
Kennesaw State University
DigitalCommons@Kennesaw State University

Master of Science in Computer Science Theses Department of Computer Science

Spring 5-1-2019

Compliance of Open Source EHR Applications
with HIPAA and ONC Security and Privacy
Requirements
Maryam Farhadi

Hisham Haddad

Hossain Shahriar

Follow this and additional works at: https://digitalcommons.kennesaw.edu/cs_etd

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Department of Computer Science at DigitalCommons@Kennesaw State University. It has
been accepted for inclusion in Master of Science in Computer Science Theses by an authorized administrator of DigitalCommons@Kennesaw State
University. For more information, please contact digitalcommons@kennesaw.edu.

Recommended Citation
Farhadi, Maryam; Haddad, Hisham; and Shahriar, Hossain, "Compliance of Open Source EHR Applications with HIPAA and ONC
Security and Privacy Requirements" (2019). Master of Science in Computer Science Theses. 23.
https://digitalcommons.kennesaw.edu/cs_etd/23

https://digitalcommons.kennesaw.edu?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/cs_etd?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/cs?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/cs_etd?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/cs_etd/23?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

Compliance of Open Source EHR Applications with HIPAA
and ONC Security and Privacy Requirements

Master's Thesis

by

Maryam Farhadi
MSCS Student

Department of Computer Science
Kennesaw State University, USA

Submitted in partial fulfillment of the
requirements for the degree of

Master of Science in Computer Science

April 2019

DEDICATION

This thesis is dedicated to my family,

I love you and thank you for always being there for me.

ACKNOWLEDGEMENTS

I would like to thank my thesis advisors Dr. Hisham Haddad and Dr. Hossain

Shahriar for their support and encouragement through this entire process.

I am very thankful for this experience.

I would also like to thank Dr. He, my thesis committee member,

for her insightful comments and valuable suggestions.

ABSTRACT

Electronic Health Record (EHR) applications are digital versions of paper-based patient's

health information. They are increasingly adopted to improved quality in healthcare, such as

convenient access to histories of patient medication and clinic visits, easier follow up of patient

treatment plans, and precise medical decision-making process. EHR applications are guided

by measures of the Health Insurance Portability and Accountability Act (HIPAA) to ensure

confidentiality, integrity, and availability. Furthermore, Office of the National Coordinator

(ONC) for Health Information Technology certification criteria, which focuses on usability

aspects of EHRs, have overlapping security and privacy requirements. A compliance checking

approach attempts to identify whether or not an adopted EHR application meets the security

and privacy criteria. Among others, static code analysis is a common approach to discover

vulnerabilities in software applications. However, there is no study in the literature to know

whether traditional static code analysis-based vulnerability discovered can assist in compliance

checking of regulatory requirements of HIPAA and ONC.

The aim of this thesis is to (i) Identify key security requirements of HIPAA and ONC

framework; (ii) Evaluate a number of open-source EHR applications for security

vulnerabilities using open source scanner tools; (iii) Compare and contrast security

vulnerabilities identified by scanner tools with HIPAA and ONC security requirements; and

(iv) Propose an approach to secure personal health identifier information within EHR

applications.

Table of Contents

LIST OF TABLES .. 6
CHAPTER 1: MOTIVATION AND PROBLEM STATEMENT ... 7

1.1 BACKGROUND .. 7
1.2 MOTIVATION AND PROBLEM STATEMENT .. 8
1.3 GOALS, RESEARCH METHODOLOGY AND CONTRIBUTIONS .. 9

CHAPTER 2: LITERATURE REVIEW .. 11
2.1 OVERVIEW ... 11
2.2 IMPLEMENTATION VULNERABILITIES ... 11
2.3 ACCESS CONTROL IN EHR ... 15
2.4 PRIVACY AND MONITORING OF EHR ACTIVITIES .. 16
3.1 OVERVIEW ... 19

CHAPTER 3: OPENEMR AND OPENCLINIC COMPLIANCE WITH HIPAA 19
3.2 COMMON WEB SECURITY VULNERABILITIES ... 19
3.3 HIPAA SECURITY REQUIREMENTS .. 20
3.4 EVALUATION OF OPENEMR AND OPENCLINIC .. 23
3.5 RESULTS .. 24

CHAPTER 4: COMPLIANCE CHECKING FOR ONC SECURITY AND PRIVACY
REQUIREMENTS .. 30

4.1 OVERVIEW ... 30
4.2 COMPLIANCE WITH ONC CERTIFICATION .. 30
4.3 IMPROVING COMPLIANCE .. 32

CHAPTER 5: CONCLUSION ... 35
APPENDIX A: RIPS RESULTS FOR OPENEMR ... 36
APPENDIX B: PHP VULNHUNTER RESULTS FOR OPENEMR 50
APPENDIX C: RIPS RESULTS FOR OPENCLINIC ... 54
APPENDIX D: PHP VULNHUNTER RESULTS FOR OPENCLINIC 55
APPENDIX E: HIPAA SECURITY CHECKLIST ... 58
REFERENCES ... 62

6

List of Tables

Table 1: List of vulnerabilities missing in CCHI criteria.. ... 13

Table 2: True and false positive vulnerabilities detected by static analysis and automated

penetration testing ... 14

Table 3: HIPAA technical safeguard checklist ... 22

Table 4: Detected vulnerabilities found by RIPS and vulnhunter in OpenEMR and OpenClinic

 ... 24

Table 5: Code examples of vulnerable files in OpenEMR and OpenClinic 25

Table 6: EHR compliance with HIPAA technical requirements .. 28

Table 7: Privacy and security-related of ONC certification criteria 31

Table 8: EHR compliance with ONC certification criteria ... 32

Table 9: Code examples of vulnerable EHR files and the solution code. 33

7

CHAPTER 1

Motivation and Problem Statement

1.1 Background

Digital version of electronic health data improved the quality of healthcare due to easier follow-

ups, lowering cost of patient care, enabling data track over time, and making more precise medical

decisions. Three types of health records are defined: (i) Electronic Medical Records (EMRs) refer

to digital version of paper-based clinical data. The clinical data, gathered by clinicians, include

information that enables the clinicians to make better medical decisions; (ii) Electronic Health

Records (EHRs) provide a more comprehensive view of the patient’s overall well-being. It

contains information collected by all clinicians engaged in the patient’s healthcare. Therefore,

information in EHRs can be shared among all involved providers; and (iii) Personal Health

Records (PHRs) are EHRs that are controlled and accessed by the patients [1, 2].

The prevalence of healthcare data security breach can be observed both inside and outside USA.

According to 2016 Data Breach Investigations Report (DBIR), there were 115 cases of data breach

in North America during 2015. It included 32% privilege misuse, 22% miscellaneous errors, 19%

stolen assets, 7% point of sale, 3% cyber-espionage, 3% crimeware, 3% web applications, and

11% other incidents. Healthcare is among the top industries vulnerable to physical theft and loss,

miscellaneous errors, insider and privilege misuse, and others. Physical theft and loss is any

occurrence where information or a device containing information is missing. Miscellaneous errors

occur when accidental actions weaken a security attribute. Insider threats and privilege misuses

refer to all unapproved or malicious use [8].

According to Verizon survey report, some of the reported healthcare data breaches in 2015 were

as follows: In February, Anthem, a Blue Cross health insurance member-company, reported a data

breach where 80 million patients were affected. In March, Premera, another Blue Cross member,

reported a data breach affecting 11 million patients. In both cases, ThreatConnect [9] announced

that Chinese threat Actor “Deep Panda” was probably the attacker. Partners HealthCare, CareFirst

Blue Cross and Blue Shield, MetroHealth and Bellevue Hospital reported breaches in April of

8

2015. In June of the same year, US Office of Personnel Management (OPM) reported mega-

breaches for health insurance. The US Department of Health and Human Services reported a

breach in August 2015 [8].

In 2017, Emory Healthcare’s appointment system was hacked compromising almost 80,000

patients Personal Health Information (PHI) data such as names, birthdates, internal medical record

and appointment information. The appointment information was unencrypted, which opened the

door for hackers to obtain plain text information. According to a report [7], this incident is the

largest breach in 2017 in the US.

In order to maintain better healthcare, individuals must ensure that their personal health

information is private and secure. Otherwise, if patients do not feel that their information remains

confidential, they may not want to disclose their health information to healthcare providers, which

could endanger the patient’s life. Moreover, when a security breach occurs, it may lead to financial

harm for healthcare providers or the patient alike [10].

1.2 Motivation and Problem Statement

As healthcare application becomes more and more evidence-based, storing health data is becoming

more important. Weak health data protection may lead to identity theft, obtaining medical care at

the expense of others, ordering expensive drugs for resale, and fraudulent insurance claims [3].

Moreover, healthcare data hacks may threaten patient’s health due to the change of patient’s

medical history. For example, if health records do not contain a correct listing of allergies, the

patient could suffer serious consequences or death due to wrong prescription [4].

Compare to banks and financial institutions, patients’ data has less protection. Banks are mostly

equipped with two-factor authentication while healthcare applications are not. Two-factor

authentication is an extra protection which includes not only username and password, but also

some unique information that only the user has, such as a physical token. Furthermore, unlike bank

accounts that can be locked and changed for protection, it is completely impossible to get back the

compromised and disclosed health data [5, 6].

9

In the healthcare sector, the HIPAA Meaningful Usage act requires that any data security breaches

affecting 500 or more patients be reported to public through US Health and Human Service Office

for Civil Rights' Breach Portal and the affected healthcare provider must take appropriate steps

within a certain time limit, otherwise, faces further penalties. Thus, PHI leakage not only brings

reputation problem for healthcare providers, but also affects patient’s privacy and well-being.

Many security vulnerabilities remain undetected for long time [15]. Fixing security vulnerabilities

becomes more expensive when they are discovered later. Moreover, many security-related

mistakes are repeated all the time. Static analysis is a method that directly examines the code of a

program without executing the program. It can detect common vulnerabilities before releasing the

program. Since manual static analysis takes a long time to be performed, static analysis tools are

used to speed up the process of evaluating programs. Static analysis tools examine the text of a

program statically, without attempting to execute it. Based on our research, there is no work in

the literature that address whether vulnerability discovered using traditional static code analysis

can assist in compliance checking of regulatory requirements of HIPAA and ONC.

1.3 Goals, Research Methodology and Contributions

Given that large scale PHI data security breach occurs in real world, it is imperative to look at the

implemented EHR and check them if they complied with HIPAA safeguards, particularly technical

safeguards. However, there is no single tool available in the market that can test an EHR

application. This thesis brings two prong approaches to address the problem. First, examine EHR

applications with available code analysis tools. In particular, static analysis tools that are intended

to reveal implementation vulnerabilities related to traditional computer security breaches including

data leakage, alteration or deletion. Second, analyze EHR applications at the source-code level to

secure and harden the code to comply with HIPAA security requirements.

The specific goals of this thesis are to (i) Identify key security requirements of HIPAA framework;

(ii) Evaluate two open source EHR applications for security vulnerabilities using open source

scanner tools; (iii) Compare and contrast security vulnerabilities identified by scanner tools with

HIPAA and ONC security requirements; and (iv) Propose an approach to secure personal health

identifier information within the applications.

10

The research methodology involves the following activities:

1. Conduct literature search on existing EHR security and privacy vulnerabilities and their

prevention technique, on HIPAA Security Requirements, and EHR systems that have been

tested for HIPAA requirements.

2. Study and select open source EHR applications and run them to generate dummy PHI data,

followed by applying open source static code analysis tools to identify security

vulnerabilities and solutions to address them.

3. Analyze vulnerabilities and fix them within course code.

4. Disseminate the work results in the form of publications in related venues.

Our specific contributions to this field of study include:

1. An in-depth literature survey on state-of-the art approaches for addressing EHR application

security and privacy [50].

2. Analysis of two EHR applications (e.g., OpenEMR, OpenClinic) for security

vulnerabilities with static analysis tools (RIPS, VulnHunter), and checking the results for

HIPAA technical security policy violations [51].

3. Improving the compliance of EHR applications (e.g., OpenEMR, OpenClinic) using static

analysis and secure coding [52, 53].

11

CHAPTER 2

Literature Review

2.1 Overview

This Chapter presents a literature review of related work on privacy and security vulnerabilities in

EHRs. In particular, we look at literature works for compliance with HIPAA and ONC

requirements using four different perspectives: security vulnerability in EHR, access control,

privacy and monitoring, and the gaps between HIPAA requirements and breach notification. We

also map some of the existing vulnerabilities to HIPAA and ONC security rules.

2.2 Implementation Vulnerabilities

Since EHR applications are traditional web applications implemented using various languages

(e.g., PHP, JSP) and deployed with databases (e.g., MySQL, MSSQL, Oracle) in well-known

servers (e.g., Apache), they may be vulnerable in their implementations. Attackers may exploit the

vulnerabilities by providing malicious inputs and compromising the data processed and stored by

EHR applications. A number of literature works have explored the magnitude of vulnerabilities

present in popular and open source EHRs and checked whether EHR implementations are

complying with HIPAA related acts.

Smith et al. [4] empirically evaluated the ability of the Certification Commission of Healthcare IT

(CCHIT) to identify a range of vulnerability types. CCHIT focuses on required functional

capabilities in EHR applications, such as ambulatory (with prefix AM), ambulatory

interoperability, and security (SC).

In a prior study, the authors discussed more than 400 vulnerabilities they discovered using

automated security testing tools in OpenEMR [1]. In their current work, they tried to observe the

consequences of the vulnerabilities rather than finding all vulnerabilities of a particular type. The

authors exploited a range of common vulnerabilities at the code-level and design-level in EHR

applications. Code-level refers to implementation vulnerabilities and design-level refers to design

12

flaws. Some of the consequences of these exploits were denial of service, users' login information

exposure, and editing health records by any users.

A team of instructed attackers was created to target the two EHR applications: OpenEMR and

ProprietaryMed. The attackers' focus was on misuse cases of the CCHIT criteria not the overall

security of the applications. Misuse cases are defined as actions that are not allowed in the system

and can help developers to think like an attacker. The test attack environment included OpenEMR

and ProprietaryMed applications, hacking scripts with additional server, and the researchers'

computer with WebScarab and Firebug. WebScarab, a Java-based application, was used as a proxy

to execute testing attacks and record any traffic between the computers and the test servers. Firebug

was used as JavaScript debugger to monitor the attacks. Firebug is a web development plug-in

integrates with Firefox and enable users to edit HTML, JavaScript, and Cascading Style Sheets.

Firebug is also able to executes any script live. Therefore, the researchers did not need an additional

webpage for storing attacks.

