to inputs for the model assessment with neural network for identifying significant

genes or pathways. However, testing the multicollinearity would be a potential so-

lution to identify the optimal number of nodes. Another concern is how to assess

Cox-PASNet model fit by residuals, such as Martingale residuals and deviance resid-

uals. While the scope of our study is to develop neural network-based survival analysis

by incorporating Cox log-partial likelihood function, testing the fitness of a Cox-PH

model, eventually, would be beneficial to deep learning-based Cox-PH model.

Overall, Cox-PASNet constructs the neural network based on biological path-

ways with sparse coding. The genomic and clinical data are introduced to the model

separately for model interpretation. Cox-PASNet integrates clinical data as well as

genomic data. However, high-dimensional genomic data may cause bias in the inte-

gration due to the unbalanced size between genomic and clinical covariates. Further-

more, the incorporation of multi-omics data such as DNA mutation, copy number

variation, DNA methylation, and mRNA expression is essential to describe complex

human diseases involving a sequence of complex interactions in multiple biological

processes. A solution of integration of complex heterogeneous data would be desired

as a future work.
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a

b

Figure 2.3: Experimental results with (a) GBM and (b) OV in C-index. Boxplots
of the C-index of (a) TCGA GBM dataset and (b) TCGA OV dataset using Cox-
EN, SurvivalNet, Cox-nnet, and Cox-PASNet. Each dataset was randomly split into
training (64%), validation (16%), and test (20%) data, while preserving the proportion
of the censor status between censored and uncensored samples. The experiments were
repeated over twenty times.
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a

b c

Figure 2.4: Graphical visualization of the node values in the second hidden layer
(H2) and the clinical layer. (a) Heatmap of the 31 nodes (i.e., thirty H2 nodes and
one clinical node). The horizontal dotted line indicates high-risk/low-risk samples.
The upper dot plot shows -log10(p-values) of logrank test between high-risk/low-risk
groups for each node. Red indicates statistical significance with logrank test, whereas
blue shows insignificance. The curve in the right panel shows prognostic indices (PI)
with the corresponding samples. (b) – (c) Kaplan-Meier plots for the two top-ranked
nodes.
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a

cb

Figure 2.5: Graphical visualization of the node values in the pathway layer. (a)
Heatmap of the ten top-ranked pathway nodes. The horizontal dotted line indicates
high-risk/low-risk samples. The upper dot plot shows -log10(p-values) of logrank
test between high-risk/low-risk groups for the top ten ranked pathway nodes. Red
indicates statistical significance with logrank test, whereas blue shows insignificance.
The curve in the right panel shows prognostic indices (PI) with the corresponding
samples. (b) – (c) Kaplan-Meier plots for the top two ranked pathway nodes.
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Table 2.6: Ten top-ranked genes in GBM by Cox-PASNet

Gene name P-value Ref.

PRL 0.1698 [86]

FGF22 0.4503 –

MAPK9 0.9580 [87]

IL22 0.0140 [88]

IFNA5 0.5401 –

FGF5 < 0.0001 [89]

AGTR1 0.1375 –

JUN 0.1798 [90]

DRD5 0.1288 [91]

HTR7 0.7751 [92]

a

c

b

Figure 2.6: Visualization of the top-ranked nodes by Cox-PASNet. (a) t-SNE plot of
the statistically significant nodes in the integrative layer (i.e. the second hidden layer
(H2) and the clinical layer) and (b) t-SNE plot of the ten top-ranked nodes in the
pathway layer.
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Figure 2.7: Hierarchical and associational feature representation in Cox-PASNet. For
instance, Jak-STAT signaling pathway shows active status, which is associated to
PI. The significance of the genes (i.e. AKT1 and AKT3) involved in the Jak-STAT
signaling pathway can be ranked by the average absolute partial derivatives with
respect to the gene layer. A set of the active pathways are represented in an active
Node 19 in the following hidden layers, which improves the survival prediction. Note
that the Kaplan-Meier plots of Node 19 and PI show more similar estimation of the
survival than Jak-STAT signaling pathway.
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CHAPTER 3

GENE- AND PATHWAY-BASED DEEP NEURAL NETWORK FOR

MULTI-OMICS DATA INTEGRATION TO PREDICT CANCER SURVIVAL

OUTCOMES

3.1 Introduction

Data integration of multi-platform based omics data (e.g., genomics, proteomics,

and metabolomics) from biospecimens holds promise of improving survival prediction

and personalized therapies in cancer [93, 94]. The importance of integrative stud-

ies has been increasingly emphasized along with the rapid development of various

types of high-throughput multi-omics data. A large scale of multi-omics data sets

have been generated in various cancer projects, such as The Cancer Genome Atlas

(TCGA) and The Cancer Genome Project in Wellcome Trust Sanger Institute. In

particular, TCGA provides various types of omics data of more than 33 cancers, in-

cluding tissue exome sequencing, gene expression, Copy Number Alternation (CNA),

DNA variation, DNA methylation, and microRNA, as well as clinical data such as

race, tumor stage, and survival status and months of cancer patients.

Multi-omics data provide comprehensive descriptions of human genomes reg-

ulated by complex interactions of multiple biological processes such as genetic, epi-

genetic, and transcriptional regulation [95]. Thus, the integration of multi-omics

data can be leveraged to decipher complex mechanisms of human diseases and to

enhance cancer treatments based on genetic understanding of each patient in pre-

cision medicine. Specifically, genes are activated by sequential interactions of DNA

variations, CNA, histone modifications, transcription factors, DNA methylation, and

other genes in relevant pathways [96, 97]. CNA, which is a modified gene structure,

often alters downstream pathways or regulatory networks, and DNA methylation of-

ten reduces gene expression in a nearby gene when the methyl groups are added to
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the DNA. Hence, monozygotic twins discordance in disease is often caused due to

different CNA, although they have nearly identical genetic variants [98, 99].

Recently, multi-omics data have been widely incorporated in an increasing num-

ber of research projects in survival analysis, rather than using a single type of ge-

nomic data that most genomic research traditionally has analyzed. Multi-omics data

such as CNA, DNA methylation, and gene expresssion were integrated to identify

knowledge-driven genomic interactions with clinical outcomes of interest in ovarian

carcinoma [100]. The meta-dimensional models, which incorporate biological path-

ways with multi-omics data, enhanced the model interpretability in the biological

pathway level. A multi-block bipartite graph was proposed not only to identify intra-

and inter-block interaction effects of multi-omics data, but also to predict quantita-

tive traits such as gene expression and survival time [101]. SurvivalNet integrated

multi-omics data such as DNA mutation, CNA, protein, and mRNA along with clini-

cal information into a deep neural network to improve survival prediction of patients

in cancers [72]. Feature selection techniques were applied to each omics dataset sepa-

rately, and selected features of the multi-omics data and clinical data were combined

into a large augmented matrix in SurvivalNet. Another deep learning-based model in-

tegrated RNA-Seq, miRNA-Seq, and DNA methylation data to differentiate survival

groups in hepatocellular carcinoma [102]. Furthermore, the differential subgroups

identified several significant multi-omics features.

In this study, we propose a novel approach, called MiNet, to integrate multi-

omics data and clinical data using a pathway-based deep neural network for survival

analysis. Our previously published model, Cox-PASNet, which is a pathway-based

deep neural network for predicting survival outcome, has considered only gene ex-

pression data as well as clinical data [103]. The main contributions of MiNet are as

follows: (1) to introduce a multi-omics layer that represents gene-based interaction

effects of multi-omics data and (2) to interpret the model in a biological pathway

level.
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Figure 3.1: The architecture of MiNet

The rest of the paper is organized as follows. In Section 3.2, our proposed

model is elaborated in detail. The experimental setting and results are demonstrated

in Section 3.3. Section 3.4 discusses the model interpretation with biological findings,

while Section 3.5 concludes the discussion.

