
Kennesaw State University
DigitalCommons@Kennesaw State University

Master of Science in Computer Science Theses Department of Computer Science

Summer 8-9-2019

KNN Optimization for Multi-Dimensional Data
Arialdis Japa
Kennesaw State University

Follow this and additional works at: https://digitalcommons.kennesaw.edu/cs_etd

Part of the Computer and Systems Architecture Commons

This Thesis is brought to you for free and open access by the Department of Computer Science at DigitalCommons@Kennesaw State University. It has
been accepted for inclusion in Master of Science in Computer Science Theses by an authorized administrator of DigitalCommons@Kennesaw State
University. For more information, please contact digitalcommons@kennesaw.edu.

Recommended Citation
Japa, Arialdis, "KNN Optimization for Multi-Dimensional Data" (2019). Master of Science in Computer Science Theses. 25.
https://digitalcommons.kennesaw.edu/cs_etd/25

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@Kennesaw State University

https://core.ac.uk/display/231831691?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.kennesaw.edu?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/cs_etd?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/cs?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/cs_etd?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/cs_etd/25?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

KNN Optimization for Multi-Dimensional Data

A Thesis Presented to

The Faculty of the Computer Science Department

by

Arialdis Japa

In Partial Fulfillment

of Requirements for the Degree

Master of Science, Computer Science

Kennesaw State University

July 2019

II

KNN Optimization for Multi-Dimensional Data

Approved:

Dr. Yong Shi – Advisor

Dr. Coskun Cetinkaya – Department Chair

Dr. Jon Preston – Dean

III

In presenting this thesis as a partial fulfillment of the requirements for an advanced degree

from Kennesaw State University, I agree that the university library shall make it available

for inspection and circulation in accordance with its regulations governing materials of this

type. I agree that permission to copy from, or to publish, this thesis may be granted by the

professor under whose direction it was written, or, in his absence, by the dean of the

appropriate school when such copying or publication is solely for scholarly purposes and

does not involve potential financial gain. It is understood that any copying from or

publication of this thesis which involves potential financial gain will not be allowed

without written permission.

Arialdis Japa

IV

Notice To Borrowers

Unpublished theses deposited in the Library of Kennesaw State University must be used

only in accordance with the stipulations prescribed by the author in the preceding

statement.

The author of this thesis is:

Arialdis Japa

1100 S Marietta PKWY,

Marietta, GA 30060

The director of this thesis is:

Dr. Yong Shi

1100 S Marietta PKWY,

Marietta, GA 30060

Users of this thesis not regularly enrolled as students at Kennesaw State University are

required to attest acceptance of the preceding stipulations by signing below. Libraries

borrowing this thesis for the use of their patrons are required to see that each user records

here the information requested.

V

KNN Optimization for Multi-Dimensional Data

An Abstract of

A Thesis Presented to

The Faculty of the Computer Science Department

by

Arialdis Japa

Bachelor of Science, Kennesaw State University, 2014

In Partial Fulfillment

of Requirements for the Degree

Master of Science, Computer Science

Kennesaw State University

July 2019

VI

ABSTRACT

The K-Nearest Neighbors (KNN) algorithm is a simple but powerful technique used

in the field of data analytics. It uses a distance metric to identify existing samples in a

dataset which are similar to a new sample. The new sample can then be classified via a

class majority voting of its most similar samples, i.e. nearest neighbors. The KNN

algorithm can be applied in many fields, such as recommender systems where it can be

used to group related products or predict user preferences. In most cases, the performance

of the KNN algorithm tends to suffer as the size of the dataset increases because the number

of comparisons performed increases exponentially. In this paper, we propose a KNN

optimization algorithm which leverages vector space models to enhance the nearest

neighbors search for a new sample. It accomplishes this enhancement by restricting the

search area, and therefore reducing the number of comparisons necessary to find the nearest

neighbors. The experimental results demonstrate significant performance improvements

without degrading the algorithm’s accuracy. The applicability of this optimization

algorithm is further explored in the field of Big Data by parallelizing the work using

Apache Spark. The experimental results of the Spark implementation demonstrate that it

outperforms the serial, or local, implementation of this optimization algorithm after the

dataset size reaches a specific threshold. Thus, further improving the performance of this

optimization algorithm in the field of Big Data, where large datasets are prevalent.

VII

KNN Optimization for Multi-Dimensional Data

A Thesis Presented to

The Faculty of the Computer Science Department

by

Arialdis Japa

In Partial Fulfillment

of Requirements for the Degree

Master of Science, Computer Science

Advisor: Dr. Yong Shi

Kennesaw State University

July 2019

VIII

ACKNOWLEDGEMENTS

I would first like to thank my thesis advisor Dr. Yong Shi for giving me the

opportunity to work as a Graduate Research Assistant under his guidance. At first, I was

feeling overwhelmed by the concepts in the fields of Data Science and Big Data, but he

pushed me to persevere through the initial learning curve. He was always available to

answer questions when I ran into problems and allowed me to work independently

throughout my research. I would also like to thank Dr. Mingon Kang because I learned a

lot of these concepts through his Machine Learning and Big Data Analytics courses at

Kennesaw State University. His courses were very enjoyable and he provided us with great

hands-on problems to practice and improve.

I would like to thank my wife Hye Jin Kang for all her support throughout my years

of study and for assisting me in working through this optimization to the KNN algorithm.

Her mathematical and programming knowledge were crucial in overcoming road blocks

throughout my research and arriving at the solution proposed in this paper. Finally, I must

express my profound gratitude towards my parents for providing me with unfailing support

and continuous encouragement during this research process, as they have done throughout

my entire life. This accomplishment would not have been possible without them. Thank

you.