In code vulnerable situations, the following problems occurred while none of them had previously

been exposed by CCHIT test script: SQL injection, cross-site scripting, session hijacking,

phishing, PDF exploits, denial of service (file uploads), and authorization failure. Table 1 shows

the misuse case(s) of vulnerabilities that has not been addressed by CCHIT. Results show that

CCHIT certification process has two failures: First, when an application meets the security

requirements, CCHIT test scripts do not test the application for implementation vulnerabilities.

Second, some security items about patient's health records are not considered at all. It has been

suggested that misuse cases are added to the manual test script to simulate the attacks. Moreover,

the test scripts can be more comprehensive by launching various attacks on the host application.

The manual test scripts should also include the most current list of threats.

Austin et al. [11] discussed insufficient vulnerability discovery techniques from EHR applications.

Four discovery techniques were applied to EHR applications to understand when to use each type

of discovery techniques. The evaluated EHR applications were OpenEMR and Tolven eCHR. The

techniques were systematic and exploratory manual penetration, automated penetration, and static

analysis. Penetration testing looks at the security of an application from a user perspective and

13

examines the functionality of an application. In manual penetration testing, no automated tools are

used. Exploratory manual penetration is testing an application based on tester’s prior experience

and it has no test plan. Systematic penetration testing is a test based on a predefined test plan.

Automated penetration testing uses automated tools to speed up the process of scanning. Static

analysis testing examines the code without executing the program. It can be examination of the

source code, the machine code, or the object code.

Table 1: List of vulnerabilities missing in CCHIT criteria
Implementation Vulnerabilities

Vulnerability Misuse Case(s)
SQL injection Attacker obtains every user's username and password.

Cross-Site Scripting Attacker causes a denial of service by rendering the home page to be blank
for all future users.
Attacker injects scripts that execute additional malicious code.

Session Hijacking Attacker spoofs another user's identity. Attacker obtains unauthorized access
to the system.

Phishing Attacker obtains the victim's username and password.
PDF Exploits Attacker executes applications on the client's computer.

Attacker executes embedded applications.
Denial of Service: File Uploads Attacker renders the web server slow or unresponsive.

Authorization Failure Attacker creates a new user account with any access privileges the attacker
desires.

Design Flaws
Repudiation Attacker modifies data in an untraceable fashion thus making fraud an

unperceivable event to the EHR.
Lack of Authorization Control Attacker views patient's confidential health records and personal

identification information.

The authors [11] first collected the vulnerabilities detected by each technique, then classified

vulnerabilities based on being true or false positive (False positive: mistakenly label code as

contain fault. True positive: when faults are correctly identified). The techniques that generated

false positives were static analysis and automated penetration testing. The developers need to

manually examine each potential false report to recognize if they are false positives. Table 2 shows

the true and false positive vulnerabilities identified by these two techniques.

14

Table 2: True and false positive vulnerabilities detected by static analysis and automated
penetration testing

Static Analysis
EHR Application True Positive False Positive False Positive Rate

Tovlen eCHR 50 2265 98%

OpenEMR 1321 3715 74%

Automated Penetration
Tovlen eCHR 22 15 40%

OpenEMR 710 25 3%

Some of the detected vulnerabilities were SQL injection, cross-site scripting, system information

leak, hidden fields, path manipulation, dangerous function, no HTTP Only attribute, dangerous

file inclusion, file upload abuse, and header manipulation. The authors classified vulnerabilities as

either implementation vulnerabilities or design flaws. They empirically proved that no single

technique is sufficient for discovering every type of vulnerability and also there is almost no

vulnerabilities that can be detected by several techniques. Results showed that systematic manual

penetration is more efficient than exploratory manual penetration in terms of detecting

vulnerabilities. Systematic manual penetration was effective at finding design flaws. Static

analysis detected the largest number of vulnerabilities. Automated penetration was the fastest

technique, while static analysis, systematic penetration, and manual penetration were ranked in the

next order respectively.

It is suggested that in case of time constraint, automated penetration is used to detect

implementation vulnerabilities, and systematic manual penetration for discovering design flaws.

The study has the following limitations: The selected tools for representing static analysis and

automated penetration are not a representative of other tools. The authors used just one tool for

measuring each detection technique, while other tools might detect other types of vulnerabilities.

The examined EHR applications are not representative of all other software. The classification of

errors (true positive and false positive) were time consuming and error prone. Human errors can

cause vulnerabilities to be neglected.

15

2.3 Access Control in EHR

In EHR applications, access control is one of the necessary security requirements in terms of

protecting patient information from being compromised [12]. Below is a highlight of some of the

studies that has been done in this area.

Helms et al. [12] claimed that there has been little effort to evaluate access control vulnerabilities

in EHR applications. Four EHR applications were evaluated based on 25 criteria related to access

control. The evaluated EHRs were OpenEMR, OpenMRS, iTrust, and Tolven. The criteria were

retrieved from HIPAA, Certification Commission for Health Information Technology (CCHIT)

Criteria, National Institute for Standards and Technology (NIST) Meaningful Use, and NIST Flat

role-based access control (RBAC). CCHIT criteria was met by iTrust but other applications were

configuration dependent. OpenEMR and openMRS are able to create super user roles, which make

them target of insider attacks. Among all evaluated applications, none of them addressed access

control during the emergency time. Moreover, the EHR applications failed to allow creating roles

with separation of duty. Separation of duty prevents a task to be done by just a single user. In

addition, none of the certification criteria covered the implementation standards.

Oladimeji et al. [21] discussed that traditional access controls are insufficient in ubiquitous

applications. They proposed a goal-oriented and policy-driven framework to mitigate the security

and privacy risks of ubiquitous applications in healthcare domain. The framework captures

application's security and privacy requirements and decreases the threats against those

requirements. In the proposed framework, these items are modeled: (1) security and privacy

objectives, (2) threats against those objectives, (3) mitigation strategies in the form of safeguards

or countermeasures. The authors used emergency response scenario to show the efficiency of the

framework.

It is mentioned that issues such as untimely arrival of ambulance is a real problem that could

happened as a result of verbal misinformation, GPS misleading, or imprecise policies guiding.

Introducing some automated mediation may lead to significant improvement. The eHealth security

and privacy issues are described in 4 categories: confidentiality, privacy, integrity, and availability.

The authors [21] mentioned that there are no universal solutions to these issues that fit all ubicomp

16

applications. Therefore, each ubicomp application needs context-sensitive evaluation of what

threats need to be addressed.

The work of Tuikka et al. [24] is based on systematic literature review of previous studies about

patients’ involvement in EHR applications. Based on this work, patients' opinion has not been

properly considered in EHR development. It is suggested that ethical values be considered in

designing EHRs, and patients’ access to all their records and even able to add some information to

them. The paper concluded that the best representatives for the patients’ needs are the patients

themselves not the organizations or advocates.

In 2016, Grunwel et al. [19] discussed the delegation of access in EHR applications and proposed

an Information Accountability Framework (IAF) to balance the requirements of both healthcare

professionals and patients in EHR applications. In the framework, patients have explicit control

over who access and use their information and set usage policies. The IAF framework ensures that

the right information is available to the right person at the right time. To operationalize the

framework, it needs to provide for a diverse range of users and use cases. For example, the

requirement to delegate access to another user on one’s behalf.

2.4 Privacy and Monitoring of EHR Activities

Privacy protections apply to patient's "individually identifiable health information" [31]. As

medical records are digitized, patient privacy becomes a more challenging issue [32]. A number

of studies have discussed the patient privacy and the required monitoring over patient records.

In order to improve accountability of EHR applications, Mashima et al. [25] presented a patient

centric monitoring system that monitors all the updates and usage of health information stored in

EHR/PHR repository. The proposed system uses cryptographic primitives, and allows patients to

have control over their health record accessibility. However, in this system the monitoring agent

is assumed trusted.

King et al. [22] discussed that in EHR applications, viewing protected data is often not monitored.

Therefore, unauthorized views of PHI remain undetected. They proposed a set of principles that

should be considered during developing logging mechanisms. They monitored the current state of

17

logging mechanisms to capture and prove user's activities in the application. The authors

supplemented the expected results of existing functional black- box test cases to include log output.

They used an existing black-box test suite provided by the National Institute of Standards and

Technology (NIST). They selected 10 certification criteria from the NIST black- box testing

including demographics, medication list, medication allergy list, etc. The authors executed the 30

test cases on EHR applications. 67.8% of applicable executed test cases failed. Four of failed cases

was related to viewing of critical data, showing that users may view protected information without

being captured.

In order to meet HIPAA's privacy requirements, Reinsmidt et al. [23] proposed an approach that

provides a secure connected mobile system in a mobile cloud environment. The connection

between mobile systems takes place using authentication and encryption. The protocol execution

includes encryption, decryption, and key generation time. After a mobile device opens a socket

with the listening server, the server responds with its public part of the DH exchange. The mobile

device hashes the results with SHA-256 to calculate the symmetric encryption/decryption key.

This key is used in the advanced encryption standard (AES).

Kingsford et al. [26] proposed a mathematical framework to improve the preservation of patient's

privacy in EMR applications during the collection of patient health data for analysis. The authors

used an identity based encryption (IBE) protocol. In the proposed framework, patient's identity is

delinked from the health data before submitting to health workers for analysis. Health data is

encrypted before submitting. The administrator then decrypts the submitted data. Patient’s identity

is delinked from submitted data in this stage. The administrator checks that only the health data

(not the identity of the patient) is sent to health worker for analysis. Therefore, the identity of the

patient will not be disclosed and PU’s privacy is preserved.

Gaps between security policies and real breaches always exist in healthcare. Policies are often

stated in an ambiguous manner [27, 28]. Therefore, in reality not all the breaches are addressed by

policies. To measure the breach coverage percentage by HIPAA security policies, Kafali et al. [30]

proposed a semantic reasoning framework to identify gaps between HIPAA policy and security

breaches. The work revealed that only 65% of security breaches are covered by HIPAA policy

18

rules. Moreover, HIPAA security policy is more successful in covering malicious misuse than

accidental misuse.

Compared to previous literature works, our work contributed to checking the compliance of EHR

applications with HIPAA (technical security requirements) and ONC (focused on security and

privacy) criteria. In particular, none of the work has explored the issue of whether there is any link

between potential security vulnerabilities and not complying with HIPAA and ONC.

19

CHAPTER 3

OpenEMR and OpenClinic Compliance with HIPAA

3.1 Overview

EHR applications are deployed over the web, leading to potential common security vulnerabilities

such as SQL Injection, cross-site scripting, file inclusion, HTTP response splitting, and flow

control alteration. In this chapter, we start with a review of these common security vulnerabilities

in EHR applications. Then focus on the compliance of selected EHR applications with HIPAA

technical requirements. The selected code analysis tools, named RIPS [16] and PHP VulnHunter

[47], are used to examine the code of OpenEMR and OpenClinic [33]. The results obtained from

the tools are then manually inspected for accuracy to form a basis for compliance with HIPAA

technical requirements due to traditional web security vulnerabilities.

3.2 Common Web Security Vulnerabilities

SQL Injection: SQL injection is a code injection attack that occurs when an application does not

sanitize untrusted input properly. Therefore, an attacker can inject reserved words into input fields,

executes malicious SQL statements, and change the logical structures of SQL statements [4, 18].

Cross-Site Scripting: In a cross-site scripting attack, an attacker injects malicious code into the

trusted web application that does not properly validate the user input. Therefore, a victim can run

the malicious code into the browser. Cross-site scripting is a threat for users, not the application

itself [4, 29].

Reflection Injection Attack: Reflection is the computer ability to inspect itself and describe the

properties, methods and types of objects that the user is working with. In reflection injection attack,

tainted data is used as a function name which may lead to execution of arbitrary functions and

unexpected behavior of the application. Reflection injection may also lead to a specific code

injection [34, 35].

20

File Inclusion: This vulnerability occurs due to poor input validation when an attacker is allowed

to exploit external file inclusion functionality that dynamically includes local or external files. It

will lead to the execution of malicious code or unauthorized access to sensitive files [20, 36].

HTTP Response Splitting: In HTTP response splitting attack, malicious data is embedded in

HTTP response headers. HTTP response is split into two responses instead of one. This attack can

lead to other vulnerabilities including cross-site scripting [37, 38].

Flow Control: Flow control attacks occur as a result of injecting malicious user input into the

program counter. Flow control attacks are the subversion of the program execution due to

tampering with program code. This vulnerability may result in execution of unintended code [39,

40].

Protocol Injection: It occurs when attacker change the connection handling parameters. User

tainted data may be used when selecting those parameters [16].

File Disclosure: In File Disclosure vulnerability, an attacker can read local files. User tainted data

is used when creating the file name that is supposed to get opened. Therefore, the attacker can read

the source code and other files which might lead to other attacks [16].

File Manipulation: An attacker can inject code into a file or write to arbitrary files. User tainted

data is used when creating the file name that is supposed to get opened or when creating the string

that will be written to the file. An attacker can try to write arbitrary PHP code in a PHP file allowing

to fully compromising the server [16].

3.3 HIPAA Security Requirements

Although EHRs resulted in better care, concerns of security and privacy breach always exist among

digital formats. HIPAA (Health Insurance Portability and Accountability Act) was established in

1996 to protect health care coverage for individuals with lower income [41]. It provides federal

protections for patient health information [14] by specifying measures to ensure EHR

confidentiality, integrity, and availability [13]. HIPAA security requirements are divided into three

21

types: Administrative, Physical, and Technical (See Appendix E). The administrative safeguards

are described as policies and procedures designed to manage the selection, development,

implementation, and maintenance of security measures. The physical safeguards are physical

measures, policies, and procedures to protect an equipment, from natural and environmental

hazards, and unauthorized intrusion. Finally, the technical safeguards are the technology and the

policy-related requirements that protect electronic protected health information (EPHI) and control

access to it [54, 55, 56].

Table 3 shows a set of HIPAA technical requirements. The first column of the table refers to

applicable sections of HIPAA law on security requirements. For example, Section 164.312

specifies all technical safeguards that a covered entity must comply with. These include

implementing access control through unique user identification, emergency access to PHI

procedure, automatic logoff after a time of inactivity, encrypt and decrypt PHI, audit the access

and usage of PHI, detection of improper access and alteration of PHI, verification of the integrity

of received PHI electronically, and authentication (verify that an individual seeking access to PHI

is recognized based on provided credential information) [42].

The second column shows high-level requirements to ensure safeguards. The requirement can be

referring to other guidelines. The third column (status) refers whether a safeguard is required or

addressable. The required rules are mandatory for all EHR applications and not implementing them

leads fines and penalties [43]. The addressable rules are optional features that should be

implemented in EHR so that PHI remains secured.