3.2 Methods

We propose a gene- and pathway-based multi-omics integrative deep neural

network (MiNet) to predict cancer survival outcomes. MiNet introduces a gene-based

multi-omics layer to integrate multi-omics data, leveraging the advantages of the

pathway-based neural network framework in Cox-PASNet [103]. The neural network

structure of MiNet follows a biological system, which is multi-layered with multi-omics

data and their interactions along with clinical features, by utilizing prior knowledge

of biological pathways. The biologically inspired neural network architecture provides

a rich interpretation of a biological system.

3.2.1 Multi-Omics Integration

Most studies have integrated multi-omics data by combining all types of omics

data to a single matrix and performed analysis, e.g., survival analysis. However, the
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consideration of the augmented multi-omics data as independent features lacks to

represent interaction effects of genomic and epigenomic data with gene expressions.

Note that CNA and DNA methylation often regulate transcriptional mechanisms of

genes, so some genes may be down- or up-regulated caused by interaction effects of

other omics data [104, 105].

We introduce a multi-omics layer that transfers gene-based interaction effects of

multi-omics data to the pathway-based neural network of Cox-PASNet [103]. MiNet

generates multi-omics features that include main and interaction effects of multi-omics

data on each gene. Then, MiNet inputs the multi-omics features to the multi-omics

layer followed by the gene layer that represents canonical gene expression level. Note

that the gene layer of MiNet consists of canonical gene expressions which are high-

level representations of gene-based multi-omics data, whereas Cox-PASNet introduces

gene expression data directly into the gene layer.

We consider cis-regulatory interaction effects of CNA and DNA methylation to

a nearest gene. Multi-omics feature vectors xi are generated as:

xi =



gi

ci

di

gi ⊗ ci

gi ⊗ di



>
// Main effect of gene expression

// Main effect of CNA

// Main effect of DNA methlyation

// Interaction effect with CNA

// Interaction effect with DNA methlyation

, (3.1)

where gi, ci, and di are sample vectors of gene expression, CNA, and DNA methyla-

tion for the i-th gene, respectively. Note that we consider the genes that have at least

a gene expression feature. Then, canonical gene expression (g̃i) for the i-th gene is

expressed by:

g̃i = σ(xiwi), (3.2)

where wi is a weight vector, σ(·) is an activation function, and ⊗ is element-by-

element multiplication. The main or interaction effects are ignored if there is no
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CNA or DNA methylation associated to the i-th gene, so genes may have different

numbers of multi-omics features.

3.2.2 The Architecture of MiNet

The architecture of MiNet is composed of a multi-omics layer, a gene layer, a

pathway layer, multiple hidden layers, a clinical layer, and a Cox layer, as shown

in Fig. 3.1. The multi-omics layer is an input layer, which introduces multi-omics

features (see Eq. 3.1) from genomics (CNV), epigenomics (DNA methylation), and

transcriptomics (gene expression) data into MiNet. The multi-omics layer contains

multi-omics features of all genes, and the connections between multi-omics features

and genes are implemented by a boolean mask matrix. Note that the associations

of multi-omics features are determined with the nearest gene. Most databases often

provide genes that CNV and DNA methlayion are mapped to. At the end, every

multi-omics features are connected to only a node in the gene layer.

The gene layer represents canonical gene features computed by Eq. 3.2, where

each node indicates a gene in a biological system. Since a set of genes are involved in

biological pathways, genes in the gene layer transfer to corresponding pathway nodes

in the pathway layer. Note that the connections between genes and pathways are

given by pathway databases, so the number of nodes in the pathway layer is identical

with the number of known biological pathways. Hidden layers show hierarchical

representations of multiple pathways. A hidden node contains the interaction effect

of a set of pathways. More hidden layers may capture more complex interactions of

biological pathways.

The clinical layer is an additional input layer for clinical features (e.g., sex, age,

and tumor stage). The clinical data are introduced to the output layer as additional

features of the last hidden layer, rather than concatenating with the multi-omics layer.

The independent clinical layer prevents a few input features from dominating others

and makes the model interpretation effective in genomic level. Clinical features, such
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as age, have often been shown as significant covariates in several cancer studies. The

effects of clinical features may be suppressed by genomic features. Moreover, genomic

data and clinical data should be separated for the model interpretation.

The output layer with one node is named as a Cox layer. A linear activation

function without bias is applied to this layer to adopt Cox regression. The final

outcome of MiNet is Prognostic Index (PI) which is a linear combination of covariates,

and PI is introduced to the hazard function for the Cox proportional hazards model

as:

λ(t|x) = λ0(t) exp(PI), (3.3)

where PI is an outcome of the Cox layer in MiNet.

3.2.3 Training MiNet with Sparse Coding

MiNet minimizes the average negative log partial likelihood with L2 regular-

ization. MiNet adapts the training strategy introduced in Cox-PASNet for effective

training with high-dimensional, low-sample-size data, where small sub-networks are

randomly selected and trained with sparse coding. For the parameter initialization,

all layers are fully-connected with He’s initialization strategy [106].

The connections between the multi-omics layer and the gene layer are masked

by the given boolean mask matrix during the entire training process, similarly in the

connections between the gene layer and the pathway layer. Note that the connections

between the multi-omics layer and the pathway layer are defined by prior biological

knowledge. Sparse coding is applied to the hidden layers following the pathway layer.

We apply sparse coding (L1 regularization) individually on each layer pair,

instead of entire weight matrix. Inspired by LASSO, a soft-thresholding strategy

is applied to the connections on each layer pair. Thus, weight matrix is further

optimized on each layer pair by:

W? ← S(W, Qs), (3.4)
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where S(W, s) = sign(W)(|W|−Qs)+ is the soft-thresholding function and sign(W)

returns a sign of W. (|W| − Qs)+ returns |W| − Qs if |W| − Qs > 0, otherwise,

(|W| − Qs)+ = 0. Qs is the optimal threshold with respect to the optimal sparsity

level s. The optimal sparsity level s is estimated with the strategy proposed in Cox-

PASNet [103].

3.3 Experimental Results

In this paper, we conducted experiments with multi-omics data and clinical

data in Glioblastoma Multiforme (GBM), which is the most invasive brain tumor. We

downloaded multi-omics data including gene expressions, CNAs, and DNA methyla-

tions, and clinical data of GBM patients from The Cancer Genome Atlas (TCGA)1.

We retrieved age, survival status (living or deceased), and survival months of the

GBM patients. Age was used as a clinical feature, and both survival status and

survival months were used for response variables. The other clinical features were

not considered because of large missing values. We filtered out samples with missing

values in survival information.

For pathway-based analysis, we downloaded KEGG and Reactome pathway

databases from the Molecular Signatures Database (MSigDB) [40]. The pathway

databases consist of gene sets of well-known biological pathways, which have molecular

interactions in a cell that simultaneously lead to a certain biological process. Small

pathways with less than 25 genes were excluded to avoid large redundancy with other

pathways [43].

For the experiments, we considered genes that belong to at least one pathway.

In particular, 5,481 genes were associated with 507 pathways in the dataset. We

included CNAs and DNA methylations associated to the 5,481 genes. Missing values

in CNV and DNA methylation features were imputed by 1-Nearest Neighbor (1-NN).

Finally, we used 24,803 multi-omics features including interactions and one clinical

1https://cancergenome.nih.gov
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feature (i.e. age) from 523 samples. The dataset for benchmark models has 14,142

multi-omics features and age from 523 samples, where interactions were excluded.

Note that the benchmark methods considered much less numbers of input features

than our model.