IX

TABLE OF CONTENTS

ABSTRACT…………………………………………………………………………..VI

ACKNOWLEDGEMENTS……………………………………………………..VIII

LIST OF FIGURES………………………………………………………………...XI

LIST OF TABLES…………………………………………………………………XII

I. Introduction…….………………………………………………………….......1

II. Related Work……………………………………………………………….....3

III. Vector Space Model………………………………………………………….5

IV. Bounded KNN…………………………………………………………………7

 Naïve Attempt

Origin Creation

 Model Creation

 Nearest Neighbor Search

V. Bounded KNN and Spark…………………………………………………18

 Parallel Origin Creation

X

 Parallel Model Creation

 Parallel Nearest Neighbor Search

VI. Experiments…………………………………………………………………..21

 MNIST Dataset

 Traditional KNN vs. Bounded KNN

 Local Bounded KNN vs. Spark Bounded KNN

VII. Conclusion…………………………………………………………………….36

XI

LIST OF FIGURES

Figure 1. Triangle Connecting Vector….…………………………………………………7

Figure 2. Naïve Linear Model……………………………………………………………..9

Figure 3. Naïve Search Error...……………………………………………………………9

Figure 4. Naïve Search Correction...……………………………………………………..10

Figure 5. Dynamic Boundaries…………………………………………………………..16

Figure 6. False Positives…………………………………………………………………17

Figure 7. KNN vs Bounded KNN Graph………………………………………………...27

Figure 8. Local vs Spark Graph………………………………………………………….35

XII

LIST OF TABLES

Table 1. Vector Model Example…………………………………………………………13

Table 2. Neighbor Model Example………………………………………………………13

Table 3. Bounded KNN 950-50 Results ………………………………………………...23

Table 4. Bounded KNN 2350-150 Results ……………………………………………...24

Table 5. Bounded KNN 4700-300 Results ……………………………………………...25

Table 6. Bounded KNN 9500-500 Results ……………………………………………...26

Table 7. Spark 950-50 Results…………………………………………………………...29

Table 8. Spark 2350-150 Results ………………………………………………………..30

Table 9. Spark 4700-300 Results ………………………………………………………..31

Table 10. Spark 9500-500 Results ………………………………………………………32

Table 11. Spark 18000-2000 Results ……………………………………………………33

Table 12. Spark 27000-3000 Results ……………………………………………………34

Chapter I

Introduction

The K-Nearest Neighbors algorithm is a simple but powerful technique used in the

field of data analytics. It compares a new unclassified sample to all other existing classified

samples and uses a distance metric to find a pre-specified number of nearest neighbors.

The new sample can then be classified by conducting a class majority voting among its

nearest neighbors. That is, the new sample is predicted to belong to the same class as the

majority of its nearest neighbors. The KNN algorithm can be applied to various tasks, such

as grouping related products or predicting user preferences in recommender systems.

The traditional KNN algorithm requires a training dataset (𝑇𝑅), a test dataset (𝑇𝑆),

and a value of 𝐾. The training dataset contains the classified data, the test dataset contains

the new unclassified data, and the value of 𝐾 indicates how many nearest neighbors to

consider when classifying new data samples. For each test sample 𝑇𝑆𝑖 in the test dataset

𝑇𝑆, where 1 ≤ 𝑖 ≤ 𝑠𝑖𝑧𝑒(𝑇𝑆), we calculate the distance to each training sample 𝑇𝑅𝑗 in the

training dataset 𝑇𝑅, where 1 ≤ 𝑗 ≤ 𝑠𝑖𝑧𝑒(𝑇𝑅). The resulting distances are sorted in

ascending order, and the first 𝐾 samples from 𝑇𝑅 are considered the 𝐾 nearest neighbors

to 𝑇𝑆𝑖. This process performs 𝑠𝑖𝑧𝑒(𝑇𝑆) ∗ 𝑠𝑖𝑧𝑒(𝑇𝑅) number of comparisons, which

becomes a bottleneck for the algorithm when processing large datasets. Finally, we take

2

𝑇𝑆𝑖’s nearest neighbors and count the number of occurrences of each class to which they

belong, and 𝑇𝑆𝑖 is predicted to belong to the class with the highest number of occurrences.

One of the main drawbacks to the traditional KNN algorithm, as hinted at before,

is the number of comparisons performed when finding the 𝐾 nearest neighbors to all the

new samples in 𝑇𝑆. When considering the shift in prioritization of data collection and

analysis in the marketplace, it becomes apparent that the traditional KNN algorithm does

not scale well when handling today’s increasingly large datasets. In this paper, we propose

an optimization to the KNN algorithm by leveraging vector space models to reduce the

number of comparisons necessary to find the 𝐾 nearest neighbors to any test sample.

Throughout this paper, this optimization will be referenced as the Bounded KNN

algorithm. Since the Bounded KNN algorithm eliminates the need to compare every sample

in 𝑇𝑆 against every sample in 𝑇𝑅, it yields significant performance improvements without

degrading the algorithm’s accuracy.

The rest of this paper is organized as follows. Chapter II explores the related work,

and chapter III defines vector space models and the mathematical properties that the

Bounded KNN algorithm relies on. Chapter IV explains the details of the Bounded KNN

algorithm’s conception and development, and chapter V explores the role of the Bounded

KNN in the realm of Big Data. Chapter VI covers the experiments in details, such as

describing the datasets used, defining the performance measurements, and analyzing the

final results. Chapter VII summarizes the Bounded KNN algorithm and its contribution to

the field.

3

Chapter II

Related Work

Many researchers have studied and explored ways of improving the KNN

algorithm’s performance. Y. Cai, D. Duo, and D. Cai [1] presented the idea of shared

nearest neighbors for text classification. This algorithm creates a neighborhood around two

data points using a given radius parameter. Then, it finds the shared neighbors within this

neighborhood and uses their proposed similarity summing algorithm to calculate a score.

Finally, classification is determined by the neighborhood which yields the highest score.

This method effectively increased precision in the NTCIR-8 Patent Classification

evaluation.

