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Abstract

Backgrounds: A large number of long intergenic non-coding RNAs (lincRNAs) are linked to a broad spectrum of
human diseases. The disease association with many other lincRNAs still remain as puzzle. Validation of such links
between the two entities through biological experiments are expensive. However, a plethora lincRNA-data are
available now, thanks to the High Throughput Sequencing (HTS) platforms, Genome Wide Association Studies
(GWAS), etc, which opens the opportunity for cutting-edge machine learning and data mining approaches to extract
meaningful relationships among lincRNAs and diseases. However, there are only a few in silico lincRNA-disease
association inference tools available to date, and none of them utilizes side information of both the entities
simultaneously in a single framework.

Methods: The recently developed Inductive Matrix Completion (IMC) technique provides a recommendation
platform among two entities considering respective side information about them. However, the formulation of IMC is
incapable of handling noise and outliers that may be present in the datasets, while data sparsity consideration is
another issue with the standard IMC method. Thus, a robust version of IMC is needed that can solve the two issues. As
a remedy, in this paper, we propose Stable Robust Inductive Matrix Completion (SRIMC) that utilizes the l2,1 norm
based regularization to optimize the objective function with a unique 2-step stable solution approach.

Results: We applied SRIMC to the available association data between human lincRNAs and OMIM disease
phenotypes as well as a diverse set of side information about the lincRNAs and the diseases. The method performs
better than the state-of-the-art methods in terms of precision@k and recall@k at the top-k disease prioritization to the
subject lincRNAs. We also demonstrate that SRIMC is equally effective for querying about novel lincRNAs, as well as
predicting rank of a newly known disease for a set of well-characterized lincRNAs.

Conclusions: With the experimental results and computational evaluation, we show that SRIMC is robust in handling
datasets with noise and outliers as well as dealing with novel lincRNAs and disease phenotypes.

Keywords: Matrix completion, Inductive learning, Long noncoding RNA, Human disease phenotypes, Association
inference
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Background
LincRNA-disease association inference problem
It is a surprising fact that, only 2% of the entire human
genome codes for proteins [1]. In recent years, it has
become evident that the non-protein coding portion of
the genome, especially the long intergenic non-coding
RNAs (lincRNAs) having length more than 200 bases
each with no overlaps with any annotated protein-coding
regions, are of critical functional importance. These lin-
cRNAs demonstrate diverse molecular mechanisms and
implicate various human diseases [2]. With the advent
of the high-throughput genomic technologies, a large
number of lincRNAs have been cataloged [3]. How-
ever, fully annotating the functions of the lincRNAs
and their involvements in human disease implications
still remain a challenge for the researchers. Develop-
ing machine learning algorithm to rank disease impli-
cations by a given lincRNA based on prior knowledge
would be beneficial to the community for tackling the
challenge.

Limitations of existing algorithms
There are several long non-coding RNA (lncRNA)-disease
association inference tools developed in the past few
years. But, there is a small number of tools that actu-
ally solved the lincRNA-disease inference problem. Due
to the complexities in the relationship and the available
datasets, only a small number of experimentally validated
associations have been reported in the lncRNAdisease
database [4]. Therefore, using multiple complementary
data sources in the algorithm is important to predict
potential lincRNA and disease associations. For example,
LRLSLDA [5], K-RWRH [6], and TslncRNA-disease [7]
belong to a family of network based association identi-
fication methods. Each of the algorithms use biological
networks, such as lincRNA similarity network and dis-
ease similarity network to develop their prediction model.
Then by using the model they infer lincRNA-disease con-
nections by either using random walk procedure on a
derived biological network or by computing a similarity
measure between nodes with known disease implications.
The association inference problem can also be tackled
through the use of matrix completion based algorithms;
Non-negative Matrix Factorization (NMF) belongs to this
family of solution strategy. But, it suffers the cold start
problem, due to the inability to address the inference pre-
dictions of the diseases for novel lincRNAs and vice versa.
Furthermore, these methods were presented on a very
small set of associations and developed without consid-
ering the scalability (e.g., around 200 lncRNAs compared
to more than 8000 lincRNAs available to date from the
research by [3] remain overlooked). However, the meth-
ods utilizing the lincRNA-expression profiles to build
similarity networks dealing with a small number of disease

classes. So, they fall short in generalizing their prediction
to identify novel diseases-lincRNA connections. Owing
to the fact that, a plethora of side information about the
lincRNAs and the disease phenotypes are available, and
the data is growing extensively every single day. Induc-
tive Matrix Completion (IMC) based algorithms utilize
side information about both the lincRNAs and diseases
along with the known association evidences to predict
missing associations [8]. But, the standard IMC uses the
least square error function which is known to be unstable
in presence of noise and outliers [9]. A stable and robust
version of the IMC is thus needed in this problem.

Outline of our proposed approach
We propose a novel stable robust formulation of IMC
using �2,1 norm based error function, as well as �2,1
based regularizer. We call the proposed method “robust”
because it can handle noise better than the standard
IMC. Also, we call the method “stable” because of the
fact that it utilizes a 2-step stable strategies to solve the
problem.

Summary of contributions
• We first describe a Robust IMC approach that

introduces l2,1 norms in both its penalty function and
the regularization. We then propose Stable Robust
IMC (SRIMC) that can handle outliers and noise in
the dataset and also joint sparsity. The solution
strategy breaks the problem into two separate and
independent problems, where each of the
sub-problem has stable solution and easy to compute.
Hence, in terms of computational complexity and
reliability SRIMC should be a better option.

• We provide an application of our RIMC and SRIMC
methods to solve the lincRNA-disease association
inference problem. We show that RIMC and SRIMC
can perform induction to decipher associations
between a novel disease and a novel lincRNA, based
on the side information about them we have, that are
not provided during learning phase. This is unlike the
traditional matrix factorization methods and
network-based inference methods discussed earlier
which are transductive in nature.

• We demonstrate that the integration of diverse
features of the lincRNAs and the diseases available
through publicly available data-servers can overcome
worse predictive performance issue faced by the
inference tools which occurs due to the extreme
sparsity inherent to the lincRNA-disease association
dataset.

• We present a comparison of our proposed RIMC,
SRIMC with standard IMC as well as the
state-of-the-art lincRNA-disease association
methods.
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The rest of the paper is organized as follows. In
“Methods” section we propose the robust IMC formu-
lation using �2,1 norm, underline the advantages of the
proposed algorithm compared with the standard IMC as
well as standard NMF approaches. Here we also show
the correctness of the proposed algorithm. In “Results”
section we present the experimental setup and the dataset.
In “Discussions” section, we present the results of the
experiments, and comparative study on the performance
of the proposed algorithm with the base-line methods.
Finally, in “Conclusions” section we conclude the paper. A
preliminary version of this work has been reported in [10].

Methods
Stable robust inductive Matrix completion (SRIMC) strategy
In this section we review standard Inductive Matrix Com-
pletion method; then we present our robust IMC (RIMC)
formulation. And finally, we present the Stable Robust
IMC (SRIMC) algorithm. Later, we provide a computa-
tional algorithm for our proposed method along with the
correctness of the algorithm.

