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 J. DENNIS CRADIT, ARMEN TASHCHIAN, and CHARLES F. HOFACKER*

 Most marketing applications of signal detection theory (SDT) produce an estimate
 of the respondent's memory accuracy based on exposure to a number of adver-
 tisements. Marketing practitioners, however, are usually more interested in the per-
 formance of an individual advertisement, or elements of that ad. Moreover, ad-

 vertising recognition paradigms are typically limited to single observations per
 respondent. The authors present and compare two alternative methodologies that
 estimate SDT parameters for such designs by pooling recognition performance across

 respondents. They present two simulations that explore the most efficient method-

 ology and suggest guidelines for selecting appropriate accuracy indices.

 Signal Detection Theory and Single Observation
 Designs: Methods and Indices for Advertising
 Recognition Testing

 In one of the earliest examples of a memory-recog-
 nition measure of ad effectiveness, Lucas (1942) showed
 consumers an advertisement to which they had been ex-
 posed previously and asked if they could remember hav-
 ing seen the ad when they read an issue of the magazine
 in which the ad originally appeared. He then averaged
 these consumer responses to produce an estimate of the
 percentage of the sample reporting recognition of the ad;
 producing, in effect, a percentage-readership score. The
 underlying assumption of Lucas' (1942) procedure, as
 well as of more recent measures of recognition (Bagozzi
 and Silk 1983; Singh and Rothschild 1983), is that an
 assessment of the advertisement's "familiarity" or
 "memorability" constitutes an indication of the ad's rel-
 ative effectiveness.

 The strength of a particular recognition methodology
 is evidenced by its ability to adjust for the presence of
 respondent bias. Test participants inflate memory per-
 formance by reporting recognition of advertisements that
 they, in fact, have never seen. Appel and Blum (1961)
 included distractor-advertisement trials in a recognition

 *J. Dennis Cradit (formerly J. Dennis White) and Charles F.
 Hofacker are Associate Professors of Marketing, College of Business,
 Florida State University. Armen Tashchian is a Professor of Market-
 ing, Department of Marketing, Kennesaw State College. The authors
 appreciate the many valuable changes suggested by the JMR reviewer.

 test (i.e., advertisements constructed solely for purposes
 of testing and that respondents ipso facto cannot remem-
 ber), and found that a significant percentage of respon-
 dents report recognition of these fictitious ads. In fact,
 an advertisement's percentage-readership score is com-
 posed of a true-recognition component reflecting overall
 memorability of the advertisement across the consumer
 sample, and a bias component that inflates or deflates
 the score, depending on the number and severity of yea-
 sayers and naysayers in the sample (Wells 1961). The
 challenge for advertising research is to develop a method
 that will separate these two components. Typical ap-
 proaches to this problem use a mixture of distractor (fic-
 titious) and target (real) advertisement trials to produce
 estimates of hit rates (correct detection of target adver-
 tisements) and false-alarm rates (incorrect recognition of
 distractor ads), which in turn can be used as inputs for
 the computation of indices that attempt to produce some
 measure of actual memorability, corrected for yeasaying
 and naysaying response biases (Singh and Churchill 1987;
 Swets and Pickett 1982).

 Recently, a number of papers in marketing and ad-
 vertising suggest the use of an elegant mathematical model
 known as signal detection theory (SDT) to improve ad
 recognition testing. SDT is used to analyze experimen-
 tally produced hit and false-alarm rates within a deci-
 sion-theoretic framework to produce a consistent and re-
 liable estimate of the respondent's actual memory
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 accuracy, and a separate estimate of the respondent's
 tendency to over- or under-report recognition of the tar-
 get stimulus (their "decisional criterion," in SDT ter-
 minology) (Banks 1970; Green and Swets 1966; Swets
 and Pickett 1982). SDT assumes that with the presen-
 tation of each ad in a recognition test, the respondent
 experiences some subjective sense of familiarity (de-
 noted as a real-valued number, X) and uses this feeling
 of familiarity as evidence to determine if the test ad is
 a target or a distractor. Target ads and distractor ads gen-
 erate overlapping distributions of evidence with the mean
 of the target ad distribution logically higher on the fa-
 miliarity continuum than the mean of the distractor ad
 distribution. This reflects the fact that though the ma-
 jority of target ads will result in feelings of familiarity
 stronger than those elicited by the majority of distractor
 ads, there are cases in which a distractor ad can elicit a
 strong feeling of familiarity whereas a target ad might
 elicit only a weak feeling of familiarity. SDT further as-
 sumes that the respondent sets a decisional criterion or
 threshold, Xc, on the familiarity continuum. On each trial,
 the respondent compares the location of the X with the
 location of the decisional criterion. If feelings of famil-
 iarity exceed the criterion (X > Xc), the respondent re-
 ports recognition of the ad; if the feelings fail to exceed
 the criterion (X < Xc), the respondent reports no rec-
 ognition of the ad. Such a situation enables the adver-
 tising researcher to represent recognition performance in
 two different ways. The respondent's performance can
 be summarized in a single index. One such index is the
 traditional d' statistic (formally presented in equation 6),
 defined as the distance between the means of the two
 distributions when both are assumed normal. This dis-

 tance, as we demonstrate, can be deduced from hit and
 false-alarm rates computed from the respondent's rec-
 ognition data. In addition, recognition performance can
 be presented graphically through the use of the receiver
 operating characteristic (ROC) curve. This curve rep-
 resents the respondent's trade-off between hits and false-
 alarms across different levels of decisional criteria, rang-
 ing from liberal (yeasaying) to conservative criteria
 (naysaying). Recognition performance is then indicated
 by computing the area under the ROC curve (see Tash-
 chian, White, and Pak 1988 for a discussion).

