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Abstract

This dissertation develops and discusses several one-step and two-step smoothing meth-

ods of time variant nonparametric quantiles and time variant parameters from probability

models. First, we investigate and develop nonparametric techniques for measuring extreme

quantiles. The method involves aggregating data by an explanatory variable such as time

and smoothing the resulting data with a nonparametric method like kernel, local polynomial

or spline smoothing. We demonstrate both in application and simulation that this two-step

procedure of quantile estimation is superior to the parametric quantile regression. We then

develop a one-step method which combines the strength of maximum likelihood estimation

with a local kernel function. This local maximum likelihood estimation is applied in both

a discrete and continuous case of distribution, and we consider polynomial expansions of

the unknown parameter in each case. In the continuous case, we choose a distribution with

two parameters and iteratively solve for each to smooth the data. Results indicate that

the one-step procedure can yield improvement over the corresponding two-step methods

mentioned previously in both application cases and simulation exercises. We also explore

nonparametric techniques for estimating volatility of financial data. We develop a residual

based method for estimating the conditional variance function using local composite quan-

tile regression, and compare this to using local least squares regression. These methods

are applied on the asset returns for many individual firms, with promising results in favor

of local composite quantile regression. Comparisons of these nonparametric techniques in

forecasting also indicate some improvement over using a traditional autoregressive model

for heteroscedastic data.
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Chapter 1

Introduction

Nonparametric regression differs from its parametric counterparts in that the relationship

between the response and predictor variables are not predetermined. Instead, nonparamet-

ric techniques allow for the data to dictate the form of the regression, adapting to the shape

of the data, without making assumptions about the form of the true regression function.

Many of the still popular techniques used today began over 50 years ago with the devel-

opment of local estimation methods. In this paper, we study some of these methods and

apply them in new scenarios.

Kernel smoothing, local polynomial smoothing and spline smoothing are very popular tech-

niques for smoothing a smaller to moderate sized data under nonparametric regression

settings. Nadaraya-Watson (1964) first developed and used the Kernel smoothing estima-

tion and since then it has been used in many applications, such as kernel density estimation

(Silverman, 1986 and Scott, 1992), kernel smoothing estimation of unknown functions (Hart

and Wehrly, 1986), kernel smoothing estimation of distribution functions (Chowdhury, Wu

and Modarres, 2017, 2018), estimation of time-varying coefficient models by kernel estima-

tor (Hoover, Rice, Wu and Yang, 1998) etc. Local polynomial smoothing was first studied

by Stone (1977, 1980, 1982) and Cleveland (1979) and then by Fan (1992, 1993), Fan and

Gijbels (1992, 1996) and Ruppert and Wand (1994) and others. Fan and Gijbels (1991)

12



show that the local linear smoother performs equally well at the boundary points as at

interior points, improving upon previous kernel regression methods. Smoothing splines are

studied by many authors, such as Schoenberg (1964), Reinsch (1967), Wahba and Wold

(1975), and Silverman (1985), to name a few. Eubank (1988) gives a good review of spline

methods and Wahba (1990) provides a complete theoretical treaty. These estimators are

widely used when the parametric form of the response variable is unknown, size of the data

is not big, and data does not have significant variation by time points.

These nonparametric techniques entail performing local estimation on the data, resulting

in the need for the selection of a bandwidth. The bandwidth serves as the parameter which

dictates the size of the interval in which the local estimation takes place. Hence, it also

affects the smoothness of the fitted regression model; small choices for bandwidth result in

spiky, rugged estimates while a large bandwidth can give undersmoothed, almost linear es-

timates. There are many methods for selecting the bandwidth in the various nonparametric

techniques. The most intuitive method for selecting the bandwidth is quite possibly using

cross-validation, where a subset of the data is iteratively left out from model fitting and the

error produced on the excluded data is then measured (see Stone 1974 and Geisser 1975).

The resultant bandwidth choice is then the value which produces the least mean error on

the out of sample data. Many variations exist for cross-validation, such as when dealing

with dependent data (Hart and Vieu 1990) or outliers (Leung 2005). Xia and Li (2002)

propose a method where a weighting function is added to the cross-validation score, to help

improve estimation in the boundary regions of the interval of data. See Arlot and Celisse

(2010) for an overview of cross-validation procedures. As an alternative to cross-validation,

Ruppert and Wand (1995) give some plug-in bandwidth choices. The idea behind these

methods are to find the bandwidth to minimize the mean integrated square error, which

require estimating the mean and variance functions by dividing the data into blocks and

fitting quartic regression functions. Building off of Ruppert, Francisco-Fernández (2004)

proposes a similar bandwidth selection process when dealing with nonparametric regression

13



where the error terms may be autocorrelated. In cases where more variables are used, Li

and Racine (2004) present a bandwidth selection method for a multivariate model, so each

predictor has its own bandwidth. This method is tested for both discrete and continuous

data types. In some cases, a constant bandwidth for the entire interval of the data does not

capture the true nature of the data, so a variable bandwidth might be desirable in these

scenarios. Fan and Gijbels (1992) present asymptotic properties for the optimal variable

bandwidth. Schucany (2004) discusses a method of recursive partitioning for selecting a

variable bandwidth. Regression trees can be used to determine the regions of the predictor

variable where the bandwidth should change. Giordano and Parrella (2014) proposed a hy-

brid bandwidth selection method, Global Adaptive Smoothing, which combines both local

and global bandwidth selection. The optimal bandwidth is created by estimating a global

bandwidth on a small interval surrounding a local point in a rolling window procedure.

Unlike other plug-in methods, Giordano uses a feedforward neural network to minimize the

mean integrated square error. In this paper, we employ leave one out cross-validation and

propose a leave one time period out cross-validation for our estimation purposes. We also

explore one of the bandwidth selection methods from Ruppert and Wand in the last part

of this paper.

The paper is organized as follows. Chapter 2 begins with the development and imple-

mentation of the two-step nonparametric techniques on various quantiles. To implement

the nonparametric methods on smoothing cross-sectional data with many observations at

each time point, we must first take an empirical approach to create an estimate at each time

point, which we will then smooth over time. We refer to the first step in this procedure

as creating the raw estimate of our unknown value, and the second step is then applying

the smoothing estimator such as kernel, local polynomial or spline. For example, in a case

where one is interested in estimating a specific quantile, one could first empirically take the

original data and estimate this quantile at each time period and then smooth the resulting

estimates. In the case of smoothing the mean of the data, we can similarly create the raw

14



estimates to be the mean of each time period, and smooth the resulting estimates. The

two-step smoothing procedure, adopted by Fan and Zhang (2000), Wu and Tian (2013a,

2013b), Chowdhury, Wu and Modarres (2017) and Chowdhury (2017), is computationally

simple and easy to implement in practice.

One clear downfall to this two-step approach is that much of the original data is lost when

creating the raw estimates. As a solution, we also propose a one-step technique which uses

all of the original data and creates smoothing estimates without first calculating the raw es-

timates. If data at each distinct time period can be approximated to a parametric structure,

the proposed one-step procedures can be implemented. Local log-likelihood estimation is

discussed by Fan and Gijbels (1998) with an application to logistic regression. Our one-step

procedure relies on a combination of maximum likelihood estimation and a kernel weighting

function. For the one-step procedures, we solve for the parameter of interest by also consid-

ering a polynomial expansion of the parameter. We implement and compare the two-step to

one-step techniques on both discrete and continuous data and in simulation studies under

two different frameworks. In the discrete case, we choose a dataset on fertility rates which

tracks the number of months after marriage until first conception. To apply the one-step

procedure to this data, we model the number of months until conception as a geometric

distribution where we try to estimate the probability of conception for women aged 13 to

31. For the case of a continuous distribution, we model a Londonair dataset measuring the

oxides of nitrogen in the air of a London borough. We model these with a normal distribu-

tion to estimate the weekly mean level of oxides of nitrogen for a span of one year. Since the

normal distribution has two parameters (the mean and standard deviation), we implement

the one-step procedure under two scenarios: first where the standard deviation is known

and fixed at each time point and second where it is estimated iteratively with the mean. In

the latter case, a polynomial expansion of both parameters is considered. In Chapter 3, we

develop the first of the one-step procedures, with an application to a discrete distribution.

Chapter 4 then continues with the second of the one-step procedures in a continuous case.

15



Lastly, in Chapter 5, we explore several nonparametric techniques for estimating the condi-

tional variance function. Nonparametric estimation for the mean function is well studied.

Fan and Yao (1998) proposed a method for modeling the conditional variance (or volatility)

even when the mean function is not given. Their residual based estimator is a two step

procedure where the mean is first estimated with local least squares regression, and the

squared residuals are then used to model the volatility through another round of local least

squares. We propose to replacing local least squares regression with local composite quan-

tile regression (proposed by Kai and Li in 2010) in the above process to estimate volatility.

Results indicate that the proposed method can lead to improvements in forecasting and

outperform GARCH models for volatility estimation in some circumstances.
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Chapter 2

Nonparametric Quantile

Estimation

2.1 Quantiles and Quantile Regression

Let FYtj i(·)(j = 1, 2, . . . , J, i = 1, 2, . . . , nj) be a time-variant distribution function. Ytji

stands for ith observation of the tthj year. More specifically, if i = 79 and j = 11, then Yt1179

stands for the 79th observation of the 11th year. A value for extreme quantile η for each t

is estimated as

ξ̃η(tj) = inf{ytji : F (ytji) ≥ η} = F−1(η)

where infimum is running over i and η ∈ (0, 1). When F (·) does not belong to any para-

metric family, we can use empirical version of F (·) to compute ξη(tj). We consider η = 0.95

and η = 0.05 in our application to US temperature data.

The quantile regression estimator for quantile η minimizes the objective function:

Q(βq) =
∑

i:yi≥x
′
iβ

η|yi − x
′
iβq|+

∑
i:yi<x

′
iβ

(1− η)|yi − x
′
iβq| (1)

This nondifferentiable function is minimized via the simplex method, which is guaranteed
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to yield a solution in a finite number of iterations.

2.2 Two-Step Estimation

The basic principle of two-step estimation is that the data set can be split by some variable

such as time or age, which is regarded as the explanatory variable. For each split data, un-

known statistical constants of interest are estimated (Method of Moments, MLE, Bayesian

Methods) or computed empirically, which are called the raw estimates and in the second

step, we smoothed them. We derive here two-step smoothing methods by first computing

the raw estimates of ξη(tj) for all j = 1, . . . , J , and then derive the smoothing estimates

of ξn(t) for any tj ∈ t by applying the smoothing procedure over the corresponding raw

estimates. This two-step smoothing approach is computationally simple and can be used

for both longitudinal data and time-variant cross sectional data. For cross-sectional data,

this procedure does not need correlation assumptions across different time points and for

longitudinal data the correlation between time points would be negligent if the repeated

measurements appear in a manner of random long distant time points.

We derive the estimators ξ̃n(tj) of ξn(tj) using observations at time tj ∈ t. Suppose that

we have enough observations nj at tj , so that ξn(tj) can be estimated by some statistical

methods using the subjects in Sj . The number of observations nj at tj should be sufficiently

large to be computed numerically. In the event where the local sample size nj is not suffi-

ciently large, adjacent time points can be binned and the raw estimates are then computed

for each bin. This binning approach has been used by Fan and Zhang (2000), Chowdhury

(2017), Chowdhury, Wu and Modarres (2017, 2018). For convenience of notation, ξn(t) will

be denoted by ξ(t) for the rest of the paper.

We first apply these two-step techniques to estimate extreme quantiles with an applica-

tion to US weather data for several cities. These three procedures are then compared to
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the parametric model of quantile regression. The two-step estimation procedures consists

of empirically obtaining raw estimates of unknown quantiles from the original data in first

step, and applying the nonparametric smoothing in the second step. The three two-step

procedures which will be used are detailed in the following sections.

2.2.1 Kernel Smoothing

The mean of the unknown regression function m(t) can be written as the conditional ex-

pectation of the response variable Y relative to the predictor T as m(t) = E(Y |T = t). At

some specific point, say t0, the best estimate of m(t0) would be the value of the dependent

variable at that point. In actuality, what we may do to create a smooth fit for the data is

that at the point t0, we take some small neighborhood around t0 and find the mean of the

response data in that local neighborhood, where the data closer to t0 receives larger weight.

This will be the idea behind the first method we investigate: kernel smoothing.

Suppose f(t, ξ(t)) is the joint pdf of the random bivariate data (t1, ξ(t1)) . . . (tJ , ξ(tJ)).

Let m(t) be an unknown regression function. Then the nonparametric regression model is

ξ(tj) = m(tj) + εj ; j = 1, . . . , J (2)

The errors (εj) satisfy E(εj) = 0, V ar(εj) = σ2
ε and Cov(εj , εk) = 0 for j 6= k. The unknown

regression function m(t) will be derived as follows:

m(t) = E[ξ(t)|T = t] =

∫
ξ(t)f

[
ξ(t)|t

]
dξ(t) =

∫
ξ(t)f

[
t, ξ(t)

]
dξ(t)∫

f
[
t, ξ(t)

]
dξ(t)
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m(t) is a ratio of two correlated random quantities. The product kernel density estimator

technique can be used to estimate the numerator and denominator separately. i.e;

f̂
[
t, ξ(t)

]
=

1

Jhthξ

J∑
j=1

K
( tj − t
ht

)
K
(ξ(tj)− ξ(t)

hξ

)
=

1

J

J∑
j=1

Kht

(
tj − t

)
Khξ

(
ξ(tj)− ξ(t)

)
,

where Kh(tj − t) = K[(tj − t)/h]/h, K(·) is a non-negative kernel function, and h > 0 is a

bandwidth. By using the symmetry of the kernel and transformation of variables, we have

∫
ξf̂
[
t, ξ(t)

]
dξ =

1

J

∫
ξ

J∑
j=1

Kht

(
tj − t

)
Khξ

(
ξ(tj)− ξ(t)

)
=

1

J

J∑
j=1

Kht

(
tj − t

)
ξ(tj)

For the denominator, we have

∫
f̂
[
t, ξ(t)

]
dξ =

1

J

J∑
j=1

Kht

(
tj − t

) ∫
Khξ

(
ξ(tj)− ξ(t)

)
dξ

=
1

J

J∑
j=1

Kht

(
tj − t

)
= f̂(t)

Therefore,

m̂(t) =
J∑
j=1

Wht

(
tj − t

)
ξ(tj) (3)

Where Wht

(
tj − t

)
=

Kht

(
tj−t
)

∑J
j=1Kht

(
tj−t
) and

∑J
j=1Wht

(
tj − t

)
= 1. Estimator (3) is widely

known as the Nadaraya-Watson type kernel estimator. In kernel smoothing, the estimate

of m(t) is a weighted local average of the response variable ξ(t). Weights are assigned to
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neighboring points, provided by the kernel function Kh, with data closer to the point of

interest receiving greater weight in the calculation.

2.2.2 Local Polynomial Smoothing

Extending the local average which is the result of kernel smoothing above, a higher order

function can be used for estimation. Improving from the local constant estimate of kernel

smoothing, a local linear (or higher order polynomial) can be used instead. In the case

of a local linear estimator, this is the result from fitting a degree one polynomial in the

local neighborhoods, rather than performing a simple local average. Suppose that ξ̂(t) is

p+ 1 times continuously differentiable with respect to t. Let ξ(q)(t) be the qth derivative of

ξ(t), 1 ≤ q ≤ p and βq(t) = ξ(q)(t)/q!. The Taylor series approximation of ξ(t) up to order

p can be written as

ξ(t) ≈
p∑
q=0

βq(a0)(t− a0)q

for t in the neighborhood of a0. The raw estimates ξ̃(tj) can be treated as the observations

of ξ(tj) at tj , j = 1, . . . , J , and obtain the pth local polynomial estimators by minimizing

J∑
j=1

ξ̃(tj)−
p∑
q=0

βq(t0)(tj − t0)q


2

Kh(tj − t0),

where again Kh(tj − t) is a non-negative kernel function, and h > 0 is the bandwidth. A

smooth curve can be created by choosing a grid of t0’s and minimizing this expression in each

local neighborhood of t0. Using the matrix formulation, we define ξ̃(t) = (ξ̃(t1), . . . , ξ̃(tJ))T ,

β(t) = (β0(t), . . . , βp(t))
T , weighting matrixW (t;h) = diag{Kh(tj−t)} where its jth column

Wj(t;h) = (0, . . . ,Kh(tj − t), . . . , 0)T , and Tp(t) the J × (p + 1) matrix with its jth row

given by Tj,p(t) = (1, tj − t, . . . , (tj − t)p). The local polynomial estimators β̂q(t) minimize

QG
[
β(t)

]
=
[
ξ̃(t)− Tp(t)β(t)

]T
W (t;h)

[
ξ̃(t)− Tp(t)β(t)

]
.

21



The pth order local polynomial estimator of ξ(q)(t) based on ξ̃(tj), which minimizesQG
[
β(t)

]
,

is

ξ̂(q)(t) =

J∑
j=1

{
Wq,p+1(tj , t;h) ξ̃(tj)

}
(4)

where Wq,p+1(tj , t;h) = q!eq+1,p+1

[
T Tp (t)W (t;h)Tp(t)

]−1[
T Tj,p(t)Wj(t;h)

]
is the “equivalent

kernel function” (Fan and Zhang, 2000) and eq+1,p+1 is the row vector of length p + 1

with 1 at its (q + 1)th place and 0 elsewhere. By the definition of β(t), we have β̂(t) =(
β̂0(t), . . . , β̂p(t)

)T
and ξ̂(q)(t) = β̂q(t) q! is an estimator for ξ(q)(t), q = 0, 1, . . . , p. For local

polynomial fitting p− q should be taken to be odd as shown in Ruppert and Wand (1994)

and Fan and Gijbels (1996). When p = 1, we get the local linear estimator ξ̂L(tj) = β̂0(tj)

of ξ(t) based on (4) and the equivalent kernel function W0,2(tj , t;h). So, the local linear

estimator is

ξ̂L(t) = ξ̂(0)(t|x) (5)

2.2.3 Spline Smoothing

Let us consider the data points (t1, ξ(t1)), (t2, ξ(t2)), . . . , (tJ , ξ(tJ)). We want to find a func-

tion m̂(t), which is a good approximation to the true conditional expectation or regression

function m(t) i.e; m(t) = E(ξ(t)|T = t). A natural way to do this in one dimension is to

minimize the spline objective function

O(m,λ) =

J∑
j=1

(
ξ(tj)−m(tj)

)2
+ λ

∫ (
m

′′
(t)
)2
dt (6)

where λ is a smoothing parameter, chosen by cross-validation approach. The first term is

just the mean squared error (MSE) using the curve m(t) to predict ξ(t). The second term

penalizes curvature in the function. m
′′

is the second derivative of m with respect to t. This

would be zero for linear m, so it measures the curvature of m at t. The sign of m
′′

determines

whether m is concave or convex but squaring it makes it immaterial. We then integrate this
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over all t to say how curved m is, on average. Finally, we multiply by λ and add that to

the MSE. This is known adding a penalty to the MSE. Given two functions with the same

MSE, we choose the one with less average curvature. It can be shown (Green and Silverman,

1994; V. Solo, 2000) that (6) has an explicit, finite-dimensional, unique minimizer which is a

natural cubic spline with knots at the unique values of the tj , j=1,2,. . . , J. It seems that the

family is still over-parametrized, since there are as many as J knots, which implies J degrees

freedom. However, the penalty term translates to a penalty on the spline coefficients, which

are shrunk some of the way toward the linear fit (Hastie, Tibshirani and Friedman, 2009).

Since the solution is a natural spline, we can write it as m(t) =
∑J

j=1Nj(t)θj where the Nj

are an J-dimensional set of basis functions for representing this family of natural splines.

After above reparametrization, the optimization problem (6) turns out as

O(θ, h) =

J∑
j=1

(
ξ(tj)−

J∑
j=1

Nj(t)θj
)2

+ λ

∫ ( J∑
j=1

N
′′
j (t)θj

)2
dt (7)

By defining the basis matrix and penalty matrices N,Ω ∈ < by

Nij = Nj(tj) and Ωij =
∫
N

′′
i (t)N

′′
j (t)dt for i, j = 1, 2, . . . , J , the problem (7) becomes

O(θ, λ) = (ξ −Nθ)T (ξ −Nθ) + λθTΩθ (8)

The solution is easily seen to be θ̃ = (NTN + hΩ)−1NT ξ. The fitted smoothing spline is

given by

m̂(t) =

J∑
j=1

Nj(t)θ̃j (9)

2.3 Simulation of Nonparametric Quantile Estimation

To assess the performances of the smoothing curves obtained from the three two-step

smoothing estimators against quantile regression line, we first conduct a simulation study.
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We also compare the relative performance of these three two-step smoothing estimators

among themselves. We compare their performances by computing bias, MSE, and cover-

age. Data is simulated with increasing variance over 50 time points (TP) with the standard

deviation st being st = 0.1 + 0.05 ∗ t , t ∈ {1, 2, ..., 50}. The heterocedastic model for data

simulation is y = b0 + b1 ∗ t + e, where b0 = 3, b1 = 0.1 and e ∼ N(0, st). At each time

point, 365 data points are generated from this function. Then 500 simulations are created

to evaluate these four methods on the 5th and 95th percentile values. For quantile regres-

sion, the model is fit on the entire data and to compare against the two-step methods, raw

estimates are again computed for each TP. The coverage probability can be computed by

creating confidence intervals for each simulation using the variance at each time point. The

proportion of simulations which then contain the true value of y is the coverage probabil-

ity. The Epanechnikov kernel and the optimal bandwidth from cross-validation are used

for the smoothing estimators. Leave one out cross-validation (LOOCV) is used to select

the optimal bandwidth in local polynomial and kernel smoothing and, in the case of spline

smoothing, the smoothing parameter. The parameter which minimizes error in LOOCV

is chosen. Local polynomial, kernel and spline smoothing are implemented in R with the

locpoly, ksmooth, and smooth.spline functions, respectively, using the KernSmooth and

ibr packages.

Table 2.1 contains the simulation results for 95th percentile values. From Table 2.1, we

see that two-step local polynomial smoothing (LP) and two-step spline smoothing (SS)

have less bias than the quantile regression line (QR) for all 50 time points. For two-step

kernel smoothing (KS), QR has less bias only at the first four time points. From comparison

of MSE for these four methods, we conclude that SS estimator has less MSE than QR in

all 50 time points. We also see that at the first three time points, KS estimator has higher

MSE than QR and only in the last time point, LP smoothing estimator has higher MSE

than the QR, and in all other time points, QR has higher MSE than the LP estimator and

KS estimator. For coverage probability, we see that only at time point 49, QR has higher
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coverage than the LP estimator and in all other time points, QR has lower coverage than all

three two-step smoothing estimators. The striking result is that the three two-step methods

outperform QR. In comparing the two-step methods to one another, Table 2.1 also shows

that out of 50 time points, LP has less biases in 17 time points whereas KS and SS has less

biases 18 and 15 time points. At the boundary points (i.e. TP 1-4 and TP 47-50), LP and

SS appear superior to KS, while KS has a slight advantage in interior points. In terms of

MSE, KS has less MSE in 41 time points than SS and LP. Again though, LP performs better

at the first 5 boundary points when looking at the coverage probability. In interior points,

all these three smoothing estimators have consistent results. Similar observations are made

for the 5th percentiles, which can be found in Table 2.2. SS is superior in boundary points,

and a mixed combination of the three perform best at interior point. Over all of the 50 time

points, SS is best at 27, LP best at 14, and KS best at 9 for bias. When comparing MSE,

LP is again superior at the first 8 boundary points, and 3 of the last 4 boundary points.

KS is superior at almost every interior point, with 36 of the 50 points better estimated by

KS in simulations.
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Table 2.1: Bias, MSE, Coverage and Best Estimator (BE) corresponding to 50 Time Points (TP)
for the Quantile Regression (QR), Local Polynomial Smoothing (LP), Kernel Smoothing (KS) and
Spline Smoothing (SS) estimators for the 95th percentile values from the Simulation Design.