In this research, we focus on issues related to Technical Safeguards. If technical safeguards are

complied with in an implemented EHR, then it enables not only meeting some of the other types

of safeguards (e.g., providing tools and applications to check and monitor administrative security

policies), but also can prevent unwanted incidents (due to not complying physical safeguards). For

example, if a laptop having an EHR application gets lost or stolen, it would be very difficult to

hack PHI data if authentication mechanism is established and encryption of data is applied into

databases.

22

Table 3: HIPAA technical safeguard checklist

Security Rule
Reference

Technical Safeguard Status

164.312(a)(1)
(Access Control)

Access Controls: Implement technical policies and procedures for
electronic information systems that maintain EPHI to allow access
only to those persons or software programs that have been granted
access rights as specified in Sec. 164.308(a)(4).

164.312(a)(2)(i)
(Identify and track
user identity)

Assign a unique name and/or number for identifying and tracking
user identity.

REQUIRED

164.312(a)(2)(ii)
(Emergency access)

Establish (and implement as needed) procedures for obtaining
necessary EPHI during and emergency.

REQUIRED

164.312(a)(2)(iii)
(Automatic Log-
Off)

Implement procedures that terminate an electronic session after a
predetermined time of inactivity.

ADDRESSABLE

164.312(a)(2)(iv)
(Encryption)

Implement a mechanism to encrypt and decrypt EPHI. ADDRESSABLE

164.312(b)
(Audit Controls)

Implement Audit Controls, hardware, software, and/or procedural
mechanisms that record and examine activity in information
systems that contain or use EPHI.

REQUIRED

164.312(c)(1)
(Integrity)

Integrity: Implement policies and procedures to protect EPHI from
improper alteration or destruction.

164.312(c)(2)
(Integrity)

Implement electronic mechanisms to corroborate that EPHI has
not been altered or destroyed in an unauthorized manner.

ADDRESSABLE

164.312(d)
(Authentication)

Implement Person or Entity Authentication procedures to verify
that a person or entity seeking access EPHI is the one claimed.

REQUIRED

164.312(e)(1)
 (Transmission
Security)

Transmission Security: Implement technical security measures to
guard against unauthorized access to EPHI that is being
transmitted over an electronic communications network.

164.312(e)(2)(i)
(Transmission
Security)

Implement security measures to ensure that electronically
transmitted EPHI is not improperly modified without detection
until disposed of.

ADDRESSABLE

164.312(e)(2)(ii)
(Encryption)

Implement a mechanism to encrypt EPHI whenever deemed
appropriate.

ADDRESSABLE

23

3.4 Evaluation of OpenEMR and OpenClinic

To uncover potential web security vulnerabilities, we have used RIPS and PHP VulnHunter [16]

static analysis tools on OpenEMR and OpenClinic [1], two open source EHR applications

currently being adopted and used in the real world. We used Windows operating system to install

the tools and EHR applications, and deployed Apache server and MySQL database.

Note static analysis tools do not run applications, instead scan source of the applications for known

pattern of vulnerabilities. The tools are restricted to their application based on the implementation

languages of the EHR applications (which was PHP in our study). Dynamic analysis tools have

the capability of running applications with inputs, and inspect various states of applications to

identify anomalies or security bugs. In our study, we found few to no support for dynamic analysis

tool support at this time for PHP-based web applications. Given that our focus was using static

analysis tools.

OpenEMR is a PHP-based application that uses Apache as the web server and MySQL as the

database server. OpenEMR is under the GNU Public License (GPL). It can be installed on UNIX,

Microsoft, and Mac OS X platforms. It contains many essential features for clinical practices such

as feeding data of patient (e.g., biographic data, diagnostic results, medication history) as EHR,

disease management, scheduling, and electronic billing. OpenEMR is one of the most popular free

EHR systems with over 7000 downloads per month. It has been downloaded more than 500,000

times since March 2005 [44, 45, 46]. In this work, we scanned all 5594 files in OpenEMR.

OpenClinic is a platform independent, PHP-based EHR application which has been mainly used

in private clinics and private doctors. It requires MySQL and a web server for executing PHP code

(like Apache). OpenClinic is under GNU General Public License (GPL) [33]. In this project, we

scanned all 170 files in OpenClinic.

RIPS is a tool for automated identification of vulnerabilities in PHP applications. In open-source

version of RIPS, PHP code is tokenized and transformed into a program model for scanning. RIPS

then detects vulnerable functions that an attacker can provide with malicious inputs. RIPS detects

a number of vulnerability types including cross-site scripting, SQL injection, and local file

24

inclusion. RIPS is capable of identifying a large number of vulnerabilities, including Code

Execution, Command Execution, Cross-Site Scripting, Header Injection, File Disclosure, File

Inclusion, File Manipulation, LDAP Injection, SQL Injection, Unserialize with POP, and XPath

Injection [16, 17].

PHP VulnHunter is a static analysis tool which scans php vulnerabilities automatically. In fact, it

uses a combination of static and dynamic analysis to automatically map the target application. It

scans a large number of vulnerabilities in PHP web applications. PHP Vulnerability Hunter can

detect the following classes of vulnerabilities: Arbitrary command execution, Arbitrary file

read/write/change/rename/delete, Local file inclusion, Arbitrary PHP execution, SQL injection,

User controlled function invocation, User controlled class instantiation, Reflected cross-site

scripting (XSS), Open redirect, Full path disclosure [47, 48].

3.5 Results

The results of applying static analysis tools to OpenEMR and OpenClinic are shown in Tables 4,

5. Table 4 shows identified vulnerabilities by RIPS and PHP VulnHunter, while table 5 provides

some code examples of the detected vulnerable files. Finally in table 6, we show the compliance

of the two evaluated EHRs (OpenEMR and OpenClinic) with the HIPAA technical safeguards

based on our observation. OpenEMR has 5000+ source files, and it took more than 3 hours of time

to be scanned by RIPS and VulnHunter. In contrast, OpenClinic has much less source files and

took about half an hour of time by the tools.

TABLE 4: Detected vulnerabilities in OpenEMR and OpenClinic

Vulnerability OpenEMR OpenClinic

 RIPS VulnHunter RIPS VulnHunter

File Inclusion ✓ ✓ - -

Cross-Site Scripting ✓ ✓ ✓ ✓

SQL Injection - - - ✓

HTTP Response Splitting ✓ - ✓ -

Reflection Injection ✓ - - -

25

Flow Control ✓ - - -

Protocol Injection ✓ - - -

File Disclosure ✓ ✓ ✓ -

File Manipulation ✓ - ✓ -

According to Table 4, Cross-Site Scripting was detected in both applications by both tools, while

SQL Injection, Reflection Injection, Flow Control, and Protocol Injection were least detected

vulnerabilities.

In Table 5, we show code example for vulnerabilities and describe how the presented code can

lead to the associated vulnerability.

Table 5: Code examples of vulnerable files in OpenEMR and OpenClinic
Vulnerability Code Example Description

File Inclusion require_once "sites/$site_id/sqlconf.php";

$site_id = 'default';

$site_id = $_SERVER['HTTP_HOST'];

The function require_once and $_SERVER
together can cause File Inclusion
vulnerability.

Cross-Site
Scripting

echo $controller->act($_GET);

$_GET = undomagicquotes ($_GET);

The function echo and $_GET together can
cause Cross-Site Scripting vulnerability.

SQL Injection mysql_query('USE ' . $_POST['dbName']) or
die(sprintf(_("Instruction: %s Error: %s"), $sql,
mysql_error()));

The function mysql_query and $_ POST
together can cause SQL Injection
vulnerability.

HTTP
Response
Splitting

header("Location:
interface/login/login.php?site=$site_id");

$site_id = 'default';

$site_id = $_SERVER['HTTP_HOST'];

The function header and $_SERVER
together can cause HTTP Response
Splitting vulnerability.

26

Reflection
Injection

call_user_func_array (array(&$obj, $func),
array($var, $_POST));

function populate_object (&$job);

$func = "set_" . $varname;

$varname = preg_replace("/[^A-Za-z0-9_]/",
"", $varname);

foreach ($_POST as $varname=>$var)

The function call_user_func_array and
$_POST together can cause Reflection
Injection vulnerability.

Flow Control extract ($_GET, EXTR_SKIP);

$_GET = undomagicquotes ($_GET);

The function extract and $_GET together
can cause Possible Flow Control
vulnerability.

Protocol
Injection

fsockopen fsockopen(($this->ssl"ssl://" : "") .
$ip, $port, $errno, $error, $this->timeout) :

 $ip = gethostbyname($domain), $domain))
⇓ Function connecttohost($domain, $port,
$resolve_message)

The function fsockopen and $_GET
together can cause Protocol Injection
vulnerability.

File Disclosure fread $filetext = fread($tmpfile,
$_FILES['file']['size'][$key]);

 $tmpfile =
fopen($_FILES['file']['tmp_name'][$key], "r");

The function fread and $_FILES together
can cause File Disclosure vulnerability.

File
Manipulation

chmod chmod($destinationFile, 0644);

$destinationFile = $destinationDir . '/' .
$destinationName;

 function upload(&$file, $destinationDir = "",
$destinationName = "", $secure = true)

$destinationName = $file['name'];

function upload(&$file, $destinationDir = "",
$destinationName = "", $secure = true)

The function chmod and $_GET together
can cause File Manipulation vulnerability.

File inclusion may lead to unauthorized access and consequently alternation of PHI [20, 36]. This

vulnerability violates HIPAA rules for Access Control (Security rule 164.312(a)(1)) and Integrity

of the EHR application (Security rule 164.312(c)(1)).

27

In cross-site scripting, an attacker can cause a denial of service by rendering the home page to be

blank for all future users or inject scripts that execute additional malicious code [29]. Therefore,

authorized users may fail to access the PHI during emergency time. This vulnerability violates

HIPAA rules for Access Control (Security rule 164.312(a)(1)) and Integrity of the EHR application

(Security rule 164.312(c)(1)).

In SQL injection attack, an attacker injects reserved words into input fields, executes

malicious SQL statements, and change the logical structures of SQL statements [18]. This

vulnerability violates HIPAA rules for Access Control (Security rule 164.312(a)(1)) and Integrity

of the EHR application (Security rule 164.312(c)(1)).

HTTP response splitting leads to other vulnerabilities including cross-site scripting, which may

disrupt authorized access to the system and cause denial of service [37, 38]. This vulnerability

violates HIPAA rules for Access Control (Security rule 164.312(a)(1)) and Integrity of the EHR

application (Security rule 164.312(c)(1)).

Reflection injection may allow an attacker to gain access to the PHI and result in specific code

injection [34, 35]. This violates HIPAA rules for Access Control (Security rule 164.312(a)(1)) and

Integrity of the EHR application (Security rule 164.312(c)(1)).

Flow control attacks may result in execution of unintended code, which could result in a denial of

service [39, 40]. This can cause problem especially during emergency time. Flow control attacks

violate HIPAA rule for access during emergency time (Security rule 164.312(a)(2)(ii)).

In protocol injection vulnerability, user tainted data may be used when selecting and changing the

connection handling parameters [16]. This violates HIPAA rules for Access Control (Security rule

164.312(a)(1)) and Integrity of the EHR application (Security rule 164.312(c)(1)).

In file disclosure vulnerability, an attacker can read files. User tainted data is used when creating

the file name that is supposed to be opened. Therefore, the attacker can read the source code and

other files, which might lead to other attacks [16]. This vulnerability violates HIPAA rules for

28

Access Control (Security rule 164.312(a)(1)) and Integrity of the EHR application (Security rule

164.312(c)(1)).

In file manipulation vulnerability, an attacker can inject code into a file or write to arbitrary files

[16]. This violates HIPAA rules for Access Control (Security rule 164.312(a)(1)) and Integrity of

the EHR application (Security rule 164.312(c)(1)).

OpenEMR also failed to address encryption and decryption of PHI. There were no functions such

as crypt() for encryption and md5() for data hashing. This obviously violates HIPAA rule for

encryption and decryption of PHI (Security rule 164.312(a)(2)(iv)).

Table 6 shows the compliance of evaluated EHRs (OpenEMR and OpenClinic) with the HIPAA

technical safeguards based on our observation.

Table 6: EHRs compliance with HIPAA technical requirements

HIPAA Technical Requirements OpenEMR OpenClinic

164.312(a)(1)
Access Controls No No

164.312(a)(2)(i)
Identify and track user identity Yes No

164.312(a)(2)(ii)
Emergency access No No

164.312(a)(2)(iii)
Automatic Log-Off Yes Yes

164.312(a)(2)(iv)
Encryption No No

164.312(b)
Audit Controls Yes No

164.312(c)(1)
Integrity No No

164.312(c)(2)
(Integrity) N/A N/A

164.312(d)
(Authentication) N/A N/A

164.312(e)(1)
Transmission Security No No

29

164.312(e)(2)(i)
(Transmission Security) N/A N/A

164.312(e)(2)(ii)
(Encryption) N/A N/A

In the next chapter, the resulted obtained from the scanning tools are manually inspected for

accuracy to form a basis for compliance with ONC certificate due to traditional web security

vulnerabilities.

30

CHAPTER 4

Compliance Checking for ONC Security and Privacy Requirements

4.1 Overview

In chapter 3, we applied two popular code analysis tools, named RIPS and PHP VulnHunter to

examine the code in OpenEMR and OpenClinic [16, 33]. Then we inspected the obtained results

and manually checked the accuracy to form a basis for compliance with HIPAA technical

requirements. In this chapter, we inspect the obtained results from chapter 3, and check the

accuracy to form a basis for compliance with ONC privacy and security-focused requirements

[49]. The initial results show that both evaluated EHRs may violate some required and optional

HIPAA and ONC privacy and security requirements.

It is important to note that in some instances, HIPAA and ONC criteria may appear to overlap. For

example, both HIPAA and ONC define a unique identifier for each user as well as automatic log-

off after a predetermined period of inactivity. However, they were examined on an individual basis

due to the severity of ramifications associated with non-compliance. Non-compliance with the

HIPAA criteria has far worse implications than not meeting ONC criteria. In some cases, the two

criteria address different requirements. For example, ONC requires EHR applications to allow a

user to capture a patient’s request for an amendment to their electronic health information.

4.2 Compliance with ONC Certification

In this section, we discuss ONC Certification Program, which is required for eligible providers

seeking to demonstrate "meaningful use" [49]. Meaningful use is the minimum government

standards for using and exchanging patients' health information. ONC certification has several

criteria including Clinical Processes, Care Coordination, Clinical Quality Measurement, Privacy

and Security, Patient Engagement, Public Health, Health IT Design and Performance, and

Electronic Exchange. In this work, we considered Privacy and Security criteria and studied the

compliance of the two evaluated EHRs (OpenEMR and OpenClinic) with Privacy and Security

Criteria (Tables 7 and 8).

31

Table 7 shows the 2015 Edition of ONC certification criteria for EHR privacy and security.

