
The Kennesaw Journal of Undergraduate Research The Kennesaw Journal of Undergraduate Research

Volume 5 Issue 3 Article 5

December 2017

Visual Odometry using Convolutional Neural Networks Visual Odometry using Convolutional Neural Networks

Alec Graves
Kennesaw State University, agrave15@students.kennesaw.edu

Steffen Lim
Kennesaw State University, slim13@students.kennesaw.edu

Thomas Fagan
Kennesaw State University, tfagan2@students.kennesaw.edu

Kevin McFall PhD.
Kennesaw State University, kmcfall@kennesaw.edu

Follow this and additional works at: https://digitalcommons.kennesaw.edu/kjur

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Graves, Alec; Lim, Steffen; Fagan, Thomas; and McFall, Kevin PhD. (2017) "Visual Odometry using
Convolutional Neural Networks," The Kennesaw Journal of Undergraduate Research: Vol. 5 : Iss. 3 , Article
5.
DOI: 10.32727/25.2019.25
Available at: https://digitalcommons.kennesaw.edu/kjur/vol5/iss3/5

This Article is brought to you for free and open access by the Office of Undergraduate Research at
DigitalCommons@Kennesaw State University. It has been accepted for inclusion in The Kennesaw Journal of
Undergraduate Research by an authorized editor of DigitalCommons@Kennesaw State University. For more
information, please contact digitalcommons@kennesaw.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DigitalCommons@Kennesaw State University

https://core.ac.uk/display/231831616?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.kennesaw.edu/kjur
https://digitalcommons.kennesaw.edu/kjur/vol5
https://digitalcommons.kennesaw.edu/kjur/vol5/iss3
https://digitalcommons.kennesaw.edu/kjur/vol5/iss3/5
https://digitalcommons.kennesaw.edu/kjur?utm_source=digitalcommons.kennesaw.edu%2Fkjur%2Fvol5%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.kennesaw.edu%2Fkjur%2Fvol5%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/kjur/vol5/iss3/5?utm_source=digitalcommons.kennesaw.edu%2Fkjur%2Fvol5%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

Visual Odometry using Convolutional Neural Networks Visual Odometry using Convolutional Neural Networks

Cover Page Footnote Cover Page Footnote
This work would never have been possible without the amazing tools released by fellow scholars. The
open source community and researchers who share their code have allowed this team to explore a new
area that would have been difficult to access if all methods had to be built from nothing. This work would
also have not been possible if Nvidia had not released their CUDA and CUDnn for free. The same goes for
Google, who released Tensorflow, and the many people who have helped build Keras. Deep learning would
not be as approachable as it is without these revolutionary linear algebra and deep learning libraries
which support the popular language Python.

This article is available in The Kennesaw Journal of Undergraduate Research: https://digitalcommons.kennesaw.edu/
kjur/vol5/iss3/5

https://digitalcommons.kennesaw.edu/kjur/vol5/iss3/5
https://digitalcommons.kennesaw.edu/kjur/vol5/iss3/5

Visual Odometry using Convolutional Neural Networks

Steffen Lim, Alec Graves, Thomas Fagan, & Kevin McFall, PhD.

Department of Mechatronics Engineering

Kennesaw State University, Marietta, GA 30060 USA

ABSTRACT

Visual odometry is the process of tracking an agent’s motion over time using a visual sensor. The visual odometry problem has

only been recently solved using traditional, non-machine-learning techniques. Despite the success of neural networks at many

related problems such as object recognition, feature detection, and optical flow, visual odometry still has not been solved with

a deep learning technique. This paper attempts to implement several Convolutional Neural Networks to solve the visual

odometry problem and compare slight variations in data preprocessing. The work presented is a step toward reaching a

legitimate neural network solution.

Keywords: visual odometry, visual, odometry, convolutional neural networks, CNNs, neural networks, randomly, randomly

selected hyperparameters, hyperparameters, hyperparameter generation, hyperparam, hyperparams, KITTI dataset, deep

learning, machine learning, quaternion

1. Introduction

Convolutional Neural Networks (CNNs) have recently
demonstrated the capacity to solve a variety of problems in
computer vision [1], [2], [3], [4], [5], [6]. They have also been
shown to match or outperform non-machine-learning (non-
ML) techniques in a variety of computer vision-related
challenges [2], [3], [4], [6]. Despite the widespread success
of CNNs in this field, there are still many areas where non-
ML techniques outperform CNNs in terms of computational
cost, accuracy, or both [7], [4], [5], [8], [9].

