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ABSTRACT 

The K-Nearest Neighbors (KNN) algorithm is a simple but powerful technique used 

in the field of data analytics. It uses a distance metric to identify existing samples in a 

dataset which are similar to a new sample. The new sample can then be classified via a 

class majority voting of its most similar samples, i.e. nearest neighbors. The KNN 

algorithm can be applied in many fields, such as recommender systems where it can be 

used to group related products or predict user preferences. In most cases, the performance 

of the KNN algorithm tends to suffer as the size of the dataset increases because the number 

of comparisons performed increases exponentially. In this paper, we propose a KNN 

optimization algorithm which leverages vector space models to enhance the nearest 

neighbors search for a new sample. It accomplishes this enhancement by restricting the 

search area, and therefore reducing the number of comparisons necessary to find the nearest 

neighbors. The experimental results demonstrate significant performance improvements 

without degrading the algorithm’s accuracy. The applicability of this optimization 

algorithm is further explored in the field of Big Data by parallelizing the work using 

Apache Spark. The experimental results of the Spark implementation demonstrate that it 

outperforms the serial, or local, implementation of this optimization algorithm after the 

dataset size reaches a specific threshold. Thus, further improving the performance of this 

optimization algorithm in the field of Big Data, where large datasets are prevalent. 
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Chapter I 

 

Introduction 

 

The K-Nearest Neighbors algorithm is a simple but powerful technique used in the 

field of data analytics. It compares a new unclassified sample to all other existing classified 

samples and uses a distance metric to find a pre-specified number of nearest neighbors. 

The new sample can then be classified by conducting a class majority voting among its 

nearest neighbors. That is, the new sample is predicted to belong to the same class as the 

majority of its nearest neighbors. The KNN algorithm can be applied to various tasks, such 

as grouping related products or predicting user preferences in recommender systems. 

The traditional KNN algorithm requires a training dataset (𝑇𝑅), a test dataset (𝑇𝑆), 

and a value of 𝐾. The training dataset contains the classified data, the test dataset contains 

the new unclassified data, and the value of 𝐾 indicates how many nearest neighbors to 

consider when classifying new data samples. For each test sample 𝑇𝑆𝑖 in the test dataset 

𝑇𝑆, where 1 ≤ 𝑖 ≤ 𝑠𝑖𝑧𝑒(𝑇𝑆), we calculate the distance to each training sample 𝑇𝑅𝑗 in the 

training dataset 𝑇𝑅, where 1 ≤ 𝑗 ≤ 𝑠𝑖𝑧𝑒(𝑇𝑅). The resulting distances are sorted in 

ascending order, and the first 𝐾 samples from 𝑇𝑅 are considered the 𝐾 nearest neighbors 

to 𝑇𝑆𝑖. This process performs 𝑠𝑖𝑧𝑒(𝑇𝑆) ∗ 𝑠𝑖𝑧𝑒(𝑇𝑅) number of comparisons, which 

becomes a bottleneck for the algorithm when processing large datasets. Finally, we take 
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𝑇𝑆𝑖’s nearest neighbors and count the number of occurrences of each class to which they 

belong, and 𝑇𝑆𝑖 is predicted to belong to the class with the highest number of occurrences. 

One of the main drawbacks to the traditional KNN algorithm, as hinted at before, 

is the number of comparisons performed when finding the 𝐾 nearest neighbors to all the 

new samples in 𝑇𝑆. When considering the shift in prioritization of data collection and 

analysis in the marketplace, it becomes apparent that the traditional KNN algorithm does 

not scale well when handling today’s increasingly large datasets. In this paper, we propose 

an optimization to the KNN algorithm by leveraging vector space models to reduce the 

number of comparisons necessary to find the 𝐾 nearest neighbors to any test sample. 

Throughout this paper, this optimization will be referenced as the Bounded KNN 

algorithm. Since the Bounded KNN algorithm eliminates the need to compare every sample 

in 𝑇𝑆 against every sample in 𝑇𝑅, it yields significant performance improvements without 

degrading the algorithm’s accuracy. 

The rest of this paper is organized as follows. Chapter II explores the related work, 

and chapter III defines vector space models and the mathematical properties that the 

Bounded KNN algorithm relies on. Chapter IV explains the details of the Bounded KNN 

algorithm’s conception and development, and chapter V explores the role of the Bounded 

KNN in the realm of Big Data. Chapter VI covers the experiments in details, such as 

describing the datasets used, defining the performance measurements, and analyzing the 

final results. Chapter VII summarizes the Bounded KNN algorithm and its contribution to 

the field. 
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Chapter II 

 

Related Work 

 

Many researchers have studied and explored ways of improving the KNN 

algorithm’s performance. Y. Cai, D. Duo, and D. Cai [1] presented the idea of shared 

nearest neighbors for text classification. This algorithm creates a neighborhood around two 

data points using a given radius parameter. Then, it finds the shared neighbors within this 

neighborhood and uses their proposed similarity summing algorithm to calculate a score. 