Review on standard IMC
The Inductive Matrix Completion approach [8] includes
side information of both the row and column entities.
The formulation solves the issue “cold-start” problem in
a transductive setup (e.g., standard NMF, etc.). Therefore
we can predict association between new entities that are
not included in the data matrix available during the train-
ing time. Let’s consider an association matrix, A ∈ R

M×N

denoting the links between M row entities and N column
entities. We also have side information of both the row
and column entities and the information is encapsulated
in two matrices X ∈ R

M×m and Y ∈ R
N×n containing

m features of the M row entities and n features of the N
column entities respectively. Equation 1 defines the the
objective function of the standard IMC.

min
W ,H

ϕ = 1
2

∥
∥
∥
∥

A − XWHT Y T
∥
∥
∥
∥

2
F + λ1

2

∥
∥
∥
∥

W
∥
∥
∥
∥

2
F + λ2

2

∥
∥
∥
∥

H
∥
∥
∥
∥

2

F
such that, W ≥ 0, H ≥ 0, (1)

where λ1, λ2 are the regularization parameters that weigh-
ing between the accrued loss on the observed entries and
the trace norm regularization constraints. Here, an entry
Aij is modeled as xT

i Zyj, where Z ∈ R
m×n is a low-rank

matrix to be recovered by solving Eq. 1. It is solved in a way
that Z becomes the multiplication of two factor matrices
W and H, that is, WHT , where W ∈ R

m×r and H ∈ R
n×r .

Equation 1 can be easily solved using Algorithm 1.
After Algorithm 1 returns, we get the two factor matri-

ces W and H. These two matrices can be used to compute
missing association scores between the row and the col-
umn entities. It can also provide prediction score for an

Algorithm 1: Solve Standard Inductive Matrix Com-
pletion
Data: A ∈ R

M×N , X ∈ R
M×m, Y ∈ R

N×n

Result: W ∈ R
m×r and H ∈ R

n×r

Initialize W and H with random number maintaining
the non-negativity constraints Wik ≥ 0, Hjk ≥ 0.;
while convergence criteria not met do

Hjk ← Hjk

(

Y T AT XW
)

jk
(

Y T YHW T XT XW + λ2H
)

jk
(2)

Wik ← Wik

(

XT AYH
)

ik
(

XT XWHT Y T YH + λ1W
)

ik
(3)

end
return W, H

association between a known row entity with an new col-
umn entity, or a known column entity with a new row
entity, or both new row and column entities.

Robust IMC (RIMC) formulation
One limitation of the standard IMC is that it is prone
to outliers in the given dataset. Given A ∈ R

M×N , X ∈
R

M×m, Y ∈ R
N×n, the loss function of the standard

IMC is:
∥
∥
∥
∥
∥

A − XWHT Y T

∥
∥
∥
∥
∥

2
F =

M
∑

i=1

∥
∥
∥
∥
∥

Ai,: − Xi,:WHT Y T

∥
∥
∥
∥
∥

2

2

(4)

Here, a squared residual error gets accumulated in each
iteration in the optimization step, meaning only a few out-
liers may result in large error. Another shortcoming of the
the standard IMC is that it can not handle joint sparsity
across feature data matrices X and Y. Therefore, a solution
to each of the limitations is needed. The initial hypoth-
esis of RIMC was presented by [10]. The robust IMC,
instead of using the �2 norm based loss function involves
�2,1 norm in defining the loss function which is:

∥
∥
∥A − XWHT Y T

∥
∥
∥

2,1
=

M
∑

i=1

√
√
√
√

N
∑

j=1

(

A − XWHT Y T)2
ij (5)

Due to the fact that the errors are not squared in each
step, the approach has great advantage to handle outliers
than that of standard IMC based approaches. The gen-
eralized objective function of the RIMC can be stated
as:

min
W ,H

ϕ =
∥
∥
∥A − XWHT Y T

∥
∥
∥

2,1
+ λ1R(W ) + λ2R(H)

such that, W ≥ 0, H ≥ 0 (6)

Here, we have several options as the regularization func-
tion R(·); such as: R1(B) = ||B||2F , R2(B) = ∑M

i=1 ||Bi,:||1,
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R3(B) = ∑M
i=1 ||Bi,:||02 and R4(B) = ∑M

i=1 ||Bi,:||2. Here,
R1(·) is the ridge regularization and is adapted in the
standard IMC formulation, R2(·) is the LASSO regular-
ization which is a non-convex function and difficult to
optimize. R3(·) involves the �0 norm and is the most desir-
able [11], and R4(·) employs the �2,1 norm. R4(·) was
chosen because the function is convex and we can eas-
ily optimize the objective function involving this kind of
regulizer [12].

Thus given the data matrices A, X, Y , in this paper we
optimize the following robust IMC formulation:

min
W ,H

ϕ =
∥
∥
∥A − XWHT Y T

∥
∥
∥

2,1
+ λ1‖W‖2,1 + λ2‖H‖2,1

such that, W ≥ 0, H ≥ 0 (7)

Algorithm for RIMC (version 1)
In order to solve Eq. 7, Algorithm 2 can be adapted [10].

Algorithm 2: Solve Robust Inductive Matrix Comple-
tion (Version 1)
Data: A ∈ R

M×N , X ∈ R
M×m, Y ∈ R

N×n

Result: W ∈ R
m×r and H ∈ R

n×r

Initialize W and H with random number maintaining
the non-negativity constraints Wik ≥ 0, Hjk ≥ 0.;
Initialize D ∈ R

M×M , P ∈ R
m×m, Q ∈ R

n×n as identity
matrices.;
while convergence criteria not met do

Hjk = Hjk

(

eneT
MAeN eT

MDeMeT
n Y T eN eT

MXW
)

ik
(

eneT
MXWHT Y T eN eT

MDeMeTn Y T eN eT
MXW + λ2QH

)

jk

Dii = 1
/

√
√
√
√
√

N
∑

j=1

(

A − XWHT Y T )2
ij

Qii = 1
/

√
√
√
√

r
∑

j=1
H2

ij

Wik = Wik

(

emeT
MAeN eT

MDeMeT
mXT eMeT

N YH
)

ik
(

emeT
MXWHT Y T eN eT

MDeMeTmXT eMeT
N YH + λ1PW

)

ik

Pii = 1
/

√
√
√
√

r
∑

j=1
W 2

ij

end
return W, H

Correctness of the RIMC Algorithm (version 1)
Theorem 1 At convergence, the converged solution W ∗

of the updating rule in Algorithm 2 satisfies the KKT
condition.

Proof The KKT condition for W with constraints Wik ≥ 0,
with i = 1 · · · m, k = 1 · · · r is:

∂ϕ(W )

∂Wik
Wik = 0, ∀i, k (8)

Now, the partial derivative is

∂ϕ(W )

∂Wik
=

M
∑

α=1

1
√

∑N
β=1

(

A − XWHT Y T )2
αβ

·
N

∑

β ′=1

(

A − XWHT Y T
)

αβ ′ ·

∂

∂Wik

(

A − XWHT Y T
)

αβ ′ + λ1

m
∑

α=1

1
∑r

β=1 W 2
αβ

· Wαβ · ∂Wαβ

∂Wik

=
M

∑

α=1
Dαα

N
∑

β ′=1

(

A − XWHT Y T
)

αβ ′

(

−XT eMeT
N YH

)

ik

+ λ1PiiWik

(9)

where es = (1, · · · , 1)T ∈ R
s is a vector with all 1s.