The problem of visual odometry has been actively

pursued over the past decade, as it is directly applicable to
problems such as the creation of cost-effective self-driving
cars, the advancement of mobile robotics, and even the
improvement of Augmented Reality systems [10], [11], [12].
Visual odometry is the process of estimating transformations
of an agent using only onboard visual sensors [4], [11]. This
project primarily focuses on the problem of monocular visual
odometry or detecting agent motion with a single onboard
camera. Thus far, several non-ML techniques have
demonstrated reliable and accurate performance on datasets
such as SVO, Visual SLAM, and Optical Flow [10], [7], [9].

Convolutional Neural Networks have had great success in

extracting complicated image features and performing well
on robust object recognition tasks, irrespective of
translational and rotational transformations, and lighting
conditions [3], [13], [4]. Significant work has also been done
to improve their speed through both parallelization and
hardware acceleration [14]. This has the potential to make a

CNN solution to the problem of visual odometry more
effective than other techniques which may never benefit from
parallelization or acceleration by specialized hardware.

In this project, three types of CNN models are

implemented in a step toward more reliable and accurate
performance on visual odometry-related tasks. These three
CNN models are trained with different objectives, but each
tackles the visual odometry problem from a unique
perspective.

The first, referred to as the Global model, is designed to

predict the translational motion of a camera between two
consecutive images in a global coordinate frame. Because this
model is not given the angle of the camera and is predicting
motion in a global coordinate frame, the task learned by this
model is more related to correlating features to its current
global orientation. This has potential applications in
situations where an agent is moving through a known
environment.

The second model is referred to as the Relative model.

This model is similar the first, but predicts translational
motion in a relative coordinate frame. This model does not
need to correlate image data to the current orientation of the
camera. This type of model also has real-world applicability,
as it can be used on an agent equipped with inertial
measurement systems which inform the agent of its current
orientation.

The third and final type of model used in this paper is

referred to as the Relative Rotation model. This type of model

1

Graves et al.: Visual Odometry using Convolutional Neural Networks

Published by DigitalCommons@Kennesaw State University, 2017

is like the second, but it is trained to predict relative change
in orientation of a camera between two consecutive images
along with relative translational motion. The predictions
made by this model are most directly related to solving the
visual odometry problem. This type of model is applicable in
areas where true visual odometry is required (e.g. an agent
equipped only with visual sensors which need to be informed
of its current position).

In addition to the creation of these three types of models,

an open-source system for selecting CNN hyperparameters is
created and implemented as part of this research. In this
system, an initial CNN architecture is designed and tested;
afterward, valid sets for several network hyperparameters are
crafted, and new architectures are generated from randomly
selected combinations of these sets. For each of these
architectures, three variations–one for each of the three
prediction models–are constructed through modification of
the final output layers. Of these generated architectures, a
randomized subset is trained and evaluated for performance.
The best of these models are then used in the final evaluation
of overall network performance. This process is commonly
known as the random search for hyperparameter optimization
and has been shown to outperform other methods of
hyperparameter optimization such as grid search [15].

2. Related Works

Works such as Semi-Direct Visual Odometry use
traditional (non-ML) methods solve to the visual odometry
problem [7]. In this method, a combination of feature-based
tracking and direct pixel intensity tracking are used for an
optimized visual odometry algorithm. This system works
well in terms of being able to accurately track multiple
features and localize while using a single camera.

Although ML solutions have not gotten far, there is still

the potential to learn a more accurate visual odometry system
that can track more complex and reliable features. One such
attempt was DeepVO by Mohanty V. et.al. [1]. The Neural
Network implementation used an AlexNet based architecture
with modifications including the using FAST [16] based
inputs on the KITTI dataset [10]. DeepVO’s attempt at visual
odometry could provide accurate motion estimations in
trained environments. Their best system had the capability of
predicting the correct position changes in a test set similar to
the training set. The DeepVO system allowed the test set to
be sparsely spread in between data points of the training set
and may test on similar environments to those on which is
trained. Their unknown environment tests were unimpressive
as their proposed system never generalized.