 However, though SDT represents a potential benefit
 to the area, its application to advertising research raises
 an important methodological problem. SDT traditionally
 has been applied in experimental psychology primarily
 to estimate memory accuracy of individual subjects by
 examining their performance across a range of experi-
 mental stimuli. The memorability of a specific stimulus
 within this range is rarely of consequence. In contrast,
 marketing practitioners, ordinarily unconcerned with the
 accuracy of individual respondents, need a bias-free
 estimate of the memorability of particular ads, or
 components of those ads. In effect, experimental psy-
 chologists seek to study individuals by aggregating dis-

 crimination behavior across stimuli; advertising re-
 searchers study stimuli, aggregating across individuals.

 This difference in goals is aggravated by differences
 in available data. Requisite hit and false-alarm rates nec-
 essary to traditional SDT procedures require multiple ob-
 servations per subject. In typical memory applications
 this rarely presents a problem because subject perfor-
 mance can be assessed over multiple presentations of
 stimuli. Ad testing methodologies, by contrast, must rely
 on a single recognition response per subject.

 To date, two alternative aggregation approaches have
 been proposed to solve the problem of single observa-
 tions per subject. Singh and Churchill (1986, 1987) sug-
 gest that respondents' recognition abilities, derived by
 observing their performance across a range of ads (one
 of which is the target ad of interest), be corrected for
 each respondent's level of bias (based on SDT-supplied
 indices). The average of these adjustments then can be
 computed across the sample and subtracted from the
 sample's hit rate, producing what is, in effect, a "bias-
 adjusted" version of Lucas' (1942) percentage-reader-
 ship score. In contrast, Macmillan and Kaplan (1985)
 suggest a procedure that, when applied to ad testing, in-
 volves collapsing recognition performance for one par-
 ticular ad across all respondents within a sample to pro-
 duce a group estimate of memory accuracy for that
 particular ad. Though Singh and Churchill (1986) have
 provided preliminary reports of reliability for their pro-
 cedure, little is known about its level of statistical bias
 or efficiency. Also, though the collapsed-index proce-
 dure has been suggested and discussed in marketing (Leigh
 and Menon 1986), no applications to single-observation
 designs or tests of its validity have yet been reported.

 The single-observation design poses a related issue that
 must be addressed in transferring SDT to ad testing: that
 of the particular choice of accuracy estimate. Within the
 psychological literature, a number of sensitivity indices
 have been proposed for detection tasks, ranging from
 parametric measures based on Gaussian and logistic dis-
 tributions to several nonparametric indices (Swets 1986a).
 When single-observation designs prompt the use of col-
 lapsing procedures, the selection of the index becomes
 particularly important because such a collapsing proce-
 dure requires the researchers to presume constant deci-
 sion rules and constant sensory decision axes across all
 subjects in the sample (Macmillan and Kaplan 1985).
 Researchers might be hesitant, therefore, to assume the
 existence of normal distributions and response-criteria
 homogeneity. To date, most papers in marketing focus
 on the use of nonparametric indices, implicitly assuming
 the superiority of these over Gaussian-based measures.
 We review recent evidence (Swets 1986a, 1986b) that
 disputes this assumption and discuss implications of this
 evidence for choosing appropriate indices for a collapsed
 index of memory accuracy.

 Our objective is therefore twofold. First, we test the
 relative performance of Singh and Churchill's (1986) ad-
 justment procedure against Macmillan and Kaplan's
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 (1985) collapsing procedure. We present each method-
 ology, describing the specific data-collection assump-
 tions, and then test the relative validity of each approach
 in a simulation that assumes a wide range of true ad fa-
 miliarity and decisional bias. Second, we evaluate the
 performance of nonparametric indices within a collaps-
 ing procedure, comparing them with more traditional
 measures based on Gaussian distributions. The results

 present a useful review of the relative advantages and
 limitations of the various indices for the assessment of

 memory for ads based on single observations per sub-
 ject.

 TWO ALTERNATIVE APPROACHES TO SINGLE-
 OBSERVATION DESIGNS

 In examining SDT procedures, one must observe the
 distinction between the method by which the hits and
 false alarms are collected and the particular computa-
 tional formulas applied to those data. SDT data can be
 collected under several alternative procedures (see Tash-
 chian, White, and Pak 1988 for a review) and analyzed
 by a number of alternative measures of memory accu-
 racy. Though certain data collection methods presume a
 particular accuracy estimate, in most cases the re-
 searcher has a choice. Though both the Singh and Chur-
 chill (1986) and Macmillan and Kaplan (1985) ap-
 proaches rely on standard SDT data collection procedures
 and computational formulas, each differs in the manner
 in which the data are aggregated and the sequence of
 analyses. In particular, the Singh and Churchill approach
 relies on a nonstandard application of a traditional mea-
 sure of memory accuracy.

 The Bias-Adjustment Approach

 Singh and Churchill's (1986, 1987) bias-adjustment
 approach is a variation of the traditional corrected hit
 probability formula (Green and Swets 1966), which at-
 tempts to adjust the raw hit rate by use of some measure
 of response bias. In the most typical case, a subject's
 false-alarm rate is subtracted from the hit rate

 (1)  H,= h-f,

 where h refers to the subject's hit rate andf is the false-
 alarm rate. This procedure uses the raw hit rate as the
 measure of memory performance, but adjusts it for re-
 sponse bias reflected in the subject's tendency toward
 false alarms. A common variation on equation 1 at-
 tempts to normalize the corrected values:

 (2)  H' (h -f)
 (1 -f)

 Equations 1 and 2 both represent relatively intuitive cor-
 rections for guessing and have been employed in a num-
 ber of psychological studies of recognition memory (e.g.,
 Fisk and Schneider 1984).