We compared the performance of MiNet with the current cutting-edge meth-

ods: Cox regression with elastic net regularization (Cox-EN) [65], SurvivalNet [72],

and Cox-nnet [71]. Concordance index (C-index) was measured to evaluate the per-

formance of the methods. C-index is commonly used to measure the predictive per-

formance in survival analysis. We randomly split the entire data into three subsets

of training (64%), validation (16%), and test data (20%) by stratified sampling with

survival status, so that each subset preserves the same proportion of censored samples

as the entire data. Then, all features were normalized to zero mean with variance of

one. Validation and test data were normalized with the mean and variance obtained

from training data. Validation data were used to perform early stopping and grid

search for finding the optimal hyper-parameters. We repeated the experiments 20

times to show the reproducibility of the performance.

Our proposed method MiNet was implemented by PyTorch 1.0 with CUDA

10. We used ReLU for the activation function, and dropout and L2 regularization

were applied to avoid overfitting problems. Adaptive Moment Estimation (Adam)

optimizer was performed to take advantage of a fast convergence and a reduced os-

cillation. The structure of MiNet was constructed with two hidden layers following

multi-omics, gene, and pathway layers, as empirically showing better performance

than with a single hidden layer. We considered 22 and 5 nodes in the two hidden lay-

ers (H1 and H2) respectively, following the rule of thumb that the number of hidden

nodes is the square root of the number of input nodes [71]. Dropout rates were empir-

ically set as 0.7 and 0.5 for pathway layer and hidden layer, respectively. The optimal

initial learning rate (η) and L2 regularization (λ) were determined by grid search

that maximizes C-index in validation data on each experiment. All experiments were
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Table 3.1: Performance comparison of MiNet with the benchmark methods using
C-index in over 20 experiments

Model C-index (µ ± σ)

Cox-EN [65] 0.5163 ± 0.0359

SurvivalNet [72] 0.5567 ± 0.0312

Cox-nnet [71] 0.5655 ± 0.0287

MiNet (proposed) 0.6214 ± 0.0352

Table 3.2: Statistical Assessment

Wilcoxon rank-sum test

MiNet vs. Cox-EN 1e-4∗

MiNet vs. Cox-nnet 2e-4∗

MiNet vs. SurvivalNet 2e-4∗
∗ shows the statistical significance with significance level = 0.05.

performed with four NVIDIA Tesla M40 (12GB memory) Graphics Processing Units

(GPU). The source code of MiNet is publicly available in GitHub2.

Experiments of SurvivalNet [72] and Cox-nnet [71] were performed by the

Python packages published on GitHub3 4. Bayesian optimization [77] was employed

in SurvivalNet for the optimal neural network structure and hyper-parameters, such

as number of layers, number of nodes, dropout rate, L1 regularization, and L2 reg-

ularization. For Cox-nnet, grid search strategy was applied for optimal regulariza-

tion parameter (L2). Cox-EN was implemented by the package Glmnet Vignette

in Python [65]. The tunning hyperparamter λ and the elastic-net penalty term α

(α ∈ [0, 1]) were optimized by grid search. Kaplan-Meier analysis and log-rank test

were performed by using the Python package lifelines.

C-index scores obtained from Cox-EN, SurvivalNet, Cox-nnet, and MiNet over

20 experiments with GBM data are shown in Table 3.1. Our proposed method,

MiNet, produced the highest C-index of 0.6214 ± 0.0352 among the benchmark meth-

2https://github.com/DataX-JieHao/MiNet
3https://github.com/CancerDataScience/SurvivalNet
4https://github.com/lanagarmire/cox-nnet
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Figure 3.2: Distribution of C-index with 20 experiments

ods, whereas Cox-EN, SurvivalNet, and Cox-nnet showed 0.5163 ± 0.0359, 0.5567 ±

0.0312, and 0.5655 ± 0.0287, respectively. Fig. 3.2 depicts the distribution of C-index

of the experiments. Moreover, we performed Wilcoxon rank-sum tests to assess the

statistical significance of the model improvement. As shown at Table 3.2, the out-

performance of MiNet against the other benchmarks was statistically assessed, i.e.,

p-values < 0.05.

3.4 Model Interpretation with GBM

For the model interpretation of MiNet with GBM data, we trained the model

with the entire data again using the optimal hyper-parameters that have been selected

most frequently over 20 experiments (i.e., λ = 0.02 and η = 0.005). In consequence,

the C-index of the re-trained model was 0.91, which was not overfitted to the input

data.

We first examined the six covariates, which are the input nodes to the Cox layer.

Five covariates are in the last hidden layer (H2), and one covariate (age) is from the

clinical layer. Fig. 3.3a illustrates the H2 and age node values, where the nodes are

ranked by the partial derivatives with respect to the H2 layer and the clinical layer.
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Figure 3.3: Graphical interpretation of the last hidden layer (H2) and the clinical
layer. (a) Heatmap of the H2 and age node values. The horizontal dashed line
separates high-risk and low-risk groups, which were separated by the median of PI.
The upper dot plot shows -log10(p-values) from the logrank test between high-risk
and low-risk groups for every single node. The right curve shows the distribution of
PI with the corresponding samples on the heatmap. (b) – (c) Kaplan-Meier plots for
the two top-ranked covariates.

Overall, the node values show high correlation with PI. Specifically, Node 2 in H2

(the first column in Fig. 3.3a) appeared as the most important covariate for predicting

survival time in MiNet with GBM data. For evaluating each covariate, we separated

the samples into two groups of high-risk and low-risk by the median of PI. Then,

p-values were computed with logrank test. The p-values are shown in the upper plot
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Figure 3.4: Visualization of the H2 and age nodes in MiNet using t-SNE.

in Fig. 3.3a, where all covariates were statistically significant (i.e., p-values < 0.05).

Kaplan-Meier plots are depicted in Fig. 3.3b and Fig. 3.3c with the two top-ranked

covariates, which demonstrates significantly distinct survival curves. Moreover, the

six nodes are visualized by t-SNE in Fig. 3.4, which shows a highly linear correlation

between the six covariates and the survival outcomes.

Table 3.3 shows five top-ranked pathways by MiNet, where pathway nodes are

ranked by the partial derivatives with respect to the pathway layer. It was discov-

ered that GnRH receptor is expressed in GBM [107]. Interestingly, GnRH signaling

pathway was not identified with single omics data, but significantly enriched with

multi-omics data [108]. MiNet accordingly ranked GnRH signaling pathway as a sig-

nificant factor with multi-omics data. Furthermore, the other four pathways have

been also recognized in GBM with several biological literature. The references are

listed in Table 3.3.

Two genes of NRAS and PRKACA are identified as significant in GnRH sig-

naling pathway (see Table 3.4). Then, we traced back to the multi-omics layer of
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Table 3.3: Five top-ranked pathways by MiNet

Pathways Size Ref.

GnRH signaling pathway 101 [108]

Genes involved in RNA Polymerase I, RNA
Polymerase III, and Mitochondrial Tran-
scription

122 –

Genes involved in Response to elevated
platelet cytosolic Ca2+

89 [109]

Melanogenesis 102 [110]

Genes involved in Extracellular matrix orga-
nization

87 [111]

Table 3.4: Two top-ranked genes in GnRH signaling pathway

Genes Multi-omics Ref.

NRAS G (0.001829), G ⊗ C (0.000888), D
(0.000791),
C (0.000319), G⊗M (0.000037)

[112]

PRKACA C (0.000774), G (0.000738), G ⊗ C
(0.000698)

-

the genes. Somatic mutation of NRAS in GBM and its critical role in PI3K-AKT

pathway were reported [112]. For NRAS, the main effects of gene expression was the

most important factor, followed by the interaction effects of gene expression and CNA

and the main effect of DNA methylation. The numbers in parenthesis show partial

derivatives with respect to the input nodes, and the higher values indicate the more

important factors. For PRKACA, the main effect of CNA and gene expression were

highly ranked as the most important multi-omics factors and followed by the inter-

action effect of CNA, so CNA may play an important role in regulating PRKACA in

GBM.
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3.5 Conclusion

In this paper, we propose a gene- and pathway-based deep neural network for

multi-omics data integration, named MiNet, to predict cancer survival outcomes.

