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Abstract 

Venomous snake bites impact humans all around the world. Anti-venom 

treatments mitigate systemic effects such as vascular hemorrhage, platelet aggregation 

inhibition, and the activation of inflammatory mediators. However, hemorrhagic snake 

venom also causes a loss of cellular adhesion to extracellular matrix components 

resulting in massive local tissue damage. To better understand the mechanism in which 

venom induces local tissue damage, human embryonic kidney cells (HEKS) were grown 

on PEI then stimulated with 500μg/ml Crotalus atrox (CA) venom for 4 and 10 hours. 

Alamar Blue assays were used to measure cell viability and results suggest a 15±8.6% 

(p<0.05) and 59±10.7% (p<0.05) reduction in cell viability at 4 and 10 hours, 

respectively. Cells stimulated with 500μg/ml venom for 10 hours stained 98±2.2% 

(p<0.05) positive for Trypan blue, suggesting the venom reduces membrane integrity. 

Identical treatment in the presence of 200 units PEG-catalase (PC) increased viability 

by 37±5.7% (p>0.001) compared to cells stimulated with venom alone. 2’,7’-

Dichlorofluorescin-diacetate (DCF-DA) was used to quantify reactive oxygen species 

during venom stimulation. HEK cells stimulated with 50μg/ml Crotalus atrox resulted in a 

336-fold increase in ROS-induced fluorescence between 1 and 2 hours (p<0.001). Pre-

treating the cells with 200 Units peg-catalase for 2 hours before venom stimulation 

resulted in 425-fold decrease in ROS-induced fluorescence that persisted over the 4 

hour stimulation period (p<0.0001). Peg-catalase resulted in a greater decrease in 

fluorescence over time than other treatments including N-acetyl cysteine (NAC), SOD1 

inhibitor LCS-1, and NOX inhibitor VAS2870. This suggests hydrogen peroxide is 



3 
 

produced during venom induced injury and plays a critical role in venom mediated cell 

death. 
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Introduction 

Components of Hemorrhagic Snake Venom 

There are approximately 100,000 snakebite-associated fatalities every year (1). 

Systemic effects of many venomous snakebites include vascular hemorrhage, platelet 

aggregation inhibition, and activation of inflammatory mediators, while local symptoms 

consist of tissue edema and necrosis. For example, bites from Crotalus atrox (western 

diamond back rattlesnake) cause tissue destruction by cleaving proteins, such as 

collagen, inhibiting cellular attachment to the basement membrane, a protein rich cell-

adherent matrix (2-4). This toxic activity is due to bioactive proteins such as snake 

venom metalloproteinases (SVMPs), L-amino acid oxidases (LAAOs) and disintegrins 

present in the venom. SVMPs make up approximately 30% of the total protein present 

in hemorrhagic venom and require zinc cofactors to cleave type IV collagen present in 

the basement membrane (5-7). For instance, Ht-d, a hemorrhagic toxin, is an SVMP 

from C. atrox venom that disrupts capillaries by enzymatically cleaving type IV collagen. 

Although the mechanism of Ht-d is thought to be similar to that of collagenases, the 

exact mechanism is unknown (8). Actions of SVMPs are responsible for hemorrhage 

and pro-inflammatory responses seen during hemorrhagic snake venom associated 

injuries (7).  

L-amino acid oxidases (LAAOs) are flavoenzymes that oxidatively deaminate L-

amino acids. The by-products of this enzymatic reaction include ammonia and hydrogen 

peroxide. Many reports show that the effects of LAAOs may be due to the generation of 

hydrogen peroxide, which then acts directly on membranes, proteins, and DNA (9,10). 

Apoxin I, a protein found in Crotalus atrox venom, has been reported to have LAAO 
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activity. This toxin mediated apoptosis in part through hydrogen peroxide production, 

which is inhibited by catalase, a hydrogen peroxide scavenging enzyme found within the 

cells (11).   

In contrast to the proteolytic destruction of tissue by enzymatic activity, 

disintegrins are small, non-enzymatic cysteine-rich proteins with Arg-Gly-Asp (RGD) 

sequences that selectively bind to integrins present on platelets and endothelial cells, 

inhibiting platelet aggregation and attachment to the extracellular matrix (ECM) (12). For 

example, crotatroxin 2, a disintegrin found specifically in Crotalus atrox venom, inhibits 

platelet aggregation induced by ADP by blocking the binding of fibrinogen to α5β1 

integrin found on the platelet surface. Other disintegrins such as eristostatin inhibit the 

α4β1 integrin (13). Collectively, disruption of tissue connections in adherent cell types 

by SVMPs, LAAOs, and disintegrins can lead to a specific type of apoptosis termed 

anoikis (14). 

Cell Death by Cellular Detachment: Anoikis 

The first objective of this study was to determine the effects of Crotalus atrox 

venom on viability and adherence. We hypothesized that enhancing cellular attachment 

would improve viability of C. atrox venom stimulated HEK-293T cells. To do this, 

collagen and polyethylenimine (PEI) were used to test two different methods to enhance 

cellular attachment. Collagen, a protein naturally present in the extracellular matrix, aids 

in cellular attachment by increasing protein-protein interaction between the cells and the 

culture dish. PEI, a poly-cation, attaches to the culture dish and its positive charge 

increases the electrostatic interaction with the negatively charged glycocalyx, a layer of 

glycolipids and glycoproteins that cover the cellular membrane. Because hemorrhagic 
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snake venom disrupts tissues, it may 

promote anoikis. Anoikis is a specific type 

of apoptosis that occurs when the 

attachment of cells to the extracellular 

matrix (ECM) is disrupted or lost. Under 

normal conditions, integrins bound to ECM 

proteins elicit survival signals that 

suppress the activation of the intrinsic 

apoptotic pathways. When cells are 

adhered to the ECM via integrins, 

phosphatidylinositol-3-kinase (PI3K)-mediated AKT activity stimulates leukemia-2 (Bcl-

2) expression promoting cell survival and proliferation (13-15). (Figure 1). However, the 

action of disintegrins and SVMPs among other bioactive molecules found in venom can 

lead to loss of cellular attachment resulting in disrupted integrin-mediated survival 

signals.  Loss of integrin-ECM interaction causes an activation of pro-apoptotic 

(intrinsic) pathways. Intrinsic apoptotic signaling pathways include a series of complex 

events involving mitochondrial disruption and are responsible for mediating anoikis (13-

15). In this pathway, initiation of Bax (Bcl-2-associated X protein) and Bak (Bcl-2 

homologous antagonist killer) create a channel in the outer membrane of the 

mitochondria allowing for the release of cytochrome c into the cytosol. Cytochrome c 

then interacts caspase-9 and Apaf (apoptosis protease activating factor) forming what is 

known as the apoptosome, a complex that activates caspase-9. Caspase-9 is an 

initiator caspase that activates execution caspases-3, -6, and -7 (16). Caspase-3 

Figure 1. Integrin mediated attachment to 

components of ECM activates survival 

signaling while loss of attachment activates 

apoptosis. 
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inactivates ICAD, the inhibitor of caspase activated DNase (CAD). Once ICAD is 

inactivated, CAD can dimerize and cause double stranded breaks in DNA causing 

severe DNA fragmentation and subsequent cell death (16). 