Bias MSE Coverage
TP QR LP KS SS BE QR LP KS SS BE QR LP KS SS BE
1 0.06425 0.00463 0.39915 0.00669 lp 0.01423 0.00166 0.18366 0.00941 lp 0.92000 0.94500 0.24500 0.96000 ss
2 0.06118 -0.00538 0.26246 -0.00319 ss 0.01654 0.00371 0.08819 0.01092 lp 0.93000 0.99500 0.50000 0.99000 lp
3 0.07129 -0.00791 0.16525 -0.00543 ss 0.02093 0.00752 0.04464 0.01355 lp 0.93500 0.99500 0.73000 0.98000 lp
4 0.08926 0.00739 0.11077 0.01033 lp 0.02857 0.01001 0.02627 0.01272 lp 0.89500 0.98500 0.84500 0.97500 lp
5 0.10044 0.01234 0.07110 0.01493 lp 0.03554 0.01530 0.02187 0.01981 lp 0.93000 0.98500 0.91000 0.97500 lp
6 0.08192 -0.00008 0.03112 0.00078 lp 0.03798 0.02053 0.02149 0.02352 lp 0.96000 0.99500 0.99500 0.97500 lp
7 0.07986 -0.00725 0.00992 -0.00823 lp 0.04177 0.02215 0.02171 0.03407 ks 0.95000 0.99500 0.98000 0.99500 lp, ss
8 0.09606 0.00426 0.01423 0.00154 ss 0.05611 0.02946 0.02856 0.03657 ks 0.96000 0.99500 0.99000 0.99000 lp
9 0.10221 -0.01241 -0.00884 -0.01601 ks 0.05471 0.03035 0.02898 0.05234 ks 0.95000 0.98000 0.97500 0.98500 ss
10 0.11524 -0.00287 -0.00389 -0.00682 lp 0.06538 0.03327 0.03173 0.05633 ks 0.92000 0.99000 0.99000 0.99000 lp, ks, ss
11 0.13342 0.01399 0.01329 0.00981 ss 0.08780 0.04618 0.04445 0.05324 ks 0.93000 0.98500 0.98000 0.99000 ss
12 0.11755 -0.00624 -0.00498 -0.01068 ks 0.09408 0.05336 0.05144 0.06182 ks 0.97000 0.98000 0.98000 0.99000 ss
13 0.12793 -0.01482 -0.01708 -0.01874 lp 0.10173 0.05883 0.05739 0.08269 ks 0.94000 0.99000 0.98500 0.99500 ss
14 0.15221 0.00383 0.00703 0.00122 ss 0.11369 0.06822 0.06613 0.09600 ks 0.94000 1.00000 0.99500 1.00000 lp, ss
15 0.17567 0.02365 0.01960 0.02377 ks 0.14488 0.08265 0.07963 0.12156 ks 0.95000 0.99000 0.99000 0.98500 lp, ks
16 0.16839 0.00292 0.00274 0.00584 ks 0.14788 0.09233 0.08765 0.11506 ks 0.96000 0.99000 0.99000 0.99500 ss
17 0.12675 -0.03880 -0.03980 -0.03525 ss 0.12554 0.08892 0.08653 0.13331 ks 0.96000 0.99500 0.99500 0.99500 lp, ks, ss
18 0.19263 0.02017 0.02042 0.02512 lp 0.17832 0.10130 0.09518 0.13619 ks 0.93000 0.98500 0.98000 0.98500 lp, ss
19 0.18431 -0.00435 -0.00379 0.00274 ss 0.20863 0.12756 0.12267 0.14266 ks 0.96500 0.98500 0.98500 0.99500 ss
20 0.19142 0.01231 0.01166 0.01788 ks 0.21168 0.13018 0.12431 0.14824 ks 0.95500 0.99000 0.98500 0.99500 ss
21 0.18547 -0.00595 -0.00489 -0.00495 ks 0.30145 0.18934 0.18163 0.17652 ss 0.97500 0.99500 0.99500 0.99500 lp, ks, ss
22 0.19690 0.00105 0.00362 -0.00004 ss 0.23681 0.16001 0.15440 0.22822 ks 0.96500 0.99500 0.99500 0.99500 lp, ks, ss
23 0.19782 0.00085 -0.00342 0.00094 lp 0.27254 0.17030 0.16408 0.19883 ks 0.96000 0.99000 0.98500 0.99500 ss
24 0.22626 0.00278 0.00769 0.00435 lp 0.28884 0.17887 0.16910 0.27431 ks 0.96500 0.98500 0.98500 1.00000 ss
25 0.22251 0.00181 0.00049 -0.00034 ss 0.27959 0.16815 0.16304 0.23127 ks 0.96000 0.99500 0.99500 0.99500 lp, ks, ss
26 0.23225 -0.00249 -0.00077 -0.01138 ks 0.31266 0.20060 0.18993 0.27053 ks 0.94000 0.99000 0.99000 0.99500 ss
27 0.22757 -0.01118 -0.01484 -0.02007 lp 0.38842 0.24513 0.23673 0.30000 ks 0.97000 0.99500 0.99500 1.00000 ss
28 0.27096 0.02097 0.01547 0.01948 ks 0.40951 0.23771 0.23256 0.35996 ks 0.93000 0.99000 0.99000 0.99500 ss
29 0.25905 0.00601 0.00972 0.01003 lp 0.41258 0.26056 0.25214 0.35465 ks 0.94000 0.99500 0.99500 0.98500 lp, ks
30 0.24640 -0.01457 -0.00428 -0.01101 ks 0.45918 0.29859 0.27881 0.43137 ks 0.96000 0.98500 0.98500 0.98500 lp, ks, ss
31 0.25585 -0.00439 -0.00322 -0.00416 ks 0.53705 0.34162 0.32336 0.39522 ks 0.97500 0.99500 0.99500 1.00000 ss
32 0.31117 0.04842 0.04269 0.04396 ks 0.45838 0.27180 0.26432 0.37854 ks 0.94000 0.97500 0.97500 0.98500 ss
33 0.17132 -0.08865 -0.09348 -0.09957 lp 0.55813 0.37777 0.36595 0.42712 ks 0.98500 0.99500 0.99500 1.00000 ss
34 0.32832 0.07617 0.07505 0.06025 ss 0.54438 0.32752 0.31562 0.44487 ks 0.94500 0.99000 0.98500 0.99000 lp, ss
35 0.21172 -0.04810 -0.04456 -0.06164 ks 0.56733 0.37944 0.36900 0.52047 ks 0.97000 0.98500 0.98500 0.99000 ss
36 0.26538 -0.01243 -0.00836 -0.01607 ks 0.52441 0.35580 0.34631 0.45928 ks 0.96500 0.98500 0.98500 0.98500 lp, ks, ss
37 0.33627 0.03886 0.03886 0.04457 ks 0.66087 0.37524 0.35800 0.49119 ks 0.98000 0.99000 0.99000 0.98500 lp, ks
38 0.32462 0.00868 0.00811 0.01696 ks 0.72391 0.47046 0.45372 0.62837 ks 0.98500 0.98500 0.98500 0.99500 ss
39 0.28420 -0.03108 -0.03720 -0.02279 ss 0.74661 0.47226 0.44182 0.64682 ks 0.97500 0.99000 1.00000 0.99000 ks
40 0.37469 0.04680 0.04211 0.05966 ks 0.78038 0.48931 0.46829 0.66490 ks 0.93500 0.99000 0.99000 0.99500 ss
41 0.33426 0.00881 0.00429 0.02640 ks 0.76065 0.47213 0.45459 0.63980 ks 0.95500 0.98500 0.98500 0.98000 lp, ks
42 0.30612 -0.02824 -0.02377 -0.01419 ss 0.76704 0.54803 0.51463 0.65794 ks 0.99000 0.99500 0.99500 0.99500 lp, ks, ss
43 0.33058 0.00418 -0.00881 0.01246 lp 0.79922 0.54640 0.53184 0.78488 ks 0.94500 0.98500 0.98500 0.98500 lp, ks, ss
44 0.23798 -0.08651 -0.09265 -0.07747 ss 0.87177 0.62392 0.59179 0.70685 ks 0.98500 0.99500 0.99500 0.99500 lp, ks, ss
45 0.38479 0.05659 0.02710 0.06449 ks 0.92005 0.58782 0.55179 0.68489 ks 0.94000 0.98500 0.99000 0.98500 ks
46 0.32514 -0.01238 -0.07962 -0.01648 lp 0.88125 0.59229 0.57485 0.72694 ks 0.96500 0.97500 0.98500 0.98500 ks, ss
47 0.31918 -0.02565 -0.12681 -0.04449 lp 0.81539 0.57140 0.55109 0.65286 ks 0.95000 0.97500 0.98000 0.98000 ks, ss
48 0.39923 0.04661 -0.13383 0.02065 ss 1.29477 0.78562 0.87090 0.71095 ss 0.98000 0.98000 0.99000 0.99500 ss
49 0.34117 -0.01670 -0.29960 -0.04420 lp 1.30480 0.34284 0.86344 0.75018 lp 0.98000 0.97500 1.00000 1.00000 ks, ss
50 0.43877 0.08283 -0.32700 0.04840 ss 0.98880 2.06927 0.62301 0.73852 ks 0.93500 0.97500 1.00000 0.98000 ks
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Table 2.2: Bias, MSE, Coverage and Best Estimator (BE) corresponding to 50 Time Points (TP)
for the Quantile Regression (QR), Local Polynomial Smoothing (LP), Kernel Smoothing (KS) and
Spline Smoothing (SS) estimators for the 5th percentile values of the Simulation Design).

Bias MSE Coverage
TP QR LP KS SS BE QR LP KS SS BE QR LP KS SS BE
1 -0.03367 -0.00154 -0.18687 -0.00002 ss 0.00711 0.00340 0.04444 0.00941 lp 0.93500 0.93500 0.48000 0.94500 ss
2 -0.03156 0.00754 -0.15130 0.00851 lp 0.00986 0.00503 0.03392 0.01092 lp 0.94000 0.96500 0.66000 0.94000 lp
3 -0.04970 -0.00311 -0.13766 -0.00214 ss 0.01463 0.00677 0.03079 0.01355 lp 0.91000 0.94500 0.71500 0.94500 lp, ss
4 -0.06766 -0.01007 -0.12292 -0.00958 ss 0.01754 0.01043 0.03044 0.01272 lp 0.90500 0.95000 0.81000 0.95500 ss
5 -0.07163 -0.00774 -0.10091 -0.00686 ss 0.02347 0.01441 0.02819 0.01981 lp 0.92000 0.95500 0.88000 0.95500 lp, ss
6 -0.07629 -0.00735 -0.08531 -0.00610 ss 0.02927 0.01888 0.02851 0.02352 lp 0.93000 0.96000 0.91500 0.95500 lp
7 -0.05337 0.01958 -0.04556 0.02241 lp 0.03741 0.02948 0.03163 0.03407 lp 0.95500 0.94000 0.96000 0.95000 ks
8 -0.08811 -0.00604 -0.05839 -0.00221 ss 0.04419 0.03279 0.03662 0.03657 lp 0.92500 0.96000 0.94000 0.96000 lp, ss
9 -0.06736 0.02024 -0.02617 0.02367 lp 0.05582 0.04895 0.04794 0.05234 ks 0.95000 0.93500 0.94000 0.94000 qr
10 -0.08518 0.00886 -0.02479 0.01244 lp 0.06534 0.05437 0.05374 0.05633 ks 0.94500 0.95000 0.96000 0.96000 ks, ss
11 -0.10988 -0.01322 -0.03843 -0.00612 ss 0.06590 0.05051 0.05208 0.05324 lp 0.93000 0.95500 0.96000 0.96000 ks, ss
12 -0.12129 -0.01606 -0.03510 -0.00874 ss 0.07907 0.05659 0.05872 0.06182 lp 0.93000 0.96000 0.96500 0.95500 ks
13 -0.10267 0.01114 0.00041 0.01893 ks 0.09701 0.07597 0.07286 0.08269 ks 0.94000 0.94000 0.94500 0.95000 ss
14 -0.13173 -0.00915 -0.01940 -0.00273 ss 0.11768 0.09062 0.08752 0.09600 ks 0.94000 0.94500 0.95000 0.95000 ks, ss
15 -0.07883 0.05330 0.03909 0.05814 ks 0.12869 0.11445 0.10820 0.12156 ks 0.95000 0.93000 0.93500 0.94000 qr
16 -0.16068 -0.01883 -0.02257 -0.01486 ss 0.14551 0.10746 0.10606 0.11506 ks 0.93000 0.96000 0.96000 0.95500 lp, ks
17 -0.18585 -0.03310 -0.03528 -0.03228 ss 0.17210 0.12772 0.12675 0.13331 ks 0.94500 0.95500 0.95500 0.94500 lp, ks
18 -0.12649 0.03492 0.03625 0.03453 ss 0.15919 0.12695 0.12489 0.13619 ks 0.95000 0.95500 0.95500 0.95000 lp, ks
19 -0.16738 -0.00104 -0.00028 -0.00361 ks 0.17550 0.13461 0.13279 0.14266 ks 0.93500 0.96500 0.96500 0.96500 lp, ks, ss
20 -0.21336 -0.03918 -0.04067 -0.04132 lp 0.19460 0.14296 0.14167 0.14824 ks 0.92000 0.96000 0.96000 0.95000 lp, ks
21 -0.20826 -0.02572 -0.02558 -0.03111 ks 0.22748 0.16617 0.16042 0.17652 ks 0.92500 0.95500 0.95000 0.95500 lp, ss
22 -0.19034 0.00009 -0.00879 -0.00655 lp 0.28100 0.20655 0.19972 0.22822 ks 0.93000 0.96000 0.96000 0.96000 lp, ks, ss
23 -0.17207 0.02716 0.02503 0.01944 ss 0.24029 0.17815 0.17281 0.19883 ks 0.94000 0.95500 0.95500 0.95000 lp, ks
24 -0.22689 -0.01876 -0.01560 -0.02887 ks 0.33813 0.24754 0.24441 0.27431 ks 0.94000 0.96000 0.96000 0.96000 lp, ks, ss
25 -0.21840 -0.00286 -0.00450 -0.01533 lp 0.29043 0.20856 0.20404 0.23127 ks 0.95500 0.97000 0.97000 0.96000 lp, ks
26 -0.18801 0.03584 0.04005 0.02543 ss 0.32143 0.24374 0.24132 0.27053 ks 0.95500 0.96500 0.96500 0.96000 lp, ks
27 -0.20926 0.02129 0.01828 0.01249 ss 0.37558 0.28466 0.27794 0.30000 ks 0.93500 0.95000 0.94500 0.95000 lp, ss
28 -0.28659 -0.05918 -0.06019 -0.06687 lp 0.46518 0.32570 0.31887 0.35996 ks 0.93000 0.95000 0.95000 0.94500 lp, ks
29 -0.23812 -0.01065 -0.00510 -0.01503 ks 0.43735 0.33931 0.33347 0.35465 ks 0.97000 0.97500 0.97500 0.98000 ss
30 -0.21945 0.00901 0.01132 0.00943 lp 0.52576 0.38830 0.38133 0.43137 ks 0.94000 0.95500 0.95500 0.96000 ss
31 -0.27046 -0.03559 -0.03387 -0.03670 ks 0.49602 0.35533 0.34617 0.39522 ks 0.95000 0.94500 0.94000 0.95500 ss
32 -0.27583 -0.03276 -0.03847 -0.03809 lp 0.50473 0.35621 0.34076 0.37854 ks 0.94500 0.95500 0.95500 0.96500 ss
33 -0.21467 0.03659 0.03576 0.03213 ss 0.48765 0.40485 0.40175 0.42712 ks 0.93500 0.95500 0.95500 0.96500 ss
34 -0.25568 0.00547 0.01376 0.00490 ss 0.52470 0.41291 0.40770 0.44487 ks 0.96000 0.95000 0.95000 0.95000 qr
35 -0.22957 0.04015 0.05124 0.03987 ss 0.61595 0.48754 0.47833 0.52047 ks 0.94500 0.95000 0.94500 0.95000 lp, ss
36 -0.29829 -0.02284 -0.02647 -0.02687 lp 0.56104 0.42090 0.40715 0.45928 ks 0.93500 0.95000 0.95500 0.95500 ks, ss
37 -0.29726 -0.01795 -0.00889 -0.02040 ks 0.59651 0.46615 0.46167 0.49119 ks 0.93500 0.95500 0.95500 0.95000 lp, ks
38 -0.20112 0.08033 0.09916 0.07913 ss 0.72335 0.58460 0.57747 0.62837 ks 0.95500 0.94500 0.94000 0.96000 ss
39 -0.28814 -0.00302 0.02325 -0.00839 lp 0.79041 0.60280 0.58407 0.64682 ks 0.94000 0.94500 0.94000 0.95000 ss
40 -0.21661 0.07773 0.08803 0.06660 ss 0.76766 0.62887 0.61174 0.66490 ks 0.95500 0.94000 0.92000 0.93000 qr
41 -0.24084 0.07248 0.09705 0.06346 ss 0.75335 0.60492 0.59711 0.63980 ks 0.95000 0.95500 0.95500 0.95000 lp, ks
42 -0.32561 0.00985 0.03726 -0.00312 ss 0.80273 0.60952 0.56609 0.65794 ks 0.95000 0.96000 0.96000 0.96500 ss
43 -0.38827 -0.03510 0.00627 -0.05414 ks 0.97316 0.73678 0.72060 0.78488 ks 0.95500 0.95000 0.94000 0.96500 ss
44 -0.39009 -0.02991 0.03540 -0.04309 lp 0.90156 0.67517 0.65564 0.70685 ks 0.95000 0.96000 0.96500 0.96000 ks
45 -0.34202 0.01589 0.08624 0.01297 ss 0.89833 0.62719 0.62699 0.68489 ks 0.95000 0.94500 0.94500 0.95000 qr, ss
46 -0.36146 -0.00944 0.06440 -0.01074 lp 0.96700 0.69363 0.67328 0.72694 ks 0.95500 0.94500 0.93500 0.95000 qr
47 -0.38094 -0.02725 0.06702 -0.02164 ss 0.91349 0.54209 0.58494 0.65286 lp 0.94500 0.95000 0.94000 0.93500 lp
48 -0.41814 -0.05362 0.06109 -0.05010 ss 0.97118 0.58349 0.59732 0.71095 lp 0.93500 0.93500 0.94000 0.95000 ss
49 -0.34433 0.04502 0.18337 0.03188 ss 0.96101 0.51763 0.76124 0.75018 lp 0.95500 0.95000 0.94000 0.95000 qr
50 -0.34673 0.07728 0.20169 0.03728 ss 0.99687 1.35717 0.76560 0.73852 ss 0.94000 0.95000 0.94000 0.94500 lp



2.4 Application to Temperature Data in Seven U.S. Cities

In addition to the simulations, the two-step methods are applied to temperature data, mea-

sured in degree Celsius, from 7 US cities (Dallas, Kansas City, Miami, Minneapolis, Port-

land, San Diego, and Seattle). These data were recorded as the minimum and maximum

daily temperatures by the US Meteorological Department from 1990 to 2016. From this

data, we computed the 5% (on daily minimum temperatures) and 95% (on daily maximum

temperatures) quantile of temperature for each of the 27 years for these 7 cities. Throughout

this section, 95% quantile smoothings will refer to the daily maximum temperatures, and

5% quantile smoothings will refer to the daily minimum temperatures of the cities. There

are J = 27 distinct time design points {t1, t2, . . . , t27} = {1990, 1991, . . . , 2016}. Thus, for

a given 1 ≤ j ≤ J = 27, we denote T0.05(tj) and T0.95(tj) as the 5% and 95% quantile

of temperatures at year tj . Applying the two-step kernel smoothing (KS) estimator, lo-

cal polynomial smoothing (LPS) estimator, spline smoothing (SS) estimator and the fitted

quantile regression (QR) line to the observed data
{
T0.95(tj), tj ; 1 ≤ j ≤ J, 1 ≤ i ≤ n

}
and

{
T0.05(tj), tj ; 1 ≤ j ≤ J, 1 ≤ i ≤ n

}
, we obtain the 5% and 95% smoothing quan-

tile curves/lines on temperature data for the entire time design points {t1, t2, . . . , t27} =

{1990, 1991, . . . , 2016}.

Table 2.3 shows the raw estimates and resulting smoothing values from the four differ-

ent techniques at both the 5th and 95th percentiles for the city of Dallas. For the 95th

percentile, a combination of KS and LP perform best at the boundary points, while for

the 5th percentile KS is best. Figures 2.1 and 2.2 depict the smoothing results shown in

Table 2.3. In Figure 2.1, the 95th percentile smoothing results are shown for all 7 cities in

the application of the methods. From left to right for each city, KS, LP, SS and QR are

displayed. Similarly, Figure 2.2 shows the same for the 5th percentile. The first row of each

of these figures has the results for Dallas. It can be seen that LP and SS give a smoother

estimate for the 95th percentile of temperatures than KS, while for the 5th percentile LP
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Table 2.3: Raw estimates(T.95(tj), T.05(tj)), Kernel smoothing estimates (KS.95(tj),
KS.05(tj)), local polynomial smoothing estimates (LP.95(tj), LP.05(tj)), spline smoothing
estimate (SS.95(tj), SS.05(tj)), and quantile regression estimate (QR.95(tj), QR.05(tj)) of
95th and 5th percentile of temperatures from Dallas between 1990 and 2016.

tj T.95(tj) KS.95(tj) LP.95(tj) SS.95(tj) QR.95(tj) T.05(tj) KS.05(tj) LP.05(tj) SS.05(tj) QR.05(tj)

1990 37.20 37.17 37.21 37.22 36.93 -0.48 -0.52 -0.77 -0.63 -1.10
1991 36.70 36.67 36.66 36.51 36.99 -1.10 -0.95 -0.81 -0.47 -1.10
1992 35.60 35.79 36.56 36.08 37.06 0.73 0.51 -0.85 -0.11 -1.10
1993 37.80 37.61 36.89 37.28 37.12 -1.00 -0.90 -0.88 -0.54 -1.10
1994 36.70 36.78 37.00 37.02 37.18 -1.10 -1.09 -0.91 -1.14 -1.10
1995 37.10 37.05 36.89 36.96 37.25 -1.10 -1.30 -0.94 -1.99 -1.10
1996 36.70 36.69 36.81 36.55 37.31 -4.28 -3.88 -0.97 -2.71 -1.10
1997 36.10 36.32 37.24 36.67 37.37 -1.10 -1.22 -0.99 -1.54 -1.10
1998 39.40 39.15 38.13 38.75 37.44 0.12 0.08 -1.02 -0.11 -1.10
1999 38.30 38.40 38.48 38.76 37.50 0.70 0.55 -1.05 0.19 -1.10
2000 38.90 38.74 38.07 38.50 37.56 -1.10 -1.02 -1.07 -0.69 -1.10
2001 36.70 36.79 37.24 36.90 37.62 -1.58 -1.56 -1.10 -1.47 -1.10
2002 36.10 36.22 36.74 36.42 37.69 -1.70 -1.69 -1.13 -1.78 -1.10
2003 37.68 37.44 36.58 36.93 37.75 -1.70 -1.69 -1.16 -1.73 -1.10
2004 35.00 35.28 36.50 35.69 37.81 -1.55 -1.50 -1.20 -1.31 -1.10
2005 37.20 37.20 37.16 37.22 37.88 -0.60 -0.58 -1.23 -0.53 -1.10
2006 39.40 39.09 37.74 38.62 37.94 0.60 0.42 -1.27 -0.07 -1.10
2007 36.10 36.40 37.56 36.98 38.00 -1.10 -0.96 -1.31 -0.50 -1.10
2008 38.18 38.04 37.66 37.68 38.07 -0.60 -0.70 -1.35 -0.95 -1.10
2009 37.80 37.85 38.08 37.89 38.13 -1.70 -1.63 -1.40 -1.53 -1.10
2010 38.30 38.40 38.75 38.59 38.19 -1.70 -1.76 -1.44 -1.88 -1.10
2011 40.48 40.30 39.39 40.09 38.25 -2.68 -2.46 -1.50 -1.75 -1.10
2012 39.40 39.40 39.19 39.53 38.32 0.00 -0.26 -1.55 -1.18 -1.10
2013 38.30 38.30 38.35 38.27 38.38 -1.60 -1.64 -1.61 -1.83 -1.10
2014 37.20 37.26 37.54 37.30 38.44 -3.80 -3.49 -1.68 -2.55 -1.10
2015 37.20 37.20 37.11 37.15 38.51 -1.00 -1.11 -1.75 -1.55 -1.10
2016 37.20 37.20 37.02 37.20 38.57 0.00 -0.07 -1.82 -0.03 -1.10

estimates a fairly linear trend. QR captures the slight increase in the 95th percentiles of

daily maximum temperature but cannot capture the fluctuations throughout the years. For

the 5th percentile of daily minimum temperature, QR gives a flat prediction, similar to LP.

SS and KS are able to capture some of the variability of daily minimum temperatures in

Figure 2.2. In the case of LP in this figure, cross-validation produced a larger bandwidth

than that for KS, giving the undersmoothed estimate.

In Table 2.4, the smoothing results for Kansas City are shown. In this instance, KS per-

forms better at the boundary and interior points. As evidenced in the second row of plots

in Figure 2.1 and 2.2, KS is superior to the other three methods. In cases where KS is

superior to LP, this can again be attributed to the selection of the bandwidth through

cross-validation. A large choice of bandwidth for LP will lead to a very flat estimate as in

Figure 2.2 for Kansas City. Again, QR produces a flat estimate for the 95th percentile of

temperatures, as there is no change in temperatures when looking at the endpoints of the

time range, but some variability in the interior years. For the 5th percentile, QR produces

29



a similar estimate to LP.

