G1:3 Deployable Solar Array Structure

ISYE 4803/Spring 2019

SOL-Mates:

Daniel Bain: Project Manager, Software Lead

Craig Patton: Project Coordinator, Technical Expert

Andrew Tendean: Engineering Manager, Resource Manager

Advisor: Dr. Adeel Khalid

Problem Statement

- AIAA RFP for Deployable Solar Array Structure
- Spacecraft on a mission to Mars from the Earth needs a supply of electricity
- Design a deployable, folding solar array structure that can withstand the launch forces, vibrations, and the forces/vibrations experienced while deployed

Design Requirements & Specifications

Size Requirements:

- Deployed radius of 1-1.5m
- Stored volume of 10 cm³

Performance

- Launch Vibrations: 25G axially, 15G laterally at 100+ Hz
- Deployed Vibrations: 1G in all directions at 1.5 Hz
- 250 kW power output
- Temperature range of -100°C to 100°C
- Continuous functionality after impact from micrometeorite at 25 km/s

Revised AIAA-RFP

Updated Requirements from Professor Merrett 3.26.19

- 250KW target power output:
 - Achieved by multiple array configuration.
 - Each array limited to 1.5m deployed radius.
 - Each array with a maximum output of 9.5KW.
 - Each array subject to 10 cm³ volume
- Technology Readiness Level (TRL):
 - TRL 1: Utilizing R&D photovoltaic cells <2um thickness
 - MIT has built and analyzed an experimental proof-of-concept

Minimum Success Criteria / Solution Proposal

2040 Theoretical Model

- Satisfy volume and surface area constraints
- Projected area on spacecraft to be comparable to recent spacecraft
- Specify technology requirements to meet RFP criteria

2020 Deliverable Model

- Satisfy launch and deployed vibrational analysis
- Volume to be as small as possible for current production solar cell technology
- Ability to continue operation after small impact

System Block Diagram

Mission Profile

- 1. Launch from Earth
- 2. Travel to low orbit
- 3. Reached low orbit
- 4. Solar Array Deployed
- 5. Reached mid-high Earth orbit
- 6. Lunar slingshot
- 7. Second lunar slingshot
- 8. Mars Trajectory
- 9. Reached mid-high Mars orbit

Design Matrices

Decision Matrix 🔫	ML	- MC -	С ᠇	S 🖵	LM 👻	R 👻	D 👻	EF 🔽	SP 🔻	AS 👻	Total 🔫	Weight 💌	Final Score 📮
Minimal Labor (ML)	-	0.5	0	0	0	0	0	1	1	0	2.5	1.17	2.92
Minimal Cost (MC)	0.5		0	0	0	0	0	1	0.5	1	3	1.50	4.50
Compact (C)	1	1	-	1	1	0.5	1	1	1	1	8.5	3.50	29.75
(Integrity) Safety (S)	1	1	0	55	0.5	0	0	1	1	1	5.5	2.50	13.75
Low Maintenance (LM)	1	1	0	0.5		0	0.5	1	1	1	6	2.67	16.00
Reliabilitity (R)	1	1	0.5	1	1		1	1	1	1	8.5	3.50	29.75
Durability (D)	1	1	0	1	0.5	0		1	1	1	6.5	2.83	18.42
Enviromentally Friendly (EF)	0	0	0	0	0	0	0		0	0	0	0.00	0.00
Standards Parts (SP)	0	0.5	0	0	0	0	0	1		1	2.5	1.17	2.92
Aesthetics (AS)	1	0	0	0	0	0	0	1	0		2	0.67	1.33

Personal Rating (Weight)	Craig	Andrew	Daniel	Average
Minimal Labor	0.2	0.2	0.1	0.17
Minimal Cost	0.2	0.1	0.1	0.13
Compact	1	1	1	1.00
(Integrity) Safety	0.9	0.7	0.7	0.77
Low Maintenance	1	1	1	1.00
Reliabilitity	1	1	1	1.00
Durability	0.8	0.9	0.6	0.77
Enviromentally Friendly	0.1	0.1	0	0.07
Standards Parts	0.4	0.6	0.2	0.40
Aesthetics	0.1	0.1	0.4	0.20

- Modularity of each independent cell
- Multiple non-uniform fold pattern
- Slits are created to increase flexibility of the folding crease

- Existing spiral geometry
- Inflatable rim
- Muscle wire

- Gas powered
- Concentric solar rolls

Adapt this Mega-Flex solar array to operate without hinges

Geometric Calculation

- Stored Volume : 10 cm³ = 10 E $^{-6}$ m³
- Radius: 1-1.5 m
- Area: $\pi r^2 = 3.1415m^2 7.07m^2$
- Thickness = 3.2μm (not considering structure)

Common sheet thicknesses:

