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Graph Matching Based Decision Support
Tools For Mitigating Spread Of Infectious

Diseases Like H1N1
Jomon Aliyas Paul and Kedar Sambhoos

Abstract
Diseases like H1N1 can be prevented from becoming a wide spread epidemic through timely

detection and containment measures. Similarity of H1N1 symptoms to any common flu and its
alarming rate of spread through animals and humans complicate the deployment of such strategies.
We use dynamic implementation of graph matching methods to overcome these challenges.
Specifically, we formulate a mixed integer programming model (MIP) that analyzes patient
symptom data available at hospitals to generate patient graph match scores. Successful matches
are then used to update counters that generate alerts to the Public Health Department when
the counters surpass the threshold values. Since multiple factors like age, health status, etc.,
influence vulnerability of exposed population and severity of those already infected, a heuristic that
dynamically updates patient graph match scores based on the values of these factors is developed.
To better understand the gravity of the situation at hand and achieve timely containment, the rate
of infection and size of infected population in a specific region needs to be estimated. To this
effect, we propose an algorithm that clusters the hospitals in a region based on the population
they serve. Hospitals grouped together affect counters that are local to the population they serve.
Analysis of graph match scores and counter values specific to the cluster helps identify the region
that needs containment attention and determine the size and severity of infection in that region.
We demonstrate the application of our models via a case study on emergency department patients
arriving at hospitals in Buffalo, NY.

KEYWORDS: graph matching, H1N1, disaster planning, hospital demand estimation, public
health, optimization
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1. Introduction 
 

Outbreaks of the H1N1 virus in 2009 have so far led to a total of 18,449 

confirmed deaths around the world (World Health Organization (2009)). Timely 

detection and containment of such outbreaks can prove very helpful in averting 

the economic damage and human deaths and prevent it from becoming a 

widespread pandemic. However, limited success has been achieved in this regard 

because of the following challenges (Medicine Net (2009)): a) The symptoms of 

H1N1 flu are similar to common flu; b) Certain groups of individuals like 

children, pregnant women, those suffering from chronic conditions, elderly, etc., 

are more vulnerable to the virus; c) It can spread from animals to humans as well 

as from humans to humans at an alarming rate; d) Medication available to treat 

this virus cannot be dispensed randomly to people because a non-infected person 

might end up becoming more susceptible to developing H1N1; e) Sufficient 

quantities of vaccination for all of the susceptible population might not be 

available at all the times. Therefore, prioritization and careful determination of the 

population that receives the vaccine might become absolutely critical for efficient 

preparedness and response. 

Research on H1N1 has taken two main directions. One: preparedness by 

simulating hypothetical scenarios to estimate expected cases and necessary 

resources required (Hagenaars et al. (2004), Longini et al. (2005), Feighner et al. 

(2008), Pan-InfORM (2009)). And two: timely detection of flu virus by studying 

the effect of size of infected population on the rate of infection (Mohtashemi et al. 

(2006), Reis et al. (2007)). Though the existing research provides some assistance 

to public health departments in decision making, it has the following 

shortcomings. Firstly, this body of literature bases its results on analysis of data 

from a single hospital and/or analysis of all hospitals in a region collectively. 

Analysis of a single hospital is not a good strategy when it comes to determining 

the size of infected or susceptible population in a region because all the infected 

patients might not receive treatment from the same hospital. Similarly, analysis of 

all hospitals together without a well-defined grouping logic might lead to errors 

and in many instances to a lot of false alarms. Secondly, number of infected is not 

a reliable measure of rate of infection because it does not precisely model the 

effect of severity of infection. Therefore, use of such a metric might result in 

inaccurate estimates of the rate of infection. In addition, two groups of infected 

individuals or those showing up with flu like symptoms, can have different rates 

of infection depending on whether they are part of high risk groups (chronic 

conditions, children, pregnant women, etc.) or not. 

We overcome the above challenges through dynamic graph matching. We 

propose models that would perform continuous scanning of hospital patient data 

with the objective of finding patterns by comparing it with templates containing 
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the basic symptoms seen in infected patients. In this study, the incoming patient 

symptom data acts as sensor data. The data gathered from the hospital is assumed 

to be accurate and transcends the need to be tracked. The hypothesis of this 

research, infection template, is created using the help of Subject Matter Experts 

(SME) in this case doctors. Graph match scores developed using models proposed 

in this paper take into account not only the number of matching symptoms but 

also the severity of infection and therefore is a more reliable metric. Successful 

graph matches update values of counters. When values of the counter surpass the 

threshold values, public health officials are notified of a possible outbreak. This 

process acts as a situation and threat assessment tool for the analyst in this case 

public health officials. 

As discussed earlier, if data of all the hospitals are aggregated and 

analyzed together, it can not only lead to lot of false alarms but also add to 

challenges in accurately identifying the origin and size of outbreak in a region. 

We overcome this challenge with the help of a grouping algorithm that estimates 

the degree of belonging of hospitals to specific clusters they serve. This algorithm 

enables the data of hospitals in the same cluster to be analyzed together and 

therefore, increases the probability of detection and helps reliably identify the 

location of outbreak. This would help government officials take decisions like 

closing of schools or colleges in a region to avoid wide scale spread. As 

additional decision support, we propose continuous monitoring and comparison of 

the total graph match scores of patients coming to hospitals with flu like 

symptoms with normal week data to detect any anomalies and also get a reliable 

estimate of the rate of infection. To summarize, we formulate a comprehensive 

disaster methodology that can be used for improved detection and containment of 

infectious diseases like H1N1. Paul et al. (2009) have developed similar models 

but those are specific to bioterrorist attacks.  In addition, they achieve matching 

through the use of a heuristic as graphs involved in their study are very large. For 

infectious diseases like H1N1 that involve smaller graphs, optimal solutions can 

be obtained using exact models proposed in this paper. Accuracy is of utmost 

importance especially when dealing with diseases like H1N1 because the 

symptoms are very similar to commonly occurring flu.  

