
Kennesaw State University
DigitalCommons@Kennesaw State University

Master of Science in Integrative Biology Theses Department of Ecology, Evolution, and Organismal
Biology

Summer 6-19-2019

Delivering Signal-Altering Bacterial Effector
Proteins to Mammalian Cells Using Cell-
Penetrating Peptide Technology
Robert Dickson

Follow this and additional works at: https://digitalcommons.kennesaw.edu/integrbiol_etd

Part of the Integrative Biology Commons

This Thesis is brought to you for free and open access by the Department of Ecology, Evolution, and Organismal Biology at
DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Master of Science in Integrative Biology Theses by an authorized
administrator of DigitalCommons@Kennesaw State University. For more information, please contact digitalcommons@kennesaw.edu.

Recommended Citation
Dickson, Robert, "Delivering Signal-Altering Bacterial Effector Proteins to Mammalian Cells Using Cell-Penetrating Peptide
Technology" (2019). Master of Science in Integrative Biology Theses. 41.
https://digitalcommons.kennesaw.edu/integrbiol_etd/41

https://digitalcommons.kennesaw.edu?utm_source=digitalcommons.kennesaw.edu%2Fintegrbiol_etd%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/integrbiol_etd?utm_source=digitalcommons.kennesaw.edu%2Fintegrbiol_etd%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/eeob?utm_source=digitalcommons.kennesaw.edu%2Fintegrbiol_etd%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/eeob?utm_source=digitalcommons.kennesaw.edu%2Fintegrbiol_etd%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/integrbiol_etd?utm_source=digitalcommons.kennesaw.edu%2Fintegrbiol_etd%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1302?utm_source=digitalcommons.kennesaw.edu%2Fintegrbiol_etd%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/integrbiol_etd/41?utm_source=digitalcommons.kennesaw.edu%2Fintegrbiol_etd%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu


 

 

Kennesaw State University 

Thesis Dissertation 

 

Delivering Signal-Altering Bacterial Effector Proteins to Mammalian Cells Using Cell-

Penetrating Peptide Technology 

 

 

 

 

 

 

 

 

 

 

 

 

Author: Robert Luke Dickson 

Principle Investigator: Dr. Jonathan McMurry 

Committee Members: Dr. Jonathan McMurry, Dr. Carol Chrestensen, Dr. Scott Nowak 

Funded by: Kennesaw State University and the Georgia Research Alliance 

 



2 

 

TABLE OF CONTENTS 

 

i.  ABSTRACT…………………………………………………….……………6 

1.  INTRODUCTION…………………………………………………………...7 

1.1 Type III Secretion Systems…………………………………………..8  

1.2 Bacterial Effector Proteins…….……………………………………..9 

 1.3  APK Signaling……..………………………………………………..10 

 1.4  Apoptotic Signaling……………………..…………………………..12 

 1.5  Cell-Penetrating Peptides and TAT-CaM..………………………….13 

 1.6 YopJ Modulaation of Apoptotic Signaling...………………………..15 

 1.7 The TAT-CaM Adaptor System…………………………………….16 

2.  EXPRESSION AND PURIFICATION OF CELL-PENETRATING PEPTIDES 

AND BACTERIAL EFFECTOR PROTEINS…...………………………….20 

 2.1 Introduction…………………………………………………………..20 

 2.2 Materials and Methods……………………………………………….20 

2.2.1 Construction of TAT-CaM Expression Vector………………………20 

 2.2.2 Construction of Bacterial Effector Expression Vectors………………21 

 2.2.3  Transformation of Plasmid into Nova Blue and BL21 (DE3) Cells….21 

 2.2.5 Expression of TAT-CaM….……………………………….………....22 



3 

 

 2.2.6 Expression of Bacterial Effectors……………………………………22 

 2.2.6 Purification of Proteins……………………………………….……...23 

 2.3  Results and Discussion………………………………………………24 

3. BIO-LAYER INTERFEROMETRY AND CELL-PENETRATION 

ASSAY...........................................................................................................28 

 3.1 Bio-Layer Interferometry Assay…………………………………….28 

 3.2 Eukaryotic Cell Culture……………………………………………...29 

 3.3 Intracellular Delivery Assay…………………………………………30 

 3.4 Results and Discussion……………………………………………....31 

4. CELL DEATH ASSAYS…………………………………………………….45 

4.1  Preparation of Treatments and Controls……………………………..45 

4.2 Treatment of Cells……………………………………………………46 

4.3 Analysis of LDH Activity……………………………………………46 

4.4 Results and Discussion……………………………………………….46 

5. FUTURE DIRECTIONS……………………………………………………..49 

  5.1 Reproducing Positive Uptake Results……………………………49 

  5.2 Reproducing Positive Cell Death Results………………………..49  

5.3 Further Exploration of Effector Pathways…………….…………50 

5.4 Other Bacterial Effectors…………………………………………………..50 



4 

 

5.5 Summation of Future Work Required…………………………………..…50 

5. REFERENCES………………………………………………………………...52 

 

LIST OF FIGURES 

Figure 1: Structure of Type-III Secretion Systems…………………………………….8 

Figure 2: Canonical MAPK Signaling Pathways……………………………………..11 

Figure 3: YopJ Activation of MAPK Pathways………………………………………12 

Figure 4: YopJ Activation of the Apoptotic Pathway………………………………..16 

Figure 5: The TAT-CaM Adapter System……………………………………………19 

Figure 6: Structural Analysis of YopJ………………………………………………..25 

Figure 7: Expression of YopJ and VopA………………………………………..…..26 

Figure 8: Purification of Effectors (YopJ)…………………………………………..27 

Figure 9: Biolayer Interferometry………………………………………………..….28 

Figure 10: Association of YopJ to TAT-CaM……………………………………….32 

Figure 11: Dissociation of YopJ from TAT-CaM…………………………….……..35 

Figure 12: Uptake in the absence of delivery vehicle………………….……………37 

Figure 13: Uptake of YopJ in BHK cells…………………………………………….38 

Figure 14: Orthogonal Projection of YopJ Uptake with TAT-CaM…………………40 



5 

 