Table 7: Privacy and security-related of ONC certification criteria

ONC Certification

Criterion
Short Description

45 CFR §170.314(d)(1)
Authentication, Access Control, and Authorization: EHR must authenticate and

authorize a user, and control user access to the information.

45 CFR §170.314(d)(2)

Auditable Events and Tamper-Resistance: EHR must: Record user actions in an

audit log; Record audit log status or encryption status; Only enable specific users to

disable an audit log, if possible; Protect actions and statuses; and Detect when the

audit log has been altered.

45 CFR §170.314(d)(3)
Audit Report(s): EHR must allow a user to generate an audit report for a specific

time period.

45 CFR §170.314(d)(4)
Amendments: EHR must allow a user to capture a patient’s request for an

amendment to their electronic health information.

45 CFR §170.314(d)(5)
Automatic Log-Off: EHR must log-off users automatically after a predetermined

period of inactivity.

45 CFR §170.314(d)(6)
Emergency Access: EHR must permit specific users to have access to the

electronic health information in the event of an emergency.

45 CFR §170.314(d)(7)
End-User Device Encryption: EHR must encrypt electronic health information on

end-user devices.

45 CFR §170.314(d)(8)
Integrity: EHR must use secure hashing standards to ensure that electronic health

information has not been altered.

45 CFR §170.314(d)(9)
Optional – Accounting of Disclosures: EHR must record treatment, payment, and

health care operations disclosures.

Table 8 shows the compliance of the two evaluated EHRs (OpenEMR and OpenClinic) with the

ONC Privacy and Security Criteria based on our observation.

32

Table 8: EHR compliance with ONC certification criteria

Certification Criterion OpenEMR OpenClinic

45 CFR §170.314(d)(1)
Authentication, Access Control, and Authorization Yes Yes

45 CFR §170.314(d)(2)
Auditable Events and Tamper-Resistance Yes No

45 CFR §170.314(d)(3)
Audit Report(s)

Yes No

45 CFR §170.314(d)(4)
Amendments

Yes No

45 CFR §170.314(d)(5)
Automatic Log-Off

Yes Yes

45 CFR §170.314(d)(6)
Emergency Access

No No

45 CFR §170.314(d)(7)
End-User Device Encryption

No No

45 CFR §170.314(d)(8)
Integrity

No No

45 CFR §170.314(d)(9)
Accounting of Disclosures

N/A N/A

According to Table 8, OpenEMR and OpenClinic failed to meet the ONC Criteria during

emergency time. Also, End-User Device Encryption and Integrity were not addressed by the

EHRs. OpenEMR supported other ONC criteria while OpenClinic failed to address most of the

cases.

4.3 Improving Compliance

To improve compliance, we developed and implemented code solutions to address some of the

security vulnerabilities found in evaluated EHR applications. We then rescanned the new code

with the two static analysis tools and found no vulnerability. Table 9 provides some examples of

identified unsanitized code in EHRs and how we fixed the code to improve the compliance with

HIPAA and ONC security requirements. Below we briefly explain two examples of fixing

vulnerable code in Table 9.

33

Table 9: Code examples of vulnerable EHR files and the solution code.
Vulnerability Vulnerable Code Example Fixed Code Example

Cross-Site Scripting:
$_POST + echo()

echo echo " durations[" .
$crow['pc_catid'] . "] = $duration\n";

$duration = $_POST['form_duration'];

print ("Hello " . htmlentities($_GET["name"],
ENT_QUOTES, "utf-8");
code was changed to:
$duration =
htmlentities($_POST['form_duration'],ENT_QUOTES,
"utf-8);

File Inclusion:
$_GET +
Require_one()

require_once require_once
$GLOBALS['OE_SITE_DIR'] .
"/sqlconf.php"; // sqlconf.php);
$tmp = 'default' : $_GET['site'];

$files = array("index.php", "main.php");
if(!in_array($_GET["file"], $files)) exit ;
code was changed to:
$tmp = empty($_GET['site']) ? 'default' : if
(!in_array($_GET['site'], $site))exit;

File Manipulation:
$_GET + mkdir()

mkdir
mkdir($GLOBALS['OE_SITE_DIR'] .
'/documents/mpdf/pdf_tmp/', 0755);
$tmp = 'default' : $_GET['site'];

$files = array("index.php", "main.php");
if(!in_array($_GET["file"], $files)) exit ;
code was changed to:
$tmp = empty($_GET['site']) ? 'default' : if
(!in_array($_GET['site'], $site))exit;

File Disclosure:
$_FILES + fread()

fread $filetext = fread($tmpfile,
$_FILES['file']['size'][$key]);
$tmpfile =
fopen($_FILES['file']['tmp_name'][$key
], "r");

$files = array("index.php", "main.php");
if(!in_array($_GET["file"], $files)) exit ;

Http response
splitting: $_GET +
header()

header header("Content-
Length: " . filesize($tmpcouchpath));
$GLOBALS['OE_SITE_DIR'] = $GLO
BALS['OE_SITES_BASE'] . '/' . $tmp;
$tmp = 'default' : $_GET['site'];

if(!in_array($_GET["url"], $whitelist)) exit ;

In a cross-site scripting attack, an attacker injects malicious code into the trusted web application

that does not properly validate the user input. Cross-site scripting may occur when function echo()

comes with the $_GET (or $_POST). To fix this vulnerability, we used htmlentities() function,

which converts all applicable characters to HTML entities.

File inclusion occurs due to poor input validation when an attacker is allowed to exploit external

file inclusion functionality that dynamically includes local or external files. File inclusion may

occur when function require_once() comes with the $_GET (or $_POST). Function require_once()

works almost as function include(). Not limiting the file name to specific paths or extensions is

one way to avoid file inclusion. To ensure that, we added if (!in_array($_GET["file"], $files)) exit

to the code.

34

The third row (second column) shows an example of file manipulation where user input

($_GET[‘site’]) could lead to a default file creation within the local file server of a website. The

fixed code (third column) shows one solution where acceptable file names are whitelisted into an

array ($files). If user input is empty, a default file is created, otherwise user input is matched with

known filenames. Similarly, we have addressed file disclosure issue during file reading in the

fourth row of Table 9.

In file disclosure attack, an attacker can read local files. User tainted data is used when creating

the file name that is supposed to get opened. Therefore, the attacker can read the source code and

other files which might lead to other attacks. File disclosure may occur when function fread()

comes with $_FILES. To fix this vulnerability, we added if(!in_array($_GET["file"], $files)) exit;

to make sure that the attacker cannot read the source code.

The last row of Table 9 shows HTTP response splitting. In HTTP response splitting attack,

malicious data is embedded in HTTP response headers. HTTP response is split into two responses

instead of one. This vulnerability can occur when function header() comes with $_GET (or

$_POST). To address this issue, we used if(!in_array($_GET["url"], $whitelist)) exit; which

prevents from spilt the HTTP response into two responses.

Note our suggested fixed examples highlights the need of using specific APIs available in the

implementation language (e.g., htmlentities() in PHP), or adding the needed code for checking of

entities from white or black list, to prevent vulnerabilities. It may not be possible to provide one

common solution for multiple vulnerabilities due to implementation of input filtering can vary

from application to application.

The fixing of code took much less time once we have a common API pattern (e.g., htmlentities())

identified for finding and replacing with the correct code. However, for checking of whitelisting

or blacklisting (e.g., if (!in_array(..)..), it took few hours to identify the location and fix the code.

35

CHAPTER 5

Conclusion

Electronic Health Record applications are digital versions of paper-based patient's health

information. They are increasingly being implemented in many countries. They have resulted in

better healthcare, lower costs, easier follow ups, and more precise medical decisions. EHR

applications are guided by measures of HIPAA to ensure confidentiality, integrity, and security.

However, concerns of security breach always exist in digital formats. In many reported breaches,

improper use of EHRs has resulted in disclosure of patient’s protected health information.

Therefore, more awareness in existing EHRs capability of protecting patient’s healthcare data is

needed.

We conducted a survey of literature search focused on relevant works about EHR security and

privacy vulnerabilities, complying with HIPAA and ONC security and privacy requirements;

identified key security requirements of HIPAA and ONC framework; evaluated selected open

source EHR applications for security vulnerabilities using open source scanner tools; compared

and contrasted security vulnerabilities identified by scanner tools with HIPAA and ONC security

requirements; and proposed an approach to secure personal health identifier information within

applications.

We identified security and privacy requirements for HIPAA technical requirements, and identified

a subset of ONC criteria related to security and privacy. Then we evaluated EHR applications for

security vulnerabilities, and finally proposed mitigation of security issues towards better

compliance. The proposed approach helps practitioners to reuse the open source tools towards

certification compliance.

Our future work includes the evaluation of other open-source EHR applications and using

additional and different static analysis tools. We also plan to evaluate the effectiveness of our

proposed solution by using dynamic analysis tools.

36

Appendix A: RIPS Results for OpenEMR

Vulnerability Vulnerability Concept File(s)

File Disclosure Source sink vulnerability

$_GET + require_once() = File Inclusion

19: require_once require_once $GLOBALS['OE_SITE_DIR'] .
"/sqlconf.php"; // sqlconf.php
17: $GLOBALS['OE_SITE_DIR'] = $GLOBALS['OE_SITES_BASE'] .
'/' . $tmp; // sqlconf.phpif(empty($GLOBALS)),
15: $GLOBALS['OE_SITES_BASE'] = dirname(__FILE__) . "/../sites";
// sqlconf.phpif(empty($GLOBALS)),
84: $GLOBALS['OE_SITES_BASE'] = "$webserver_root/sites"; //
globals.php
56: $webserver_root = str_replace("\\", "/", $webserver_root); //
globals.phpif(IS_WINDOWS),
53: $webserver_root = dirname(dirname(__FILE__)); // globals.php
53: $webserver_root = dirname(dirname(__FILE__)); // globals.php
16: $tmp = 'default' : $_GET['site']; //
sqlconf.phpif(empty($GLOBALS)),
42: $_GET = undomagicquotes ($_GET); //
globals.phpif($sanitize_all_escapes),

ccr/createCCR.php

File Disclosure Source sink vulnerability
$_GET + opendir() = File Disclosure

57: opendir $dh = opendir($templatedir);
54: $templatedir = $GLOBALS['OE_SITE_DIR'] .
'/documents/doctemplates';
17: $GLOBALS['OE_SITE_DIR'] = $GLOBALS['OE_SITES_BASE'] .
'/' . $tmp; // sqlconf.phpif(empty($GLOBALS)),
15: $GLOBALS['OE_SITES_BASE'] = dirname(__FILE__) . "/../sites";
// sqlconf.phpif(empty($GLOBALS)),
16: $tmp = 'default' : $_GET['site']; //
sqlconf.phpif(empty($GLOBALS)),
requires:
56: if(file_exists($templatedir))
45: ⇓ function upload_action($patient_id, $category_id)

controllers/C_Document.cla
ss.php

File Disclosure source sink vulnerability
$_GET + readfile() = File Disclosure

custom/qrda_download.php

37

File Disclosure
73: readfile readfile($finalZip);
63: $finalZip = $qrda_file_path . $fileList[0]; // if(count($fileList) > 1)
else ,
55: $qrda_file_path = $GLOBALS['OE_SITE_DIR'] .
"/documents/cqm_qrda/"; // qrda_category1.inc
17: $GLOBALS['OE_SITE_DIR'] = $GLOBALS['OE_SITES_BASE'] .
'/' . $tmp; // sqlconf.phpif(empty($GLOBALS)),
15: $GLOBALS['OE_SITES_BASE'] = dirname(__FILE__) . "/../sites";
// sqlconf.phpif(empty($GLOBALS)),
84: $GLOBALS['OE_SITES_BASE'] = "$webserver_root/sites"; //
globals.php
56: $webserver_root = str_replace("\\", "/", $webserver_root); //
globals.phpif(IS_WINDOWS),
53: $webserver_root = dirname(dirname(__FILE__)); // globals.php
53: $webserver_root = dirname(dirname(__FILE__)); // globals.php
16: $tmp = 'default' : $_GET['site']; //
sqlconf.phpif(empty($GLOBALS)),
42: $_GET = undomagicquotes ($_GET); //
globals.phpif($sanitize_all_escapes),
43: $fileList = explode(",", $fileName);
39: $fileName = $_GET['fileName'] : "";
42: $_GET = undomagicquotes ($_GET); //
globals.phpif($sanitize_all_escapes),
requires:
42: if($fileName)

custom/ajax_download.php

File Disclosure source sink vulnerability
$_POST + parse_ini_file() = File Disclosure

45: parse_ini_file $config = parse_ini_file($config_file); //
gacl_admin.inc.php
40: $config_file = dirname(__FILE__) . '/../gacl.ini.php'; //
gacl_admin.inc.phpif(!isset($config_file)),
59: $config_file = ''; // gacl.class.php
509: extract($_POST, EXTR_SKIP); // globals.phpregister_globals
implementationif($fake_register_globals),
43: $_POST = undomagicquotes ($_POST); //
globals.phpif($sanitize_all_escapes),
requires:
44: if(file_exists($config_file))