In MiNet, gene-based multi-omics features are generated by considering main and

interaction effects of multi-omics data in the multi-omics layer. The multi-omics

features produce canonical gene expression in the gene layer. The hierarchical rep-

resentations of biological processes of multi-omics, genes, and pathways are captured

in MiNet. MiNet showed the outstanding performance to predict cancer survival

outcomes with GBM patients. More importantly, MiNet provides the capability to

interpret a multi-layered biological system. A large number of biological literature

supported our biological findings from MiNet.

The multi-omics layer of MiNet is designed as a neural network module for the

integration of multi-omics data, and is compatible to the pathway-based neural net-

work, Cox-PASNet. The high flexibility and expandability of the model architecture

would allow one to take an advantage of utilizing the well-established pathway-based

framework.
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CHAPTER 4

INTERPRETABLE AND INTEGRATIVE DEEP LEARNING FOR SURVIVAL

ANALYSIS USING HISTOPATHOLOGICAL IMAGES AND GENOMIC DATA

4.1 Introduction

Integration of histopathological images and genomic data has enhanced per-

sonalized treatments and survival predictions in cancer study, while providing an

in-depth understanding of both phenotypic patterns and genetic mechanisms of can-

cer [113, 114]. Pathological images encompass rich phenotypic information with re-

spect to tumor morphology, and high-throughput genomic data have unveiled molecu-

lar profiles of cancer [115]. Histopathology, as a clinical gold standard tool in diagnosis

and prognosis for most cancers, allows clinicians to make decisions with precision on

therapies [116]. Along with an advance of technology in microscopy, digital Whole

Slide Imaging (WSI) enables pathologists to manage histopathological tissue slides

efficiently. However, manual assessments with large-scale pathology images are highly

time-consuming and subjective even by pathologists who have varying levels of expe-

riences.

An increasing number of methods have been developed leveraging machine

learning techniques for automatic classification of cancer subtypes, identification of

metastases, and nuclei segmentation for pathological image analysis [117]. Deep learn-

ing techniques, especially convolutional neural networks, have shown tremendous po-

tential in automatic pathological image analysis. A deep max-pooling convolutional

neural network was applied for mitosis detection in breast cancer histological im-

ages [118]. A transfer learning-based deep convolutional activation features were

extracted to classify glioma grades and to segment the presence of necrosis in GBM,

where ImageNet was adopted for a pre-trained model [119]. An ensemble of CNN

was developed for improving the predictive performance of tumor grades [120]. In
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the ensemble, a CNN classified high- and low- grade glioma, and another CNN fur-

ther differentiated the grade level in low-grade glioma only. An automatic recognition

of nine important nuclear morphological characteristics in glioma pathological images

were constructed by a semi-supervised CNN and a pre-trained CNN (i.e. VGG16)

with SVM [121].

Survival analysis aims to estimate an expected survival time until a death event

occurs. More importantly, a cancer survival model investigates prognostic factors

associated to a cancer. The Cox proportional hazards model and its variants are the

most commonly applied in medical research. However, the conventional Cox model

assumes a linear relationship of covariates, which is barely applied to complex diseases

without feature selection on high-dimensional data.

Deep learning-based Cox regressions with pathological images have been stud-

ied to tackle the problems of non-linearity and multicollinearity between covariates.

Survival Convolutional Neural Networks (SCNNs) were developed to predict patient

survival outcomes by high-power fields (HPFs) from Regions Of Interests (ROIs)

that show morphological patterns with the representative tumor characteristics [122].

An Whole Slide Histopathological Images Survival Analysis framework (WSISA) was

proposed to directly learn discriminative patches based on cluster-level Deep Convo-

lutional Survival models for predicting patients’ survivals [74]. The study introduced

an aggregation strategy based on the weighted features evaluated by the performance

in each cluster.

Recently, the integration of pathological and genomic data has been explored as

a promising solution for predicting cancer survival outcomes. A lasso-regularized Cox

proportional hazards model extracted pre-defined morphological features from digital

WSIs and eigen-genes from gene coexpression data in clear cell renal cell carcinoma

and outperformed the models with either morphoological features or eigen-genes in-

dividually [113]. A multiple kernel learning-based method was introduced to extract

heterogeneous features from multiple types of genomic data and pathological images
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in breast cancer [123]. Genomic Survival convolutional neural networks (GSCNN)

integrated heterogeneous features from both pathological images and well-known ge-

nomic biomarkers for predicting patients survival with glioma [122].

Although the integrative models produced higher predictive performance than

single data models for cancer survivals, most integrative models require intensive data

preprocessing with manually annotated ROIs on pathological images and stringent

feature selection to reduce numbers of input features, e.g., using well-known genomic

biomarkers in biological literature. For instance, GSCNN integrated only two well-

known genomic biomarkers with pretrained SCNN model for reducing a number of

covariates and false negative prognostic factors [122]. Pre-defined image features of

geometry, texture, and holistic statistics were extracted from Hematoxylin and Eosin

(H&E) pathological slides, prior to integrating with gene expression data [114].

In this paper, we propose a biologically interpretable integrative deep learning

model that integrates PAthological images and GEnomic data, called PAGE-Net, not

only for improving survival predictive performance but also identifying genetic and

pathological patterns that may cause different survivals between patients. The major

methodological challenges are data heterogeneity and complexity, when integrating

unstructured mega-pixel pathological images and structured genomic data. Our main

contributions of PAGE-Net for cancer survival analysis are threefold:

• to integrate pathological images and genomic data in a biologically interpretable

deep learning model,

• to identify survival-discriminative features without manually annotated ROIs,

and

• to provide an aggregation strategy that aggregates patch-level features gener-

ated from multiple patches and produces image-level global features.
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4.2 Methods

4.2.1 The Architecture of PAGE-Net

PAGE-Net consists of pathology-specific layers, genome-specific layers, and a

demography-specific layer, each of which provides interpretability of biological mech-

anism and morphological phenotypic patterns associated to cancer survivals, as illus-

trated in Fig. 4.1. In order to tackle the integration challenge between an unstruc-

tured mega-pixel WSI and structured genomic data, we propose a novel patch-wise

texture-based convolutional neural network with a patch aggregation strategy (de-

scribed in Section 4.2.2 in detail) to extract survival-discriminative features without

manually annotated ROIs for pathology-specific layers. First, survival-discriminative

features are identified by a pre-trained deep learning model with uncensored data only.

Then, the feature scores are aggregated from multiple patches of a whole slide image,

which generates a structured vector data. For the genome-specific layers and the

demography-specific layer, we adapt our previously proposed pathway-based sparse

deep neural network, named Cox-PASNet [103]. Cox-PASNet is a cutting-edge deep

learning model that interprets biological mechanism by incorporating gene expres-

sion data, clinical data, and prior biological knowledge of pathways, while holding

outstanding predictive performance in patients’ survival with high-dimension, low-

sample size biological data. Finally, the high-level representations of pathological and

genomic data along with clinical information are introduced to a shared layer that

estimates Prognostic Index (PI) in a Cox proportional-hazards regression model.

4.2.2 Pathology-Specific Layers

In the pathology-specific layers, survival-discriminative features, which are iden-

tified in advance by a pre-trained CNN, are extracted from multiple patches of a

pathological image. Then, the features are aggregated by a two-stage pooling strat-

egy and introduced to Cox layer along with the last hidden layer of the genome-specific
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Figure 4.1: The architecture of PAGE-Net

layers and the clinical layer. We elucidate the pre-trained CNN model and the aggre-

gation strategy in the following subsections.