Figure 15: Uptake of YopJ in the Absence of TAT-CaM……………………………40 

Figure 16: Orthogonal Projection of YopJ Uptake in the Absence of TAT-CaM.......41 

Figure 17: YopJ Uptake in SiHa Cells……………………………………………….43 

Figure 18: TAT-CaM-YopJ induced Cell Death in SiHa Cells……………………..48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 

 

ABSTRACT 

A major role of the mitogen activated protein kinase (MAPK) pathway in 

eukaryotes is to activate the bacterial pathogen defense response upon the detection of 

bacterial products in the environment. This defensive signaling results in the induction of 

inflammation, the transcription of antimicrobial peptides, the modulation of the cell cycle 

and cell survival. Some Gram-negative bacteria have evolved needle-like structures 

called Type III Secretion Systems (T3SS) that secrete signal-altering molecules into the 

host cell to interrupt signaling pathways that would otherwise lead to the elimination of 

the bacterial infection. These signal-altering molecules are known as bacterial effector 

proteins (BEPs). Bacterial effectors YopJ and VopA have been shown to interfere with 

specific signaling molecules in the MAPK pathway; effectively inducing apoptosis in 

mammalian intestinal endothelial cells. In this study, we deliver these proteins to colon 

cancer cells to artificially induce cell death, using a novel cell-penetrating peptide (CPP) 

delivery system called TAT-CaM. Here, we show that the TAT-CaM system is capable 

of delivering YopJ into mammalian cells and that YopJ is capable of inducing cell death 

once delivered. Although we encountered issues with reproducibility, we believe that 

TAT-CaM-YopJ could be effective in inducing cell death in cancer cells in a 

reproducible manner after experimental adjustments. 
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1. INTRODUCTION 

Under normal conditions, bacterial infection of eukaryotic tissues results in the 

induction of an immune response that leads to the elimination of the bacteria. Bacterial 

byproducts are detected by transmembrane pattern recognition receptors (PRRs) on the 

cell surface. After recognizing bacterial byproducts, these receptors activate signaling 

cascades that result in the transcription of antimicrobial and proinflammatory genes that 

work together to rid the tissue of infection. However, certain species of Gram-negative 

bacteria have developed specialized apparatus called Type III Secretion Systems (T3SS) 

to overcome this defensive mechanism. These needle-like structures are used to secrete 

various signal-altering molecules, known as bacterial effector proteins (BEPs), into the 

cells of the host tissue to interrupt signaling pathways, such as the mitogen-activated 

protein kinase (MAPK) pathway [1, 2, 3]. Interrupting these pathways shuts down 

transcription of defensive genes that would otherwise lead to the elimination of the 

infection [1, 2, 3]. Thus, T3SSs and bacterial effector proteins are adaptations that arose 

to allow bacteria to evade the host-cell immune response [1, 2, 3]. 
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Figure 1: Structure of Type-III Secretion Systems.  

 

1.1 Type-III Secretion Systems: 

The T3SS injectosome apparatus consists of several different proteins that form 

basal body rings, a connecting segment and a needle [24]. The hydrophobic rings position 

the structure in the cell membranes of the bacterium, as well as the membrane of the host 

cell. The needle is composed of many subunits of a single protein that come together to 

form a tubular structure through which effector proteins pass into the host cell [24]. At 
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the very base of the basal body lies an export gate whose job is to open and close to allow 

the BEPs to flow through. The exact trigger that controls the opening of the export gate is 

not yet known; however, it does require that the needle contact the host cell membrane 

[24, 25].  

 

1.2 Bacterial Effector Proteins: 

Injections from some bacterial species contain only a few effectors, while other 

species inject up to several hundred different proteins at a time. Bacterial effector 

proteins perform a wide variety of roles once inside the mammalian cell, but all are 

intended to  aid in bacterial survival. Many bacterial effectors do this by shutting down 

host defense systems like the transcription of antimicrobial peptides or the induction of 

inflammation. While others function to kill the host cell so that the bacterium can absorb 

its nutrients.. Many BEPs modulate apoptotic pathways to induce apoptosis in a variety 

of cell types. These effectors are almost always crucial for virulence and gene knockout 

results in complete avirulence.  

The pathogen responsible for plague diseases, Yersinia pestis, has been shown to 

contain 14 bacterial effector proteins. The most well studied of these effectors is YopJ, a 

protein that is capable of modulating MAPK pathways and inducing apoptosis in a 

variety of mammalian cells. Another protein in the YopJ family, VopA is found in Vibrio 

species and performs many of the same functions as YopJ, but is less effective at 

inducing apoptosis. This study focuses primarily on these two proteins and their potential 

as cancer therapeutics. 
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1.3 Canonical MAPK Signaling: 

The MAPK pathway regulates cell growth, division, differentiation, stress 

response and apoptosis through signaling cascades that result in the activation of 

transcription factors and other protein kinases [11, 12]. These cascades are composed of 

three families of mitogen-activated protein kinases: MAP3Ks, MAPKKs and MAPKs 

[12]. MAP3Ks are activated via phosphorylation by cell surface receptors after they have 

detected external stimuli and undergone a conformational change. These external stimuli 

include bacterial byproducts and growth factors. Once activated by the cell surface 

receptor, MAP3Ks activate MAPKKs. The now active MAPKKs go on to activate 

MAPKs. Once active, MAPKs work together to modulate the aforementioned cellular 

functions by activating and repressing the transcription of various proteins as well as 

activating many enzymes directly [11, 12].  
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Figure 2: Canonical MAPK Signaling Pathways.  

 

Mitogen-activated protein kinases are serine/tyrosine specific and their targets 

contain an activation loop motif with a serine and tyrosine that must both be 

phosphorylated for the enzyme to become active.  

MAPK pathways are incredibly complex and often cross-talk between one 

another. This means that the activation of one kinase can lead to a variety of different 

effects. Often times, one kinase will activate multiple signaling intermediates, resulting in 

the simultaneous activation and repression of a single cellular mechanism like apoptosis. 