Table 2.4: Raw estimates(T.95(tj), T.05(tj)), Kernel smoothing estimates (KS.95(tj),
KS.05(tj)), local polynomial smoothing estimates (LP.95(tj), LP.05(tj)), spline smoothing
estimate (SS.95(tj), SS.05(tj)), and quantile regression estimate (QR.95(tj), QR.05(tj)) of
95th and 5th percentile temperature from Kansas City between 1990 and 2016.

tj T.95(tj) KS.95(tj) LP.95(tj) SS.95(tj) QR.95(tj) T.05(tj) KS.05(tj) LP.05(tj) SS.05(tj) QR.05(tj)

1990 34.40 34.42 34.73 34.61 33.90 -7.80 -8.12 -9.64 -8.27 -10.50
1991 35.00 34.86 33.76 34.28 33.90 -11.58 -10.85 -9.72 -10.13 -10.53
1992 30.60 30.79 32.59 31.45 33.90 -6.10 -6.89 -9.80 -7.76 -10.57
1993 32.80 32.75 32.54 32.42 33.90 -10.60 -10.33 -9.87 -9.91 -10.60
1994 33.30 33.29 32.95 33.36 33.90 -11.70 -11.47 -9.94 -11.20 -10.63
1995 33.30 33.25 32.84 33.09 33.90 -9.88 -10.46 -10.01 -11.33 -10.66
1996 31.70 31.78 32.55 32.03 33.90 -15.45 -14.60 -10.07 -13.86 -10.70
1997 32.80 32.78 32.75 32.63 33.90 -10.26 -10.47 -10.13 -10.78 -10.73
1998 33.30 33.30 33.30 33.33 33.90 -7.68 -7.92 -10.19 -7.85 -10.76
1999 33.90 33.90 33.81 33.92 33.90 -8.20 -8.52 -10.26 -8.80 -10.79
2000 34.40 34.37 34.16 34.22 33.90 -12.80 -12.21 -10.32 -11.71 -10.83
2001 33.90 33.96 34.51 34.23 33.90 -9.88 -9.95 -10.39 -10.06 -10.86
2002 35.60 35.55 34.86 35.52 33.90 -7.80 -8.22 -10.46 -8.52 -10.89
2003 35.60 35.47 34.34 34.95 33.90 -11.10 -10.92 -10.53 -10.75 -10.92
2004 31.10 31.32 33.50 32.05 33.90 -12.08 -11.87 -10.61 -11.93 -10.96
2005 34.30 34.25 33.94 33.92 33.90 -10.48 -10.26 -10.69 -9.92 -10.99
2006 35.60 35.55 34.66 35.59 33.90 -6.10 -6.80 -10.77 -7.29 -11.02
2007 35.00 34.92 34.12 34.70 33.90 -10.60 -10.52 -10.87 -10.39 -11.05
2008 31.70 31.81 32.96 32.08 33.90 -14.13 -13.57 -10.96 -13.17 -11.09
2009 32.10 32.14 32.81 32.08 33.90 -10.60 -10.91 -11.07 -11.40 -11.12
2010 33.90 33.88 33.83 33.72 33.90 -11.00 -11.02 -11.18 -11.05 -11.15
2011 35.00 35.05 35.15 35.46 33.90 -11.70 -11.37 -11.30 -10.85 -11.18
2012 37.80 37.61 35.60 37.02 33.90 -8.18 -8.72 -11.43 -9.15 -11.22
2013 33.78 33.86 34.48 34.26 33.90 -11.60 -11.63 -11.56 -11.70 -11.25
2014 32.68 32.71 33.17 32.65 33.90 -15.38 -14.77 -11.71 -14.47 -11.28
2015 32.80 32.83 32.66 32.80 33.90 -11.48 -11.53 -11.86 -11.94 -11.31
2016 33.81 33.78 32.69 33.78 33.90 -8.20 -8.48 -12.02 -8.19 -11.35

The results for the third city, Miami, are shown in Table 2.5. For Miami, all methods

capture a fairly flat trend in the 95th percentiles of temperature (third row of Figure 2.1).

QR is best at the boundary years in this case, but slightly worse at interior points. For

5th percentiles of temperature, KS and LP are able to capture some trend in the yearly 5th

percentiles, and SS is slightly undersmoothed. QR captures no trend over the 27 year time

period.

Table 2.6 contains the results for Minneapolis. Similarly, refer to the fourth row of Figure

2.1 and 2.2. SS gives similar results to KS, while LP performs slightly worse. For the 95th

percentile smoothing, LP gives a smoother curve while LP fails to capture a trend for the

5th percentile. QR captures an overall linear increase over the years.

For the 95th percentile for Portland (Table 2.7), KS performs the best. LP gives a less
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Figure 2.1: Smoothing Results for All Cities - 95th Percentile
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Figure 2.2: Smoothing Results for All Cities - 5th Percentile



Table 2.5: Raw estimates(T.95(tj), T.05(tj)), Kernel smoothing estimates (KS.95(tj),
KS.05(tj)), local polynomial smoothing estimates (LP.95(tj), LP.05(tj)), spline smoothing
estimate (SS.95(tj), SS.05(tj)), and quantile regression estimate (QR.95(tj), QR.05(tj)) of
95th and 5th percentile temperature from Miami between 1990 and 2016.

tj T.95(tj) KS.95(tj) LP.95(tj) SS.95(tj) QR.95(tj) T.05(tj) KS.05(tj) LP.05(tj) SS.05(tj) QR.05(tj)

1990 33.90 33.68 33.70 33.61 33.93 15.00 14.90 14.83 14.09 12.20
1991 33.90 33.66 33.67 33.60 33.91 12.90 12.99 13.53 13.64 12.20
1992 33.30 33.64 33.64 33.59 33.88 12.80 12.81 13.03 13.25 12.20
1993 33.90 33.62 33.62 33.58 33.86 12.90 12.94 13.05 12.93 12.20
1994 33.30 33.60 33.59 33.57 33.83 13.90 13.75 12.87 12.68 12.20
1995 33.90 33.57 33.57 33.56 33.81 11.70 11.75 12.14 12.48 12.20
1996 33.30 33.54 33.55 33.55 33.78 10.60 10.78 11.87 12.38 12.20
1997 33.30 33.51 33.54 33.54 33.76 13.30 13.17 12.50 12.36 12.20
1998 34.40 33.47 33.52 33.53 33.74 13.30 13.25 12.84 12.35 12.20
1999 33.30 33.43 33.51 33.52 33.71 12.20 12.28 12.64 12.28 12.20
2000 33.30 33.39 33.50 33.51 33.69 12.80 12.72 12.38 12.17 12.20
2001 33.30 33.36 33.49 33.50 33.66 11.70 11.78 12.09 12.01 12.20
2002 32.80 33.35 33.48 33.50 33.64 12.32 12.21 11.72 11.88 12.20
2003 32.80 33.35 33.48 33.49 33.61 10.60 10.71 11.32 11.81 12.20
2004 33.30 33.36 33.48 33.48 33.59 11.25 11.24 11.34 11.84 12.20
2005 33.90 33.39 33.47 33.48 33.56 11.70 11.71 11.81 11.98 12.20
2006 33.30 33.43 33.47 33.47 33.54 12.32 12.37 12.55 12.14 12.20
2007 33.30 33.47 33.48 33.46 33.51 13.90 13.80 13.18 12.24 12.20
2008 33.30 33.51 33.48 33.46 33.49 13.45 13.44 13.02 12.24 12.20
2009 33.90 33.53 33.48 33.45 33.46 12.80 12.59 11.84 12.16 12.20
2010 34.30 33.54 33.49 33.45 33.44 7.80 8.30 11.03 12.16 12.20
2011 33.90 33.54 33.50 33.44 33.41 13.30 13.05 11.98 12.36 12.20
2012 33.30 33.53 33.51 33.44 33.39 13.45 13.44 13.03 12.69 12.20
2013 32.80 33.51 33.51 33.43 33.36 13.30 13.29 13.28 13.07 12.20
2014 33.30 33.49 33.52 33.43 33.34 12.90 12.99 13.47 13.48 12.20
2015 33.90 33.48 33.53 33.42 33.31 14.40 14.33 14.24 13.93 12.20
2016 33.30 33.46 33.54 33.42 33.29 14.40 14.40 15.58 14.38 12.20

pronounced, more smooth, estimate to the trend shown in the plot of Figure 2.1 (fifth

row of plots). For the 5th percentile in Figure 2.2, all of the two-step procedures give

similar smoothing results, with an almost linear fit. All nonparametric techniques are un-

dersmoothed and thusly give similar results to QR.

Results for San Diego are in Table 2.8 with plots in the sixth row of Figures 2.1 and 2.2.

The 95th percentiles show a general increase in temperatures from 1990 to 2016. All meth-

ods capture this overall trend, while KS and LP both detect a small decline around the

year 2000. Similarly, the estimates for the 5th percentiles are consistent among all methods.

There is again a very slight but steady in minimum temperatures over the 27 year span.

All methods capture this, with the nonparametric methods giving slightly more robust es-

timates at interior years.

Lastly, the smoothing results for the final city (Seattle) are in Table 2.9, and the corre-

spondingly in the last rows of Figures 2.1 and 2.2. Plots for 95th percentiles are similar to
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Table 2.6: Raw estimates(T.95(tj), T.05(tj)), Kernel smoothing estimates (KS.95(tj),
KS.05(tj)), local polynomial smoothing estimates (LP.95(tj), LP.05(tj)), spline smoothing
estimate (SS.95(tj), SS.05(tj)), and quantile regression estimate (QR.95(tj), QR.05(tj)) of
95th and 5th percentile temperature from Minneapolis between 1990 and 2016.

tj T.95(tj) KS.95(tj) LP.95(tj) SS.95(tj) QR.95(tj) T.05(tj) KS.05(tj) LP.05(tj) SS.05(tj) QR.05(tj)

1990 30.00 30.04 30.21 30.08 29.97 -15.00 -15.47 -18.54 -15.41 -19.18
1991 30.60 30.41 29.82 30.38 30.04 -19.40 -18.55 -18.53 -18.13 -19.13
1992 28.30 28.45 29.07 28.47 30.12 -15.00 -15.90 -18.51 -16.45 -19.08
1993 28.30 28.41 29.01 28.34 30.20 -19.88 -19.58 -18.47 -19.37 -19.04
1994 30.00 29.96 29.80 29.97 30.27 -21.70 -21.28 -18.43 -21.12 -18.99
1995 31.10 31.00 30.48 31.04 30.35 -19.18 -19.76 -18.38 -20.27 -18.94
1996 30.60 30.59 30.53 30.61 30.43 -22.65 -22.05 -18.33 -21.82 -18.89
1997 30.00 30.07 30.41 30.04 30.50 -19.88 -19.78 -18.27 -19.76 -18.84
1998 30.48 30.52 30.62 30.57 30.58 -16.10 -16.67 -18.21 -16.82 -18.80
1999 31.58 31.41 30.87 31.29 30.66 -18.20 -18.05 -18.15 -17.87 -18.75
2000 30.00 30.24 31.04 30.38 30.73 -18.75 -18.65 -18.09 -18.82 -18.70
2001 32.20 32.03 31.43 31.93 30.81 -18.30 -17.86 -18.04 -17.48 -18.65
2002 31.70 31.69 31.46 31.82 30.88 -13.30 -14.33 -17.99 -14.81 -18.60
2003 31.10 31.03 30.99 30.87 30.96 -18.90 -18.30 -17.95 -17.97 -18.56
2004 29.40 29.73 30.95 29.85 31.04 -18.30 -18.10 -17.91 -18.27 -18.51
2005 32.80 32.54 31.72 32.37 31.11 -15.60 -15.59 -17.88 -15.38 -18.46
2006 32.20 32.28 32.23 32.49 31.19 -12.80 -13.55 -17.86 -13.64 -18.41
2007 32.80 32.62 31.91 32.58 31.27 -17.80 -17.68 -17.86 -17.60 -18.36
2008 30.60 30.66 30.98 30.62 31.34 -21.55 -20.97 -17.86 -20.98 -18.31
2009 29.30 29.54 30.56 29.55 31.42 -19.30 -19.27 -17.88 -19.45 -18.27
2010 31.70 31.55 31.15 31.39 31.50 -16.70 -17.05 -17.91 -17.28 -18.22
2011 31.70 31.80 31.96 31.96 31.57 -17.68 -17.16 -17.95 -16.57 -18.17
2012 33.30 33.12 32.28 33.14 31.65 -13.30 -14.20 -18.01 -14.46 -18.12
2013 32.10 32.00 31.57 32.00 31.73 -18.20 -18.16 -18.09 -18.13 -18.07
2014 29.40 29.60 30.30 29.62 31.80 -22.70 -21.94 -18.18 -21.88 -18.03
2015 29.88 29.90 29.63 29.79 31.88 -19.30 -19.36 -18.29 -19.75 -17.98
2016 30.60 30.55 29.84 30.60 31.95 -16.51 -16.81 -18.42 -16.49 -17.93

Table 2.7: Raw estimates(T.95(tj), T.05(tj)), Kernel smoothing estimates (KS.95(tj),
KS.05(tj)), local polynomial smoothing estimates (LP.95(tj), LP.05(tj)), spline smoothing
estimate (SS.95(tj), SS.05(tj)), and quantile regression estimate (QR.95(tj), QR.05(tj)) of
95th and 5th percentile temperature from Portland between 1990 and 2016.

tj T.95(tj) KS.95(tj) LP.95(tj) SS.95(tj) QR.95(tj) T.05(tj) KS.05(tj) LP.05(tj) SS.05(tj) QR.05(tj)

1990 29.30 29.42 29.59 29.51 28.90 -11.58 -13.79 -13.81 -13.81 -14.01
1991 30.60 30.24 29.52 29.92 28.90 -13.30 -13.89 -13.80 -13.79 -14.00
1992 27.65 28.09 29.08 28.53 28.90 -13.30 -13.96 -13.80 -13.77 -13.99
1993 29.88 29.61 29.07 29.31 28.90 -15.60 -13.99 -13.79 -13.75 -13.98
1994 28.90 28.98 28.98 29.15 28.90 -17.20 -13.97 -13.77 -13.73 -13.98
1995 28.90 28.76 28.56 28.56 28.90 -13.90 -13.90 -13.75 -13.70 -13.97
1996 27.20 27.53 28.32 27.81 28.90 -15.60 -13.81 -13.73 -13.68 -13.96
1997 29.40 29.12 28.56 28.82 28.90 -12.68 -13.71 -13.71 -13.66 -13.95
1998 28.30 28.48 28.72 28.77 28.90 -9.30 -13.63 -13.69 -13.64 -13.94
1999 29.40 29.12 28.60 28.78 28.90 -12.80 -13.58 -13.67 -13.62 -13.93
2000 27.20 27.57 28.52 27.88 28.90 -15.45 -13.57 -13.64 -13.60 -13.92
2001 29.40 29.31 29.04 29.26 28.90 -13.90 -13.58 -13.62 -13.58 -13.91
2002 30.48 30.20 29.26 30.06 28.90 -10.60 -13.60 -13.60 -13.56 -13.91
2003 28.20 28.27 28.52 28.30 28.90 -17.20 -13.61 -13.58 -13.54 -13.90
2004 26.70 27.05 28.01 27.30 28.90 -15.00 -13.58 -13.57 -13.52 -13.89
2005 29.40 29.04 28.26 28.63 28.90 -14.40 -13.53 -13.56 -13.50 -13.88
2006 27.80 28.03 28.39 28.36 28.90 -10.48 -13.44 -13.55 -13.48 -13.87
2007 28.90 28.72 28.30 28.53 28.90 -14.40 -13.34 -13.55 -13.46 -13.86
2008 27.80 27.84 28.05 27.81 28.90 -12.80 -13.24 -13.55 -13.44 -13.85
2009 27.20 27.49 28.19 27.75 28.90 -14.88 -13.17 -13.56 -13.42 -13.84
2010 30.00 29.62 28.68 29.28 28.90 -10.60 -13.14 -13.58 -13.40 -13.84
2011 28.30 28.44 28.68 28.65 28.90 -13.90 -13.14 -13.61 -13.38 -13.83
2012 28.30 28.35 28.53 28.37 28.90 -9.85 -13.19 -13.64 -13.36 -13.82
2013 28.90 28.79 28.58 28.63 28.90 -12.80 -13.26 -13.69 -13.34 -13.81
2014 28.20 28.35 28.70 28.44 28.90 -15.50 -13.35 -13.75 -13.32 -13.80
2015 29.30 29.31 29.17 29.23 28.90 -17.58 -13.44 -13.83 -13.30 -13.79
2016 30.48 30.37 30.11 30.47 28.90 -11.00 -13.53 -13.92 -13.27 -13.78



that of San Diego above, with all methods detecting an increasing trend in yearly maxi-

mum temperatures. In the plot for the 5th percentiles, there is a less distinct pattern among

yearly temperatures, reflected by the results of LP, SS and QR. KS creates a very rugged

smoothing to the yearly temperatures and QR shows no trend at all.

Table 2.8: Raw estimates(T.95(tj), T.05(tj)), Kernel smoothing estimates (KS.95(tj),
KS.05(tj)), local polynomial smoothing estimates (LP.95(tj), LP.05(tj)), spline smoothing
estimate (SS.95(tj), SS.05(tj)), and quantile regression estimate (QR.95(tj), QR.05(tj)) of
95th and 5th percentile temperature from San Diego between 1990 and 2016.

tj T.95(tj) KS.95(tj) LP.95(tj) SS.95(tj) QR.95(tj) T.05(tj) KS.05(tj) LP.05(tj) SS.05(tj) QR.05(tj)

1990 27.80 27.24 27.51 27.40 26.74 6.70 6.99 6.83 6.94 6.96
1991 26.10 27.12 27.12 27.34 26.82 7.32 7.06 7.01 7.10 7.02
1992 28.30 27.19 27.19 27.29 26.91 6.83 7.15 7.13 7.25 7.08
1993 26.10 27.22 27.22 27.22 26.99 7.80 7.27 7.27 7.39 7.15
1994 28.20 27.36 27.36 27.15 27.08 6.10 7.51 7.51 7.53 7.21
1995 27.20 27.36 27.36 27.06 27.16 8.90 7.81 7.81 7.65 7.27
1996 26.70 27.40 27.40 26.95 27.25 8.30 8.03 8.01 7.75 7.33
1997 28.90 27.43 27.43 26.83 27.33 7.80 8.07 8.06 7.82 7.39
1998 26.10 26.93 26.93 26.69 27.41 8.30 7.99 7.98 7.87 7.46
1999 26.70 26.31 26.31 26.58 27.50 7.80 7.85 7.85 7.89 7.52
2000 25.60 25.75 25.75 26.50 27.58 7.80 7.71 7.72 7.91 7.58
2001 24.88 25.50 25.50 26.50 27.67 7.20 7.68 7.70 7.91 7.64
2002 25.60 25.96 25.96 26.57 27.75 7.20 7.86 7.87 7.92 7.71
2003 27.20 26.81 26.81 26.70 27.83 8.90 8.15 8.14 7.93 7.77
2004 27.80 27.33 27.33 26.88 27.92 8.30 8.31 8.29 7.93 7.83
2005 27.10 27.45 27.45 27.06 28.00 9.40 8.16 8.14 7.92 7.89
2006 27.80 27.58 27.58 27.24 28.09 7.20 7.80 7.81 7.91 7.96
2007 27.20 27.91 27.91 27.42 28.17 6.70 7.55 7.57 7.91 8.02
2008 29.40 28.22 28.22 27.60 28.26 7.20 7.63 7.65 7.95 8.08
2009 27.80 27.92 27.92 27.77 28.34 8.30 7.93 7.92 8.02 8.14
2010 27.10 27.38 27.38 27.96 28.42 8.90 8.14 8.13 8.12 8.21
2011 26.70 27.33 27.33 28.20 28.51 7.80 8.19 8.19 8.24 8.27
2012 28.18 27.84 27.84 28.50 28.59 8.30 8.25 8.26 8.38 8.33
2013 27.80 28.74 28.75 28.86 28.68 7.20 8.48 8.53 8.55 8.39
2014 31.00 29.72 29.85 29.26 28.76 10.00 8.83 9.07 8.73 8.46
2015 30.00 30.11 30.33 29.66 28.85 9.40 9.08 9.70 8.92 8.52
2016 30.00 30.07 29.76 30.06 28.93 8.90 9.15 10.15 9.10 8.58

In most cases, when comparing the smoothing results for the two-step methods, there is

usually agreement between at least two of the three methods. In some instances, either

LP or SS produces an undersmoothed result wile the other will agree with KS and give a

more rugged fit to the yearly data. Unlike in the simulations, KS does perform strongly at

boundary points in the application of the methods on the yearly temperatures, and even

better than LP in some cases. LP gives smoother estimates than KS, as a direct conse-

quence of the bandwidth selection process. Even when KS gives a more rugged smoothing

estimate, the 95% bootstrap confidence bands are almost identical to those from LP. SS

typically gives the most undersmoothed results, as in the plots fo San Diego and Seattle.

Consistently, QR performs the worst, with the largest deviations from the raw estimates of
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Table 2.9: Raw estimates(T.95(tj), T.05(tj)), Kernel smoothing estimates (KS.95(tj),
KS.05(tj)), local polynomial smoothing estimates (LP.95(tj), LP.05(tj)), spline smoothing
estimate (SS.95(tj), SS.05(tj)), and quantile regression estimate (QR.95(tj), QR.05(tj)) of
95th and 5th percentile temperature from Seattle between 1990 and 2016.

tj T.95(tj) KS.95(tj) LP.95(tj) SS.95(tj) QR.95(tj) T.05(tj) KS.05(tj) LP.05(tj) SS.05(tj) QR.05(tj)

1990 28.90 28.62 28.85 28.34 27.36 -1.58 -1.55 -1.48 -1.18 -0.68
1991 28.30 28.43 28.54 28.16 27.41 -0.48 -0.50 -0.81 -1.03 -0.67
1992 28.90 28.06 28.09 27.99 27.46 0.00 -0.09 -0.90 -0.96 -0.67
1993 26.70 27.64 27.64 27.82 27.52 -2.80 -2.66 -1.23 -0.91 -0.66
1994 27.20 27.49 27.49 27.67 27.57 -0.48 -0.51 -0.79 -0.72 -0.65
1995 27.80 27.60 27.60 27.53 27.62 0.60 0.53 -0.32 -0.49 -0.65
1996 28.30 27.61 27.61 27.41 27.68 -1.10 -1.04 -0.41 -0.32 -0.64
1997 26.70 27.41 27.41 27.32 27.73 -0.48 -0.47 -0.25 -0.14 -0.63
1998 27.80 27.11 27.11 27.24 27.78 0.60 0.57 0.17 -0.01 -0.62
1999 26.58 26.71 26.71 27.20 27.84 0.60 0.57 0.18 -0.01 -0.62
2000 26.10 26.39 26.39 27.20 27.89 -0.60 -0.56 -0.21 -0.14 -0.61
2001 25.48 26.53 26.53 27.23 27.94 -0.48 -0.49 -0.47 -0.28 -0.60
2002 27.20 27.19 27.19 27.29 27.99 -0.60 -0.60 -0.50 -0.36 -0.60
2003 28.90 27.85 27.85 27.38 28.05 -0.60 -0.57 -0.33 -0.39 -0.59
2004 28.30 28.06 28.06 27.47 28.10 0.60 0.52 -0.25 -0.43 -0.58
2005 27.20 28.01 28.01 27.57 28.15 -1.10 -1.04 -0.51 -0.52 -0.58
2006 28.90 27.97 27.97 27.68 28.21 -0.60 -0.61 -0.66 -0.59 -0.57
2007 27.20 28.01 28.01 27.78 28.26 -0.60 -0.60 -0.67 -0.62 -0.56
2008 27.65 28.21 28.21 27.89 28.31 -0.60 -0.63 -0.72 -0.61 -0.56
2009 30.48 28.26 28.25 28.01 28.36 -1.58 -1.47 -0.49 -0.54 -0.55
2010 26.70 27.83 27.83 28.13 28.42 1.70 1.52 -0.16 -0.45 -0.54
2011 27.20 27.46 27.46 28.28 28.47 -1.70 -1.56 -0.41 -0.47 -0.53
2012 26.70 27.68 27.69 28.44 28.52 0.00 -0.07 -0.56 -0.43 -0.53
2013 28.78 28.42 28.47 28.63 28.58 -1.00 -0.95 -0.45 -0.30 -0.52
2014 29.40 29.17 29.47 28.83 28.63 0.00 -0.01 -0.04 -0.04 -0.51
2015 30.48 29.53 30.47 29.03 28.68 0.60 0.59 0.61 0.30 -0.51
2016 28.90 29.51 31.46 29.23 28.73 0.68 0.67 1.25 0.66 -0.50

desired yearly quantiles for both minimum and maximum temperatures. Many times QR

gives a flat regression line, since there is very little variability in the starting and ending

points in the data when simply comparing the temperatures from 1990 to 2016. Even so,

however, there is some cyclical variability within the middle years which is then not cap-

tured by QR. The nonparametric methods give more robust estimates for some of these

patterns in the interior points of the data. Similarly, for some cities there is a slight but

clear increase in temperatures over the years, and QR correctly detects this, but again does

not pick up some of the nuanced trends within the years. Overall, quantile regression does

not make good approximations of the extreme quantiles when time-variant quantiles vary.