Mitochondrial Disruption and ROS Generation 

Our next objective was to determine if 

intracellular ROS are generated during venom 

stimulation and if they play an important role in 

the mechanism of venom induced cell death. We 

hypothesized that reducing ROS during venom 

stimulation would be cytoprotective. PEG-

catalase and N-acetyl cysteine were used as two 

separate methods to reduce intracellular ROS. Polyethylene glycol (PEG) is attached to 

catalase to allow for increased permeability. Dichlorofluorescein-diacetate, a ROS 

specific fluorescent probe, was used to measure ROS levels in venom stimulated HEK-

293T. Mitochondrial injury resulting from pro-apoptotic signaling cascades generate 

excessive reactive oxygen species (ROS) such as superoxide, hydrogen peroxide, and 

hydroxyl ion, among others (17-20). Superoxide and hydroxyl ions are considered 

radical forms of ROS because they have unpaired electrons while hydrogen peroxide is 

a non-radical ROS. Radical forms are more reactive than non-radical forms because 

they can combine their unpaired electrons with that of another radical or they can 

donate or receive an electron from another molecule (21-22). This makes superoxide 

highly reactive and short-lived compared to hydrogen peroxide. When superoxide is 

generated, it is spontaneously or enzymatically converted to hydrogen peroxide by 

Figure 2. Diagram of Superoxide and 

Hydrogen Peroxide Conversion. 

Superoxide is converted to hydrogen 

peroxide by superoxide dismutase 

(SOD). Hydrogen peroxide is converted 

to water and molecular oxygen by 

catalase (CAT). 
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superoxide dismutase. Catalase, an enzyme found with the peroxisome of our cells, 

converts hydrogen peroxide to water and molecular oxygen (Figure 2).   

Hydrogen peroxide is produced in cells via a number of mechanisms including 

being a byproduct of cellular respiration. As such, it is highly abundant in aerobic 

organisms. Although it can be converted spontaneously or enzymatically to other more 

reactive ROS such as the hydroxyl radical, it is relatively stable. While high 

concentrations of hydrogen peroxide can be toxic, it is also an important signaling 

molecule reported to play a role in cell development, proliferation, and cell death (17-21, 

23). For cells to function properly, a balance between production and consumption of 

ROS must be maintained. Many mechanisms exists by which cells maintain ROS 

homeostasis including the expression of enzymatic and non-enzymatic antioxidants. 

While superoxide dismutase and catalase enzymatically regulate levels of superoxide 

and hydrogen peroxide, glutathione is a potent non-enzymatic antioxidant that reacts 

with and neutralizes all ROS generated within cells (24). When these mechanisms fail  

due to cellular stress, ROS levels are elevated and the cell experiences increased 

oxidative stress. Oxidative stress can cause damage to lipids, DNA, organelles, protein 

structures, and altered expression of genes related to apoptosis cause cell death (23). 

Phospholipids, the major component of biological membranes, are a main target 

of ROS due to the presence of highly reactive non-conjugated double bonds. ROS can 

remove a hydrogen atom from the double bond, which destabilizes the lipid with a 

radical that is open to react with molecular oxygen.  As lipid peroxidation continues 

down the length of the fatty acid chain, oxidants are produced. As a part of objective 

two, we investigated membrane integrity after venom stimulation. Trypan blue, a dye 
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impermeable to cells unless the membrane has been compromised was used to 

determine if venom components target the plasma membrane. 

It is reported that hemorrhagic venom induced injury elevates intracellular ROS 

(27-29). When exogenous stimuli, such as venom, induce oxidative stress, additional 

signaling pathways may be activated to control escalating ROS levels. For example, 

increased levels of ROS can lead to down regulation of cytochrome P450s and 

induction of anti-oxidant enzymes such as catalase and superoxide dismutase (27-31). 

This suggests that ROS could play a crucial role in the mechanism of venom-induced 

cell death.  Therefore, the last objective of this study was to evaluate key oxidant 

producing enzymes, superoxide dismutase 1 (SOD1) and NADPH oxidase (NOX), for 

their contribution to ROS production during venom stimulation. Components of NADPH 

oxidase are assembled in the plasma membrane of cells when activated and produce 

superoxide and hydrogen peroxide as by-products. Superoxide dismutase 1 (SOD1) is 

found in the cytoplasm and converts superoxide to hydrogen peroxide. We 

hypothesized that inhibiting SOD1 and NOX would decrease ROS production and 

improve cell viability. LCS-1 (SOD1 inhibitor) and VAS2870 (NOX inhibitor) were used 

to show that SOD1 and NOX contribute to ROS production during venom stimulation. 

Thus, controlling reactive oxygen species may increase cell viability during venom-

induced injury. 

Materials and Methods 

Cell Culture           

 Human embryonic kidney (HEK-293T) cells were cultured on tissue culture 

dishes in Dulbecco's Modified Eagle Medium (DMEM) containing 10% fetal calf serum 
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(FCS). Cells were grown in a humidified environment at 37oC buffered with 5% CO2 . 

Cells were passaged every 48-72 hours or until confluency was reached. 