- Typical Aluminum Foil: 16 μm
- Typical Printing Paper: 24 μm
- Current Production Space Sollar Array: 40-150 μm

Design Issues

Mission Class	Mission	Destination	Launch Date	Solar Cell Technology	Solar Array Technology	Power Capability at 1 AU (W)
Outer planets	Juno	Jupiter	5-Aug-11	Triple junction	Deployable rigid	14000
	Messenger	Mercury	3-Aug-04	Triple junction	Deployable rigid	450
Inner	LCROSS	Moon	18-Jun-09	Triple junction	Body-mounted	600
planetary	Lunar Reconnaissance Orbiter	Moon	18-Jun-09	Triple junction	Deployable rigid	1850
systems	Grail	Moon	10-Sep-11	Triple junction	Deployable rigid	763
	LADEE	Moon	6-Sep-13	Triple junction	Body-mounted	295
	Mars Global Surveyor	Mars	7-Nov-96	GaAs/Ge and Si	Deployable rigid	2100
	Mars Odyssey	Mars	7-Apr-01	GaAs/Ge	Deployable rigid	2092
Mars	Mars Exploration Rover (2 rovers)	Mars surface	10-Jun-03 7-Jul-03	Triple junction	Deployable rigid	390
	Mars Reconnaissance Orbiter	Mars	12-Aug-05	Triple junction	Deployable rigid	6000
	Phoenix	Mars surface	4-Aug-07	Triple junction	UltraFlex	1255
	MAVEN	Mars	18-Nov-13	Triple junction	Deployable rigid	3165
Asteroids/ comets	Deep Impact/EPOXI	Tempel-1 Hartley-2	12-Jan-05	Triple junction	Body-mounted	620
	Dawn (with solar electric propulsion)	Vesta Ceres	27-Sep-07	Triple junction	Deployable rigid	10300
	OSIRIS-REx	Bennu	8-Sep-16	Triple junction	Deployable rigid	3000

LCROSS—Lunar Crater Observation & Sensing Satellite; LADEE—Lunar Atmosphere Dust & Environment Explorer; MAVEN—Mars Atmosphere & Volatile Evolution; EPOXI—Extrasolar Planet Observation & Characterization Investigation (EPOCh) + Deep Impact Extended Investigation (DIXI)

- Dawn Mission: 10.3KW output
 - 20m tip to tip Solar Array

- Solar Technology with thickness < 3.2 μm
- 250KW target output :
 - Clarified by Professor. Merret- this is achieved by multiple Arrays with each array output of 9.5KW.

Technology Readiness Level

	TRL9
	•Actual system "flight proven" through successful mission operations
	TBL 8
	 Actual system completed and "flight qualified" through test and demonstration (ground or space)
	System prototype demonstration in a space environment
	TRI 6
	•System/subsystem model or prototype demonstration in a relevant environment (ground or space)
	TRL 5
	Component and/or breadboard validation in relevant environment
	TRL4
	•Component and/or breadboard validation in laboratory environment
	TRL 3
	Analytical and experimental critical function and/or characteristic proof-of- concept
	TRL 2
l	•Technology concept and/or application formulated
Ī	TRL1
	Basic principles observed and reported

- Definition of TRL level By NASA:
 - Level 1: Basic Principle observed & Reported.
 - Level 2: Technology concept/ application formulated.
 - Level 3: Analytical and experimental proof of concept.
 - Level 4: Validation in Laboratory environment.
 - Level 5: Validation in relevant environment

Material Selection

2040 Theoretical Model:

- In Situ Vapor-Deposited Parylene Substrates (1.3 μm)
- Nitinol wire Deploying Mechanism

2020 Deliverable Model:

- MicroLink's epitaxial lift-off (ELO) solar cells (40 μm)
- Nitinol wire Deploying Mechanism

In Situ Vapor-Deposited Parylene Substrates

- Currently experimental at MIT
- Thin polymer flexible film
- Parylene substrate encapsulation
- Organic Photovoltaic Cells
- Thickness PV: <1um
 - Parylene Substrate : 1.3um
 - Mass/unit area: 3.6 g/m2
 - Power Output: 6W/g (21.6 W/m2)

MicroLink's epitaxial lift-off (ELO) solar cells

- Metal Organic Chemical Vapor Deposition
- GaAs Substrate
- Specs:
 - Thickness: <40 um
 - Mass per unit surface area: 250 g/m²
 - Power output per unit surface area: 250 W/ m²

Nitinol Muscle Wire

- Nitinol-Nickle Titanium wire
- The ability to morph to a predefined shape with applied heat/ electric current.