Finally, classification is determined by the neighborhood which yields the highest score. 

This method effectively increased precision in the NTCIR-8 Patent Classification 

evaluation. 

Rahal and Perrizo [2] utilized P-trees to optimize KNN text categorization. Their 

approach creates a P-tree representation of the data, and goes through a reconstruction 

process until the root count is greater than the given value of 𝐾. Finally, the reconstructed 

P-tree is used to classify the data via a voting process. This algorithm yielded impressive 

results by speeding up performance and improving the accuracy of the KNN algorithm for 

text categorization. 

Guo et al. [3] aimed to generate a model-based approach for KNN classification. 

They exploited the fact that many similar data points are usually clustered together in what 
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they refer to as local regions. A local region is defined as the largest local neighborhood 

which covers the most neighbors belonging to the same class. Their approach to generate 

the model consists of selecting a representative for each local region, and use the 

representatives for classification instead of making a comparison against every data point. 

This approach greatly simplifies the amount of data points required for classification, and 

improved efficiency of the traditional KNN algorithm while maintaining an approximate 

accuracy. 

Dong, Cheng, and Shang [4] researched an eager learning approach to the KNN 

algorithm for text categorization. They use the TF-IDF method for constructing a model, 

and use cosine similarity to calculate similarity between a given training and test sample. 

Finally, data is classified based on the category with the highest frequency. They claim that 

their results improved both the algorithm’s efficiency and accuracy. 

All of these approaches mentioned vary greatly and reveal the wide range of 

perspectives explored for improving the KNN algorithm’s performance. The nearest 

neighbor search is identified as the bottleneck of the algorithm in all these related works. 

However, a key takeaway is that all of these approaches aim to improve the algorithm’s 

performance by approximating the nearest neighbor search, which may lead to a reduction 

in the algorithm’s accuracy. In this paper, we introduce a different perspective by 

leveraging vector space models to optimize the nearest neighbor search without sacrificing 

the algorithm’s accuracy. 
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Chapter III 

 

Vector Space Model 

 

The Bounded KNN algorithm in this paper relies on vector space models, which 

are algebraic models for representing data as vectors, and vector related mathematical 

properties. Vectors represent multidimensional data by storing data features in its axes. In 

order to create a vector between two data points of equal dimensionality, we take the 

difference between each of their features, as shown in equation (3). Furthermore, we can 

calculate the magnitude of this new vector by summing the squared value of each feature 

and square rooting the result, as shown in equation (4).  

 𝐴 = (𝐴1, 𝐴2, … , 𝐴𝑝) (1) 

 

 𝐵 = (𝐵1, 𝐵2, … , 𝐵𝑝) (2) 

 

 𝐴𝐵⃗⃗⃗⃗  ⃗ = (𝐵1 − 𝐴1, 𝐵2 − 𝐴2, … , 𝐵𝑝 − 𝐴𝑝) (3) 

 

 ‖𝐴𝐵⃗⃗⃗⃗  ⃗‖ = √ 𝐴𝐵⃗⃗⃗⃗  ⃗
1
2 + 𝐴𝐵⃗⃗⃗⃗  ⃗

2
2 + ⋯+ 𝐴𝐵⃗⃗⃗⃗  ⃗

𝑝
2  (4) 
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We use the last two formulas to represent a dataset as a vector space model and to 

calculate the vector magnitudes. Once a vector space model is created, we can apply the 

cosine similarity formula to calculate the angle between two vectors. It is worth mentioning 

that the cosine similarity formula requires both vectors to be nonzero vectors, which are 

vectors with magnitudes greater than 0. Assuming 𝐴𝐵⃗⃗⃗⃗  ⃗ and 𝐴𝐶⃗⃗⃗⃗  ⃗ are nonzero vectors, we 

denote 𝜃, the angle between these two vectors, as the arccos of their dot product divided 

by the product of their magnitudes. Equation (5) presents a mathematically precise 

definition of the cosine similarity formula. Taking it a step further, we can calculate the 

distance between data points 𝐵 and 𝐶 by finding the magnitude of the connecting vector 

𝐵𝐶⃗⃗⃗⃗  ⃗, which forms a triangle with the two previous vectors 𝐴𝐵⃗⃗⃗⃗  ⃗ and 𝐴𝐶⃗⃗⃗⃗  ⃗ as shown in Figure 

1. To calculate this distance, we leverage the law of cosines formula which, similar to the 

cosine similarity formula, also requires both vectors to be nonzero vectors. Equation (6) 

presents a mathematically precise definition of the law of cosines formula. 

 𝜃 = cos−1( 
𝐴𝐵⃗⃗ ⃗⃗  ⃗ • 𝐴𝐶⃗⃗⃗⃗  ⃗

‖𝐴𝐵⃗⃗ ⃗⃗  ⃗‖ ‖𝐴𝐶⃗⃗⃗⃗  ⃗‖
 ) (5) 
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Figure 1. Depiction of the triangle formed between the connecting vector 𝐵𝐶⃗⃗⃗⃗  ⃗ with the 

existing vectors 𝐴𝐵⃗⃗⃗⃗  ⃗ and 𝐴𝐶⃗⃗⃗⃗  ⃗. 