To overcome these estimation problems, two-step estimation procedures should be adopted.

To improve upon the two-step procedures described above, the next chapter will intro-

duce the first of the one-step procedures in this paper. The purpose is again to estimate

a time variant parameter and smooth it over time. The one-step procedure will be im-

plemented by assuming a parametric family in each time interval. This will be shown in
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the next chapter with the development of the kernel log likelihood one-step estimator for a

discrete distribution.
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Chapter 3

One-Step Estimation with Discrete

Distribution

After developing these three two-step techniques, we now propose a one-step smoothing

technique which does not require computing a raw estimate to then be smoothed. The

previous chapter showed that the two-step techniques perform better than a traditional

parametric technique of quantile regression for the 5% and 95% quantiles of temperature.

Here we will rely on data which can be approximated to a parametric distribution to create

a smoothed estimate through a combination of maximum likelihood estimation and a kernel

function. First, this will be demonstrated with a discrete distribution.

3.1 Maximum Likelihood Estimation

In maximum likelihood estimation (MLE), an unknown parameter θ can be estimated from

some sample data. Assume there are n independent samples (x1, x2, ..., xn) from a distri-

bution f(x|θ). For a discrete random variable, f(x|θ) is a probability mass function, and

f(x|θ) is a probability density function for a continuous random variable. In cases with a

distribution which has more than one parameters, θ can be used to denote a vector of un-

known parameters. The likelihood function becomes the joint probability (mass or density)
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function of the observed data. Since the observed data is independent, we can multiply

each of their individual likelihoods to create the likelihood function L(θ).

L(θ) = f(x1, x2, ..., xn|θ) =
∏n
i=1 f(xi, θ)

We will refer to L(θ) as simply L. To find the value of θ which maximizes L, the logarithm

of the likelihood function can be taken since the logarithm is a strictly increasing function,

so the likelihood function achieves a maximum at the same point as the logarithm of the

likelihood function (Hogg and Tanis, 2008). This also simplifies the calculation of the value

of θ, as the product becomes a summation after taking the logarithm.

log(L) =
∑n

i=1 f(xi, θ)

Adding in a kernel function, we now have the proposed one-step smoothing solution:

log(L) =
∑n

i=1 f(xi, θ)Kh(ti − t)

The one-step smoothing technique will also be referred to as the kernel log-likelihood

method. We will explore an example of kernel log-likelihood with the geometric distri-

bution in the next section.

3.2 Kernel Log-Likelihood with Geometric Distribution

Kernel log-likelihood differs by the probability models since there are a number of dis-

crete and continuous probability models. We will consider one discrete (Geometric Model)

and one continuous (Gaussian Model) probability model for one-step Kernel log-likelihood

smoothing estimation of the time-variant parameter. The geometric distribution models the

number of Bernoulli trials until the first success is achieved. We will first show the deriva-

tion of the log-likelihood function for the geometric distribution. A geometric distribution

with x failures and probability of success θ can be formulated as:

P (X = x) = θ(1− θ)x for x = 0,1,2,. . .
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The probability mass function above will also be referred to as f(x|θ). If there are n

independent samples (x1, x2, ..., xn) from the geometric distribution with parameter θ, we

can take their product to create the likelihood function.

L = fn(x|θ) =
∏n
i=1 f(xi, θ)

The product of the individual geometric samples can be simplified as such, given that there

are n total successes and by summing the total number of failures.

L = θn(1− θ)
∑n
i=1 xi

By taking the logarithm and with some simplification, we have:

log(L) = n log(θ) + (
∑n

i=1 xi) log(1− θ)

log(L) =
∑n

i=1 log(θ) +
∑n

i=1 xi log(1− θ)

log(L) =
∑n

i=1{log(θ) + xi log(1− θ)}

Adding in the kernel function to the log-likelihood function for the geometric distribution

gives the following equation for the one-step procedure:

n∑
i=1

{log(θ) + xi log(1− θ)}Kh(ti − t) (10)

The summation is over all data points xi, i = 1, 2, . . . , n. However, the data used in the

examples of upcoming sections is split by time, so several xi will have the same corresponding

ti. This means that all xi with the same ti will be given the same weight. In turn, the

summation over all the data can also be thought of as a summation across the discrete time

points in the data. For each unique ti, the number of failures (sum of xi) and the number

of successes (number of xi’s at the unique ti) is all that will be needed for Equation 10,

making this procedure a local MLE at each time point.

3.2.1 Choice of Kernel Function

Before detailing the implementation of Equation 10, we will first discuss the role of the kernel

function in more detail, and how the bandwidth h is selected. Gaussian and Epanechnikov
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kernels are commonly used kernel functions. A key difference between these kernels is that

the Gaussian kernel gives non-zero probability to all data, as there is still density in the

tails of the normal distribution. The Epanechnikov kernel is a quadratic function in which

data within an interval determined by the bandwidth choice has non-zero probability, but

all other data is given zero weight. The choice of kernel function is not as important as the

choice of the bandwidth, which will be discussed in the next section. The Epanechnikov

kernel has been shown to yield the lowest mean integrated square error (Wand and Jones,

1994), and is shown below.

K(u) =


3
4(1− u2) |u| ≤ 1

0 otherwise

3.2.2 Choice of Bandwidth

Within the kernel function, a bandwidth h is also required. The selection of the bandwidth

dictates the size of the window which is used in the local estimation of the unknown re-

gression function. A large choice for the bandwidth lead to smoother estimates, while a

smaller choice for the bandwidth results in spiky, rough estimates. This is demonstrated in

Figure 3.1. For a very small bandwidth (h=0.03), the estimated regression function goes

through each data point. Relaxing the bandwidth slightly to h=0.1, the overall trend is

still captured very will, but a smoother estimate is created. Choosing a bandwidth which

is the size of domain of the sample data leads to a linear fit with no curvature.

In each time period, the bandwidth dictates the window of time to use in calculation of the

estimate. For example, for a bandwidth of h = 2, data within −2 < tj − t < 2 has non-zero

weight. Here, tj is the current time period which is being estimated. Any data which falls

within 2 time periods of tj will be used in estimating the value at time tj (e.g. if tj = 8,

then data from time periods 6 through 10 will be used). The weights for an Epanechnikov
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Figure 3.1: Effect of Bandwidth on Smoothing of Regression Function

kernel can be computed as such:

K
( tj − t

h

)
=

3

4

(
1−

( tj − t
h

)2)

Using the above function, weights can be computed when solving the kernel log likelihood

function in equation 10. For example, for a bandwidth of h = 2, the following matrix shows

the weights which are assigned to data in computation of the kernel log likelihood function.

k.weights.matrix =



t1 t2 t3 t4 t5

t1 0.75 0.5625 0 0 0

t2 0.5625 0.75 0.5625 0 0

t3 0 0.5625 0.75 0.5625 0

t4 0 0 0.5625 0.75 0.5625

t5 0 0 0 0.5625 0.75


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In this example above, assume there are 5 time periods t1 to t5. Here we see that for

estimating θ at time period t1, data from time periods 1 and 2 are used, with corresponding

weights shown in row 1 of the matrix. This results in a local MLE estimate for time period

t1. In estimating θ for time period t2, data from time periods 1, 2 and 3 are used with the

corresponding weights shown in row 2, resulting in a local MLE estimate for time period

t2. In computation of θ in Equation 10, the respective row from this weights matrix must

be supplemented.

3.2.3 Selection of Optimal Bandwidth

To assess how well the one-step approach compares to the two-step approach, estimations

are compared to the original raw estimates. In the two-step approach, the raw estimates are

directly smoothed so it is intuitive to compare the results of the smoothed values to the raw

estimates. In the one-step approach, no raw estimate is computed as all the original data

is used to create the estimates. However, we know that from regular maximum likelihood

estimation, the estimate at each time period would be the same as the raw estimate used

in the two-step technique. In the case of a geometric distribution, the raw estimate is equal

to θ̂ = 1
x̄ . Even with the one-step approach where a kernel is introduced, a bandwidth of

h = 1 would yield a local MLE which is equal to the MLE of the geometric distribution.

This can be checked by inspecting the kernel weights matrix for when h = 1, shown below.

k.weights.matrix =



t1 t2 t3 t4 t5

t1 0.75 0 0 0 0

t2 0 0.75 0 0 0

t3 0 0 0.75 0 0

t4 0 0 0 0.75 0

t5 0 0 0 0 0.75



At each time period, only the data from that time period has non-zero weight, so the local
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MLE with kernel is the same as regular MLE. For consistency and through properties of

MLE, the results of the one-step smoothing approach should be compared to the same raw

estimates as the two-step approach.

The choice of bandwidth has a direct effect on the smoothness of the fitted curves. When

h = 1, the results from the one-step procedure perfectly fits the raw estimates, and this

produces a very unsmooth curve. For very large bandwidths, the fitted curve becomes very

linear and has no curvature. We must choose a bandwidth in such a way which balances

this tradeoff.

To select the optimal bandwidth which minimizes the error between the smoothed points

and raw estimate, we can perform leave-one-out cross validation (LOOCV). In the two-

step estimation, this would entail iteratively removing a time point tj and smoothing the

remaining time points and computing the error of the estimate at tj . This is performed for

each bandwidth h, and the bandwidth which results in the minimum cross validation score

is chosen. For time series data where the series may be around 30 time points, this is not

computationally expensive. The equation for this process is shown below.

CV (h) =
∑J

j=1
1
N [Yj − ξ(−j)

j ]2

In one-step estimation, we can still perform cross validation in this fashion, but instead of

leaving one observation out, we can leave the entire time period of observations. Since the

one-step approach uses all the data at each time point, this is equivalent to the two-step

approach where an entire time point is removed (there is only one data point at each time,

the raw estimate, in the two-step approach).

3.3 Algorithm

To implement the one-step procedure for the discrete case, the original data should be

summarized by time period. The original data should contain the number of failures until

the first success for each observation and be split by the time period. Based on Equation 10,
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we just need to know the number of successes (which is equal to the sample size) and total

number of failures at each time period. The raw estimates should also be computed, which

are just the probability (i.e. 1
x̄) at each time period based on the sample data. The kernel

weights matrix (referred to as k.weights.matrix) is computed within each iteration for each

specific bandwidth to check. The algorithm checks all bandwidths within some interval

(predefined to check for h in the range (1,8) in intervals of 0.05) and returns the bandwidth

with minimum cross validation error. This algorithm is detailed below in Algorithm 1.

Algorithm 1 requires a function Geom.theta to be optimized in each iteration. This function

Algorithm 1 Bandwidth Selection for Geometric Kernel Log Likelihood

1: procedure Bandwidth Selection - Geometric
2: n is a list of sample size at each time period
3: x is a list of number of failures at each time period
4: tp is a list of time points
5: y is a list of raw estimates (probability at each tp)

6: bw ← seq(1, 10, by = 0.05) . Assign list of bandwidths to be checked
7: opt.h← 0 . Initialize list to track error from LOOCV

8: for h in bw do
9: tot← 0 . Initialize error to 0 each iteration

10: Compute k.weights.matrix based on current h

11: for k in tp do
12: n[k]← 0 . Remove current tp for LOOCV
13: x[k]← 0 . Remove current tp for LOOCV
14: t← optimize Geom.theta function

. Geom.theta(theta,n,x,tp,k.weights.matrix,k,h)
. Geom.theta function returns theta based on MLE

15: tot← tot+ (y[k]− t)2 . Compute MSE from estimated theta

16: Append tot to opt.h

17: return h with minimum error

computes the local MLE calculations and returns the optimal θ based on geometric MLE.

This function is detailed in Algorithm 2.
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Algorithm 2 Cross Validation Function for Geometric Kernel Log Likelihood

1: function Geom.theta(theta,n,x,tp,k.weights.matrix,k,h)
2: for j in tp do . Initialization
3: logs[j]← 0

4: for j in tp do
5: logs[j]← n ∗ log θ + x ∗ log(1− θ) . geometric MLE

6: return logs · k.weights.matrix[:,cv] . Multiply by column cv of weights matrix

3.3.1 Alternate Solution

The kernel log-likelihood function from Section 3.2 has a closed form solution for the local

constant (degree 0 polynomial) expansion of θ. The expression in Equation 10 (also shown

below) can be rewritten from a summation of logarithms the logarithm of a power:

∑n
i=1{log(θ) + xi log(1− θ)}Kh(ti − t)

= log(θ
∑n
i=1Khi ) + log[(1− θ)

∑n
i=1 xiKhi ]

= log[θ
∑n
i=1Khi (1− θ)

∑n
i=1 xiKhi ],

where Khi is used to denote the kernel Kh(ti − t). Being a strictly increasing function,

maximizing the previous expression is equivalent to maximizing

θ
∑n
i=1Khi (1− θ)

∑n
i=1 xiKhi

The solution to the above expression is straightforward. The problem of trying to maximize

xa(1− x)b, provided that x ∈ [0, 1] is shown below

maximize
x

xa(1− x)b.

Differentiating, and solving for x gives:

axa−1(1− x)b − bxa(1− x)b−1 = 0

axa−1(1− x)b = bxa(1− x)b−1

a(1− x) = bx

a− ax = bx

a = ax+ bx
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a = x(a+ b)

x = a
a+b

Going back to the original problem, letting a =
∑n

i=1Khi and b =
∑n

i=1 xiKhi , the solution

to θ is then a ratio of the exponents, which are the kernel weights.

θ̂ =
∑
Khi∑

Khi+
∑
xiKhi

3.4 Polynomial Expansion in Kernel Log Likelihood

We will next consider higher order polynomial expansions of θ(t). This would entail choosing

the parameters of a local polynomial to maximize

n∑
i=1

{
log

(
p∑
q=0

βq(t)(ti − t)q
)

+ (yi)log

(
1−

p∑
q=0

βq(t)(ti − t)q
)}

Kh(ti − t) (11)

Here βq(t) = θ(q)(t)
q! ; 0 ≤ q ≤ p. The form of the equation is very similar to Equation 10.

In fact, Equation 10 is identical to Equation 11 when the order of polynomial is taken to

be p = 0. In the polynomial expansion of θ(t), we try up to a degree 5 expansion in both

the application and simulation exercises. The method remains similar to Algorithms 1 and

2, with the inclusion of additional parameters in the optimization. These additional pa-

rameters represent the terms of the polynomial expansion of θ(t), with β0 representing the

estimate of θ(t). Then β1 can be treated as the estimate of θ′(t), and in a similar fashion,

β2 is the estimate of θ′′(t)/2!, and so on. To accommodate for the extra parameters, the

algorithms in Section 3.3 are augmented with a multivariate objective function. Addition-

ally, several constraints are added in the optimization, which are detailed below. Matlab

version 2018a is used to perform the constrained optimization with the fmincon function.

The objective function of the polynomial expansion problem is the one written in Equation

11. Note that this is a maximization problem, and some solvers by default are for minimiza-

tion problems. Any maximization problem can be converted to a minimization problem by
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taking the negative of the objective function (i.e. maximizing a quantity is equivalent to

minimizing the negative of that quantity). For completeness, constraints are added to the

multivariate optimization in Equation 13. The constraints ensure that the quantity in the

expansion of θ(t) ∈ [0, 1]. There is one additional constraint to ensure that β0 ∈ [0, 1], as

this is the coefficient used as the final estimate of θ(t).

maximize
βq

n∑
i=1

{
log

(
p∑
q=0

βq(t)(ti − t)q
)

+ (yi)log

(
1−

p∑
q=0

βq(t)(ti − t)q
)}

Kh(ti − t)

subject to

p∑
q=0

βq(t)(ti − t)q ≤ 1, i ∈ 1, . . . , n.

β0 ∈ [0, 1]

(12)

While the optimization above shows n constraints, practically this should be done only for

any data which receives non-zero weight from the kernel function Kh(ti − t). With the

Epanechnikov kernel, any data not within [t − h, t + h] receives zero weight (discussed in

Section 3.2.1). As a result, the number of constraints is equal to the number of time points

included in the estimation of t, determined by the size of the bandwidth. For example,

with a degree 2 polynomial expansion of θ(t) and estimation performed around t = 10 with

bandwidth h = 3.5 yields the following objective function and constraints in Equation 13.

With estimation performed at t = 10, data within t ∈ [6.5, 13.5] receives non-zero weight

when using the Epanechnikov kernel. Therefore with this example, data at the discrete

time points t ∈ {t7, t8, t9, t10, t11, t12, t13} is shown in the objective function and constraints.

The first 7 constraints ensure the expansion of θ(t) ∈ [0, 1] with the 8th being to assure β0

is in the interval [0,1] as the estimate for the unknown probability at time t which is being
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smoothed.

maximize
β0,β1,β2

∑13
i=7

{
log[β0 + β1(ti − t) + β2(ti − t)2] + (yi)log[1− β0 − β1(ti − t)− β2(ti − t)2]

}
Kh(ti − t)

subject to β0 + β1(t7 − t) + β2(t7 − t)2 ≤ 1

β0 + β1(t8 − t) + β2(t8 − t)2 ≤ 1

β0 + β1(t9 − t) + β2(t9 − t)2 ≤ 1

β0 + β1(t10 − t) + β2(t10 − t)2 ≤ 1

β0 + β1(t11 − t) + β2(t11 − t)2 ≤ 1

β0 + β1(t12 − t) + β2(t12 − t)2 ≤ 1

β0 + β1(t13 − t) + β2(t13 − t)2 ≤ 1

β0 ∈ [0, 1]

(13)

The constraints represent the polynomial expansion of θ(t) to degree p. Using the same example, the

constraints are shown below, rewritten in matrix formulation. The left-hand matrix is also known

as a Vandermonde matrix. While performing cross validation to select the bandwidth, note that the

middle constraint (where ti = t and the row contains 0’s in the higher order expansions) is removed.



1 −3 9

1 −2 4

1 −1 1

1 0 0

1 1 1

1 2 4

1 3 9


×


β0

β1

β2

 ≤



1

1

1

1

1

1

1



As stated previously, Algorithm 2 can be updated to include the multivariate optimization function.

Shown in Algorithm 3, θ can be expanded to its polynomial approximation with the addition of up

to p terms. The result of the optimization will be values for each of the coefficients βq, but again,

the one which will be used to estimate θ is β0.
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Algorithm 3 Cross Validation Function for Polynomial Expansion in Geometric Kernel
Log Likelihood

1: function Geom.theta(theta,n,x,tp,k.weights.matrix,k,h)
2: for j in tp do . Initialization
3: logs[j]← 0

4: for j in tp do
5: logs[j]← n ∗ log{β0 + β1(tj − k) + ...+ βp(tj − k)p}+
6: x ∗ log{β0 + β1(tj − k) + ...+ βp(tj − k)p} . geometric MLE

7: return logs · k.weights.matrix[:,cv] . Multiply by column cv of weights matrix

A note on the bandwidth should also be addressed here. When considering a polynomial expansion

of degree p, bandwidths smaller than p lead to perfect estimation in the boundary points, as not

enough time periods lie in the interval. For example, if a polynomial expansion of degree 3 is

considered with a bandwidth of 2, there will be more parameters to solve for than there are data

within the bandwidth for the first and last time periods. Depending on the size of the bandwidth and

the degree of the polynomial, this may be true for several interior points also. Careful consideration

should be made to the selection of the bandwidth when increasing the degree of the polynomial.

3.5 Application

The data for the application of one-step procedure in discrete case is the Bangladesh Demographic

and Health Survey (BDHS, 2011) data which is a part of the worldwide Demographic and Health

Survey Program. In this survey, 17,842 woman were surveyed to collect information about fertility

preferences, household size, family planning, maternal and child health problems, infant and child

mortality, etc. The variable of interest is the number of months after marriage until first birth, which

is treated as time variant cross sectional discrete data. The data contains information for women

aged from 13 to 31.

Table 3.1 shows the ratio of mean absolute error by time point for the two-step procedures as

compared to the one-step procedures. The two-step procedures (smoothed on the raw estimates)

are denoted with parentheses (2). The degree of the polynomial used in the expansion is reflected

in the number following ”P” in the header of the table (e.g. P1 (2) is the degree 1 expansion of

the local polynomial smoothing on the raw estimates of the data). The other two-step procedure,

spline smoothing, is denoted by SS. The one-step procedures using the local kernel log-likelihood
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are denoted by the degree of the polynomial (e.g. P1 is the degree 1 expansion of θ(t) using kernel

log-likelihood approach). All ratios are compared to the degree 0 polynomial expansion of the two-

step procedure (P0 (2) has been left out of this table). So the value of 0.54 as the first entry in the

table indicates that the error produced by the smoothed value of the degree 1 two-step function (P1

(2)) is 46% less than that produced by the smoothed value of the degree 0 two-step value. Values

greater than 1 indicate that more error is produced by the corresponding technique than the degree

0 two-step function. The last row shows the overall mean absolute error across all time points, and

is to be interpreted similarly. A clear trend can be detected from this table; higher order degrees

of polynomials (regardless of technique) tend to produce less error. The more complex the function

(addition of parameters in the expansion of θ(t)), the better the fit. Spline smoothing overall per-

forms the worst across all techniques, but is comparable to the degree 0 expansions using either the

one or two-step techniques.

To further show the effect of increasing the degree of the polynomial in the one and two-step pro-

cedures, Figure 3.2 shows several plots with smoothed values. To better display the six one-step

smoothings, they have been split into two separate figures. Figure 3.2a and 3.2b show the degree

0 to 2 and degree 3 to 5, respectively, expansions using one-step smoothing. It is clear to see that

increasing the order of the polynomial expansion has a huge effect on capturing the trends at the

boundary points, or tails of the distributions. One detriment to increasing the degree of the poly-

nomial, however, is that the smoothed function is very sensitive to these boundary points. The

smoothing function may change drastically when fit on new data, so the tradeoff between increased

precision should be understood by the increase in variability of the estimate.

Figure 3.2c compares the one and two-step procedures when using a degree 2 polynomial expansion.

Figure 3.2d similarly shows the same comparison for a degree 3 polynomial expansion. Since the

degree of the polynomial has such a substantial impact on the resulting smoothing, Table 3.2 shows

side by side comparisons of one and two-step procedures of equal degree. This presents a logical way

to compare how the one and two-step approaches perform. Similarly to before, the mean absolute

ratio is shown, with all ratios compared to the baseline of the two-step method. It can be seen

that the one-step procedure produces less error in the degree 0, 1, 2 and 5 cases (error ratios less

than 1). For polynomials of degree 3 and 4, the two-step method outperforms the one-step method.

Additionally in this table, the best estimator column indicates the number of the 19 time points
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(ages 13 to 31) which are best smoothed by the corresponding method. For degree 0 polynomial,

it can be seen that the two-step method performs best at a majority (11) of the time points, while

overall producing slightly more mean absolute error. For other polynomial degrees, the method

which produced lesser mean absolute error also performed best at a majority of the time points.