 Singh and Churchill's approach relies on the corrected
 hit probability concept, though they employ a correction

 factor that is more complicated than the simple false-
 alarm rate. They suggest respondents be provided with
 a portfolio of real ads (one of which is the target ad of
 interest) and distractor ads. Though the response to the
 target ad is of primary interest, responses to the remain-
 ing ads in the portfolio are used to produce h andf, nec-
 essary for computation of the SDT measure of each re-
 spondent's decisional criterion. The process through which
 this measure is produced starts with the computation of

 (3)

 N

 Bj = I Bixj,
 i=l

 where xij is a dummy variable coded 1 if subject i reports
 recognition of advertisement j and 0 otherwise, N is the
 number of respondents, and Bi is a measure of response
 bias for individual i modified from Hodos (1970, see
 also Grier 1971),

 - f(1 -Jf)
 (4) B, = J hi(l - hi)

 hi(I - hi) _ 1
 f(1 -f/)

 if hi +fI< 1

 if hi +fi > 1.

 Here, fi is the false-alarm rate and hi is the hit rate for
 subject i. Note that though Bi is based on an individual's
 response to all ads within a test portfolio, it is used to
 compute an average adjustment index per ad, Bj.

 This adjustment then is subtracted from the group hit
 rate for the target ad

 (5)  H" = hi - Bj,

 where hj is the group hit rate for ad j and H'c is the final
 corrected hit probability.

 Though equation 5 is similar in form to equations 1
 and 2, it employs a correction factor drawn from a Gaus-
 sian model of signal detection, and, as such, requires
 assumptions unusual for a traditional corrected hit prob-
 ability. As we discuss subsequently, it also is important
 to note that corrected hit probability formulas generally
 imply the existence of high-threshold models of memory
 and cognition that, in turn, predict theoretical ROCs that
 are "non-regular" in form and almost always at odds with
 empirical ROCs collected from actual recognition data
 (Swets 1986a, 1986b).1 However, because of the nature

 'Every sensitivity index implies a particular theoretical or predicted
 ROC, which is derived by solving the index formula for h and then
 plotting hits as a function of false alarms for each level of the index.
 A regular ROC is defined as one that obeys the following: f = 0 only
 when h = 0 and h = 1 only when f = 1. In other words, the curve
 is interior to the unit-square ROC except at the extremes (f = 1 and
 h = 1, orf = 0 and h = 0). In contrast, non-regular ROCs permit
 points having h > 0 forf = 0 or h = 1 forf < 1. Empirical evidence
 collected across a wide variety of tasks and designs consistently pro-
 duce regular ROCs (see Swets 1986a for a discussion). Therefore, a
 critical test of the validity of a potential index is the degree to which
 it predicts a regular ROC.
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 of Singh and Churchill's correction factor, it is not im-
 mediately apparent what model is implied by equation 5
 or what the nature of the form of its theoretical ROC is.

 The Appendix shows that the theoretical ROC implied
 by equation 5 is difficult to predict. Because of this, the
 efficiency and bias of equation 5 will be evaluated through
 simulation.

 A Collapsed-Index Procedure

 As mentioned previously, SDT models require a rel-
 atively large number of trials per subject to ensure stable
 estimators. As Macmillan and Kaplan (1985) note, how-
 ever, researchers frequently confront the need to apply
 SDT models to designs that produce few responses per
 subject. One obvious solution is to increase the number
 of usable observations by combining data across sub-
 jects. In such a situation, one can compute indices for
 each member of the group, despite the insufficient num-
 ber of observations, and then average these across the
 sample (a process Macmillan and Kaplan call "averag-
 ing"), or one can derive aggregate hits and false alarms
 across the sample and then compute the index on these
 group proportions (a process they call "collapsing").

 Macmillan and Kaplan's comparison of averaging and
 collapsing procedures reveals that if subjects differ in
 bias but not accuracy, the d' computed from group pro-
 portions will generally be lower than the average of the
 individual d's. This loss in true d' is significant only if
 the range in bias scores from the sample is in excess of
 1.5 standard deviations. In addition, if subjects differ in
 accuracy but not in bias, the resulting d' based on col-
 lapsed data will generally be lower than the average d'
 of the separate individuals. Again, the decrement is se-
 vere only if the original d's differ by 1.5 or greater. Fi-
 nally, values of d' computed from collapsed-group pro-
 portions are always less variable than the average of the
 individual d's. Moreover, this variability decreases as
 the discrepancy between the subjects increases. Mac-
 millan and Kaplan's conclusion is that the computation
 of a collapsed d' from averaged proportions produces
 reliable, relatively unbiased estimates of accuracy.

 Collapsing procedures for ad testing. Collapsing pro-
 cedures thus far reported in the literature assume that, at
 a minimum, a sufficient number of observations are
 available to at least provide an h andf for each subject.
 In other words, they assume multiple observations per
 subject, though far fewer than would generally be con-
 sidered appropriate. Data collection in ad testing situa-
 tions, however, typically produces only a single obser-
 vation per subject. In such a setting, there are insufficient
 data to compute basic proportions for each individual.