 ‖𝐵𝐶⃗⃗⃗⃗  ⃗‖ = √ ‖𝐴𝐵⃗⃗⃗⃗  ⃗‖
2
+ ‖𝐴𝐶⃗⃗⃗⃗  ⃗‖

2
− 2 ‖𝐴𝐵⃗⃗⃗⃗  ⃗‖ ‖𝐴𝐶⃗⃗⃗⃗  ⃗‖ cos 𝜃  (6) 

 

Chapter IV 

 

Bounded KNN 

 

 In this chapter, we will first discuss the conception and development of the 

Bounded KNN algorithm. We began by identifying the nearest neighbor search of the 

traditional KNN algorithm as a bottleneck, so our main objective was to improve the 

algorithm’s performance by alleviating this bottleneck. In order to achieve this goal, we 

needed to decrease the number of comparisons necessary to find a test sample’s nearest 
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neighbors. The next sections will cover our initial naïve attempt and its problems, followed 

by the implementation details of the final algorithm. 

 

Naïve Attempt 

 

 We began by creating a data point which lies at the center of the dataset, referenced 

as the origin, and calculating the distance from the origin to every training and test sample. 

We hoped to be able to utilize relative distances from the origin to find the nearest 

neighbors to a test sample. That is, the distances from the origin were sorted in ascending 

order, and we assumed the nearest neighbors to a test sample to be its closest left and right 

neighbors in the list. Figure 2 demonstrates this naïve approach. This approach would 

successfully find the nearest neighbors for one-dimensional datasets; however, it fails to 

find the nearest neighbors for multi-dimensional datasets. Figures 3 and 4 describe the 

issues with multi-dimensional datasets. Therefore, simply knowing the distance from the 

origin to each training and test sample is not enough to find the nearest neighbors, we also 

need to identify the direction from the origin. Thus, the idea of using vectors arose as they 

are mathematical objects having both a distance, i.e. magnitude, and a direction. The 

following sections describe the three phases of the Bounded KNN algorithm and their 

implementation details. These three phases are origin creation, model creation, and nearest 

neighbor search. 
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Figure 2. Illustration of a dataset as a sorted list of distances from the origin to each data 

point. 𝑇𝑆𝑖 spans outward to its left and right until encircling its 3-nearest neighbors. 

 

 

Figure 3. Illustration of a dataset around the origin. In Figure 2, the circled data points 

𝑇𝑅1, 𝑇𝑅2, and 𝑇𝑅3 were erroneously selected as the 3-nearest neighbors to 𝑇𝑆𝑖 solely based 

on their distances from the origin. This mistake reinforces the fact that directions from the 

origin must also be taken into consideration. 
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Figure 4. Illustration of a dataset around the origin. In this image, 𝑇𝑆𝑖 is correctly 

encircling its 3-nearest neighbors. 

 

Origin Creation 

 

The first phase of the Bounded KNN algorithm is to create a data point to serve as 

the origin. Then, the algorithm needs to calculate the distance and direction between each 

data point and the origin. Using the formulas described in equations (3) and (4), we only 

need two data points to create a vector and compute its distance from the origin, or 

magnitude. Using the formula in equation (5), we can calculate the direction, or angle. 

However, it requires two vectors in order to produce a conclusive result. Therefore, we will 

create two origin data points, so that we can establish an origin vector between them. 
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The first origin will be a data point containing the average values for each feature 

in 𝑇𝑅, and it will be referenced as the mean origin, or 𝑂𝜇. For a more precise definition of 

the mean origin, see equation (7). The second origin will be a data point containing the 

maximum values from each feature in 𝑇𝑅, and it will be referenced as the max origin, or 

𝑂𝑚𝑎𝑥. For a more precise definition of the max origin, see equation (8). The vector created 

from connecting 𝑂𝜇 to 𝑂𝑚𝑎𝑥 will be referenced as the origin vector, or �⃗� . 

The main purpose of the mean origin is to act as the source for all the vectors 

created, which includes magnitudes or distances. The main purpose of the origin vector is 

to serve as a point of reference for angle, or cosine similarity, calculations. It is important 

to note that the mean and max origins must be different data points. Otherwise, the origin 

vector would be a zero-magnitude vector and we would be unable to perform cosine 

similarity calculations. However, as long as the training dataset contains at least two 

different samples, this situation should never arise. 