Cell Viability 

Preparation of 96-well plates involved pre-treatment with 2.5µg/ml 

polyethylenimine (PEI) or 1% collagen for 30 minutes before adding 100µl of a 5x105 

cells/ml HEK suspension to each well. Cells were incubated for 24 hours at 37oC prior 

to experimentation. Crotalus atrox venom was purchase from Sigma, solubilized in 

phosphate buffered saline (PBS) and aliquots were stored at -80oC. Cells were treated 

with 10, 100, or 500µg/ml Crotalus atrox venom (CA) for 4 or 10 hours. For polyethylene 

glycol (PEG)-catalase (PC) and N-acetyl cysteine (NAC) viability experiments, cells 

were seeded on PEI or collagen treated 96-well plates as stated above. Cells were then 

pre-incubated with 200 units PEG-catalase for two hours or 3mM N-acetyl cysteine for 6 

or 24 hours. Subsequently, cells were stimulated with 500µg/ml Crotalus atrox venom 

for 10 hours. For cytotoxicity experiments involving LCS-1 (SOD1 inhibitor) and 

VAS2870 (NOX inhibitor), cells were pre-incubated with 5, 7.5, or 10µM LCS-1 or 5, 7.5, 

or 10µM VAS2870 for 24 hours before stimulating with 500µg/ml Crotalus atrox venom 

for 10 hours. AlamarBlue Cell Viability reagent was used to measure viability according 

to manufacturer’s protocol (32). The fluorescence intensity of AlamarBlue was 

measured using a Synergy H1 Hybrid Reader (Excitation 560nm, Emission 590nm). A 

minimum of two biological replicates were completed for each assay. 

Phase contrast and brightfield microscopy 

Phase contrast and brightfield imaging was used to evaluate cellular morphology 

during venom stimulation using an IX71 Olympus microscope coupled to Olympus 
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DP71 camera. Phase contrast micrographs (40X) and brightfield micrographs (10X) 

were taken of non-stimulated and venom stimulated cells after 4 or 10 hours for 

cytotoxicity experiments. For trypan blue studies and cytotoxicity experiments involving 

PEG-catalase and and N-acetyl cysteine, bright field images were taken after 10 hours 

of venom stimulation. 

Trypan Blue Membrane Integrity Assay 

To examine membrane integrity, HEK-293T cells were suspended and diluted to 

a concentration of 5x105 cells/ml. Culture dishes (35mm) were treated with 2.5µg/ml 

polyethylenimine (PEI) or 1% collagen before adding 1ml of cell suspension. Cells were 

incubated for 24 hours at 37oC. Cells were then treated with 10, 100, or 500µg/ml 

Crotalus atrox venom for 10 hours.  Media was removed and placed into a 1.5ml 

centrifuge tube and subsequently centrifuged for 1 minute. Cells were trypsinized, 

places in corresponding centrifuge tube and centrifuged for 1 minute. Supernatant was 

removed and pellets were resuspended 1ml of a 3:1 solution of PBS and 0.05% trypan 

blue. Cells were allowed to sit at room temperature for 5 minutes before counting with a 

hemocytometer and Olympus CK2 microscope. Three biological replicate experiments 

were completed. Data was presented as percent positive for trypan blue compared to a 

non-stimulated control. 

Dichlorofluorescein-diacetate Assay 

 ROS was measured using fluorescent probe dichlorofluoresein-diacetate (DCF-

DA). Culture dishes (35mm) were pre-treated with 2.5µg/ml PEI for 30 minutes before 

adding 1ml of a 1x105  cells/ml HEK cell suspension and incubating for 24 hours at 

37oC. Cells were separated into experimental groups consisting of cells pre-incubated 
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with either 200 units of PEG-catalase for 2 hours, 3mM N-acetyl cysteine for 6 hours, 

3mM N-acetyl cysteine for 24 hours, 5µM LCS-1 for 24 hours, or 5µM VAS2870 for 24h. 

After pre-incubation, cells were stimulated with 50µg/ml Crotalus atrox venom for 1, 2, 3 

or4 hours. DCF-DA was added 1 hour before the end of each time point. Cells were 

subsequently washed 3 times with PBS before adding 1ml DMEM media. DCF-DA 

fluorescence was measured using an IX71 Olympus microscope with FITC (HQ480 

(EX)/Q505LP(BS)/ HQ535(EM)) filters coupled to a Olympus DP71 camera. Phase 

contrast images (40X) were taken in parallel to fluorescent images. Cellular 

fluorescence was semi-quantified using ImageJ software (33) by measuring pixel 

intensity for each cell in digital micrographs. Three biological replicates were completed 

with 10-30 cells in each image used for quantification. 

Statistics 

 Statistical analysis of AlamarBlue, trypan blue, and DCF-DA assays was carried 

out using two-tailed t tests in Microsoft Excel software. Data from each assay was 

represented by two or three biological replicates and normalized against matched non-

stimulated controls. Cell viability was calculated as percent of the non-stimulated control 

and graphed as mean±STDV. DCF-DA cellular fluorescence data was graphed as 

median±interquartile range. 

Results 

Crotalus atrox (CA) induced cytotoxicity  

Our initial cytotoxicity studies (not shown) utilized 3-(4,5-dimethylthiazol-2-yl)-5-

(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) reagent to monitor 

cell viability. MTS is a tetrazolium salt that is converted to a soluble form of formazan by 
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dehydrogenase enzymes in living cells. To determine if C. atrox venom could induce 

conversion of MTS to formazan without cells present, MTS was incubated with 1, 250, 

or 500µg/ml venom for 10 hours. Results demonstrated increased venom concentration 

corresponded to an increase in absorbance (Figure 3A). These findings suggest the 

bioactivity of the venom converts MTS to formazan. To confirm bioactivity of the venom 

was responsible for the increased formazan production, 500μg/ml C. atrox venom was 

inactivated by heating at 95oC for 1 minute and compared to untreated venom. 

Untreated venom reacted with MTS to produce formazan while heat inactivated venom 

did not produce formazan from MTS. (Figure 3B). The ability of snake venom to convert 

MTS to formazan can be used as a tool to measure relative bioactivity of C. atrox 

venom. Bioactivity of venom can vary dramatically between lots. This novel method of 

using MTS to determine venom bioactivity can be used to standardize venom 

concentrations and bioactivity. As an alternative to MTS, AlamarBlue was tested with 

and without C. atrox venom to insure its accuracy as a cell viability reagent when using 

Figure 3. Crotalus atrox venom (CA) bioactivity (A) MTS assay. C. atrox venom concentrations ranging from 1-

500µg/ml were left in DMEM for 10 hours before being exposed to MTS viability reagent. Data is shown as the 

mean±SD. *P-value<0.05 vs control. (B). Conversion of formazan from MTS caused by 500µg/ml CA venom was 

compared to that of the same concentration of CA venom that had been heat inactivated. (C) Venom induces 

more severe changes in MTS than in alamarBlue cell viability reagent.*p<0.05 vs MTS + CA 



15 
 

venom as a treatment (Figure 3C). AlamarBlue (resazurin) is a cell permeable non-

fluorescent blue dye. Upon entering the cell, it accepts electrons from the electron 

transport chain by acting as a substitute for molecular oxygen. This reduction converts 

the blue dye into a highly fluorescent pink dye, resorufin (33, 34). Results showed that 

venom reacted with AlamarBlue, producing resorufin, although the percent of resorufin 

produced was significantly lower compared to the production of formazan from MTS. C. 

atrox venom (500µg/ml) caused a 2.9-fold increase in formazan production from MTS 

and only a 1.5-fold increase in resorufin production from resazurin (p<0.01) (Figure 3C). 