Rahal and Perrizo [2] utilized P-trees to optimize KNN text categorization. Their

approach creates a P-tree representation of the data, and goes through a reconstruction

process until the root count is greater than the given value of 𝐾. Finally, the reconstructed

P-tree is used to classify the data via a voting process. This algorithm yielded impressive

results by speeding up performance and improving the accuracy of the KNN algorithm for

text categorization.

Guo et al. [3] aimed to generate a model-based approach for KNN classification.

They exploited the fact that many similar data points are usually clustered together in what

4

they refer to as local regions. A local region is defined as the largest local neighborhood

which covers the most neighbors belonging to the same class. Their approach to generate

the model consists of selecting a representative for each local region, and use the

representatives for classification instead of making a comparison against every data point.

This approach greatly simplifies the amount of data points required for classification, and

improved efficiency of the traditional KNN algorithm while maintaining an approximate

accuracy.

Dong, Cheng, and Shang [4] researched an eager learning approach to the KNN

algorithm for text categorization. They use the TF-IDF method for constructing a model,

and use cosine similarity to calculate similarity between a given training and test sample.

Finally, data is classified based on the category with the highest frequency. They claim that

their results improved both the algorithm’s efficiency and accuracy.

All of these approaches mentioned vary greatly and reveal the wide range of

perspectives explored for improving the KNN algorithm’s performance. The nearest

neighbor search is identified as the bottleneck of the algorithm in all these related works.

However, a key takeaway is that all of these approaches aim to improve the algorithm’s

performance by approximating the nearest neighbor search, which may lead to a reduction

in the algorithm’s accuracy. In this paper, we introduce a different perspective by

leveraging vector space models to optimize the nearest neighbor search without sacrificing

the algorithm’s accuracy.

5

Chapter III

Vector Space Model

The Bounded KNN algorithm in this paper relies on vector space models, which

are algebraic models for representing data as vectors, and vector related mathematical

properties. Vectors represent multidimensional data by storing data features in its axes. In

order to create a vector between two data points of equal dimensionality, we take the

difference between each of their features, as shown in equation (3). Furthermore, we can

calculate the magnitude of this new vector by summing the squared value of each feature

and square rooting the result, as shown in equation (4).

 𝐴 = (𝐴1, 𝐴2, … , 𝐴𝑝) (1)

 𝐵 = (𝐵1, 𝐵2, … , 𝐵𝑝) (2)

 𝐴𝐵⃗⃗⃗⃗ ⃗ = (𝐵1 − 𝐴1, 𝐵2 − 𝐴2, … , 𝐵𝑝 − 𝐴𝑝) (3)

 ‖𝐴𝐵⃗⃗⃗⃗ ⃗‖ = √ 𝐴𝐵⃗⃗⃗⃗ ⃗
1
2 + 𝐴𝐵⃗⃗⃗⃗ ⃗

2
2 + ⋯+ 𝐴𝐵⃗⃗⃗⃗ ⃗

𝑝
2 (4)

6

We use the last two formulas to represent a dataset as a vector space model and to

calculate the vector magnitudes. Once a vector space model is created, we can apply the

cosine similarity formula to calculate the angle between two vectors. It is worth mentioning

that the cosine similarity formula requires both vectors to be nonzero vectors, which are

vectors with magnitudes greater than 0. Assuming 𝐴𝐵⃗⃗⃗⃗ ⃗ and 𝐴𝐶⃗⃗⃗⃗ ⃗ are nonzero vectors, we

denote 𝜃, the angle between these two vectors, as the arccos of their dot product divided

by the product of their magnitudes. Equation (5) presents a mathematically precise

definition of the cosine similarity formula. Taking it a step further, we can calculate the

distance between data points 𝐵 and 𝐶 by finding the magnitude of the connecting vector

𝐵𝐶⃗⃗⃗⃗ ⃗, which forms a triangle with the two previous vectors 𝐴𝐵⃗⃗⃗⃗ ⃗ and 𝐴𝐶⃗⃗⃗⃗ ⃗ as shown in Figure

1. To calculate this distance, we leverage the law of cosines formula which, similar to the

cosine similarity formula, also requires both vectors to be nonzero vectors. Equation (6)

presents a mathematically precise definition of the law of cosines formula.

 𝜃 = cos−1(
𝐴𝐵⃗⃗ ⃗⃗ ⃗ • 𝐴𝐶⃗⃗⃗⃗ ⃗

‖𝐴𝐵⃗⃗ ⃗⃗ ⃗‖ ‖𝐴𝐶⃗⃗⃗⃗ ⃗‖
) (5)

7

Figure 1. Depiction of the triangle formed between the connecting vector 𝐵𝐶⃗⃗⃗⃗ ⃗ with the

existing vectors 𝐴𝐵⃗⃗⃗⃗ ⃗ and 𝐴𝐶⃗⃗⃗⃗ ⃗.

 ‖𝐵𝐶⃗⃗⃗⃗ ⃗‖ = √ ‖𝐴𝐵⃗⃗⃗⃗ ⃗‖
2
+ ‖𝐴𝐶⃗⃗⃗⃗ ⃗‖

2
− 2 ‖𝐴𝐵⃗⃗⃗⃗ ⃗‖ ‖𝐴𝐶⃗⃗⃗⃗ ⃗‖ cos 𝜃 (6)

Chapter IV

Bounded KNN

 In this chapter, we will first discuss the conception and development of the

Bounded KNN algorithm. We began by identifying the nearest neighbor search of the

traditional KNN algorithm as a bottleneck, so our main objective was to improve the

algorithm’s performance by alleviating this bottleneck. In order to achieve this goal, we

needed to decrease the number of comparisons necessary to find a test sample’s nearest

8

neighbors. The next sections will cover our initial naïve attempt and its problems, followed

by the implementation details of the final algorithm.

Naïve Attempt

 We began by creating a data point which lies at the center of the dataset, referenced

as the origin, and calculating the distance from the origin to every training and test sample.