 

 𝑂𝜇 = ( 
∑ 𝑇𝑅𝑗1

𝑠𝑖𝑧𝑒(𝑇𝑅)
𝑗=1

𝑠𝑖𝑧𝑒(𝑇𝑅)
,
∑ 𝑇𝑅𝑗2

𝑠𝑖𝑧𝑒(𝑇𝑅)
𝑗=1

𝑠𝑖𝑧𝑒(𝑇𝑅)
, … ,

∑ 𝑇𝑅𝑗𝑝
𝑠𝑖𝑧𝑒(𝑇𝑅)
𝑗=1

𝑠𝑖𝑧𝑒(𝑇𝑅)
 ) (7) 

 

 𝑂𝑚𝑎𝑥 = ( max(𝑇𝑅𝑗1),max(𝑇𝑅𝑗2), … ,max(𝑇𝑅𝑗𝑝) ) (8) 

 

Model Creation 
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Now that we have defined 𝑂𝜇 and �⃗� , we can proceed to the second phase, which is 

the model creation. The model consists of two lists: a list of vector objects sorted by angle 

and then by magnitude, and a list of neighbor objects sorted by magnitude. The vector 

model is a collection of all the vectors created to each sample in 𝑇𝑅. To be precise, 𝑂𝜇 will 

serve as the source for all vectors created to each 𝑇𝑅𝑗. The distance between 𝑂𝜇 and 𝑇𝑅𝑗 is 

equal to the magnitude of their vector, i.e. ‖𝑂𝜇𝑇𝑅𝑗
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖. We define the direction from 𝑂𝜇 to  

𝑇𝑅𝑗 as the angle between �⃗�  and 𝑂𝜇𝑇𝑅𝑗
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . In rare cases where a training sample is equal to 

𝑂𝜇, the resulting zero-magnitude vector will have a magnitude of zero and a null angle. 

Once all vectors have been added to the model, the model is sorted by angle and then by 

magnitude in ascending order. Vectors with a null angle are inserted at the front of the 

vector model. 

Each time a vector object is created, a neighbor object is also created and it copies 

the vector’s magnitude value in its distance attribute. The neighbor objects are added to the 

neighbor model and sorted by distance in ascending order. It is important to mention that 

the vector and neighbor models are reusable and do not need to be recreated. Table 1 

demonstrates a possible representation of a dataset as a vector model. 
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Table 1. Representation of a sorted vector model. The angle is the value between �⃗�  and 

𝑂𝜇𝑇𝑅𝑗
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , and the magnitude is ‖𝑂𝜇𝑇𝑅𝑗

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖. The model is sorted by angle and then by magnitude 

in ascending order. 

Sample 𝑇𝑅6 𝑇𝑅4 𝑇𝑅7 𝑇𝑅1 𝑇𝑅2 𝑇𝑅3 𝑇𝑅5 

Angle 𝜋

6
 

𝜋

4
 

𝜋

4
 

𝜋

3
 

3𝜋

4
 

3𝜋

4
 

𝜋 

Magnitude 275 75 90 195 205 210 150 

 

Table 2. Representation of a sorted neighbor model. The distance is equivalent to the 

respective vector’s magnitude value. The model is sorted by distance in ascending order. 

Sample 𝑇𝑅4 𝑇𝑅7 𝑇𝑅5 𝑇𝑅1 𝑇𝑅2 𝑇𝑅3 𝑇𝑅6 

Distance 75 90 150 195 205 210 275 
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Nearest Neighbor Search 

 

The third and final phase is to find the 𝐾 nearest neighbors to a given 𝑇𝑆𝑖. The 

Bounded KNN algorithm maintains dynamic angle and magnitude boundaries to restrict 

the nearest neighbor search, which leads to a reduction in the number of comparisons. The 

angle boundary is initially set to 𝜋, which allows all vectors to be evaluated since the angle 

values given in equation (5) range from 0 to 𝜋 radians. Similarly, the magnitude boundary 

is initially set to positive infinity in order to allow evaluation of all vectors. We also 

initialize an empty list to hold 𝑇𝑆𝑖’s nearest neighbors, let’s refer to it as 𝑁𝑁𝑖. 

 The nearest neighbor search begins by creating a vector from 𝑂𝜇 to 𝑇𝑆𝑖 and 

calculating its magnitude as well as its angle from �⃗� . In rare cases where 𝑂𝜇𝑇𝑆𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is a zero-

magnitude vector, the 𝐾 nearest neighbors can be found by simply fetching the first 𝐾 

neighbors in the neighbor model. The common case is to proceed with the following 

instructions. 

1) Find the insertion index of 𝑂𝜇𝑇𝑆𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ in the vector model. This can be accomplished 

via a binary search since the vector model was previously sorted. 

2) Assign left and right pointers equal to the vector objects before and after the 

insertion index in the vector model. More precisely, the left pointer is equal to the 

 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 − 1, and the right pointer is equal to the 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 
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3) Determine whether the left or right vector is closer to 𝑂𝜇𝑇𝑆𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ by comparing angle 

differences. In the case of a tie, we compare magnitude differences. The closer 

vector will be referred to as 𝐶𝑉⃗⃗⃗⃗  ⃗. 

4) If the left pointer was referencing 𝐶𝑉⃗⃗⃗⃗  ⃗, decrement the left pointer. Otherwise, 

increment the right pointer. 