Some neural network solutions to similar problems

include optical flow [5], [6]. Optical flow is creating
interpolated and extrapolated data from a set of images by
understanding the objects within the images to a certain
degree. Interpolation consists of being able to create in-
between image frames from a given set of image frames.
Extrapolation entails the prediction of new image frames after

a set of images. These networks could prove useful in future
work as they might help ground the error in a visual odometry
problem.

3. Methodology

3.1. Hardware and Software

The experiments detailed in this paper are performed on a
system containing NVIDIA GTX 1060 GPU with 6GB of
video RAM, an Intel i5 CPU, 24 GB of GDDR3 system
RAM, and a 500GB Solid-State Drive. The operating system
used is Ubuntu 16.04 LTS. The programs written as part of
this project primarily use Python 3.5.2. The Python modules
Keras and TensorFlow are used to facilitate the creation and
training of CNN architectures presented in this paper [17],
[18]. Python packages NumPy and Matplotlib are used for
data manipulation and data visualization respectively [19],
[20]. Quaternion, a Python module to add support for
quaternion operations in NumPy, is also used [21]. The
Python package PyKITTI is used to facilitate preprocessing
of data from the KITTI odometry dataset [22].

3.2. Dataset

The KITTI odometry dataset is used as the source of data
[10]. The dataset itself contains visual and odometry data
taken during several car driving sessions, each in a new
environment. The labeled portion of the dataset consists of 11
sequences of stereoscopic images, along with corresponding
location, orientation, and time information. Of these 11
sequences, sequences 5 and 9 are held out as the test set for
the final evaluation of presented neural network architectures.
These two sequences are chosen because they contain diverse
visual information captured in cities, rural areas, and
highways.

3.3. Data Preprocessing

The KITTI dataset images are modified to ensure
experiments can run on the described hardware. Visual
information from the KITTI dataset is originally stereoscopic
and 1241px by 376px with 3 color channels. In this project,
only the left images in the stereoscopic pair are used.
Additionally, the images are cropped to include only the
largest possible centered square, where each has a size of
376×376 pixels. After this, images are downscaled to a
resolution of 128×128. After these operations, the image data
consists of 11 sequences of data with dimension
ni×128×128×3, where ni represents the number of images in a
particular sequence. Finally, consecutive images are stacked
along the color channel axis to form 11 sequences of data with
dimension (ni −1)×128×128×6. This step is taken to give the
network the ability to compare two images.

The odometry data in the KITTI dataset is also

reformatted for this project. The odometry portion of the

2

The Kennesaw Journal of Undergraduate Research, Vol. 5 [2017], Iss. 3, Art. 5

https://digitalcommons.kennesaw.edu/kjur/vol5/iss3/5
DOI: 10.32727/25.2019.25

dataset consists of a 4 × 4 transformation matrix for each
image. This matrix has the following form:

(

𝑟00 𝑟01

𝑟10 𝑟11

𝑟02 𝑡0

𝑟12 𝑡1
𝑟20 𝑟21

0 0
𝑟22 𝑡2

0 1

)

where

(

𝑟00 𝑟01 𝑟02

𝑟10 𝑟11 𝑟12

𝑟20 𝑟21 𝑟22

)

represents a rotation matrix describing the global orientation
camera at a specific time and

represents a translation vector from the starting position to
the current position of the camera in the global coordinate
frame.

The Global model predicts camera translation between

consecutive images in the global coordinate frame . To
extract this data from the given transformation matrices, the
following operation is applied to every translation but the last
in every sequence of odometry data:

where h represents the index in a sequence of odometry data.
As with the image data preprocessing operation, the final
output of this operation has ni −1 members in each sequence,
where ni represents the number of odometry data points in a
sequence.

The Relative model predicts camera translation between

consecutive images in a relative coordinate frame . To

acquire this data, each from above must be transformed
by the rotation operation described by the rotation matrix.
Because quaternion representations of these rotations are
used by the Relative Rotation model, rotation matrices are
first converted to quaternions using the formula described
below:

Next, every is converted to quaternion form by the
following equation:

Then, every qt is rotated by the quaternion describing the
global orientation of the camera at the first point of the pair
required to calculate change position as described below:

where qr∗ represents the conjugate of qr as described below:

Lastly, the three nonzero elements of qt′ are the relative
translations between two camera frames:

The Relative Rotation model predicts camera
transformation between consecutive images. Specifically, it

predicts relative change in camera position and relative
change in camera orientation in quaternion format q∆r. To
calculate q∆r for every rotation but the last in every sequence
of odometry data, the following formula is used:

where h represents the index in a sequence of odometry data.