gacl/admin/about.php

38

Protocol
Injection

source sink vulnerability
$_GET
$_POST + mail() = Protocol Injection

45: mail mail($pt_email, $email_subject, $email_body, $headers)) //
batchEmail.php
32: $pt_email = $row['email']; // batchEmail.php
28: $row = sqlfetcharray ($res)){ // batchEmail.php
125: $res = sqlstatement ($sql);
122: $sql .= ' ORDER BY ' . $_POST['sort_by'];
117: $sql .= " $and patient_data.email IS NOT NULL "; //
switch($_POST) : , case $choices : ,
111: $sql .= " $and patient_data.hipaa_mail='YES' "; // if($_POST !=
'NO'),
105: $sql .= " $and patient_data.sex='" . $_POST['gender'] . "' "; //
if($_POST != 'Any'),
99: $sql .= " $and DATEDIFF(CURDATE(), patient_data.DOB)/
365.25 <= '" . $_POST['age_upto'] . "' "; // if($_POST != 0 AND $_POST
!= ''),
95: $sql .= " $and DATEDIFF(CURDATE(), patient_data.DOB)/
365.25 >= '" . $_POST['age_from'] . "' "; // if($_POST != 0 AND
$_POST != ''),
89: $sql .= " $and forms.date > '" . $_POST['seen_since'] . "' "; //
if($_POST != 0 AND $_POST != ''),
85: $sql .= " $and forms.date > '" . $_POST['seen_since'] . "' "; //
if($_POST != 0 AND $_POST != ''),
80: $sql .= $sql_where_a;
70: $sql = "select patient_data.*, cal_events.pc_eventDate as
next_appt,cal_events.pc_startTime as
appt_start_time,cal_date.last_appt,forms.last_visit from patient_data left
outer join openemr_postcalendar_events as cal_events on
patient_data.pid=cal_events.pc_pid and curdate() <
cal_events.pc_eventDate left outer join (select pc_pid,max(pc_eventDate)
as last_appt from openemr_postcalendar_events where curdate() >=
pc_eventDate group by pc_pid) as cal_date on
cal_date.pc_pid=patient_data.pid left outer join (select pid,max(date) as
last_visit from forms where curdate() >= date group by pid) as forms on
forms.pid=patient_data.pid";
78: $sql_where_a .= " $and cal_events.pc_endDate < '" . $_POST['app_e']
. "'"; // if($_POST != 0 AND $_POST != ''),
74: $sql_where_a = " $and cal_events.pc_eventDate > '" .
$_POST['app_s'] . "'"; // if($_POST != 0 AND $_POST != ''),
73: $and = where_or_and ($and); // if($_POST != 0 AND $_POST != ''),
509: extract($_POST, EXTR_SKIP); // globals.phpregister_globals
implementationif($fake_register_globals),
43: $_POST = undomagicquotes ($_POST); //
globals.phpif($sanitize_all_escapes),
508: extract($_GET, EXTR_SKIP); // globals.phpregister_globals
implementationif($fake_register_globals),
42: $_GET = undomagicquotes ($_GET); //
globals.phpif($sanitize_all_escapes),
509: extract($_POST, EXTR_SKIP); // globals.phpregister_globals
implementationif($fake_register_globals),
43: $_POST = undomagicquotes ($_POST); //
globals.phpif($sanitize_all_escapes),
508: extract($_GET, EXTR_SKIP); // globals.phpregister_globals
implementationif($fake_register_globals),
42: $_GET = undomagicquotes ($_GET); //
globals.phpif($sanitize_all_escapes),
509: extract($_POST, EXTR_SKIP); // globals.phpregister_globals
implementationif($fake_register_globals),

interface\batchcom/batchco
m.php

39

43: $_POST = undomagicquotes ($_POST); //
globals.phpif($sanitize_all_escapes),
508: extract($_GET, EXTR_SKIP); // globals.phpregister_globals
implementationif($fake_register_globals),
42: $_GET = undomagicquotes ($_GET); //
globals.phpif($sanitize_all_escapes),
509: extract($_POST, EXTR_SKIP); // globals.phpregister_globals
implementationif($fake_register_globals),
43: $_POST = undomagicquotes ($_POST); //
globals.phpif($sanitize_all_escapes),
43: $_POST = undomagicquotes ($_POST); //
globals.phpif($sanitize_all_escapes),
77: $and = where_or_and ($and); // if($_POST != 0 AND $_POST != ''),
73: $and = where_or_and ($and); // if($_POST != 0 AND $_POST != ''),

File Disclosure

source sink vulnerability
$_GET + fgets() = File Disclosure

33: fgets $line = fgets($fh)){
31: $fh = fopen($filename, 'r');
28: $filename = $GLOBALS['OE_SITE_DIR'] . '/edi/process_bills.log';
17: $GLOBALS['OE_SITE_DIR'] = $GLOBALS['OE_SITES_BASE'] .
'/' . $tmp; // sqlconf.phpif(empty($GLOBALS)),
15: $GLOBALS['OE_SITES_BASE'] = dirname(__FILE__) . "/../sites";
// sqlconf.phpif(empty($GLOBALS)),
84: $GLOBALS['OE_SITES_BASE'] = "$webserver_root/sites"; //
globals.php
56: $webserver_root = str_replace("\\", "/", $webserver_root); //
globals.phpif(IS_WINDOWS),
53: $webserver_root = dirname(dirname(__FILE__)); // globals.php
53: $webserver_root = dirname(dirname(__FILE__)); // globals.php
16: $tmp = 'default' : $_GET['site']; //
sqlconf.phpif(empty($GLOBALS)),
42: $_GET = undomagicquotes ($_GET); //
globals.phpif($sanitize_all_escapes),

interface\billing/customize_
log.php

40

File Disclosure

source sink vulnerability
$_GET + fpassthru() = File Disclosure

39: fpassthru fpassthru($fp);
29: $fp = fopen($fname, 'r');
22: $fname = $claim_file_dir . $fname;
11: $claim_file_dir = $GLOBALS['OE_SITE_DIR'] . "/edi/";
17: $GLOBALS['OE_SITE_DIR'] = $GLOBALS['OE_SITES_BASE'] .
'/' . $tmp; // sqlconf.phpif(empty($GLOBALS)),
15: $GLOBALS['OE_SITES_BASE'] = dirname(__FILE__) . "/../sites";
// sqlconf.phpif(empty($GLOBALS)),
84: $GLOBALS['OE_SITES_BASE'] = "$webserver_root/sites"; //
globals.php
56: $webserver_root = str_replace("\\", "/", $webserver_root); //
globals.phpif(IS_WINDOWS),
53: $webserver_root = dirname(dirname(__FILE__)); // globals.php
53: $webserver_root = dirname(dirname(__FILE__)); // globals.php
16: $tmp = 'default' : $_GET['site']; //
sqlconf.phpif(empty($GLOBALS)),
42: $_GET = undomagicquotes ($_GET); //
globals.phpif($sanitize_all_escapes),
16: $fname = preg_replace("[\\\\]", "", $fname);
15: $fname = preg_replace("[\.\.]", "", $fname);
14: $fname = preg_replace("[/]", "", $fname);
13: $fname = $_GET['key'];
42: $_GET = undomagicquotes ($_GET); //
globals.phpif($sanitize_all_escapes),

interface\billing/get_claim_
file.php

File Disclosure source sink vulnerability
$_GET + scandir() = File Disclosure

98: scandir $files_array = scandir($mainPATH);
61: $mainPATH = $GLOBALS['fileroot'] . "/contrib/" . strtolower($db);
152: $GLOBALS['fileroot'] = "$webserver_root"; // globals.php
56: $webserver_root = str_replace("\\", "/", $webserver_root); //
globals.phpif(IS_WINDOWS),
53: $webserver_root = dirname(dirname(__FILE__)); // globals.php
53: $webserver_root = dirname(dirname(__FILE__)); // globals.php
60: $db = $_GET['db'] : '0';
42: $_GET = undomagicquotes ($_GET); //
globals.phpif($sanitize_all_escapes),

interface\code_systems/list_
staged.php

File Disclosure source sink vulnerability
$_GET + file_get_contents() = File Disclosure

228: file_get_contents $file_checksum = md5(file_get_contents($file));
110: $file = $mainPATH . "/" . $file;
61: $mainPATH = $GLOBALS['fileroot'] . "/contrib/" . strtolower($db);
152: $GLOBALS['fileroot'] = "$webserver_root"; // globals.php
56: $webserver_root = str_replace("\\", "/", $webserver_root); //
globals.phpif(IS_WINDOWS),
53: $webserver_root = dirname(dirname(__FILE__)); // globals.php
53: $webserver_root = dirname(dirname(__FILE__)); // globals.php
60: $db = $_GET['db'] : '0';
42: $_GET = undomagicquotes ($_GET); //
globals.phpif($sanitize_all_escapes),
108: foreach($files_array as $file)
98: $files_array = scandir($mainPATH); // , trace stopped

interface\code_systems/list_
staged.php

41

File Disclosure source sink vulnerability
$_GET + scandir() = File Disclosure

interface\code_systems/stan
dard_tables_manage.php

File Disclosure source sink vulnerability
$_POST + opendir() = File Disclosure

interface\fax/faxq.php

File Disclosure source sink vulnerability

$_GET
$_POST + fread() = File Disclosure

interface\fax/fax_dispatch.p
hp

File Disclosure source Sink Vulnerability
$_GET + fgets() = File Disclosure

interface\fax/fax_view.php

File Disclosure - interface\forms/CAMOS/ad
min.php

File Disclosure source sink vulnerability
$_GET + imagecreatefrompng() = File Disclosure

539: imagecreatefrompng $im = imagecreatefrompng($chartpath .
$chart);
36: $chartpath = $GLOBALS['fileroot'] .
"/interface/forms/vitals/growthchart/";
152: $GLOBALS['fileroot'] = "$webserver_root"; // globals.php
56: $webserver_root = str_replace("\\", "/", $webserver_root); //
globals.phpif(IS_WINDOWS),
53: $webserver_root = dirname(dirname(__FILE__)); // globals.php
53: $webserver_root = dirname(dirname(__FILE__)); // globals.php
197: $chart = "2-20yo_girls_BMI.png"; // elseif($charttype == "2-20"),
elseif(preg_match('/^female/i', $patient_data)),
190: $chart = "2-20yo_boys_BMI.png"; // elseif($charttype == "2-20"),
if(preg_match('/^male/i', $patient_data)),
143: $chart = "birth-24mos_girls_HC.png"; // if($charttype == 'birth'),
elseif(preg_match('/^female/i', $patient_data)),
136: $chart = "birth-24mos_boys_HC.png"; // if($charttype == 'birth'),
if(preg_match('/^male/i', $patient_data)),
417: extract(getpatientageymd ($dob, $date)); // register_globals
implementationif($_GET == 1),
51: $dob = $patient_data['DOB']; // if(isset($pid) && is_numeric($pid)),
49: $patient_data = getpatientdata ($pid, "fname, lname, sex,
DATE_FORMAT(DOB,'%Y%m%d') as DOB"); // if(isset($pid) &&
is_numeric($pid)),
39: $pid = $_GET['pid'];
42: $_GET = undomagicquotes ($_GET); //
globals.phpif($sanitize_all_escapes),
407: list($date, $height, $weight, $head_circ) = explode('-', $data); //
list() if($_GET == 1),
406: foreach($datapoints as $data) // if($_GET == 1),
59: $datapoints = explode('~', $_GET['data']);
42: $_GET = undomagicquotes ($_GET); //
globals.phpif($sanitize_all_escapes),

interface\forms/vitals/growt
hchart/chart.php

42

File Disclosure Source sink Vulnerability
$_GET
$_POST + glob() = File Disclosure

320: glob glob($filepath . '/' . $filename) as
319: $filepath = $GLOBALS['oer_config']['documents']['repository'] .
$pid;
235: $pid = $_SESSION['pid'];
474: $_SESSION['pid'] = $_POST['pid']; //
globals.phpelseif(!empty($_POST) && empty($_SESSION)),
43: $_POST = undomagicquotes ($_POST); //
globals.phpif($sanitize_all_escapes),
318: $filename = $pid . "_" . $encounter . ".pdf";
235: $pid = $_SESSION['pid'];
474: $_SESSION['pid'] = $_POST['pid']; //
globals.phpelseif(!empty($_POST) && empty($_SESSION)),
43: $_POST = undomagicquotes ($_POST); //
globals.phpif($sanitize_all_escapes),
237: $encounter = date("Ymd");

interface\forms/eye_mag/sa
ve.php

File Disclosure source sink vulnerability

$_POST + file() = File Disclosure

177: file $form_title_file = file($GLOBALS['srcdir'] .
"/../interface/forms/$fname/info.txt");
426: $srcdir = $GLOBALS['srcdir']; // globals.php
150: $GLOBALS['srcdir'] = "$webserver_root/library"; // globals.php
56: $webserver_root = str_replace("\\", "/", $webserver_root); //
globals.phpif(IS_WINDOWS),
53: $webserver_root = dirname(dirname(__FILE__)); // globals.php
53: $webserver_root = dirname(dirname(__FILE__)); // globals.php
160: foreach($inDir as $fname)
148: $inDir[$i] = $fname; // if($fname != "." && $fname != ".." &&
$fname != "CVS" && $fname != "LBF" && (is_dir($dpath . $fname) ||
stristr($fname, ".tar.gz") || stristr($fname, ".tar") || stristr($fname, ".zip") ||
stristr($fname, ".gz"))),
143: $fname = readdir($dp));
141: $dp = opendir($dpath); // , trace stopped
509: extract($_POST, EXTR_SKIP); // globals.phpregister_globals
implementationif($fake_register_globals),
43: $_POST = undomagicquotes ($_POST); //
globals.phpif($sanitize_all_escapes),

interface\forms_admin/form
s_admin.php

43

File Disclosure 56: fread $bat_content = fread($fd, filesize($error_log_path . '/' .
$filename));
55: $fd = fopen($error_log_path . '/' . $filename, 'r')){
35: $error_log_path = $GLOBALS['OE_SITE_DIR'] .
'/documents/erx_error';
17: $GLOBALS['OE_SITE_DIR'] = $GLOBALS['OE_SITES_BASE'] .
'/' . $tmp; // sqlconf.phpif(empty($GLOBALS)),
15: $GLOBALS['OE_SITES_BASE'] = dirname(__FILE__) . "/../sites";
// sqlconf.phpif(empty($GLOBALS)),
84: $GLOBALS['OE_SITES_BASE'] = "$webserver_root/sites"; //
globals.php
56: $webserver_root = str_replace("\\", "/", $webserver_root); //
globals.php
53: $webserver_root = dirname(dirname(__FILE__)); // globals.php
16: $tmp = 'default' : $_GET['site']; //
sqlconf.phpif(empty($GLOBALS)),
42: $_GET = undomagicquotes ($_GET); //
globals.phpif($sanitize_all_escapes),
40: $filename = ''; // if(array_key_exists('filename', $_REQUEST)) else ,

interface\logview/erx_logvi
ew.php

Session Fixation Source sink vulnerability
$_GET + setcookie() = Session Fixation

74: setcookie setcookie("pc_facility", $_SESSION['pc_facility'], time () +
(3600 * 365));
73: $_SESSION['pc_facility'] = $_GET['pc_facility'];
42: $_GET = undomagicquotes ($_GET); //
globals.phpif($sanitize_all_escapes),
requires:
74: if($GLOBALS['set_facility_cookie'] && ($_SESSION['pc_facility'] >
0))

interface\main/calendar/ind
ex.php

File Disclosure source sink vulnerability
$_FILES + fread() = File Disclosure

87: fread $filetext = fread($tmpfile, $file['size']);
86: $tmpfile = fopen($file['tmp_name'], "r");
70: foreach($_FILES as $file)
requires:
57: if($request->ispost())
55: ⇓ function uploadaction()

interface\modules/zend_mo
dules/module/Documents/sr
c/Documents/Controller/Do

cumentsController.php

File Disclosure source sink vulnerability
$_FILES + fgetcsv() = File Disclosure

170: fgetcsv $acsv = fgetcsv($fhcsv, 4096);
147: $fhcsv = fopen($_FILES['userfile']['tmp_name'], "r");
requires:
136: if($form_step == 1)
138: if(is_uploaded_file($_FILES['userfile']['tmp_name']))
149: if($fhcsv)
153: if($form_vendor == '1235186800')
155: if($form_action == 1)

interface\orders/load_comp
endium.php

File Disclosure - interface\patient_file/downl
oad_template.php

File Disclosure - interface\patient_file/educat
ion.php

File Disclosure - interface\patient_file/letter.
php

File Disclosure - interface\patient_file/merge
_patients.php

44

File Disclosure - interface\patient_file/transa
ction/print_referral.php

File Disclosure Source sink vulnerability
$_GET
$_FILES + file() = File Disclosure