The rest of the paper is organized as follows: Section 2 provides the 

problem background and gives the motivation behind the proposed methodology 

which is described in Section 3. The operational framework for the modeling 

logic as well as the details on our nominated algorithms of graph matching and 

hospital grouping is discussed in section 3. Section 4 demonstrates the 

methodology and results from its application via a realistically simulated case 

study. Finally, we provide additional decision making strategies in Section 5 

followed by our conclusions and recommendations in Section 6. 
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2. Background 
 

Diseases like H1N1 run the risk of becoming an epidemic if not detected in the 

earlier stages. Its similarity to common flu, ability to spread via different 

transmission agents and modes, differences in susceptibility of individuals due to 

age, health status, pregnancy condition, etc., make its timely containment a 

considerable challenge. Prior studies focusing on these critical issues include a 

metapopulation stochastic epidemic model developed by Colizza et. al. (2007). 

This research focused on the temporal and spatial evolution of a pandemic subject 

to different levels of infectiousness and initial outbreak conditions (both 

geographical and seasonal). The objective of their work was to study the 

worldwide spread of a pandemic and its possible containment at a global level 

using air travel data. In a similar work, Das et al. (2007) developed a stochastic 

simulation model on the propagation of an epidemic and then proposed a Markov 

Decision Process model with a reinforcement learning framework to study 

possible mitigation strategies. Mathews et al. (2007) used Monte Carlo Markov 

Chain methods to estimate the clinical attack rate of influenza subject to variation 

in immunity and asymptomatic nature of infection in the population considered. 

Ekici et al. (2008) developed disease spread and location models to estimate the 

food needs and the food distribution network setup during an influenza outbreak. 

Medlock and Galvani (2009) used a parametric model to determine the optimal 

allocation of vaccines during an influenza outbreak. The model used survey based 

contact data and mortality data from influenza pandemics to determine the 

allocation for five outcome measures: deaths, infections, years of life lost, 

contingent valuation and economic costs. 

Mohtashemi et al. (2006) modeled the short-term dynamic interaction 

between different subpopulations with respect to an infectious disease using a 

nonlinear system of difference equations. They used the model to detect 

anomalous deviations from historically observed events to estimate the rate of 

infection. Reis et al. (2007) developed a class of epidemiological network models 

to monitor the relationships among different health-care data streams instead of 

monitoring the data streams themselves. The extra information present in the 

relationships between the data streams was used to enhance the detection 

capabilities of the system and at the same time increase the system’s robustness to 

unpredictable baseline shifts therefore increasing the likelihood of detection of a 

pandemic.  Most of the extant literature in pandemic planning has focused on 

simulating the disease propagation and estimation of resources required to 

efficiently handle the outbreak. Though some work has been done to enable early 

and efficient detection there are still a number of questions associated with 

detection and containment that are unanswered and under researched (discussed in 

the introduction section).  
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While there are a lot of lingering questions, most of them can be addressed 

through a mechanism that is able to detect these infections at an early stage. We 

propose a graph matching approach to this effect. We use graphs for representing 

data since it maintains relationships and entities and gives a sense of overall view 

at a glance to the person. In this research area, we use attributed graphs to 

represent important data. The nodes represent important information while the 

properties are represented as attributes. The relationships within nodes are 

represented as edges, where the extra information can be represented as edge 

attributes. There has been a vast amount of literature focusing on representation 

and analysis of graphical data representations (Si et al. (1991), Li et al. (2005), 

Tong et al. (2007)). 

Graph matching can be classified into two categories: exact graph 

matching and inexact graph matching. Various inexact graph matching algorithms 

are available in extant literature for solving these problems (Conte et al. (2004), 

Hlaoui and Shengrui (2002), Romanowski and Nagi (2005), Cesar et al. (2005), 

Salcedo et al. (2006), Cross et al. (1997), Gold and Rangarajan (1996), Wilson 

and Hancock (1997), Finch et al. (1998)). These algorithms although are mainly 

designed to solve large sized graph matching problems. The exact sub-graph 

matching problems provide exact matches but they have been proven to be NP 

complete (take exponential time for large sized problems). The patient symptom 

data however is smaller in size and hence we propose an exact approach towards 

inexact graph matching. This algorithm finds inexact matches with greater 

accuracy. If there exists a match between the patient symptom graph and the 

H1N1 symptom graph, it will be definitely found by this approach. In the past 

such an approach was considered unthinkable, but with modern day fast 

processors such problems can now be easily executed.  

As a result of the similarity of H1N1 symptoms to any other flu, analysis 

of patient data of all hospitals in a region collectively can result in false alarms. 

This challenge could be overcome if there exists a mechanism that could 

accurately estimate demand distribution for medical care in all the sub regions of 

a region. For example, if a significantly high number of patients show up with 

H1N1 symptoms from the same sub region, this would suggest a higher 

probability of outbreak in that specific sub-region compared to same number of 

patients presenting to the hospital from the entire region.  There are several 

methods available in literature to study the demand distribution problem. For 

instance, Cohen and Lee (1985) developed a multinomial logit model to help 

predict hospital utilization. They considered patient travel time to hospitals, 

physician specialty, patient characteristics, features attributing to hospital 

attractiveness to patients etc. in their model. Hunt-Mc cool et al. (1994) used four 

functional forms with each model incorporating demand for physician outpatient 

services as a response variable with socioeconomic variables such as income, age, 
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etc., urbanization and self-reported health indicators as predictor variables. In 

another study, real population or the demographic structure and population 

denominators such as tourist load or floating population has been shown to have a 

profound impact on the healthcare service utilization (Perea-Milla et al. (2007)). 

