
The Kennesaw Journal of Undergraduate Research The Kennesaw Journal of Undergraduate Research 

Volume 5 Issue 3 Article 5 

December 2017 

Visual Odometry using Convolutional Neural Networks Visual Odometry using Convolutional Neural Networks 

Alec Graves 
Kennesaw State University, agrave15@students.kennesaw.edu 

Steffen Lim 
Kennesaw State University, slim13@students.kennesaw.edu 

Thomas Fagan 
Kennesaw State University, tfagan2@students.kennesaw.edu 

Kevin McFall PhD. 
Kennesaw State University, kmcfall@kennesaw.edu 

Follow this and additional works at: https://digitalcommons.kennesaw.edu/kjur 

 Part of the Artificial Intelligence and Robotics Commons 

Recommended Citation Recommended Citation 
Graves, Alec; Lim, Steffen; Fagan, Thomas; and McFall, Kevin PhD. (2017) "Visual Odometry using 
Convolutional Neural Networks," The Kennesaw Journal of Undergraduate Research: Vol. 5 : Iss. 3 , Article 
5. 
DOI: 10.32727/25.2019.25 
Available at: https://digitalcommons.kennesaw.edu/kjur/vol5/iss3/5 

This Article is brought to you for free and open access by the Office of Undergraduate Research at 
DigitalCommons@Kennesaw State University. It has been accepted for inclusion in The Kennesaw Journal of 
Undergraduate Research by an authorized editor of DigitalCommons@Kennesaw State University. For more 
information, please contact digitalcommons@kennesaw.edu. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DigitalCommons@Kennesaw State University

https://core.ac.uk/display/231831616?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.kennesaw.edu/kjur
https://digitalcommons.kennesaw.edu/kjur/vol5
https://digitalcommons.kennesaw.edu/kjur/vol5/iss3
https://digitalcommons.kennesaw.edu/kjur/vol5/iss3/5
https://digitalcommons.kennesaw.edu/kjur?utm_source=digitalcommons.kennesaw.edu%2Fkjur%2Fvol5%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.kennesaw.edu%2Fkjur%2Fvol5%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/kjur/vol5/iss3/5?utm_source=digitalcommons.kennesaw.edu%2Fkjur%2Fvol5%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu


Visual Odometry using Convolutional Neural Networks Visual Odometry using Convolutional Neural Networks 

Cover Page Footnote Cover Page Footnote 
This work would never have been possible without the amazing tools released by fellow scholars. The 
open source community and researchers who share their code have allowed this team to explore a new 
area that would have been difficult to access if all methods had to be built from nothing. This work would 
also have not been possible if Nvidia had not released their CUDA and CUDnn for free. The same goes for 
Google, who released Tensorflow, and the many people who have helped build Keras. Deep learning would 
not be as approachable as it is without these revolutionary linear algebra and deep learning libraries 
which support the popular language Python. 

This article is available in The Kennesaw Journal of Undergraduate Research: https://digitalcommons.kennesaw.edu/
kjur/vol5/iss3/5 

https://digitalcommons.kennesaw.edu/kjur/vol5/iss3/5
https://digitalcommons.kennesaw.edu/kjur/vol5/iss3/5


Visual Odometry using Convolutional Neural Networks 

Steffen Lim, Alec Graves, Thomas Fagan, & Kevin McFall, PhD. 

Department of Mechatronics Engineering 

Kennesaw State University, Marietta, GA 30060 USA 
 

ABSTRACT 
 

Visual odometry is the process of tracking an agent’s motion over time using a visual sensor. The visual odometry problem has 

only been recently solved using traditional, non-machine-learning techniques. Despite the success of neural networks at many 

related problems such as object recognition, feature detection, and optical flow, visual odometry still has not been solved with 

a deep learning technique. This paper attempts to implement several Convolutional Neural Networks to solve the visual 

odometry problem and compare slight variations in data preprocessing. The work presented is a step toward reaching a 

legitimate neural network solution. 