60: file $Response271 = file($FilePath);
41: $FilePath = $target;
39: $target = $target . time () . basename($_FILES['uploaded']['name']);
34: $target = $GLOBALS['edi_271_file_path'];
177: $GLOBALS['edi_271_file_path'] = $GLOBALS['OE_SITE_DIR'] .
"/edi/"; // globals.php
17: $GLOBALS['OE_SITE_DIR'] = $GLOBALS['OE_SITES_BASE'] .
'/' . $tmp; // sqlconf.phpif(empty($GLOBALS)),
15: $GLOBALS['OE_SITES_BASE'] = dirname(__FILE__) . "/../sites";
// sqlconf.phpif(empty($GLOBALS)),
84: $GLOBALS['OE_SITES_BASE'] = "$webserver_root/sites"; //
globals.php
56: $webserver_root = str_replace("\\", "/", $webserver_root); //
globals.phpif(IS_WINDOWS),
53: $webserver_root = dirname(dirname(__FILE__)); // globals.php
53: $webserver_root = dirname(dirname(__FILE__)); // globals.php
16: $tmp = 'default' : $_GET['site']; //
sqlconf.phpif(empty($GLOBALS)),
42: $_GET = undomagicquotes ($_GET); //
globals.phpif($sanitize_all_escapes),
requires:
36: if(isset($_FILES) && !empty($_FILES))
53: if(!isset($message))
55: if(move_uploaded_file($_FILES['uploaded']['tmp_name'], $target))

interface\reports/edi_271.ph
p

File Disclosure source sink vulnerability
$_POST + opendir() = File Disclosure

568: opendir $dh = opendir($themedir);
567: $themedir = "$webserver_root/interface/themes";
56: $webserver_root = str_replace("\\", "/", $webserver_root); //
globals.phpif(IS_WINDOWS),
53: $webserver_root = dirname(dirname(__FILE__)); // globals.php
509: extract($_POST, EXTR_SKIP); // globals.phpregister_globals
implementationif($fake_register_globals),
43: $_POST = undomagicquotes ($_POST); //
globals.phpif($sanitize_all_escapes),
requires:
397: if(!$userMode || in_array($grpname, $USER_SPECIFIC_TABS))
414: if(!$userMode || in_array($fldid, $USER_SPECIFIC_GLOBALS))
563: if($fldtype == 'css')

interface\super/edit_globals
.php

45

File Disclosure source sink vulnerability
$_GET
$_POST + readfile() = File Disclosure

55: readfile readfile($templatepath);
42: $templatepath = "$templatedir/$form_filename";
36: $templatedir = "$OE_SITE_DIR/documents/doctemplates";
17: $GLOBALS['OE_SITE_DIR'] = $GLOBALS['OE_SITES_BASE'] .
'/' . $tmp; // sqlconf.phpif(empty($GLOBALS)),
15: $GLOBALS['OE_SITES_BASE'] = dirname(__FILE__) . "/../sites";
// sqlconf.phpif(empty($GLOBALS)),
84: $GLOBALS['OE_SITES_BASE'] = "$webserver_root/sites"; //
globals.php
56: $webserver_root = str_replace("\\", "/", $webserver_root); //
globals.phpif(IS_WINDOWS),
53: $webserver_root = dirname(dirname(__FILE__)); // globals.php
53: $webserver_root = dirname(dirname(__FILE__)); // globals.php
16: $tmp = 'default' : $_GET['site']; //
sqlconf.phpif(empty($GLOBALS)),
42: $_GET = undomagicquotes ($_GET); //
globals.phpif($sanitize_all_escapes),
34: $form_filename = strip_escape_custom
($_REQUEST['form_filename']);
45: $_REQUEST = undomagicquotes ($_REQUEST); //
globals.phpif($sanitize_all_escapes),
requires:
41: if(!empty($_POST['bn_download']))

\interface\super/manage_do
cument_templates.php

File Disclosure source sink vulnerability
$_POST
$_FILES + fgets() = File Disclosure

94: fgets $line = fgets($eres)) !==
81: $eres = fopen($tmp_name, 'r'); // if($zipin->open($tmp_name) ===
true) else ,
60: $tmp_name = $_FILES['form_file']['tmp_name'];
requires:
57: if(!empty($_POST['bn_upload']))
66: if(is_uploaded_file($tmp_name) && $_FILES['form_file']['size'])

interface\super/load_codes.
php

File Disclosure source sink vulnerability
$_POST + file_get_contents() = File Disclosure

56: file_get_contents $data =
file_get_contents("https://rxnav.nlm.nih.gov/REST/interaction/list.json?rx
cuis=" . $rxcui_list);
55: $rxcui_list = implode("+", $nameList);
41: $nameList[] = $rXn['rxcui'];
40: $rXn = sqlquery ("SELECT `rxcui` FROM `" .
mitigatesqltableuppercase ('RXNCONSO') . "` WHERE `str` LIKE ?",
array("%" . $drug[0] . "%"));
39: $drug = explode(" ", $name['drug']);
38: $name = sqlfetcharray ($medList)){
36: $medList = sqlstatement ("SELECT drug FROM prescriptions
WHERE active = 1 AND patient_id = ?", array($pid));
476: $pid = 0 : $_SESSION['pid']; // globals.php
474: $_SESSION['pid'] = $_POST['pid']; //
globals.phpelseif(!empty($_POST) && empty($_SESSION)),
43: $_POST = undomagicquotes ($_POST); //
globals.phpif($sanitize_all_escapes),

interface\weno/drug-
drug.php

46

File Disclosure source sink vulnerability
$_GET + file_get_contents() = File Disclosure

76: file_get_contents $content = file_get_contents($temp_url);
72: $temp_url = $GLOBALS['OE_SITE_DIR'] . '/documents/' .
$from_pathname . '/' . $from_filename;
17: $GLOBALS['OE_SITE_DIR'] = $GLOBALS['OE_SITES_BASE'] .
'/' . $tmp; // sqlconf.phpif(empty($GLOBALS)),
15: $GLOBALS['OE_SITES_BASE'] = dirname(__FILE__) . "/../sites";
// sqlconf.phpif(empty($GLOBALS)),
84: $GLOBALS['OE_SITES_BASE'] = "$webserver_root/sites"; //
globals.php
56: $webserver_root = str_replace("\\", "/", $webserver_root); //
globals.phpif(IS_WINDOWS),
53: $webserver_root = dirname(dirname(__FILE__)); // globals.php
53: $webserver_root = dirname(dirname(__FILE__)); // globals.php
16: $tmp = 'default' : $_GET['site']; //
sqlconf.phpif(empty($GLOBALS)),
42: $_GET = undomagicquotes ($_GET); //
globals.phpif($sanitize_all_escapes),
71: $from_pathname = implode("/", $from_pathname_array);
70: $from_pathname_array = array_reverse($from_pathname_array);
68: $from_pathname_array[] = array_pop($from_all);
64: $from_all = explode("/", $url);
63: $url = preg_replace("|^(.*)://|", "", $url);
42: $url = $d->get_url();
65: $from_filename = array_pop($from_all);
64: $from_all = explode("/", $url);
63: $url = preg_replace("|^(.*)://|", "", $url);
42: $url = $d->get_url();
requires:
39: if($_REQUEST['ccr_ajax'] == "yes")
62: if($storagemethod == 1) else
75: if(!file_exists($temp_url)) else

library\ajax/ccr_import_aja
x.php

Protocol
Injection

source sink vulnerability
$_GET + fsockopen() = Protocol Injection

236: fsockopen fsockopen(($this->ssl"ssl://" : "") . $ip, $port, $errno,
$error, $this->timeout) :
228: $ip = gethostbyname($domain), $domain)) // if(preg_match('/^[0-
9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}$/', $domain)) else ,
210: ⇓ Function connecttohost($domain, $port, $resolve_message)

library\classes/smtp/smtp.p
hp

47

File Disclosure source sink vulnerability
$_GET + file_get_contents() = File Disclosure

1919: file_get_contents $ret = file_get_contents($path); //
tcpdf_static.php
1918: foreach($alt as $path) // tcpdf_static.php
1916: $alt = array_unique($alt); // tcpdf_static.php
1903: $alt[] = htmlspecialchars_decode(urldecode($tmp)); //
tcpdf_static.phpif(preg_match('%^(https?)://%', $url) &&
empty($_SERVER) && empty($_SERVER)), if(empty($urldata)),
if(strpos($url, $host) === 0),
1902: $tmp = str_replace($host, $_SERVER['DOCUMENT_ROOT'],
$url); // tcpdf_static.phpif(preg_match('%^(https?)://%', $url) &&
empty($_SERVER) && empty($_SERVER)), if(empty($urldata)),
if(strpos($url, $host) === 0),
1899: $host = $protocol . '://' . $_SERVER['HTTP_HOST']; //
tcpdf_static.phpif(preg_match('%^(https?)://%', $url) &&
empty($_SERVER) && empty($_SERVER)), if(empty($urldata)),
1883: $protocol .= 's'; // tcpdf_static.phpif(!empty($_SERVER) &&
(strtolower($_SERVER) != 'off')),
1881: $protocol = 'http'; // tcpdf_static.php
1881: $protocol = 'http'; // tcpdf_static.php
1890: $url = htmlspecialchars_decode($url); // tcpdf_static.php
1888: $url = $protocol . ':' . str_replace(' ', '%20', $url); //
tcpdf_static.phpif(preg_match('%^//%', $url) && !empty($_SERVER)),
1883: $protocol .= 's'; // tcpdf_static.phpif(!empty($_SERVER) &&
(strtolower($_SERVER) != 'off')),
1881: $protocol = 'http'; // tcpdf_static.php
1886: $url = $file; // tcpdf_static.php
1866: ⇓ function filegetcontents($file)
requires:
1866: ⇓ function filegetcontents($file)

library\html2pdf/vendor/tec
nickcom/tcpdf/tools/tcpdf_a

ddfont.php

File Disclosure Source sink vulnerability
$_GET + opendir() = File Disclosure

138: fread $filetext = fread($tmpfile, $_FILES['file']['size'][$key]); //
C_Document.class.php
137: $tmpfile = fopen($_FILES['file']['tmp_name'][$key], "r"); //
C_Document.class.php
requires:
122: if(count($_FILES['file']['name']) > 0)
136: if($_FILES['file']['error'][$key] > 0 || empty($fname) ||
$_FILES['file']['size'][$key] == 0) else
80: ⇓ function upload_action_process()

myportal/soap_service/serv
er_side.php

File Disclosure Source sink vulnerability
$_FILES + fread() = File Disclosure

138: fread $filetext = fread($tmpfile, $_FILES['file']['size'][$key]); //
C_Document.class.php
137: $tmpfile = fopen($_FILES['file']['tmp_name'][$key], "r"); //
C_Document.class.php
requires:
122: if(count($_FILES['file']['name']) > 0)
136: if($_FILES['file']['error'][$key] > 0 || empty($fname) ||
$_FILES['file']['size'][$key] == 0) else
80: ⇓ function upload_action_process()

patients/get_patient_docum
ents.php

48

File Disclosure source sink vulnerability
$_GET + readfile() = File Disclosure

55: readfile readfile($script_name);
49: $script_name .= DIRECTORY_SEPARATOR . $filename; //
if(preg_match("@^[\w][\w\.-]+$@", $filename)),
42: $script_name = 'js';
45: foreach($path as $index=>$filename)
44: $path = explode("/", $script);
40: foreach($_GET['scripts'] as $script)
38: $_GET['scripts'] = json_decode($_GET['scripts']);
22: $_GET['scripts'] = json_encode($_GET['scripts']);
22: $_GET['scripts'] = json_encode($_GET['scripts']);
requires:
39: if(!empty($_GET['scripts']) && is_array($_GET['scripts']))
54: if(preg_match("@\.js$@", $script_name) &&
is_readable($script_name))

phpmyadmin\js/get_scripts.
js.php

Session Fixation source sink vulnerability
$_GET + session_id() = Session Fixation

306: session_id session_id($_GET['session_to_unset']); //
swekey.auth.lib.php
requires:
304: if(!empty($_GET['session_to_unset']))

phpmyadmin\libraries/plugi
ns/auth/AuthenticationCook

ie.class.php

Session Fixation - phpmyadmin\libraries/plugi
ns/auth/AuthenticationSign

on.class.php

File Disclosure source sink vulnerability
$_GET + readfile() = File Disclosure

55: readfile readfile($script_name);
49: $script_name .= DIRECTORY_SEPARATOR . $filename; //
if(preg_match("@^[\w][\w\.-]+$@", $filename)),
42: $script_name = 'js';
45: foreach($path as $index=>$filename)
44: $path = explode("/", $script);
40: foreach($_GET['scripts'] as $script)
38: $_GET['scripts'] = json_decode($_GET['scripts']);
22: $_GET['scripts'] = json_encode($_GET['scripts']);
22: $_GET['scripts'] = json_encode($_GET['scripts']);
requires:
39: if(!empty($_GET['scripts']) && is_array($_GET['scripts']))
54: if(preg_match("@\.js$@", $script_name) &&
is_readable($script_name))

phpmyadmin/js/get_scripts.
js.php

49

File Disclosure source sink vulnerability
$_GET + file() = File Disclosure

152: file $existing = file($output, FILE_IGNORE_NEW_LINES);
93: $output = STDOUT; // if(isset($opts->o)), if('-' == $output),
91: $output = $opts->o; // if(isset($opts->o)),
89: $output = $path . DIRECTORY_SEPARATOR .
'plugin_classmap.php';
84: $path = realpath($libraryPath); // if(isset($opts->l)),
78: $libraryPath = rtrim($libraryPath, '/\\') .
DIRECTORY_SEPARATOR; // if(isset($opts->l)),
77: $libraryPath = $opts->l; // if(isset($opts->l)),
77: $libraryPath = $opts->l; // if(isset($opts->l)),
73: $path = $_SERVER['PWD']; // if(array_key_exists('PWD',
$_SERVER)),
71: $path = $libPath;
31: $libPath = getenv('LIB_PATH') : __DIR__ . '/../library';
requires:
141: if($appending)