5) If 𝑠𝑖𝑧𝑒(𝑁𝑁𝑖) < 𝐾, insert 𝐶𝑉⃗⃗⃗⃗  ⃗ into 𝑁𝑁𝑖 in ascending order by angle, then by 

magnitude. When 𝑠𝑖𝑧𝑒(𝑁𝑁𝑖) reaches 𝐾, update the angle and magnitude 

boundaries as described in Figure 5. 

6) If 𝑠𝑖𝑧𝑒(𝑁𝑁𝑖) ≥ 𝐾, we verify that 𝐶𝑉⃗⃗⃗⃗  ⃗ is within our angle and magnitude boundaries. 

That is, verify that the angle between 𝐶𝑉⃗⃗⃗⃗  ⃗ and �⃗�  is within 𝜃 ± 𝜃𝑏𝑜𝑢𝑛𝑑, and that ‖𝐶𝑉⃗⃗⃗⃗  ⃗‖ 

is within ‖𝑂𝜇𝑇𝑆𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ ± 𝑟. Then, we must perform an additional check to verify that 

the angle between 𝐶𝑉⃗⃗⃗⃗  ⃗ and 𝑂𝜇𝑇𝑆𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is indeed within the angle boundaries. For a 

detailed explanation of this requirement, see Figure 6. Once verified, we find the 

magnitude of the connecting vector between 𝐶𝑉⃗⃗⃗⃗  ⃗ and 𝑂𝜇𝑇𝑆𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. If the magnitude of the 

connecting vector is less than 𝑟, insert 𝐶𝑉⃗⃗⃗⃗  ⃗ into 𝑁𝑁𝑖 in ascending order by angle and 

then by magnitude, and remove the last element in 𝑁𝑁𝑖. Finally, update the angle 

and magnitude boundaries as described in Figure 5. 

7) Repeat steps 3-6 until both left and right pointers reference vectors which are 

outside of the angle boundaries, or both pointers are null. 
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Figure 5. The following caption describes the algorithm used to dynamically update the 

angle and magnitude boundaries in order to restrict the area of search. The magnitude 

boundaries are set to ‖𝑂𝜇𝑇𝑆𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ ± 𝑟. If ‖𝑂𝜇𝑇𝑆𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ ≥ 𝑟, the angle boundaries are set to 𝜃 ±

𝜃𝑏𝑜𝑢𝑛𝑑. Where 𝑟 is the distance between 𝑂𝜇𝑇𝑆𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and the last element in 𝑁𝑁𝑖, 𝜃 is the angle 

between �⃗�  and 𝑂𝜇𝑇𝑆𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, and 𝜃𝑏𝑜𝑢𝑛𝑑 is the angle between 𝑂𝜇𝑇𝑆𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and its 𝑟 offset. For a more 

precise definition of the 𝜃𝑏𝑜𝑢𝑛𝑑 formula, see equation (9). 

 

 𝜃𝑏𝑜𝑢𝑛𝑑 = sin−1( 
𝑟

‖𝑂𝜇𝑇𝑆𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖
 ) (9) 
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Figure 6. Assume a case where 𝑂𝜇𝑇𝑆𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑂𝜇𝑇𝑅𝑗

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   have similar magnitudes, and their angles 

to �⃗�  is equal to 
𝜋

2
. These two vectors will be placed relatively close to each other in the 

sorted vector model. Now, assume 𝜃𝑏𝑜𝑢𝑛𝑑 is 
𝜋

4
, our angle boundaries would range from 

𝜋

4
 

to 
3𝜋

4
. Hence, 𝑂𝜇𝑇𝑅𝑗

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is considered to be within the angle boundaries. The additional check 

verifies that the angle between 𝑂𝜇𝑇𝑆𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑂𝜇𝑇𝑅𝑗

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is less than 𝜃𝑏𝑜𝑢𝑛𝑑, which fails in this 

case since the angle between them is 𝜋. Thus, correcting false positives where some vectors 

are considered to be within angle boundaries. 

 

At this point, we have found the 𝐾 nearest neighbors to 𝑇𝑆𝑖 and have stored them 

in 𝑁𝑁𝑖. In order to classify 𝑇𝑆𝑖, we conduct a class majority voting of all elements in 𝑁𝑁𝑖. 

This is the same process previously described for the traditional KNN algorithm. 

 

 



18 
 

Chapter V 

 

Bounded KNN and Spark 

 

The next step in our research was to migrate the Bounded KNN algorithm onto 

Spark to observe its applicability in the field of Big Data. The following sections will cover 

the details of the Bounded KNN’s Spark implementation. The training and test datasets 

were loaded from our Hadoop Distributed File System (HDFS) as Resilient Distributed 

Datasets (RDDs). All function operations, also known as transformations on Spark, 

performed on an RDD are parallelized across all the worker nodes in the cluster. We take 

advantage of this fact to parallelize the three phases of our Bounded KNN algorithm and 

further improve its performance benefits in the field of Big Data. 