Therefore, subsequent experiments utilized AlamarBlue to measure cell viability. 

We hypothesized that loss of cellular attachment would lead to cell death during 

venom stimulation. Therefore, collagen and PEI substrates were tested by growing 

HEK-293T cells on collagen or PEI then stimulating them with 10, 100 or 500µg/ml C. 

atrox venom for 4 or 10 hours. PEI concentrations of 0.25, 2.5, and 25µg/ml were tested 

for effects on cell viability during venom stimulation and 2.5µg/ml was selected for its 

ability to efficiently increase cellular adherence (data not shown). Seeding cells on 

collagen treated dishes then stimulating with 10, 100, and 500µg/ml C. atrox venom for 

4 hours resulted in decreased viability values of 93±9.3%, 87±6.1%, and 70±3.2%, 

which are inversely proportional to venom concentration (p<0.05 vs. non-stimulated 

control) (Figure 4A). Cells seeded on PEI treated dishes then stimulated with 10 or 

100µg/ml C. atrox venom for 4 hours returned cell viability values of 110±6.4% and 

101±21.5%, respectively, which were not significantly different than non-stimulated 

controls. However, these values were significantly higher than cells plated on collagen 

treated dishes suggesting that pre-treating culture dishes with PEI improves cell viability 
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at lower venom concentrations. Stimulating cells seeded on PEI treated dishes with 

500µg/ml C. atrox venom for 4 hours significantly decreased cell viability to 66±8.4% 

compared to the non-stimulated control (p<0.01). There was no significant difference in 

viability between cells plated on collagen and PEI then stimulated with 500µg/ml C. 

atrox venom for 4 hours (Figure 4A). 

 

Figure 4. Crotalus atrox induced cytoxicity in HEK cells. HEK cells were grown collagen or PEI treated culture 

dishes and stimulated with C.atrox (CA) venom concentrations ranging from 10-500 µg/ml for 4 or 10 hours. (A) 

Alamar Blue cell viability assay. Experiments were ran in triplicate with three biological replicates. Data is 

shown as the mean±SD. *P-value<0.05 vs control.**P-value<0.05 vs Collagen 4 hour. ***P-value<0.05 vs 

collagen 10 hour. (B) Phase contrast (40X) micrographs we taken of control cells and cells treated with 500 

µg/ml CA on collagen or PEI substrates. Arrows in collagen image indicate edge of cellular monolayer. Arrows 

in PEI images indicate cellular fragments. (C) 96-well plates prepared with and without agarose as a substrate. 

HEK cells were plated and stimulated with 500 µg/ml CA for 10 hours. Viability was measured using Alamar 

Blue cell viability assay. Data is show as the mean±SD. *P-value<0.05 vs. nonstimulated control.  
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To determine if duration of venom stimulation would impede the ability of PEI to 

improve cell viability, HEK-293T cells were grown on collagen or PEI treated dishes and 

stimulated with C. atrox venom for 10 hours. Cells grown on collagen treated dishes 

stimulated with 10, 100, or 500µg/ml C. atrox venom returned significantly lower cell 

viability values of 74±911.3%, 41±5.8%, and 37±8.9%, respectively (p<0.001 vs. non-

stimulated controls). In contrast, cells grown on PEI treated dishes stimulated with 10 or 

100µg/ml C. atrox venom returned significantly higher viability values, 106±8.6%, and 

78±10.3%, compared to cells seeded on collagen treated dishes (p<0.001). However, 

stimulating cells seeded on PEI treated dishes with 500µg/ml C. atrox venom for 10 

hours resulted in a cell viability value of 50±17.1%, which was not significant compared 

to cells grown on collagen and stimulated with the same conditions (Figure 4A). 

 Phase contrast microscopy was used to examine morphology of cells plated on 

collagen or PEI substrates, then stimulated with 500µg/ml C. atrox venom for 10 hours.   

Venom stimulation of cells plated on collagen resulted in cells lifting up in a single 

monolayer while the same treatment of cells plated on PEI resulted in cellular clustering, 

membrane damage, and lysis as indicated by white arrows (Figure 4B).    

To better understand if cellular attachment plays a role during venom induced 

injury, cells were plated on agarose coated dishes and incubated for 24 hours before 

stimulating with 500µg/ml C. atrox venom for 10 hours. Cells plated on agarose alone 

for 10 hours returned a cell viability value of 29±4.1% (p<0.05 vs control), while cells 

plated on agarose then stimulated with venom produced a viability value of 32±3.3% 

(p<0.05 vs control). Results show there was significant loss of viability due to lack of 
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adherence. However, addition of venom to cells seeded on agarose did not result in 

increased cell death (Figure 4C). 

Assessment of membrane integrity 

Trypan blue assays were utilized to determine if venom stimulation decreased 

membrane integrity. Cells were plated on collagen or PEI, then stimulated with 

500µg/ml C. atrox venom. After 10 hours of stimulation with 500µg/ml C. atrox venom, 

PEI coated dishes demonstrated more cells positive for trypan blue (98±2.2%) than 

Figure 5. Tryban blue dye exclusion assay. HEK cells were grown on both collagen and PEI 

treated culture dishes and stimulated with C. atrox (CA) venom concentrations ranging from 10-500 

µg/ml for 10 hours. Blue cells indicate non-viable. (A) Graph of trypan blue positive cells. *P<0.05 

vs. control. **p<0.05 vs 100µg/ml CA collagen.  (B) Brightfield micrographs (40X) were taken of 

control cells and cells stimulated with 100 µg/ml CA and 500 µg/ml CA on collagen substrate and 

PEI substrates. Arrows indicate stained cells and cell fragments. 
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collagen coated dishes (88±10.9%), although this difference was not found to be 

significant (Figure. 5A). PEI treated dishes consisted of significantly more trypan blue 

positive cells (59±2.9%) when stimulated with 100µg/ml C. atrox venom for 10 hours 

than collagen treated dishes (48±2.1%) (p<0.05) (Figure 5A). Bright field micrographs 

were taken of cells grown on collagen or PEI and stained with trypan blue after 10 hours 

of stimulation with 100 and 500µg/ml C. atrox venom. Cells grown on PEI demonstrated 

increased fragmentation, membrane damage, and lysis compared to venom stimulated 

cells plated on collagen, as indicated by arrows (Figure 5B). 