4.2.2.1 Patch-Wise Pre-Trained CNN

We train a CNN model to identify survival-discriminative feature maps with

patches from uncensored pathological images prior to the proposed integrative deep

learning model. Morphological patterns of pathological images are captured by the

pre-trained CNN with dilated convolutional layers. Dilated convolutional layers en-

larges field-of-view (texture) without loss of spatial information [124]. The number

of parameters does not increase with dilation, which makes model training computa-

tionally efficient. Moreover, dilated convolutional layers trade off computational time

against context assimilation [125].

The CNN model is comprised of an input layer, three pairs of dilated convo-

lutional layers (kernel size of 5 × 5, 50 feature maps, and dilation rate of 2) and a

max-pooling layer of size of 2 × 2. The sequential layers are followed by a flatten

layer and a fully connected layer. We use a linear model as the output layer, since

the model is trained with only uncensored data. Finally, the 50 neurons in the last

max-pooling layer are considered as survival-discriminative features in the integrative

model.
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4.2.2.2 Two-Stage Aggregation

Global survival-discriminative features for a WSI are generated by a two-stage

pooling aggregation strategy. Each patch image produces N numbers of local survival-

discriminative feature scores by the pre-trained CNN, and the scores of multiple

patches from a WSI are aggregated. The aggregated scores are introduced to the last

hidden layer in the pathology-specific layers.

We adapt a two-stage pooling approach [126] by computing 3-norm pooling

so that only a highly-ranked subset of patches are considered [119, 127]. The first

stage pooling ranks survival-discriminative features and identifies the most important

features. Then, the second stage pooling forms global survival-discriminative features

by aggregating only top-ranked patches.

The first stage pooling: Suppose that we have N survival-discriminative

feature maps identified by the pre-trained CNN on each patch image (i.e., 50 neurons

in the last max-pooling layer of the pre-trained CNN in this study). Let X denote
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N survival-discriminative feature maps, where X = [X1,X2,X3, . . . ,XN ]. The ith

survival-discriminative feature map, Xi (1 ≤ i ≤ N), can be represented as:

Xi =


x11 x12 x13 . . . x1w

x21 x22 x23 . . . x2w
...

...
...

. . .
...

xh1 xh2 xh3 . . . xhw

 , (4.1)

where h and w are the height and the width of the feature map respectively (e.g.,

h = w = 18 in this study). Then, the flattened feature map becomes Xf
i =

[x11, x12, x13, . . . , xhw]. After sorting the flattened feature map in the descending or-

der, we consider top K1 features as significant survival-discriminative feature map

components, which is X̃
f

i = x̃1, x̃2, x̃3, . . . , x̃K1 . Then, a 3-norm pooling value on X̃
f

i

is computed by:

fi =
1

K1

( K1∑
j=1

(x̃fj )3)1/3, (4.2)

where fi is an aggregated score for the ith feature map on a patch.

The second stage pooling: Suppose that M numbers of patches are available

on a WSI. The aggregated feature maps of all patches after the first stage pooling

can be represented as:

F =


f11 f12 f13 . . . f1N

f21 f22 f23 . . . f2N
...

...
...

. . .
...

fM1 fM2 fM3 . . . fMN

 , (4.3)

where fij is the jth feature map of the ith patch on a WSI, which is computed by Eq.

(4.2). For each column of F (i.e. feature maps over M patches), we sort column-

wise values in the descending order. The top K2 number of values (i.e. important

patches) in each column are truncated, i.e., f̃ij, 1 ≤ i ≤ K2. Then, another 3-norm

pooling is performed on each column of the truncated F. An aggregated score of

top K2 discriminative patches is obtained for a feature map. Therefore, a vector
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of N aggregated survival-discriminative features represents a pathological WSI for a

patient. In this study, we used N = 50, M = 1000, K1 = 65, and K2 = 100.

4.2.3 Genome- and demography-specific layers

The genome- and demography-specific layers are adapted from the pathway-

based sparse deep neural network, Cox-PASNet [103]. The genome-specific layers

include a gene layer, a pathway layer, and two hidden layers (H1 and H2). The gene

layer is an input layer for gene expression data, where each node indicates a gene.

The pathway layer embeds a prior biological knowledge using well-known biologi-

cal pathway databases (e.g., KEGG) for biological interpretation. The connection

between the gene layer and the pathway layer are sparsely established by given bio-

logical pathway databases where the relationships between genes and pathways are

available. Hence, each pathway node explicitly represents a biological pathway. The

following two hidden layers capture nonlinear and hierarchical relationships between

pathways. Clinical data of a patient are directly introduced to the demography-

specific layer and combined with genomic features from gene expressions and aggre-

gated survival-discriminative features from a pathological image in the last hidden

layer of the integrative model.

Overfitting is a critical issue to avoid when training a deep learning model with

high-dimension, low-sample-size data. In order to prevent the overfitting problem,

PAGE-Net applies the training technique that Cox-PASNet proposed [103]. Instead

of training the whole network, small networks are randomly selected, and sparse

coding was applied to make connection sparse for model interpretation. The training

is repeated until it converges. Errors with the validation data was also traced for

early stopping and preventing overfitting.
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4.3 Experimental Results

We examined pathological images, gene expression data, and clinical data of

Glioblastoma Multiforme (GBM) patients to assess our proposed model. The data

were downloaded from The Cancer Imaging Archive (TCIA) 1 and The Cancer Genome

Atlas (TCGA) that provide pathological images and genomics data from an identical

set of patients. We considered only GBM patients’ data where both gene expression

and pathological image are available. We also filtered out the data without survival

information. We included age only as a clinical feature for the demography-specific

layer, i.e. clinical layer, since a large amount of missing values are shown in other

clinical features.

KEGG and Reactome pathway databases, taken from the Molecular Signatures

Database (MSigDB) [40, 41, 42], were used for biological pathways in the model, as a

prior biological knowledge. Biological pathways that have either less than fifteen genes

or over 300 genes were excluded [43]. Furthermore, only genes that belong to at least

one pathway were considered as inputs to the model. Finally, we considered 5,404

genes of 447 GBM patients and 659 pathways were examined. For the pathological

WSI, we considered WSIs of “top” frozen tissue sections with the 20X magnification.

In the pre-training phase, 1,000 patches of size 256 × 256 were randomly sampled

from the uncensored data for training the pre-train CNN. Note that only uncensored

training and validation data were used for the pre-trained CNN on each experiment.

In the integration phase, we sampled other 1,000 patches from a WSI for training and

testing.

We compared the predictive performance of PAGE-Net with Cox-PASNet and

Cox regression with elastic net regularization (Cox-EN) [65]. Cox-PASNet was ap-

plied to gene expressions and age, whereas aggregated survival-discriminative image

features were trained by Cox-EN. Concordance index (C-index) with counted tied

prediction pairs was measured to scale the performance of the models. The samples

1https://www.cancerimagingarchive.net/
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were randomly split into training (80%), validation (10%), and test (10%) sets, by

preserving the proportion between censored and uncensored statuses. The features

in the training set were normalized to mean of zero and standard deviation of one.

The validation and the test sets were normalized by the mean and standard devia-

tion from the training set. We repeated the experiments twenty times to show the

reproducibility of the performance.

PAGE-Net was implemented by PyTorch 1.0 with CUDA 10.0.130 and Keras

2.2.4 with TensorFlow 1.13.1 as backend. The model was optimized with the dilated

kernel size of 5×5, dilated rate r of 2, and the max pooling size is 2×2. A dropout

rate of 0.3 was applied for each dilated conventional layers and flatten layer. We

used Adaptive Moment Estimation (Adam) optimizer and ReLU activation function.

Mean squared error (MSE) was computed as the loss. A grid search was performed

on each experiment to optimize a learning rate and a mini-batch size using validation

data with a learning rate decay of 0.7 for every 5 epochs. An early stopping upon

validation loss was applied.