Also, D, P ∈ R
m×m are the two diagonal matrices with the

diagonal elements given by:

Dii = 1
/

√
√
√
√

N
∑

j=1

(

A − XWHT Y T)2
ij (10)

Pii = 1
/

√
√
√
√

r
∑

j=1
W 2

ij (11)

Now, let us continue from Eq. 9:

∂ϕ(W )

∂Wik
= −

(

emeT
MAeN eT

MDeMeT
mXT eMeT

N YH
)

ik
(

emeT
MXWHT Y T eN eT

MDeMeT
mXT eMeT

N YH
)

ik
+ λ1PiiWik

(12)

Thus, the KKT condition for W is:
[

−
(

emeT
MAeN eT

MDeMeT
mXT eMeT

N YH
)

ik

+
(

emeT
MXWHT Y T eN eT

MDeMeT
mXT eMeT

N YH
)

ik
(13)

+ λ1PiiWik
]

Wik = 0, ∀i, k

But, once W converges (according to Algorithm 2), the
converged solution (W ∗) satisfies

W ∗
ik = W ∗

ik

(

emeT
MAeN eT

MDeMeT
mXT eMeT

N YH
)

ik
(

emeT
MXW ∗HT Y T eN eT

MDeMeT
mXT eMeT

N YH
+ λ1PW ∗

)

ik
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which can be written as
[

−
(

emeT
MAeN eT

MDeMeT
mXT eMeT

N YH
)

ik

+
(

emeT
MXW ∗HT Y T eN eT

MDeMeT
mXT eMeT

N YH
)

ik

+ λ1PiiW ∗
ik

]

W ∗
ik = 0

This is identical to Eq. 43. Thus, the converged solution
W ∗ satisfies the KKT condition.

Theorem 2 At convergence, the converged solution H∗
of the updating rule in Algorithm 2 satisfies the KKT
condition.

Proof The KKT condition for H with constraints Hjk ≥ 0,
with j = 1 · · · n, k = 1 · · · r is:

∂ϕ(H)

∂Hjk
Hjk = 0, ∀j, k (14)

Now, the partial derivative is

∂ϕ(H)

∂Hjk
=

M
∑

α=1

1
√

∑N
β=1

(

A − XWHT Y T )2
αβ

·
N

∑

β ′=1

(

A − XWHT Y T
)

αβ ′ ·

∂

∂Hjk

(

A − XWHT Y T
)

αβ ′ + λ2
n

∑

α=1

1
∑r

β=1 H2
αβ

· Hαβ · ∂Hαβ

∂Hik

=
M
∑

α=1
Dαα

N
∑

β ′=1

(

A − XWHT Y T
)

αβ ′

(

−Y T eN eT
MXW

)

jk

+ λ2QjjHjk ,
(15)

where D is already defined in Eq. 10, and Q ∈ R
n×n is a

diagonal matrix with the diagonal elements given by:

Qjj = 1
/

√
√
√
√

r
∑

i=1
H2

ji (16)

Now, let us continue from Eq. 15:
∂ϕ(H)

∂Hjk
= −

(

eneT
MAeN eT

MDeMeT
n Y T eN eT

MXW
)

jk
(

eneT
MXWHT Y T eN eT

MDeMeT
n Y T eN eT

MXW
)

jk

+ λ2QjjHjk (17)

Thus, the KKT condition for H is:
[

−
(

eneT
MAeN eT

MDeMeT
n Y T eN eT

MXW
)

jk

+
(

eneT
MXWHT Y T eN eT

MDeMeT
n Y T eN eT

MXW
)

jk

+ λ2QjjHjk
]

Hjk = 0, ∀j, k (18)

But, once H converges (according to Algorithm 2), the
converged solution (H∗) satisfies

H∗
jk = H∗

jk

(

eneT
MAeN eT

MDeMeT
n Y T eN eT

MXW
)

ik
(

eneT
MXWH∗T Y T eN eT

MDeMeT
n Y T eN eT

MXW
+ λ2QH∗

)

jk

which can be written as
[

−
(

eneT
MAeN eT

MDeMeT
n Y T eN eT

MXW
)

jk

+
(

eneT
MXWHT∗Y T eN eT

MDeMeT
n Y T eN eT

MXW
)

jk

+λ2QjjH∗
jk

]

H∗
jk = 0 (19)

This is identical to Eq. 47. Thus, the converged solution
H∗ satisfies the KKT condition.

Algorithm for RIMC (version 2)
We can also solve the robust IMC optimization problem
(Eq. 7) without the use of the e vectors. It is demonstrated
in Algorithm 3.

Algorithm 3: Solve Robust Inductive Matrix Comple-
tion (Version 2)
Data: A ∈ R

M×N , X ∈ R
M×m, Y ∈ R

N×n

Result: W ∈ R
m×r and H ∈ R

n×r

Initialize W and H with random number maintaining
the non-negativity constraints Wik ≥ 0, Hjk ≥ 0.;
Initialize D ∈ R

M×M, P ∈ R
m×m, Q ∈ R

n×n as identity
matrices.;
while convergence criteria not met do

Hγψ = Hγψ

(

Y T AT DXW
)

γψ
(

Y T YHW T XT DXW + λ2QH
)

γψ

Dii = 1
/

√
√
√
√

N
∑

j=1
(A − XWHT Y T )2

ij

Qii = 1
/

√
√
√
√

r
∑

j=1
H2

ij

Wαβ = Wαβ

(

XT DAYH
)

αβ
(

XT DXWHT Y T YH + λ1PW
)

αβ

Pii = 1
/

√
√
√
√

r
∑

j=1
W 2

ij

end
return W, H
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Convergence of the RIMC Algorithm (version 2)
Here, we present the proof of the convergence of
Algorithm 3.

Theorem 3 Algorithm 3 will monotonically decrease the
objective function of the problem (Eq. 7) in each iteration
and converge to the global optimum of the problem.

However, it can be rephrased using the following two
statements:

(A) Updating H using the H update equation in
Algorithm 3 while fixing W, the objective function of
the problem (Eq. 7) monotonically decreases.

(B) Updating W using the W update equation in
Algorithm 3 while fixing H, the objective function of
the problem (Eq. 7) monotonically decreases.

Proof We prove Theorem 3 (A, B) separately in the
following two sections.

Proof of Theorem 3(A): Updating of H
Proof We now focus on proving Theorem 3(A). The

proof requires the following two lemmas: (Lemma 4
and 5).

Lemma 4 Let, H(t) be the H at the tth iteration, and
H(t+1) is obtained from the next iteration. Then, under
the H update rule in Algorithm 3, the following inequality
holds.

tr
((

A − XW H(t+1)T Y T
)T

D
(

A − XW H(t+1)T Y T
))

+λ1tr
(

W T PW
)

+ λ2tr
(

H(t+1)T QH(t+1)

)

≤ tr
((

A − XW H(t)T Y T
)T

D
(

A − XW H(t)T Y T
))

+λ1tr
(

W T PW
)

+ λ2tr
(

H(t)T QH(t)
)

,

(20)

where, Dii = 1
/√

∑N
j=1(A − XW H(t)T Y T )2

ij, and Qii =

1
/√

∑r
j=1 H(t)T

ij

The proof of Lemma 4 is given in section Proof of
Lemma 4.

Lemma 5 Under the H update rule in Algorithm 3, the
following inequality holds:

∥
∥
∥
∥

A − XW H(t+1)T Y T
∥
∥
∥
∥

2,1
+ λ1 ‖W‖2,1 + λ2

∥
∥
∥H(t+1)

∥
∥
∥

2,1

−
∥
∥
∥
∥

A − XW H(t)T Y T
∥
∥
∥
∥

2,1
− λ1 ‖W‖2,1 − λ2

∥
∥
∥H(t)

∥
∥
∥

2,1
≤

1
2

{

tr
((

A − XW H(t+1)T Y T
)T

D
(

A − XW H(t+1)T Y T
))

+λ1tr
(

W T PW
)

+ λ2tr
(

H(t+1)T QH(t+1)

)

−tr
((

A − XW H(t)T Y T
)T

D
(

A − XW H(t)T Y T
))

−λ1tr
(

W T PW
)

− λ2tr
(

H(t)T QH(t)
)}

,

(21)

where D, P, Q matrices are defined earlier.
The proof of Lemma 5 is given in section Proof of

Lemma 5.
Now, if we take a look at the right hand side of the

inequality in Eq. 21, the value is negative or zero according
to Lemma 4. This completes the proof that the objective
function of Eq. 7 decreases monotonically.