 The use of a collapsing procedure for single-obser-
 vation designs therefore will require a modified format.
 Responses to the target ad would need to be combined
 with responses to selected distractor ads to provide the
 necessary hits and false-alarm rates. A procedure to ac-
 complish this might involve a standard SDT confidence-
 rating technique (Banks 1970; Swets and Pickett 1982)

 in which respondents are shown an ad and asked to re-
 port their "confidence" in their memory for that ad along
 a k-point scale, in which the anchors are "Certain I did
 not see it" to "Certain I did see it."2 A traditional SDT
 analysis of each respondent's recognition data would
 produce an estimate of that respondent's memory sen-
 sitivity ability aggregated across the portfolio of target
 ads. To estimate the familiarity of a particular target ad,
 we simply pool the recognition data for the target ad and
 the distractor ads across all respondents in the sample.
 For example, in a portfolio containing ten target ads and
 ten distractor ads, each respondent contributes 11 re-
 sponses to the analysis of any particular target-his or
 her confidence rating for the target ad of interest and
 confidence ratings for each of the ten distractor ads. In
 effect, subject responses correspond to trials within the
 more traditional SDT analysis. These raw responses are
 then decomposed into k - 1 hit and false-alarm pairs,
 which become k - 1 ROC points according to standard
 SDT confidence-rating procedures (see Tashchian, White,
 and Pak 1988 for an example).

 Suitable indices of performance. A number of indices
 can be computed from the collapsed data, based either
 on a single h and f pair or, as in the case of confidence
 ratings, multiple pairs. The most obvious choice would
 be the traditional d' statistic. The computational formula
 for the single-pair case would be

 (6)  d' = Za - Zf.

 Here, Zh is the z-score associated with the hit rate for
 ad j, and Zf is the z-score associated with the overall
 false-alarm rate. In the multiple-pair case, d' is esti-
 mated through an iterative estimation technique such as
 maximum likelihood (Dorfman and Alf 1969). In either
 setting, this statistic is based on the assumption of nor-
 mal distributions of signal and noise with equal variance.

 Reluctance to make such assumptions has led several
 researchers to suggest nonparametric indices, the most

 2Normally, these k response categories are used to compute (k -
 1) points on an ROC in the following manner: Assume that those
 responses to stimulus ads falling in the highest confidence category
 result from the respondent's strictest decision criterion. This is com-
 parable to a yes/no task in which the respondent is induced to adopt
 a very conservative decision criterion. The responses in this highest
 confidence category are counted as "Yeses," and the responses in the
 remaining confidence categories are all counted as "Nos," and a hit/
 false-alarm pair is constructed representing the strictest decision cri-
 terion. Similarly, assume that those responses falling in the next high-
 est confidence category result from the respondent setting a slightly
 less stringent decision criterion. Now, the responses in both the first
 and second highest confidence categories are counted as "Yeses," the
 responses in the remaining k - 2 categories are counted as "Nos,"
 and a second hit/false-alarm pair is constructed representing the sec-
 ond strictest decision criterion. This process is repeated, cumula-
 tively, across all k categories of the response scale, resulting in (k -
 1) 2 x 2 conditional-probability matrices, and hence, k - 1 ROC
 points. Details and rationale for this procedure are available from sev-
 eral sources (Banks 1970; McNicol 1972; Tashchian, White, and Pak
 1988).
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 popular of which in marketing is A', which estimates the
 area under the ROC with only a single pair of hit and
 false-alarm rates:

 (7)  A1 (h -f)(l+hj -f)
 A' = 4 (-f) 2 4 - h. (1 -f)

 Here, hj is the aggregate hit rate for ad j, or ad com-
 ponent j, andf is the overall false-alarm rate for the study.
 This measure runs from 0 to 1 and, as is well known,
 can be interpreted as percentage correct in a two-alter-
 native forced-choice methodology (see Green and Swets
 1966).

 Swets (1986a, 1986b) reports extensive evidence that
 consistently shows that empirical ROCs are fitted well
 on a binormal graph by straight lines of varying slope.
 In other words, empirical ROCs are regular in shape and
 require a free slope parameter to adequately fit the data.
 Because d' implies binormal ROCs that are linear with
 a fixed slope = 1.0, it would seem to be a poor choice
 for a suitable index (Swets 1986a).

 As a result, Swets argues that the most appropriate
 index is A&, the area under an ROC (on ordinary prob-
 ability scales) that is consistent with empirical ROCs
 (Swets 1986b). Though estimated iteratively (Dorfman
 and Alf 1969) in the multiple hit and false-alarm case,
 when there is a single h and f pair, the index can be
 defined simply as

 (8)  Az = ? (d'/IV),

 where $4 is the normal distribution. Az does not assume
 normal distributions, but any form of distribution that
 can be monotonically transformed to the normal (Swets
 1986a). In contrast to A', which is susceptible to poor
 placement of the single h and f pair along the ROC, Az
 can be calculated by fitting a straight line to multiple
 data points (plotted on a binormal graph) and is the more
 efficient, robust measure.