 

Parallel Origin Creation 

 

 The first phase is to create the mean origin, max origin, and origin vector. Finding 

the mean and max origins was challenging at first. There are built-in mean and max 

transformation functions for RDDs, but they operate on one multi-dimensional sample 
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rather than on one column across multiple samples. To get around this, we split the 

dimensions of our dataset and assign an index value to each one. Thus, our initial output 

on Spark was a features RDD containing a list of key-value pairs consisting of the column 

index as the key and the column value as the value. 

To create the mean origin, the features RDD was reduced by key and the values 

were added together. We then apply a transformation to divide each key, which is a sum of 

all the column values, by the total number of samples. The final result is a sample 

containing the average of each column in the dataset. To create the max origin, the features 

RDD was reduced by key, similarly to the mean origin, but we keep the max value instead 

of adding them together. The final result is a sample containing the maximum values for 

each column in the dataset. Lastly, we create the origin vector by utilizing the mean and 

max origins in the same way it was done on the local version of the Bounded KNN. 

 

Parallel Model Creation 

 

 The mean origin and the origin vector are shared from the driver node to the worker 

nodes via broadcast variables, therefore allowing the worker nodes to have a read-only 

copy of those variables. This step is necessary because the mean origin is crucial in creating 

the training vectors and the origin vector is crucial in calculating the cosine similarities. 

Next, we apply a map transformation on the training dataset RDD to create the model. The 

map transformation allows us to execute a custom function on each element in the RDD. 
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The custom function executed returns a model RDD, which consists of a list of key-value 

pairs. It initially contains two entries: a vector key with a training vector object, and a 

neighbor key with a training neighbor object. The model RDD is then reduced by key, 

which ends up combining all the vector objects into one list and all the neighbor objects 

into another list. Lastly, the model’s list of vectors is sorted by angle and then by 

magnitude, while the model’s list of neighbors is sorted by distance. 

 

Parallel Nearest Neighbor Search 

 

 The last phase consists of finding the nearest neighbors to each test sample. In order 

to accomplish this, we need to share the model RDD, which was created in the previous 

phase, with the worker nodes via a broadcast variable. Then, we leverage the map 

transformation to perform a custom function on the test dataset RDD. This custom function 

results in a list of vector objects created from the mean origin to each test sample. Finally, 

we apply another custom function to these results, which simply performs the nearest 

neighbor search function from the local Bounded KNN implementation on each of these 

vectors. 
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Chapter VI 

 

Experiments 

 

We decided to use the MNIST dataset for our experiments. It is an easily 

understandable dataset which contains multiple samples to choose from. The dataset was 

split into subsets of various sizes to observe scalability and performance differences 

between the traditional KNN and Bounded KNN algorithms. We also compared the 

performance difference between the Bounded KNN locally and the Bounded KNN on 

Spark. The performance measurements we focused on were prediction accuracy and run-

time in seconds. The algorithms were implemented in Python 2.7 both locally and on Spark. 

The Spark cluster contained 8 worker nodes, each with 16GB RAM. 

 

MNIST Dataset 

 

The MNIST dataset contains images of handwritten digits, and is commonly used for 

training image processing systems. Each sample represents a 28x28 grayscale image of a 

handwritten digit ranging from 0 to 9. There are 784 features to represent the pixel values 
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in the image, which range from 0 to 255, and one additional feature to indicate the class 

this image belongs to. Thus, the dimensionality of this dataset is 785. 

 

Traditional KNN vs. Bounded KNN 

 

We created four subsets of the MNIST dataset. The training datasets ranged from 

950 to 9500 samples, and the test datasets ranged from 50 to 500 samples. Each subset was 

classified using both algorithms and with different values of 𝐾. The experiments were 

repeated at least five times, and the run-time values represent the best result for each value 

of 𝐾. The following Tables 3-6 show a side-by-side comparison of the prediction accuracy 

and run-time results for the traditional KNN and the Bounded KNN algorithms on each 

dataset. The graph in Figure 7 compares scalability of the two algorithms by plotting the 

average run-time results for each dataset as the number of samples increases. 
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Table 3. Comparison of traditional KNN vs. Bounded KNN using 950 training samples 

and 50 test samples. 

𝐾 Traditional 

Accuracy 

Bounded 

Accuracy 

Traditional 

Run-Time 

Bounded 

Run-Time 

1 88.00% 88.00% 18.33 0.865 

3 94.00% 94.00% 18.393 0.959 

5 90.00% 90.00% 18.214 1.045 

7 88.00% 88.00% 18.217 1.04 

9 88.00% 88.00% 18.407 1.082 

11 86.00% 86.00% 18.315 1.155 

13 84.00% 84.00% 18.414 1.098 

15 82.00% 82.00% 18.71 1.122 

AVG 87.50% 87.50% 18.375 1.046 
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Table 4. Comparison of traditional KNN vs. Bounded KNN using 2350 training samples 

and 150 test samples. 