Proof of Theorem 3(B): updating of W
Proof We now focus on proving Theorem 3(B). The

proof requires the following two lemmas: (Lemma 6
and 7).

Lemma 6 Let, W (t) be the W at the tth iteration, and
W (t+1) is obtained from the next iteration. Then, under
the W update rule in Algorithm 3, the following inequality
holds.

tr
((

A − XW (t+1)HT Y T
)T

D
(

A − XW (t+1)HT Y T
))

+λ1tr
(

W (t+1)T PW (t+1)

)

+ λ2tr
(

HT QH
)

≤ tr
((

A − XW (t)HT Y T
)T

D
(

A − XW (t)HT Y T
))

+λ1tr
(

W (t)T PW (t)
)

+ λ2tr
(

HT QH
)

,

(22)

where, D, P, Q are defined earlier.

Proof of Lemma 6 is provided in section Proof of
Lemma 6.

Lemma 7 Under the W update rule in Algorithm 3, the
following inequality holds:
∥
∥
∥A − XW (t+1)HT Y T

∥
∥
∥

2,1
+ λ1

∥
∥
∥W (t+1)

∥
∥
∥

2,1
+ λ2 ‖H‖2,1

−
∥
∥
∥A − XW (t)HT Y T

∥
∥
∥

2,1
− λ1

∥
∥
∥W (t)

∥
∥
∥

2,1
− λ2 ‖H‖2,1 ≤

1
2

{

tr
((

A − XW (t+1)HT Y T
)T

D
(

A − XW (t+1)HT Y T
))

+λ1tr
(

W (t+1)T PW (t+1)

)

+ λ2tr
(

HT QH
)

−tr
((

A − XW (t)HT Y T
)T

D
(

A − XW (t)HT Y T
))

−λ1tr
(

W (t)T PW (t)
)

− λ2tr
(

HT QH
)}

,

(23)

where D, P, Q matrices are defined earlier.
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Proof of Lemma 7 is provided in section Proof of
Lemma 7.

Now, if we take a look at the right hand side of the
inequality in Eq. 23, the value is negative or zero according
to Lemma 6. This completes the proof that the objective
function of Eq. 7 decreases monotonically.

Proof of Lemma 4
Proof We can re-write Eq. 20 as follows:

J
(

H(t+1)
)

≤ J
(

H(t)
)

, (24)

where

J(H) = tr
(

A − XWHT Y T
)T

D
(

A − XWHT Y T
)

+λ1tr
(

W T PW
)

+ λ2tr
(

HT QH
)

(25)

And, according to the statement of Lemma 4, under the
H update rule Algorithm 3, J(H) monotonically decreases.
In order to prove the statement, we follow the approaches
utilizing auxiliary functions [13, 14].

Definition 1 G(H , H ′) is an auxiliary function for the
function J(H) if G(H , H ′) ≥ J(H) for all H ′ and G(H , H) =
J(H).

Now, we define:

H(t+1) = argmin
H

G
(

H , H(t)
)

So, we have

J
(

H(t+1)
)

= G
(

H(t+1), H(t+1)
)

≤ G
(

H(t+1), H(t)
)

≤ G
(

H(t), H(t)
)

= J(H(t))

This proves that J(H(t)) is monotonically decreasing.
Now the important steps in the remainder of the proof

are: (a) determine a proper auxiliary function, and (b) find
the global minima of the auxiliary function.

Lemma 8 The function

G(H , H ′) = tr
(

AT DA
)

− 2tr
(

YHW T XT DA
)

+ λ1tr
(

W T PW
)

+ λ2tr
(

HT QH
)

+
n

∑

i=1

r
∑

j=1

(

Y T YH ′W T XT DXW
)

ij H2
ij

H ′ij
(26)

is an auxiliary function for J.

Proof Now J(H) of Eq. 25 can be re-written as:

J(H) = tr(AT DA) − 2tr
(

YHW T XT DA
)

+ λ1tr
(

W T PW
)

+ λ2tr
(

HT QH
)

+ tr
(

HT Y T YHW T XT DXW
)

(27)

Now we will be applying the following inequality of
matrices according to the investigations by [14, 15]:

tr
(

HT
HB
)

≤
∑

i

∑

j

(


H ′B
)

ji
H2

ij

H ′
ij

, (28)

where, 
, B, H are non-negative matrices, and 
, B are
symmetric matrices. And obviously the equality holds in
Eq. 28 when H = H ′.

In Eq. 28, if we do the substitutions: 
 = Y T Y , B =
W T XT DXW , H = H , H ′ = H ′, we see that the fifth term
of Eq. 27 is smaller than the fifth term of Eq. 26. However,
the equality holds when H = H ′. Thus G(H , H ′) in Eq. 26
is an auxiliary function of J(H).

Now, we need to find the global minimum of Eq. 26. Let
f (H) = G(H , H ′). The gradient of f (H) is

∂f (H)

∂Hij
= − 2

(

Y T AT DXW
)

ij
+ 2λ2(QH)ij

+ 2

(

Y T YH ′W T XT DXW
)

ij Hij

H ′ij
(29)

However, the second order derivative (i.e., the Hessian
matrix) would be

∂2f (H)

∂Hij∂Hkl
= 2(Q)jlδikδkβ

+
(

2

(

Y T DYH ′W T XT XW
)

ij

H ′
ij

)

δjlδik

(30)

The Hessian matrix (Eq. 30 is semi-positive definite
implying that f (H) = G(H , H ′) is a convex function. Thus,
there exists a unique global minimum for f (H). The global
minimum can be obtained by setting the gradient of f (H)

to zero and solve for H. Thus from Eq. 29 we get

Hij = H ′
ij

(

Y T AT DXW
)

ij
(

Y T YH ′W T XT DXW + λ2QH
)

ij
(31)

By replacing H(t+1) = H and H(t) = H ′, we would
obtain the H update rule in Algorithm 3. Therefore, under
this rule, the objective function J(H) of Eq. 25 decreases
monotonically, and hence completes the proof.
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Proof of Lemma 5
Proof We know that,

tr
(

A − XW H(t)T Y T
)T

D
(

A − XW H(t)T Y T
)

+ λ1tr
(

W T PW
)

+ λ2tr
(

H(t)T QH(t)
)

=
M

∑

i=1

N
∑

j=1

(

A − XW H(t)T Y T
)

ij
Dii

+ λ1tr
(

W T PW
)

+ λ2

n
∑

k=1

r
∑

l=1
H(t)

kl
2
Qkk

=
M

∑

i=1

∥
∥
∥Ai −

(

XW H(t)T Y T
)

i

∥
∥
∥

2
Dii

+ λ1tr(W T PW ) + λ2

n
∑

k=1

∥
∥
∥H(t)

k

∥
∥
∥

2
Qkk

Similarly, we can see that

tr
(

A − XW H(t+1)T Y T
)T

D
(

A − XW H(t+1)T Y T
)