Since the activation of one enzyme can lead to the activation of multiple pathways that 
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oppose one another, the resulting cellular action is often determined by the degree to 

which each pathway is stimulated. Therefore, rather than working like an on/off switch, 

many cellular mechanisms that are controlled by the MAPK signaling pathway function 

on an intensity scale [43]. 

 

1.4 YopJ and VopA Modulation of the MAPK Pathway: 

 

 

Figure 3: YopJ Activation of MAPK Pathways. 
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VopA and YopJ are bacterial effector proteins that are found in V. 

parahaemolyticus and Yersinia pestis species, respectively, that interrupt MAPK 

signaling cascades by acetylating several MAPKKs, including ERK, p38 and JNK 

[Figure 3]. In the absence of YopJ and VopA, toll-like receptors (TLRs) on the cell 

surface would detect the presence of bacterial byproducts and recruit Raf, MLK3 and 

TAK1. These MAP3Ks would continue the phosphorylation cascade resulting in 

downstream effects that decrease cell growth and differentiation, while increasing  

 

YopJ and VopA acetylate MAPKKs in order to stop the signaling cascade before 

it is able to initiate a defensive against the bacteria. YopJ has been shown to acetylate the 

activation loop of MAPKK6 with the help of acetyl coenzyme A (Acetyl CoA) [23]. In 

this way, YopJ mediated acetylation directly competes with phosphorylation. Through 

this mechanism, YopJ slows or inhibits MAPK signaling pathways in order to facilitate 

bacterial evasion of host elimination [1, 2, 3].  

 

1.5 Canonical Apoptotic Signaling: 

 Apoptosis is programmed cell death and can occur as a result of many different 

triggers. It is initiated in many tissues during development when structures must be 

formed by the removal of cells from an area. For example, the hand develops first with 

webbed fingers until apoptosis is initiated in specific cells, removing tissue from the 

space between each bone to allow the formation of fingers [46]. Apoptosis can also be 

initiated in response to viral infection in order to kill off infected cells to attempt to stop 
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the spread of the virus [47]. Apoptosis is less common under conditions of bacterial 

infection, but some gram-negative bacteria utilize bacterial effectors to initiate apoptosis 

in immune cells to avoid elimination [2, 10]. 

 Apoptotic signaling is dependent on caspases; proteins that activate one another 

through cleavage and initiate signaling cascades that result in the transcription of cell-

death genes and the release of cytotoxic molecules. Apoptotic signaling can be split into 

two major pathways, the intrinsic and extrinsic pathways [46, 48]. 

The intrinsic apoptotic pathway is canonically triggered by interactions within the 

cell. This pathway is most often activated by molecules that are able to cross the cell 

membrane, radiation (DNA damage), hypoxia or a lack of growth factors [46]. When one 

of these triggers is detected, proteins called Bax and Bak come together to form pores in 

the mitochondrial membrane [48]. These pores allow for the release of cytochrome C. 

Cytochrome C then forms a complex with procaspase-9 and Apaf-1 called the 

apoptosome. The apoptosome is responsible for cleaving procaspase-9 into its active 

form, caspase-9, which then cleaves procaspase-3 into caspase-3. Caspase-3 is known as 

the major effector caspase because it is responsible for carrying out functions such as 

initiating the transcription of proteins that lead to cell death [46, 48]. 

The extrinsic apoptotic pathway is activated by a wide variety of extracellular 

ligands that bind to death receptors on the outside of the cell, causing a conformational 

change [46]. This conformational change results in the recruitment of the DISC complex. 

procaspase-8 binds to the DISC complex, is cleaved and dimerizes to form caspase-8. 

caspase-8 then cleaves procaspase-3 into caspase-3. Thus, both the intrinsic and extrinsic 

apoptotic pathways result in caspase-3 activation and rely on its ability to induce cell 
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death. Caspase-8 has a second function that is to cleave tBID into BID. BID then 

oligomerizes Bak which, together with Bax [46], forms pores in the mitochondrial 

membrane, initiating the intrinsic apoptotic pathway. Thus, activation of the extrinsic 

apoptotic pathway results in the downstream activation of the intrinsic apoptotic pathway 

[46, 49]. 

 

1.6 YopJ Modulation of Apoptotic Signaling: 

In addition to modulating MAPK signaling, YopJ has also been shown to activate 

both the intrinsic and extrinsic apoptotic pathways [22]. It first initiates the extrinsic 

apoptosis pathway by activating the death receptor, DISC or Procaspase 8; leading to the 

activation of caspase 8. Caspase 8 then truncates BID to activate the intrinsic pathway 

[Figure 4]. Prior experiments have shown that the YopJ mechanism of apoptotic 

induction is rapid and efficient [2]. Because of this ability, it was selected as the major 

effector to deliver into cancer cells in our experiments. 
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Figure 4: YopJ Activation of the Apoptotic Pathway. Original Image modified from 

Galluzzi et al., 2009 [6]. YopJ has been reported to activate the extrinsic apoptotic 

pathway by internally stimulating the death receptor or by activating caspase-8 directly 

[22]. 

 

 

1.7 The TAT-CaM Adaptor System: 

Cell penetrating peptides are short peptide sequences that can cross the cell 

membrane. Our technology was developed around TAT, a CPP that is native to the HIV 

virus. A wide variety of cargo proteins can be bound to TAT and pulled into the cell with 

it. The problem with ordinary CPP delivery is that the cargo remains attached to TAT and 

cannot escape the endosome that TAT is bound to after endocytosis [5]. Our technology 

overcomes the obstacle of endosomal entrapment by incorporating calcium-dependant 

binding through a protein called calmodulin (CaM) [Figure 6]. CaM is attached 
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covalently to TAT just like any other cargo. However, a user defined cargo protein 

encoded with a Calmodulin Binding Site (CBS) can then be bound to CaM in a calcium 

dependent fashion. Calmodulin binds the cargo tightly in the presence of calcium but 

releases the cargo when calcium concentrations are low. Since intracellular 

concentrations of calcium are natively low, this mechanism works very well for the 

delivery of cargo into cells [4, 5]. The TAT-CaM complex binds tightly to the cargo 

outside of the cell where calcium concentrations are high. Once the complex enters the 

cell in an endosome, calcium inside the endosome begins to flow down the concentration 

gradient and into the cytoplasm, which has a lower calcium concentration than the 

extracellular environment. Once calcium concentrations drop to a low enough level 

within the endosome, the CBS tag on the cargo protein no longer binds tightly to TAT-

CaM and the cargo protein is released into the cytoplasm of the cell, while TAT-CaM 

remains bound to the endosomal membrane [Figure 6] [4, 5]. 
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A. 