𝐾 Traditional 

Accuracy 

Bounded 

Accuracy 

Traditional 

Run-Time 

Bounded 

Run-Time 

1 92.67% 92.67% 139.222 3.349 

3 92.67% 92.67% 139.02 3.1 

5 93.33% 93.33% 139.5 3.278 

7 89.33% 89.33% 139.057 3.41 

9 89.33% 89.33% 139.703 3.59 

11 90.67% 90.67% 139.41 3.807 

13 92.00% 92.00% 140.499 3.9 

15 92.00% 92.00% 139.182 3.94 

AVG 91.50% 91.50% 139.449 3.547 
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Table 5. Comparison of traditional KNN vs. Bounded KNN using 4700 training samples 

and 300 test samples. 

𝐾 Traditional 

Accuracy 

Bounded 

Accuracy 

Traditional 

Run-Time 

Bounded 

Run-Time 

1 94.33% 94.33% 563.371 8.231 

3 95.33% 95.33% 561.231 8.901 

5 95.33% 95.33% 562.965 9.501 

7 94.67% 94.67% 562.12 9.87 

9 95.00% 95.00% 563.604 10.517 

11 93.67% 93.67% 557.688 11.68 

13 93.67% 93.67% 551.655 11.33 

15 93.67% 93.67% 549.181 11.44 

AVG 94.46% 94.46% 558.977 10.184 
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Table 6. Comparison of traditional KNN vs. Bounded KNN using 9500 training samples 

and 500 test samples. 

𝐾 Traditional 

Accuracy 

Bounded 

Accuracy 

Traditional 

Run-Time 

Bounded 

Run-Time 

1 96.40% 96.40% 1881.087 23.75 

3 96.80% 96.80% 1878.019 25.339 

5 96.40% 96.40% 1885.332 26.72 

7 95.80% 95.80% 1892.347 28.572 

9 95.80% 95.80% 1881.737 28.855 

11 95.60% 95.60% 1839.638 29.935 

13 95.20% 95.20% 1838.322 30.61 

15 95.20% 95.20% 1925.019 31.72 

AVG 95.90% 95.90% 1877.688 28.18 
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Figure 7. Comparison of the run-time for both the traditional KNN and Bounded KNN 

algorithms on different sized datasets. 

 

From these results, we can see that the Bounded KNN outperforms the traditional 

KNN on all datasets. It reduced execution time of the smallest dataset by 94.31%, and 

grows up to a 98.45% reduction for the largest dataset. The increasing performance gap 

between the two algorithms, as can be observed in Figure 7, indicates that the benefits 

continuously scale along with the datasets. Furthermore, the Bounded KNN algorithm 
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produces the same nearest neighbors as the traditional KNN algorithm for any given test 

sample, which allows us to preserve the algorithm’s accuracy. 

 

Local Bounded KNN vs. Spark Bounded KNN 

 

 We ran the Bounded KNN Spark implementation on the same datasets described 

above and compared its results to the local implementation of the Bounded KNN algorithm. 

However, since Spark is more suited to handling large amounts of data, we created two 

larger subsets of the data. The first subset contains 18000 training samples and 2000 test 

samples, and the second subset contains 27000 training samples and 3000 test samples. 

This allows us to more accurately compare the local and Spark implementations of the 

Bounded KNN algorithm. 
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Table 7. Comparison of the local implementation of the Bounded KNN vs. the Spark 

implementation of the Bounded KNN using 950 training samples and 50 test samples. 

𝐾 Spark 

Accuracy 

Local 

Accuracy 

Spark Run-

Time 

Local Run-

Time 

1 88.00% 88.00% 19.052 0.865 

3 94.00% 94.00% 17.903 0.959 

5 90.00% 90.00% 18.376 1.045 

7 88.00% 88.00% 18.001 1.04 

9 88.00% 88.00% 17.812 1.082 

11 86.00% 86.00% 18.433 1.155 

13 84.00% 84.00% 18.33 1.098 

15 82.00% 82.00% 18.068 1.122 

AVG 87.50% 87.50% 18.247 1.046 
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Table 8. Comparison of the local implementation of the Bounded KNN vs. the Spark 

implementation of the Bounded KNN using 2350 training samples and 150 test samples. 

𝐾 Spark 

Accuracy 

Local 

Accuracy 

Spark Run-

Time 

Local Run-

Time 

1 92.67% 92.67% 25.398 3.349 

3 92.67% 92.67% 23.435 3.1 

5 93.33% 93.33% 24.333 3.278 

7 89.33% 89.33% 24.893 3.41 

9 89.33% 89.33% 23.565 3.59 

11 90.67% 90.67% 23.924 3.807 

13 92.00% 92.00% 23.744 3.9 

15 92.00% 92.00% 25.422 3.94 

AVG 91.50% 91.50% 24.34 3.547 
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Table 9. Comparison of the local implementation of the Bounded KNN vs. the Spark 

implementation of the Bounded KNN using 4700 training samples and 300 test samples. 