Evaluation of PEG-catalase and N-acetyl cysteine in Crotalus atrox induced ROS 

production 

Dicholorfluorescein-diacetate, an ROS specific fluorescent probe was used to 

determine if venom stimulation induced ROS production. We utilized a venom 

concentration of 50µg/ml to decrease the rate of cellular detachment. In addition, PEI 

was used as a substrate to enhance adherence and minimize cell loss during washing 

steps of DCF-DA assays.  

Our results show that HEK cells stimulated for 1 hour with 50µg/ml C. atrox 

venom produced RFU values 30-fold higher than non-stimulated cells. Extending the 

stimulation over a 4 hour time course produced a robust elevation of DCF-DA 

fluorescence that was 10,000-fold higher in RFU and persisted for 2, 3 and 4 hours of 

venom stimulation (p<0.0001 vs. non-stimulated control) ( Figure 6). Pre-treating cells 

with 200 units PEG-catalase (PC) for 2 hours before stimulating with 50µg/ml C. atrox 

venom for 1 hour did not result in significant reduction in DCF-DA fluorescence. 

However, PEG-catalase pre-treatment significantly reduced DCF-DA fluorescence by 
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276, 188, and 45-fold after 2, 3, and 4 hours of venom stimulation, respectively 

(p<0.001 vs. venom alone). 

Figure 6. Evaluation of generation of ROS using DCF-DA. (A) HEK cells were grown on PEI treated 35mm 

dishes and separated into treatment groups: Non-stimulated control     , cells stimulated 50µg/ml C. atrox venom 

alone (CA only     ), cells pre-treated with 200units PEG-catalase before stimulating with 50µg/ml C. atrox 

venom (CA + PC    ), cells pre-treated with 3mM N-acetyl cysteine for 6 hours before stimulating with 50µg/ml C. 

atrox venom (CA + NAC-6h    ), or cells pre-treated 3mM N-acetyl cysteine for 24 hours before stimulating with 

50µg/ml C. atrox venom (CA + NAC-24h    ). Semi-quantification of ROS-induced fluorescence was complete 

using imageJ software. *P<0.001 vs. CA only. **P<0.001 compared to CA+NAC(24h) at 3 hours. (B) 

Representative DCF-DA fluorescence images of cells taken over a 4 hour time course taken using an IX71 

Olympus microscope coupled to Olympus DP71 camera with FITC filter. 



21 
 

In addition, we used N-acetyl cysteine (NAC) as a non-enzymatic means to 

control oxidative stress. Cells were pre-treated with N-acetyl cysteine for 6 or 24 hours 

before stimulating with 50µg/ml C. atrox venom. Cells pre-treated with NAC for 6 hours 

significantly reduced RFU values by 152, 7.3, and 130-fold after 2, 3, and 4 hours of 

venom stimulation (p<0.0001 vs venom alone). Comparatively, cells pretreated with  

NAC for 24 hours reduced RFU values by 451, 430, and 1-fold after 2, 3 and 4 hours of 

venom stimulation (p<0.0001 vs venom alone) (Figure 6). 

Evaluation of PEG-catalase and N-acetyl cysteine in Crotalus atrox induced cytotoxicity 

Our data from figure 6 suggested that ROS are robustly produced after venom 

stimulation and that pre-incubation with PEG catalase and N-acetyl cysteine reduce the 

production of ROS in venom stimulated cell. To determine if ROS play a role in C. atrox 

venom-induced cytotoxicity, we followed the same experimental set up as previous 

cytotoxicity experiments using AlamarBlue to detect changes in cell viability. Cells 

treated with 200 units PEG-catalase for 2 hours before stimulation with 500µg/ml C. 

atrox venom for 10 hours resulted in 87.4±5.8% viability compared to 50.0±17.2% 

viability of cells stimulated with C. atrox venom alone (p<0.0001), representing a 1.5-

fold increase in viability for cells pre-treated with PEG-catalase. A similar trend was 

shown for cells pretreated with NAC for 6 or 24 hours before stimulating with 500µg/ml 

C. atrox venom for 10 hours. Venom stimulated cells pretreated with NAC for 6 or 24 

hours resulted in viabilities of 69.1±9.5% and 81.0±8.9%, respectively (p<0.05) (Figure 

7A). 
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Figure 7. Effects of ROS on cell viability and adherence. (A) HEK cells were grown on PEI treated 

35mm dishes and separated into treatment groups: cells stimulated 50µg/ml C. atrox venom alone 

(CA only), cells pre-treated with 200units PEG-catalase before stimulating with 50µg/ml C. atrox 

venom (CA + PC), cells pre-treated with 3mM N-acetyl cysteine for 6 hours before stimulating with 

50µg/ml C. atrox venom (CA + NAC-6h), or cells pre-treated 3mM N-acetyl cysteine for 24 hours 

before stimulating with 50µg/ml C. atrox venom (CA + NAC-24h). *P<0.05 when compared to CA 

only. #P<0.05 when compared to CA+PC. (B) Brightfield micrographs of venom stimulated cells  

pretreated with PEG-catalase or N-acetyl cysteine demonstrate improvements in monolayer 

integrity and adherence  (C) SDS-PAGE demonstrates presence of PC does not interfere with 

ability of venom to enzymatically cleave collagen. 
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In addition, bright field microscopy was used to evaluate how pretreating cells 

with PEG-catalase and N-acetyl cysteine influence cellular morphology. Pretreating 

cells with 200 units PEG-catalase for 2 hours before stimulating with 500µg/ml C. atrox 

venom for 10 hours significantly improves monolayer integrity, as indicated by white 

arrows (Figure 7B, top right) that corresponds with increases in viability that were 

observed in Figure 7A. As indicated with arrows, cells treated with 3mM N-acetyl 

cysteine for 6 hours before stimulating with 500µg/ml C. atrox venom for 10 hours were 

lifted but decreased cellular fragmentation was observed when compared to cells 

treated with venom alone (Figure 7B, bottom left). Cells treated with 3mM N-acetyl 

cysteine for 24 hours before stimulating with 500µg/ml C. atrox venom for 10 hours 

demonstrated improved adherence and decreases in cellular fragmentation similar to 

PEG-catalase treated cells. (Figure 7B, bottom right).   