In the integration phrase, Tanh function was used as the activation function

between layers. We set 100, 30, and 30 nodes for H1, H2, and the pathology hidden

layer, respectively. Dropout rates were empirically set as 0.7, 0.5, and 0.3 for the

pathway layer, H1, and the global survival-discriminative feature layer, respectively.

The optimal learning rate and L2 regularization (λ) were automatically determined

by grid search so as to maximize C-index with the validation data on each experiment.

All experiments were performed with two NVIDIA Tesla M40 (8 cores, 12GB memory

per each core) Graphics Processing Units (GPUs). The source code of PAGE-Net is

accessible online via GitHub (https://github.com/DataX-JieHao/PAGE-Net). For

the benchmark methods, Cox-PASNet was performed in the proposed manner in the

paper. Cox-EN was implemented by the Python version of Glmnet Vignette [65]. 200

λs were considered for optimization. The regularization term α between zero and one

was optimized by grid search with a step size of 0.01.
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Figure 4.3: Performance comparison over 20 experiments with GBM in C-index

The experimental results with GBM data are shown in Fig. 4.3. Our proposed

model, PAGE-Net, achieved the highest C-index of 0.702 ± 0.0294 (mean ± std) com-

paring to Cox-PASNet (with gene expressions and age) showing C-index of 0.6401 ±

0.00399, and Cox-EN (with aggregated image features) showing the lowest C-index

of 0.5093 ± 0.0460. The highest C-index of PAGE-Net shows the increased power

of the integrative model with pathological data and genomic data. Interestingly, a

pathological WSI itself contributes little to the predictive performance. However,

the experimental results show that the pathological WSI boosted the performance

of survival analysis with genomic data in the proposed integrative model. The per-

formances were assessed by Wilconxon rank-sum test, and PAGE-Net statistically

outperformed Cox-EN with pathological images only and Cox-PASNet with genomic

data only (both p-values are less than 0.0001).
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Figure 4.4: Survival-discriminative feature maps on the patches of three patients in
various survivals

4.4 Model Interpretation

For the model interpretation of PAGE-Net, we re-trained the proposed models

using the entire data and the optimal hyper-parameters that were most commonly

used over the 20 experiments. We performed the analysis for biological interpretation

with the pathology- and genome-specific layers. For the pathology-specific layers,

we assessed pathological and morphological patterns of the survival-discriminative

feature maps with a pathologist. For the genome-specific layers, we conducted the

pathway-based interpretation by ranking the nodes with partial derivatives, as Cox-

PASNet conducted [103].

Figure 4.4 exhibits pathological top-ranked patch images of three patients in

a short (first row; TCGA-06-402-01 ; survival month = 0.53), median (second row;

TCGA-26-1439-01 ; survival month = 13.85), and long-term (third row; TCGA-08-

0344-01 ; survival month = 115.3) survivals and the survival-discriminative feature

maps captured by the pre-trained CNN on the patches. The survival-discriminative

feature map scores (higher than the median) are colored in red in the figures. Inter-
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estingly, the survival-discriminative feature maps capture most nucleus and nuclear

debris of interest on the patches. In GBM where boundaries between nuclei are not

clearly shown, a distance between nuclei and a shape of nucleus are critical checkpoints

on tissue readings. The feature maps show that the morphological patterns of pathol-

ogist’s interest are also recognized by the proposed model. Moreover, nuclear debris

implies necrosis of nucleus, and the relationship between nuclear debris and survival

prognosis is known. The top-ranked patches were measured scores of nuclear pleomor-

phism (NP), cytoplasmic degeneration (CD), and brown pigment (BP) using three

tiered scoring by a pathologist. The scores of NP, CD, and BP on TCGA-06-402-01

were +3, +3, and +3, whereas the scores of TCGA-26-1439-01 and TCGA-08-0344-

01 were +1, 0, and 0. The patch of the patient, TCGA-06-402-01, shows more severe

scores on NP, CD, and BP than other two patients. It shows that PAGE-Net can

also identify regions (patches) associated to patients’ survival on a WSI.

Ten top-ranked pathways and genes in GBM are ranked with the genome-

specific layers in PAGE-Net. The pathways and genes are listed in Table 4.1 and

Table 4.2. Neuroactive ligand-receptor interaction pathway, ranked top one by PAGE-

Net, is well known as one of the most associated pathways to GBM [80]. Survival

models by both univariate and multivariate Cox regression analysis for the nine long

noncoding RNAs (lncRNAs) in GBM identified neuroactive ligand-receptor interac-

tion pathway as the most related pathway [128]. Axon guidance pathway harbored

the top-ranked CNVs with respect to GBM [83]. The downregulation of endocyto-

sis pathway was likely to be a common trait in glioma tumors [129]. For instance,

the down-regulated differentially expressed genes (DEGs) assoiciated with the glioma

gene expression profile GSE4290 were enriched in endocytosis pathway [130]. Colla-

gen formation pathway enriched for the candidate genes identified by weighted gene

co-expression network analysis with RNA sequencings of GBM patients from the Chi-

nese Glioma Genome Atlas database [131]. 18 cytokines, which differentiated normal

and GBM serum samples, were enriched in both of cytokine-cytokine receptor interac-
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Table 4.2: Ten top-ranked genes in GBM by PAGE-Net

Gene name P-value Ref.

PTGER4 0.5679 [133]

NPY2R 0.0358 –

LHB 0.1379 –

GHRHR 0.0578 [134]

ADRB3 0.0217 –

ADORA2A 0.0064 [135]

MET 0.0066 [136]

FSHB 0.0330 –

HTR7 0.8468 [92]

GRM8 0.6673 [137]

tion and JAK-STAT pathways [132]. Furthermore, overexpressed ADORA2A is one of

the evidences for high-grade gliomas by the World Health Organization (WTO) [135].

HTR7, enriched in neuroactive ligandreceptor interaction, was reported to contribute

the diffuse intrinsic pontine glioma development and progression [92]. MET, well-

known as an oncogene, has been revealed as a functional marker in Glioblastoma

stem cells since it benefits glioma invasiveness and self-reconstruction [136].

Figure 4.5 shows hierarchical biological mechanisms on both pathological im-

ages and genomic data in PAGE-Net. In the pathology-specific layers, morphologi-

cal patterns, which are associated to patients’ survivals, are scored by the survival-

discriminative features, and the global features are introduced to the model. The

survival-discriminative feature maps substantially capture the nucleus and nuclear

debris of interest on a WSI. In the genome-specific layers, activated genes including

ADORA2A and ADORA2B trigger the neuroactive ligand-receptor interaction path-

way, and the pathway contributes patient’s survivals in a non-linear manner with

other pathways in the hidden layers. The Kaplan-Meier plots of the pathway and

Node 13 in the H1 layer shows the different survival distribution with the two groups
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Figure 4.5: Overview of the model interpretation

separated by the median of the node values. The Node 13 values can be considered

as a potential prognostic factor that can predict patient’s survival.

4.5 Conclusion

In this paper, we propose an integrative deep learning model (PAGE-Net) that

captures both morphological patterns on pathological WSIs and pathway-based ge-

netic mechanisms of a complex human cancer, while predicting cancer survival out-

comes with pathological images and genomic data. PAGE-Net produced the out-

standing predictive performance and showed promising potential to identify genetic

and pathological prognostic factors simultaneously associated with patients survival.

The survival-discriminative features identified by the pre-trained CNN was asssessed

by a pathologist that the features can identify nucleus and nuclear debris, which may

be related to patient’ survivals. The integrative deep learning model, PAGE-Net, also

shows that the data integration of pathological images and genomic data is essential

for enhancing patient’s survival rather than analyses with a single data type.
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[53] A. Chédotal, G. Kerjan, and C. Moreau-Fauvarque, “The brain within the

tumor: New roles for axon guidance molecules in cancers,” Cell Death And

Differentiation, vol. 12, pp. 1044–1056, 2005.