After the data used for training all three models is
preprocessed, it is separated into two categories: training and
testing. In addition to holding out sequences 5 and 9 for final
performance evaluation, the final 20% of all data in the 9
remaining sequences is held out for validation during training
of models.

3.4. Architectures

The Architectures are created based on a random selection
of hyper-parameters [15]. The set of hyperparameters
includes the number of convolutional layers, the size of
convolution kernels, the size of max pooling kernels, the
stride of max pooling kernels, the number of fully connected
layers, the size of each fully connected layers, and the dropout
percentage. From this set of hyperparameters, a set of ranges
were constructed for a random function to choose from.

 Hyper-parameter Range

Number of Conv Filters 64 - 360

- Size of Conv Kernels* 3, 5, 7, 9, 11

- Activation Function PReLU, ReLU, tanh

- Pooling Size* 3, 5, 7

- Pooling Stride* 3, 5, 7 <= Pooling Size

- Dropout 0.1 - 0.5

3

Graves et al.: Visual Odometry using Convolutional Neural Networks

Published by DigitalCommons@Kennesaw State University, 2017

Number of Dense Layers 32 - 4096

- Activation Function PReLU, ReLU, tanh

- Dropout 0.1 - 0.5

* Range represents a square of side lengths X × X

From these ranges, a set of architectures were sampled.
From this set, each architecture was compiled into three
model variants: the Global, the Relative, and the Relative
Rotation models.

3.5. Training Methodology

All three models are given the same input data, but they
are trained to predict fundamentally different quantities. The
first model is trained with global change in camera position.
The second model is trained with the relative change in
camera position. The third model is trained to predict relative
change in camera position and relative change in camera
orientation.

The final layer for the global and relative models are feed

to a translational Dense layer which outputs 3 values of ∆x,
∆y, ∆z. The implementation method for the third model
requires a split lambda layer. The output tensor of the third
model’s architecture is also fed to the translational layer, but
it is also split to a quaternion layer. The quaternion layers
contain four more Dense layers of size 64, 64, 64, 4, and
activations of ReLU, ReLU, ReLU, tanh. The quaternion
output layer is normalized to form a valid quaternion result.

The training uses the Adam optimizer [23]. The

parameters for the optimizer are as follows: A constant and
low learning rate of 0.001 is used, β1 is set at 0.9, and β2 is set
at 0.999 [23]. Mean squared error is used as the metric for
loss, and mean absolute error is also tracked for evaluation of
model performance during training. A low batch size of four
data points is used to allow the model to train on the hardware
used in this project.

3.6. Evaluation Methodology

To evaluate and compare the three models’ performance,
the predictions of the three networks on each of the
preprocessed inputs are converted to a global position which
can be directly compared to the ground truth positions given
by the dataset. In this paper, a set of all ground truth positions
in a specific sequence of data is referred to as a path.

For the Global model, the predicted quantity is the change

in position in a global coordinate frame . The initial

position in a sequence is always , so this can be used to
construct a path for every sequence of data as described by
the equation below:

where h represents the index in a sequence of odometry data

and represents predicted location in the global coordinate
frame.

The predicted quantity of the Relative model is relative

change in position , so the predictions must first be rotated
back into a global coordinate frame:

Next, the same method used with the Global model is used to
compute path information for the Relative model.

The Relative Rotation model predicts the relative change

in camera position and relative change in orientation
between two images q∆r. The initial rotation q∆r0 for each
sequence is collected from the dataset; then, predicted q∆r for
each path are converted to global rotations by the equation
below:

Afterward, the same operations which are performed to
gather path data from the Relative model are performed using
these predicted global rotations to gather path data from the
Relative Rotation model.

Predicted path data is then compared to the ground truth
of the dataset. Average Euclidean error is used as the primary
method of evaluation. To get the error for a specific sequence
of data i, the following equation is used:

where represents a ground truth position, h represents the
data index in a sequence, and ni represents the number of data
points in sequence i.

The error is then calculated for each of the 11 sequences
of labeled data in the KITTI dataset. Afterward, for final
performance evaluation, the error for the two sequences of
test data are averaged and the error for all training data is
averaged.