To investigate if PEG-catalase was increasing viability by inhibiting enzymatic 

components of the venom, we assessed the enzymatic activity of C. atrox venom in the 

absence or presence of PEG-catalase. Collagen is a major substrate for SVMPs and 

LAAOs present in the venom. Therefore, it can be used to examine the enzymatic 

activity of C. atrox venom. Incubating 1% collagen with 500µg/ml C. atrox venom for 10 

hours with or without 200 units PEG-catalase produces the same number of cleavage 

products as seen in lanes 2 and 4 (Figure 7C). Our data suggests that enzymatic 

activity of venom components is not inhibited by the presence of PEG-catalase. 
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Evaluation of effects of oxidant producing enzymes on generation of ROS and 

cell viability  

To determine if inhibition of key oxidant producing enzymes, NADPH oxidase 

(NOX) and superoxide dismutase 1 (SOD1), play a role during venom induced 

cytotoxicity, we used VAS2870 (NOX inhibitor) and LCS-1 (SOD1 inhibitor). Cells were  

Figure 8. Effects of SOD1 and NOX inhibitors on ROS-induced fluorescence and cell viability. (A) AlamarBlue 

assay. Cells were treated with with 5-10µM VAS2870 or LCS-1 for 24 hours before stimulated with 500µg/ml C. 

atrox venom (CA) for 10 hours. *P<0.0001 compared to control. #P<0.05 when compared to CA only. **P<0.01. 

(B) DCF-DA assay. Semi-quantification of ROS-induced fluorescence.  *P<0.01 compared to CA only. **P<0.05 

compared compared to CA+VAS2870. (C) Representative micrographs of HEK cells preincubated with 5µM 

VAS2870 or 5µM LCS-1 for 24 hours then stimulated with 50µg/ml C. atrox venom for 2 or 4 hours. 
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pre-incubated VAS2870 (5, 7.5 or 10µM ) and LCS-1 (5, 7.5 or 10µM ) for 24 hours 

before stimulating with 500µg/ml C. atrox venom for 10 hours. Preincubation with 5µM 

VAS2870 resulted in an average of 58.4±14.2% viability compared to 64.8±11.6% for 

cells preincubated with LCS-1. This represents an 8.4% and 14.8% increase in viability 

compared to cells stimulated with venom alone. Increasing concentration of inhibitors to 

10µM in negative controls (inhibitor alone) resulting in a cell viability of 90±15.8% and 

98±15.3% for cells preincubated with VAS2870 and LCS-1, respectively (Figure 8A). 

To determine if NOX and SOD1 inhibition plays a role in C. atrox venom induced 

ROS generation, HEK293T cells were preincubated with VAS2870 or LCS-1 for 24 

hours before stimulating with 50µg/ml C. atrox venom. DCF-DA was used to monitor 

intracellular ROS. ROS-induced fluorescence of DCF-DA was measured at 2 and 4 

hours. After 2 hours, cells treated with 5µM VAS2870 registered a 52 -fold decrease in 

RFU compared to cells treated with venom alone (p<0.0001). Cells treated with 5µM 

LCS-1 returned a RFU value 100-fold  less than  cells treated with venom alone 

(p<0.0001). LCS-1 was significantly more effective at reducing RFU values of cells 

stimulated with venom for 2 hours than VAS2870 (p<0.05). In contrast, cells pretreated 

with either inhibitor then stimulated with 50 µg/ml C. atrox venom for 4 hours produced 

RFU values similar to cells treated with 50µg/ml C. atrox venom alone for 4 hours 

(Figure. 8B) 

Discussion 

Edema, local tissue necrosis, and internal hemorrhaging describe early clinical 

manifestations of Crotalus atrox envenomation. If allowed to progress, permanent 

disfigurement or death can result. The venom destroys tissue at the bite site then enters 
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the bloodstream, where it inhibits coagulation and activates the surrounding vascular 

endothelium. Vascular and interstitial tissues respond to venom by initiating an acute 

inflammatory response leading to vasodilatation, increased permeability, and cell death.  

Specific components of Crotalus atrox venom, such as SVMPs and disintegrins, 

induce a loss of cellular attachment that can lead to anoikis. SVMPs enzymatically 

cleave type IV collagen while disintegrins physically block integrin interaction with the 

extracellular matrix. However, other components such as L-amino acid oxidases can 

directly contribute to ROS concentration levels by producing hydrogen peroxide as by-

products of oxidative deamination of L-amino acids (6-10). Therefore, hemorrhagic 

activity of C. atrox venom may induce cytotoxicity indirectly through loss of attachment 

and directly through the activity of venom components. This is supported by previous 

work from our lab group that suggests venom stimulation causes increases in ROS and 

loss of cellular attachment, suggesting that cellular detachment is a critical event during 

venom induced cytotoxicity (34).  

In the first part of this study, different substratum were investigated to determine 

if adherence improves cell viability during hemorrhagic venom stimulation. Collagen and 

the polycation polyethyenimine (PEI) were selected. As a native component of the 

extracelluar matrix, collagen allows cells to attach via protein-protein interaction with the 

integrins on the surface of the plasma membrane while the positive charge of PEI 

increases the electrostatic interaction with the plasma membrane’s negative charge. 

Considering the ability of the venom to cleave collagen, we predicted that cells grown 

on PEI would have enhanced adherence resulting in improved cell viability. We chose 

AlamarBlue to monitor changes in cell viability of cells grown on PEI or collagen then 
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stimulated with C. atrox venom. Our results demonstrated that HEK cells grown on PEI 

had increased viability when stimulated with lower concentrations (10 and 100µg/ml) 

when compared to cells grown on collagen. However, higher venom concentrations 

(500µg/ml) had the same effects on the viability of cells grown on both collagen and PEI 

(Figure 4A). It is reported that coating culture dishes with PEI significantly increases 

cellular attachment of weakly adherent HEK293T cells compared to culture dishes 

coated with collagen (35). Pierce et al. (2011) suggests the use of PEI increases the 

expression of adherence factors, specifically 1 integrins, in HEK cells (34). 

Furthermore, studies by Damiano et al. (1999) show that increasing integrin expression 

increases survival of cells treated with cytotoxic drugs (36). Increases in adherence 

induced by PEI may be responsible for improved viability of cells stimulated with 10 and 

100µg/ml C. atrox venom. Proteolytic activity of higher concentrations of venom 

(500µg/ml) may be too high for increased adherence to improve viability. This is evident 

in the clinical presentation of venom injuries where tissue damage at the bite site 

consists of hemorrhage and tissue damage that progressively decreases with distance.  