[54] A. Joy et al., “The role of AKT isoforms in glioblastoma: AKT3 delays tumor

progression,” Journal of Neuro-Oncology, vol. 130, no. 1, pp. 43–52, Oct. 2016.

[55] B. Hu et al., “Astrocyte elevated gene-1 (AEG-1) interacts with Akt isoform 2

to control glioma growth, survival and pathogenesis,” Cancer Research, vol. 74,

no. 24, pp. 7321–7332, 2014.

[56] L. C. Hinske et al., “Intronic miRNA-641 controls its host Gene’s pathway

PI3K/AKT and this relationship is dysfunctional in glioblastoma multiforme,”

Biochemical and Biophysical Research Communications, vol. 489, no. 4, pp.

477–483, 2017.

[57] M. Lim, Y. Xia, C. Bettegowda, and M. Weller, “Current state of immunother-

apy for glioblastoma,” Nature Reviews Clinical Oncology, vol. 15, no. 7, pp.

422–442, 2018.

[58] H. B. Burke, “Predicting Clinical Outcomes Using Molecular Biomarkers,”

Biomarkers in Cancer, vol. 8, no. 8, pp. 89–99, June 2016.

87



[59] G. Lightbody et al., “Review of applications of high-throughput sequencing in

personalized medicine: barriers and facilitators of future progress in research

and clinical application,” Briefings in Bioinformatics, p. bby051, 2018.

[60] F. E. Ahmed, P. W. Vos, and D. Holbert, “Modeling survival in colon cancer:

A methodological review,” Molecular Cancer, vol. 6, no. 1, p. 15, Feb. 2007.

[61] H.-C. Chen, R. L. Kodell, K. F. Cheng, and J. J. Chen, “Assessment of per-

formance of survival prediction models for cancer prognosis,” BMC Medical

Research Methodology, vol. 12, no. 1, p. 102, July 2012.

[62] D. M. Witten and R. Tibshirani, “Survival analysis with high-dimensional co-

variates,” Statistical Methods in Medical Research, vol. 19, no. 1, pp. 29–51,

Feb. 2010.

[63] H. H. Zhang and W. Lu, “Adaptive Lasso for Cox’s proportional hazards

model,” Biometrika, vol. 94, no. 3, pp. 691–703, Aug. 2007.

[64] R. J. Tibshirani, “Univariate Shrinkage in the Cox Model for High Dimensional

Data,” Statistical Applications in Genetics and Molecular Biology, vol. 8, no. 1,

pp. 1–18, 2009.

[65] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, “Regularization Paths

for Cox’s Proportional Hazards Model via Coordinate Descent,” Journal of

Statistical Software, vol. 39, no. 5, pp. 1–13, 2011.

[66] J. Xu, “High-dimensional cox regression analysis in genetic studies with cen-

sored survival outcomes,” Journal of Probability and Statistics, vol. 2012, 2012.

[67] J. Fan, Y. Feng, and Y. Wu, High-dimensional variable selection for Cox’s

proportional hazards model, ser. Collections. Beachwood, Ohio, USA: Institute

of Mathematical Statistics, 2010, vol. 6, pp. 70–86.

[68] H. Li and Y. Luan, “Kernel Cox regression models for linking gene expression

profiles to censored survival data,” in Pacific Symposium on Biocomputing 8,

2003, pp. 65–76.

88



[69] L. Evers and C.-M. Messow, “Sparse kernel methods for high-dimensional sur-

vival data,” Bioinformatics, vol. 24, no. 14, pp. 1632–1638, 2008.

[70] J. L. Katzman et al., “DeepSurv: personalized treatment recommender system

using a Cox proportional hazards deep neural network,” BMC Medical Research

Methodology, vol. 18, no. 1, p. 24, Feb. 2018.

[71] T. Ching, X. Zhu, and L. X. Garmire, “Cox-nnet: An artificial neural net-

work method for prognosis prediction of high-throughput omics data,” PLOS

Computational Biology, vol. 14, no. 4, pp. 1–18, Apr. 2018.

[72] S. Yousefi et al., “Predicting clinical outcomes from large scale cancer genomic

profiles with deep survival models,” Scientific Reports, vol. 7, no. 1, p. 11707,

2017.

[73] P. Masson et al., “An Integrated Ontology Resource to Explore and Study

Host-Virus Relationships,” PLOS ONE, vol. 9, no. 9, pp. 1–10, Sept. 2014.

[74] B. Zhu et al., “Integrating Clinical and Multiple Omics Data for Prognostic

Assessment across Human Cancers,” Scientific Reports, vol. 7, no. 1, p. 16954,

2017.

[75] W. Zhang et al., “Integrating Genomic, Epigenomic, and Transcriptomic Fea-

tures Reveals Modular Signatures Underlying Poor Prognosis in Ovarian Can-

cer,” Cell Reports, vol. 4, no. 3, pp. 542–553, 2013.

[76] B. M. Reid, J. B. Permuth, and T. A. Sellers, “Epidemiology of ovarian cancer:

a review,” Cancer Biology & Medicine, vol. 14, no. 1, pp. 9–32, 2017.

[77] M.-C. Ruben, “BayesOpt: A Bayesian Optimization Library for Nonlinear

Optimization, Experimental Design and Bandits,” Journal of Machine

Learning Research, vol. 15, pp. 3915–3919, 2014. [Online]. Available:

http://jmlr.org/papers/v15/martinezcantin14a.html

[78] L. J. P. van der Maaten and H. G. E., “Visualizing High-Dimensional

Data Using t-SNE,” Journal of Machine Learning Research, vol. 9, no. Nov,

89

http://jmlr.org/papers/v15/martinezcantin14a.html


pp. 2579–2605, 2008. [Online]. Available: http://www.jmlr.org/papers/v9/

vandermaaten08a.html

[79] G. P. Atkinson, S. E. Nozell, and E. T. N. Benveniste, “NF-κB and STAT3

signaling in glioma: targets for future therapies,” Expert review of neurothera-

peutics, vol. 10, no. 4, pp. 575–586, 2014.

[80] J. Pal et al., “Abstract 2454: Genetic landscape of glioma reveals defective

neuroactive ligand receptor interaction pathway as a poor prognosticator in

glioblastoma patients,” in Proceedings of the American Association for Cancer

Research Annual Meeting 2017, vol. 77, no. 13 Supplement, Apr. 2017, pp.

2454–2454.

[81] G. L. Weber, M.-O. Parat, Z. A. Binder, G. L. Gallia, and G. J. Riggins, “Ab-

rogation of PIK3CA or PIK3R1 reduces proliferation, migration, and invasion

in glioblastoma multiforme cells,” Oncotarget, vol. 2, no. 11, pp. 833–849, 2011.

[82] C. Senft et al., “Inhibition of the JAK-2/STAT3 signaling pathway impedes the

migratory and invasive potential of human glioblastoma cells,” Expert review of

neurotherapeutics, vol. 101, no. 3, pp. 393–403, 2011.

[83] M. Xiong et al., “Genome-Wide Association Studies of Copy Number Variation

in Glioblastoma,” in 2010 4th International Conference on Bioinformatics and

Biomedical Engineering, June 2010, pp. 1–4.

[84] C. B. Chan and K. Ye, “Phosphoinositide 3-kinase enhancer (PIKE) in the

brain: is it simply a phosphoinositide 3-kinase/Akt enhancer?” Reviews in the

neurosciences, vol. 23, no. 2, pp. 153–161, 2013.