 Summary

 Researchers faced with single observation designs have
 two general methodologies available for computing SDT
 measures of memory sensitivity: a bias-adjustment ap-
 proach producing H' and a collapsing procedure that
 produces Az or A'. The immediate issue is how to eval-
 uate the two approaches. We can compare Az and A' by
 examining the underlying models of memory and cog-
 nition that each implies. As mentioned previously, this
 is accomplished by determining the theoretical form of
 the ROC predicted by each particular index and then
 comparing this with empirical ROCs produced from re-
 search. Past work using Az shows that its theoretical and
 empirical ROCs do indeed coincide (Swets 1986a). Col-
 lapsing procedures utilizing Az therefore would seem to
 possess face validity. In contrast, Macmillan and Kaplan
 (1985) show that the ROC implied by A' cannot be rep-
 resented by a straight line when plotted on a binormal
 graph, a condition obviously at odds with empirical re-

 search. Use of this statistic with collapsing procedures
 should be approached with caution, though as we discuss
 subsequently, the computational simplicity of A' never-
 theless could lead us to overlook this theoretical defi-

 ciency.
 As discussed previously, the theoretical predictions of

 Hc are more ambiguous. The traditional formulas pre-
 sented in equations 1 and 2 imply various forms of a
 threshold model of memory recognition, at odds with
 empirical research (Swets 1986a). Because H' is a com-
 plicated variation on the traditional formula, it also should
 predict theoretical ROCs at odds with empirical re-
 search. However, the bias-adjustment approach de-
 scribed by Singh and Churchill (1986) combines group-
 level hit rates with individual-level measures of bias. As

 such, it is difficult to determine a theoretical ROC from
 such an equation without several additional assumptions
 (e.g., the specific distributions of hits and false alarms
 across subjects, the sample size, the number of ads, and
 hit rates for other ads; see Appendix for a discussion).
 The result is that a direct comparison between H' and
 the collapsed measures will require a simulation of their
 respective behavior.

 TWO SIMULATIONS

 To compare the relative effectiveness of these two
 methodologies and the effects of collapsing procedures
 on the various accuracy indices, we conducted two com-
 puter simulations. Specifically, we sought to (a) com-
 pare statistical bias inherent in H' with the area mea-
 sures computed from collapsing procedures (i.e.,
 determine if each familiarity estimate is, on average, equal
 to the true level of familiarity) and (b) measure the rel-
 ative efficiency and consistency of estimates derived from
 the collapsed measures.

 Simulation 1: Statistical Bias of the Estimator

 The first simulation directly compared H', collapsed
 d', collapsed A', and collapsed Az to determine if each
 estimator was statistically unbiased. As a baseline com-
 parison, performance of the alternative indices were
 compared with raw recognition scores (unadjusted hit
 rates). Because H' and A' are computed from single pairs
 of h andf, a direct comparison required that we compute
 Az and d' based on single pairs.

 Method. The simulated data were generated assuming
 that each subject saw 48 ads and then was confronted
 with a test portfolio containing the original 48 ads and
 48 new ads to which the simulated subject had not been
 exposed. The distractor ads were assumed normally dis-
 tributed along the familiarity continuum with mean zero
 and unit variance. The 48 original ads were assigned fa-
 miliarity means that increased from .0625 to 3.0 in 47
 increments of .0625. The variance for each of the orig-
 inal ads was unity.

 Four groups of 250 simulated subjects were con-
 structed, each group employing a different decisional
 criterion. The criteria along the familiarity continuum for
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 reporting recognition of the ad were set at -.4, 0, .4,
 and .8. Therefore, the group with the -.4 criterion was
 most biased toward yeasaying whereas the group with
 the .8 criterion would be most biased towards naysaying.
 Subjects within each group were assumed to act on a
 personal decisional criterion, the variance of which was
 set at .2.

 Results. The various panels in Figure 1 present the
 results of the simulation. Each panel displays the mem-
 ory performance of the 48 ads, each ad displayed ac-
 cording to the four decisional criterion groups and plot-
 ted as a function of its respective true ad familiarity.

 As a baseline comparison, Panel A shows the perfor-
 mance of the 48 ads in the four decisional criterion groups
 as measured by their uncorrected hit rates. As can be
 seen, the values rise in a clear monotonic manner as a
 function of the ads' true familiarity levels, as would be
 expected from the definition of hit rates. However, the
 inadequacies inherent in the index can be seen from the
 clear separation of ads by decisional criteria. The most
 liberal decisional criterion group (-.4), those respon-
 dents that would display the greatest amount of yeasay-
 ing, appear at the top of the graph, and the more con-
 servative criterion groups are arranged in a predictable
 fashion below. In particular, note the many instances in
 which ads with the same hit rate originate from different
 levels of underlying familiarity.

 A much different situation is presented in Panel B,
 which presents A'. This measure does a reasonable job
 of purging the various criterion groups of their decisional
 bias. The measure does show signs of statistical bias,
 however, when the true level of ad memorability ex-
 ceeds 1.0. At mean levels above 1.0, the four groups
 begin to separate, thus implying that A' confounds de-
 cisional bias and memory accuracy, though in a manner
 opposite to the raw, uncorrected hit rate. Essentially, A'
 over-corrects the raw hit rate. As we discuss subse-

 quently, marketing researchers should exercise caution
 when applying A' in situations in which strong levels of
 familiarity are likely. Panel C shows the simulation re-
 sults for d'. The four different response-bias groups are
 not consistently separated, which implies that d' mea-
 sures ad memorability unconfounded with response bias.
 At higher levels of ad memorability d' becomes more
 variable, though in comparison with A', d' exhibits much
 less variability, and this variability is not systematically
 related to yeasaying/naysaying as is the case with A'.
 Note that d' is not defined when hit rate is 1.0 and thus

 must be treated as missing data. As a result, much of
 the increasing variability of d' displayed in Panel C is a
 direct result of simulated performance occasionally be-
 coming perfect. Similar problems are evident in the pat-
 tern of data produced by H', shown in Panel D. As with
 A', H' loses its ability to separate decisional bias and
 memory accuracy as the true level of ad familiarity in-
 creases. However, unlike A', H'C confounds bias and ac-
 curacy at all levels of true ad memorability. Clearly, this
 index is not useful.