 

Keywords: visual odometry, visual, odometry, convolutional neural networks, CNNs, neural networks, randomly, randomly 

selected hyperparameters, hyperparameters, hyperparameter generation, hyperparam, hyperparams, KITTI dataset, deep 

learning, machine learning, quaternion 

 

1. Introduction 

Convolutional Neural Networks (CNNs) have recently 
demonstrated the capacity to solve a variety of problems in 
computer vision [1], [2], [3], [4], [5], [6]. They have also been 
shown to match or outperform non-machine-learning (non-
ML) techniques in a variety of computer vision-related 
challenges [2], [3], [4], [6]. Despite the widespread success 
of CNNs in this field, there are still many areas where non-
ML techniques outperform CNNs in terms of computational 
cost, accuracy, or both [7], [4], [5], [8], [9]. 

 
The problem of visual odometry has been actively 

pursued over the past decade, as it is directly applicable to 
problems such as the creation of cost-effective self-driving 
cars, the advancement of mobile robotics, and even the 
improvement of Augmented Reality systems [10], [11], [12]. 
Visual odometry is the process of estimating transformations 
of an agent using only onboard visual sensors [4], [11]. This 
project primarily focuses on the problem of monocular visual 
odometry or detecting agent motion with a single onboard 
camera. Thus far, several non-ML techniques have 
demonstrated reliable and accurate performance on datasets 
such as SVO, Visual SLAM, and Optical Flow [10], [7], [9]. 

 
Convolutional Neural Networks have had great success in 

extracting complicated image features and performing well 
on robust object recognition tasks, irrespective of 
translational and rotational transformations, and lighting 
conditions [3], [13], [4]. Significant work has also been done 
to improve their speed through both parallelization and 
hardware acceleration [14]. This has the potential to make a 

CNN solution to the problem of visual odometry more 
effective than other techniques which may never benefit from 
parallelization or acceleration by specialized hardware. 

 
In this project, three types of CNN models are 

implemented in a step toward more reliable and accurate 
performance on visual odometry-related tasks. These three 
CNN models are trained with different objectives, but each 
tackles the visual odometry problem from a unique 
perspective. 

 
The first, referred to as the Global model, is designed to 

predict the translational motion of a camera between two 
consecutive images in a global coordinate frame. Because this 
model is not given the angle of the camera and is predicting 
motion in a global coordinate frame, the task learned by this 
model is more related to correlating features to its current 
global orientation. This has potential applications in 
situations where an agent is moving through a known 
environment. 

 
The second model is referred to as the Relative model. 

This model is similar the first, but predicts translational 
motion in a relative coordinate frame. This model does not 
need to correlate image data to the current orientation of the 
camera. This type of model also has real-world applicability, 
as it can be used on an agent equipped with inertial 
measurement systems which inform the agent of its current 
orientation. 

 
The third and final type of model used in this paper is 

referred to as the Relative Rotation model. This type of model 
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is like the second, but it is trained to predict relative change 
in orientation of a camera between two consecutive images 
along with relative translational motion. The predictions 
made by this model are most directly related to solving the 
visual odometry problem. This type of model is applicable in 
areas where true visual odometry is required (e.g. an agent 
equipped only with visual sensors which need to be informed 
of its current position). 

 
In addition to the creation of these three types of models, 

an open-source system for selecting CNN hyperparameters is 
created and implemented as part of this research. In this 
system, an initial CNN architecture is designed and tested; 
afterward, valid sets for several network hyperparameters are 
crafted, and new architectures are generated from randomly 
selected combinations of these sets. For each of these 
architectures, three variations–one for each of the three 
prediction models–are constructed through modification of 
the final output layers. Of these generated architectures, a 
randomized subset is trained and evaluated for performance. 
The best of these models are then used in the final evaluation 
of overall network performance. This process is commonly 
known as the random search for hyperparameter optimization 
and has been shown to outperform other methods of 
hyperparameter optimization such as grid search [15]. 

2. Related Works 

Works such as Semi-Direct Visual Odometry use 
traditional (non-ML) methods solve to the visual odometry 
problem [7]. In this method, a combination of feature-based 
tracking and direct pixel intensity tracking are used for an 
optimized visual odometry algorithm. This system works 
well in terms of being able to accurately track multiple 
features and localize while using a single camera. 

 
Although ML solutions have not gotten far, there is still 

the potential to learn a more accurate visual odometry system 
that can track more complex and reliable features. One such 
attempt was DeepVO by Mohanty V. et.al. [1]. The Neural 
Network implementation used an AlexNet based architecture 
with modifications including the using FAST [16] based 
inputs on the KITTI dataset [10]. DeepVO’s attempt at visual 
odometry could provide accurate motion estimations in 
trained environments. Their best system had the capability of 
predicting the correct position changes in a test set similar to 
the training set. The DeepVO system allowed the test set to 
be sparsely spread in between data points of the training set 
and may test on similar environments to those on which is 
trained. Their unknown environment tests were unimpressive 
as their proposed system never generalized. 