+ λ1tr
(

W T PW
)

+ λ2tr
(

H(t+1)T QH(t+1)
)

=
M

∑

i=1

∥
∥
∥Ai −

(

XW H(t+1)T Y T
)

i

∥
∥
∥

2
Dii

+ λ1tr
(

W T PW
)

+ λ2

n
∑

k=1

∥
∥
∥H(t+1)

k

∥
∥
∥

2
Qkk

Then, the right-hand side (r.h.s) of Eq. 21 becomes

r.h.s = 1
2

M
∑

i=1

(∥
∥
∥Ai −

(

XW H(t+1)T Y T
)

i

∥
∥
∥

2

−
∥
∥
∥Ai −

(

XW H(t)T Y T
)

i

∥
∥
∥

)

Dii + λ2

n
∑

k=1

(∥
∥
∥H(t+1)

k

∥
∥
∥

2

−‖H(t)
k ‖2

)

Qkk

= 1
2

M
∑

i=1

(∥
∥
∥Ai −

(

XW H(t+1)T Y T
)

i

∥
∥
∥

2
Dii − 1

Dii

)

+ λ2

n
∑

k=1

(∥
∥
∥H(t+1)

k

∥
∥
∥

2
Qkk − 1

Qkk

)

And, the left-hand side (l.h.s) of Eq. 21 becomes

l.h.s =
M

∑

i=1

(√
∥
∥
∥Ai −

(

XW H(t+1)T Y T
)

i

∥
∥
∥

2

−
√

∥
∥
∥Ai −

(

XW H(t)T Y T
)

i

∥
∥
∥

2
)

+ λ2

n
∑

k=1

(√
∥
∥
∥H(t+1)

k

∥
∥
∥

2 −
√

∥
∥
∥H(t)

k

∥
∥
∥

2
)

=
M

∑

i=1

(∥
∥
∥Ai −

(

XW H(t+1)T Y T
)

i

∥
∥
∥

−
∥
∥
∥Ai −

(

XW H(t)T Y T
)

i

∥
∥
∥

)

+ λ2

n
∑

k=1

(√
∥
∥
∥H(t+1)

k

∥
∥
∥

2 −
√

∥
∥
∥H(t)

k

∥
∥
∥

2
)

=
M

∑

i=1

(∥
∥
∥Ai −

(

XW H(t+1)T Y T
)

i

∥
∥
∥ − 1

Dii

)

+ λ2

( n
∑

k=1

∥
∥
∥H(t+1)

k

∥
∥
∥ − 1

Qkk

)

Now, we compute the difference between the l.h.s and
r.h.s,

l.h.s − r.h.s =
M

∑

i=1

(∥
∥
∥Ai −

(

XW H(t+1)T Y T
)

i

∥
∥
∥

−
∥
∥
∥Ai −

(

XW H(t+1)T Y T
)

i

∥
∥
∥

2 Dii
2

− 1
2Dii

)

+ λ2

n
∑

k=1

(∥
∥
∥H(t+1)

k

∥
∥
∥ −

∥
∥
∥H(t+1)

k

∥
∥
∥

2 Qkk
2

− 1
2Qkk

)

=
M

∑

i=1

Dii
2

⎛

⎜
⎝

∥
∥
∥Ai −

(

XW H(t+1)T Y T
)

i

∥
∥
∥

Dii

−
∥
∥
∥Ai −

(

XW H(t+1)T Y T
)

i

∥
∥
∥

2 − 1
D2

ii

)

+ λ2

n
∑

k=1

Qkk
2

⎛

⎝

∥
∥
∥H(t+1)

k

∥
∥
∥

Qkk
−

∥
∥
∥H(t+1)

k

∥
∥
∥

2 − 1
Q2

kk

⎞

⎠

=
M

∑

i=1

(−Dii)

2

(∥
∥
∥Ai −

(

XW H(t+1)T Y T
)

i

∥
∥
∥ − 1

Dii

)2

+ λ2

n
∑

k=1

(−Qkk)

2

(∥
∥
∥H(t+1)

k

∥
∥
∥ − 1

Qkk

)2

≤ 0
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The above inequality holds because, D, Q are non-
negative matrices, and the sum of non-positive numbers
is always non-positive. This completes the proof.

Proof of Lemma 6
Proof We can re-write Eq. 22 as follows:

J(W (t+1)) ≤ J(W (t)), (32)

where

J(W ) = tr
(

A − XWHT Y T
)T

D
(

A − XWHT Y T
)

+λ1tr
(

W T PW
)

+ λ2tr
(

HT QH
)

(33)

And, according to the statement of Lemma 6, under
the W update rule in Algorithm 3, J(W ) monotonically
decreases. In order to prove the statement, we follow the
approaches utilizing auxiliary functions [13, 14].

Definition 2 G(W , W ′) is an auxiliary function for the
function J(W ) if G(W , W ′) ≥ J(W ) for all W ′ and
G(W , W ) = J(W ).

Now, we define:

W (t+1) = argmin
W

G
(

W , W (t)
)

So, we have

J
(

W (t+1)
)

= G
(

W (t+1), W (t+1)
)

≤ G
(

W (t+1), W (t)
)

≤ G
(

W (t), W (t)
)

= J
(

W (t)
)

This proves that J
(

W (t)) is monotonically decreasing.
Now the important steps in the remainder of the proof

are: (a) determine a proper auxiliary function, and (b) find
the global minima of the auxiliary function.

Lemma 9 The function

G(W , W ′) = tr
(

AT DA
)

− 2tr
(

YHW T XT DA
)

+ λ1tr
(

W T PW
)

+ λ2tr
(

HT QH
)

+
m

∑

i=1

r
∑

j=1

(

XT DXW ′HT Y T YH
)

ij W 2
ij

W ′ij
(34)

is an auxiliary function for J.

Proof Now J(W ) of Eq. 41 can be re-written as:

J(W ) = tr
(

AT DA
)

− 2tr
(

YHW T XT DA
)

+ λ1tr
(

W T PW
)

+ λ2tr
(

HT QH
)

+ tr
(

W T XT DXWHT Y T YH
)

(35)

Now we will be applying the following inequality of
matrices according to the investigations by [14, 15]:

tr
(

W T
WB
)

≤
∑

i

∑

j

(


W ′B
)

ji
W 2

ij

W ′
ij

, (36)

where, 
, B, W are non-negative matrices, and 
, B are
symmetric matrices. And obviously the equality holds in
Eq. 36 when W = W ′.

In Eq. 36, if we do the substitutions: 
 = XT DX, B =
HT Y T YH , W = W , W ′ = W ′, we see that the fifth term
of Eq. 35 is smaller than the fifth term of Eq. 34. How-
ever, the equality holds when W = W ′. Thus G(W , W ′)
in Eq. 34 is an auxiliary function of J(W ).