 

   

B. 
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Figure 5: The TAT-CaM Adapter System.  A. Calmodulin binds tightly to the CBS tag 

on the protein in the presence of calcium. B. Calmodulin dissociates from the CBS tag on 

the cargo protein as endosomal calcium levels lower and approach homeostasis with the 

internal cellular environment. 

 

Our goal is to utilize this TAT-CaM system to deliver bacterial effector proteins 

YopJ and VopA into the cytoplasm of cancer cells, where they have been shown to 

induce apoptosis [1, 2, 3]. We believe that our system will be an effective method of 

delivery as it has been shown to work in the past with other cargos of various sizes and 

structures [4, 5]. 
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2. ANALYSIS, EXPRESSION AND PURIFICATION OF TAT-CAM AND 

BACTERIAL EFFECTORS 

 

2.1: Introduction: 

We propose a method for the cytoplasmic delivery of bacterial effector proteins 

VopA and YopJ to colon cancer cells in order to interrupt the MAPK pathway. Based on 

previous research by Rheinallt M. Jones et al. [2, 3], we believe that this will initiate 

apoptosis, resulting in the death of the colon cancer cells. Although these proteins have 

been shown to inhibit the MAPK pathway resulting in reduced cell growth, they have not 

been utilized against cancer cells due to the lack of an efficient delivery mechanism that 

does not require infection by a bacterial pathogen. We hope to overcome this obstacle by 

utilizing cell penetrating peptide (CPP) technology [4, 5].  

In order to begin our experiments, we needed to prepare pure TAT-CaM, as well 

as pure effector proteins containing the CBS tag. In addition to purifying the YopJ 

protein, we analyzed it using several bioinformatics tools to further understand how it 

works. 

 

2.2 Materials and Methods: 

2.2.1 Construction of TAT-CaM Expression Vector: 

To generate pure protein for use in experiments, the protein expression vector 

constructed by Salerno et al. was utilized [5].   
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2.2.2 Construction of Bacterial Effector Expression Vectors: 

 To generate pure protein for use in experiments, a protein expression vector was 

constructed and ordered from GeneWiz [50]. The pET-19b vector was modified with a 6-

residue histidine tag for purification and  the gene of interest at the N-terminus. The gene 

of interest was cloned into the vector using NdeI and BamHI restriction endonuclease 

sites. 

 

2.2.3 Transformation of Plasmid into Nova Blue and BL21 (DE3) Cells: 

We received 2g of lyophilized plasmid containing the desired construct. The 

plasmid was then dissolved in elution buffer (10 mM Tris-HCl, pH 8.5 and 0.1 mM 

EDTA). Frozen competent cells were thawed on ice for 5 to 10 min. After the addition of 

50-100ng of plasmid DNA to the competent cells, they were incubated on ice for 30 

minutes. The cells were then placed in a 42°C heat bath for 1 minute before being 

transferred to an ice bucket for 2 minutes. 1mL of Luria-Bertani (LB) broth was added to 

the cells and they were incubated at 37°C for 1 hour, while shaking. The cells were then 

concentrated to a volume of 150uL and were plated on an ampicillin/tetracycline resistant 

LB agar plate and incubated overnight at 37°C. Overnight cultures of Nova Blue cells 

were prepared in order to maintain stocks of DNA. These cultures were prepared by 

inoculating 5mL of LB medium with a single fresh colony and this was allowed to grow 

overnight at 37°C, shaking at 220rpm. DNA was then mini-prepped from these cells to 

obtain pure samples. 
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2.2.4 Expression of TAT-CaM: 

An overnight culture was prepared by inoculating 50mL of LB medium 

(containing ampicillin and chloramphenicol) with a single fresh colony and allowing it to 

grow overnight at 37°C. In the morning, 10mL of this culture was added to 1L of LB 

medium (containing ampicillin and chloramphenicol) and allowed to grow at 37°C. 

Optical density measurements were taken until the culture achieved an absorbance level 

between 0.4 and 0.6 when read at 600nm. The temperature was lowered to 30°C and the 

cells were induced with 0.2 mM isopropyl-1-thio-β-D-galactopyranoside (IPTG, Sigma-

Aldrich). Cells were induced for 4-6 hours before harvesting. Cultures were harvested 

using a Sovall R 5C plus centrifuge spinning at 7000 rpm at 4°C before being decanted 

and stored at -80°C for later purification. 

 

2.2.5 Expression of Bacterial Effectors: 

An overnight culture was prepared by inoculating 50mL of LB medium 

(containing ampicillin and chloramphenicol) with a single fresh colony and allowing it to 

grow overnight at 37°C. In the morning, 10mL of this culture was added to 1L of LB 

medium (containing ampicillin and chloramphenicol) and allowed to grow at 37°C. 

Optical density measurements were taken until the culture achieved an absorbance level 

between 0.4 and 0.6 when read at 600nm. The temperature was lowered to 25°C and the 

cells were induced with 0.2 mM isopropyl-1-thio-β-D-galactopyranoside (IPTG, Sigma-

Aldrich). Cells were induced for 4-6 hours before harvesting. Cultures were harvested 
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using a Sovall R 5C plus centrifuge spinning at 7000 rpm at 4°C before being decanted 

and stored at -80°C for use in purification. 

 

2.2.6 Purification of TAT-CaM and Bacterial Effectors: 

Cells were resuspended in 25mL of lysis buffer (10mM Tris-base pH 8.0, 10mM 

imidazole, 0.05% Tween, 500mM NaCl, 10% glycerol) with the help of a vortex and a 

homogenizer. DNase and lysozyme were added to break down DNA and cell membranes, 

respectively. The homogenized lysates were then run through a French press to rupture 

the cell membranes and release cellular contents into the supernatant. The lysates were 

then separated into supernatant and lysate pellets by centrifugation at 18,000 rpm. 