 Panel E presents memory performance for collapsed
 Az. In contrast to H' and the uncorrected hit rate, Az
 clearly and consistently separates decision bias from
 memory sensitivity. Moreover, in contrast to A', A,
 maintains its validity even at high levels of true ad fa-
 miliarity. These results are reinforced by correlation
 coefficients, displayed in Table 1, computed between true
 ad familiarity and the five competing measures. Note that
 Az correlates best with actual ad familiarity, calculated
 separately for the four groups and when pooled across
 those groups. Also note that correlations for the other
 four measures are lower but ordered in a fashion that

 would be predicted from data in Figure 1: d' performs
 better than A' and the uncorrected hit rate, which in turn
 outperforms Hc.

 Simulation 2: The Consistency and Efficiency of
 Collapsed Estimators

 Macmillan and Kaplan (1985) argue that one of the
 most important precautions in using collapsed measures
 is to avoid aggregating data across subjects with differ-
 ent response criteria. If considerable variability is pres-
 ent, subjects should be clustered into subgroups with
 similar bias, and averages computed across those
 subgroups (Crowder 1982). In single observation de-
 signs, it is difficult to determine the underlying bias of
 individual respondents, thereby precluding aggregating
 across subgroups. Therefore, the second simulation has
 two goals. First, though Az clearly represents the best
 measure when examined in terms of statistical bias, a
 remaining concern is the possible impact of criterion
 variability on the statistical consistency and efficiency of
 the various indices. Second, because the collapsed mea-
 sures pool data across a group of respondents, what is
 the impact on the resulting index if each of those re-
 spondents adopts a different response criterion?

 Method. The general approach of the second simula-
 tion is similar to that of the first. Probability density
 functions corresponding to target and distractor distri-
 butions were constructed such that the distractor distri-

 bution was assigned a mean of zero, and the target dis-
 tribution was assigned one of three different mean values,
 .5, 1.5, and 3.0. Variances for both distributions were
 set at unity. The goal of the second simulation was to
 assess the various estimators in the face of individual

 subject criterion variability. To accomplish this, an over-
 all decisional criterion was set at .3, and five levels of
 variability around that criterion were modeled ranging
 from a low of 0 to a high of .8 (0, .2, .4, .6, .8).

 Because statistical consistency is defined as a reduc-
 tion in bias with increasing sample size, six different
 sample sizes were defined (n = 50, 75, 100, 150, 200,
 400). This resulted in a 6 x 5 x 3 factorial design with
 the six sample sizes, five levels of criterion variance,
 and three levels of true d'. Efficiency was assessed by
 computing the root mean square error of the various col-
 lapsed estimators.

 The biggest change from the first simulation is that
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 Table 1
 CORRELATIONS BETWEEN THE AD MEAN AND FIVE MEASURES OF

 THE CORRELATION APPEARS IN
 AD MEMORABILITY (TWO-TAILED PROBABILITY FOR
 PARENTHESES)

 Measure

 Criterion Raw Hit

 Group Rate d' H' A' A,
 Pooled .8101 .8911 .5100 .7667 .9636

 (.0001) (.0001) (.0001) (.0001) (.0001)

 Extreme .8629 .8888 .8747 .8935 .9585
 Yeasaying (.0001) (.0001) (.0001) (.0001) (.0001)

 Moderate .9240 .8319 .9313 .9503 .9649

 Yeasaying (.0001) (.0001) (.0001)- (.0Q01) (.0001)

 Moderate .9526 .9880 .9585 .9739 .9697

 Naysaying (.0001) (.0001) (.0001) (.0001) (.0001)
 Extreme .9689 .9953 .9710 .9874 .9628
 Naysaying (.0001) (.0001) (.0001) (.0001) (.0001)

 because of the superior performance of A, and A', only
 these were included in the second simulation. Because

 Az represents a transformation of d' in the case of one h
 andf pair, in a sense d' is dominated by Az, and it is not
 necessary to analyze both measures. In addition, because
 the value of H' depends on the specific distribution of
 hits and false alarms across individuals, we could not
 produce a "true" value for the measure without produc-
 ing "true" values for each subjects' responses. Further-
 more, because HC behaved so poorly in the first simu-
 lation, it seemed pointless to test it for consistency.

 Results. The results of the simulation are displayed in
 Table 2, which shows root mean square error for each
 level of the 6 x 5 x 3 design. Because the upper level
 of true underlying familiarity was set at 3.0, there is some
 distortion in the tabled values due to a ceiling effect. For
 example, when familiarity is set at 3.0, a large number
 of simulated experiments result in hit rates of 100%, thus
 precluding the calculation of Az. Though an underlying
 d' of 3.0 is artificially high, nevertheless, this value was
 chosen to highlight the impact of high levels of famil-
 iarity on the indices. The implication of this for our anal-
 ysis is that the present simulation presents a worst-per-
 formance scenario for Az.