Another approach available in literature involves use of gravity models for 

representing patient flows as a function of patient demand, available resources, 

indices of accessibility and proximity with an aim to reconfigure emergency 

services (Congdon (2001)). These models have been used to study the effect of 

closure of existing sites, addition of new sites, addition of beds at existing sites 

etc. on the patient flows. Paul et al. (2009) in their study focusing on planning for 

bioterrorist attacks have proposed a grouping algorithm that uses a gravity model 

for demand estimation. In this study, we use a variant of their approach to 

calculate the degree of belonging of a patient cluster or a sub-region to a hospital. 

Specifically, we propose an MIP model that assigns demand clusters to hospitals 

based on their proximity and available Emergency Department (ED) capacity. 

This grouping enables the data of hospitals in the same cluster to be analyzed 

together. In addition to the hospital grouping approach, our graph matching 

algorithms are designed such that they assign greater weights to patients with 

larger number of symptoms of H1N1, age and health status that makes an 

individual more susceptible to acquiring H1N1, etc., thereby further reducing the 

chances of false alarms. Next, we present the methodology designed to aid timely 

and efficient detection and containment of H1N1. 

 

3. Methodology 
 

In this section, we first highlight the characteristics of H1N1 that need to be 

considered for any planning effort especially the ones focusing on detection and 

containment. Secondly, we present a macro view of the operational framework of 

our models. Thirdly, we present the graph matching algorithm used to determine 

patient graph match scores including the dynamic score generating heuristic that 

is part of this macro model. Finally, we present the hospital grouping algorithm 

that enables the efficient use of the patient graph match scores. 

 
3.1. Symptoms 

 

Symptoms of swine flu are similar to regular flu and include fever, cough, sore 

throat, runny nose, body aches, headache, chills, and fatigue. Some H1N1 patients 

have had diarrhea and vomiting. All the infected patients exhibit at least two of 

these symptoms. Like seasonal flu, pandemic swine flu can cause neurologic 

symptoms in children. Though rare, such instances can be very severe and often 

fatal. Symptoms include seizures or changes in mental status (confusion or sudden 
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cognitive or behavioral changes). Lab tests performed by State Health 

departments only can definitively show whether a patient has swine flu. For most 

people, swine flu is a mild illness. Some people get better by staying in bed, 

drinking plenty of water and taking over-the-counter flu medication. However, 

some groups of people are more at risk of serious illness if they catch swine flu, 

and will need to start taking antiviral medication as it is confirmed that they have 

it. These groups include those that might be suffering from chronic diseases of 

lung, heart, kidney, liver, neurological disorders (for example, motor neurone 

disease, multiple sclerosis and Parkinson's disease), immuno suppression 

(whether caused by disease or treatment), diabetes mellitus etc. Also at risk are 

patients who have had drug treatment for asthma within the past three years, 

pregnant women, people aged 65 and older, and young children under five. The 

other important elements that need to be considered are the duration and severity 

of illness. For example, if person develops cough and after a couple of days it 

becomes severe and person has yellow sputum or blood then the person has a 

greater chance of suffering from H1N1 than a person with a mild cough. 

 

3.2. Proposed Modeling Architecture 

 

Continuous processing of hospital patient data by comparing it with symptoms of 

H1N1 can prove invaluable in detection of an H1N1 outbreak. The basic process 

that we use to accomplish this objective is as follows. First, incoming patient data 

at hospital ED is compared with H1N1 symptom template and scores measuring 

the strength of this match is generated using dynamic graph matching algorithms. 

These scores are then used to update counters. Since H1N1 symptoms are very 

similar to commonly occurring diseases like influenza and severity of incoming 

patient illness could depend on multiple factors (discussed in prior section), only 

scores that exceed fixed thresholds are considered. Once the counter surpasses a 

threshold value, alerts are sent to public health officials warning them about an 

outbreak. Figure 1 presents the basic operational framework of models proposed 

in this study. 
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Fig 1. Process Flow adapted from Paul et al. (2009). 

 

3.3. Graph matching 

 

Time is one of the most critical components in response to a H1N1 event. The 

sooner the authorities know about a H1N1 outbreak, the sooner they can curb the 

spread. To aid in early detection, the most popular technique researchers have 

developed is syndromic surveillance especially in the field of bioterrorism. The 

work on syndromic surveillance has a few shortcomings like lack of theoretical 

evaluation which raises concerns about its validity and performance (Stoto et al. 

(2004)). Graphical techniques have been around for a while and have been 

successfully applied to various problem domains. Recent research has 

demonstrated the ability of graphical techniques in effective handling of 

streaming dynamic data (Stotz et al. (2009)). 

Data representation in graphs is one of the most important aspects of this 

research. The incoming instantaneous patient data and standard H1N1 patient 

symptom data is represented as attributed graphs. The attributed graph structure is 

given as G = (V, E, A, aV, aE), where V is a set of nodes, E is a set of arcs, A is a 

set of node attributes, and aV: V →A, aE: E →A.  Graph matching is used when 

the recognition is based on comparison with a model: one graph represents the 

model or data graph and another one the template or hypothesis where recognition 

has to be performed. In our research the model is the hospital patient symptom 

data while the hypotheses are the standard symptoms of H1N1. Figure 2 shows a 

simple example of a data graph and a template. 
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Fig 2. An example of data graph and template.  