 
Some neural network solutions to similar problems 

include optical flow [5], [6]. Optical flow is creating 
interpolated and extrapolated data from a set of images by 
understanding the objects within the images to a certain 
degree. Interpolation consists of being able to create in-
between image frames from a given set of image frames. 
Extrapolation entails the prediction of new image frames after 

a set of images. These networks could prove useful in future 
work as they might help ground the error in a visual odometry 
problem. 

3. Methodology 

3.1. Hardware and Software 

The experiments detailed in this paper are performed on a 
system containing NVIDIA GTX 1060 GPU with 6GB of 
video RAM, an Intel i5 CPU, 24 GB of GDDR3 system 
RAM, and a 500GB Solid-State Drive. The operating system 
used is Ubuntu 16.04 LTS. The programs written as part of 
this project primarily use Python 3.5.2. The Python modules 
Keras and TensorFlow are used to facilitate the creation and 
training of CNN architectures presented in this paper [17], 
[18]. Python packages NumPy and Matplotlib are used for 
data manipulation and data visualization respectively [19], 
[20]. Quaternion, a Python module to add support for 
quaternion operations in NumPy, is also used [21]. The 
Python package PyKITTI is used to facilitate preprocessing 
of data from the KITTI odometry dataset [22]. 

3.2. Dataset 

The KITTI odometry dataset is used as the source of data 
[10]. The dataset itself contains visual and odometry data 
taken during several car driving sessions, each in a new 
environment. The labeled portion of the dataset consists of 11 
sequences of stereoscopic images, along with corresponding 
location, orientation, and time information. Of these 11 
sequences, sequences 5 and 9 are held out as the test set for 
the final evaluation of presented neural network architectures. 
These two sequences are chosen because they contain diverse 
visual information captured in cities, rural areas, and 
highways. 

3.3. Data Preprocessing 

The KITTI dataset images are modified to ensure 
experiments can run on the described hardware. Visual 
information from the KITTI dataset is originally stereoscopic 
and 1241px by 376px with 3 color channels. In this project, 
only the left images in the stereoscopic pair are used. 
Additionally, the images are cropped to include only the 
largest possible centered square, where each has a size of 
376×376 pixels. After this, images are downscaled to a 
resolution of 128×128. After these operations, the image data 
consists of 11 sequences of data with dimension 
ni×128×128×3, where ni represents the number of images in a 
particular sequence. Finally, consecutive images are stacked 
along the color channel axis to form 11 sequences of data with 
dimension (ni −1)×128×128×6. This step is taken to give the 
network the ability to compare two images. 

 
The odometry data in the KITTI dataset is also 

reformatted for this project. The odometry portion of the 
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dataset consists of a 4 × 4 transformation matrix for each 
image. This matrix has the following form: 

 

(

𝑟00 𝑟01

𝑟10 𝑟11

𝑟02 𝑡0

𝑟12 𝑡1
𝑟20 𝑟21

0 0
𝑟22 𝑡2

0 1

) 

where 

(

𝑟00 𝑟01 𝑟02

𝑟10 𝑟11 𝑟12

𝑟20 𝑟21 𝑟22

) 

 

represents a rotation matrix describing the global orientation 
camera at a specific time and 
 

 
 
represents a translation vector from the starting position to 
the current position of the camera in the global coordinate 
frame. 
 

The Global model predicts camera translation between  

consecutive images in the global coordinate frame . To 
extract this data from the given transformation matrices, the 
following operation is applied to every translation but the last 
in every sequence of odometry data: 
 

 

where h represents the index in a sequence of odometry data. 
As with the image data preprocessing operation, the final 
output of this operation has ni −1 members in each sequence, 
where ni represents the number of odometry data points in a 
sequence. 
 