𝐾 Spark 

Accuracy 

Local 

Accuracy 

Spark Run-

Time 

Local Run-

Time 

1 94.33% 94.33% 32.545 8.231 

3 95.33% 95.33% 31.983 8.901 

5 95.33% 95.33% 33.108 9.501 

7 94.67% 94.67% 37.06 9.87 

9 95.00% 95.00% 33.449 10.517 

11 93.67% 93.67% 34.111 11.68 

13 93.67% 93.67% 33.674 11.33 

15 93.67% 93.67% 32.511 11.44 

AVG 94.46% 94.46% 29.487 10.184 
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Table 10. Comparison of the local implementation of the Bounded KNN vs. the Spark 

implementation of the Bounded KNN using 9500 training samples and 500 test samples. 

𝐾 Spark 

Accuracy 

Local 

Accuracy 

Spark Run-

Time 

Local Run-

Time 

1 96.40% 96.40% 64.115 23.75 

3 96.80% 96.80% 55.339 25.339 

5 96.40% 96.40% 53.585 26.72 

7 95.80% 95.80% 53.923 28.572 

9 95.80% 95.80% 64.739 28.855 

11 95.60% 95.60% 62.835 29.935 

13 95.20% 95.20% 64.527 30.61 

15 95.20% 95.20% 66.17 31.72 

AVG 95.90% 95.90% 60.654 28.18 
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Table 11. Comparison of the local implementation of the Bounded KNN vs. the Spark 

implementation of the Bounded KNN using 18000 training samples and 2000 test samples. 

𝐾 Spark 

Accuracy 

Local 

Accuracy 

Spark Run-

Time 

Local Run-

Time 

1 96.90% 96.90% 149.641 150.79 

3 96.70% 96.70% 148.849 156.675 

5 96.30% 96.30% 153.002 164.106 

7 96.05% 96.05% 147.032 169.369 

9 95.75% 95.75% 151.049 174.632 

11 95.50% 95.50% 163.058 178.727 

13 95.50% 95.50% 165.101 184.636 

15 95.20% 95.20% 163.899 181.016 

AVG 95.99% 95.99% 155.204 169.99 
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Table 12. Comparison of the local implementation of the Bounded KNN vs. the Spark 

implementation of the Bounded KNN using 27000 training samples and 3000 test samples. 

𝐾 Spark 

Accuracy 

Local 

Accuracy 

Spark Run-

Time 

Local Run-

Time 

1 96.57% 96.57% 258.749 327.922 

3 96.67% 96.67% 245.709 282.586 

5 96.77% 96.77% 244.167 286.461 

7 96.47% 96.47% 260.603 290.043 

9 96.20% 96.20% 264.007 299.887 

11 96.13% 96.13% 250.761 307.267 

13 95.90% 95.90% 263.823 321.858 

15 95.70% 95.70% 260.975 318.94 

AVG 96.30% 96.30% 256.1 304.371 
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Figure 8. Comparison of the local implementation of the Bounded KNN vs. the Spark 

implementation of the Bounded KNN on different sized datasets. 

 

For the first four datasets, the local implementation of the Bounded KNN 

outperforms the Spark implementation. This is due to the overhead time associated with 

distributing the processing to all the worker nodes in the Spark cluster. However, the Spark 

implementation continuous to close the gap as the size of the datasets increases. As 
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demonstrated on the last two datasets, the Spark implementation of the Bounded KNN 

algorithm eventually catches up and outperforms the local implementation. 

Next, let’s further analyze the performance difference between the two 

implementations for each dataset. For the 1K samples dataset, the Spark implementation 

was 1644.46% slower. For the 2.5K samples dataset, the Spark implementation was 

586.21% slower. For the 5K samples dataset, the Spark implementation was 189.54% 

slower. For the 10K samples dataset, the Spark version was 115.24% slower. For the 20K 

samples dataset, the Spark version was 8.7% faster. Finally, for the 30K samples dataset, 

the Spark version was 15.86% faster. Assuming that this trend continues, it is safe to 

assume that the Spark version will provide a significant performance boost to the algorithm 

when handling the large datasets which are prevalent in the field of Big Data. 

 

Chapter VII 

 

Conclusion 

 

In this paper, we presented the Bounded KNN algorithm, which is an optimization 

to the traditional KNN algorithm that leverages vector space models. It creates a different 

representation of the data, which allows us to take advantage of vector related mathematical 
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properties. Since all vectors spawn from the mean origin and hold an angle reference to the 

origin vector, the creation of the origin data points and the origin vector serve as the 

enabling factor and backbone of our algorithm. The Bounded KNN algorithm yields 

significant performance improvements over the traditional KNN algorithm, in terms of run-

time, while preserving the algorithm’s accuracy. These benefits are further improved by 

parallelizing the Bounded KNN on Spark, which distributes the work among a cluster of 

machines. Therefore, concluding that these solutions provide us with a better approach to 

handle today’s increasingly large datasets. 
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