We hoped to be able to utilize relative distances from the origin to find the nearest

neighbors to a test sample. That is, the distances from the origin were sorted in ascending

order, and we assumed the nearest neighbors to a test sample to be its closest left and right

neighbors in the list. Figure 2 demonstrates this naïve approach. This approach would

successfully find the nearest neighbors for one-dimensional datasets; however, it fails to

find the nearest neighbors for multi-dimensional datasets. Figures 3 and 4 describe the

issues with multi-dimensional datasets. Therefore, simply knowing the distance from the

origin to each training and test sample is not enough to find the nearest neighbors, we also

need to identify the direction from the origin. Thus, the idea of using vectors arose as they

are mathematical objects having both a distance, i.e. magnitude, and a direction. The

following sections describe the three phases of the Bounded KNN algorithm and their

implementation details. These three phases are origin creation, model creation, and nearest

neighbor search.

9

Figure 2. Illustration of a dataset as a sorted list of distances from the origin to each data

point. 𝑇𝑆𝑖 spans outward to its left and right until encircling its 3-nearest neighbors.

Figure 3. Illustration of a dataset around the origin. In Figure 2, the circled data points

𝑇𝑅1, 𝑇𝑅2, and 𝑇𝑅3 were erroneously selected as the 3-nearest neighbors to 𝑇𝑆𝑖 solely based

on their distances from the origin. This mistake reinforces the fact that directions from the

origin must also be taken into consideration.

10

Figure 4. Illustration of a dataset around the origin. In this image, 𝑇𝑆𝑖 is correctly

encircling its 3-nearest neighbors.

Origin Creation

The first phase of the Bounded KNN algorithm is to create a data point to serve as

the origin. Then, the algorithm needs to calculate the distance and direction between each

data point and the origin. Using the formulas described in equations (3) and (4), we only

need two data points to create a vector and compute its distance from the origin, or

magnitude. Using the formula in equation (5), we can calculate the direction, or angle.

However, it requires two vectors in order to produce a conclusive result. Therefore, we will

create two origin data points, so that we can establish an origin vector between them.

11

The first origin will be a data point containing the average values for each feature

in 𝑇𝑅, and it will be referenced as the mean origin, or 𝑂𝜇. For a more precise definition of

the mean origin, see equation (7). The second origin will be a data point containing the

maximum values from each feature in 𝑇𝑅, and it will be referenced as the max origin, or

𝑂𝑚𝑎𝑥. For a more precise definition of the max origin, see equation (8). The vector created

from connecting 𝑂𝜇 to 𝑂𝑚𝑎𝑥 will be referenced as the origin vector, or �⃗� .

The main purpose of the mean origin is to act as the source for all the vectors

created, which includes magnitudes or distances. The main purpose of the origin vector is

to serve as a point of reference for angle, or cosine similarity, calculations. It is important

to note that the mean and max origins must be different data points. Otherwise, the origin

vector would be a zero-magnitude vector and we would be unable to perform cosine

similarity calculations. However, as long as the training dataset contains at least two

different samples, this situation should never arise.

 𝑂𝜇 = (
∑ 𝑇𝑅𝑗1

𝑠𝑖𝑧𝑒(𝑇𝑅)
𝑗=1

𝑠𝑖𝑧𝑒(𝑇𝑅)
,
∑ 𝑇𝑅𝑗2

𝑠𝑖𝑧𝑒(𝑇𝑅)
𝑗=1

𝑠𝑖𝑧𝑒(𝑇𝑅)
, … ,

∑ 𝑇𝑅𝑗𝑝
𝑠𝑖𝑧𝑒(𝑇𝑅)
𝑗=1

𝑠𝑖𝑧𝑒(𝑇𝑅)
) (7)

 𝑂𝑚𝑎𝑥 = (max(𝑇𝑅𝑗1),max(𝑇𝑅𝑗2), … ,max(𝑇𝑅𝑗𝑝)) (8)

Model Creation

12

Now that we have defined 𝑂𝜇 and �⃗� , we can proceed to the second phase, which is

the model creation. The model consists of two lists: a list of vector objects sorted by angle

and then by magnitude, and a list of neighbor objects sorted by magnitude. The vector

model is a collection of all the vectors created to each sample in 𝑇𝑅. To be precise, 𝑂𝜇 will

serve as the source for all vectors created to each 𝑇𝑅𝑗. The distance between 𝑂𝜇 and 𝑇𝑅𝑗 is

equal to the magnitude of their vector, i.e. ‖𝑂𝜇𝑇𝑅𝑗
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖. We define the direction from 𝑂𝜇 to

𝑇𝑅𝑗 as the angle between �⃗� and 𝑂𝜇𝑇𝑅𝑗
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . In rare cases where a training sample is equal to

𝑂𝜇, the resulting zero-magnitude vector will have a magnitude of zero and a null angle.

Once all vectors have been added to the model, the model is sorted by angle and then by

magnitude in ascending order. Vectors with a null angle are inserted at the front of the

vector model.

Each time a vector object is created, a neighbor object is also created and it copies

the vector’s magnitude value in its distance attribute. The neighbor objects are added to the

neighbor model and sorted by distance in ascending order. It is important to mention that

the vector and neighbor models are reusable and do not need to be recreated. Table 1

demonstrates a possible representation of a dataset as a vector model.

13

Table 1. Representation of a sorted vector model. The angle is the value between �⃗� and

𝑂𝜇𝑇𝑅𝑗
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , and the magnitude is ‖𝑂𝜇𝑇𝑅𝑗

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖. The model is sorted by angle and then by magnitude

in ascending order.

Sample 𝑇𝑅6 𝑇𝑅4 𝑇𝑅7 𝑇𝑅1 𝑇𝑅2 𝑇𝑅3 𝑇𝑅5

Angle 𝜋

6

𝜋

4

𝜋

4

𝜋

3

3𝜋

4

3𝜋

4

𝜋

Magnitude 275 75 90 195 205 210 150

Table 2. Representation of a sorted neighbor model. The distance is equivalent to the

respective vector’s magnitude value. The model is sorted by distance in ascending order.