 

3.3.1. Exact Approach towards Inexact Graph Matching 

 

Many different graph matching techniques can be applied to search for an 

isomorphism that will exactly match the Target Graph and some portion of the 

data graph generated from the hospital patient symptom data. However, in 

asymmetric problem environments with high levels of uncertainty in the 

observational data, the isomorphism condition can be too strong in many real 

problems and cannot be expected between both graphs. In these cases, such 

problems call for inexact graph matching, and the aim of such an approach is to 

search for the best homomorphism possible. The inexact graph matching problem 

has been proved to be NP-hard, and therefore heuristic algorithms that provide an 

approximation to acceptable solutions are required. However, problems involving 

small graphs can be formulated as an MIP model. This approach yields the best 

solution that any inexact graph matching approach can aim for. This approach is 

suitable in our problem scenario since the size of the data graphs is relatively 

smaller in comparison to those that require heuristics (Paul et al. (2009)). The 

mathematical formulation is shown as follows: 

 

Parameters: 

Data graph GD = (VD, ED)  

Template graph GT = (VT, ET) 

VD, VT = Set of nodes in data graph and template graph respectively 

ED, ET = Set of edges in data graph and template graph respectively 

Sij = Similarity score between Data Graph node i and template graph node j. 

Cij,uv = Similarity score between data graph edge (i, u) and template edge (j, v). 

The value is negative infinity if there is no edge (i, u) or (j, v). 
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Variables: 

��� � �1 if data graph node � is associated with template graph node 	0 otherwise
�  

���,�� �
�1 if data graph edge ��, �� is associated with template graph edge �	, ��0 otherwise

�  
where, �, � � ��  	, � � ��  ��, �� � ��  �	, �� � ��  

Formulation: ����∑ ∑ �������� �  ∑ ∑ ���,�����,����,����,��    

Subject To: ��� !  ���,��                    " ��, �� # �� , �	, �� # ��   (1) ��� !  ���,��                    " ��, �� # �� , �	, �� # ��   (2) ∑ ��� � 1                                           " 	 # ���    (3) ∑ ��� $ 1                                           " ��   # ��   (4) ��� � 0 %& 1                                        " �  # �� , 	  # ��   (5) 0 $ ���,�� $  1                                   " ��, �� # �� , �	, �� # ��    (6) 

 

The objective function maximizes the similarity score between data graph 

node i and template graph node j. Here Sij is the similarity score between data 

graph node i and template graph node j and Cij,uv is the similarity score between 

data graph edge (i, u) and template edge (j, v). Constraints 1 and 2 make sure that 

the edges are assigned if and only if the corresponding nodes are assigned. 

Constraint 3 ensures that at least one of the data graph nodes is assigned to a 

given template graph node. Constraint 4 makes sure that no more than one data 

graph node gets assigned to multiple template graph nodes. Constraints 5 and 6 

are bounds on the x and y variables. In the formulation, y is defined as continuous 

to reduce the complexity of the mathematical model. In an optimal solution y will 

take on 0 or 1 values, by definition of constraints 1 and 2 and positive Cij,uv values 

make sure that y will never take an intermediate value. The formulation is coded 

in C++ and executed using CPLEX 9.0, leading mixed integer linear 

programming software, to solve the problems. 

When analyzing patient symptom data that is dependent on a number of 

dynamic factors, using a static template to match patient data is not meaningful. 

The template needs to be continuously adjusted to incorporate the effect of factors 

like difference in severity of symptoms, time since infection, terrorism risk of the 

region the incoming patients belong to etc. This pre-processing dynamic step 
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should be completed to make sure that the importance factor for each of the 

symptoms is taken into consideration. It would also help in differentiating 

between common symptoms like fever and cough from flu season or influenza 

outbreak from H1N1 symptoms. We achieve this using a dynamic score updating 

heuristic discussed in the next subsection. 

 

3.3.2. Dynamic Score Updating Heuristic 

 

Two patients with the same symptoms but showing up at hospitals at different 

infection stages (severity) cannot be compared to the template in the exact same 

manner. Similar situation arises if one patient belongs to risk groups mentioned in 

3.1 and other does not. To address this, we suggest a heuristic that dynamically 

updates the scores. One key element of the heuristic is to give variable 

significance to scores based on the time since the beginning of symptoms, 

severity of symptoms and whether they belong to a risk group or not. We use 

average incubation period length and type of the patient i.e. risk group or not, and 

severity of symptoms patients shows up with as standards to rate the overall 

severity of the patient. If the length of period since the patient had the symptom is 

almost close to the average incubation period for H1N1 patients we rate it as more 

severe than if it was less than the incubation period length. Similarly, belonging to 

a risk group and/or showing up with severe cough or other flu like symptoms 

would increase the probability of getting infected compared to those not 

belonging to the high risk groups and/or those showing up with less severe 

symptoms. Thus, we follow a multi parameter approach to modify the scores. The 

heuristic that we use is provided in Figure 3. 

 

 

Fig 3. Heuristic for graph match score update. 

Importance calculator (Patient Match Score is modified after patient data 

arrives, specific to each patient)) 

 
SET 

Updated_Match_Score = Match_Score * Severity_Index*((tarrival-tsymstart)/tinc); 

WHERE: 

Severity_Index = weightage based on severity of patient condition and if he/she 

belongs to the risk group or not, values 1 or 0. 

