
The Kennesaw Journal of Undergraduate Research The Kennesaw Journal of Undergraduate Research

Volume 5 Issue 1 Article 1

June 2017

Autonomous Speed Control for KIA Optima Autonomous Speed Control for KIA Optima

Andrew J. Combs
Kennesaw State University, acombs11@students.kennesaw.edu

Kyle Fugatt
Kennesaw State University, kfugatt@students.kennesaw.edu

Kevin McFall
Kennesaw State University, kmcfall@kennesaw.edu

Follow this and additional works at: https://digitalcommons.kennesaw.edu/kjur

 Part of the Automotive Engineering Commons, Controls and Control Theory Commons, Digital

Communications and Networking Commons, Electrical and Electronics Commons, Systems and

Communications Commons, and the VLSI and Circuits, Embedded and Hardware Systems Commons

Recommended Citation Recommended Citation
Combs, Andrew J.; Fugatt, Kyle; and McFall, Kevin (2017) "Autonomous Speed Control for KIA Optima,"
The Kennesaw Journal of Undergraduate Research: Vol. 5 : Iss. 1 , Article 1.
DOI: 10.32727/25.2019.16
Available at: https://digitalcommons.kennesaw.edu/kjur/vol5/iss1/1

This Article is brought to you for free and open access by the Office of Undergraduate Research at
DigitalCommons@Kennesaw State University. It has been accepted for inclusion in The Kennesaw Journal of
Undergraduate Research by an authorized editor of DigitalCommons@Kennesaw State University. For more
information, please contact digitalcommons@kennesaw.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DigitalCommons@Kennesaw State University

https://core.ac.uk/display/231831619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.kennesaw.edu/kjur
https://digitalcommons.kennesaw.edu/kjur/vol5
https://digitalcommons.kennesaw.edu/kjur/vol5/iss1
https://digitalcommons.kennesaw.edu/kjur/vol5/iss1/1
https://digitalcommons.kennesaw.edu/kjur?utm_source=digitalcommons.kennesaw.edu%2Fkjur%2Fvol5%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1319?utm_source=digitalcommons.kennesaw.edu%2Fkjur%2Fvol5%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/269?utm_source=digitalcommons.kennesaw.edu%2Fkjur%2Fvol5%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.kennesaw.edu%2Fkjur%2Fvol5%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.kennesaw.edu%2Fkjur%2Fvol5%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.kennesaw.edu%2Fkjur%2Fvol5%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=digitalcommons.kennesaw.edu%2Fkjur%2Fvol5%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=digitalcommons.kennesaw.edu%2Fkjur%2Fvol5%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=digitalcommons.kennesaw.edu%2Fkjur%2Fvol5%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/kjur/vol5/iss1/1?utm_source=digitalcommons.kennesaw.edu%2Fkjur%2Fvol5%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

Autonomous Speed Control for KIA Optima Autonomous Speed Control for KIA Optima

Cover Page Footnote Cover Page Footnote
We would like to give our heartfelt gratitude to Dr. McFall for his guidance during this project. Without him,
this would not have been possible.

This article is available in The Kennesaw Journal of Undergraduate Research: https://digitalcommons.kennesaw.edu/
kjur/vol5/iss1/1

https://digitalcommons.kennesaw.edu/kjur/vol5/iss1/1
https://digitalcommons.kennesaw.edu/kjur/vol5/iss1/1

 1

Autonomous Speed Control for KIA Optima

Andrew J. Combs, Kyle Fugatt, and Kevin McFall

Kennesaw State University

ABSTRACT

The standard method for speed control is the cruise control system built into most modern vehicles. These systems employ a PID

controller which actuates the accelerator thus, in turn, maintains the desired vehicle speed. The main drawback of such a system

is that typically the cruise control will only engage above 25 mph. The goal of this paper is to describe a system which we used

to control vehicle speed from a stop to any desired speed using an Arduino microcontroller and a CAN BUS shield, from where

autonomous features can be built upon. With this system, we were able to implement a proportional gain controller which

maintains the speed at within ±1 mph with a 1s rise time.

Keywords: KIA Optima, Controls, Arduino, Speed Control, OBDII, CAN BUS, CAN, Serial, Controller Area Network,

Automotive, Autonomous Vehicle

I. INTRODUCTION

HE cruise control system was invented by Ralph Teetor in

1950 as a way of limiting the maximum speed of a vehicle

as it is driven. The patent explains the method of using the

vacuum of the intake manifold to provide resistance on the

accelerator [9]. Modern cruise control evolved from this initial

method. In 1968, Daniel Wisner invented an electronic cruise

control system which uses a voltage differential to control an

actuator attached to the accelerator. A button is pushed once at

the desired speed to lock the initial voltage and any change

from that point engages the speed control mechanism [10].