4. Experimental Results

To best assess the result of random hyperparameter
selection, several conditions were scrutinized. Validation loss
and training loss were compared between every epoch to
ensure that the models were learning rather than memorizing
features (Figure 4). Any models that overfit the training data
would be culled, though there was too little data for this to

4

The Kennesaw Journal of Undergraduate Research, Vol. 5 [2017], Iss. 3, Art. 5

https://digitalcommons.kennesaw.edu/kjur/vol5/iss3/5
DOI: 10.32727/25.2019.25

occur in practice. The estimated paths were plotted for each
training sequence and validation sequence to empirically
measure how well they mapped to the ground truth. The
models of each type were then quantitatively measured
further by assessing which ultimately had the lowest
validation loss. Ideally, this would result in the most suitable
architecture for each type of model. After qualitatively
assessing each architecture, it was realized that looking at all
the architectures as a whole would be more practical since the
differences between them were minimal and could be
attributed to chance.

To compare each model’s efficacy, its estimated global

position for each image pair was compared to the ground truth
and the Euclidian distances (L2 error) were summed. The
average L2 error for each model during test sequences was
typically between 200 and 400 meters (Figure 1). This differs
greatly from the average losses during training sequences that
are seen in Figure 2. For the Global and Relative models, the
loss varied between 3-10 times less for known environments
than it did for the test sequences. Figure 3 shows that the L2
error was dramatically larger for the Relative Rotation
models than was the case for the other two model types and
those models appeared to be far more sensitive to architecture
changes. Similarly, the paths generated by Relative
Rotational models were very often erratic. The paths
predicted by the Global models tended to conform to the
shape of the ground truth more often than other types.

Out of all the sequences that were tested, none of the

models of any architecture performed well in unknown
environments. Figure 1 demonstrates how the differences in
L2 error between model performance in unknown
environments were too low to gauge the relative superiority
of any of the three models.

5. Conclusion

In this paper, the application of simple CNN architectures
to the task of visual odometry was explored. It has been
demonstrated that the CNN architectures detailed in this work
are not well-suited for the task of visual odometry in unknown
environments, but the Global and Relative models are able to
correlate images and translation data in known environments
with limited success. Separating the models into three core
architectures and evaluating each with the same
hyperparameters allowed for three unique approaches related
to visual odometry. Most Global models could predict general
trends in global position with limited success, and Relative
models often performed near the same level as Global
models. This is to be expected, as the DeepVO paper had
presented similar results for their architectures [1]. None of
the variants of Relative Rotation models achieved decent
performance on the visual odometry dataset.

Architecture Number

Figure 1. Performance evaluation of generated architectures on test data.

6. Future Works

Results of this paper demonstrate the need for a
fundamentally different architecture when attempting visual
odometry versus standard classification. Other works suggest
Siamese networks, in which multiple layers are used to
extract features from each image individually, are better
suited to visual odometry related tasks [6], [4]. Starting with
a Siamese network and applying modern techniques such as
Batch Normalization and Snapshot Ensembles will likely
improve results dramatically from what is possible with the
architectures used in this paper [4], [24], [25], [26]. Lastly, it
is worth mentioning that, as suggested in [1], recurrent
networks may be better suited to visual odometry than using
a CNN architecture alone.

9 8 7 6 5 4 3 2 1

10

0

20

0

30

0

40

0

50

0

60

0

5

Graves et al.: Visual Odometry using Convolutional Neural Networks

Published by DigitalCommons@Kennesaw State University, 2017

References

[1] V. Mohanty, S. Agrawal, S. Datta, A. Ghosh, V. D. Sharma, and D.
Chakravarty, “Deepvo: A deep learning approach for monocular visual
odometry.” 2016.

[2] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D.
Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions.” 2014.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges, L.
Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp.
1097–1105.

[4] P. Agrawal, J. Carreira, and J. Malik, “Learning to see by moving,”
CoRR, vol. abs/1505.01596, 2015. [Online]. Available:
http://arxiv.org/abs/1505.01596

[5] P. Fischer, A. Dosovitskiy, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,¨
P. van der Smagt, D. Cremers, and T. Brox, “Flownet: Learning optical
flow with convolutional networks,” CoRR, vol. abs/1504.06852, 2015.
[Online]. Available: http://arxiv.org/abs/1504.06852

[6] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,
“Flownet 2.0: Evolution of optical flow estimation with deep
networks,” CoRR, vol. abs/1612.01925, 2016. [Online]. Available:
http://arxiv.org/abs/1612.01925

[7] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza,
“Svo: Semidirect visual odometry for monocular and multicamera
systems.” IEEE Transactions on Robotics, 2016.