Sample 𝑇𝑅4 𝑇𝑅7 𝑇𝑅5 𝑇𝑅1 𝑇𝑅2 𝑇𝑅3 𝑇𝑅6

Distance 75 90 150 195 205 210 275

14

Nearest Neighbor Search

The third and final phase is to find the 𝐾 nearest neighbors to a given 𝑇𝑆𝑖. The

Bounded KNN algorithm maintains dynamic angle and magnitude boundaries to restrict

the nearest neighbor search, which leads to a reduction in the number of comparisons. The

angle boundary is initially set to 𝜋, which allows all vectors to be evaluated since the angle

values given in equation (5) range from 0 to 𝜋 radians. Similarly, the magnitude boundary

is initially set to positive infinity in order to allow evaluation of all vectors. We also

initialize an empty list to hold 𝑇𝑆𝑖’s nearest neighbors, let’s refer to it as 𝑁𝑁𝑖.

 The nearest neighbor search begins by creating a vector from 𝑂𝜇 to 𝑇𝑆𝑖 and

calculating its magnitude as well as its angle from �⃗� . In rare cases where 𝑂𝜇𝑇𝑆𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ is a zero-

magnitude vector, the 𝐾 nearest neighbors can be found by simply fetching the first 𝐾

neighbors in the neighbor model. The common case is to proceed with the following

instructions.

1) Find the insertion index of 𝑂𝜇𝑇𝑆𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ in the vector model. This can be accomplished

via a binary search since the vector model was previously sorted.

2) Assign left and right pointers equal to the vector objects before and after the

insertion index in the vector model. More precisely, the left pointer is equal to the

 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 − 1, and the right pointer is equal to the 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥

15

3) Determine whether the left or right vector is closer to 𝑂𝜇𝑇𝑆𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ by comparing angle

differences. In the case of a tie, we compare magnitude differences. The closer

vector will be referred to as 𝐶𝑉⃗⃗⃗⃗ ⃗.

4) If the left pointer was referencing 𝐶𝑉⃗⃗⃗⃗ ⃗, decrement the left pointer. Otherwise,

increment the right pointer.

5) If 𝑠𝑖𝑧𝑒(𝑁𝑁𝑖) < 𝐾, insert 𝐶𝑉⃗⃗⃗⃗ ⃗ into 𝑁𝑁𝑖 in ascending order by angle, then by

magnitude. When 𝑠𝑖𝑧𝑒(𝑁𝑁𝑖) reaches 𝐾, update the angle and magnitude

boundaries as described in Figure 5.

6) If 𝑠𝑖𝑧𝑒(𝑁𝑁𝑖) ≥ 𝐾, we verify that 𝐶𝑉⃗⃗⃗⃗ ⃗ is within our angle and magnitude boundaries.

That is, verify that the angle between 𝐶𝑉⃗⃗⃗⃗ ⃗ and �⃗� is within 𝜃 ± 𝜃𝑏𝑜𝑢𝑛𝑑, and that ‖𝐶𝑉⃗⃗⃗⃗ ⃗‖

is within ‖𝑂𝜇𝑇𝑆𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗‖ ± 𝑟. Then, we must perform an additional check to verify that

the angle between 𝐶𝑉⃗⃗⃗⃗ ⃗ and 𝑂𝜇𝑇𝑆𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ is indeed within the angle boundaries. For a

detailed explanation of this requirement, see Figure 6. Once verified, we find the

magnitude of the connecting vector between 𝐶𝑉⃗⃗⃗⃗ ⃗ and 𝑂𝜇𝑇𝑆𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗. If the magnitude of the

connecting vector is less than 𝑟, insert 𝐶𝑉⃗⃗⃗⃗ ⃗ into 𝑁𝑁𝑖 in ascending order by angle and

then by magnitude, and remove the last element in 𝑁𝑁𝑖. Finally, update the angle

and magnitude boundaries as described in Figure 5.

7) Repeat steps 3-6 until both left and right pointers reference vectors which are

outside of the angle boundaries, or both pointers are null.

16

Figure 5. The following caption describes the algorithm used to dynamically update the

angle and magnitude boundaries in order to restrict the area of search. The magnitude

boundaries are set to ‖𝑂𝜇𝑇𝑆𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗‖ ± 𝑟. If ‖𝑂𝜇𝑇𝑆𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗‖ ≥ 𝑟, the angle boundaries are set to 𝜃 ±

𝜃𝑏𝑜𝑢𝑛𝑑. Where 𝑟 is the distance between 𝑂𝜇𝑇𝑆𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ and the last element in 𝑁𝑁𝑖, 𝜃 is the angle

between �⃗� and 𝑂𝜇𝑇𝑆𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, and 𝜃𝑏𝑜𝑢𝑛𝑑 is the angle between 𝑂𝜇𝑇𝑆𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ and its 𝑟 offset. For a more

precise definition of the 𝜃𝑏𝑜𝑢𝑛𝑑 formula, see equation (9).

 𝜃𝑏𝑜𝑢𝑛𝑑 = sin−1(
𝑟

‖𝑂𝜇𝑇𝑆𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗‖
) (9)

17

Figure 6. Assume a case where 𝑂𝜇𝑇𝑆𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ and 𝑂𝜇𝑇𝑅𝑗

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ have similar magnitudes, and their angles

to �⃗� is equal to
𝜋

2
. These two vectors will be placed relatively close to each other in the

sorted vector model. Now, assume 𝜃𝑏𝑜𝑢𝑛𝑑 is
𝜋

4
, our angle boundaries would range from

𝜋

4

to
3𝜋

4
. Hence, 𝑂𝜇𝑇𝑅𝑗

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ is considered to be within the angle boundaries. The additional check

verifies that the angle between 𝑂𝜇𝑇𝑆𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ and 𝑂𝜇𝑇𝑅𝑗

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ is less than 𝜃𝑏𝑜𝑢𝑛𝑑, which fails in this

case since the angle between them is 𝜋. Thus, correcting false positives where some vectors

are considered to be within angle boundaries.