Proteins in the soluble supernatant were purified by His-tag affinity chromatography. 

Talon metal affinity resin (ClonTech laboratories, CA, USA) was used according to the 

manufacturer's instructions. 3mL of resin/storage solution mixture was centrifuged to 

remove the storage solution. Then, the resin was equilibrated in  lysis buffer (10mM Tris-

base pH 8.0, 25mM imidazole, 0.05% Tween, 500mM NaCl, 10% glycerol) by washing 

three times with 3mL. The resin was then resuspended in 3mL of lysis buffer added to the 

supernatant and rocked at 4°C for 45 minutes to allow binding to occur. The protein-resin 

complex was then poured into a gravity column and washed with 10mL of wash buffer 

(10mM Tris-base pH 8.0, 25mM imidazole, 0.05% Tween, 500mM NaCl, 10% glycerol) 

three times. The protein of interest was then eluted with elution buffer (10mM Tris-base 

pH 8.0, 250mM imidazole, 0.05% Tween, 500mM NaCl, 10% glycerol) in ten 1mL 

elutions. Excess salts were removed from the product via FPLC buffer exchange through 
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a desalting column into NEB buffer (10mM Hepes, 150mM NaCl, 1mM CaCl2, 10% 

Glycerol, 1mM DTT). Purified protein products were stored at -80°C. 

 

 

2.3 Results and Discussion:  

In order to better understand the functionality of YopJ, it was analyzed using 

Jpred4 and Scansite. This software identified the predicted secondary structure of YopJ 

as well as two active sites in the protein. The first is a phosphoserine/threonine binding 

site and the second is a kinase binding site. These two sites help to confirm the theory 

that YopJ is a serine/threonine acetyltransferase that acts on kinases. 

 

A.  

        10         20         30         40         50 

MIGPISQINI SGGLSEKETS SLISNEELKN IITQLETDIS DGSWFHKNYS  

        60         70         80         90        100 

RMDVEVMPAL VIQANNKYPE MNLNLVTSPL DLSIEIKNVI ENGVRSSRFI  

       110        120        130        140        150 

INMGEGGIHF SVIDYKHING KTSLILFEPA NFNSMGPAML AIRTKTAIER  

       160        170        180        190        200 

YQLPDCHFSM VEMDIQRSSS ECGIFSFALA KKLYIERDSL LKIHEDNIKG  

       210        220        230        240        250 

ILSDGENPLP HDKLDPYLPV TFYKHTQGKK RLNEYLNTNP QGVGTVVNKK  

       260        270        280  

NETIVNRFDN NKSIVDGKEL SVSVHKKRIA EYKTLLKV 

 

B. 
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C. 

 

Figure 6: Structural Analysis of YopJ. A. DNA sequence of Yersinia pestis YopJ 

acquired via UniProt. B. Secondary structure prediction acquired via Jpred4 [45]. Helices 

in red, B-sheets in green. C. Functional domain prediction using Scansite [44]. A 

phosphoserine/threonine binding site and a kinase binding site were identified. This 

supports the theory that YopJ has serine/threonine acetyltransferase activity towards 

kinases in the MAPK pathways. 
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Figure 7: Expression of YopJ and VopA. The molecular weight marker used is 

Precision Plus Protein Dual Color [51]. The first two lanes show VopA expression, the 

third and fourth two lanes show YopJ expression. Lanes marked “U” are uninduced and 

should not show a band at the indicated size. Lanes marked “I” contain samples that have 

been induced and a band should appear at 38.8kD. Expression of VopA was unsuccessful 

and very small amounts of the protein were produced. Expression of YopJ was more 

effective and a band can be seen at 38.8kD. However, neither proteins were expressed in 

large amounts.  
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Figure 8: Purification of Effectors (YopJ). The molecular marked used is Precision 

Plus Dual Color Standard [51]. Full length protein can be seen at 38.8kD. However, two 

breakdown products were copurified. 

  

 Effector purification proved to be far more difficult than anticipated. Breakdown 

products that contained the His-Tag were purified alongside of the full-length protein. 

These products can be seen in the elutions of Figure 8. In an attempt to reduce the amount 

of breakdown product present, all purification steps were performed in a room that 

maintains 4°C and with the addition of 2mM 2-Mercaptoethanol as a reducing agent. 

These breakdown products were present in all protein preps [Figure 8]. 
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3. BIO-LAYER INTERFEROMETRY AND INTRACELLULAR DELIVERY 

ASSAY 

 

3.1 Bio-Layer Interferometry: 

Biolayer interferometry is a biosensing technique that operates in real time. One 

molecule, the ligand is tethered at the tip of the optical biosensor. White light travels 

down to the molecule and reflects off. The interference pattern is measured as a shift in 

wavelength. Once a baseline has been established, the senor is then moved into an analyte 

containing buffer to monitor association and finally moved into an analyte free buffer to 

measure dissociation. Binding of both the ligand and the analyte on the sensor increases 

the reflecting surface hence causing a coincident change in the interference pattern 

 

 

Figure 9: Biolayer Interferometry. A. An interference pattern is established by 

reflection of white light from two surfaces on a fiber optic sensor with biotinylated 

molecules attached to the biolayer. B. Binding of analyte molecules causes a shift in the 

wavelength of the interference pattern. C. Monitoring of the interference shift over time 

reflects association of analyte with the immobilized molecule. Association is measured in 
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the presence of analyte and dissociation is measured when the sensor is moved to buffer 

containing no analyte. Image from ForteBio.com. 

 

The kinetics of the TAT-CaM-Cargo system were assessed via bio-layer 

interferometry using a FortéBio Octet QK biosensor with treptavidin sensors (SA). 

Assays were performed in black 96-well microplates at 25°C. All volumes were 200µL. 