The Relative model predicts camera translation between 

consecutive images in a relative coordinate frame . To 

acquire this data, each  from above must be transformed 
by the rotation operation described by the rotation matrix. 
Because quaternion representations of these rotations are 
used by the Relative Rotation model, rotation matrices are 
first converted to quaternions using the formula described 
below: 

 

Next, every  is converted to quaternion form by the 
following equation: 

 
 
Then, every qt is rotated by the quaternion describing the 
global orientation of the camera at the first point of the pair 
required to calculate change position as described below: 
 

 

where qr∗ represents the conjugate of qr as described below: 

 

 

Lastly, the three nonzero elements of qt′ are the relative 
translations between two camera frames: 
 

 

The Relative Rotation model predicts camera 
transformation between consecutive images. Specifically, it 

predicts relative change in camera position  and relative 
change in camera orientation in quaternion format q∆r. To 
calculate q∆r for every rotation but the last in every sequence 
of odometry data, the following formula is used: 

 
 
where h represents the index in a sequence of odometry data. 
 

After the data used for training all three models is 
preprocessed, it is separated into two categories: training and 
testing. In addition to holding out sequences 5 and 9 for final 
performance evaluation, the final 20% of all data in the 9 
remaining sequences is held out for validation during training 
of models. 

3.4. Architectures 

The Architectures are created based on a random selection 
of hyper-parameters [15]. The set of hyperparameters 
includes the number of convolutional layers, the size of 
convolution kernels, the size of max pooling kernels, the 
stride of max pooling kernels, the number of fully connected 
layers, the size of each fully connected layers, and the dropout 
percentage. From this set of hyperparameters, a set of ranges 
were constructed for a random function to choose from. 

 Hyper-parameter Range 

Number of Conv Filters 64 - 360 

- Size of Conv Kernels* 3, 5, 7, 9, 11 

- Activation Function PReLU, ReLU, tanh 

- Pooling Size* 3, 5, 7 

- Pooling Stride* 3, 5, 7 <= Pooling Size 

- Dropout 0.1 - 0.5 
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Number of Dense Layers 32 - 4096 

- Activation Function PReLU, ReLU, tanh 

- Dropout 0.1 - 0.5 

* Range represents a square of side lengths X × X 

From these ranges, a set of architectures were sampled. 
From this set, each architecture was compiled into three 
model variants: the Global, the Relative, and the Relative 
Rotation models. 

3.5. Training Methodology 

All three models are given the same input data, but they 
are trained to predict fundamentally different quantities. The 
first model is trained with global change in camera position. 
The second model is trained with the relative change in 
camera position. The third model is trained to predict relative 
change in camera position and relative change in camera 
orientation. 

 
The final layer for the global and relative models are feed 

to a translational Dense layer which outputs 3 values of ∆x, 
∆y, ∆z. The implementation method for the third model 
requires a split lambda layer. The output tensor of the third 
model’s architecture is also fed to the translational layer, but 
it is also split to a quaternion layer. The quaternion layers 
contain four more Dense layers of size 64, 64, 64, 4, and 
activations of ReLU, ReLU, ReLU, tanh. The quaternion 
output layer is normalized to form a valid quaternion result. 

 
The training uses the Adam optimizer [23]. The 

parameters for the optimizer are as follows: A constant and 
low learning rate of 0.001 is used, β1 is set at 0.9, and β2 is set 
at 0.999 [23]. Mean squared error is used as the metric for 
loss, and mean absolute error is also tracked for evaluation of 
model performance during training. A low batch size of four 
data points is used to allow the model to train on the hardware 
used in this project. 

3.6. Evaluation Methodology 

To evaluate and compare the three models’ performance, 
the predictions of the three networks on each of the 
preprocessed inputs are converted to a global position which 
can be directly compared to the ground truth positions given 
by the dataset. In this paper, a set of all ground truth positions 
in a specific sequence of data is referred to as a path. 

 
For the Global model, the predicted quantity is the change 

in position in a global coordinate frame . The initial 

position in a sequence is always , so this can be used to 
construct a path for every sequence of data as described by 
the equation below: 

 

where h represents the index in a sequence of odometry data 

and represents predicted location in the global coordinate 
frame. 

 

The predicted quantity of the Relative model is relative 

change in position , so the predictions must first be rotated 
back into a global coordinate frame:  

 
 
Next, the same method used with the Global model is used to 
compute path information for the Relative model. 
 

The Relative Rotation model predicts the relative change 

in camera position  and relative change in orientation 
between two images q∆r. The initial rotation q∆r0 for each 
sequence is collected from the dataset; then, predicted q∆r for 
each path are converted to global rotations by the equation 
below: 

 
 
Afterward, the same operations which are performed to 
gather path data from the Relative model are performed using 
these predicted global rotations to gather path data from the 
Relative Rotation model. 
 