[8] R. Mur-Artal and J. D. Tardos, “ORB-SLAM2: an open-source
SLAM´ system for monocular, stereo and RGB-D cameras,” arXiv
preprint arXiv:1610.06475, 2016.

[9] M. J. M. M. Mur-Artal, Raul and J. D. Tard´ os, “ORB-SLAM: a´
versatile and accurate monocular SLAM system,” IEEE Transactions
on Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[10] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

[11] “Robust monocular visual odometry using optical flows for mobile
robots.” 2016 35th Chinese Control Conference (CCC), Control
Conference (CCC), 2016 35th Chinese, p. 6003, 2016.

[12] “Semi-dense visual odometry for ar on a smartphone.” 2014 IEEE
International Symposium on Mixed and Augmented Reality (ISMAR),

Mixed and Augmented Reality (ISMAR), 2014 IEEE International
Symposium on, p. 145, 2014.

[13] A. Krizhevsky, “Learning multiple layers of features from tiny
images,” Tech. Rep., 2009.

[14] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E.
Culurciello, “Hardware accelerated convolutional neural networks for
synthetic vision systems,” in Proceedings of 2010 IEEE International
Symposium on Circuits and Systems, May 2010, pp. 257–260.

[15] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization.” Journal of Machine Learning Research, vol. 13, pp.
281–305, 2012.

[16] E. Rosten, R. Porter, and T. Drummond, “Faster and better: a machine
learning approach to corner detection.” 2008.

[17] F. Chollet, “Keras,” https://github.com/fchollet/keras, 2015.

[18] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M.
Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray,´ C.
Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P.
Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals,´ P.
Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online].
Available: http://tensorflow.org/

[19] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing In
Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[20] “The numpy array: A structure for efficient numerical computation.”
Computing in Science & Engineering, Comput. Sci. Eng, no. 2, p. 22,
2011.

[21] M. Boyle, “quaternion: Add built-in support for quaternions to
numpy,” 2017. [Online]. Available:
https://github.com/moble/quaternion

[22] L. Clement, “pykitti: Python tools for working with kitti data,” 2016.
[Online]. Available: https://github.com/utiasSTARS/pykitti

[23] D. Kingma and J. Ba, “Adam: A method for stochastic optimization.”
2014.

[24] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift.” 2015.

[25] G. Huang, Y. Li, and G. Pleiss, “Snapshot ensembles: Train 1, get m
for free,” International Conference on Learning Representations,
2017.

[26] T. G. Dietterich, Ensemble Methods in Machine Learning. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2000, pp. 1–15.

6

The Kennesaw Journal of Undergraduate Research, Vol. 5 [2017], Iss. 3, Art. 5

https://digitalcommons.kennesaw.edu/kjur/vol5/iss3/5
DOI: 10.32727/25.2019.25

All Architectures’ Performance on Training Data

Figure 2. Evaluation of performance of all generated architectures on training data.

Figure 3. The trajectories of Architecture 1

9 8 7 6 5 4 3 2 1

0

1 , 000

2 , 000

3 , 000

4 , 000

7

Graves et al.: Visual Odometry using Convolutional Neural Networks

Published by DigitalCommons@Kennesaw State University, 2017

Figure 4. The training loss (blue) and validation loss (orange) of Architecture 1

Figure 5. All paths of Architecture 4 along the xz-plane (in meters). Blue represents ground truth paths, orange represents Global model paths, red represents
Relative model paths, and green represents Relative Rotation model paths.

8

The Kennesaw Journal of Undergraduate Research, Vol. 5 [2017], Iss. 3, Art. 5

https://digitalcommons.kennesaw.edu/kjur/vol5/iss3/5
DOI: 10.32727/25.2019.25

	Visual Odometry using Convolutional Neural Networks
	Recommended Citation

	Visual Odometry using Convolutional Neural Networks
	Cover Page Footnote

	tmp.1507748468.pdf.36qtj