Now, we need to find the global minimum of Eq. 34. Let
f (W ) = G(W , W ′). The gradient of f (W ) is

∂f (W )

∂Wij
= − 2(XT DAYH)ij + 2λ1(PW )ij

+ 2

(

XT DXW ′HT Y T YH
)

ij Wij

W ′ij
(37)

However, the second order derivative (i.e., the Hessian
matrix) would be

∂2f (W )

∂Wij∂Wkl
= 2(P)ijδjlδik

+
(

2

(

XT DXW ′HT Y T YH
)

ij

W ′
ij

)

δjlδik

(38)

The Hessian matrix (Eq. 38) is semi-positive definite
implying that f (W ) = G(W , W ′) is a convex function.
Thus, there exists a unique global minimum for f (W ). The
global minimum can be obtained by setting the gradient
of f (W ) to zero and solve for W. Thus from Eq. 37 we get

Wij = W ′
ij

(

XT DAYH
)

ij
(

XT DXW ′HT Y T YH + λ1PW
)

ij
(39)

By replacing W (t+1) = W and W (t) = W ′, we would
obtain the W update rule in Algorithm 3. Therefore, under
this rule, the objective function J(W ) of Eq. 41 decreases
monotonically, and hence completes the proof.
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Proof of Lemma 7
Proof We know that,

tr
(

A − XW (t)HT Y T
)T

D
(

A − XW (t)HT Y T
)

+ λ1tr
(

W (t)T PW (t)
)

+ λ2tr
(

HT QH
)

=
M

∑

i=1

N
∑

j=1

(

A − XW (t)HT Y T
)

ij
Dii

+ λ1

m
∑

k=1

r
∑

l=1
W (t)

kl
2
Pkk + λ2tr

(

HT QH
)

=
M

∑

i=1

∥
∥
∥Ai −

(

XW (t)HT Y T
)

i

∥
∥
∥

2
Dii

+ λ1

m
∑

k=1

∥
∥
∥W (t)

k

∥
∥
∥

2
Pkk + λ2tr(HT QH)

Similarly, we can see that

tr
(

A − XW (t+1)HT Y T
)T

D
(

A − XW (t+1)HT Y T
)

+ λ1tr
(

W (t+1)T PW (t+1)
)

+ λ2tr
(

HT QH
)

=
M

∑

i=1

∥
∥
∥Ai −

(

XW (t+1)HT Y T
)

i

∥
∥
∥

2
Dii

+ λ1

m
∑

k=1

∥
∥
∥W (t+1)

k

∥
∥
∥

2
Pkk + λ2tr(HT QH)

Then, the right-hand side (r.h.s) of Eq. 23 becomes

r.h.s = 1
2

M
∑

i=1

(∥
∥
∥Ai −

(

XW (t+1)HT Y T
)

i

∥
∥
∥

2

−
∥
∥
∥Ai−

(

XW (t)HT Y T
)

i

∥
∥
∥

)

Dii+λ1

m
∑

k=1

(∥
∥
∥W (t+1)

k

∥
∥
∥

2

−
∥
∥
∥W (t)

k

∥
∥
∥

2
)

Pkk

= 1
2

M
∑

i=1

(∥
∥
∥Ai −

(

XW (t+1)HT Y T
)

i

∥
∥
∥

2
Dii − 1

Dii

)

+ λ1

m
∑

k=1

(∥
∥
∥W (t+1)

k

∥
∥
∥

2
Pkk − 1

Pkk

)

And, the left-hand side (l.h.s) of Eq. 23 becomes

l.h.s =
M

∑

i=1

(√
∥
∥Ai − (

XW (t+1)HT Y T)

i
∥
∥2

−
√

∥
∥Ai − (

XW (t)HT Y T)

i
∥
∥2

)

+ λ1

m
∑

k=1

(√
∥
∥
∥W (t+1)

k

∥
∥
∥

2 −
√

∥
∥
∥W (t)

k

∥
∥
∥

2
)

=
M

∑

i=1

(∥
∥
∥Ai −

(

XW (t+1)HT Y T
)

i

∥
∥
∥

−
∥
∥
∥Ai −

(

XW (t)HT Y T
)

i

∥
∥
∥

)

+ λ1

m
∑

k=1

(√
∥
∥
∥W (t+1)

k

∥
∥
∥

2 −
√

∥
∥
∥W (t)

k

∥
∥
∥

2
)

=
M

∑

i=1

(∥
∥
∥Ai −

(

XW (t+1)HT Y T
)

i

∥
∥
∥ − 1

Dii

)

+ λ1

( m
∑

k=1

∥
∥
∥W (t+1)

k

∥
∥
∥ − 1

Pkk

)

Now, we compute the difference between the l.h.s and
r.h.s,

l.h.s − r.h.s =
M

∑

i=1

(∥
∥
∥Ai −

(

XW (t+1)HT Y T
)

i

∥
∥
∥

−
∥
∥
∥Ai −

(

XW (t+1)HT Y T
)

i

∥
∥
∥

2 Dii
2

− 1
2Dii

)

+λ1

m
∑

k=1

(∥
∥
∥W (t+1)

k

∥
∥
∥−

∥
∥
∥W (t+1)

k

∥
∥
∥

2 Pkk
2

− 1
2Pkk

)

=
M

∑

i=1

Dii
2

(∥
∥Ai − (

XW (t+1)HT Y T)

i
∥
∥

Dii

−
∥
∥
∥Ai −

(

XW (t+1)HT Y T
)

i

∥
∥
∥

2 − 1
D2

ii

)

+ λ1

m
∑

k=1

Pkk
2

⎛

⎝

∥
∥
∥W (t+1)

k

∥
∥
∥

Pkk
−

∥
∥
∥W (t+1)

k

∥
∥
∥

2− 1
P2

kk

⎞

⎠

=
M

∑

i=1

(−Dii)

2

(∥
∥
∥Ai−

(

XW (t+1)HT Y T
)

i

∥
∥
∥− 1

Dii

)2

+ λ1

m
∑

k=1

(−Pkk)

2

(∥
∥
∥W (t+1)

k

∥
∥
∥ − 1

Pkk

)2

≤ 0

The above inequality holds because, D, P are non-
negative matrices, and the sum of non-positive numbers
is always non-positive. This completes the proof.
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Correctness of the RIMC Algorithm (version 2)
In this section we are going to prove that the converged
solution presented in Algorithm 3 is the correct optimal
solution. In fact, we will show that the converged solu-
tion satisfies the Karush-Kuhn-Tucker (KKT) condition
of the constrained optimization theory. At first, we have
Theorem 10 to prove the correctness of the algorithm with
respect to W. Theorem 11 will prove the correctness of
the algorithm with respect to H.

Theorem 10 At convergence, the converged solution W ∗
of the updating rule in Algorithm 3 satisfies the KKT
condition.

Proof The KKT condition for W with constraints
Wαβ ≥ 0, with α = 1, · · · , m; β = 1, · · · , r is:

∂J(W )

∂Wαβ

Wαβ = 0, ∀α, β (40)

Similar to Eq. 25, the J(W ) can be written as:

J(W ) = tr
(

A − XWHT Y T
)T

D
(

A − XWHT Y T
)

+λ1tr
(

W T PW
)

+ λ2tr
(

HT QH
)

(41)

Now, the partial derivative of J(W ) can be expressed as:
∂J(W )

∂Wαβ

= − 2
(

XT DAYH
)

αβ
+ 2λ1(PW )αβ

+ 2
(

XT DXWHT Y T YH
)

αβ
(42)

Thus, the KKT condition for W is:
[

−
(

XT DAYH
)

αβ
+ λ1(PW )αβ

+
(

XT DXWHT Y T YH
)

αβ

]

Wαβ = 0, ∀α, β (43)

But, once W converges (according to Algorithm 3), the
converged solution W ∗ satisfies the following:

W ∗
αβ ← W ∗

αβ

(

XT DAYH
)

αβ
(

XT DXW ∗HT Y T YH + λ1PW ∗)
αβ

which can be written as
[

−
(

XT DAYH
)

αβ
+ λ1(PW ∗)αβ

+
(

XT DXW ∗HT Y T YH
)

αβ

]

W ∗
αβ = 0, ∀α, β

(44)
This is identical to Eq. 43. Thus, the converged solution

W ∗ satisfies the KKT condition.