At this point, we have found the 𝐾 nearest neighbors to 𝑇𝑆𝑖 and have stored them

in 𝑁𝑁𝑖. In order to classify 𝑇𝑆𝑖, we conduct a class majority voting of all elements in 𝑁𝑁𝑖.

This is the same process previously described for the traditional KNN algorithm.

18

Chapter V

Bounded KNN and Spark

The next step in our research was to migrate the Bounded KNN algorithm onto

Spark to observe its applicability in the field of Big Data. The following sections will cover

the details of the Bounded KNN’s Spark implementation. The training and test datasets

were loaded from our Hadoop Distributed File System (HDFS) as Resilient Distributed

Datasets (RDDs). All function operations, also known as transformations on Spark,

performed on an RDD are parallelized across all the worker nodes in the cluster. We take

advantage of this fact to parallelize the three phases of our Bounded KNN algorithm and

further improve its performance benefits in the field of Big Data.

Parallel Origin Creation

 The first phase is to create the mean origin, max origin, and origin vector. Finding

the mean and max origins was challenging at first. There are built-in mean and max

transformation functions for RDDs, but they operate on one multi-dimensional sample

19

rather than on one column across multiple samples. To get around this, we split the

dimensions of our dataset and assign an index value to each one. Thus, our initial output

on Spark was a features RDD containing a list of key-value pairs consisting of the column

index as the key and the column value as the value.

To create the mean origin, the features RDD was reduced by key and the values

were added together. We then apply a transformation to divide each key, which is a sum of

all the column values, by the total number of samples. The final result is a sample

containing the average of each column in the dataset. To create the max origin, the features

RDD was reduced by key, similarly to the mean origin, but we keep the max value instead

of adding them together. The final result is a sample containing the maximum values for

each column in the dataset. Lastly, we create the origin vector by utilizing the mean and

max origins in the same way it was done on the local version of the Bounded KNN.

Parallel Model Creation

 The mean origin and the origin vector are shared from the driver node to the worker

nodes via broadcast variables, therefore allowing the worker nodes to have a read-only

copy of those variables. This step is necessary because the mean origin is crucial in creating

the training vectors and the origin vector is crucial in calculating the cosine similarities.

Next, we apply a map transformation on the training dataset RDD to create the model. The

map transformation allows us to execute a custom function on each element in the RDD.

20

The custom function executed returns a model RDD, which consists of a list of key-value

pairs. It initially contains two entries: a vector key with a training vector object, and a

neighbor key with a training neighbor object. The model RDD is then reduced by key,

which ends up combining all the vector objects into one list and all the neighbor objects

into another list. Lastly, the model’s list of vectors is sorted by angle and then by

magnitude, while the model’s list of neighbors is sorted by distance.

Parallel Nearest Neighbor Search

 The last phase consists of finding the nearest neighbors to each test sample. In order

to accomplish this, we need to share the model RDD, which was created in the previous

phase, with the worker nodes via a broadcast variable. Then, we leverage the map

transformation to perform a custom function on the test dataset RDD. This custom function

results in a list of vector objects created from the mean origin to each test sample. Finally,

we apply another custom function to these results, which simply performs the nearest

neighbor search function from the local Bounded KNN implementation on each of these

vectors.

21

Chapter VI

Experiments

We decided to use the MNIST dataset for our experiments. It is an easily

understandable dataset which contains multiple samples to choose from. The dataset was

split into subsets of various sizes to observe scalability and performance differences

between the traditional KNN and Bounded KNN algorithms. We also compared the

performance difference between the Bounded KNN locally and the Bounded KNN on

Spark. The performance measurements we focused on were prediction accuracy and run-

time in seconds. The algorithms were implemented in Python 2.7 both locally and on Spark.

The Spark cluster contained 8 worker nodes, each with 16GB RAM.

MNIST Dataset

The MNIST dataset contains images of handwritten digits, and is commonly used for

training image processing systems. Each sample represents a 28x28 grayscale image of a

handwritten digit ranging from 0 to 9. There are 784 features to represent the pixel values

22

in the image, which range from 0 to 255, and one additional feature to indicate the class

this image belongs to. Thus, the dimensionality of this dataset is 785.

Traditional KNN vs. Bounded KNN

We created four subsets of the MNIST dataset. The training datasets ranged from

950 to 9500 samples, and the test datasets ranged from 50 to 500 samples. Each subset was

classified using both algorithms and with different values of 𝐾. The experiments were

repeated at least five times, and the run-time values represent the best result for each value

of 𝐾. The following Tables 3-6 show a side-by-side comparison of the prediction accuracy

and run-time results for the traditional KNN and the Bounded KNN algorithms on each

dataset. The graph in Figure 7 compares scalability of the two algorithms by plotting the

average run-time results for each dataset as the number of samples increases.

23

Table 3. Comparison of traditional KNN vs. Bounded KNN using 950 training samples

and 50 test samples.

𝐾 Traditional

Accuracy

Bounded

Accuracy

Traditional

Run-Time

Bounded

Run-Time

1 88.00% 88.00% 18.33 0.865

3 94.00% 94.00% 18.393 0.959

5 90.00% 90.00% 18.214 1.045

7 88.00% 88.00% 18.217 1.04

9 88.00% 88.00% 18.407 1.082

11 86.00% 86.00% 18.315 1.155

13 84.00% 84.00% 18.414 1.098

15 82.00% 82.00% 18.71 1.122

AVG 87.50% 87.50% 18.375 1.046

24

Table 4. Comparison of traditional KNN vs. Bounded KNN using 2350 training samples

and 150 test samples.