Risk group = {children, pregnant women, elderly, those with chronic 

conditions, people with chronic condition}, Severity index is set at 1 (if patient 

belongs to risk group irrespective of patient condition) 

tarrival = Time at which patient arrived at the hospital, 

tsymstart = Time at which symptoms started, 

tinc = Average length of incubation period, 
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3.3.3. Sample Templates 

 

Figure 4 describes a sample template for H1N1. 

 

 
 

Fig 4. Template for H1N1. 

 

3.4. Hospital Grouping 

 

One of the issues with relying merely on graph matching for the base process flow 

described in Figure 1 is that it does not correlate findings from network of 

hospitals in the region. This might result in delays in detection and at the same 

time lead to an inaccurate estimation of spread of infection in a region. However, 

if we group data of all the hospitals in a region, it might lead to a lot of false 

alarms. This is partly because hospitals in a region might only serve populations 

from a certain sub region. In this study, we use a variant of the approach 

developed by Paul et al. (2009) to group hospitals that serve the same demand 

clusters. Specifically, we develop an MIP model that determines the allocation of 

a demand from a population cluster to different hospitals. This grouping enables 

the data of hospitals in the same cluster to be analyzed together and increases the 

probability of detection (minimizes false alarms) of an outbreak. In addition, it 

also gives a much better estimate of total infected people in a region. This piece of 

information is not only important for containment but also in determining the rate 

of infection and the necessary resources therefore to control an outbreak. 

As patients arrive at a hospital, their address information (cluster that they 

belong to) is recorded along with other details. If the dynamic graph matching 

algorithm indicates that the patient has symptoms similar to H1N1, counters 

specific to the cluster are updated. This is based on the assumption that patient 

belonging to a certain cluster arrives at a hospital belonging to the grouping 

identified by the gravity model as serving that particular cluster. When counter 

values surpass the threshold value, the public health officials are notified of a 

possible outbreak. This helps officials determine which region needs more 

attention with regard to containment. The values of the counters represent the 

approximate size of infected population. The graph match scores at the same time 

indicate the severity of infection and also the size of infected population. The 
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higher the number of infected and severity of infection, the larger the total graph 

match scores of patients on any day will be.  

The region under study is divided into clusters using k-means clustering 

algorithm (MacQueen (1967)). The k-means clustering algorithm works as 

follows:  

• The data-set is partitioned into C clusters and the data points are randomly 

assigned to the clusters such that each cluster has roughly the same 

number of data points. The centroid of a cluster is determined and it can 

be assumed to be the mean of all the data points in the cluster.  

• For each data point:  

o Calculate the distance from the data point to each cluster. 

o  If the data point is closest to its own cluster, leave it in the same 

cluster. Otherwise, move it into the closest cluster.  

• Repeat the above step until a complete pass through all the data points 

result in no data point moving from one cluster to another. At this point 

the clusters are stable and the clustering process ends.  

Since there is a possibility that an inappropriate value of k could lead to 

incorrect clustering, we used silhouette index to determine the best value of k, the 

total number of clusters. Silhouette refers to a method of interpretation and 

validation of clusters generated using a clustering algorithm like k-means. The 

technique provides a succinct graphical representation of how well each object 

lies within its cluster (Rousseeuw (1987)). It is a based on a comparison of 

average dissimilarity of a data point with all the other data within the same cluster 

to that of data belonging to all the remaining clusters. Let a(i) and b(i) be these 

two measures respectively for a data point i. a(i) can be interpreted as how well 

matched i is to the cluster it is assigned (the smaller the value, the better the 

matching). b(i) is selected as the minimum value out of those obtained for each 

remaining cluster that i is not a part of. b(i) can be interpreted as the neighboring 

cluster of i as it is, aside from the cluster i is assigned, the cluster i fits best in. The 

silhouette index using a(i) and b(i) can be defined as follows: 

'��� � (���)*���
+,- .*���,(���/                                     (7) 

This can be simplified as follows: 

'��� �
01
2
131 4 *���

(��� ,   �5 ���� 6 7���
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 �              (8) 
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From the above definition it is clear that 

41 $ '��� $ 1 (9) 
 

As a(i) is a measure of how dissimilar i is to its own cluster, a small value 

means it is well matched. Furthermore, a large b(i) implies that i is badly matched 

to its neighboring cluster. A value of s(i) close to one indicates that the datum is 

appropriately clustered. If s(i) is close to negative one, then it indicates that i 

would be more appropriate if it was clustered in its neighboring cluster. An s(i) 

near zero would mean that the datum is on the border of two natural clusters. The 

average s(i) of a cluster is a measure of how tightly grouped all the data in the 

cluster are. Thus the average s(i) of the entire dataset is a measure of how 

appropriately the data has been clustered. Too few or too many clusters highlight 

a poor choice of k and therefore some of the clusters will display much narrower 

silhouettes than the rest. Thus the silhouette index is a powerful tool for 

determining the natural number of clusters within a dataset. Once the clusters are 

developed, we use the following formulation to group hospitals that serve the 

same cluster. 

 

Notations: 
i = demand cluster, 

j = hospital facility, 

I = set of demand clusters, 

J = set of hospital facilities, 

s = fictitious site (serves as a reserve location in case the hospitals in the region 

cannot serve the demand). 