Wire Name	Wire Diameter (microns)	Linear Resistance (Ω/m)	Typical Current (mA)	Deform. Weight** (grams)	Recovery Weight** (grams)	Typical Rate** (LT/HT)
Flexinol 025	025	1770	20	2	7	55/na
Flexinol 037	037	860	30	4	17	52/68
Flexinol 050	050	510	50	8	35	46/67
Flexinol 075	075	200	100	16	80	
Flexinol 100	100	150	180	28	150	33/50
Flexinol 125	125	70	250	45	230	
Flexinol 150	150	50	400	62	330	20/30
Flexinol 200	200	32	610	116	590	
Flexinol 250	250	20	1000	172	930	9/13
Flexinol 300	300	13	1750	245	1250	7/9
Flexinol 375	375	8	2750	393	2000	4/5

* Multiply by 0.0098 to get force in Newtons

** Cycles per minute, in still air, at 20 Centigrade

T = low temp 70°C, HT high temp 90°C

Nitinol Applied Force

Stress-Strain Characteristics of Nitinol at Various Temperatures

- 16 lbs (71 Newtons)
 - (0.02in diameter wire)

Deploying Sequence

• Blue:

First nitinol loop that will unfold from one "slice" to two

• Orange:

Second nitinol loop that will unfold from two "slices" to four

• Red:

Outer nitinol loop that will unfold from four "slices" to eight and keep stability while deployed

CAD Design: 2040 Theoretical Model

- In Situ Vapor-Deposited Parylene Substrates
- Incorporate Origami Principle to increase compactness
- Applying a non-rigid foldable pattern to a rigid material

CAD Design: 2020 Deliverable Model

FEA Analysis- Deployed

2020 Model – Dynamic Harmonic Analysis of 1G at 1.5 Hz (Mesh)

FEA Analysis- Deployed

2020 Model – Dynamic Harmonic Analysis of 1G at 1.5 Hz (Stress)

FEA Analysis- Deployed

2020 Model – Dynamic Harmonic Analysis of 1G at 1.5 Hz (Displacement)

FEA Analysis – Stored Configuration

2020 Model – Dynamic Harmonic Analysis of 15G at 100 Hz (Mesh)

FEA Analysis – Stored Configuration

2020 Model – Dynamic Harmonic Analysis of 15G at 100 Hz (Stress) Note: No damage because of incomplete SolidWorks material data

Final Design Metrics

CRITERIA	2040 Theoretical Model	2020 Deliverable Model
Surface Area of 1 Model	7.07 m ²	7.07 m ²
Volume of 1 Model	10 cm ³	375.8 cm ³
Mass of 1 Model	40g	1.65 kg
Power Output of 1 Model	152.7 W	1767.5 W
# Models needed for 250kW	1638	142
SA needed for 9500W	440 m ²	38 m ²
Volume needed for 9500W	623 cm ³	2255 cm ³
SA Needed for 250kW	11,574 m ²	1000 m ²
Volume needed for 250kW	16,372 cm ³	53,363.6 cm ³
Total Mass at 250kW	65.5 kg	234.3 kg
Thickness	2um	53um

Specs: 2040 Theoretical Model

Design Requirements for how to achieve new AIAA RFP (Technology projected in 2040)

- 7.07 m²
- 9500 W output
- 1344 W/m²
- 1 micron thick
- Stress/Strain properties of Nylon

Additional Requirements

- Solar Wind
 - Solar wind's effects are negligible
 - Force = 4.24e-08 N
- Micro-meteorite
 - Solar cells are arranged in parallel, allowing sections and/or whole "slices" to lose power and the remaining structure to continue functionality