The goal of this project is to further improve the existing

cruise control in a 2012 KIA Optima. A similar project has

been established by a group from Siegen University using a

feed-forward PID in an AMOR autonomous mobile robot [2].

The system implemented by the Siegen group used R/C motor

control and C++ programming; whereas, this paper proposes a

direct control using an Arduino Mega and speed feedback

through the vehicle controlled area network(CAN). With this

method, a minimum speed is no longer required to engage the

cruise control and a desired speed can be designating at any

point in time. Further expanding on this idea, the system lays

the groundwork to fully automate the vehicle control

processes and allow implementation of autonomous control.

A. Controls System

The purpose of the cruise control is to allow the system to be

self-regulating. The controller moves the acceleration and

brake actuators independently, where the sum of the engine

and brake related to the speed of the vehicle. The desired

system is modelled in Figure 1.

1Andrew J. Combs, Kyle Fugatt, and Kevin McFall, Department of Mechatronics Engineering,

Kennesaw State University. We would like to give our heartfelt gratitude to Dr. McFall for his

guidance during this project. Without him, this would not have been possible. Correspondence

concerning this article should be addressed to acombs11@students.kennesaw.edu,

kfugatt@students.kennesaw.edu, or kmcfall@kennesaw.edu.

Figure 1: Cruise Control Diagram

T

1

Combs et al.: Autonomous Speed Control for KIA Optima

Published by DigitalCommons@Kennesaw State University, 2017

mailto:acombs11@students.kennesaw.edu
mailto:kfugatt@students.kennesaw.edu
mailto:kmcfall@kennesaw.edu

 2

B. OBDII and CAN

Data acquired from the CAN is used to control speed. The

CAN is a data bus where all the controllers for the car send

and receive data. The primary data used in this paper is the

speedometer information. This information is gathered from

an encoder directly attached to the wheelbase.

The CAN, like every established network, has a distinct

protocol that must be followed. To accomplish this, a serial

communication module is installed in the vehicle [1]. Figure 2

Shows the protocol for every signal sent and received inside

the CAN [11]. Connection to the CAN is simplest via the

vehicle’s OBDII port, with its CAN-H send line and CAN-L

receive line.

Figure 2:CAN Data Frame

II. HARDWARE

Before the car was modified, it was a standard KIA Optima

from the factory donated to Southern Polytechnic State

University, now Kennesaw State University. CAN is the

protocol used throughout the car and can be established via the

on-board diagnostic port, or OBD port, located under the dash.

This is the port that mechanic shops use to diagnose the

“Service Engine” light that appears on the instrument cluster

when something is wrong in the car.

This can be used to communicate, while having an Arduino

board controlling a few standalone motors. These motors were

installed to control the steering, brakes, and gas pedal. The

steering wheel was connected to the motor via a belt attached

to a gear mounted on the steering column. The brake pedal

was connected to the motor via a thin cable, coiling up around

the motor’s shaft when time to depress the brake, and unwinds

when time to de-brake. Both of these motors are stepper

motors and are 1200 oz-in, from Anaheim Automation, and

classified in the 34Y series. See Table 1 for details.

Table 1 Stepper Motor Specifications

Model # Torque Current Voltage #

Lead

Wires

Weight Length Shaft

Diameter

34Y207S-

LW8

1200 5A 6.5VDC 8 8.4lbs 4.56in 0.5in

The gas pedal was controlled by two servo motors,

operating in reverse direction from one-another. These

6.0VDC, 222.2oz-in motors were made by Savox. The motors

were linked by a mechanical bolt linkage that went over the

top of the pedal, securing it in a way that the pedal could not

slip away. Table 2 contains the full details of the servos.

Table 2 Servo Motor Specifications

Model # Torque Current Voltage Weight Length

SC-0251MG 222.2oz-in 350mA 6.0VDC 61g 40.7mm

Each of the two stepper motors were controlled by a motor

driver. These drivers supply the correct voltage to each lead of

the motor, in a certain “step” sequence. These are supplied

with 24 VDC through a power supply, stepping up from 12

VDC. Table 4 contains full details for the motor drivers.

Table 3 Stepper Driver Specifications

Model

Input

Voltage

Output

Current

Step

Angle

Weight Dimensions

CW250 20-60VDC 0-5A 1.8° <500g 140x94x45mm

The servo motor was controlled directly from the Arduino

controller by a pulse width modulated signal out, while being

supplied with voltage by two separate power supplies,

stepping down from 12VDC to 6VDC. Looking at the servos

from the driver seat, the left servo’s white wire, or signal wire,

is connected to the Arduino on pin 27, and the right servo’s

signal wire is connected on pin 28. The black wires running to

the servos are for ground and the red are for power.