Table 3.1: Mean Absolute Error for Two-Step and One-Step Procedures on Application Dataset

Age P1 (2) P2 (2) P3 (2) P4 (2) P5 (2) SS P0 P1 P2 P3 P4 P5

13 0.54 0.42 0.23 0.03 0.03 15434.35 1.37 0.73 0.57 1.25 0.11 0.12
14 5.16 1.19 0.59 0.23 0.60 3.92 1.55 0.31 3.22 0.84 0.49 0.21
15 2.71 0.70 0.17 1.66 0.88 4.16 0.17 3.73 0.80 1.31 0.31 0.83
16 1.65 0.39 0.25 0.21 3.87 10.87 0.47 1.27 0.39 2.27 0.04 3.00
17 1.41 0.01 67.34 0.38 1.35 3.56 0.57 0.75 0.33 2.60 0.19 3.40
18 0.92 14.94 1.34 0.38 1.01 0.10 3.03 3.36 1.95 0.42 1.20 0.97
19 1.04 0.11 0.16 16.85 1.29 2.56 0.96 0.46 0.10 16.33 0.90 0.52
20 1.00 0.17 1.00 0.78 2.48 3.37 1.02 0.38 0.24 9.00 0.87 0.05
21 1.00 0.55 1.00 0.37 2.22 2.98 0.98 0.34 0.50 3.83 0.65 0.07
22 1.00 4.68 1.00 0.91 0.07 14.83 0.57 2.25 1.33 0.33 3.25 0.62
23 1.00 1.53 1.00 0.54 1.17 1.14 1.08 1.12 1.03 0.90 1.17 0.57
24 1.00 0.42 1.00 2.09 1.23 0.66 0.75 0.71 0.75 2.44 0.95 1.43
25 1.05 0.53 1.08 0.56 0.79 2.05 0.15 3.00 0.67 4.75 1.42 0.15
26 1.11 0.88 1.12 0.48 1.72 0.76 0.12 9.00 1.00 0.78 1.14 0.38
27 1.95 0.87 2.18 1.50 1.60 0.05 7.19 0.22 1.20 2.17 0.15 10.00
28 1.27 1.01 1.68 0.59 0.19 3.13 0.43 1.43 0.95 0.89 3.82 0.45
29 0.52 0.84 3.21 2.12 0.64 0.63 1.55 1.03 0.97 0.90 0.66 1.46
30 0.92 1.01 0.82 0.22 0.38 15.97 1.10 1.00 0.99 0.96 0.81 0.11
31 1.17 0.75 0.50 0.03 0.17 405.07 0.77 1.16 0.72 1.26 0.12 0.39

Total 1.04 0.77 0.62 0.33 0.30 1.02 1.00 0.90 0.74 0.86 0.52 0.23

52



53

(a) Smoothed Values with Degree 0 to 2
Polynomials

(b) Smoothed Values with Degree 3 to 5
Polynomials

(c) Comparison of One to Two-Step on
Degree 2 Fit

(d) Comparison of One to Two-Step on
Degree 3 Fit

Figure 3.2: Smoothing Comparisons on Application Dataset

Table 3.2: Mean Absolute Error Ratios between Two-Step and One-Step Procedures

Degree of Method Mean Error Best

Polynomial Ratio Estimator

Degree 0
Two-Step 1 11
One-Step 0.998 8

Degree 1
Two-Step 1 6
One-Step 0.867 13

Degree 2
Two-Step 1 6
One-Step 0.964 13

Degree 3
Two-Step 1 11
One-Step 1.389 8

Degree 4
Two-Step 1 13
One-Step 1.569 6

Degree 5
Two-Step 1 6
One-Step 0.782 13



3.6 Simulations

Two simulations are performed to compare the performance of the smoothing techniques. The

first is of a time variant variable parameter (TVVP), where each time period’s data comes from

a different simulated mean. The second simulation exercise is of a time variant fixed parameter

(TVFP), where each time period’s data comes from a constant simulated mean. Details and results

of each simulation follow in the next two sections.

3.6.1 Simulation Under Time Variant Variable Parameter

In this simulation, 40 time periods are generated to have a mean between 0.05 and 0.1 to give some

trend to the series (shown in Figure 3.3). Then, with the fixed means, 30 values from a geometric

distribution are simulated at each time period. The smoothing techniques are applied to the re-

sulting data and 200 replications of this simulation are done and the minimum absolute deviation

(MAD) ratio between the one and two-step procedures for each of the 40 time periods is reported.

MAD can be calculated as the mean average error between the raw estimate and the smoothing

result. Results are shown in Table 3.3. Results are again split by degree of polynomial. In addition

to the MAD ratio, the number of time points where the mean absolute error is lower for each method

is shown in the Best Estimator column. For polynomials of degree 0, 1, 2 and 4, the mean MAD

is lower for the one-step method. Even for degree 3 and 5 polynomials where the two-step method

produces less error, the one-step method produces less absolute error at a majority of the time points.

Similar to Table 3.3, Table 3.4 shows the MSE ratio between the one and two-step procedures.

While the MAD ratio between these procedures suggested improvements in the one-step methods,

the MSE ratios in Table 3.4 show that the one-step procedures produce larger square error across

all time points. However, when looking at the best estimator column, it can be seen that there is

almost an even split in the number of time points in which the MSE ratio is smaller.
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Figure 3.3: Trend for TVVP Simulation

Table 3.3: MAD Ratio in Geometric TVVP Simulation

Degree of Method MAD Ratio Best
Polynomial Estimator

Degree 0
Two-Step 1 19
One-Step 0.975 21

Degree 1
Two-Step 1 18
One-Step 0.986 22

Degree 2
Two-Step 1 17
One-Step 0.974 23

Degree 3
Two-Step 1 18
One-Step 1.048 22

Degree 4
Two-Step 1 17
One-Step 0.969 23

Degree 5
Two-Step 1 20
One-Step 1.054 20
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Table 3.4: MSE Ratio in Geometric TVVP Simulation

Degree of Method MSE Ratio Best
Polynomial Estimator

Degree 0
Two-Step 1 20
One-Step 1.043 20

Degree 1
Two-Step 1 22
One-Step 1.058 18

Degree 2
Two-Step 1 18
One-Step 1.08 22

Degree 3
Two-Step 1 21
One-Step 1.191 19

Degree 4
Two-Step 1 18
One-Step 1.047 22

Degree 5
Two-Step 1 21
One-Step 1.209 19



3.6.2 Simulation Under Time Variant Fixed Parameter

The time variant fixed parameter simulation is similar to the TVVP framework with the exception

being that each time period’s data comes from the same mean. Otherwise, the setup is the same

with the same number of time points (40) and number of data simulated at each time (30). Results

are shown in Table 3.5. Under the TVFP simulation framework, the one-step method performs

better again for degree 0, 1, 2 and 4 polynomials, as evidenced with MAD ratios less than 1 when

compared to the respective two-step method of equal polynomial degree. The best estimator column

shows that for these polynomial degrees (0,1,2,4), the majority of the time points had lower MAD

ratios with the one-step procedure. The same is true for the two cases where the two-step method

produced better results; the best estimator column also agrees with the method of lower MAD ratios.

Table 3.5: MAD Ratio in Geometric TVFP Simulation

Degree of Method MAD Ratio Best
Polynomial Estimator

Degree 0
Two-Step 1 13
One-Step 0.989 27

Degree 1
Two-Step 1 10
One-Step 0.988 30

Degree 2
Two-Step 1 14
One-Step 0.993 26

Degree 3
Two-Step 1 32
One-Step 1.058 8

Degree 4
Two-Step 1 14
One-Step 0.990 26

Degree 5
Two-Step 1 38
One-Step 1.093 2

The MSE ratios for the 40 time points are also shown in Table 3.6. Here, it can be seen that the

one-step procedures perform worse when measuring the MSE. All two-step methods perform better

in terms of lower MSE ratios across all time points, and at a majority of time points in the last

column of the table. Results are consistent across both simulations (TVVP and TFVP) that the

MAD ratio is more favorable to look at when comparing the one and two-step methods. However, in

the TVVP simulation framework, the one-step procedures are still approximately even or superior
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at a majority of the time points when inspecting both the MAD and MSE ratios.

Table 3.6: MSE Ratio in Geometric TVFP Simulation

Degree of Method MSE Ratio Best
Polynomial Estimator

Degree 0
Two-Step 1 31
One-Step 1.034 9

Degree 1
Two-Step 1 30
One-Step 1.032 10

Degree 2
Two-Step 1 31
One-Step 1.052 9

Degree 3
Two-Step 1 39
One-Step 1.167 1

Degree 4
Two-Step 1 28
One-Step 1.044 12

Degree 5
Two-Step 1 39
One-Step 1.202 1
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Chapter 4

One-Step Estimation with

Continuous Distribution

4.1 Continuous Distribution - Normal Distribution

For the continuous case, we choose the normal distribution which has the following probability

density function:

f(x|µ, σ2) = 1√
2πσ2

e−
(x−µ)2

2σ2 ;−∞ < x <∞

Similar to the example with the geometric distribution, we will show the derivation for the log-

likelihood function. Consider a sample of size n (x1, x2, ..., xn) from the normal distribution with

parameters µ and σ. Taking their product then creates the joint distribution and the likelihood

function.

L = fn(x|µ, σ2) =
∏n
i=1 f(xi|µ, σ2)

L =
∏n
i=1

1√
2πσ2

e−
(xi−µ)

2

2σ2

L = (2πσ2)−n/2e−
1

2σ2

∑n
i=1(xj−µ)

2

Again taking the logarithm of the likelihood function simplifies the maximization problem, and with

some simplification we reach the result below.

log(L) = −n2 log(2π)− n
2 log(σ2)− 1

2σ2

∑n
i=1(xi − µ)2
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4.2 Kernel Log-Likelihood with Normal Distribution

The one-step solution using kernel log-likelihood would entail choosing the parameter µ to maximize

the following equation at each time point:

tp∑
j=1

[− 1

2σ2
j

∑
xi∈tpj

(xi − µj)2]Kh(tj − t) (14)

where tp is the number of time points and the kernel function Kh with bandwidth h determines

the window of time periods used in estimating each mean µj . We use the notation with a double

summation to show that the computation takes place for each time period, and for all data points

xi which lie in that time period. The equation above assumes a fixed standard deviation σj at each

time point, which can be calculated from the original data. Parts of the log-likelihood function

which do not depend on µ can be left off in the maximization, as they are constant. This estimation

should again occur at each time period, using all data which follows within the bandwidth h which is

selected through cross-validation. We also create a method for using the kernel log likelihood where

σ is not assumed to be known and fixed. In this method, we begin with the same initial standard

deviation, and simultaneously optimize both equations 14 and 15. Equation 15 solves for σ at each

time point based on a previously found µ from Equation 14. This method is detailed in Section 4.4.

tp∑
j=1

[−n
2

log(σ2
j )− 1

2σ2
j

∑
xi∈tpj

(xi − µj)2]Kh(tj − t) (15)

4.3 Algorithm - Fixed Sigmas

With the normal distribution, we have two parameters: µ and σ. For one-step estimation, we can

at first assume a fixed σ at each time period and use these to estimate the mean µ based on MLE

for normal distribution and the kernel function described in Equation 14. The procedure for find-

ing the optimal bandwidth is similar to Algorithm 1 for the geometric distribution. We search a

list of bandwidths and compute the corresponding kernel weights matrix at each bandwidth. The

Norm.mu.cv function shown in Algorithm 5 computes the individual contributions of each time

point to the kernel based MLE function in Equation 14. At each time point, we perform leave-one-

out cross validation to use neighboring time periods, as determined by the current bandwidth and

k.weights.matrix, to estimate the mean of the left out time period. We then compare the estimated
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mean to the raw estimate. The total error is retained across all time periods for each bandwidth,

with the bandwidth corresponding to the minimum error being chosen in the end. The procedure is

detailed in Algorithm 4.

Algorithm 4 Bandwidth Selection for Normal KLL with Fixed Sigma

1: procedure Bandwidth Selection - Fixed Sigma
2: raw are the raw estimates from the original data
3: y is original data, split by time points
4: tp is a list of time points
5: sigmas is a list of standard deviations for each time period

6: bw ← seq(1, 10, by = 0.05) . Assign list of bandwidths to be checked
7: opt.h← 0 . Initialize list to track error from LOOCV

8: for h in bw do
9: tot← 0 . Initialize error to 0 each iteration

10: Compute k.weights.matrix based on current h
11: for cv in tp do
12: mu← optimize Norm.mu.cv function

. Norm.mu.cv(mu,y,tp,sigmas,k.weights.matrix,cv,h)
. cv is the current time period from inner for-loop

. h is current bw from outer for-loop
. Norm.mu.cv function returns mu based on MLE

13: tot← tot+ (raw[cv]−mu)2 . Compute MSE from estimated mu

14: Append tot to opt.h . Error from all time points for current bw

15: return h with minimum error

Algorithm 5 Cross Validation Function for Normal Kernel Log Likelihood with Fixed
Sigmas

1: function Norm.mu.cv(mu,y,tp,sigmas,k.weights.matrix,cv,h)
2: for j in tp do . Initialization
3: b[j]← 0

4: for j in tp between cv-h and cv+h do . Any time period within bandwidth
5: if j == cv then
6: next . Leave time period cv out

7: b[j]← − 1
2sigmas[j]2

∑
yi∈tj (yi −mu)2 . From normal MLE

8: return b · k.weights.matrix[:,cv] . Multiply by column cv of the weights matrix

61



4.4 Algorithm - Variable Sigmas

The previous algorithm assumed that σ was known for each time period when solving for µ. In this

section we discuss an approach to simultaneously estimate µ and σ. Let µ and σ represent a vector

of means and standard deviations, for all the time periods. The procedure begins in the same manner

as the previous one with fixed sigmas. As input, we require an initial list of standard deviations and

means for each time period. We begin by first estimating µ based on the initial σ (which were pre-

viously assumed to be fixed). In this part, we assume the standard deviations are again fixed. Then,

using the newly computed µ (we can call it µnext), we assume these to be fixed and solve Equation

15 to obtain a new σ (or σnext). In this iterative process of solving for µ and σ, we continue this

for either a maximum number of iterations or until convergence has been met between successive

µ solutions, as defined by some tolerance level. After µ has converged, we use the most recent

solution σ to solve for each µ in the LOOCV procedure. The functions for simultaneous estima-

tion of µ and σ are shown in Algorithms 6 and 7, and the entire procedure is detailed in Algorithm 8.

Algorithm 6 Normal KLL Function for Finding Optimal Mu

1: function Norm.mu(mu,y,tp,sigmas,k.weights.matrix,k,h)
2: for j in tp do . Initialization
3: b[j]← 0

4: for j in tp between k-h and k+h do . Any time period within bandwidth
5: b[j]← − 1

2sigmas[j]2
∑

yi∈tj (yi −mu)2 . From normal MLE

6: return b · k.weights.matrix[:,k] . Multiply by the weights matrix

Algorithm 7 Normal KLL Function for Finding Optimal Sigma

1: function Norm.sigma(sigma,y,tp,mus,k.weights.matrix,k,h)
2: for j in tp do . Initialization
3: b[j]← 0

4: for j in tp between k-h and k+h do . Any time period within bandwidth
5: n← length(yj) . Number of observations at each time

6: b[j]← −n
2 log(sigma2)− 1

2sigma2
∑

yi∈tj (yi −mus[j])
2 . From MLE

7: return b · k.weights.matrix[:,k] . Multiply by the weights matrix
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Algorithm 8 Bandwidth Selection for Normal KLL with Variable Sigma

1: procedure Bandwidth Selection - Variable Sigma
2: raw are the raw estimates from the original data
3: y is original data, split by time points
4: tp is a list of time points
5: sigmas is the initial list of standard deviations for each time period
6: mus is the initial list of means for each time period

7: bw ← seq(1, 10, by = 0.05) . Assign list of bandwidths to be checked
8: opt.h← 0 . Initialize list to track error from LOOCV
9: max.iter ← 25 . Maximum number of iterations if convergence not met

10: tolerance← 1 . Tolerance level for convergence

11: for h in bw do
12: tot← 0 . Initialize error to 0 each iteration
13: mus.prev ← mus . Keep track of previous list of mus
14: iter ← 1 . Count number of iterations
15: Compute k.weights.matrix based on current h

16: while iter ≤ max.iter do
17: for k in tp do
18: mu← optimize Norm.mu function

. Norm.mu(mu,y,tp,sigmas,k.weights.matrix,k,h)
. Norm.mu function returns mu based on MLE
. Uses the most recently solved sigmas list (σ)

19: mus[k]← mu . Update mus with new mu

20: for k in tp do
21: s← optimize Norm.sigma function

. Norm.sigma(sigma,y,tp,mus,k.weights.matrix,k,h)
. Norm.sigma function returns sigma based on MLE

. Uses the most recently solved mus list (µ)
22: sigmas[k]← s . Update sigma with new s

23: if Norm(mus-mus.prev) ≤ tolerance then
24: break while loop . If convergence is met, break loop

25: iter ← iter + 1

26: for cv in tp do
27: mu← optimize Norm.mu.cv function

. Norm.mu.cv(mu,y,tp,sigmas,k.weights.matrix,cv,h)
. Norm.mu.cv function returns mu based on MLE

28: tot← tot+ (raw[cv]−mu)2 . Compute MSE from estimated mu

29: Append tot to opt.h . Error from all time points for current bw

30: return h with minimum error



4.5 Polynomial Expansion in Fixed and Variable Sigmas Al-

gorithms

Similar to Section 3.3, the previous algorithms can be adjusted to solve for higher degree polynomial

expansions. In Chapter 3, there was simply one parameter θ for the probability in a geometric

distribution which was expanded to higher degrees. In this chapter, this can be done for both

parameters in the normal probability model, in both instances of considering σ to be known or

allowing it to be variable. Local kernel log-likelihood estimation of the time-variant parameter µ(t)

(when σ(t) is known/fixed) requires to maximize

− 1

2σ2(t)

n∑
i=1

{
yi −

p∑
q=0

βq(t)(ti − t)q
}2

Kh(ti − t), (16)

where βq(t) = µ(q)(t)
q! ; 0 ≤ q ≤ p. Similarly, when µ(t) is known, estimation of the standard deviation

(σ(t)) can be obtained by maximizing

n∑
i=1

−1

2
log(

p∑
q=0

γq(t)(ti − t)q) +

n∑
i=1

− 1

2
{∑p

q=0 γq(t)(ti − t)q
}2

{
yi − µ(t)

}2

Kh(ti − t) (17)

where γq(t) = σ(q)(t)
q! ; 0 ≤ q ≤ p. When both parameters Θ(t) = (µ(t), σ(t)) are unknown, we can

simultaneously estimate equations (16) and (17) for the one-step smoothing of both parameters by

the proposed local kernel log-likelihood method.

4.5.1 Closed Form Solution

The problem of local least squares regression can be expressed in matrix notation. First recall that

in least squares regression, the sum of squares expression which is minimized can be expressed as

(y −Xβ)T (y −Xβ),

where y is an n× 1 response vector, X is an n× p design matrix and β is p× 1 coefficients matrix.

Further expanding this results in

yT y − yTXβ − βTXT y + βTXTXβ.

Using the fact that (βTXT y)T = yTXβ, the above reduces to

64



yT y − yTXβ − βTXT y + βTXTXβ

= yT y − 2yTXβ + βTXTXβ.

To minimize this, taking the derivative and setting the result to 0 gives a solution for β̂

d
dβ [yT y − 2yTXβ + βTXTXβ]

= −2yTX + 2XTXβ = 0

XTXβ = XT y

β̂ = (XTX)−1XT y,

provided that XTX is invertible. In cases where the matrix XTX is not invertible, a generalized

inverse can be used instead. In the weighted case there are very similar results. Beginning with the

weighted least squares function ∑n

i=1
wi(yi − xiβ)2

In matrix form, this is equivalent to:

(y −Xβ)TW (y −Xβ)

where W is the diagonal weights matrix (of size n × n with entries wi on the diagonal). Similarly

expanding this gives

yTWy − yTwXβ − βTXTwy + βTXTWXβ.

Lastly, differentiating yields a solution for β̂

d
dβ [yTWy − yTwXβ − βTXTwy + βTXTWXβ]

= −2XTWy + 2XTWXβ = 0

β̂ = (XTWX)−1XTWy.

This can be used to solve for µ(t) in both the fixed and variable sigmas methods. In the scenario

with fixed sigmas, the additional coefficient resulting from the standard deviation can be included in

the weight matrix W as a constant scale factor. In the procedure with variable sigmas, the iteration

when solving for µ(t) can be solved in this fashion, before alternating to the step where σ(t) is

expanded by a polynomial approximation, which can be solved with similar optimization techniques

as is the case for a polynomial expansion of θ(t) in Section 3.4.

65



4.6 Application Data

The application dataset comes from Londonair which is the website of the London Air Quality Net-

work (LAQN). The selected data is a measurement of the oxides of nitrogen in the air of Camden, a

borough of London. Oxides of nitrogen refer to various gases that are composed of nitrogen and oxy-

gen, including NO and NO2 (measured in micrograms/cubic meter). The collected data measures

the levels of oxides of nitrogen in 15 minute intervals from January 1, 2017 to Dec 31, 2017. We

take samples of roughly 30 readings per week (measurements made approximately every 5 hours)

to gather data which meets requirements of a normal distribution. Each time period undergoes and

passes the Shapiro-Wilk test of normality at 0.01 level of significance.

Results of the one and two-step procedures are shown in Table 4.1. Table 4.1 compares meth-

ods of the same degree for the polynomial expansion of µ, stratified further by the expansion of σ.

The first column indicates the degree of polynomial used in the expansion of µ, varying from 0 to 3.

The second column then indicates the degree of expansion of σ. For example, the S0 row indicates a

polynomial expansion of degree 0 for σ in the kernel log-likelihood for normal distribution. S1 then

indicates a degree 1 expansion, and so on. The row with ”One-Step” (no specification of S) represents

the one-step method with fixed sigmas. The mean error column is shown as a ratio of mean error

for the one-step procedures to the two-step procedure, stratified by the degree of the polynomial.

The best estimator column again shows the number of time points in which each method attains the

closest predictions. For degree 0 expansion of µ, we see that the two-step method performs the best,

with all the mean error ratios greater than 1. However, for all methods with a degree 0 expansion

of µ, the one-step method (with fixed sigmas) yields the most points with closest prediction with

19. For the degree 1 expansion of µ, the one-step method with degree 0 polynomial expansion of

σ yields the lowest mean error ratio. All one-step procedures with variable sigmas (again, denoted

with S0, S1, S2 or S3) yield improvements in the mean error. Similar results are seen with the degree

2 expansion of µ methods, with all one-step procedures with variable sigmas resulting in lesser mean

error. The degree 3 expansion of µ suggests the same pattern, with increasing degree of σ expansion

yielding small improvements in error reduction.
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Table 4.1: Mean Absolute Error Ratios on Application Data

Degree of Method Mean Error Best
Polynomial (µ) (Degree of σ) Estimator

Degree 0

Two-Step 1 13
One-Step 1.027 19

One-Step S0 1.001 3
One-Step S1 1.007 1
One-Step S2 1.014 5
One-Step S3 1.015 11

Degree 1

Two-Step 1 12
One-Step 1.145 13

One-Step S0 0.965 11
One-Step S1 0.972 3
One-Step S2 0.977 9
One-Step S3 0.987 4

Degree 2

Two-Step 1 11
One-Step 1.055 16

One-Step S0 0.939 7
One-Step S1 0.936 4
One-Step S2 0.934 6
One-Step S3 0.937 8

Degree 3

Two-Step 1 7
One-Step 1.036 20

One-Step S0 0.987 4
One-Step S1 0.979 2
One-Step S2 0.967 8
One-Step S3 0.964 11

What is evident from Table 4.1 is that increasing the degree of the polynomial expansion of σ

yields marginal improvements, at best, in the smoothing results. To better compare the two-step to

the one-step procedure, Table 4.2 shows side by side comparisons of which method produces more

accurate predictions at the majority of the 52 time points in this application data. Here we highlight

the two-step method and the one-step method with a degree 0 expansion of σ, again since higher

order expansion of σ doesn’t necessarily yield significant improvement. For degree 0 expansion of

µ, each method is the best estimator at half the points. For degree 1 expansion of µ, the one-step

method is the best estimator at 31 of the 52 time points. At its best, the degree 2 expansion of µ

yields better estimates at roughly two-thirds of the 52 time points for the one-step method over the

two-step method.
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Table 4.2: Comparison of One to Two-Step Methods on Application Data

Degree of Method Best
Polynomial (µ) (Degree 0 for σ) Estimator

Degree 0
Two-Step 26

One-Step S0 26

Degree 1
Two-Step 21

One-Step S0 31

Degree 2
Two-Step 17

One-Step S0 35

Degree 3
Two-Step 20

One-Step S0 32

Figure 4.1 visualizes what is seen in Table 4.1. Figure 4.1a depicts degree 1 polynomial expan-

sions of µ with varying expansions of σ. Besides the one-step method using fixed sigmas (denoted

by P1 in the figure), the remaining methods produce very similar smoothing results. The labels for

other methods remain consistent from the tables above; P1 S0 representing a polynomial of degree 1

for µ with degree 0 polynomial for σ, P1 S1 representing the same degree for the mean with a degree

1 polynomial for the standard deviation, and so on. For polynomial expansion of degree 2 of µ in

Figure 4.1b, a similar phenomenon is observed. Between Figure 4.1a and 4.1b, it again suggests that

higher order polynomials for µ perform better at the boundary points. This is further confirmed

in Figure 4.1c. Figure 4.1c shows the results of varying the polynomial expansion of µ (from 0 to

3) with constant degree 0 for σ. Many of the interior points have similar smoothing values, with

clear benefit at the boundary points with increased polynomial degree for µ. Figure 4.1d depicts

the same varying degrees of µ with constant degree 3 for σ. Smoothing results are almost identical

between Figure 4.1c and 4.1d, further confirming that a degree 0 expansion of σ yields the largest

incremental benefit in smoothing (from the fixed sigmas approach).
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(a) Comparison of Degree 1 Polynomials (b) Comparison of Degree 2 Polynomials

(c) Comparison of Increasing Degree of
Polynomial

(d) Comparison of Increasing Degree of
Polynomial with Higher Degree Sigma
Expansion

Figure 4.1: Smoothing Comparisons on Application Dataset



4.7 Simulations

4.7.1 Simulation Under Time Variant Variable Parameter

Again two simulation exercises are performed to now test the different smoothing techniques. In

the time variant variable parameter framework, we simulate a trend consisting of 50 time points

from a normal distribution with mean 250 and standard deviation 20. This trend is shown in Figure

4.2. With these fixed means, 50 replications of simulating 30 observations at each point (with its

respective mean) are performed and the mean MAD and MSE is measured at each time point after

smoothing the series with each technique. Table 4.3 shows the results of the ratios of mean absolute

deviation in comparing the one-step to the two-step methods. Results are generally mixed, with no

consistent trend between methods for degree 0 and 1 polynomial expansions of µ. For the degree

2 polynomial expansion of µ, the one-step methods consistently produce less mean absolute error

than the two-step method. Again, increasing degree of σ shows minimal gain in reducing the mean

error in this table. When comparing the two-step method to the one-step method with degree 0

expansion of σ in Table 4.4, similar to before, we see that the one-step procedure generally performs

just as well as the two-step procedure in a majority of the smoothed time points in the simulation

exercise, despite having slightly higher absolute error in some instances in Table 4.3.