Parameters: 
ci = demand at cluster i, 

wj = ED capacity at hospital j, 

wj =Round((92*Bj+2267)/EDcapacity_scaler+ORj +3)) (Yi et al. (2010)), 

Bj = number of beds in hospital j, 

EDcapacity_scaler = constant (depends on the size of the hospital), 

ORj = number of operating rooms in hospital j, 

dij = distance from cluster i to hospital j. 

Decision variables: 
yij= proportion of demand cluster i that is allocated to hospital j. 

Formulation: 

��9 : : ;����<��
=>?

�@A

B

�@A
 

s.t. 
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(11) 

 

Constraint 10 makes sure that total population from all the clusters 

allocated to a hospital is less than equal to the capacity of the capacity. Constraint 

11 ensures that all clusters are served. Once we obtain the yij values from the 

above formulation, we create a counter that groups all the hospitals that serve a 

particular cluster i. Each hospital could update different counters depending on 

how many clusters they serve. In order to avoid any errors we always keep track 

of patient information with regard to the cluster they belong to before updating 

the counter. We recommend continuous scanning of graph match scores with 

normal week data to determine any major deviations that indicate a possible 

pandemic. It is also beneficial to compare data from consecutive days and those 

within a fixed time window in order to detect any abnormal trends. To this effect, 

comparison of means and skewness of graph math scores would be really 

beneficial to public health officials in their planning and preparedness. In some of 

the papers dealing with detection for example, Mohtashemi et al. (2006), number 

of infected is used to determine the rate of infection. This might not be the best 

way to estimate infection rate because two days can have the same number of 

infected but differ with regard to type of patients and severity of infection. This 

difference could lead to totally different rates of infection in the affected region. 

Moreover, our hospital grouping approach should help improve the accuracy in 

estimating infection than prior detection models that analyze a single hospital data 

or group all the hospital data for their decision making. We demonstrate the 

relevance of the continuous scanning in our case study section with a small 

example. 

 

4. Case Study 
 

For the purposes of our case study, we simulated 1000 cases of patients that 

arrived at the emergency department with various symptoms. We can deploy this 

approach at all levels. We have shown a city level model (for demonstration 

purposes) and hence this model can be applied at the state level too. We suggest 
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this model to be applied at state level at maximum, because the area of infection 

at outbreak will usually not span more than the area of a typical state. Another 

reason is health jurisdictions would prevent officials from taking any actions 

beyond their state boundaries. We chose Buffalo, NY as the region of focus for 

our case study. We use the demographic information available on Buffalo, NY 

from the IDcide - Local Information Data Server datasource (IDcide (2011)) to 

generate the case data. One of the key pieces of information we used is included 

in Table 1. 

 

Tab 1. Demographic details for Buffalo, NY 

 
Men Women Total 

Under 20 15% 14% 29% 290 

20 to 40 14% 16% 30% 300 

40 to 60 11% 13% 24% 240 

Over 60 7% 10% 17% 170 

Total 47% 53% 100% 1000 

 

Each patient record included the following information: latitude, longitude 

or zip code (indicating location), symptoms they come in with, age, pregnancy 

status (yes or no), chronic conditions (yes or no). Based on the silhouette index 

and application of k-means clustering algorithm, we were able to assign the 1000 

patients to 20 clusters (0.526). We noticed that the silhouette index improved with 

larger number of clusters but then it lead to too few patients per cluster. In 

addition, a silhouette index of 0.526 indicated a good grouping. So we chose 20 as 

the final number of clusters. This information was then applied to the MIP 

hospital grouping model. The information we collected for hospitals that were 

part of our case study is provide in Table 2.  

 

Tab 2. Hospitals considered in the case study. 

 
Hospital Latitude Longitude No of Beds No of OR 

Buffalo General Hospital 42.9008 -78.8657 1558 58 

Erie County Medical Center 42.9271 -78.8292 1137 12 

Mercy Hospital of Buffalo 42.8473 -78.8127 349 16 

Kenmore Mercy hospital 42.9776 -78.8824 184 8 

 

The region considered for the problem along with the hospital and cluster 

locations is shown in Figure 5. It was generated using Arc GIS Explorer. 
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The 1000 simulated patient cases and the hospital information in Ta

were used as inputs to the hospital grouping MIP model (discussed in the section 

3). The counters that were created as outputs from the grouping model are given 

in Table 3. The first subscript represents the cluster and the second one represents 

the hospital it is served by. As can be noted, the clusters 4 and 10 are served by 

multiple counters and therefore counter values for these clusters need to be 

grouped together for decision analysis.

 

Fig 5. Problem Study Region. 

 

The 1000 simulated patient cases and the hospital information in Ta

were used as inputs to the hospital grouping MIP model (discussed in the section 

3). The counters that were created as outputs from the grouping model are given 

in Table 3. The first subscript represents the cluster and the second one represents 

hospital it is served by. As can be noted, the clusters 4 and 10 are served by 

multiple counters and therefore counter values for these clusters need to be 

together for decision analysis. 

 

 

The 1000 simulated patient cases and the hospital information in Table 2 

were used as inputs to the hospital grouping MIP model (discussed in the section 

3). The counters that were created as outputs from the grouping model are given 

in Table 3. The first subscript represents the cluster and the second one represents 

hospital it is served by. As can be noted, the clusters 4 and 10 are served by 

multiple counters and therefore counter values for these clusters need to be 
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Tab 3. Counters specific to clusters and hospitals. 