𝐾 Traditional

Accuracy

Bounded

Accuracy

Traditional

Run-Time

Bounded

Run-Time

1 92.67% 92.67% 139.222 3.349

3 92.67% 92.67% 139.02 3.1

5 93.33% 93.33% 139.5 3.278

7 89.33% 89.33% 139.057 3.41

9 89.33% 89.33% 139.703 3.59

11 90.67% 90.67% 139.41 3.807

13 92.00% 92.00% 140.499 3.9

15 92.00% 92.00% 139.182 3.94

AVG 91.50% 91.50% 139.449 3.547

25

Table 5. Comparison of traditional KNN vs. Bounded KNN using 4700 training samples

and 300 test samples.

𝐾 Traditional

Accuracy

Bounded

Accuracy

Traditional

Run-Time

Bounded

Run-Time

1 94.33% 94.33% 563.371 8.231

3 95.33% 95.33% 561.231 8.901

5 95.33% 95.33% 562.965 9.501

7 94.67% 94.67% 562.12 9.87

9 95.00% 95.00% 563.604 10.517

11 93.67% 93.67% 557.688 11.68

13 93.67% 93.67% 551.655 11.33

15 93.67% 93.67% 549.181 11.44

AVG 94.46% 94.46% 558.977 10.184

26

Table 6. Comparison of traditional KNN vs. Bounded KNN using 9500 training samples

and 500 test samples.

𝐾 Traditional

Accuracy

Bounded

Accuracy

Traditional

Run-Time

Bounded

Run-Time

1 96.40% 96.40% 1881.087 23.75

3 96.80% 96.80% 1878.019 25.339

5 96.40% 96.40% 1885.332 26.72

7 95.80% 95.80% 1892.347 28.572

9 95.80% 95.80% 1881.737 28.855

11 95.60% 95.60% 1839.638 29.935

13 95.20% 95.20% 1838.322 30.61

15 95.20% 95.20% 1925.019 31.72

AVG 95.90% 95.90% 1877.688 28.18

27

Figure 7. Comparison of the run-time for both the traditional KNN and Bounded KNN

algorithms on different sized datasets.

From these results, we can see that the Bounded KNN outperforms the traditional

KNN on all datasets. It reduced execution time of the smallest dataset by 94.31%, and

grows up to a 98.45% reduction for the largest dataset. The increasing performance gap

between the two algorithms, as can be observed in Figure 7, indicates that the benefits

continuously scale along with the datasets. Furthermore, the Bounded KNN algorithm

28

produces the same nearest neighbors as the traditional KNN algorithm for any given test

sample, which allows us to preserve the algorithm’s accuracy.

Local Bounded KNN vs. Spark Bounded KNN

 We ran the Bounded KNN Spark implementation on the same datasets described

above and compared its results to the local implementation of the Bounded KNN algorithm.

However, since Spark is more suited to handling large amounts of data, we created two

larger subsets of the data. The first subset contains 18000 training samples and 2000 test

samples, and the second subset contains 27000 training samples and 3000 test samples.

This allows us to more accurately compare the local and Spark implementations of the

Bounded KNN algorithm.

29

Table 7. Comparison of the local implementation of the Bounded KNN vs. the Spark

implementation of the Bounded KNN using 950 training samples and 50 test samples.

𝐾 Spark

Accuracy

Local

Accuracy

Spark Run-

Time

Local Run-

Time

1 88.00% 88.00% 19.052 0.865

3 94.00% 94.00% 17.903 0.959

5 90.00% 90.00% 18.376 1.045

7 88.00% 88.00% 18.001 1.04

9 88.00% 88.00% 17.812 1.082

11 86.00% 86.00% 18.433 1.155

13 84.00% 84.00% 18.33 1.098

15 82.00% 82.00% 18.068 1.122

AVG 87.50% 87.50% 18.247 1.046

30

Table 8. Comparison of the local implementation of the Bounded KNN vs. the Spark

implementation of the Bounded KNN using 2350 training samples and 150 test samples.

𝐾 Spark

Accuracy

Local

Accuracy

Spark Run-

Time

Local Run-

Time

1 92.67% 92.67% 25.398 3.349

3 92.67% 92.67% 23.435 3.1

5 93.33% 93.33% 24.333 3.278

7 89.33% 89.33% 24.893 3.41

9 89.33% 89.33% 23.565 3.59

11 90.67% 90.67% 23.924 3.807

13 92.00% 92.00% 23.744 3.9

15 92.00% 92.00% 25.422 3.94

AVG 91.50% 91.50% 24.34 3.547

31

Table 9. Comparison of the local implementation of the Bounded KNN vs. the Spark

implementation of the Bounded KNN using 4700 training samples and 300 test samples.

𝐾 Spark

Accuracy

Local

Accuracy

Spark Run-

Time

Local Run-

Time

1 94.33% 94.33% 32.545 8.231

3 95.33% 95.33% 31.983 8.901

5 95.33% 95.33% 33.108 9.501

7 94.67% 94.67% 37.06 9.87

9 95.00% 95.00% 33.449 10.517

11 93.67% 93.67% 34.111 11.68

13 93.67% 93.67% 33.674 11.33

15 93.67% 93.67% 32.511 11.44

AVG 94.46% 94.46% 29.487 10.184

32

Table 10. Comparison of the local implementation of the Bounded KNN vs. the Spark

implementation of the Bounded KNN using 9500 training samples and 500 test samples.

𝐾 Spark

Accuracy

Local

Accuracy

Spark Run-

Time

Local Run-

Time

1 96.40% 96.40% 64.115 23.75

3 96.80% 96.80% 55.339 25.339

5 96.40% 96.40% 53.585 26.72

7 95.80% 95.80% 53.923 28.572

9 95.80% 95.80% 64.739 28.855

11 95.60% 95.60% 62.835 29.935

13 95.20% 95.20% 64.527 30.61

15 95.20% 95.20% 66.17 31.72

AVG 95.90% 95.90% 60.654 28.18

33

Table 11. Comparison of the local implementation of the Bounded KNN vs. the Spark

implementation of the Bounded KNN using 18000 training samples and 2000 test samples.