[85] D. K. Tanwar et al., “Crosstalk between the mitochondrial fission protein, Drp1,

and the cell cycle is identified across various cancer types and can impact sur-

vival of epithelial ovarian cancer patientss,” Oncotarget, vol. 7, no. 37, pp.

60 021–60 037, 2016.

90

http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html


[86] G. A. Mendes et al., “Prolactin gene expression in primary central nervous

system tumors,” Journal of Negative Results in BioMedicine, vol. 12, no. 1,

p. 4, Jan. 2013.

[87] C. G. Brahm et al., “Identification of novel therapeutic targets in glioblastoma

with functional genomic mRNA profiling,” Journal of Clinical Oncology, vol. 35,

no. 15 suppl, pp. 2018–2018, 2017.

[88] X. Cui et al., “IL22 furthers malignant transformation of rat mesenchymal

stem cells, possibly in association with IL22RA1/STAT3 signaling,” Oncology

reports, vol. 41, no. 4, pp. 2148–2158, 2019.

[89] S. Allerstorfer et al., “FGF5 as an oncogenic factor in human glioblastoma

multiforme: autocrine and paracrine activities,” Oncogene, vol. 27, no. 30, pp.

4180–4190, 2008.

[90] Y. Gao et al., “Targeting JUN, CEBPB, and HDAC3: A Novel Strategy to

Overcome Drug Resistance in Hypoxic Glioblastoma,” Frontiers in oncology,

vol. 9, p. 33, 2019.

[91] V. V. Prabhu et al., “Dopamine Receptor D5 is a Modulator of Tumor Response

to Dopamine Receptor D2 Antagonism,” Clinical Cancer Research, vol. 25,

no. 7, pp. 2305–2313, 2019.

[92] L. Deng et al., “Bioinformatics analysis of the molecular mechanism of diffuse

intrinsic pontine glioma,” Oncology letters, vol. 12, no. 4, pp. 2524–2530, 2016.

[93] S. Huang, K. Chaudhary, and L. X. Garmire, “More Is Better: Recent Progress

in Multi-Omics Data Integration Methods,” Frontiers in Genetics, vol. 8, p. 84,

2017.

[94] R. Higdon et al., “The Promise of Multi-Omics and Clinical Data Integration to

Identify and Target Personalized Healthcare Approaches in Autism Spectrum

Disorders,” OMICS: A Journal of Integrative Biology, vol. 19, no. 4, pp. 197–

208, 2015.

91



[95] V. N. Kristensen et al., “Principles and methods of integrative genomic analyses

in cancer,” Nature Reviews Cancer, vol. 14, pp. 299–313, 2014.

[96] M. R. Aure et al., “Individual and combined effects of DNA methylation and

copy number alterations on miRNA expression in breast tumors,” Genome Bi-

ology, vol. 14, no. 11, p. R126, 2013.

[97] J. R. Wagner et al., “The relationship between DNA methylation, genetic

and expression inter-individual variation in untransformed human fibroblasts,”

Genome Biology, vol. 15, no. 2, p. R37, 2014.

[98] G. Lyu et al., “Genome and epigenome analysis of monozygotic twins discordant

for congenital heart disease,” BMC Genomics, vol. 19, no. 1, p. 428, 2018.

[99] C. E. Bruder et al., “Phenotypically Concordant and Discordant Monozygotic

Twins Display Different DNA Copy-Number-Variation Profiles,” The American

Journal of Human Genetics, vol. 82, no. 3, pp. 763–771, 2008.

[100] D. Kim et al., “Using knowledge-driven genomic interactions for multi-omics

data analysis: metadimensional models for predicting clinical outcomes in

ovarian carcinoma,” Journal of the American Medical Informatics Association,

vol. 24, no. 3, pp. 577–587, 2017.

[101] M. Kang et al., “Multi-Block Bipartite Graph for Integrative Genomic Analy-

sis,” IEEE/ACM Transactions on Computational Biology and Bioinformatics,

vol. 14, no. 6, pp. 1350–1358, 2017.

[102] K. Chaudhary, O. B. Poirion, L. Lu, and L. X. Garmire, “Deep Learning-Based

Multi-Omics Integration Robustly Predicts Survival in Liver Cancer,” Clinical

Cancer Research, vol. 24, no. 6, pp. 1248–1259, 2018.

[103] J. Hao, Y. Kim, T. Mallavarapu, J. H. Oh, and M. Kang, “Cox-PASNet:

Pathway-based Sparse Deep Neural Network for Survival Analysis,” in 2018

IEEE International Conference on Bioinformatics and Biomedicine (BIBM),

Dec 2018, pp. 381–386.

92



[104] S. Girirajan, C. D. Campbell, and E. E. Eichler, “Human Copy Number Varia-

tion and Complex Genetic Disease,” Annual Review of Genetics, vol. 45, no. 1,

pp. 203–226, 2011.

[105] L. D. Moore, T. Le, and G. Fan, “DNA Methylation and Its Basic Function,”

Neuropsychopharmacology, vol. 38, pp. 23–38, 2013.

[106] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing

Human-Level Performance on ImageNet Classification,” in 2015 IEEE Interna-

tional Conference on Computer Vision (ICCV), 2015, pp. 1026–1034.

[107] C. Gründker and G. Emons, “The Role of Gonadotropin-Releasing Hormone in

Cancer Cell Proliferation and Metastasis,” Frontiers in Endocrinology, vol. 8,

p. 187, 2017.

[108] S. Jayaram, M. K. Gupta, R. Raju, P. Gautam, and R. Sirdeshmukh, “Multi-

Omics Data Integration and Mapping of Altered Kinases to Pathways Reveal

Gonadotropin Hormone Signaling in Glioblastoma,” OMICS: A Journal of In-

tegrative Biology, vol. 20, no. 12, pp. 736–746, 2016.

[109] L. Catacuzzeno and F. Franciolini, “Role of KCa3.1 Channels in Modulating

Ca2+ Oscillations during Glioblastoma Cell Migration and Invasion,” Interna-

tional Journal of Molecular Sciences, vol. 19, no. 10, p. 2970, 2018.

[110] D. D. J. Chi et al., “Molecular Detection of Tumor-Associated Antigens

Shared by Human Cutaneous Melanomas and Gliomas,” American Journal

of Pathology, vol. 150, no. 6, pp. 2143–2152, 1997. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/9176405

[111] T. A. Ulrich, E. M. de Juan Pardo, and S. Kumar, “The Mechanical Rigidity

of the Extracellular Matrix Regulates the Structure, Motility, and Proliferation

of Glioma Cells,” Cancer Research, vol. 69, no. 10, pp. 4167–4174, 2009.

[112] F. E. Bleeker et al., “Mutational profiling of kinases in glioblastoma,” BMC

Cancer, vol. 14, no. 1, p. 718, Sept. 2014.

93

https://www.ncbi.nlm.nih.gov/pubmed/9176405


[113] J. Cheng et al., “Integrative Analysis of Histopathological Images and Genomic

Data Predicts Clear Cell Renal Cell Carcinoma Prognosis,” Cancer Research,

vol. 77, no. 21, pp. e91–e100, 2017.

[114] X. Zhu et al., “Lung cancer survival prediction from pathological images and ge-

netic data - An integration study,” in 2016 IEEE 13th International Symposium

on Biomedical Imaging (ISBI), 2016, pp. 1173–1176.

[115] V. Popovici et al., “Joint analysis of histopathology image features and gene

expression in breast cancer,” BMC Bioinformatics, vol. 17, no. 1, p. 209, 2016.

[116] N. P. Group, “Histopathology is ripe for automation,” Nature Biomedical En-

gineering, vol. 1, no. 12, p. 925, 2017.

[117] D. Komura and S. Ishikawa, “Machine Learning Methods for Histopathological

Image Analysis,” Computational and Structural Biotechnology Journal, vol. 16,

pp. 34–42, 2018.
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