 
Cluster Hospital Counters 

1 1 C1_1 

2 1 C2_1 

3 2 C3_2 

4 1 C4_1 

4 2 C4_2 

4 4 C4_4 

5 2 C5_2 

6 2 C6_2 

7 1 C7_1 

8 1 C8_1 

9 4 C9_4 

10 1 C10_1 

10 3 C10_3 

11 1 C11_1 

12 1 C12_1 

13 2 C13_2 

14 2 C14_2 

15 1 C15_1 

16 1 C16_1 

17 2 C17_2 

18 3 C18_3 

19 1 C19_1 

20 1 C20_1 

 

Similarly, the patient information on symptoms, age, etc., was used as 

input to the graph matching model to obtain their scores. The patient’s symptom 

and H1N1 template graphs are stored as XML files. The exact approach to graph 

matching along with the dynamic score updating heuristic was coded in C++ 

while the optimization was run using CPLEX 9.0 interface. Examples of patient 

symptom graph and the template graph against which they were compared are 

provided in Figure 6. 
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 a) Template Graph  b) Sample Patient Graph 

 

Fig 6. Graphs depicting the template and a randomly selected patient. 
 

The distribution of scores obtained using the graph matching algorithm 

and dynamic graph generation heuristic can be noted from the histogram shown in 

Figure 7. 

 

  

Fig 7. Histogram of graph match scores. 
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Once the scores were developed, the next step was to determine the 

threshold value for these scores i.e. ε1 and ε2 as per Figure 1. These values are 

extremely important as inappropriate values could lead to lot of false positives 

and negatives. The threshold value ε1 would be a limit such that if patient graph 

match score is above it, it indicates patient has H1N1. The following factors were 

considered in deciding value of ε1 and ε2. a) An infected patient would at the least 

have two of the symptoms resulting in a score at least equal to 2/12 or 0.167 b) A 

perfect match is never possible (score of 1). c) Even a score above 0.6 would be 

too difficult for an infected patient as it would require a patient to have more than 

six of the 12 symptoms (based on discussions with physicians). Therefore, a value 

of 0.4 was selected for ε1 as it lies approximately in the center of the interval 

[0.1667, 0.6] and a value of 0.1667 was selected for ε2. Any score above ε2 and 

less than ε1 would require additional medical testing for validation of patient 

condition.  

In addition to the threshold values, we also had to determine δ, a threshold 

for the counter values (Figure 1). Based on our discussions with physicians, we 

selected a value of 5 for δ. Once these values were decided, the scores were then 

used to update the appropriate counters. We include two sets of counters in our 

results. The first set of values indicates the number of infected in each cluster. The 

second set of values show the patient cases that need additional testing for 

validation. The second piece of information could be used by public health 

officials to determine resources they need or would need to provide to the 

hospital. The counter values indicating the size of infection is shown in Figure 8. 

Similarly, the size of population belonging to each cluster that would need further 

testing for validation is shown in Figure 9. These pieces of information would 

prove invaluable for public health officials as well as hospitals in the Buffalo 

region. 
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Fig 8. Size of infection (by cluster and hospital they get served) 

 

 

 
 

Fig 9. Size of population needing testing (by cluster and hospital they get served) 

 

Alerts were sent out to the public health officials for all the counters that 

were above δ. Thus based on the score analysis, it was possible to determine the 

location and size of infection. 

23

15
16

1
2

5

22

3

25

13

17

3

17

7

14

10 10

26

8
7

31

7

12

0

5

10

15

20

25

30

35

28

25

30

3
4

17

32

16

31
32

24

5

21

8

36

11

23
24

20

11

38

13
15

0

5

10

15

20

25

30

35

40

20 JHSEM: Vol. 9 [2012], No. 2, Article 9

Brought to you by | University of Michigan
Authenticated

Download Date | 5/19/15 7:25 PM



5. Additional Decision Making Strategies 
 

It is possible that the values of counters do not exceed the threshold in the initial 

stages of infection due to very small size of infected population or very low 

severity of infection. However, with passage of time, the symptoms might become 

severe thereby elevating the graph match scores and leading to a larger infected 

population. One of the ways to detect infection in the early stages without totally 

relying on counters is to check for anomalies in graph match scores through 

continuous comparison of scores from consecutive days and scores of days within 

a certain moving time window. This is due to the possibility of scores being 

insignificant on consecutive days but being different from each other when 

compared with multiple days since diseases like H1N1 generally have an 

incubation period. This can be achieved through comparison of average scores for 

consecutive days using t-test and post hoc comparison tests and comparison of 

skewness of data for multiple days (more than two) within a predefined time 

window. The time window for infectious diseases could be set equal to its 

incubation period which for H1N1 is approximately seven days. Any significant 

change in the mean, skewness of the distribution during such comparisons could 

be used to alert public health officials. We demonstrate one possible scenario 

through comparison of average graph match scores from two random days (Figure 

10). As can be noted, not only has the average changed significantly from 0.10 to 

0.19 (p-value <0.01) but so has the skewness. Such major changes in the 

variability of score data or average could provide useful information to public 

health officials. 
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 a) Distribution for day t b) Distribution for day t+1 

 

Fig 10. Comparison of scores from two consecutive days. 
 

The decision support tools developed in this paper (summarized in Figure 

11) can assist the public health officials with the following:  

a) Provide timely alerts to public health officials for implementing precautionary 

actions without singularly relying on lab test outcomes. 

b) Identify the location and size of H1N1 outbreak. This will make quarantine 

and/or containment measures more effective. 

c) Help prioritize the population that requires vaccination or increased medical 

attention in a hospital.  

d) Assist in prioritization of patient samples requiring lab testing by identifying 

patients that have a higher probability of being infected with H1N1. This is 

important because the existing protocol requires hospitals to send samples for 

lab testing for anyone that comes with flu like symptom. Random testing 

might lead to delays in detection of an outbreak. 
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Fig 11. Process flow of the H1N1 detection algorithm.