TAT-CaM was biotinylated using NHS-LC-LC-biotin (succinimidyl-6-[biotinamido]-6-

hexanamidohexanoate) (Thermo Scientific, Rockford, IL, USA) at a 10:1 molar ratio of 

biotin to protein for 30 min at 25°C. Biotinylated TAT-CaM was then loaded onto the 

streptavidin sensor and a baseline of the interference pattern was established prior to 

associating ananalyte (CBS-YopJ). Dissociation was subsequently analyzed by moving 

the sensor to a well that contained no free analyte to determine how well the complex 

stays together  Next, the sensor was moved to a well containing 10mM EDTA to mimic 

the low calcium environment of the inside of the cell, in which the complex should 

dissociate. 

 

 

3.2 Eukaryotic Cell Culture: 

 

Starting BHK 21 and SiHa (HTB-35) ATCC Cell Lines:  

Cells were removed from liquid nitrogen storage and placed in a 37°C bead bath 

for 2 minutes and then warmed in the hand and closely monitored until they thawed. The 

cells were then transferred into a 15mL conical tube containing 5mL of Dulbecco’s 

modified Eagle’s medium (DMEM) containing 10% fetal bovine serum (FBS). Cells 

were centrifuged for 5 minutes at 1000 rpm at 30°C. Cells were then re-suspended into 
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12mL of pre-warmed growth media at 37°C and then transferred into a T-75 flask. Cells 

were then returned into the incubator to be incubated at 37°C under 5% carbon dioxide 

atmosphere conditions.  

 

Sub-culturing BHK and SiHa cells:  

Cells were maintained as they grew through regular media changes. When cells 

were maximally between 80-90% confluent in a T-75 flask, the culture medium was 

removed and discarded. The cell layer was quickly rinsed with 0.25% (w/v) Trypsin-

0.1% EDTA solution to remove all traces of serum which contains trypsin inhibitors. 

1mL of Trypsin-EDTA solution was added into the flask and it was placed in the 37°C 

incubator for 5 minutes and cell dispersion was periodically observed under a light 

microscope. Once the cell population was detached from the surface of the flask, 9mL of 

growth media was added into the T-75 flask and was pipetted gently to mix. 2mL of the 

cells in suspension were added to a new T-75 flask containing 10mL of sterile growth 

media. Cells were also plated in chambered Lab-Tek 4-well cover glass slides (Fisher 

Scientific) at 50% confluence for intracellular delivery experiments.  

 

3.3 Intracellular Delivery Assay: 

Cells were seeded in three wells of a 4-well Lab-Tek chambered cover glass 

(Fisher Scientific) at 50% confluence in DMEM medium supplemented with 5% FBS and 

cultured overnight. The medium was discarded and replaced with fresh medium. TAT-

CaM and CBS-Cargo were combined and allowed to incubate on ice for 5-10 minutes. 

The TAT-CaM Cargo complex was then diluted in media to a concentration of 1uM. 
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Cargo by itself was also diluted to 1uM in media. One well was treated with the TAT-

CaM-Cargo complex, another was treated with the cargo alone and the third well was an 

untreated control. The chamber culture plate was incubated for 1 hour at 37°C in a 5% 

CO2 atmosphere. Cells were rinsed three times with PBS containing calcium and 

magnesium. The cells were treated with 2 µM cell tracker green dye (Thermo Fisher) for 

20 min with incubation followed by three rinses with PBS. Cells were stained with a drop 

of NucBlue for 10min at 37°C. After three washes with PBS, DMEM/5% FBS medium 

containing 25mM HEPES pH7.4 buffer was added into the chambers. Penetration was 

analyzed using confocal microscopy.  

 

3.4 Results and Discussion: 

 Before intracellular delivery assays could be performed, the functionality of the 

TAT-CaM-YopJ adaptor system had to be assessed. Biolayer interferometry was used to 

confirm this. As seen in figure 10, YopJ bound tightly to TAT-CaM in the presence of 

calcium and did not dissociate easily. However, figure 11 demonstrates that when 

calcium is removed from the environment, rapid dissociation of the complex occurs. Thus 

the system was working as intended in vitro and was expected to do the same in cells. 
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Figure 10: Association of YopJ to TAT-CaM. YopJ binds to TAT-CaM with high 

affinity in the presence of calcium. This data represents the change in the interference 

pattern recorded by the ForteBio Octet K2 when YopJ binds to TAT-CaM which is 

bound to a streptavidin sensor.  Both proteins were present at 1uM in solution. 
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Figure 11: Dissociation of YopJ from TAT-CaM. YopJ rapidly dissociates from TAT-

CaM in the absence of calcium. This data represents the shift in the interference pattern 

recorded by the ForteBio Octet K2 when YopJ releases from TAT-CaM which is bound 

to a streptavidin sensor upon introduction of 0.1mM EDTA. EDTA binds up the calcium 

in solution, mimicking the low calcium conditions found in the cytoplasm of eukaryotic 

cells.  Both YopJ and TAT-CaM were present at 1uM in solution. 

 

 

 

Many cellular delivery experiments resulted in the uptake of YopJ into the cell 

not only when it was bound to TAT-CaM. but also when cells were treated with YopJ 

alone [Figures 12 and 13].  It is possible that the cells were unhealthy and therefore had 

permissible membranes. 
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B. 

 

Figure 12: Uptake of YopJ into BHK cells in the absence of delivery vehicle. YopJ 

was labeled with DyLight 550 red fluorescent tag. The cytoplasm was stained with 1mM 

CellTracker Green (Thermo Fisher Scientific). The nuclei were stained with NucBlue 

LiveReady Probes (Thermo Fisher Scientific). The cytoplasmic dye can be seen entering 

the nucleus and the labeled YopJ entered the cytoplasm without a delivery vehicle. A and 

B represent two separate experiments with similar results. 
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 Nuclear staining revealed that a bacterial infection was present in the BHK cell 

line. It is likely that these small bacteria were mycoplasma. Mycoplasma are a genus of 

small bacteria that lack cell walls surrounding their membranes and often enter into 

eukaryotic cells as parasites [52]. Due to the lack of a cell wall, they are unaffected by 

common antibiotics that target bacterial cell walls. Thus, in order to combat this 

contamination problem, all infected cells were thrown away, the hoods and culture 

materials were thoroughly disinfected, and new cell lines were started. However, further 

tests for mycoplasma showed that it was still present in some cells. The disinfecting of 

lab equipment and restarting of cell lines was performed several times until cells tested 

negative for mycoplasma. 
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Figure 13: Uptake of YopJ in BHK cells. YopJ was labeled with DyLight 550 red 

fluorescent tag. The cytoplasm was stained with 1mM CellTracker Green (Thermo Fisher 

Scientific). The nuclei were stained with NucBlue LiveReady Probes (Thermo Fisher 

Scientific). YopJ is rendered in white. A. cytoplasm only. B. YopJ only. C. Nucleus only. 