 An examination of the tabled values suggests several
 conclusions. First, the second simulation closely paral-
 lels the findings of the first: Error scores for Az suggest
 that it can be estimated quite accurately, even at high
 levels of true memorability. In contrast, the A' error in-
 creases as the true level of memorability increases from
 .5 to 1.0 and is clearly evident as underlying memory
 reaches 3.0. Second, error for both indices steadily di-
 minishes as the sample size increases from 50 to 400,
 suggesting that both A, and A' appear to be relatively
 consistent. To support this observation, an analysis of
 variance was conducted on the underlying bias scores

 (signed deviations) used to compute the root mean square
 error in Table 2. Statistical consistency should be re-
 vealed through a main effect for sample size and a lack
 of significant interactions between sample size and the
 other factors in the model. The ANOVA reveals just such
 a pattern: The analysis of the Az scores revealed a sig-
 nificant main effect for sample size, F5, 2231 = 5.16, p
 < .0001, and the analysis of the A' estimates showed a
 similar significant main effect, F5, 2610 = 2.74, p < .02.
 In both cases the average bias in the estimates decreased
 as the sample increased. Likewise, no significant higher-
 order interactions involving sample size were found for
 either Az or A'. Finally, an examination of the values in
 Table 2 suggests that, though the mean square error is
 lower for A' than for Az when the mean is .5, within the
 parameters of the present simulation, Az appears to be
 the more efficient of the two estimates. In summary, the
 second simulation clearly suggests that Az appears to be
 a relatively unbiased, consistent, and efficient estimator.
 In contrast, though A' performed in a relatively consis-
 tent manner, it does appear to be less efficient. More-
 over, the second simulation also confirms that A' dis-
 plays considerable statistical bias at higher levels of true
 memorability.

 The second objective of the simulation was to deter-
 mine the impact of variable subject criteria on the in-
 dices. Subject criterion variance does not appear to have
 much of an impact on statistical efficiency, as seen in
 Table 2. The ANOVA conducted on bias scores from
 individual simulations does reveal that increasing subject
 criterion variance leads to increasing negative bias for
 both Az and A'. As already noted, however, because
 sample size does not interact with criterion variance, this
 would not seem to present a major problem. To the ex-
 tent that this is a concern, an obvious solution is to use
 larger sample sizes.
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 Table 2
 ROOT MEAN SQUARE ERRORS  FOR SIMULATION 2

 A, A'

 Sample True ad mean True ad mean
 Var size .5 1.0 3.0 .5 1.0 3.0

 50 .065 .045 .035 .051 .080 .074
 75 .053 .032 .025 .041 .060 .071

 0 100 .042 .029 .022 .033 .051 .048
 150 .035 .030 .015 .026 .047 .049
 200 .034 .020 .008 .028 .033 .043
 400 .021 .015 .008 .016 .025 .028

 50 .081 .056 .037 .058 .105 .066
 75 .052 .045 .036 .039 .064 .063

 .2 100 .050 .036 .021 .041 .065 .055
 150 .037 .032 .015 .029 .049 .041
 200 .030 .020 .012 .024 .031 .041
 400 .022 .015 .009 .017 .025 .032

 50 .066 .046 .040 .049 .067 .096
 75 .061 .037 .036 .047 .054 .067

 .4 100 .040 .035 .021 .030 .047 .064
 150 .035 .035 .017 .025 .050 .043
 200 .036 .024 .012 .026 .032 .030
 400 .018 .019 .012 .014 .027 .031

 50 .077 .060 .038 .053 .076 .089
 75 .041 .055 .029 .029 .070 .070

 .6 100 .036 .057 .034 .025 .077 .055
 150 .046 .048 .025 .032 .060 .048
 200 .036 .046 .026 .025 .060 .049
 400 .025 .041 .020 .018 .051 .036

 50 .059 .081 .053 .044 .096 .080
 75 .049 .078 .043 .034 .090 .071

 .8 100 .053 .071 .038 .036 .086 .048
 150 .039 .074 .033 .028 .089 .057
 200 .036 .064 .040 .026 .078 .058
 400 .034 .063 .035 .024 .078 .055

 SUMMARY AND RECOMMENDATIONS

 We tested the statistical bias, consistency, and effi-
 ciency of four different SDT sensitivity measures: a cor-
 rected-hit probability measure suggested by Singh and
 Churchill (1986), the traditional d' statistic, and two
 nonparametric measures collected from a collapsed-data
 procedure suggested by Macmillan and Kaplan (1985).
 Using simulated data, we clearly show the superiority of
 Az and d' to the other measures. Az is somewhat nonlin-
 ear with true ad memorability, whereas d' is somewhat
 more variable as memorability levels increase toward
 perfect performance. A' also showed a positive relation-
 ship between actual and estimated memorability but, un-
 like Az, confounded decisional bias and sensitivity at higher
 levels of true ad memorability in a manner systemati-
 cally linked to yeasaying/naysaying. Finally, HC pro-
 duced the least valid estimates of ad sensitivity. The
 measure confounded decisional bias and sensitivity across

 all levels of true ad memorability. Furthermore, the for-
 mal evaluation of H' presented in the Appendix suggests
 that it could violate fundamental assumptions of SDT
 models. A second simulation tested the consistency and
 efficiency of the Az and A' measures by manipulating the
 variability of the decisional criteria adopted by individ-
 ual respondents within the group. The results showed
 that the Az measure is remarkably consistent and, in the
 comparison with A', relatively efficient. Overall, our re-
 sults reinforce similar evidence from Macmillan and

 Kaplan (1985) that collapsed procedures produced rel-
 atively unbiased and efficient estimators.