Predicted path data is then compared to the ground truth 
of the dataset. Average Euclidean error is used as the primary 
method of evaluation. To get the error for a specific sequence 
of data i, the following equation is used: 

 

 

 

where  represents a ground truth position, h represents the 
data index in a sequence, and ni represents the number of data 
points in sequence i. 
 

The error is then calculated for each of the 11 sequences 
of labeled data in the KITTI dataset. Afterward, for final 
performance evaluation, the error for the two sequences of 
test data are averaged and the error for all training data is 
averaged. 

4. Experimental Results 

To best assess the result of random hyperparameter 
selection, several conditions were scrutinized. Validation loss 
and training loss were compared between every epoch to 
ensure that the models were learning rather than memorizing 
features (Figure 4). Any models that overfit the training data 
would be culled, though there was too little data for this to 
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occur in practice. The estimated paths were plotted for each 
training sequence and validation sequence to empirically 
measure how well they mapped to the ground truth. The 
models of each type were then quantitatively measured 
further by assessing which ultimately had the lowest 
validation loss. Ideally, this would result in the most suitable 
architecture for each type of model. After qualitatively 
assessing each architecture, it was realized that looking at all 
the architectures as a whole would be more practical since the 
differences between them were minimal and could be 
attributed to chance. 

 
To compare each model’s efficacy, its estimated global 

position for each image pair was compared to the ground truth 
and the Euclidian distances (L2 error) were summed. The 
average L2 error for each model during test sequences was 
typically between 200 and 400 meters (Figure 1). This differs 
greatly from the average losses during training sequences that 
are seen in Figure 2. For the Global and Relative models, the 
loss varied between 3-10 times less for known environments 
than it did for the test sequences. Figure 3 shows that the L2 
error was dramatically larger for the Relative Rotation 
models than was the case for the other two model types and 
those models appeared to be far more sensitive to architecture 
changes. Similarly, the paths generated by Relative 
Rotational models were very often erratic. The paths 
predicted by the Global models tended to conform to the 
shape of the ground truth more often than other types. 

 
Out of all the sequences that were tested, none of the 

models of any architecture performed well in unknown 
environments. Figure 1 demonstrates how the differences in 
L2 error between model performance in unknown 
environments were too low to gauge the relative superiority 
of any of the three models. 

 
 

5. Conclusion 

In this paper, the application of simple CNN architectures 
to the task of visual odometry was explored. It has been 
demonstrated that the CNN architectures detailed in this work 
are not well-suited for the task of visual odometry in unknown 
environments, but the Global and Relative models are able to 
correlate images and translation data in known environments 
with limited success. Separating the models into three core 
architectures and evaluating each with the same 
hyperparameters allowed for three unique approaches related 
to visual odometry. Most Global models could predict general 
trends in global position with limited success, and Relative 
models often performed near the same level as Global 
models. This is to be expected, as the DeepVO paper had 
presented similar results for their architectures [1]. None of 
the variants of Relative Rotation models achieved decent 
performance on the visual odometry dataset. 

 
 

 
Architecture Number 

 
Figure 1. Performance evaluation of generated architectures on test data. 

 

 

 

6. Future Works 

Results of this paper demonstrate the need for a 
fundamentally different architecture when attempting visual 
odometry versus standard classification. Other works suggest 
Siamese networks, in which multiple layers are used to 
extract features from each image individually, are better 
suited to visual odometry related tasks [6], [4]. Starting with 
a Siamese network and applying modern techniques such as 
Batch Normalization and Snapshot Ensembles will likely 
improve results dramatically from what is possible with the 
architectures used in this paper [4], [24], [25], [26]. Lastly, it 
is worth mentioning that, as suggested in [1], recurrent 
networks may be better suited to visual odometry than using 
a CNN architecture alone. 
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All Architectures’ Performance on Training Data 

 

 

                              

Figure 2. Evaluation of performance of all generated architectures on training data. 

 

Figure 3. The trajectories of Architecture 1 
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Figure 4. The training loss (blue) and validation loss (orange) of Architecture 1 

 

Figure 5. All paths of Architecture 4 along the xz-plane (in meters). Blue represents ground truth paths, orange represents Global model paths, red represents 
Relative model paths, and green represents Relative Rotation model paths. 
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