2

The Kennesaw Journal of Undergraduate Research, Vol. 5 [2017], Iss. 1, Art. 1

https://digitalcommons.kennesaw.edu/kjur/vol5/iss1/1
DOI: 10.32727/25.2019.16

 3

The full electrical system is mounted on a plastic resin

board in the trunk of the vehicle, which is mounted on a 3/4”

plywood board frame. The carpet and what would be a spare

tire were removed and the assembly was mounted to the body

of the car. On the board, all electrical components were

mounted strategically, with future implementations in mind.

The drivers and power supplies are together with din rail and

wire trace tunnels around the board to organize connections

and hide connections. Each of the components are easily

accessible from the raceway.

The circuit starts with the main 12 VDC supply running

from the battery to a toggle switch mounted on the dash to the

left of the steering wheel. From the toggle switch, the main

supply runs in the door tracks, along with (3) eight conductor

cables and the CAN bus cable, unseen, to the trunk of the car.

After reaching the trunk, the wire is terminated through a

battery protection fuse, to prevent drawing too much current,

and is terminated in the terminal blocks. This source is

distributed to everything that requires 12 VDC. Also, there are

three cables that run from the front to the back which are

dedicated for the motor connections, an emergency stop, and

extra for future connections that may be used for future

projects. The servo motors both require three connections each

and the two steppers require four connections each. This totals

to 14 connections total, accomplished with two cables. Also,

the E-Stop requires two connections, resulting in only one

cable left for open connections. Figure 3 shows the control

wiring before the wiring paths are covered. Along the left side

of the photo are the three cables for motor control.

Figure 3 KIA Control Wiring

The servo motors were upgraded from the Savox SC models

to Savox SB models. The new motors are the same voltage as

the previous motors but have about 125 oz-in additional

torque. The reason for the upgrade is when testing was being

done, the motors were barely pushing the gas pedal down,

needing assistance for initial depression. Table 4 shows the

full specifications of the servos.

Table 4 Servo Motor Specifications

Model # Torque Current Voltage Weight Length

SB-

2270SG

347.2

oz-in

350mA 6.0V 69g 40.3mm

The stepper drivers, as discussed previously, provide the

voltage needed to each motor’s coil as necessary. This is done

by the four connections made at the motor, but the driver is

also connected to the Arduino. The Arduino sends voltage to

both drivers by five wires: CP+, CP-, CW+, CW-, and H/S.

These wires correlate to direction, speed, and position of each

motor. For the steering motor driver, connections from the

Arduino are not used. This project focused on accelerating,

holding a constant speed, and decelerating autonomously.

However, for the braking motor driver, connections from the

Arduino to it are as follows; “CP+” is connected to pin 22,

“CP-”to pin 23, “CW+” to pin 24, “CW-”to pin 25, and “H/S”

is left blank. Both drivers are powered by 24VDC on terminal

“VCC+” and -24VDC on terminal “GND- “. Earth Ground is

connected via “GND”. Figure 4 shows these connections.

Figure 4 Motor Driver Diagram

3

Combs et al.: Autonomous Speed Control for KIA Optima

Published by DigitalCommons@Kennesaw State University, 2017

 4

These three connections can be made by jumping wires

from one driver to the other.

The CAN-bus cable is converted from OBD in the door

track before it is connected to the Arduino in the back. The

OBD cable originally has 16 pin slots available for use. In the

Can-Bus system, only 9 of these pins are used for the car.

Therefore, to establish a connection, the 16 pin OBD cable is

converted to a 9 pin DB9 cable connected to the Arduino Can-

Bus Shield. This shield connects to the Arduino controller by

stacking the Shield on top of the controller. The shield allows

the Arduino to read information transmitted from the car.

III. METHODS

A. Speed Data

The most important data required to implement the speed

control for the vehicle is the current vehicle speed. An

Arduino Mega with the Sparkfun CANBUS shield was used to

communicate with the CAN-bus. The shield is designed for

use with an Arduino Uno; to make it work with a Mega the

global.h header file must be modified. The default Uno SPI

pins need to be changed to the Mega SPI pin locations for data

to communicate between the module and the Arduino. The

shield allows for direct serial communication through the

OBDII using an OBDII to DB9 cable. The Sparkfun

CANBUS library is used to read the data [1]. This allows the

CAN bus to be sniffed and record the values read in through

PUTTY then convert the output to a comma separated values

(CSV) file. A graphical representation of the process is shown

in Figures 5 and 6.