 Recommendations

 Though further testing of the collapsed Az and A' mea-
 sures is warranted, we can draw some relatively clear
 recommendations for their use in ad testing. In the ma-
 jority of cases, the best approach to using SDT for ad
 recognition testing is to employ confidence-rating pro-
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 cedures (as discussed in footnote 2) and compute Az on
 the resulting collapsed data. This approach is relatively
 straightforward and should produce few burdens on typ-
 ical ad testing methodologies currently in use. A FOR-
 TRAN-based program is available (Dorfman and Alf 1969;
 see Swets and Pickett 1982 for a program listing) that
 can calculate easily the Az measure as well as a variety
 of additional statistics from confidence ratings and allow
 the researcher to examine carefully the collapsed ROC
 for a particular target ad. Though computationally more
 difficult, multiple probabilities allow the researcher to
 assess differential signal and noise variances. When such
 differential variance exists, single-point summaries can
 be biased.

 Though the Az measure represents the most appropri-
 ate statistic for SDT analyses of ad recognition data, re-
 searchers may wish to rely on the computationally sim-
 pler A'. As was evident from the first simulation, however,
 one should use caution in employing the measure when
 the true level of ad familiarity is suspected to be quite
 high (d's greater than 1.0). This corresponds to an A'
 score in the range of 60% to 70%.

 At this point it is important to note that the previously
 tested indices all have been computed from data col-
 lected from a yes/no paradigm. We have limited our
 considerations to this paradigm because it enables easy
 collection of data and it has a high level of ecological
 validity (e.g., consumers typically react to one ad at a
 time). In addition, yes/no paradigms enable the re-
 searcher the ability to directly measure response bias and
 to test the hypothesis that target and distractor ads have
 similar error variance. Though A' and the yes/no par-
 adigm are computationally simple, if response bias is not
 of interest in and of itself, then ad researchers may want
 to consider the use of the two-alternative, forced-choice
 paradigm (see Tashchian, White, and Pak 1988 for a dis-
 cussion). In a 2AFC paradigm, the percent-correct index
 of recognition performance is equivalent to Az.

 Some mention is necessary regarding the selection of
 the distractor and target ad similarity. One can imagine
 easily that the selection of distractor ads highly similar
 to the target might produce apparently low levels of rec-
 ognition because the two are so similar. Likewise, one
 could produce an artificially high measure of recognition
 by ensuring that the distractors are grossly dissimilar from
 the target. We recommend that the distractor ads be cho-
 sen with an eye to realism. In particular, the distractors
 should be representative of the actual ads exposed to the
 target market in the target medium. In this way the sep-
 aration of the target and distractor distributions will cor-
 relate most closely with the familiarity of the target ad
 against the kind of noisy background actually confront-
 ing the consumer as he or she queries memory.

 Finally, it is important to note certain limitations with
 the collapsed index approach. Though this methodology
 should be the preferred procedure for researchers inter-
 ested in estimating ad familiarity in a laboratory session,
 the assumptions of this procedure should be explored prior

 to any field applications. SDT is designed to be em-
 ployed within strict bounds of experimental control in
 which the actual exposure history of each respondent with
 each target stimulus is known in advance. Without this
 information, it is difficult to conclusively determine
 whether a real ad represents signal or noise.

 APPENDIX
 DERIVATION OF THE ROC FOR THE BIAS-

 ADJUSTMENT MEASURE

 A common strategy when investigating the validity of an
 index of memorability is to derive its ROC (e.g., Grier 1971;
 Swets 1986). By utilizing the definition of the index, one can
 solve for the hit rate of a specific real ad as a function of its
 false alarm rate.

 To begin, we define y,j as the dummy variable that is set to
 1 if subject i (i = 1, 2, ... N) claims to remember reading ad
 j (j = 1, 2, ..., n); 0 otherwise. Also, we define xik as the
 dummy variable that is equal to 1 when subject i claims to
 remember distractor ad k with k also varying from 1 to n. Note
 that our results do not require an equal number of real and
 distractor ads.

 Using our notation the hit rate for ad j is simply

 1 N

 The pooled false alarm rate is

 1 N n
 f N-E E ik

 Nn k

 or equivalently

 1 N

 f= - fi,

 where f, is defined as the false alarm rate for subject i, that
 is,

 1
 fi. = - Xik .

 n k

 The hit rate for subject i is

 1 "
 hi. = - E Yim -

 n m

 Assume hi. + f. > 1 for all i, which implies that subjects are
 yeasaying. In that case we can write the Singh and Churchill
 (1987) measure for ad j as

 N

 1 - hi. (I - hi.) 1y.
 N fi (1 -f .) -

 Note that the term in the brackets is the measure of bias from
 Hodos (1970) assuming yeasaying. Some algebra leads to

 1 1 N hi. (l-hi.)y Y
 2 c 2N H f (1-f.)

 To express h j as a function of f, we could redefine the fi. in
 the preceding expression as follows:
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 f. = Nf- f, .
 i', i

 If this expression is substituted for f. into the equation for hit
 rate, however, a value of f would not uniquely determine h.j.
 Instead, there is a whole family of ROC curves depending on
 the specific distribution of false alarms, and hits, across the
 individuals in the study.

 Now consider the case in which subjects are naysaying. In
 that case the bias adjustment measure is

 H = h - IN 1 -h h)

 1 fi. (1 -fi.)Yii
 N i hi. (1 hi.)

 As we now see, different ROCs are implied for naysaying
 and yeasaying samples, which violates an important assump-
 tion of the theory of signal detection; namely that an ROC
 represents constant memorability with response bias varying
 within one ROC curve. Therefore, the bias adjustment mea-
 sure is inconsistent with the theory of signal detection.
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