Prototyping 2020-Deliverable Model

• 10 mil plastic = 254 microns

Prototyping 2020-Deliverable Model

• Made with 13 micron Mylar film and 50 micron black plastic sheeting

_[G1:	3 Deployable S	olar Ar	ray Struct	ure] Proje	ect S	chedu	le	Gantt Chart Template © 2006-2018 by Vertev42.com.	
- ISOL-	MATES]								
Danie	el Bain, Craig Patton, .	Andrew [®]	Tendean						
	Project Start Date	1/9/2019	(Wednesday)	Display	Week	10		Week10 Week11 Week12 Week13 Week14 Week15 Week16 Week17	.
	Project Lead	Da	niel Bain					11 Mar 2019 18 Mar 2019 25 Mar 2019 1 Apr 2019 8 Apr 2019 15 Apr 2019 22 Apr 2019 29 Apr 2019 29 Apr 2019	.9
₩BS	TASK	LEAD	START	END	DAY	Z DONE	πun K	11 12 13 14 16 16 17 18 19 20 21 22 23 24 25 24 25 24 25 29 39 39 11 2 2 3 4 6 6 7 8 9 10 11 12 13 14 16 16 17 18 19 20 21 22 23 24 25 24 25 24 25 39 17 2 3 M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S	4 9 S S
1	Phase 1			-	_		-		
1.1	IDR Paper	All	Wed 1/09/19	Wed 1/23/19	5	100%	11		
1.2	IDR Presentation	All	Wed 1/09/19	Wed 1/23/19	5	100%	11		
1.3	Individual Folding Design Concepts	All	Sat 1/12/19	Wed 1/30/19	4	100%	13		
1.4	Individual Activity Logs	All	Wed 1/09/19	Tue 4/30/19	4	100%	80		
1.5	Literature Review	All	Wed 1/09/19	Mon 4/29/19	5	100%	79		
1.6	Design Matrix	All	Wed 1/16/19	Wed 1/30/19	7	100%	11		
1.7	Decision Matrix	All	Wed 1/16/19	Wed 1/30/19	7	100%	11		
1.8	Gantt Chart	Craig	Wed 1/16/19	Tue 4/30/19	7	100%	75		
2	Phase 2			-			-		
2.1	Group Design Concept	t All	Wed 1/23/19	Fri 3/15/19	4	100%	38		
2.2	Material Selection	All	Wed 1/30/19	Fri 3/08/19	3	100%	28		
2.3	Folding Mechanism Design	All	Wed 1/23/19	Fri 3/08/19	3	100%	33		
2.4	Deploying Mechanism Design	All	Wed 1/30/19	Wed 3/27/19	6	100%	41		
2.5	Solidworks Model	All	Wed 1/30/19	Wed 3/27/19	3	100%	41		
2.6	PDR Paper	All	Wed 1/23/19	Wed 2/27/19	3	100%	26		
2.7	PDR Presentation	All	Wed 1/23/19	Wed 2/27/19	3	100%	26		
3	Phase 3			-			-		
3.1	IPR Paper		Wed 2/20/19	Wed 3/20/19	3	100%	21		
3.2	IPR Presentation		Wed 2/20/19	Wed 3/20/19	3	100%	21		
3.3	Launch FEA Analysis		Wed 3/20/19	Wed 4/17/19	4	100%	21		
3.4	Launch Vibrations Analysis		Wed 3/20/19	Wed 4/17/19	З	100%	21		
3.5	Deployed FEA Analysis	5	Wed 3/20/19	Wed 4/17/19	3	100%	21		
3.6	Deployed Vibrations Analysis		Wed 3/20/19	Wed 4/17/19	6	100%	21		
4	Pase 4			-			-		
4.1	CDR Paper		Wed 3/20/19	Wed 4/10/19	1	100%	16		
4.2	CDR Presentation		Wed 3/20/19	Wed 4/10/19	1	100%	16		
4.3	Prototype Building		Wed 3/20/19	Sun 4/28/19	1	100%	28		
4.4	Poster Board		Wed 3/20/19	Sun 4/28/19	1	100%	28		
4.5	FDR Paper		Wed 4/10/19	Mon 4/29/19	1	100%	14		
4.6	FDR Presentation	_	Wed 4/10/19	Mon 4/29/19	1	100%	14		

Acknowledgement

- Dr. Adeel Khalid- Primary Faculty Advisor
- Kennesaw State University- Southern Polytechnic College of Engineering and Engineering Technology
- Fellow Aerospace Engineering Students at Kennesaw State University
- Friends and Family that support our journey in completing this project.

References:

Used in Presentation

- <u>http://lup.lub.lu.se/search/ws/files/43654121/acs.nanolett.8b00494</u> Otnes InP EBIC 2018.pdf
- http://www.scielo.br/pdf/mr/v21n3/1516-1439-mr-1980-5373-MR-2017-1026.pdf
- <u>https://onlinelibrary-wiley-com.proxy.kennesaw.edu/doi/epdf/10.1002/adma.201502632</u>
- <u>https://www-ncbi-nlm-nih-gov.proxy.kennesaw.edu/pmc/articles/PMC5295207/pdf/nanomaterials-07-00017.pdf</u>
- <u>http://eds.b.ebscohost.com.proxy.kennesaw.edu/eds/pdfviewer/pdfviewer?vid=0&sid=af0dc5c0-69fa-47c6-8a86-e6f089014d05%40pdc-v-sessmgr02</u>
- <u>https://ieeexplore-ieee-org.proxy.kennesaw.edu/document/7356180</u>
- https://arxiv.org/pdf/1810.08978.pdf
- <u>https://kennesawedu-</u> <u>my.sharepoint.com/personal/cpatto17_students_kennesaw_edu/Documents/AE%20Senior%20Design/Research%20Pics</u> %20and%20Files/56190-fichier2.pdf
- <u>http://earthtechling.com/2013/12/going-where-no-origami-has-gone-before/</u>
- <u>https://www.nasa.gov/press/2014/march/nasa-picks-small-business-tech-proposals-for-development#.XEdRpBhOkzQ</u>
- <u>https://www.researchgate.net/figure/Deployment-Sequence-of-the-MegaFlex-solar-array-19</u>

Questions?

"After this, refolding the maps in my car's glove compartment should be a snap!"