Figure 5 CAN DATA BEFORE CSV

Figure 6 CAN DATA AFTER CSV

Now that the data in a form that is easily formatted, the

information can be sorted and the order changed. This will

allow the data to be more easily understood leading to the bit

location of the speed and any other interesting data values.

First, the commas need to be trimmed from the cells and then

the hex values are converted into decimal values. The speed

data will correspond to how speed was monitored during

physical testing of the vehicle.

Figure 7 FORMATTED CAN DATA

In Figure 7, ID 40 byte 3 is the speed data with byte 2 being

the current gear the engine is in.

B. Arduino Code

The Arduino processed the data gathered and compares the

current speed with the desired speed. In doing this

comparison the Arduino then controls the servers and

steppers to regulate the vehicle speed. The flow of the

program is written in Figure 9. The saw-tooth shape given

by the system is indicative of a strict proportional gain

control system. If the current speed of the vehicle is lower

than the desired speed the brakes will always be in initial

position and the servos will increment in position until the

desired speed is reached. If the desired speed is lower than

the current speed, the servos for the accelerator will move to

the initial position and the brake will increment until the

desired speed is reached.

IV. RESULTS

Using the Arduino and motor combination the team was

able to successfully control the vehicle speed. If the desired

input changes continuously, the accuracy of the system is

limited to 2 mph; however, if the desired speed is steady

over a prolonged period the system stays within 1 mph

error.

4

The Kennesaw Journal of Undergraduate Research, Vol. 5 [2017], Iss. 1, Art. 1

https://digitalcommons.kennesaw.edu/kjur/vol5/iss1/1
DOI: 10.32727/25.2019.16

 5

Figure 8 Speed Control Data

Figure 8 shows the visualization of the data received from the

CAN control system. The hump in the beginning of Figure 8 is

due to the natural speed of the vehicle without brakes or

acceleration engaged. At the 4 second mark is when the

desired speed and vehicle speed meet and the pairing begins.

The desired speed is programmed to start at 0 and every 2

seconds increase by 1 mph until 10 mph is reached where the

speed is set to 0 mph. The system accurately follows the

desired speed until the drop off where the system slows to a

complete stop.

Figure 9 Flowchart for Arduino code

V. CONCLUSIONS

The system that has been implemented is very extensible

and can easily be improved upon. The improvement that

should be implemented first would be the addition of a full

PID controller for the system. Additional variables need to be

taken into consideration for this addition to make a sufficient

impact on the control, such as the steering position and throttle

position in the engine. Additionally, the control of steering

would be an appropriate improvement on top of the current

speed control.

REFERENCES

[1] "sparkfun/SparkFun_CAN-Bus_Arduino_Library",

GitHub, 2016.

https://github.com/sparkfun/SparkFun_CAN-

Bus_Arduino_Library.

[2] K. Sailan and K. Kuhnert, "Modeling and Design of

Cruise Control System with Feedforward for all Terrian

Vehicles", Computer Science & Information

Technology (CS & IT), 2013.

[3] K. Osman, M. Rahmat and M. Ahmad, "Modelling and

controller design for a cruise control system", 2009 5th

International Colloquium on Signal Processing & Its

Applications, 2009.

[4] A. Packard, Simple Cruise Control, 1st ed. UC Berkeley,

2005, pp. 24-52.

[5] M. Snare, "DYNAMICS MODEL FOR PREDICTING

MAXIMUM AND TYPICAL ACCELERATION

RATES OF PASSENGER VEHICLES", M.S., Virginia

Polytechnic Institute and State University, 2002.

[6] G. CalderÃ³n-Meza, "A Simple Model of the Linear

Speed of a Ground Vehicle Under Accelerating and

Decelerating Forces", Embedded Systems Modeling

Seminar, no. 501, 2003.

[7] N. Nise, Control systems engineering.

[8] M. Spong, S. Hutchinson and M. Vidyasagar, Robot

modeling and control. Hoboken, NJ: John Wiley &

Sons, 2006.

[9] R. Teetor, "Speed control device for resisting operation of

the accelerator", US2519859 A, 1950.

[10] D. Wisner, "Speed control for automotive vehicles",

US3511329 A, 1968.

[11] Robert Bosch GmbH; CAN with Flexible DataRate;

Version 1.1; Date Aug. 2011,

http://www.semiconductors.bosch.de/media/...pdf/canliter

atur/can_fd.pdf

5

Combs et al.: Autonomous Speed Control for KIA Optima

Published by DigitalCommons@Kennesaw State University, 2017

	Autonomous Speed Control for KIA Optima
	Recommended Citation

	Autonomous Speed Control for KIA Optima
	Cover Page Footnote

	tmp.1496779779.pdf.ksAXw