vendor\zendframework/zen
dframework/bin/pluginmap

_generator.php

50

Appendix B: PHP VulnHunter Results for OpenEMR

Vulnerability Code Excerpt File
XSS Line 318

0309: <td><?php echo
htmlspecialchars(xl('Context'),ENT_QUOTES);?></td>
0310: <td>
0311: <select name='filter_context' id='filter_context'
onchange='javascript:document.myform.submit();'>
0312: <option value=''><?php echo htmlspecialchars(xl('Select a
Context'),ENT_QUOTES);?></option>
0313: <?php
0314: $context_sql="SELECT * FROM customlists WHERE
cl_list_type=2 AND cl_deleted=0";
0315: $context_res=sqlStatement($context_sql);
0316: while($context_row=sqlFetchArray($context_res)){
0317: echo "<option
value='".htmlspecialchars($context_row['cl_list_slno'],ENT_QUOTES)."' ";
0318: echo ($_REQUEST['filter_context']==$context_row['cl_list_slno'])
? 'selected' : '' ;
0319: echo
">".htmlspecialchars($context_row['cl_list_item_long'],ENT_QUOTES)."</op
tion>";
0320: }
0321: ?>
0322: </select>
0323: </td>
0324: <td><?php echo
htmlspecialchars(xl('Users'),ENT_QUOTES);?></td>
0325: <td>
0326: <select name='filter_users' id='filter_users'
onchange='javascript:document.myform.submit();'>
0327: <option value=''><?php echo htmlspecialchars(xl('Select a
User'),ENT_QUOTES);?></option>

library\custom_template\pe
rsonalize.php

51

XSS Line 333

0324: <td><?php echo
htmlspecialchars(xl('Users'),ENT_QUOTES);?></td>
0325: <td>
0326: <select name='filter_users' id='filter_users'
onchange='javascript:document.myform.submit();'>
0327: <option value=''><?php echo htmlspecialchars(xl('Select a
User'),ENT_QUOTES);?></option>
0328: <?php
0329: $user_sql="SELECT DISTINCT(tu.tu_user_id),u.fname,u.lname
FROM template_users AS tu LEFT OUTER JOIN users AS u ON
tu.tu_user_id=u.id WHERE tu.tu_user_id!=?";
0330: $user_res=sqlStatement($user_sql,array($_SESSION['authId']));
0331: while($user_row=sqlFetchArray($user_res)){
0332: echo "<option
value='".htmlspecialchars($user_row['tu_user_id'],ENT_QUOTES)."' ";
0333: echo ($_REQUEST['filter_users']==$user_row['tu_user_id']) ?
'selected' : '' ;
0334: echo ">".htmlspecialchars($user_row['fname']."
".$user_row['lname'],ENT_QUOTES)."</option>";
0335: }
0336: ?>
0337: </select>
0338: </td>
0339: </tr>
0340: </table>
0341: </fieldset>
0342: <table align="center" width="100%">

library\custom_template\pe
rsonalize.php

XSS Line 155

0146:
0147: <!-- Required for the popup date selectors -->
0148: <div id="overDiv" style="position:absolute; visibility:hidden; z-
index:1000;"></div>
0149:
0150: <form id="new-encounter-form" method='post' action="<?php echo
$rootdir ?>/forms/newpatient/save.php" name='new_encounter'>
0151:
0152: <div style='float:left'>
0153: <?php if ($viewmode) { ?>
0154: <input type=hidden name='mode' value='update'>
0155: <input type=hidden name='id' value='<?php echo (isset($_GET["id"])) ?
attr($_GET["id"]) : '' ?>'>
0156: <?php echo xlt('Patient Encounter Form'); ?>
0157: <?php } else { ?>
0158: <input type='hidden' name='mode' value='new'>
0159: <?php echo xlt('New Encounter Form'); ?>
0160: <?php } ?>
0161: </div>
0162:
0163: <div>
0164: <div style = 'float:left; margin-left:8px;margin-top:-3px'>

interface\forms\newpatient\
common.php

52

Insecure Extract
Usage

Line 218

0209:
0210:
0211: if (php_sapi_name() == 'cli') {
0212: parse_str(implode('&', array_slice($argv, 1)), $_GET);
0213: $_SERVER['REQUEST_URI']=$_SERVER['PHP_SELF'];
0214: $_SERVER['SERVER_NAME']='localhost';
0215: $backpic = "";
0216: $ignoreAuth=1;
0217: }
0218: $get_count = extract($_GET, EXTR_OVERWRITE);
0219: // Following breaks link to OpenEMR structure dependency - assumes
phpseclib is subdir
0220: $script_dir = dirname(__FILE__);
0221: ini_set('include_path', ini_get('include_path') . PATH_SEPARATOR .
"$script_dir/phpseclib");
0222: require_once ("$script_dir/phpseclib/Net/SFTP.php");
0223: function get_openemr_globals ($libdir) {
0224: if (!isset($site)) $_GET['site'] = 'default';
0225: require_once ("$libdir/../interface/globals.php");
0226: }
0227: function sftp_status($msg, $val) {

library\edihistory\test_edih
_sftp_files.php

Local File
Inclusion

Line 10

0001: <?php
0002:
0003: $special_timeout = 3600;
0004: require_once("../../../interface/globals.php");
0005: // if (!allowed("frmprint")){ msgDenied(); }
0006:
0007: // ensure the path variable has no illegal characters
0008: check_file_dir_name($_GET["formname"]);
0009:
0010: include_once($incdir . "/forms/" .
$_GET["formname"]."/printable.php");
0011: ?>
0012:

contrib\acog\print_form.ph
p

Local File
Inclusion

Line 26

0017: $encounter = $_GET['encounter'];
0018: }
0019: if($_GET["formname"] != "newpatient"){
0020: include_once("$incdir/patient_file/encounter/new_form.php");
0021: }
0022:
0023: // ensure the path variable has no illegal characters
0024: check_file_dir_name($_GET["formname"]);
0025:
0026: include_once("$incdir/forms/" . $_GET["formname"] . "/new.php");
0027: }
0028: ?>
0029:

interface\patient_file\encou
nter\load_form.php

53

Local File
Inclusion

Line 18

0009: if (substr($_GET["formname"], 0, 3) === 'LBF') {
0010: // Use the List Based Forms engine for all LBFxxxxx forms.
0011: include_once("$incdir/forms/LBF/view.php");
0012: }
0013: else {
0014:
0015: // ensure the path variable has no illegal characters
0016: check_file_dir_name($_GET["formname"]);
0017:
0018: include_once("$incdir/forms/" . $_GET["formname"] . "/view.php");
0019: }
0020:
0021: $id = $_GET["id"];
0022: ?>
0023:

interface\patient_file\encou
nter\view_form.php

54

Appendix C: RIPS Results for OpenClinic

Vulnerability Vulnerability Concept File(s)
File Disclosure source sink vulnerability

$_POST
$_FILES + file_get_contents() = File

Disclosure

admin/theme_preload_cs
s.php
install/index.php

File Manipulation source sink vulnerability
$_GET + chmod() = File Manipulation

chmod chmod($destinationFile, 0644);
124: $destinationFile = $destinationDir . '/' . $destinationName;
114: ⇓ function upload(&$file, $destinationDir = "", $destinationName = "",
$secure = true)
122: $destinationName = $file['name'];
114: ⇓ function upload(&$file, $destinationDir = "", $destinationName = "",
$secure = true)

medical/test_edit.php

Cross-Site Scripting source sink vulnerability
$_GET + echo() = Cross-Site Scripting

admin/dump_optimize_d
b.php
layout/header.php
doc/index.php
admin/user_edit_form.ph
p

HTTP Response
Splitting

source sink vulnerability
$_POST + header() = HTTP Response Splitting

admin/dump_process.ph
p

55

Appendix D: PHP VulnHunter Results for OpenClinic

Vulnerability Code Excerpt File
SQL injection Line 600, 602, 604

0591:);
0592: echo HTML::itemList($array);
0593:
0594: exit();
0595: }
0596:
0597: /**
0598: * Database creation
0599: */
0600: mysql_query('DROP DATABASE IF EXISTS ' .
$_POST['dbName']) or die(sprintf(_("Instruction: %s Error: %s"),
$sql, mysql_error()));
0601: //mysql_create_db($_POST['dbName']);
0602: mysql_query('CREATE DATABASE ' .
$_POST['dbName']) or die(sprintf(_("Instruction: %s Error: %s"),
$sql, mysql_error()));
0603: //mysql_select_db($_POST['dbName']);
0604: mysql_query('USE ' . $_POST['dbName']) or
die(sprintf(_("Instruction: %s Error: %s"), $sql, mysql_error()));
0605:
0606: /**
0607: * Database tables creation
0608: */
0609: require_once(dirname(__FILE__) .
"/parse_sql_file.php");
0610:
0611: $tables = getTables();
0612: foreach ($tables as $tableName)
0613: {

install\wizard.php

56

SQL injection Line 634

0625: exit();
0626: }
0627: }
0628:
0629: /**
0630: * Database tables update (setting_tbl, staff_tbl,
user_tbl)
0631: */
0632: //mysql_select_db($_POST['dbName']);
0633: mysql_connect($_POST['dbHost'],
$_POST['dbUser'], $_POST['dbPasswd']) or
die(sprintf(_("Instruction: %s Error: %s"), $sql,
mysql_error()));
0634: mysql_query('USE ' . $_POST['dbName']) or
die(sprintf(_("Instruction: %s Error: %s"), $sql,
mysql_error()));
0635:
0636: $sql = "UPDATE setting_tbl SET ";
0637: $sql .= "clinic_name='" . $_POST['clinicName'] .
"', ";
0638: $sql .= "clinic_hours='" . $_POST['clinicHours'] .
"', ";
0639: $sql .= "clinic_address='" .
$_POST['clinicAddress'] . "', ";
0640: $sql .= "clinic_phone='" . $_POST['clinicPhone'] .
"', ";
0641: $sql .= "language='" . $_POST['clinicLanguage'] .
"', ";
0642: $sql .= "session_timeout=" .
intval($_POST['timeout']) . ", ";
0643: $sql .= "items_per_page=" .
intval($_POST['itemsPage']) . ", ";

install\wizard.php

57

XSS Line 363

0354: if (!$single) // == false
0355: {
0356: $auxConn->close();
0357: unset($auxConn);
0358: }
0359:
0360: /**
0361: * "Displays" the dump...
0362: */
0363: echo (isset($_POST['as_file']) ? $dumpBuffer :
HTML::xmlEntities($dumpBuffer));
0364:
0365: /**
0366: * Close the html tags and add the footers in dump
is displayed on screen
0367: */
0368: if (empty($_POST['as_file']))
0369: {
0370: echo HTML::end('pre');
0371: echo HTML::para(HTML::link(_("Back return"),
"../admin/dump_view_form.php"));
0372:

admin\dump_process.php

58

Appendix E: HIPAA Security Checklist
Security Rule

Reference SAFEGUARD STATUS

Administrative Safeguards
164.308(a)(1)(i) Security Management Process: Implement policies and

procedures to prevent, detect, contain, and correct security
violations.

164.308(a)(1)(ii)(A) Have a Risk Analysis completed based on NIST Guidelines. REQUIRED
164.308(a)(1)(ii)(B) Complete Risk Management process based on NIST Guidelines. REQUIRED
164.308(a)(1)(ii)(C) Have formal sanctions or policies against employees who fail to

comply with security policies and procedures.
REQUIRED

164.308(a)(1)(ii)(D) Implement procedures to regularly review records of activities
such as audit logs, access reports, and security incident tracking.

REQUIRED

164.308(a)(2) Assigned Security Responsibility: Identify the security official
who is responsible for the development and implementation of
the policies and procedures required by this subpart for the entity.

REQUIRED

164.308(a)(3)(i) Workforce Security: Implement policies and procedures to ensure
that all members of its workforce have appropriate access to
EPHI, as provided under paragraph (a)(4) of this section, and to
prevent those workforce members who do not have access under
paragraph (a)(4) of this section from obtaining access to
electronic protected health information (EPHI).

164.308(a)(3)(ii)(A) Implement procedures for the authorization and/or supervision of
employees who work with EPHI or in locations where it might be
accessed.

ADDRESSABLE

164.308(a)(3)(ii)(B) Implement procedures to determine that access of employees to
EPHI is appropriate.

ADDRESSABLE

164.308(a)(3)(ii)(C) Implement procedures for terminating access to EPHI when an
employee leaves you organization or as required by paragraph
(a)(3)(ii)(B) of this section.

ADDRESSABLE

164.308(a)(4)(i) Information Access Management: Implement policies and
procedures for authorizing access to EPHI that are consistent
with the applicable requirements of subpart E of this part.

164.308(a)(4)(ii)(A) For clearinghouses, implemented policies and procedures to
protect EPHI from the larger organization.

ADDRESSABLE

164.308(a)(4)(ii)(B) Implement policies and procedures for granting access to EPHI,
for example, through access to a workstation, transaction,
program, or process.

ADDRESSABLE

164.308(a)(4)(ii)(C) Implement policies and procedures that are based upon your
access authorization policies, established, document, review, and
modify a user’s right of access to a workstation, transaction,
program, or process.

ADDRESSABLE

164.308(a)(5)(i) Security Awareness and Training: Implement a security
awareness and training program for all members of its workforce
(including management).

164.308(a)(5)(ii)(A) Provide periodic information security reminders. ADDRESSABLE

59

164.308(a)(5)(ii)(B) Develop policies and procedures for guarding against, detecting,
and reporting malicious software.

ADDRESSABLE

164.308(a)(5)(ii)(C) Develop procedures for monitoring login attempts and reporting
discrepancies.

ADDRESSABLE

164.308(a)(5)(ii)(D) Develop procedures for creating, changing, and safeguarding
passwords.

ADDRESSABLE

164.308(a)(6)(i) Security Incident Procedures: Implement policies and procedures
to address security incidents.

164.308(a)(6)(ii) Develop procedures to identify and respond to suspected or know
security incidents; mitigate to the extent practicable, harmful
effects of known security incidents; and document incidents and
their outcomes.

REQUIRED

164.308(a)(7)(i) Contingency Plan: Establish (and implement as needed) policies
and procedures for responding to an emergency or other
occurrence (for example, fire, vandalism, system failure, and
natural disaster) that damages systems that contain EPHI.

164.308(a)(7)(ii)(A) Establish and implement procedures to create and maintain
retrievable exact copies of EPHI.

REQUIRED

164.308(a)(7)(ii)(B) Establish (and implement as needed) procedures to restore any
loss of EPHI data that is stored electronically.

REQUIRED

164.308(a)(7)(ii)(C) Establish (and implement as needed) procedures to enable
continuation of critical business processes and for protection of
EPHI while operating in the emergency mode.

REQUIRED

164.308(a)(7)(ii)(D) Implement procedures for periodic testing and revision of
contingency plans.

ADDRESSABLE

164.308(a)(7)(ii)(E) Assess the relative criticality of specific applications and data in
support of other contingency plan components.