To better understand cellular detachment as a direct action that contributes to 

venom cytotoxicity, HEK cells were seeded on dishes coated with agarose to prevent 

normal cellular attachment. This resulted in significantly reduced cell survival and the 

addition of venom did not cause further cell death suggesting cell detachment is a part 

of the cytotoxic response to C. atrox venom. This is supported by many studies that 

have shown that loss of cellular attachment leads to cell death (37-39). 

In parallel to cytotoxic studies, we monitored morphological changes occurring in 

venom stimulated cells. Interestingly, severe cell fragmentation and lysis was observed 



28 
 

in cells plated on PEI when compared to cells plated on collagen, which lifted up in 

sheets. (Figure 4B). Cadherins, proteins that are involved in cell-cell contact, are found 

within most tissues (40). In collagen treated dishes, the calcium dependent interaction 

between cadherins may not have been damaged by the activity of the venom allowing 

cell-cell interactions to remain intact. Furthermore, it is plausible that collagen coated 

dishes supply SVMPs and LAAOs in C. atrox venom with excess substrate not present 

in PEI coated dishes. Therefore, plasma membrane proteins, such as integrins, G-

protein coupled receptors, and ion channels, of cells plated on PEI coated dishes would 

be more susceptible to enzymatic degradation and potentially increased membrane 

damage.  

Another marker of cytotoxicity is membrane damage, which can be detected by 

trypan blue. Trypan blue assays revealed that stimulation with 100µg/ml C. atrox venom 

resulted in more trypan blue positive cells in PEI coated dishes compared to collagen 

coated dishes (Figure 5). Higher concentrations of venom (500µg/ml) resulted in 

comparable amounts of trypan blue positive cells in both collagen and PEI treated 

dishes. Thus, higher venom concentrations may lead to membrane damage despite the 

substrate to which cells are bound. AlamarBlue data, in combination with trypan blue 

data, suggests that stimulation with C. atrox venom results in mitochondrial damage and 

membrane damage that is mitigated by enhancing cellular adherence.  

It is reported that noxious stimuli results in cellular retraction and elevated ROS 

production (34,41). To determine if C. atrox venom induces this response in our model, 

ROS production was monitored during venom stimulation. Our initial experiments 

showed a robust generation of fluorescence from our ROS probe (DCF-DA), which 
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reached Fmax (Fluorescence Maximum) values after 2 hours of stimulation. Several 

reports show that pre-incubation with PEG-catalase (PC) or N-acetyl cysteine (NAC) 

can decrease ROS generated in response to noxious stimuli (10,41-42). For example, 

Das et al. (2014) demonstrated that NAC significantly reduces ROS levels in cells 

treated with psoralidin, a compound capable of causing ROS-mediated apoptosis in 

prostate cancer cells (42). Furthermore, Torii et al. (1997) describes the ability of PC to 

decrease hydrogen peroxide levels in cells treated with Apoxin I, an L-amino acid 

oxidase found in C. atrox venom (10).Therefore, we utilized  PEG-catalase (PC) to 

enzymatically reduce hydrogen peroxide and N-acetyl cysteine (NAC) to increase the 

oxidative buffering capacity of cells. 

HEK cells pretreated with PC showed a consistent decrease in DCF-DA (RFU) 

fluorescence (Figure 6). Since PEG-catalase specifically catalyzes the conversion of 

hydrogen peroxide to water, hydrogen peroxide may be a key ROS produced during C. 

atrox venom stimulation. However, under our experimental conditions, DCF-DA 

fluorescence was not completely abolished suggesting other ROS may be a prevalent 

part of the intracellular venom response or the production of hydrogen peroxide 

exceeded the kinetic rate at which exogenously applied PEG-calatase could reduce its 

formation.  

The DCF-DA fluorescence values for cells pretreated with NAC were significantly 

lower compared to cell stimulated with C. atrox venom alone. Cells pretreated with NAC 

for 24 hours demonstrated a greater reduction in DCF-DA fluorescence compared to 

cells pretreated for NAC 6 hours. N-acetyl cysteine (NAC), a weak antioxidant on its 

own, reacts with superoxide and hydrogen peroxide slowly or not at all.  However, once 
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inside the cell NAC is a precursor for glutathione synthesis (43-45). Glutathione (GSH) 

can directly and non-enzymatically react with free radicals and donate electrons in the 

reduction of peroxides. Therefore, extended pretreatment (24 hours) may provide more 

available GSH as a reducing equivalent for GSH peroxidases and the conversion of 

ROS such as hydrogen peroxide or hydroperoxides to water and molecular oxygen. 

Interestingly, cells pretreated with NAC for 24 hours showed DCF-DA fluorescence 

intensity values not significantly different than cells stimulated with venom alone after 4 

hours. Overall, this suggests NAC plays an early role (<4hours) in controlling ROS 

production during venom stimulation. 

Next, we examined the effect of PEG-Catalase (PC) and N-acetyl cysteine (NAC) 

on cytotoxicity using Alamar Blue. AlamarBlue cell viability data suggest that controlling 

intracellular ROS with PC and NAC in cells stimulated with C. atrox venom for 10 hours 

significantly improves viability. However, venom stimulated cells experienced the 

greatest improvement in viability when pretreated with PC. Initial experiments with PEG 

catalase showed no difference in viability when pre-incubated with 100, 200 and 500 

units (data not shown).The ability of catalase to improve cell viability in our study is 

consistent with many other reports (46-49). For example, Venkatesha et al. (2008) 

suggests that catalase improves viability of human breast epithelial cells stimulated with 

oxidant-inducing environmental contaminants (49).  

Furthermore, greater improvement in viability was observed in venom stimulated 

cells pretreated with NAC for 24 hours when compared to cells pretreated with NAC for 

6 hours (Figure 7A), further suggesting that extended duration of NAC pretreatment 

may allow for enhanced glutathione production. Many studies support the use of NAC 
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as a method to replenish intracellular glutathione and improve cell viability (50-54).  For 

instance, Soltan-Sharifi et al. (2007) shows that GSH levels are significantly increased 

in red blood cells after 24 hours of NAC treatment, which matches our experimental 

time course (53). In addition, Schewiekl et al. (2007) demonstrates the ability of NAC to 

improve viability by reducing reactive oxygen species in dental pulp cells treated with 

various dental materials (54). 