Similar tables are created for the MSE ratios between two-step and one-step methods (Tables A.1

and A.2). While the one-step procedure performed comparably when comparing the mean absolute

error, the ratio of MSE indicates that the two-step method is slightly better with the exception of the

case with degree 2 polynomial expansion of µ. However, when comparing the raw number of points

in which each method is the ”best estimator” among the 50 time points in simulation, the one-step

method performs just as well as the two-step method for degree 0, 1 and 2 degree expansions of µ

(Table A.2).
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Figure 4.2: Trend for TVVP Simulation

Table 4.3: MAD Ratio in TVVP Simulation

Degree of Method MAD Ratio Best
Polynomial (µ) (Degree of σ) Estimator

Degree 0

Two-Step 1 13
One-Step 1.007 5

One-Step S0 1.002 5
One-Step S1 1.001 4
One-Step S2 0.992 16
One-Step S3 1.021 7

Degree 1

Two-Step 1 14
One-Step 1.001 3

One-Step S0 0.987 6
One-Step S1 1.007 6
One-Step S2 0.994 8
One-Step S3 1.022 13

Degree 2

Two-Step 1 14
One-Step 1.001 3

One-Step S0 0.986 1
One-Step S1 0.977 9
One-Step S2 0.973 12
One-Step S3 0.984 11

Degree 3

Two-Step 1 21
One-Step 1.009 4

One-Step S0 1.008 5
One-Step S1 1.008 1
One-Step S2 0.998 6
One-Step S3 0.996 13
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Table 4.4: Comparison of Methods - TVVP MAD Simulation

Degree of Method Best
Polynomial (µ) (Degree 0 of σ) Estimator

Degree 0
Two-Step 25

One-Step S0 25

Degree 1
Two-Step 23

One-Step S0 27

Degree 2
Two-Step 25

One-Step S0 25

Degree 3
Two-Step 29

One-Step S0 21



4.7.2 Simulation Under Time Variant Fixed Parameter

The second simulation is of a time variant fixed parameter. Data is simulated from a constant

mean with standard deviation 5 to generate these results. Unlike results from the previous section

where the one-step methods generally showed improvements in smoothing accuracy, the results in

Table 4.5 show that the two-step method performs much better in this simulation exercise. In all

instances, the two-step method (of same polynomial degree for µ) is superior to any of the one-step

methods. At best, the one-step method of same degree performs approximately 8% worse in MAD

ratios. Results when looking at the MSE ratios in Table A.3 are consistent to those of before, that

the one-step methods perform better when comparing the MAD rather than MSE.

Table 4.5: MAD Ratio in TVFP Simulation

Degree of Method MAD Ratio Best
Polynomial (µ) (Degree of σ) Estimator

Degree 0

Two-Step 1 46
One-Step 1.082 2

One-Step S0 1.084 0
One-Step S1 1.084 0
One-Step S2 1.085 1
One-Step S3 1.086 1

Degree 1

Two-Step 1 44
One-Step 1.098 1

One-Step S0 1.098 1
One-Step S1 1.098 0
One-Step S2 1.098 0
One-Step S3 1.099 3

Degree 2

Two-Step 1 49
One-Step 1.206 1

One-Step S0 1.202 0
One-Step S1 1.201 0
One-Step S2 1.200 0
One-Step S3 1.201 0

Degree 3

Two-Step 1 49
One-Step 1.216 1

One-Step S0 1.213 0
One-Step S1 1.213 0
One-Step S2 1.212 0
One-Step S3 1.212 0
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Chapter 5

Nonparametric Volatility

Estimation

5.1 Introduction

In economics, it is often of interest to model the variability, or volatility, of asset returns. While

traditional time series models assume a constant variance, in economic and financial time series,

one usually looks at stock returns which go through periods of high volatility followed by periods of

steady returns. The autoregressive conditional heteroscedastic (ARCH) model, first introduced by

Engle in 1982, allowed for the conditional variance to vary over time as a function of its lagged errors.

Since then, there have been many evolutions of the ARCH model and nonparametric counterparts.

Specifically, in this chapter we focus on two local regression techniques for volatility estimation: local

least squares and local composite quantile regression. We will compare our nonparametric method

to the GARCH method (discussed below), so we first discuss the evolution of autoregressive methods.

In 1982, Engle proposed an autoregressive model for heteroscedastic data, allowing the conditional

variance to vary over time as a function of its lagged errors. Let rt be the log return of an asset

at time t. Since the goal is to model the conditional variance of this series, define at = rt − µt be

the residuals of the series, after subtracting the mean of the series µt. Usually, µt can simply be

as the sample mean of the return series, but some other model (autoregressive or moving average

combination) can be used to remove the mean of the series. This series at is commonly referred to as
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the shock or innovation of an asset. The squared series of a2t can then be used to test for conditional

heteroscedasticity. The ARCH model attempts to model the dependence of at as a function of its

squared lag values. The ARCH model is defined as

σ2
t = α0 +

q∑
i=1

αia
2
t−i,

where at = σtεt, also referred to as shocks of the return series, with εt being an iid random variable

with mean 0 and standard deviation 1 and σt is the conditional standard deviation of the series at

time t (so σ2
t is the volatility), and constants α0 and αi non-negative. Early use of these ARCH

models gave rise to a generalized (GARCH) autoregressive conditional heteroscedastic model. Situ-

ations arose where many lagged periods would be required in the ARCH model, so Bollerslev (1986)

introduced the GARCH model as both a function of lagged errors (like ARCH) and additionally of

an autoregressive term on the conditional variance, defined below:

σ2
t = α0 +

q∑
i=1

αia
2
t−i +

p∑
j=1

βjσ
2
t−j ,

where again there are non-negativity constraints on the coefficients of the model. In practice, a

GARCH(1,1) model is usually sufficient for modeling the conditional variance (Hansen and Lunde

2001, Teräsvirta 2006, Füss 2007). Further building on the GARCH model, in 1991 Nelson proposed

an exponential GARCH model, defined as

ln(σ2
t ) = α0 +

q∑
i=1

αi
|at−i|+ δiat−i

σt−i
+

p∑
j=1

βj ln(σ2
t−j).

The exponential GARCH (EGARCH) model presents several advantages. Previously with ARCH

and GARCH, there were non-negativity constraints to ensure that the conditional variance was

positive. With the EGARCH model, this is no longer necessary with the logged conditional variance

being modeled, so positive shocks at−i can be treated differently than negative shocks (a positive

shock would have coefficient 1 + δi while a negative shock would have coefficient 1 − δi). If δi is

negative, then negative shocks have a larger impact on estimated volatility than positive shocks,

which is expected to occur and desirable to test (Tsay 2010). As an alternative and extension of

EGARCH, the GJR (named for the authors in Glosten, Jagannathan and Runkle in 1993) model
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expresses the variance as

σ2
t = α0 +

q∑
i=1

αia
2
t−i +

q∑
i=1

δS−t−ia
2
t−i +

p∑
j=1

βjσ
2
t−j ,

where S−t−i is an indicator variable for a negative asset shock. Bad news of a negative shock in this

model will have an impact of (α + δ), which is greater than the impact of a positive shock (simply

an effect of α). When δ > 0, a leverage effect for negative shocks exists (Dutta 2014).

Many other variations of GARCH exist, such as IGARCH, GARCH-M and TARCH, to name a

few (see Teräsvirta 2006). Dufays (2015) describes a class of Markov switching (MS-GARCH) mod-

els as alternatives to GARCH models since they may struggle to detect sharp increases in volatility.

These MS-GARCH models are of the form σ2
t−1 = α0 + αsta

2
t−1 + βstσ

2
t−1(s1:t−1) where the lagged

conditional variance term depends on an additional state variable st. This additional variable in-

dicates which parameters of the GARCH process are active at time t, allowing for a more robust

process to capture irregularites. Dufays develops a method of Bayesian inference for MS-GARCH

models with path dependence.

Nonparametric and semiparametric integrations with the GARCH model also exist. Wang et. al.

(2012) introduced a semiparametric GARCH approach with an additive autoregressive structure

(coined GARCH-ADD). The different component functions in the additive model are linked by a

parametric coefficient which can be estimated with polynomial splines. While a GARCH(1,1) model

only requires solving for two parameters, Giordano and Parrella (2016) point out some computa-

tional issues and propose a nonparametric N ARCH(1) model which does not need the secondary

covariate of a lagged variance term. Giordano rewrites the variance function as a nonlinear represen-

tation of the variance function from a GARCH(1,1) process which only depends on one lagged shock

term at−1, and can be solved for with local polynomials. To estimate this new representation, an

updated bandwidth selection from Giordano and Parrella (2014) is implemented for heteroscedastic

and autoregressive models.

Nonparametric regression techniques have also been developed to estimate the conditional vari-

ance function. Fan and Yao (1998) propose a residual based estimator to estimate the conditional

variance σ2(x) which requires two rounds of local least squares estimation. The first round of
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least squares regression models the mean and the second then takes the squared residuals from the

first round. Yu and Jones (2004) consider an expansion for log[σ2(x)] instead of σ2(x), to ensure

positivity of the variance estimates. Chen (2009) propose a slightly different estimator for the vari-

ance for the case of distributions with heavy tail, which is commonly seen in financial data. Xu

and Phillips (2011) proposed bypassing the second round of local least squares from Fan (1998)

by simply considering a reweighted local constant estimator of the squared residuals. Jin et. al.

(2014) present a method of jointly estimating the mean and variance with a multi-parameter lo-

cal likelihood model. Their method is able to adapt for an asymmetric error distribution. Local

composite quantile regression was introduced in 2010 by Kai and Li as an alternative to local least

squares regression. These local regression techniques require the additional selection of a bandwidth.

With their rise in popularity, other machine learning methods exist for modeling volatility. Luong

and Dokuchaev (2018) use a combination of classification and regression trees to estimate volatility.

They do so in two steps. First, they model the direction of change for the period (i.e. up or down)

using lagged predictors. Then, using this as an additional predictor, they perform a regression tree

to compute estimates for realized volatility. Feedforward artificial neural networks can also be used

for volatility estimation (see Johnsson 2018 and Arnerić et. al. 2018).

Our plan is to combine the ideas of Fan and Yao (1998) with those of Kai and Li (2010) to create a

residual based local composite quantile regression method for estimation of volatility. More details

on these will follow in Section 5.2 and 5.3. Then we discuss the method for choosing the bandwidth

for the nonparametric methods, after which we compare the methods in training and forecasting on

daily stock closing prices for 990 firms.

5.2 Residual Based Estimator

Fan and Yao (1998) proposed a residual based estimator to model the conditional variance. In this

paper, they compare this residual based estimator to a direct estimator and the ”benchmark” esti-

mator. Details of these three estimators are given below.

Let {(Yi, Xi)} be a stationary process where m(x) = E(Y |X = x) and σ2(x) = var(Y |X = x).

The regression model can be written as Yi = m(Xi) + σ(Xi)εi. The direct estimator arises from the
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decomposition of the variance as σ2(x) = E(Y 2|X = x)−m2(x). The direct estimator σ̂2
d(x) can be

found as:

σ̂2
d(x) = v̂(x)− m̂2(x)

where m̂(x) and v̂(x) are estimators for m(x) and v(x) ≡ E(Y 2|X = x), respectively. Some of the

issues with this estimator are that σ̂2
d(x) is not necessarily guaranteed to be nonnegative, depending

of choice in smoothing parameters when calculating m(x) and v(x), and the direct method can lead

to high bias.

The benchmark estimator is defined by Fan and Yao to be the estimator resulting from a regression

function where m(x) is given. Here, σ2(x) can be estimated as a nonparametric regression function

as such:

(α̂, β̂) = argmin
α,β

n∑
i=1

{ri − α− β(Xi − x)}2K(
Xi − x
h1

) (18)

where ri = {Yi − m(Xi)}2. The benchmark local linear estimator of σ2(x) is σ̂2
b (x) = α̂. When

m(x) is unknown, which is the likely scenario, the residuals are computed after a nonparametric

regression estimator is calculated for m(x). The first step results in m̂(x) = â, which is the local

linear estimator from the following least squares problem:

(â, b̂) = argmin
a,b

n∑
i=1

{Yi − a− b(Xi − x)}2K(
Xi − x
h1

) (19)

where K(.) is a nonnegative kernel function and h1 > 0 is a bandwidth. The squared residuals

from the above equation are denoted as r̂i = {Yi − m̂(Xi)}2. With these residuals, the estimate for

variance can be computed with the same least squares problem in Equation 18, using the squared

residual r̂i from Equation 19:

(α̂, β̂) = argmin
α,β

n∑
i=1

{r̂i − α− β(Xi − x)}2K(
Xi − x
h2

) (20)

where h2 is another bandwidth. The residual based estimator for variance is σ̂2 = α̂. Fan and Yao

showed that this residual based estimator is more efficient than the direct estimator (with efficiency

gains of up to 70%), and that asymptotically it performs as well as the benchmark estimator, so it

is an efficient estimator for the case of an unknown regression function m(x).
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5.3 Local Composite Quantile Regression

Local polynomial regression has been extensively covered by Fan and Gijbels since 1996. While the

least squares method is popular and relatively easy to implement, other local methods may perform

better, such as in the presence of outliers. In 2008, Zou and Yuan first introduced composite

quantile regression as an alternative to least squares regression. Kai and Li (2010) then introduced

local composite quantile regression (CQR) as a nonparametric alternative for estimating a regression

function. Let

ρτk =


τkr r ≥ 0

r(1− τk) r < 0

for k = 1, 2, . . . , q be q check loss functions for q equally spaced quantile positions τk = k
q+1 . CQR fits

q quantile regressions with the same slope. The locally weighted CQR model requires minimizing:

(â1, â2, . . . , âq, b̂) = argmin
a,b

q∑
k=1

n∑
i=1

ρτk{yi − ak − b(xi − x)}K(
xi − x
h

) (21)

The average of âq are then taken to create the nonparametric estimate of m̂(x), and, if interested

in the derivative of our nonparametric function, use b̂ from Equation 21.

m̂(x) =
1

q

q∑
k=1

âk

m̂′(x) = b̂

(22)

In their paper, Kai and Li compare local CQR to local least squares (for estimating the mean m(x)

rather than the variance) leads to efficiency gains in relative MSE ratios. In their simulations, they

find that for a normally distributed error distribution, local least squares is best. Under several

non-normally distributed error distributions, the local CQR method outperforms local least squares.

Our plan is to combine the residual based estimator of Section 5.2 with the local CQR method of

this section to create a new estimator for the conditional variance function (residual based local

CQR method).
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5.3.1 Asymptotic Properties

Kai and Li also develop some asymptotic results to demonstrate that local CQR is an efficient

alternative to local least squares regression. First, for local least squares regression (denoted LLS):

bias{m̂(x)LLS |X} =
1

2
m′′(x)µ2h

2 + op(h
2) (23)

var{m̂(x)LLS |X} =
1

nh

ν0 σ
2(x)

fX(x)
+ op(

1

nh
) (24)

where µi and νj are defined as the moments of the kernel density function K and the squared kernel

density function, respectively, µi =
∫
uiK(u)du and νj =

∫
ujK2(u)du, for i, j = 0, 1, 2, . . .. The

bias and variance of the CQR method is:

bias{m̂(x)CQR|X} =
1

2
m′′(x)µ2h

2 + op(h
2) (25)

var{m̂(x)CQR|X} =
1

nh

ν0 σ
2(x)

fX(x)
R1(q) + op(

1

nh
) (26)

The term R1(q) arises in the variance for CQR, which is defined below as

R1(q) =
1

q2

q∑
k=1

q∑
k′=1

τkk′

f(ck)f(ck′)
(27)

where τk are the q quantiles, ck = F−1(τk) and τkk′ = min(τk, τk′)− τkτk′ . The denominator terms

f(ck) and f(ck′) denote the density function of the error distribution and can be estimated through

nonparametric density estimation of the residuals, discussed later. Combining both the bias and

variance into MSE:

MSE{m̂LLS(x)} =
{1

2
m′′(x)µ2

}2

h4 +
1

nh

ν0 σ
2(x)

fX(x)
+ op

(
h4 +

1

nh

)
(28)

MSE{m̂CQR(x)} =
{1

2
m′′(x)µ2

}2

h4 +
1

nh

ν0 σ
2(x)

fX(x)
R1(q) + op

(
h4 +

1

nh

)
(29)

which is the sum of the squared bias and the variance. The optimal bandwidths for each of LLS and

CQR can be computed by minimizing the MSE, and by taking a ratio of the optimal MSE’s, we get

the result that

hoptCQR = R1(q)1/5 hoptLLS (30)
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so the optimal bandwidth for the CQR method can be computed by finding the optimal bandwidth

for LLS, and scaling it by a factor of R1(q)1/5. Therefore, when R1(q)1/5 < 1, the bandwidth for

CQR will be smaller than that for LLS, and the opposite is true when R1(q)1/5 > 1.

With this optimal bandwidth, the optimal MSE for CQR and LLS can be compared, and as n

approaches ∞, the ratio of MSE’s is connected by the term R1(q)

MSEopt{m̂LLS(x)}
MSEopt{m̂CQR(x)}

→ R1(q)−4/5. (31)

5.3.2 Asymptotic Properties for Residual Based CQR

Using the previous sections, we attempt to develop the asymptotic results for the two step residual

based CQR method we propose. Begin again with the nonparametric regression in the first step:

Y = m(X) + σ(X)ε (32)

with m(x) = E(Y |X = x), σ2(x) = E(Y 2|X = x) − m2(x) and ε = Y−m(X)
σ(X) having mean 0 and

variance 1. Let m̃(x) be the estimate of m(x). In the second step of the two-step residual approach,

we now model the squared residuals (Y − m̃(X))2 as

(Y − m̃(X))2 = r(X) + σ̃(X)ε̃ (33)

where r(x) is the conditional mean of the squared residuals and error term σ̃(X)ε̃ similar to the

error term from Equation 32, with a distinction in notation to show that it is for the second step.

Like the definition of m(x) in Equation 32, r(x) can be expressed as the conditional expectation of

the squared residual:

r(x) = E((Y − m̃(X))2|X = x)

= E(Y 2|X = x)− 2E(Y m̃(X)|X = x) + E(m̃2(X)|X = x)

= σ2(x) +m2(x)− 2m̃(x)m(x) + m̃2(x)

= σ2(x) + (m(x)− m̃(x))2.

(34)
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This representation above shows that r(x) is the sum of the variance and squared bias of the original

response variable Y. Similarly, σ̃2(x) can be written as the conditional expectation below:

σ̃2(x) = E((Y − m̃(X))4|X = x)− r2(x) (35)

Let r̃ be an approximation of r(x), the bias of r̃(x) (coming from Equation 25)

Bias[r̃(x)|X] =
1

2
r′′(x)µ2h

2 + op(h
2) (36)

and variance (from Equation 26)

V ar[r̃(x)|X] =
1

nh

ν0 σ̃
2(x)

f̃X(x)
R̃1(q) + op

( 1

nh

)
(37)

where R̃1(q) is calculated similarly to Rq(q), but for the second step.

5.4 Bandwidth Selection

To implement the residual based local least squares and local CQR methods, bandwidths must

first be selected for each nonparametric regression. Ruppert, Sheather and Wand (1995) give three

methods for bandwidth selection in local least squares polynomial regression. These methods are

referred to as plug-in methods, as they estimate functionals in the asymptotically optimal band-

width in kernel density estimation. The MISE-optimal bandwidth has the following asymptotic

approximation:

hMISE ≈
(

(p+ 1)(p!)2R(Kp)
∫
S
v(x) dx

2µp+1(Kp)2
∫
S
m(p+1)(x)2f(x) dx n

)1/(2p+3)

(38)

Methods for selecting the bandwidth rely on approximations for the integrals in equation 38. When

errors are homoscedastic, the numerator will be replaced with a local approximation for variance and

the denominator will be replaced with an approximation for the mean regression function. Ruppert

gives a solution for a plug-in (referred to also as the rule of thumb bandwidth, or ROT) bandwidth

with the MISE-optimal bandwidth for the local linear kernel estimator:

hROT = C1(K)

(
σ2(b− a)

θ22 n

)1/5

(39)
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where C1(K) =
[ R(K)
µ2(K)2

]1/5
, which is a kernel-dependent constant. The term in denominator is

defined as:

θrs =

∫
m(r)(x)m(s)(x)f(x) dx (40)

where r, s ≥ 0 and r+ s is even. Detailed by Ruppert, to create an estimate of θrs (here r, s=2 will

be used), a least squares blocked quartic approach can be used. Begin by partitioning the data into

N subgroups, or blocks (where the independent ”X” variable is sorted in increasing order). Each

block is to contain the same amount of data points, instead of dividing the range into equal widths.

With N as the number of subgroups, define χj be the jth subsample of the ordered x′is. If N divides

the total number of observations n, then each subgroup χj will have equal sample size; otherwise,

the observations can be rounded off in a way to have each subgroup of roughly the same size. In

the blocked quartic regression, a degree 4 polynomial is fit on each of the N subgroups of data.

Applying Equation 40 to each of the χj subgroups yields Equation 41. The first summation is for

the blocked quartic regression across each of the j groups and the second takes the x′is from the jth

subgroup, indicated by the bolded 1 with subscript in the equation.

θ̂Qrs(N) =
1

n

N∑
j=1

n∑
i=1

(m̂Q
j )(r)(xi)(m̂

Q
j )(s)(xi)1(Xi∈χj) (41)

A blocked quartic estimate of the variance is also used, written in Equation 42

σ̂2
Q(N) =

1

n− 5N

N∑
j=1

n∑
i=1

{Yi − m̂Q
j (Xi)}21(xi∈χj) (42)

To choose the number of subgroups N , Mallow’s Cp (1973), used to assess fit in regression models,

gives a good solution, with some modification to the blocked regression design which is used. The

N (which ranges from 1, 2, . . . , Nmax) to be used should minimize:

RSS(N)

RSS(Nmax)/(n− 5Nmax)
− (n− 10N), (43)

where RSS(N) is the residual sum of squares based on the blocked quartic regression with N

subgroups. Equation 44 gives a way to choose Nmax:

Nmax = max(min(bn/20c, N∗), 1), (44)
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with N∗ being an integer chosen to be 5. Higher choices of N∗ would allow for more subgroups

being chosen, resulting in finer estimates on smaller blocks of data (each χj subsample would have

fewer observations). Additional details for Equations 41 and 42 follow.

In implementing Equation 41, the form of the mean regression function m(x) on each subgroup

χj is a 4th degree polynomial resembling:

m̂Q
j (x) = β̂0j + β̂1j xi + β̂2j x

2
i + β̂3j x

3
i + β̂4j x

4
i .

Equation 41 can then be written as shown below:

θ̂Q22(N) =
1

n

N∑
j=1

n∑
i=1

(m̂Q
j )(2)(xi)(m̂

Q
j )(2)(xi)1(Xi∈χj)

=
1

n

N∑
j=1

jn/N∑
i=(j−1)n/N+1

(
2β̂2j + 6β̂3j xi + 12β̂4j x

2
i

)2
.

The coefficients of 2, 6 and 12 on the terms β̂2j , β̂3j and β̂4j , respectively come from the 2nd derivative

of the function, while the β̂0j and β̂1j terms vanish. These coefficients are computed for each of

the subgroups (denoted with the additional j subscript) with their respective subset of the data.

Similarly, for σ2
Q:

σ̂2
Q(N) =

1

n− 5N

N∑
j=1

n∑
i=1

{Yi − m̂Q
j (Xi)}21(xi∈χj)

=
1

n− 5N

N∑
j=1

jn/N∑
i=(j−1)n/N+1

(
yi − β̂0j − β̂1j xi − β̂2j x2i − β̂3j x3i − β̂4j x4i

)2
.