Theorem 11 At convergence, the converged solution H∗
of the updating rule in Algorithm 3 satisfies the KKT
condition.

Proof The KKT condition for H with constraints Hγψ ≥ 0,
with γ = 1, · · · , n, ψ = 1, · · · , r is:

∂J(H)

∂Hγψ

Hγψ = 0, ∀γ , ψ (45)

Now, the partial derivative of J(H) from Eq. 25 is

∂J(H)

∂Hγψ

= − 2
(

Y T AT DXW
)

γψ
+ 2λ2(QH)γψ

+ 2
(

Y T YHW T XT DXW
)

γψ
(46)

Thus, the KKT condition for H is:
[

−
(

Y T AT DXW
)

γψ
+ λ2(QH)γψ

+
(

Y T YHW T XT DXW
)

γψ

]

Hγψ = 0, ∀γ , ψ

(47)

But, once H converges (according to Algorithm 3), the
converged solution, H∗ satisfies the following:

H∗
γψ ← H∗

γψ

(

Y T AT DXW
)

γψ
(

Y T YH∗W T XT DXW + λ2QH∗)
γψ

which can be written as
[

−
(

Y T AT DXW
)

γψ
+ λ2(QH∗)γψ

+
(

Y T YH∗W T XT DXW
)

γψ

]

H∗
γψ = 0, ∀γ , ψ

This is identical to Eq. 47. Thus, the converged solution
H∗ satisfies the KKT condition.

Stable robust IMC (SRIMC) formulation
Instead of solving the RIMC objective function (Eq. 7)
directly, here we propose a two-step solution strategy to
the RIMC formulation, and we call this new algorithm
SRIMC.

Step 1: solving matrix Z from a matrix equation
In this step, we consider the following matrix equation

XZY T = A, (48)

where Z is an m × n matrix of unknowns, X is the M × m
feature matrix of the row entities, Y is the N × n is the
feature matrix of the column entities. And, A is the M ×
N binary association matrix between the row and column
entities.

Now, in Eq. 48, if we left multiply by XT and right
multiply by Y, we get the following equation

XT XZY T Y = XT AY (49)
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If X has full column rank and Y has a full row rank, then
both XT X and Y T Y are invertible. Therefore, we can solve
for Z.

ZY T Y =
(

XT X
)−1

XT AY

⇒ Ẑ =
(

XT X
)−1

XT AY
(

Y T Y
)−1

(50)

Step 2: robust NMF on matrix Z

min
W ,H

ϕ = ‖Z − WHT‖2,1 + λ1‖W‖2,1 + λ2‖H‖2,1

such that, W ≥ 0, H ≥ 0 (51)

This a modified non-negative matrix factorization
(NMF) problem; only difference is the usage of the �2,1
norms instead of �2 norms in the loss function and the
regularizers.

Algorithm for SRIMC
We can also solve the Stable Robust IMC optimization
problem by solving the two problems mentioned above. It
is demonstrated in Algorithm 4.

Algorithm 4: Solve Stable Robust Inductive Matrix
Completion (SRIMC)
Data: A ∈ R

M×N , X ∈ R
M×m, Y ∈ R

N×n

Result: W ∈ R
m×r and H ∈ R

n×r

Initialize W and H with random number maintaining
the non-negativity constraints Wik ≥ 0, Hjk ≥ 0.;
Initialize D ∈ R

M×M , P ∈ R
m×m, Q ∈ R

n×n as identity
matrices.;
Solve Z from the equation XZY T = A;
while convergence criteria not met do

Wik = Wik
(ZDH)ik

(WHT DH + λ1PW )ik
,

Hjk = Hjk
(DZT W )jk

(DHW T W + λ2QH)jk
,

Dii = 1
∑n

j=1(Z − WHT )2
ij

,

Pii = 1
∑r

j=1 W 2
ij

,

Qii = 1
∑r

j=1 H2
ij

end
return W, H

Results
Disease-LincRNA association datasets
We prepared a sparse association matrix by extracting
the lincRNA-disease association dataset from the LncR-
NADisease [4] with sparsity indx 0.22%. LincRNA expres-
sion dataset was obtained from the co-expression based
association study [7]. Finally, we cataloged 8194 lincRNAs
and 2148 human disease phenotypes and the resulting
association matrix contains 46,934 associations among
these two entities. We followed a standard naming of the
disease phenotypes by OMIM identification numbers. We
extracted top-5 OMIM phenotypes matching the human
disease names using OMIM API [16].

LincRNA feature datasets
The features of LincRNAs consist of four groups of infor-
mation: (i) expression profiles, (ii) transcriptor factor
binding sites (TFBS), (iii) functional annotations and (iv)
single nucleotide polymorphism (SNP) information. The
RNA-seq expression profiles of the 8194 lincRNAs on 22
human tissues were collected from the Human BodyMap
Project 2.0 [3]. The expression scores were measured in
FPKM (Fragments Per Kilobase of exons per Million Frag-
ments mapped) unit. Then, TFBS information about the
lincRNAs in our study with 120 transcription factors were
obtained from ChIP-base dataset [17]. Linc2GO is a pub-
lic data repository containing functional annotations of
lincRNAs [18]. There are three different types of functions
cataloged in the Lin2GO dataset: gene ontology biolog-
ical process (GO BP), gene ontology molecular function
(GO MF) and KEGG pathways. The 8194 lincRNAs with
the functional annotation together make a sparse matrix
with sparsity index 0.11%. We performed singular value
decomposition on the matrix to compute and use the lead-
ing 100 singular vectors in our study as part of the features
of the lincRNAs. We extracted links among 368,494 SNPs
and the lincRNAs from our study from the lncRNASNP
dataset [19]. Again, the SNP-lincRNA association matrix
turned out to a sparse matrix with the sparsity index
0.0077%. Therefore, we performed singular value decom-
position on the matrix to compute and use the leading 100
singular vectors. Finally, we performed a filtering on all the
four groups of features of the lincRNAs in our study. We
found that 6540 out of the initial 8194 lincRNAs have data
from all the four groups of featureset. Therefore, our final
lincRNA feature matrix (X in our study) has 6540 rows
(lincRNAs) and 342 columns (features).

Disease feature datasets
The disease feature dataset consists of two groups of infor-
mation: (i) term frequency inverse document frequency
(TF-IDF) scores and (ii) phenotype similarity scores. The
TFIDF scores were prepared by mining the OMIM text
corpus on the 2661 OMIM phenotypes, resulting a 20491
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term scores of each of the 2148 phenotypes from our
study. We took leading 100 singular vectors as part of
the disease feature. The phenotype-phenotype similarity
scores were retrieved from a study conducted by [20].
The similarity profiles after encapsulated in a square
matrix of dimension 2148 by 2148, had to go through
a singular value decomposition module to extract lead-
ing 100 singular vectors that constitute the part of the
feature matrix of the diseases in our study. Finally, our
disease feature matrix contains 200 features of the 2148
diseas es.