𝐾 Spark

Accuracy

Local

Accuracy

Spark Run-

Time

Local Run-

Time

1 96.90% 96.90% 149.641 150.79

3 96.70% 96.70% 148.849 156.675

5 96.30% 96.30% 153.002 164.106

7 96.05% 96.05% 147.032 169.369

9 95.75% 95.75% 151.049 174.632

11 95.50% 95.50% 163.058 178.727

13 95.50% 95.50% 165.101 184.636

15 95.20% 95.20% 163.899 181.016

AVG 95.99% 95.99% 155.204 169.99

34

Table 12. Comparison of the local implementation of the Bounded KNN vs. the Spark

implementation of the Bounded KNN using 27000 training samples and 3000 test samples.

𝐾 Spark

Accuracy

Local

Accuracy

Spark Run-

Time

Local Run-

Time

1 96.57% 96.57% 258.749 327.922

3 96.67% 96.67% 245.709 282.586

5 96.77% 96.77% 244.167 286.461

7 96.47% 96.47% 260.603 290.043

9 96.20% 96.20% 264.007 299.887

11 96.13% 96.13% 250.761 307.267

13 95.90% 95.90% 263.823 321.858

15 95.70% 95.70% 260.975 318.94

AVG 96.30% 96.30% 256.1 304.371

35

Figure 8. Comparison of the local implementation of the Bounded KNN vs. the Spark

implementation of the Bounded KNN on different sized datasets.

For the first four datasets, the local implementation of the Bounded KNN

outperforms the Spark implementation. This is due to the overhead time associated with

distributing the processing to all the worker nodes in the Spark cluster. However, the Spark

implementation continuous to close the gap as the size of the datasets increases. As

36

demonstrated on the last two datasets, the Spark implementation of the Bounded KNN

algorithm eventually catches up and outperforms the local implementation.

Next, let’s further analyze the performance difference between the two

implementations for each dataset. For the 1K samples dataset, the Spark implementation

was 1644.46% slower. For the 2.5K samples dataset, the Spark implementation was

586.21% slower. For the 5K samples dataset, the Spark implementation was 189.54%

slower. For the 10K samples dataset, the Spark version was 115.24% slower. For the 20K

samples dataset, the Spark version was 8.7% faster. Finally, for the 30K samples dataset,

the Spark version was 15.86% faster. Assuming that this trend continues, it is safe to

assume that the Spark version will provide a significant performance boost to the algorithm

when handling the large datasets which are prevalent in the field of Big Data.

Chapter VII

Conclusion

In this paper, we presented the Bounded KNN algorithm, which is an optimization

to the traditional KNN algorithm that leverages vector space models. It creates a different

representation of the data, which allows us to take advantage of vector related mathematical

37

properties. Since all vectors spawn from the mean origin and hold an angle reference to the

origin vector, the creation of the origin data points and the origin vector serve as the

enabling factor and backbone of our algorithm. The Bounded KNN algorithm yields

significant performance improvements over the traditional KNN algorithm, in terms of run-

time, while preserving the algorithm’s accuracy. These benefits are further improved by

parallelizing the Bounded KNN on Spark, which distributes the work among a cluster of

machines. Therefore, concluding that these solutions provide us with a better approach to

handle today’s increasingly large datasets.

38

References

[1] Cai, Y., Ji, D., & Cai, D.: A KNN Research Paper Classification Method Based on

Shared Nearest Neighbor (2010).

[2] Rahal, I., & Perrizo, W.: An Optimized Approach for KNN Text Categorization using

P-trees (2004).

[3] Guo, G., Wang, H., Bell, D., Bi, Y., & Greer, K.: KNN Model-Based Approach in

Classification (2003).

[4] Dong, T., Cheng, W., & Shang, W.: The Research of kNN Text Categorization

Algorithm Based On Eager Learning (2012).

[5] Jin, Z., Zhang, D., Hu, Y., Lin, S., Cai, D., & He, X.: Fast and Accurate Hashing Via

Iterative Nearest Neighbors Expansion (2014).

[6] Zhang, Y., Huang, K., Geng, G., & Liu, C.: Fast kNN Graph Construction with

Locality Sensitive Hashing (2013).

[7] Choi, D., & Chung, C.: Nearest Neighborhood Search in Spatial Databases (2015).

[8] Muja, M., & Lowe, D.: Scalable Nearest Neighbor Algorithms for High Dimensional

Data (2014).

[9] Tang, J., Liu, J., Zhang, M., & Mei, Q.: Visualizing Large-scale and High-

dimensional Data (2016).

39

[10] Bernhardsson, E. (2015, September 24). Nearest neighbor methods and vector

models – part 1. Retrieved from https://erikbern.com/2015/09/24/nearest-neighbor-

methods-vector-models-part-1.html

[11] Bernhardsson, E. (2015, October 1). Nearest neighbors and vector models – part 2 –

algorithms and data structures. Retrieved from https://erikbern.com/2015/10/01/nearest-

neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html

[12] Maillo, J., Triguero, I., & Herrera, F.: A MapReduce-based k-Nearest Neighbor

Approach for Big Data Classification (2015).

[13] Zhu, P., Zhan, X., & Qiu, W.: Efficient k-Nearest Neighbors Search in High

Dimensions using MapReduce (2015).

[14] Lu, W., Shen, Y., Chen, S., & Ooi, B.: Efficient Processing of k Nearest Neighbor

Joins using MapReduce (2012).

[15] Anchalia, P., & Roy, K.: The k-Nearest Neighbor Algorithm Using MapReduce

Paradigm (2014).

https://erikbern.com/2015/09/24/nearest-neighbor-methods-vector-models-part-1.html
https://erikbern.com/2015/09/24/nearest-neighbor-methods-vector-models-part-1.html
https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html
https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html

	Kennesaw State University
	DigitalCommons@Kennesaw State University
	Summer 8-9-2019

	KNN Optimization for Multi-Dimensional Data
	Arialdis Japa
	Recommended Citation

	tmp.1565373630.pdf.BD9lj