Again, each N in the range (1, 2, . . . , Nmax) is checked to see which results in minimum RSS(N).

With both θ̂Q22(N) and σ̂2
Q(N), the rule of thumb bandwidth in Equation 39 can be found (Schindler

2011).

The steps for the residual based CQR (or LLS) are summarized below:

1. Compute bandwidth hROT (Equation 39 in Section 5.4) for LLS.

2. Fit LLS with hROT and compute estimates for the density function of the error distribution
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for R1(q) (Equation 27 in Section 5.3.1).

3. For LLS, the bandwidth to be used is hROT from Step 1. For CQR, scale the bandwidth for

LLS by a factor of R1(q)1/5.

4. Compute squared residuals (Y − m̃(x))2 from first non-parametric regression, either with LLS

or CQR.

5. Treat the squared residuals from Step 4 as the new response variable for the second step.

Recompute the bandwidth hROT (Step 1) and R1(q) (Step 2), keeping the same covariate in

the second step.

6. Perform another round of LLS or CQR on the squared residuals, resulting in the estimated

volatility.

5.5 Calculating Volatility for Model Assessment

We will be modeling the monthly volatility with the proposed method of residual based local CQR

and compare it to both a local least squares and GARCH(1,1) model. The data for application of

the methods are daily returns for 990 firms. The monthly volatility is what will be considered for

modeling. To aggregate the daily return data to a monthly return, we take the natural logarithm of

the price of the first trading day in the month subtracted from the natural logarithm of the price

of the last trading day in the month. Logarithmic (log) returns are commonly used (Tsay 2010,

Miskolczi 2017) due to additivity when dealing with multi-period returns. A multi-period return

can be written as a product of the individual period returns. Log returns are instead time additive

(i.e. the log of a product becomes the sum of the logs).

As stated before, the log returns will be used to model the monthly volatility. However, the ac-

tual volatility is not observable, making it difficult to quantify. We use a method by Tsay (2010) to

measure the volatility of the returns data. Monthly volatility can be estimated by

V ar(rt) = nV ar(rt,1) + 2(n− 1)Cov(rt,i, rt,j),

where rt is the tth month log return, rt,i is the ith daily return in month t. This can be estimated

by

σ̂2
m = n

n−1
∑n
i=1(rt,i − r̄t)2 + 2

∑n−1
i=1 (rt,i − r̄t)(rt,i+1 − r̄t),
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which accounts for the variability of daily returns within each month. Predictions made for volatility

using the models described in previous sections will be compared to these estimates of the actual

volatility.

5.6 Results

The residual based local CQR and local least squares (LLS) are tested on monthly returns of 990

firms. These will be referred to as CQR and LLS, respectively, in tables of the results section.

Data comes from the Center for Research in Security Prices (CRSP). In total there are 192 monthly

returns for each firm, from January of 2000 to December of 2015. We first apply local CQR and LLS

to each firms’ series using 4 different predictors as our independent (X) variable: lagged monthly

return, de-meaned lagged monthly return, S&P index returns, and a volatility index series. With

each of these predictors, both methods are applied and compared to see how predictions perform

on both a training and one-step forecasting periods. Data is split to have roughly 2/3 of the 192

months for training and the remaining for forecasting. Predictions are compared to the realized

volatility which is estimated using the method described previously. Error is compared using both

mean squared and mean absolute error on the training and forecasting periods with each method.

Let m̂(xm) be the estimated volatility for month m from the second round of the residual based

estimation and σ2
m be the realized volatility from month m. The mean squared error (MSE) is

defined as

1

n

n∑
m=1

(σ2
m − m̂(xm))2

Similarly, the mean absolute deviation (MAD) is simply the mean of the absolute errors

1

n

n∑
m=1

|σ2
m − m̂(xm)|

To summarize the results, Table 5.1 aggregates which method (CQR or LLS) performs better across

the 4 models (one model for each predictor used) shown in Table 5.2. For example, when comparing

the MSE in training, CQR is outperformed by LLS in both raw number of firms and the overall

mean error (last 2 columns of Table 5.1) across all 4 models. Table 5.1 depicts this with a 0/4,

favoring LLS in all 4 cases. In terms of CQR MAD in training, CQR is best in a majority of firms
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for all models except the VIX series (so 3/4 for raw number of firms), and produces lesser MAD in

all 4 models (4/4). The same explanation goes for the forecasting periods.

Table 5.1: Summary of MSE and MAD Results with Epanechnikov Kernel

Train/Forecast Metric Raw Number of Firms Error for Metric

Training
CQR MSE 0/4 0/4
CQR MAD 3/4 4/4

Forecasting
CQR MSE 3/4 1/4
CQR MAD 4/4 4/4

We next investigate each of the 4 models more closely. The first series used is a lagged (1) monthly

return series of the individual firms. In Table 5.2, the results for both MSE and MAD are shown

on each of the training and forecasting data. For example, the MSE on the training data for LLS

method using the lagged (1) series is shown by the 0.00151 in the ”Error for Metric” column. This

is the MSE across predictions on the training data for all 990 firms. Similarly, the MSE for the

990 firms’ training data using CQR method is 0.00158. In addition to the MSE, the Best (of 990)

column shows the number of the 990 firms in which LLS performs better than CQR. We can see

that when comparing MSE on the training data using the lagged (1) series, the volatility of 883 of

the 990 firms is more closely estimated by LLS than CQR. Conversely, 107 of the firms are more

closely estimated when using CQR (the pairs of numbers will always add to 990). In the forecasting

period, we can see that CQR performs better than LLS (in 653 to 337 firms, again when comparing

MSE). When looking at the MAD, we can see that CQR performs better both in training (676 to

314) and in forecasting (854 to 136), with lower MAD error in each. Error in both training and

forecasting is lower for CQR when comparing the MAD. Intuitively, it makes sense that looking at

MAD in addition to MSE would benefit the CQR method as the penalty in CQR is also the least

absolute deviation.

In the second series, instead of applying the two-step methods, the mean of each firms’ series is first

subtracted from the monthly returns (referred to as the de-meaned series). Then, these values are

squared and used as the squared residuals for the second step in which another round of CQR or

LLS is performed (in effect, the first step of estimating the mean has been reduced by subtracting
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Table 5.2: MSE and MAD Results with Epanechnikov Kernel

Model Metric Train/Forecast Method Best (of 990) Error for Metric

Lagged (1) Series

MSE
Training

LLS 883 0.00151
CQR 107 0.00158

Forecasting
LLS 337 0.00047
CQR 653 0.00100

MAD
Training

LLS 314 0.01417
CQR 676 0.01324

Forecasting
LLS 136 0.00984
CQR 854 0.00777

De-meaned Series

MSE
Training

LLS 838 0.00149
CQR 152 0.00153

Forecasting
LLS 289 0.00179
CQR 701 0.00377

MAD
Training

LLS 203 0.01435
CQR 787 0.01313

Forecasting
LLS 131 0.01110
CQR 859 0.01028

S&P Series

MSE
Training

LLS 819 0.00149
CQR 171 0.00155

Forecasting
LLS 470 0.00069
CQR 520 0.00069

MAD
Training

LLS 409 0.01399
CQR 581 0.01344

Forecasting
LLS 223 0.00980
CQR 767 0.00805

VIX Series

MSE
Training

LLS 810 0.00153
CQR 180 0.00160

Forecasting
LLS 499 0.00127
CQR 491 0.00191

MAD
Training

LLS 502 0.01386
CQR 488 0.01360

Forecasting
LLS 359 0.00957
CQR 631 0.00940

the overall mean first). The lagged de-meaned log return series is then again used as the predictor

in LLS and CQR. Results are similar to the lagged (1) series, with LLS performing better in the

training set when considering the MSE (838 to 152), but performing worse in forecasting (701 to

289 in favor of CQR). When comparing the MAD, CQR is superior in predicting volatility for a
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vast majority of the firms in both training (787 to 203) and forecasting (859 to 131). If wanting

to compare these two methods, the two-step residual based method generally produces less error

in forecasting than when removing the mean and running one round of LLS or CQR. For instance

when comparing MAD, the lagged (1) series produces approximately 11% and 24% less error for

LLS and CQR, respectively, than the corresponding de-meaned series. Otherwise in training, the de-

meaned series produces slightly less error than the lagged (1) series when comparing MSE (0.00149

vs. 0.00151 for LLS and 0.00153 vs. 0.00158 for CQR) or the MAD for CQR (0.01313 vs. 0.01324).

In the next series, the S&P log return index is used as the predictor for volatility. With MSE

as the metric for comparison, LLS performs better in training (819 to 171), but CQR is best in fore-

casting (520 to 470). With respect to the MAD, results in both training (581 to 409) and forecasting

(767 to 223) are in favor of CQR. The lower mean error is consistent with which method performs

best at a majority of firms.

Lastly, a volatility index (VIX) is used as the predictor for volatility. The VIX is an index de-

rived from S&P 500 index options which is designed to measure 30 day market volatility. For MSE,

LLS is superior in training (810 to 180) while the mean error is very close (0.00153 to 0.00160).

For forecasted points, LLS is best but by a very small margin (499 to 491); however, mean error is

substantially smaller for LLS. This is likely attributable to several firms with large mean squared

errors, as evidenced by looking at the MAD which points in favor of CQR in the forecast period.

With respect to the MAD, LLS performs better in a majority of the firms in training by a slim

margin (502 to 488), albeit with 2% more mean error. In forecasting, CQR is again superior (631

to 359), with a small decrease in mean error across all firms.

Table 5.2 shows results for an Epanechnikov kernel. Results for using a Gaussian kernel are shown

in Table A.4 of the Appendix. Results for Gaussian kernel are largely similar to that of using an

Epanechnikov kernel; there is almost always agreement in which method (CQR or LLS) performs

best in a majority of the firms for each combination of model and training/forecast period of the

data. The use of a Gaussian kernel favors CQR even more in some instances. For example, the Gaus-

sian kernel for the lagged (1) and Vix series gives even more favorable results for CQR than when

using an Epanechnikov kernel. On the other hand, the Epanechnikov kernel yields more favorable

results for CQR with the S%P series. The choice of method is more indicative of the performance
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than the choice of kernel.

5.7 Comparison to GARCH

In addition to comparing the CQR method to LLS, we would also like to compare how CQR performs

to a GARCH(1,1) model. The GARCH(1,1) process is first simulated with a rolling forecast, where

one-step ahead predictions are made at each point in the forecast period. That is to say, the forecast

at period t + 1 is made with information up to period t, and the forecast at period t + 2 is then

made with returns until period t+1, and so on. We test how these two methods perform at different

training and forecasting periods. Month 110 on the x-axis corresponds to March of 2009, where the

Dow Jones hit its lowest point during the recession of 2008. We try 4 different cutoff points for

the end of the training period (beginning of forecasting): month 90, month 100, month 110, and

month 120. These are labeled accordingly in the tables and figures, with a vertical line signifying

the beginning month of forecasting. In all the figures, the blue line represents predictions from

CQR and the red line represents predictions from GARCH. Figure 5.1 shows a firm which exhibits

high volatility in the period from months 90 to 130. It can be seen that when forecasting begins

in month 90 in Figure 5.1a, both models capture an increase in volatility. The CQR model largely

predicts low volatility, with the exception of 3 large (yet short lived) spikes in predicted volatility.

When forecasting begins in month 100 (shown in Figure 5.1b), both models again predict spikes

during the volatile periods, with CQR continuing to predict periods of high volatility throughout

the forecast period. Figures 5.1c and 5.1d show similar results when forecasting begins in months

110 and 120, respectively, with both capturing spikes in volatility around between months 110 to

120. The GARCH predicted volatility then tends to decrease throughout the forecast period, while

CQR continues to predict several periods of sustained volatility. In all instances for Figure 5.1,

GARCH produces less error than CQR.

Figure 5.2 similarly shows the difference in forecasts depending on which month is chosen for the

start of the forecast period. Overall, the GARCH method performs better than CQR in both train-

ing and forecasting. However, CQR predicts larger spikes in volatility in the period of month 10 to

20 for this firm. The GARCH model creates a smooth estimate of sustained volatility, while CQR

produces a sustained period of volatility with many spikes. For this firm, there is a small spike in
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(a) Forecasts at Month 90 (b) Forecasts at Month 100

(c) Forecasts at Month 110 (d) Forecasts at Month 120

Figure 5.1: CQR vs. Garch Comparison Firm 647

volatility around month 110, followed by a rather calm period with very few jumps in volatility. The

CQR forecasts capture some of the spikes in the forecast period, but are generally overestimating

this firm’s realized volatility, while GARCH predicts a steady period of volatility.

Figure 5.3 shows an asset return series for firm 109, which exhibits high volatility early in the asset

return history and also during the noted time of the recession. All plots in Figure 5.3 show similar

results from GARCH and CQR. CQR seems to do a better job than GARCH in capturing a short

spike around month 110. There are infrequent and short lived jumps in realized volatility for this

firm and the GARCH model is unable to capture them. In all 4 instances, CQR produces less error

in forecasting, but slightly more error in training.

Figure 5.4 shows another asset return series for firm 684. In this instance across the 4 figures, CQR

performs better in forecasting while GARCH does better in training. In Figure 5.4a with forecasting

beginning at month 90, both methods predict spikes in volatility around month 110, followed by a
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(a) Forecasts at Month 90 (b) Forecasts at Month 100

(c) Forecasts at Month 110 (d) Forecasts at Month 120

Figure 5.2: CQR vs. Garch Comparison Firm 511

sharp decline in volatility. Figures 5.4b and 5.4c exhibit similar patterns. In all of these subfigures,

CQR predicts a spike in volatility at month 80 which GARCH does not capture. In Figure 5.4d

where forecasting begins in month 120, the GARCH model looks largely the same in both training

and forecasting periods. The CQR model predicts spikes in volatility at the same periods as before,

but in much smaller magnitude in Figure 5.4d. This can be attributable to one of several possible

reasons. First, the inclusion of additional points in the training portion of the data can introduce

new values which dampen the predicted volatility at the points of interest. If the new data lies in

the local neighborhood surrounding, for instance, month 80, then these values could greatly impact

the prediction which is made at this point. Additionally, the size of the bandwidth which is chosen

after the inclusion of more data in the training of the model can dampen the effect of large spikes

in realized volatility.

Results across all 990 firms are shown in Table 5.3. The MSE and MAD ratios are shown for both

training and forecasting periods for each of the 4 starting points for the forecast period (month 90,
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(a) Forecasts at Month 90 (b) Forecasts at Month 100

(c) Forecasts at Month 110 (d) Forecasts at Month 120

Figure 5.3: CQR vs. Garch Comparison Firm 109

100, 110, 120). Again, the Best column reflects which method (GARCH or CQR) performed better

in a majority of the individual firm series, and the last column shows the corresponding MSE or

MAD across all firms using the combination of metric/methods. It can be seen that when forecasting

begins in month 120, the CQR method performs better in forecasting MAD error in a majority of

firms (546 to 444). For forecasts beginning in month 110, CQR performs comparably to GARCH,

but not in a majority of firms (433 to 557), although producing less mean error (0.00927 to 0.01001).

For forecasting beginning in month 90 or 100, GARCH is superior, with close to 90% majorities in

number of firms and superior error in each category. From the 4 figures, we can see that the GARCH

model generally does well in training, but in some cases worse in forecasting. CQR is able to capture

large spikes in volatility, but only in small periods. Predictions for CQR are generally steady with

occasional large spikes while the GARCH model produces a more smooth estimate to the volatility,

resulting in overall less error when comparing the estimates to realized volatility. CQR performs

local regression on the squared residuals from a previous round of local regression. When there are

large residuals, there will also be a large estimated volatility. A GARCH model makes predictions
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(a) Forecasts at Month 90 (b) Forecasts at Month 100

(c) Forecasts at Month 110 (d) Forecasts at Month 120

Figure 5.4: CQR vs. Garch Comparison Firm 684

based on previous shocks in the log return series, so a previous large value generally leads to another

large prediction (and a previous small value similarly generally leads to another small value). With

the CQR model, the predictions are not made with the previous value of the series in mind, but

with the local region around the current value of the predictor ”x” variable. If large log returns tend

to have larger residuals, then estimates in those local regions will lead to higher volatility. But a

larger log return will not necessarily lead to larger estimated volatility. One advantage of CQR is

exhibited in Figure 5.4, near month 80. GARCH is unable to capture a sudden spike in volatility

while CQR does. As stated before, GARCH creates smooth estimates, where the next prediction

is made off the previous value(s). It would be unlikely to see a large jump in a predicted volatility

when the surrounding data is comprised of periods of low volatility. As seen in Figure 5.4, GARCH

does not predict a huge increase at the point near month 80. With CQR, however, performing local

regression, it is possible to detect a large spike in a small local neighborhood of a point. Something

similar was seen in Figure 5.3, where CQR was able to capture several spikes in volatility in between

months 110 and 120, but GARCH did not. CQR is more robust to sudden events of high impact
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than GARCH.

Table 5.3: GARCH vs. CQR - MAD and MSE in Training and Forecasting for Varying Starting
Months

Start of Forecast Metric Train/Forecast Method Best (of 990) Error for Metric

Month 90

MSE
Training

GARCH 917 0.00089
CQR 73 0.00112

Forecasting
GARCH 944 0.00096

CQR 46 0.00212

MAD
Training

GARCH 850 0.00986
CQR 140 0.01107

Forecasting
GARCH 902 0.00972

CQR 88 0.01313

Month 100

MSE
Training

GARCH 925 0.00087
CQR 65 0.00107

Forecasting
GARCH 939 0.00095

CQR 51 0.00237

MAD
Training

GARCH 828 0.00991
CQR 162 0.01093

Forecasting
GARCH 873 0.00976

CQR 117 0.01276

Month 110

MSE
Training

GARCH 893 0.00130
CQR 97 0.00156

Forecasting
GARCH 840 0.00040

CQR 150 0.00206

MAD
Training

GARCH 753 0.01208
CQR 237 0.01294

Forecasting
GARCH 611 0.00827

CQR 379 0.00927

Month 120

MSE
Training

GARCH 880 0.00132
CQR 110 0.00158

Forecasting
GARCH 721 0.00024

CQR 269 0.00120

MAD
Training

GARCH 720 0.01263
CQR 270 0.01339

Forecasting
GARCH 472 0.00692

CQR 518 0.00747
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5.7.1 Comparison to N-Step Ahead Forecasts

In another exercise to compare GARCH to CQR, we perform GARCH forecasts with a window of

the entire forecasting period. That is, there are no longer rolling forecasts, and the entire window

is forecasted without updating the previous periods’ returns. Figure 5.5 shows n-step forecasts

beginning at each of months 90, 100, 110 and 120. This is for the same firm seen in Figure 5.1. It

can be seen that when forecasting begins in month 90 in Figure 5.5a, the GARCH model performs

very poorly at predicting any spikes in volatility. The CQR model largely predicts low volatility,

with the exception of 3 large (yet short lived) spikes in predicted volatility. A similar picture is shown

in Figure 5.5b, where the GARCH volatility predictions are fairly constant and the CQR method

forecasts several longer sustained spikes in volatility around months 120 and 130. When forecasting

begins in month 110 in Figure 5.5c, the CQR method again accurately predicts some periods of

sustained volatility, while the GARCH method predicts a huge increase in volatility which doesn’t

return to normal. Something similar is again seen in Figure 5.5d where the GARCH model predicts

a continued increase in volatility from month 120 and on, while CQR predicts several periods of

sustained volatility.

Figure 5.6 similarly shows the difference in forecasts depending on which month is chosen for the

start of the forecast period. Overall, the GARCH method performs better in Figures 5.6a and 5.6b

in both training and forecasting.However, CQR predicts larger periods of volatility around month

110, which corresponds to the worst times of the 2008 recession. Predictions on the training portions

of Figures 5.6c and 5.6d are similar, but GARCH performs worse in forecasting periods than CQR.

Both methods capture the period of high volatility in the beginning of the series, with CQR seeming

to give more versatile results in the different lengths of forecasting periods.

From the 2 figures, a pattern that emerges is that the GARCH models perform relatively well

in the training periods, but begin to struggle in forecasting periods of high volatility. The autore-

gressive model tends to overestimate the future volatility when beginning the forecast in a period

of high volatility. In some instances, it even predicts volatilty to increase at what appears to be

an exponential rate. The CQR method, on the other hand, creates stable predictions around the

periods of high volatilty, even when the forecast begins 10-20 months before the increase. The sum-

mary results are captured in Table 5.4, showing that CQR outperforms this autoregressive model
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(a) Forecasts at Month 90 (b) Forecasts at Month 100

(c) Forecasts at Month 110 (d) Forecasts at Month 120

Figure 5.5: N-Step Forecasts for CQR and Garch for Firm 647

only in forecasting. Taking a quick glance, the findings look poor for CQR. But upon further in-

vestigation in Table 5.5, the error produced by CQR is very comparable to GARCH in many of the

training instances. The MSE and MAD ratios are shown for both training and forecasting periods

for each of the 4 starting points for the forecast period (month 90, 100, 110, 120). Again, the Best

column reflects which method (GARCH or CQR) performed better in a majority of the individual

firm series, and the last column shows the corresponding MSE or MAD across all firms using the

combination of metric/methods. It can be seen that when forecasting begins in months 110 or 120,

the CQR method captures a clear advantage in forecasting error, when comparing either MSE or

MAD. For forecasting beginning in month 90, although GARCH performs better in forecasting error

for a majority of the firms, CQR produces less absolute error. In training, GARCH is superior in

raw counts of firms, but CQR does not fall far behind when comparing MAD or MSE.
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(a) Forecasts at Month 90 (b) Forecasts at Month 100

(c) Forecasts at Month 110 (d) Forecasts at Month 120

Figure 5.6: N-Step Forecasts for CQR and Garch for Firm 511

Table 5.4: GARCH vs. CQR Summary

Train/Forecast Metric Raw Number of Firms Error for Metric

Training
CQR MSE 0/4 0/4
CQR MAD 0/4 0/4

Forecasting
CQR MSE 2/4 2/4
CQR MAD 2/4 3/4
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Table 5.5: Garch vs. CQR - MAD and MSE in Training and Forecasting for Varying Starting
Months Using N-Step Ahead Forecasts

Start of Forecast Metric Train/Forecast Method Best (of 990) Error for Metric

Month 90

MSE
Training

GARCH 916 0.00092
CQR 74 0.00112

Forecasting
GARCH 739 0.00190

CQR 251 0.00212

MAD
Training

GARCH 833 0.01002
CQR 157 0.01107

Forecasting
GARCH 663 0.01270

CQR 327 0.01313

Month 100

MSE
Training

GARCH 927 0.00088
CQR 63 0.00107

Forecasting
GARCH 783 0.00258

CQR 207 0.00237

MAD
Training

GARCH 817 0.01000
CQR 173 0.01093

Forecasting
GARCH 665 0.01454

CQR 325 0.01276

Month 110

MSE
Training

GARCH 890 0.00146
CQR 100 0.00156

Forecasting
GARCH 434 0.01042

CQR 556 0.00206

MAD
Training

GARCH 742 0.01234
CQR 248 0.01294

Forecasting
GARCH 199 0.03565

CQR 791 0.00927

Month 120

MSE
Training

GARCH 873 0.00156
CQR 117 0.00158

Forecasting
GARCH 347 0.00572

CQR 643 0.00120

MAD
Training

GARCH 712 0.01292
CQR 278 0.01339

Forecasting
GARCH 134 0.02266

CQR 856 0.00747



Chapter 6

Discussion

We began this dissertation by introducing several two-step nonparametric approaches for smoothing

estimation of extreme quantiles for daily temperatures in U.S. cities. We argue that rather than

performing quantile regression to estimate the 5th and 95th percentiles of daily temperatures, respec-

tively, a number of nonparametric regression techniques can be used on summarized data instead.

If the data can first be aggregated by some time interval (in our examples this was taking the cor-

responding 5th or 95th percentiles of the yearly daily temperatures), then these values (denoted as

raw estimates) can be smoothed with nonparametric methods such as kernel, local polynomial or

spline smoothing. Through both simulation and application, we show that the two-step nonpara-

metric methods outperform quantile regression, as the former methods are able to capture variability

between interior points, while quantile regression can only accurately capture the overall trends of

the time varying quantiles. The nonparametric smoothing of the raw estimates is computationally

simple and easy to implement.