Baseline algorithms
We conducted a comparative study of our proposed
algorithms with five baseline methods: (i) NMF [13],
(ii) LRLSLDA [5], (iii) TsLincRNA-Disease [7], (iv) K-
RWRH [6] and (v) standard IMC [21]. The NMF based
approach finds the two factors W and H by just work-
ing on the lincRNA-disease association matrix A. The
LRLSLDA ranks the lincRNAs with a disease by the use
of a classifier trained on two similarity feature matri-
ces. The method was developed with eight parame-
ters to train before getting good prediction results. The
TsLincRNA-Disease utilizes a series of statistical signif-
icance tests on a co-expression network obtained from
tissue-specific and non-tissue-specific lincRNA expres-
sion information. Apart from the expression data, this
method lacks the integration of other types of infor-
mation available about the lincRNAs and the disease.
The K-RWRH is a stochastic algorithm developed on
top of the random walk on a three heterogeneous net-
works. The method is very complex and it is harder
to obtain a steady state distribution for the dataset our
study.

Evaluation metrics
We define two metrics for evaluating our proposed
algorithm and the baseline algorithms. The metrics are
popular in evaluating any recommender style systems
as in [22].

precision@k: The ratio of the number of recovered
disease phenotypes to recommended k phenotypes for a
target lincRNA. We take average of the ratios for every
lincRNAs of our study. The metric is defined as follows:

precision@k = 1
Nl

Nl∑

l=1

|Pl(k) ∩ Dl|
k

, (52)

where, Pl(k) is the top-k ranked diseases for an lincRNA
l, Dl is the set of diseases related to the lincRNA l deleted
during the training phase. And, Nl is the total number
lincRNAs in the test set.

recall@k: The ratio of recovered disease phenotypes to
the set of hidden phenotypes in the test dataset. Again, we
take average of the ratios for every lincRNAs in the study.
The metric is defined as follows:

recall@k = 1
Nl

Nl∑

l=1

|Pl(k) ∩ Dl|
|Dl| , (53)

We repeated the experiments for various values of k,
from 5 to 100. We conducted 10-fold cross-validation in
each of the experiments listed in the following sections.

Discussions
True LincRNA-disease association retrieval
Figure 1 shows the performance of RIMC along with other
base-line algorithms to predict true lincRNA-disease
associations. A 10-fold cross-validation was conducted
on the 2418 OMIM phenotypes. We find that our RIMC
method leads in identifying true associations than all the
baseline algorithms for all k values. The NMF based algo-
rithm is better than the three other baseline algorithms.
LRLSLDA’s association retrieval was the worse due to the
fact that it relies only on known association matrix and the
expression profiles of the lincRNAs that seems to be not
sufficient to build one predictive model.

Induction on new associations
Here we conducted a thorough comparative study on
the three algorithms including two of ours (RIMC and

a b

Fig. 1 Comparision of lincRNA-disease association methods. a k-vs-precision@k plot for all the six methods. b k-vs-recall@k plot for the six methods.
The standard IMC and the proposed RIMC method is trained with 342 lincRNA features and 200 disease features, with a rank, r = 100. NMF was
trained with the same binary association matrix we used in the IMC experiments with a rank r = 100
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a b
Fig. 2 Performance comparison of the standard IMC, RIMC and SRIMC for induction on existing set of diseases and new lincRNAs. a k-vs-precision@k
plot for the two methods, b k-vs-recall@k plot for the two methods

SRIMC) to predict associations between novel lincRNAs
and/or diseases. We assume that all the features of the
novel lincRNAs and/or diseases that we bring into our
prediction framework can be computed or available. Note
that,none of the baseline algorithms except the standard
inductive matrix completion based approach (standard
IMC) are missing in all the experiments from this sections
due to the fact that none are capable of doing induction
on novel associations.

Induction experiments on new LincRNAs
From the dataset in our study we selected a list of 10%
lincRNAs and deleted all the entries of these randomly
selected lincRNAs from the three training matrices A, X
and Y. The deleted entries will serve as test set dur-
ing evaluation. Then, RIMC, SRIMC and the standard
IMC were trained with modified training matrices. Once,
training is done on the reduced dataset, each of the
obtained three modules were evaluated with the test set
that were extracted at the beginning of this step. We repeat
the entire training and test steps 10 times and reported
the average performance score of all the three meth-
ods. Figure 2 illustrates the performance comparison of
the three methods for predicting association between a
new lincRNA with an existing set of diseases. RIMC and
SRIMC show better precision@k than the standard IMC
based approach for predicting upto the top-50 disease
associations with the new lincRNAs. For higher values

of k in the top-k predictions, both RIMC and the stan-
dard IMC show similar performance. But in terms of
numerical precision, RIMC exceeds the performance of
standard IMC. However, in terms of recall@k, we can see
that SRIMC and RIMC perform superior than that of the
standard IMC method.

Induction experiments on new diseases
Similar to the approach mentioned in the previous
section, we randomly selected 10% of the total disease
phenotypes from the dataset of the study, and deleted all
the entries related to the diseases. The deleted entries is
going to be our test set. The reduced dataset is going to
serve as training dataset. The RIMC, SRIMC and the stan-
dard IMC were trained on the reduced training dataset
and evaluated against the test set. The entire training and
evaluation were repeated 10 times and the average per-
formance scores were reported. Figure 3 illustrates the
performance comparison of the three methods to predict
associations among known list of lincRNAs with a novel
disease. Here, both RIMC and SRIMC demonstrates bet-
ter induction performance in terms of the precision@k
and recall@k values.

Induction experiments on both new LincRNAs and new
diseases
Finally, in this batch of induction experiment, we ran-
domly picked 5% of the subject disease entries, and 5%

a b
Fig. 3 Performance comparison of the standard IMC, RIMC and SRIMC for induction on new diseases and existing set of lincRNAs. a k-vs-precision@k
plot for the two methods, b k-vs-recall@k plot for the two methods
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a b
Fig. 4 Performance comparison of the standard IMC, RIMC and SRIMC for induction on both new diseases and new lincRNAs. a k-vs-precision@k plot
for the two methods, b k-vs-recall@k plot for the two methods

of the subject lincRNA entries and deleted the respec-
tive connections between the two entities from the three
data matrices A, X and Y. The deleted connections and
feature set are treated as the test-set, while the reduced
data matrices are used to train the three algorithms. We
repeat the above steps 10 times and compute the aver-
age performance scores. Figure 4 illustrates the perfor-
mance comparison of our proposed RIMC, SRIMC and
the only baseline algorithm applicable here which is the
standard IMC to predict association between a new lin-
cRNA and a new disease based on the model trained on
data about a limited set of lincRNAs and disease phe-
notypes not including these two lincRNA and disease
phenotypes. The precision@k plot of for the RIMC and
SRIMC show better performance than the standard IMC
based approach for predicting for both lower and higher
values of k in the top-k association ranking with the novel
diseases. However, from the recall@k cure of the both
algorithms, we can see that both RIMC and standard
IMC performs similar in the top-k association prediction
problem. But, SRIMC performs superior than both of the
algorithms.

Conclusions
In this article, we propose theoretical foundations of
robust inductive matrix completion method using �2,1
norm. We provided three algorithms to solve our robust
induction matrix completion objective function. The first
two algorithms are equivalent, but the third one what we
call Stable Robust Inductive Matrix Completion (SRIMC)
breaks the problem into two sub-problems. But it turns
out to be a simple, stable and better solution strategy.
We applied the proposed methods in identifying missing
links between putative lincRNAs and human disease phe-
notypes. All the three variants of robust inductive matrix
completion are well suited for noisy type of datasets.
Besides the standard IMC formulation, our proposed
method also outperformed other four lincRNA-disease
association solutions. The proposed methods are appli-
cable to predict associations among between well-studied

lincRNAs with novel disease, or novel lincRNAs with well-
studied diseases, or a set of novel lincRNAs with novel
diseases.
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