D. Superimposed image of all three channels. 

 

YopJ cellular delivery assays in BHK cells were performed once more after the 

mycoplasma infection was cleared. The cells looked haelthy and YopJ appeared to be 

entering the cell as it was expected to [Figure 13]. 
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Figure 14: Orthogonal Projection of YopJ Uptake with TAT-CaM. This orthogonal 

projection shows the three-dimensional view of the cell. YopJ was labeled with DyLight 

550 red fluorescent tag. The cytoplasm was stained with 1mM CellTracker Green 

(Thermo Fisher Scientific). The nuclei were stained with NucBlue LiveReady Probes 

(Thermo Fisher Scientific). YopJ is rendered in white. 

 

In order to support the theory that that the protein was entering into the inside of 

the cell, a Z-stack was taken. This is a confocal microscopy technique in which several 

images are taken at different points along the Z-axis of the cell and the individual images 

are rendered in an orthogonal projection. This method allows one to look at each image to 
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determine if the protien is present at that depth in cell. The rendering in Figure 14 

suggests that YopJ is likely inside the cell. 

When the cells were unheathly, YopJ was able to enter into the cytopolasm 

without the help of TAT. A no TAT control was performed to see if YopJ would still be 

able to enter the cell without a delivery vehicle. Results were often mixed and YopJ was 

sometimes able to enter the cell without TAT-CaM and other times could not. In the 

experiments where YopJ entered without TAT-CaM, the cells were usually visibly 

unhealthy. When cells were healthy, YopJ entered the cells only in the presence of TAT-

CaM [Figures 14 and 15 vs. Figures 16 and 17]. When the experiment was performed 

with healthy cells and in the absence of TAT-CaM, no protein can be seen within the cell. 
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Figure 15: Uptake of YopJ in the Absence of TAT-CaM. YopJ was labeled with 

DyLight 550 red fluorescent tag. The cytoplasm was stained with 1mM CellTracker 

Green (Thermo Fisher Scientific). The nuclei were stained with NucBlue LiveReady 

Probes (Thermo Fisher Scientific). A. Cytoplasm only. B. YopJ only. C. Nucleus only. D. 

Superimposed image of all three channels. 
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Figure 16: Orthogonal Projection of YopJ Uptake in the Absence of TAT-CaM. 

YopJ was labeled with DyLight 550 red fluorescent tag and was rendered in white. The 

cytoplasm was stained with 1mM CellTracker Green (Thermo Fisher Scientific). 

 

 These experiments were then repeated in SiHa cells, a human cervical cancer cell 

line, to determine whether or not YopJ could be delivered into epithelial cancer cells. 

Once again, YopJ was being taken up into the cells without the addition of TAT-CaM 

and the cells looked visibly distressed. A mycoplasma test revealed that the 

contamination was also in the SiHa cell line. So, the cells were discarded and the 
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laboratory equipment was disinfected. Several cycles of this disinfecting had to be 

performed before the cells tested mycoplasma-free.  

 

Once the cells were clear of infection, the uptake assays were repeated in these 

cells. Figure 18 shows a side by side comparison of the delivery of YopJ by itself and 

YopJ in the presence of TAT-CaM in SiHa cells. Once again, the system was effectively 

delivering the protein into the cells only in the presence of TAT-CaM.  

Despite obtaining positive results, data replication was a large obstacle. Cell 

health as well as other unknown factors caused the effector proteins to enter the cell 

without the presence of TAT-CaM. Perhaps with better cell culturing techniques and a 

more refined protocol, the assay would become more consistent. 
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Figure 17: YopJ Uptake in SiHa Cells. YopJ was labeled with DyLight 550 red 

fluorescent tag. The cytoplasm was stained with 1mM CellTracker Green (Thermo Fisher 

Scientific). The nuclei were stained with NucBlue LiveReady Probes (Thermo Fisher 

Scientific). A. Cells that were treated with YopJ alone (no TAT-CaM). B. Cells that were 

treated with TAT-CaM-YopJ. These images suggest that YopJ is able to penetrate into 

the cell only when bound to TAT-CaM.  
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4. CELL DEATH ASSAYS 

 

In order to quantify cell death resulting from TAT-CaM-Effector treatment, LDH 

assays were performed. LDH assays utilize lactase dehydrogenase (LDH) in the media as 

a measure of cell death. When cells die, membranes are compromised and LDH is 

allowed to leak into the media. The amount of LDH released per cell is remarkably 

uniform across a given cell type. Thus, it can be used to quantify what percentage of a 

cell population is dead. LDH in the media can be measured via a fluorometric assay that 

utilizes a fluorophore or via a colormetric assay that measures LDH reactivity with a 

substrate. We opted for the latter and chose the Pierce LDH cytotoxicity assay kit 

(Thermo Scientific). First, LDH catalyzes the conversion of lactate to pyruvate, resulting 

in NAD+ reduction to NADH. Then, diaphorase utilizes NADH to reduce tetrazolium salt 

(INT) into a red formazan product. The formation of this red formazan product creates a 

color change that can be detected on a microplate reader.  

 

4.1 Preparation of Treatments and Controls: 

TAT-CaM-Cargo: 

 Purified TAT-CaM and a purified bacterial effector were thawed in the presence 

of 200nM DTT and combined at a concentration of 10uM in 60uL NEB buffer (10mM 

Hepes, 150mM NaCl, 1mM CaCl2, 10% Glycerol, 1mM DTT). The mixture was allowed 

to incubate on ice for 10 minutes to allow the TAT-CaM-Cargo complex to assemble. 