ADDRESSABLE

164.308(a)(8) Establish a plan for periodic technical and nontechnical
evaluation, based initially upon the standards implemented under
this rule and subsequently, in response to environmental or
operational changes affecting the security of EPHI that
establishes the extent to which an entity’s security policies and
procedures meet the requirements of this subpart.

REQUIRED

164.308(b)(1) Business Associate Contracts and Other Arrangements: A
covered entity, in accordance with Sec. 164.306, may permit a
business associate to create, receive, maintain, or transmit EPHI
on the covered entity’s behalf only of the covered entity obtains
satisfactory assurances, in accordance with Sec. 164.314(a) that
the business associate appropriately safeguard the information.

164.308(b)(4) Establish written contracts or other arrangements with your
trading partners that documents satisfactory assurances required
by paragraph (b)(1) of this section that meets the applicable
requirements of Sec. 164.314(a).

REQUIRED

Physical Safeguards
164.310(a)(1) Facility Access Controls: Implement policies and procedures to

limit physical access to its electronic information systems and the
facility or facilities in which they are housed, while ensuring that
properly authorized access is allowed.

60

164.310(a)(2)(i) Establish (and implement as needed) procedures that allow
facility access in support of restoration of lost data under the
disaster recovery plan and emergency mode operations plan in
the event of an emergency.

ADDRESSABLE

164.310(a)(2)(ii) Implement policies and procedures to safeguard the facility and
the equipment therein from unauthorized physical access,
tampering, and theft.

ADDRESSABLE

164.310(a)(2)(iii) Implement procedures to control and validate a person’s access to
facilities based on their role or function, including visitor control,
and control of access to software programs for testing and
revision.

ADDRESSABLE

164.310(a)(2)(iv) Implement policies and procedures to document repairs and
modifications to the physical components of a facility, which are
related to security (for example, hardware, walls, doors, and
locks).

ADDRESSABLE

164.310(b) Implement policies and procedures that specify the proper
functions to be performed, the manner in which those functions
are to be performed, and the physical attributes of the
surroundings of a specific workstation or class of workstation
that can access EPHI.

REQUIRED

164.310(c) Implement physical safeguards for all workstations that access
EPHI to restrict access to authorized users.

REQUIRED

164.310(d)(1) Device and Media Controls: Implement policies and procedures
that govern the receipt and removal of hardware and electronic
media that contain EPHI into and out of a facility, and the
movement of these items within the facility.

164.310(d)(2)(i) Implement policies and procedures to address final disposition of
EPHI, and/or hardware or electronic media on which it is stored.

REQUIRED

164.310(d)(2)(ii) Implement procedures for removal of EPHI from electronic
media before the media are available for reuse.

REQUIRED

164.310(d)(2)(iii) Maintain a record of the movements of hardware and electronic
media and the person responsible for its movement.

ADDRESSABLE

164.310(d)(2)(iv) Create a retrievable, exact copy of EPHI, when needed, before
movement of equipment.

ADDRESSABLE

Technical Safeguard

164.312(a)(1) Access Controls: Implement technical policies and procedures for
electronic information systems that maintain EPHI to allow
access only to those persons or software programs that have been
granted access rights as specified in Sec. 164.308(a)(4).

164.312(a)(2)(i) Assign a unique name and/or number for identifying and tracking
user identity.

REQUIRED

164.312(a)(2)(ii) Establish (and implement as needed) procedures for obtaining
necessary EPHI during and emergency.

REQUIRED

164.312(a)(2)(iii) Implement procedures that terminate an electronic session after a
predetermined time of inactivity.

ADDRESSABLE

164.312(a)(2)(iv) Implement a mechanism to encrypt and decrypt EPHI. ADDRESSABLE

61

164.312(b) Implement Audit Controls, hardware, software, and/or procedural
mechanisms that record and examine activity in information
systems that contain or use EPHI.

REQUIRED

164.312(c)(1) Integrity: Implement policies and procedures to protect EPHI
from improper alteration or destruction.

164.312(c)(2) Implement electronic mechanisms to corroborate that EPHI has
not been altered or destroyed in an unauthorized manner.

ADDRESSABLE

164.312(d) Implement Person or Entity Authentication procedures to verify
that a person or entity seeking access EPHI is the one claimed.

REQUIRED

164.312(e)(1) Transmission Security: Implement technical security measures to
guard against unauthorized access to EPHI that is being
transmitted over an electronic communications network.

164.312(e)(2)(i) Implement security measures to ensure that electronically
transmitted EPHI is not improperly modified without detection
until disposed of.

ADDRESSABLE

164.312(e)(2)(ii) Implement a mechanism to encrypt EPHI whenever deemed
appropriate.

ADDRESSABLE

62

References

[1] What is an electronic health record (EHR)? https://www.healthit.gov/providers-

professionals/faqs/what-electronic-health-record-ehr
[2] What are the differences between electronic medical records, electronic health records, and

personal health records? https://www.healthit.gov/providers-professionals/faqs/what-are-
differences-between-electronic-medical-records-electronic, Nov 2015.

[3] The Importance of Data in Healthcare, May 2013, http://www.lumedx.com/the-importance-
of-data-in- health-care-.aspx

[4] B. Smith, A. Austin, M. Brown, J. King, J. Lankford, A. Meneely, and L. Williams,
“Challenges for Protecting the Privacy of Health Information: Required Certification Can
Leave Common Vulnerabilities Undetected ” In Proceedings of the second annual workshop
on Security and privacy in medical and home-care systems, Pages 1-12, Chicago, Illinois,
USA - October 08, 2010.  

[5] M. Oliynyk, "Why is healthcare data security so important?", Mar 2016,
https://www.protectimus.com/blog/why-is-healthcare-data-security-so-important/

[6] What is 2FA? An extra layer of security that is known as multi factor
[7] Emory Healthcare cyberattack affects 80,000 patient records,

http://www.modernhealthcare.com/article/20170302/NEWS/170309983/emory-healthcare-
cyberattack-affects-80000-patient-records

[8] 2016 Data Breach Investigations Report, https://regmedia.co.uk/2016/05/12/dbir_2016.pdf
[9] ThreatConnect, Security Operations and Analytics Platform, https://www.threatconnect.com
[10] Guide to Privacy and Security of Electronic Health Information, April 2015, Accessed from

https://www.healthit.gov/sites/default/files/pdf/privacy/privacy-and-security-guide.pdf
[11] A. Austin and L. Williams, “One Technique is Not Enough: A Comparison of Vulnerability

Discovery Techniques” Proceedings of the 5th International Symposium on Empirical
Software Engineering and Measurement, ESEM 2011, Banff, AB, Canada — September 22-
23, 2011.

[12] E. Helms, L. Williams, “Evaluating Access Control of Open Source Electronic Health
Record Systems” Proceedings of the 3rd Workshop on Software Engineering in Health Care,
Pages 63-70, Waikiki, Honolulu, HI, USA — May 22 - 23, 2011.

[13] D. Bowers, The Health Insurance Portability and Accountability Act: is it really all that bad?,
October 2011, Accessed from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1305898/

[14] Guide to Privacy and Security of Electronic Health Information, April 2015, Accessed from
https://www.healthit.gov/sites/default/files/pdf/privacy/privacy-and-security-guide.pdf

[15] D. Allan, Web application security: automated scanning versus manual penetration testing,
IBM Rational Software, Somers, White Paper 2008`

[16] RIPS- A static source code analyzer for vulnerabilities in PHP scripts, http://rips-
scanner.sourceforge.net/

[17] RIPS (Re-Inforce PHP Security), https://en.wikipedia.org/wiki/RIPS
[18] W. Halfond, and A. Orso, “AMNESIA: Analysis and monitoring for NEutralizing SQL

injection attacks,” In Proceedings of International Conference on Automated Software
Engineering, pp. 174-183 , 2005.

63

[19] D. Grunwel, T. Sahama, "Delegation of access in an Information Accountability Framework
for eHealth" Proceedings of the Australasian Computer Science Week Multiconference,
Article No. 59, Canberra, Australia — February 01 - 05, 2016.

[20] File inclusion attacks: http://resources.infosecinstitute.com/file-inclusion-attacks/#gref
[21] EA. Oladimeji, HT. Jung, E. Chung, and J. Kim, “Managing Security and Privacy in

Ubiquitous eHealth Information Interchange” Proceedings of the 5th International
Conference on Ubiquitous Information Management and Communication, February 2011.

[22] J. King and L. Williams, "Log Your CRUD: Design Principles for Software Logging
Mechanisms" Proceedings of the 2014 Symposium and Bootcamp on the Science of Security.

[23] E. Reinsmidt, D. Schwab, and L. Yang, "Securing a Connected Mobile System for
Healthcare" Proceedings of the 2016 IEEE 17th International Symposium on High Assurance
Systems Engineering.

[24] A. Tuikka, M. Rantanen, and O. Heimo, “Where is Patient in EHR Project?” ACM SIGCAS
Computers and Society - Special Issue on Ethicomp: Volume 45 Issue 3, Pages 73-78,
September 2015.

[25] D. Mashima and M. Ahamad “Enhancing Accountability of Electronic Health Record Usage
via Patient-centric Monitoring” Proceedings of the 2nd ACM SIGHIT International Health
Informatics Symposium

[26] KM. Kingsford, F. Zhang, MD. Nii Ayeh, and A. MaryMargaret, “A Mathematical Model
for a Hybrid System Framework for Privacy Preservation of Patient Health Records”
Proceedings of the 2017 IEEE 41st Annual Computer Software and Applications
Conference.

[27] E. Kamsties. Understanding ambiguity in requirements engineering. In Engineering and
Managing Software Requirements, pages 245–266. Springer Berlin Heidelberg, 2005.

[28] D. Popescu, Spencer Rugaber, Nenad Medvidovic, and Daniel M. Berry. Reducing
ambiguities in requirements specifications via auto- matically created object-oriented
models. In Proceedings of the 14th Workshop on Innovations for Requirement Analysis,
pages 103–124, 2007.

[29] G. Wassermann, and Z. Su, “Static detection of cross-site scripting vulnerabilities,” In
proceedings of International Conference on Software Engineering, Leipzig, Germany, 2008,
pp. 171-180.

[30] O. Kafali, J. Jones, M. Petruso, L. Williams, and M. Singh, “How Good is a Security Policy
against Real Breaches?” Proceedings of the 39th International Conference on Software
Engineering, Pages 530-540, Buenos Aires, Argentina - May 20, 2017.

[31] Protecting Your Privacy & Security, Your Health Information Privacy, 
https://www.healthit.gov/patients-families/your-health-information-privacy

[32] R. Kam, "Top 3 issues facing patient privacy", Jul 2012,
http://www.healthcareitnews.com/news/top-3-issues-facing-patient-privacy

[33] What is OpenClinic project? http://openclinic.sourceforge.net
[34] Unsafe Use of Reflection, https://www.owasp.org/index.php/Unsafe_use_of_Reflection
[35] Reflection in PHP, http://culttt.com/2014/07/02/reflection-php/
[36] What is local file inclusion (LFI): https://www.acunetix.com/blog/articles/local-file-

inclusion-lfi/
[37] "Divide and Conquer - HTTP Response Splitting, Web Cache Poisoning Attacks, and

Related Topics" by Amit Klein,
http://www.packetstormsecurity.org/papers/general/whitepaper_httpresponse.pdf

64

[38] HTTP Response Splitting,
http://projects.webappsec.org/w/page/13246931/HTTP%20Response%20Splitting

[39] Control-Flow Security by William Patrick Arthur,
https://web.eecs.umich.edu/~taustin/papers/Arthur_dissertation.pdf

[40] Anti-Subversion Software, https://en.wikipedia.org/wiki/Anti-Subversion_Software
[41] HIPAA Background, http://hipaa.bsd.uchicago.edu/background.html Feb 2010
[42] Legal Information Institute, 1992, https://www.law.cornell.edu/cfr/text/45/164.308
[43] HIPAA Security Checklist,

https://www.ihs.gov/hipaa/documents/IHS_HIPAA_Security_Checklist.pdf
[44] OpenEMR, http://www.open-emr.org/
[45] OpenEMR, https://en.wikipedia.org/wiki/OpenEMR#cite_note-6
[46] https://sourceforge.net/projects/openemr/files/stats/timeline
[47] PHP Vulnerability Hunter: https://thehackernews.com/2011/11/php-vulnerability-hunter-

v1146.html
[48] PHP Vulnerability Hunter Overview, https://www.autosectools.com/PHP-Vulnerability-

Scanner
[49] Certification Guidance for EHR Technology Developers Serving Health Care Providers

Ineligible for Medicare and Medicaid EHR Incentive Payments,
https://www.healthit.gov/sites/default/files/generalcertexchangeguidance_final_9-9-13.pdf

[50] Farhadi, M., Haddad, H., Shahriar, H. M. (2018). In Y. Malleh (Ed.), Compliance of
Electronic Health Record Applications with HIPAA Security and Privacy Requirements
(pp. 199-213). Security and Privacy Management, Techniques, and Protocols.
https://www.igi-global.com/chapter/compliance-of-electronic-health-record-applications-
with-hipaa-security-and-privacy-requirements/202045

[51] Farhadi, M., Haddad, H., Shahriar, H. M. (2018). Static Analysis of HIPAA Security
Requirements in Electronic Health Record Applications (pp. 474-479). Proc. of 42nd IEEE
Annual Computer Software and Applications Conference (COMPSAC).
https://ieeecompsac.computer.org/2018/

[52] Farhadi, M., Haddad, H., Shahriar, H. M. (2019). Compliance Checking of Electronic
Health Record Applications for Security and Privacy Requirements. (under review) Proc.
of 43rd IEEE Annual Computer Software and Applications Conference (COMPSAC).
https://ieeecompsac.computer.org/2019/

[53] Farhadi, M., Haddad, H., Shahriar, H. M. (2017). Mitigation of Security Risks of Electronic
Health Record Applications. Scientific Computing Day,
https://technology.gsu.edu/scientific-computing-day/conference-archive/

[54] Health IT Security - Administrative Safeguards, https://healthitsecurity.com/news/a-review-
of-common-hipaa-administrative-safeguards

[55] Health IT Security - Physical Safeguards, https://healthitsecurity.com/news/looking-back-at-
hipaa-physical-safeguard-requirements

[56] Health IT Security, https://healthitsecurity.com/news/hipaa-technical-safeguards-basic-
review

	Kennesaw State University
	DigitalCommons@Kennesaw State University
	Spring 5-1-2019

	Compliance of Open Source EHR Applications with HIPAA and ONC Security and Privacy Requirements
	Maryam Farhadi
	Hisham Haddad
	Hossain Shahriar
	Recommended Citation

	Microsoft Word - Thesis_MaryamFarhadi.docx