The protective effect of PC and NAC in venom stimulated cells was further 

investigated by examining morphology with bright field microscopy.  Microscopic 

inspection revealed cells pretreated with PC demonstrated significant improvements in 

membrane integrity and lysis compared to cells treated with venom alone.  Pretreatment 

with NAC for 6 hours resulted in decreased cellular fragmentation but loss of attachment 

was observed. Cells pretreated with NAC for 24 hours demonstrated significant 

improvements in morphology similar to those pretreated with PC (Figure 7B).A study 

conducted by Song et al. (2010), demonstrates that intracellular reactive oxygen 

species can interfere with the focal adhesion complex leading to loss of cellular 

attachment (55). Reducing intracellular reactive oxygen species with PC and NAC may 

reduce this interference and result in improved cellular attachment and monolayer 

integrity of venom stimulated cells.  

To further expand our study and investigate possible sources of intracellular ROS 

during venom stimulation, we utilized VAS2870 and LCS-1 to inhibit NADPH oxidases 

(NOX) or superoxide dismutase 1 (SOD1), respectively. In the cytosol, SOD1 

enzymatically converts superoxide to hydrogen peroxide, molecular oxygen, and water 

(56). NADPH oxidases (NOX) are enzymes present in the plasma membrane that utilize 
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NADPH to donate electrons to molecular oxygen forming superoxide and hydrogen 

peroxide (57-69). AlamarBlue assays in combination with inhibitors VAS2870 and LCS-

1 were used to elucidate more specific details regarding the production of ROS during 

venom stimulation. Results demonstrated that both VAS2870 and LCS-1 significantly 

improve viability of cells stimulated with C. atrox venom venom for 10 hours . LCS-1 

resulted in slightly greater cell viability compared to VAS2870 after 10 hours of venom 

stimulation, although this difference was not found to be significant (Figure 8A). We 

found that pre-incubation with VAS2870 or LCS-1 (concentration range 5.0, 7.5, 10.0 

µM) was not as effective at improving cell viability compared to PEG-catalase. This 

suggests certain hydrogen peroxide producing branches of the oxidative system are not 

equally involved during venom stimulation.  Moreover, VAS2870 is considered a 

panoramic (pan) inhibitor of NOX isoforms, thus improvement in viability in the presence 

of VAS2870 may indicate venom stimulation increases the activity of NADPDH 

oxidases. Similarly, cells pre-incubated with LCS-1, showed significant improvement in 

cell viability suggesting inhibiting SOD1 may lower hydrogen peroxide production. 

 Inhibition of NOX and SOD1 may be reducing the oxidative response to venom in 

our experimental model. This is supported by our data that shows that after 2 hours of 

venom stimulation, cells pretreated with VAS2870 or LCS-1 for 24 hours returned DCF-

DA fluorescence (RFU values) 51.9 and 99.6-fold lower than cells stimulated with 

venom alone. Pretreatment with LCS-1 resulted in venom stimulated cells producing 

significantly lower RFU values when compared to cells pretreated with VAS2870 (Figure 

8B-C). Decreases in DCF-DA fluorescence resulting from the use of LCS-1 or VAS2870 

suggests SOD1 and NOX may contribute as sources of intracellular ROS during 
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envenomation. Since treatment with LCS-1 or VAS2870 did not completely eliminate 

DF-DA fluorescence, hydrogen peroxide and superoxide may not be the only ROS 

produced during venom stimulation. Increases in DCF-DA fluorescence seen at 4 hours 

of venom stimulation in cells pretreated with VAS2870 or LCS-1 suggests other sources 

of ROS are contributing such as mitochondrial superoxide dismutase (SOD2), xanthine 

oxidases, and lipoxygenases (60, 61).  

Conclusion 

 Crotalus atrox venom induced cell death correlates with decreases in cellular 

adherence. At low venom concentrations, cells grown in culture dishes treated with PEI 

are protected from cell death compared to collagen. However, at equal venom 

concentrations, increased membrane damage occurs in cells grown on PEI. This 

suggests the mechanism of cell death may be different depending upon how the cells 

are anchored. Collagen coated dishes may supply SVMPs and LAAOs present in the 

venom with excess substrate resulting in cellular detachment (possibly through direct 

collagen cleavage), while cells grown on PEI lack this substrate likely causing venom 

enzymes to target the plasma membrane proteins of the cells resulting in decreased 

membrane integrity. 

C. atrox venom stimulation causes robust increases of reactive oxygen species 

corresponding to decreased viability in HEK-293T. While PEG-catalase, N-acetyl 

cysteine, LCS-1, and VAS2870 significantly reduce ROS production and improve cell 

viability, PEG-catalase was the most efficient treatment. Collectively, our data suggests 

that the mechanism of C. atrox venom induced cell death involves several events 
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including loss of cellular attachment, membrane damage, and a robust production of 

ROS that could may originate from multiple intracellular sources.   

 More work is needed to better understand the role of hydrogen peroxide and 

other ROS during venom stimulation. Current treatment of venomous snakebites 

involves the use of anti-venom, a systemic application that uses antibodies to neutralize 

venom components and combat symptoms. However, this treatment does not mitigate 

local tissue damage and hemorrhage. Elucidating details regarding venom induced local 

cell death may lead to improved therapeutic treatments for damage at the site of the 

bite. Further studies could potentially provide new treatment options for injuries caused 

by venomous snakebites. 

Future Directions 

 Initially, MTS assays were used to measure cell viability. However, cell viability 

data collected from this assay was inconsistent with cellular morphology of venom 

stimulated cells. In figure 3, we show that bioactivity of C. atrox venom is responsible for 

the dose-dependent conversion of MTS to formazan when cells are not present. We 

describe a novel use for MTS as an indicator of venom bioactivity. Throughout this 

study, MTS reagent was used to normalize C. atrox venom to a consistent level of 

bioactivity that was used in experiments. Future studies in the lab will involve 

investigating if ROS-producing abilities of L-amino acid oxidases found within the 

venom effect cellular attachment and ROS levels. Also, a more thorough investigation of 

possible sources of intracellular ROS during venom stimulation will be conducted 

involving inhibitors of mitochondrial superoxide dismutase (SOD2), xanthine oxidase, or 

lipoxygenases. Understanding details of the role of ROS during venom stimulation is 
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critical for future development of therapeutic treatments for local tissue damages 

caused by venomous snakebite. 

Integration of Thesis Research  

Hemorrhagic venom from C. atrox is a natural toxin that consists of a mix of 

bioactive components that function to immobilize and kill prey.  Snake venom toxicity 

and its relation to prey-capture, is an active area of research focused on how foraging 

behavior may influence venom component concentrations. The main purpose of this 

study was to investigate Crotalus atrox venom induced cytotoxicity. Our data suggests 

oxidative stress generated through venom stimulation is an important mechanism 

through which venom immobilizes prey at the cellular level and this information may be 

applied to the improvement of medical treatment of snakebites.  
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