While the two-step method is appealing, we also explored a one-step method for estimating time

variant quantiles and time varying parameters. Again, we consider data which was segmented by

some independent variable such as time, so that there were many observations which shared the

same time period. The proposed one-step solution would seek to utilize maximum likelihood esti-

mation by applying a local log-likelihood solution. This is tested for two scenarios: a discrete and

continuous data type. In the discrete case, we apply the one-step technique to both a dataset where

the response variable is time to conception for women entering marriage and in simulations. We
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treat the data as following a geometric distribution where the parameter of interest is the probability

of success (or pregnancy in the application data). When solving for the unknown parameter θ, we

also consider a polynomial expansion up to degree 5. All results are furthermore compared to the

respective two-step smoothing of same polynomial degree. For low order polynomials, the one-step

procedure outperforms the two-step procedure of similar polynomial expansion on the application

data. For higher order degrees, results sometimes flip in favor of the two-step method, and there

are some large disparities in the comparisons of the methods. This seems to indicate that for high

order polynomials, results may become unstable in one or both of the methods. In simulation, when

comparing the mean absolute deviation, results tend to favor the one-step procedures, both in raw

error and by a majority of time points. We also apply the one-step procedure for the scenario with

continuous data. Here we model the mean level of oxides of nitrogen as a local log-likelihood with the

normal distribution. Estimation is performed under two scenarios: one where the variance is treated

as locally constant and the other where the variance is allowed to vary and is estimated locally. On

the application data, improvements in estimation are made when considering the variance as locally

estimable. The largest decrease in prediction error generally occurs when going from the case where

the variance is constant to where the variance is estimated locally with a degree 0 polynomial. Error

continues to decrease as the variance is estimated with higher degree polynomials, but generally at a

diminishing rate. Similar observations are made from the simulation under the time variant variable

parameter framework. In both application and simulation, we can see that there is merit to using

the one-step procedures.

Lastly, we investigated a residual based estimator of volatility and proposed a new method us-

ing local composite quantile regression (CQR). These methods are compared on 990 different firms’

monthly return data. In comparing the local least squares (LLS) to local composite quantile regres-

sion approaches, local CQR consistently outperforms the LLS method in forecasting and in training

when comparing the mean absolute deviation. This is true when modeling the monthly logarithmic

returns against several different predictors: two lagged series, an S&P index series, and a volatility

indicator (VIX). In comparison to a GARCH(1,1) model with rolling forecasts, CQR displays some

advantages in being able to capture sudden, short lived spikes in volatility, while the autoregres-

sive model generally produces smoother estimates for periods of sustained volatility. In forecasting,

CQR outperforms GARCH in scenarios where the forecasts begin after a very volatile period. This

distinction is made even clearer in the scenario where n-step ahead forecasts are made instead of
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rolling forecasts. When the forecasts are created without updating the previous periods’ return, the

GARCH predictions eventually stabilize on a trajectory and follow it throughout the forecast period.

In this scenario, all the forecasts are built on forecasted values, so the process quickly converges on

a trend. The local CQR method is robust and sensitive to outliers in volatility estimation and a safe

alternative to local least squares regression.

There are many other theoretical and methodological aspects which can be further investigated.

First, other smoothing methods such as wavelets, b-splines, p-splines and other basis approxima-

tions can be investigated. Second, multiple covariates can be considered in both the one and two-step

procedures in addition to the models for the conditional variance. Third, other bandwidth selection

methods merit investigation, including non-global options.
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Table A.1: MSE Ratio in TVVP Simulation

Degree of Method MSE Ratio Best Estimator
Polynomial

Degree 0

Two-Step 1 13
One-Step 1.027 5

One-Step S0 1.025 5
One-Step S1 1.023 4
One-Step S2 1.012 16
One-Step S3 1.088 7

Degree 1

Two-Step 1 13
One-Step 1.026 2

One-Step S0 1.002 9
One-Step S1 1.037 7
One-Step S2 1.021 6
One-Step S3 1.089 13

Degree 2

Two-Step 1 16
One-Step 1.018 3

One-Step S0 0.983 1
One-Step S1 0.971 8
One-Step S2 0.986 12
One-Step S3 1.011 10

Degree 3

Two-Step 1 24
One-Step 1.034 2

One-Step S0 1.025 6
One-Step S1 1.027 1
One-Step S2 1.027 5
One-Step S3 1.026 12

Table A.2: Comparison of Methods - TVVP MSE Simulation

Degree of Method Best Estimator
Polynomial

Degree 0
Two-Step 26

One-Step S0 24

Degree 1
Two-Step 24

One-Step S0 26

Degree 2
Two-Step 26

One-Step S0 24

Degree 3
Two-Step 29

One-Step S0 21
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Table A.3: MSE Ratio in TVFP Simulation

Degree of Method MSE Ratio Best
Polynomial (µ) (Degree of σ) Estimator

Degree 0

Two-Step 1 48
One-Step 1.169 0

One-Step S0 1.166 0
One-Step S1 1.167 0
One-Step S2 1.170 1
One-Step S3 1.170 1

Degree 1

Two-Step 1 44
One-Step 1.197 2

One-Step S0 1.191 1
One-Step S1 1.190 0
One-Step S2 1.191 3
One-Step S3 1.193 0

Degree 2

Two-Step 1 49
One-Step 1.423 1

One-Step S0 1.413 0
One-Step S1 1.412 0
One-Step S2 1.409 0
One-Step S3 1.411 0

Degree 3

Two-Step 1 49
One-Step 1.438 1

One-Step S0 1.430 0
One-Step S1 1.430 0
One-Step S2 1.427 0
One-Step S3 1.429 0
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Table A.4: MSE and MAD Results with Gaussian Kernel

Model Metric Train/Forecast Method Best (of 990) Error for Metric

Lagged (1) Series

MSE
Training

LLS 826 0.00151
CQR 164 0.00155

Forecasting
LLS 299 0.00047
CQR 691 0.00056

MAD
Training

LLS 299 0.01405
CQR 691 0.01322

Forecasting
LLS 122 0.01007
CQR 868 0.00722

De-meaned Series

MSE
Training

LLS 789 0.00148
CQR 201 0.00152

Forecasting
LLS 184 0.00420
CQR 806 0.00587

MAD
Training

LLS 171 0.01426
CQR 819 0.01304

Forecasting
LLS 59 0.01314
CQR 931 0.00993

S&P Series

MSE
Training

LLS 688 0.00149
CQR 302 0.00153

Forecasting
LLS 492 0.00063
CQR 498 0.00055

MAD
Training

LLS 420 0.01379
CQR 570 0.01332

Forecasting
LLS 254 0.00943
CQR 736 0.00784

VIX Series

MSE
Training

LLS 715 0.00151
CQR 275 0.00155

Forecasting
LLS 446 0.00103
CQR 554 0.00137

MAD
Training

LLS 475 0.01376
CQR 515 0.01345

Forecasting
LLS 306 0.00965
CQR 684 0.00883



Appendix B

Select Code

1 #---------------------------------------------
2 # Kernel Smoothers Bootstrap Code
3 #---------------------------------------------
4 ksboot <- function(x,y,nreps =1000, b9 , confidence = 0.95){
5
6 # Put input data into a data frame , sorted by x, with no missing

values.
7 dat <- na.omit(data.frame(x=x,y=y))
8 if(nrow(dat) == 0) {
9 print("Error: No data left after dropping NAs")

10 print(dat)
11 return(NULL)
12 }
13 ndx <- order(dat$x)
14 dat$x <- dat$x[ndx]
15 dat$y <- dat$y[ndx]
16 # Fit curve to data
17 require(KernSmooth)
18 len <- length(dat$x)
19 f0 <- ksmooth(x, y, kernel = "normal", bandwidth = b9 , n.points =

len)
20 y.fit <- f0$y
21 # Generate bootstrap replicates
22 mat <- matrix(0,NROW(dat), nreps)
23 for(i in seq(nreps)){
24 ndx <- sample(len ,replace=T)
25 x.repl <- x[ndx]
26 y.repl <- y[ndx]
27 f <- ksmooth(x.repl , y.repl , kernel = "normal", bandwidth = b9,

n.points = len)
28 mat[, i] <- f$y
29 }
30 # calculating confidence intervals
31 ci <- t(apply(mat , 1, quantile , probs = c((1- confidence)/2, (1+

confidence)/2),na.rm = TRUE))
32 res <- cbind(as.data.frame(f0), ci)
33 colnames(res) <- c(’x’,’y’, ’lwr.limit ’,’upr.limit ’)
34 res
35 }
36
37 ######################
38 ### Kernel smoothing ###
39 ######################
40 ### Kernel Smoothing (calls ks.opt.bw below)####
41 kernel.smooth <- function(l){
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42 k <- ncol(l)
43 res <- sapply (1:k, function(i){
44 d1 <- l[,i]
45 op.band1 <- ksm.opt.bw(years ,d1 ,1 ,20 ,0.1)
46 sm1 <- ksmooth(years ,d1 ,kernel="normal",bandwidth=op.band1[1],x.

points =1:t)$y
47 c(sm1)
48 })
49 list(res)
50 }
51
52 ### Selecting optimal bandwidth with cross validation (calls ksm.lscv

)####
53 ksm.opt.bw <- function(x,y,min ,max ,by){
54 step <- (max - min) / by
55 MSE <- rep(NA ,step)
56 for(i in 0:step){
57 MSE[i+1] <- ksm.lscv(x,y,min + by*i)
58 }
59 return(c(min + by*which.min(MSE), min(na.omit(MSE))))
60 }
61
62 ### Optimizing kernel smoothing parameter (cross validation function)

####
63 ksm.lscv <- function(x,y,h){
64 n <- length(x)
65 SE <- rep(NA,n)
66 for(i in 1:n){
67 y.smt <- ksmooth(x[-i],y[-i], kernel = ’normal ’, bandwidth = h,

x.points = x[i])$y
68 SE[i] <- (y[i] - y.smt)^2
69 }
70 return(mean(SE))
71 }

Listing B.1: Code for Kernel Smoothing Cross Validation and Bootstrapping

1 #---------------------------------------------
2 # Local Polynomial Smoothers Bootstrap Code
3 #---------------------------------------------
4 lpsboot <- function(x,y,nreps =1000, b9 , confidence = 0.95){
5 # Put input data into a data frame , sorted by x, with no missing

values.
6 dat <- na.omit(data.frame(x=x,y=y))
7 if(nrow(dat) == 0) {
8 print("Error:l No data left after dropping NAs")
9 print(dat)

10 return(NULL)
11 }
12 ndx <- order(dat$x)
13 dat$x <- dat$x[ndx]
14 dat$y <- dat$y[ndx]
15 # Fit curve to data
16 require(KernSmooth)
17 len <- length(dat$x)
18 f0 <- locpoly(x, y, kernel = "epanechnikov", bandwidth = b9 ,

gridsize = len)
19 y.fit <- f0$y
20 # Generate bootstrap replicates
21 mat <- matrix(0,NROW(dat), nreps)
22 for(i in seq(nreps)){
23 ndx <- sample(len ,replace=T)
24 x.repl <- x[ndx]
25 y.repl <- y[ndx]
26 f <- locpoly(x.repl , y.repl , kernel = "normal", bandwidth = b9,

gridsize = len)
27 mat[, i] <- f$y
28 }
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29 # calculating confidence intervals
30 ci <- t(apply(mat , 1, quantile , probs = c((1- confidence)/2, (1+

confidence)/2),na.rm = TRUE))
31 res <- cbind(as.data.frame(f0), ci)
32 colnames(res) <- c(’x’,’y’, ’lwr.limit ’,’upr.limit ’)
33 res
34 }
35
36 ######################
37 #### LP smoothing ####
38 ######################
39 ###Local Polynomial Smoothing (calls lps.opt.bw below)####
40 lp.smooth <- function(l){
41 k <- ncol(l)
42 res <- sapply (1:k, function(i){
43 d1 <- l[,i]
44 opt.b1 <- lps.opt.bw(years ,d1 ,1 ,20 ,0.1)
45 sm1 <-locpoly(years ,d1 ,kernel="normal",bandwidth=opt.b1[1],

gridsize=t)$y
46 c(sm1)
47 })
48 list(res)
49 }
50
51 ### Selecting optimal bandwidth with cross validation (calls lps.lscv

below)####
52 lps.opt.bw <- function(x,y,min ,max ,by){
53 step <- (max - min) / by
54 MSE <- rep(NA ,step)
55 for(i in 0:step){
56 MSE[i+1] <- lps.lscv(x,y,min + by*i)
57 }
58 return(c(min + by*which.min(MSE), min(MSE)))
59 }
60
61 ### Optimizing local polynormial parameter (cross validation function

)####
62 lps.lscv <- function(x,y,h){
63 n <- length(x)
64 SE <- rep(NA,n)
65 for(i in 1:n){
66 lps <- npregress(x[-i],y[-i], bandwidth = h)
67 SE[i] <- (y[i] - predict.npregress(lps ,x[i]))^2
68 }
69 return(mean(SE))
70 }

Listing B.2: Code for Local Polynomial Smoothing Cross Validation and Bootstrapping

1 #---------------------------------------------
2 # Spline Smoothing Bootstrap Code
3 #---------------------------------------------
4 splineboot <-function(x,y,nreps =1000 , confidence =0.95 , spar){
5 dat <-na.omit(data.frame(x=x,y=y))
6 # original data
7 f0<- smooth.spline(x=dat$x, y = dat$y,spar=spar)
8 len <-length(dat$x)
9 # store replicates

10 mat <- matrix(0,NROW(dat), nreps)
11 new_x<-seq(min(x),max(x), length.out = NROW(dat))
12 y.fit <-predict(f0,new_x)
13 # bootstraps
14 for (i in 1: nreps){
15 ndx <-sample(len ,replace=T)
16 x.repl <-x[ndx]
17 y.repl <-y[ndx]
18 f<-smooth.spline(x=x.repl , y = y.repl ,spar=spar)
19 mat[,i]<-predict(f,new_x)$y
20 }
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21 ##confidence interval
22 ci <- t(apply(mat , 1, quantile , probs = c((1- confidence)/2, (1+

confidence)/2),na.rm = TRUE))
23 res <- cbind(as.data.frame(y.fit), ci)
24 colnames(res) <- c(’x’,’y’, ’lwr.limit ’,’upr.limit ’)
25 res
26 }
27
28 ########################
29 #### Spline Smoothing ####
30 ########################
31 ### Spline Smoothing (calls smooth.opt.bw below)####
32 spline.smooth <- function(l){
33 k <- ncol(l)
34 res <- sapply (1:k, function(i){
35 d1 <- l[,i]
36 opt.b1 <- smooth.opt.bw(years ,d1 ,0.1 ,1.5 ,0.1)
37 sm1 <- smooth.spline(years ,d1 ,spar = opt.b1[1])$y
38 c(sm1)
39 })
40 list(res)
41 }
42
43 ### Selecting optimal bandwidth with cross validation (calls smooth.

cv)####
44 smooth.opt.bw <- function(x,y,min ,max ,by){
45 step <- (max - min) / by
46 MSE <- rep(NA ,step)
47 for(i in 0:step){
48 MSE[i+1] <- smooth.cv(x,y,min + by*i)
49 }
50 return(c(min + by*which.min(MSE), min(MSE)))
51 }
52
53 ### Optimizing smooth spline parameter (cross validation)####
54 smooth.cv<- function(x,y,h){
55 n<- length(x)
56 SE <- rep(NA,n)
57 for(i in 1:n){
58 spline <- smooth.spline(x[-i],y[-i],spar=h)
59 SE[i] <- (y[i] - predict(spline ,x[i])$y)^2
60 }
61 return(mean(SE))
62 }

Listing B.3: Code for Spline Smoothing Cross Validation and Bootstrapping

1 #---------------------------------------------
2 # Quantile Regression (QR) Bootstrap Code
3 #---------------------------------------------
4 qrboot <- function(x,y,tlbflag=FALSE ,tubflag=FALSE ,tlb =0.05, tub

=0.95 , nreps =1000 , confidence = 0.95){
5 require(quantreg)
6 # Put input data into a data frame , sorted by x, with no missing

values.
7 dat <- na.omit(data.frame(x=x,y=y))
8
9 if(nrow(dat) == 0) {

10 print("Error: No data left after dropping NAs")
11 print(dat)
12 return(NULL)
13 }
14
15 if(tlbflag == TRUE){
16 ndx <- order(dat$x)
17 dat$x <- dat$x[ndx]
18 dat$y <- dat$y[ndx]
19 # Fit curve to data
20 len <- length(dat$x)
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21 currdata=data.frame(x=x,y=y)
22 f0 <- rq(y ~ x, data=currdata , tau = tlb)
23 y.fit=predict(f0,newdata=currdata)
24 }
25
26 if(tubflag == TRUE){
27 ndx <- order(dat$x)
28 dat$x <- dat$x[ndx]
29 dat$y <- dat$y[ndx]
30 # Fit curve to data
31 len <- length(dat$x)
32 currdata=data.frame(x=x,y=y)
33 f0 <- rq(y ~ x, data=currdata , tau = tub)
34 y.fit=predict(f0,newdata=currdata)
35 }
36
37 # Generate bootstrap replicates
38 if(tlbflag == TRUE){
39 mat <- matrix(0,NROW(dat), nreps)
40 for(i in seq(nreps)){
41 ndx <- sample(len ,replace=T)
42 x.repl <- x[ndx]
43 y.repl <- y[ndx]
44 currnewdata=data.frame(x.repl=x.repl , y.repl=y.repl)
45 f <- rq(y.repl~x.repl ,data=currnewdata ,tau=tlb)
46 ycurr.fit=predict(f,newdata=currnewdata)
47 mat[, i] <- ycurr.fit
48 }}
49
50 if(tubflag == TRUE){
51 mat <- matrix(0,NROW(dat), nreps)
52 for(i in seq(nreps)){
53 ndx <- sample(len ,replace=T)
54 x.repl <- x[ndx]
55 y.repl <- y[ndx]
56 currnewdata=data.frame(x.repl=x.repl , y.repl=y.repl)
57 f <- rq(y.repl~x.repl ,data=currnewdata ,tau=tub)
58 ycurr.fit=predict(f,newdata=currnewdata)
59 mat[, i] <- ycurr.fit
60 }}
61 # calculating confidence intervals
62 ci <- t(apply(mat , 1, quantile , probs = c((1- confidence)/2, (1+

confidence)/2),na.rm = TRUE))
63 res <- cbind(x, y.fit , ci)
64 colnames(res) <- c(’x’,’y’, ’lwr.limit ’,’upr.limit ’) #y is fitted

values
65 res
66 }

Listing B.4: Code for Quantile Regression Bootstrapping

1 %%
2 % initializations of bandwidths to test and store results in "

results"
3 bw = linspace (2.05 ,8 ,120);
4 results = ones(size(bw ,2) ,2);
5 results (:,1) = bw;
6 %%
7 % for each bandwidth , perform leave one time period out cross -

validation
8 for h = bw
9 tot = 0;

10 for tp = 1: length(d4(:,1))
11 d4_tmp = d4(d4(:,1) > (tp -h) & d4(:,1) < (tp+h) ,:);
12 d4_tmp(d4_tmp(:,1)==tp ,:) = [];
13 w = (3/(4*h))*(1-((d4_tmp(:,1)-tp)/h).^2);
14 rows = size(d4_tmp);
15
16 % set up constraints
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17 cons2 = d4_tmp(:,1)-tp;
18 cons3 = (d4_tmp(:,1)-tp).^2;
19 A = ones(rows (1) ,3);
20 A(:,2) = cons2;
21 A(:,3) = cons3;
22 b = ones(rows (1) ,1);
23 lb=[0 -10000 -10000];ub=[1 10000 10000];
24 Aeq =[]; beq =[];
25 f = @(v)three_var(v,rows ,w,d4_tmp ,tp);
26 [x, fval] = fmincon(f,[0.1 0 0],A,b,Aeq ,beq ,lb,ub);
27 %disp(x(1))
28 %disp(tp)
29 tot = tot + (x(1)-y(tp))^2;
30 end
31 results(results (:,1)==h,2) = tot;
32 end
33 %%
34 % select best h from cross -validation
35 [m,ind] = min(results (:,2));
36 best_h = results(ind ,1)
37 %%
38 % with optimal h, now score the data for plotting
39 pts = linspace (1 ,19 ,361);
40 pts = linspace (1,19,19);
41 smoothed = ones(size(pts ,2) ,2);
42 smoothed (:,1) = pts;
43 h=best_h;
44 %%
45 % repeat smoothig process , without leave one out CV
46 for tp = pts
47 d4_tmp = d4(d4(:,1) > (tp -h) & d4(:,1) < (tp+h) ,:);
48 w = (3/(4*h))*(1-((d4_tmp(:,1)-tp)/h).^2);
49 rows = size(d4_tmp);
50
51 % set up constraints
52 cons2 = d4_tmp(:,1)-tp;
53 cons3 = (d4_tmp(:,1)-tp).^2;
54 A = ones(rows (1) ,3);
55 A(:,2) = cons2;
56 A(:,3) = cons3;
57 b = ones(rows (1) ,1);
58 lb=[0 -10000 -10000];ub=[1 10000 10000];
59 Aeq =[]; beq =[];
60 f = @(v)three_var(v,rows ,w,d4_tmp ,tp);
61 [x, fval] = fmincon(f,[0.1 0 0],A,b,Aeq ,beq ,lb,ub);
62 %[x, fval] = fmincon(f,[0.1 0 0]);
63 smoothed(smoothed (:,1)==tp ,2) = x(1);
64 end

Listing B.5: Code for Cross Validation and Smoothing for Degree 2 Polynomial Expansion
in Geometric Kernel Log-Likelihood

1 function a = three_var(v,rows ,w,d4_tmp ,tp)
2 beta0 = v(1);
3 beta1 = v(2);
4 beta2 = v(3);
5 sum_logs =0;
6
7 for j = 1:rows (1)
8 sum_logs = sum_logs + (d4_tmp(j,3)*log(beta0+(d4_tmp(j,1)-tp)*

beta1 +(d4_tmp(j,1)-tp)^2*beta2)+d4_tmp(j,2)*log(1-beta0 -(d4_
tmp(j,1)-tp)*beta1 -(d4_tmp(j,1)-tp)^2*beta2))*w(j);

9 end
10 a = -sum_logs;
11 end

Listing B.6: Cross Validation Function for Degree 2 Polynomial Expansion in Geometric
Kernel Log-Likelihood
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1 function mus = lp_mus(p,h,df,sigmas)
2 len = size(sigmas ,1);
3 mus = zeros(1,len);
4 for tp = sigmas (:,1).’
5 lastwarn(’’);
6 % only take data with +- h
7 ind1 = df(:,1) > (tp -h) & df(:,1) < (tp+h);
8 df_tmp = df(ind1 ,:);
9 % remove current tp

10 df_tmp(df_tmp(:,1)==tp ,:) = [];
11 % same thing for s_tmp
12 ind2 = sigmas (:,1) > (tp -h) & sigmas (:,1) < (tp+h);
13 s_tmp = sigmas(ind2 ,:);
14 s_tmp(s_tmp(:,1)==tp ,:) = [];
15 wgts = repelem(s_tmp(:,2),s_tmp(:,3));
16
17 weights = 3/(4*h)*(1-((df_tmp(:,1)-tp)/h).^2);
18 k = diag (0.5*weights./wgts);
19
20 X1 = ones(size(df_tmp ,1),p+1);
21 Y1 = df_tmp(:,2);
22 if (p ~= 0)
23 for i = 2:(p+1)
24 X1(:,i) = (df_tmp(:,1)-tp).^(i-1);
25 end
26 end
27 coef = inv(X1.’*k*X1)*X1.’*k*Y1;
28 [warnMsg , warnId] = lastwarn;
29 if ~isempty(warnMsg)
30 coef = pinv(X1.’*k*X1)*X1.’*k*Y1;
31 end
32 mus(tp) = coef (1);
33 end
34 end

Listing B.7: Cross Validation Function for Mean Estimation in Normal Kernel Log-
Likelihood

1 function a = lp_sigp1(s,h,tp,df,sigmas ,mus)
2 s0 = s(1);
3 s1 = s(2);
4 ind1 = df(:,1) > (tp -h) & df(:,1) < (tp+h);
5 df_tmp = df(ind1 ,:);
6 % remove current tp
7 df_tmp(df_tmp(:,1)==tp ,:) = [];
8 % same thing for s_tmp
9 ind2 = sigmas (:,1) > (tp -h) & sigmas (:,1) < (tp+h);

10 s_tmp = sigmas(ind2 ,:);
11 s_tmp(s_tmp(:,1)==tp ,:) = [];
12 weights = s_tmp (: ,1:2);
13 weights (:,2) = 3/(4*h)*(1-((s_tmp(:,1)-tp)/h).^2);
14 sum_logs = 0;
15 for tp2 = s_tmp(:,1).’
16 % need vector of coefs (results from mu)
17 w = weights(weights (:,1)==tp2 ,2);
18 sum_logs = sum_logs - s_tmp(s_tmp(:,1)==tp2 ,3)/2*log(s0+(tp2 -tp)

*s1)*w - 1/(2*(s0+(tp2 -tp)*s1))*sum((df_tmp(df_tmp(:,1)==tp2
,2)-mus(tp2)).^2)*w;

19 end
20 a = - sum_logs;
21 end

Listing B.8: Cross Validation Function for Variance Estimation Under Degree 1 Polynomial
Expansion in Normal Kernel Log-Likelihood
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