The complex was then diluted to 1uM via the addition of 550uL of sterile growth 

medium. 
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TAT-CaM Only and Cargo Only: 

 Purified protein was thawed in the presence of 200nM DTT, then serially diluted 

to 10uM in 60uL of NEB buffer (10mM Hepes, 150mM NaCl, 1mM CaCl2, 10% 

Glycerol, 1mM DTT). The protein was then diluted to 1uM via the addition of 550uL of 

sterile growth medium. 

 

4.2 Treatment of Cells 

Cells were cultured in 96-well plates in Dulbecco’s Modified Eagle Medium with 

5% FBS. Experimental wells were treated with 1uM TAT-CaM-Cargo. Control wells 

were treated with 1µM of cargo only, TAT-CaM only or with nothing (no-treatment 

control). Each treatment was performed in triplicate. 

 

4.3 Analysis of LDH Activity 

At each time point, 50uL of media was removed from the cells and placed in a 

new 96-well plate to be tested for LDH content. 50uL of fresh media was then placed on 

the cells. To measure LDH levels in the media collected, 50uL of colormetric agent was 

added and allowed to react for 30 minutes in the dark at room temperature. Following this 

incubation, 100uL stop buffer was added to halt the reaction. Color change was measured 

on a microplate reader at 600nm.  

 

4.4 Results and Discussion: 
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 The initial cell death assay demonstrated a high level of cell death within the first 

hour post-treatment. The levels of cell death in cells treated with TAT-CaM-YopJ was 

not higher than that of the other treatments at the 6 and 24 hour time points due to the 

nature of the assay. In this assay, media is collected and tested after each time point and 

new media is added. The media that was collected from the wells containing TAT-CaM-

YopJ was tested after the first hour and was shown to contain a large amount of LDH, 

indicating that a great deal of cell death occurred in the first hour. However, the LDH that 

had been produced was no longer in the well containing the cells and they failed to 

produce more by the 6 and 24 hour time periods. Thus, it was concluded that YopJ 

induces rapid cell death within the first hour post-treatment, but its effects are not 

dragged out over a long period of time. 

 Like in the intracellular delivery assays, data replication was a major issue with 

these cell death assays. Many times, no cell death was occurring at all. It is likely that this 

is the result of having to use a newer protein prep when the first one ran out. The first 

protein prep was very functional and Figure 19 shows the cell death data obtained from 

treating cells with it. However, none of the other preps produced the same results. So, it is 

likely that we had nonfunctional protein in the preps that came after the initial one. 
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Figure 18: TAT-CaM-YopJ induced Cell Death in SiHa Cells. SiHa cells were 

subjected to 1uM treatments and resulting LDH leakage was monitored over a 24 hour 

period. TAT-CaM-YopJ induced significant levels of cell death within 1 hour post-

treatment. 
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5. FUTURE DIRECTIONS 

 

5.1 Reproducing Positive Uptake Results: 

This study showed that the TAT-CaM system is capable of delivering bacterial 

effector proteins into mammalian cells without the need for bacterial infection and type-

III secretion systems. Although many experiments resulted in the uptake of effectors 

without the TAT-CaM system, this can most likely be explained by cellular distress. One 

major cause of cell distress that was detected in this study was the presence of 

mycoplasma contamination in both cell lines. However, when the cells were healthy, the 

effectors were able to enter the cells only when bound to TAT-CaM. Thus, TAT-CaM 

seems to be an effective delivery mechanism for bacterial effector proteins. Future 

researchers must be sure to keep their cell lines free of mycoplasma and overall devoid of 

stress. It is likely that this would result in the reproducibility of the positive data obtained 

in this study.  

 

5.2 Reproducing Positive Cell Death Assay Results: 

 This study also showed the ability of TAT-CaM-YopJ to induce rapid cell death 

in epithelial cancer cells within the first hour of treatment. However, reproducibility was 

once again an issue. The issues with reproducibility came after the original protein prep 

was exhausted. Thus, it is likely that a functional prep of YopJ would allow future 

researchers to achieve positive results more consistently. 
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5.3 Further Exploration of Effector Pathways: 

 In addition to reproducing the positive data obtained in this study, it would 

beneficial for a future researcher to pursue the identification of pathway interference by 

YopJ and VopA. While some MAP2Ks that are targeted by these effectors have been 

identified, there is not a comprehensive list of YopJ and VopA kinase interactions. 

 Additionally, the identification of the exact location of YopJ action in the 

apoptotic pathway has yet to be elucidated. It has been shown that YopJ stimulates the 

pathway somewhere between the death receptor and caspase-8. The details of this 

pathway could potentially be discovered through immunoblotting techniques. 

 

5.4 Other Bacterial Effectors: 

 This study focused primarily on YopJ and included some experiments with VopA. 

However, there are hundreds of other bacterial effector proteins out there that could 

potentially be more effective than YopJ or VopA. Therefore, after establishing a 

consistent protocol and a healthy cell line to confirm the data obtained in this study, 

future researchers may benefit from expanding this study to other bacterial effectors in 

the hopes of identifying and even more effective effector with more potential as a cancer 

therapeutic. 

5.5 Summation of Future Work Required: 
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 This study produced data that would suggest that YopJ is able to be delivered into 

cancer cells via the TAT-CaM adaptor system and that this delivery is capable of 

inducing rapid cellular death. However, in order to say that this is the case with certainty, 

these experiments must be replicable. Thus, future research is required to confirm the 

results of this study. 

 Additionally, it is not only important to prove that this system can work, but to 

also be able to explain why it works. Therefore, future research into the pathways by 

which YopJ and VopA act would be highly beneficial. 

 YopJ and VopA are only two bacterial effectors out of hundreds. It may be that 

there are others which would work even more effectively. Therefore, this study could 

also be expanded to include many more bacterial effectors in order to determine the best 

effector for cancer therapeutics. 
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