 

6. Conclusions 
 

This research spans the areas of situation assessment and threat estimation 

wherein the situation is perceived through the analysis and understanding of the 

patient symptoms and the area of infection. Specifically, we propose dynamic 

graph matching algorithms that compare patient data to H1N1 symptom template. 

Based on the graph matching scores generated, threat alerts are sent to public 

health officials in case of an outbreak. 

matching algorithms assist in identifying and isolating the infected areas. To 

summarize, they are able to improve the precision of syndromic surveillance and 

mitigate the source of infection.

Applications of the p

With minor modifications, these models could be used for epidemics such as 

SARS, bird flu, future variations of H1N1 virus, etc., as well as early detection 

and isolation of terrorist attacks. It can also 

resources to prevent and mitigate the effects of chronic diseases like Diabetes, 

HIV/AIDs, etc. Specifically, the models can help estimate the size and 

characteristics of the affected population in a region. In the current 

data availability issues, we had to rely on a simulated data set. In the future 

extensions of this research effort aimed at providing implementation guidelines 

for our models to prospective users, we plan to use real hospital data to increase

the user confidence. In addition, we plan to partner with medical personnel to 

develop more sophisticated mechanisms to estimate the preset threshold values 

currently based on H1N1 symptom templates.

 

 

. Process flow of the H1N1 detection algorithm. 

This research spans the areas of situation assessment and threat estimation 

wherein the situation is perceived through the analysis and understanding of the 

d the area of infection. Specifically, we propose dynamic 

graph matching algorithms that compare patient data to H1N1 symptom template. 

Based on the graph matching scores generated, threat alerts are sent to public 

health officials in case of an outbreak. Hospital grouping models along with graph 

matching algorithms assist in identifying and isolating the infected areas. To 

summarize, they are able to improve the precision of syndromic surveillance and 

he source of infection. 

Applications of the proposed research extend well beyond H1N1 planning. 

With minor modifications, these models could be used for epidemics such as 

SARS, bird flu, future variations of H1N1 virus, etc., as well as early detection 

and isolation of terrorist attacks. It can also aid in the optimal allocation of 

resources to prevent and mitigate the effects of chronic diseases like Diabetes, 

HIV/AIDs, etc. Specifically, the models can help estimate the size and 

characteristics of the affected population in a region. In the current study, due to 

data availability issues, we had to rely on a simulated data set. In the future 

extensions of this research effort aimed at providing implementation guidelines 

for our models to prospective users, we plan to use real hospital data to increase

the user confidence. In addition, we plan to partner with medical personnel to 

develop more sophisticated mechanisms to estimate the preset threshold values 

ased on H1N1 symptom templates. 

 

 

This research spans the areas of situation assessment and threat estimation 

wherein the situation is perceived through the analysis and understanding of the 

d the area of infection. Specifically, we propose dynamic 

graph matching algorithms that compare patient data to H1N1 symptom template. 

Based on the graph matching scores generated, threat alerts are sent to public 

Hospital grouping models along with graph 

matching algorithms assist in identifying and isolating the infected areas. To 

summarize, they are able to improve the precision of syndromic surveillance and 

roposed research extend well beyond H1N1 planning. 

With minor modifications, these models could be used for epidemics such as 

SARS, bird flu, future variations of H1N1 virus, etc., as well as early detection 

aid in the optimal allocation of 

resources to prevent and mitigate the effects of chronic diseases like Diabetes, 

HIV/AIDs, etc. Specifically, the models can help estimate the size and 

study, due to 

data availability issues, we had to rely on a simulated data set. In the future 

extensions of this research effort aimed at providing implementation guidelines 

for our models to prospective users, we plan to use real hospital data to increase 

the user confidence. In addition, we plan to partner with medical personnel to 

develop more sophisticated mechanisms to estimate the preset threshold values 

23Paul and Sambhoos: Decision Support Tools For Mitigating Infectious Disease Spread

Published by De Gruyter, 2012

Brought to you by | University of Michigan
Authenticated

Download Date | 5/19/15 7:25 PM



References 
 

1. World Health Organization, “Pandemic H1N1 2009 – update 112”, 2010 

[cited 2010 September 18]; Available from:  

http://www.who.int/csr/don/2010_08_06/en/. 

2. Medicine Net. Swine Flu, 2009 [cited 2010 September 14]; Available from: 

http://www.medicinenet.com/swine_flu/page4.htm#prevention. 

3. Hagenaars TJ, van Genugten MLL, Wallinga J., “Pandemic Influenza and 

Health Care Demand: Dynamic Modeling”, International Congress Series. 

2004. p. 235. 

4. Longini IM, Jr., Nizam A, Xu S, Ungchusak K, Hanshaoworakul W, 

Cummings DAT, “Containing Pandemic Influenza at the Source” Science, 

2005; 309(5737):1083-7. 

5. Feighner BH, Murphy SP, Skora JF, “The Pandemic Influenza Policy Model, 

a Planning Tool for Military Public Health Officials”, John’s Hopkins APL 

Technical Digest, 2008; 27(4 ):374-82. 

6. Pan-InfORM, “Modelling an Influenza Pandemic: A Guide for the 

Perplexed”, Canadian Medical Association. 2009; 181:3-4. 

7. Mohtashemi M, Szolovits P, Dunyak J, Mandl KD, “A Susceptible-Infected 

Model of Early Detection of Respiratory Infection Outbreaks on a 

Background of Influenza”, Journal of Theoretical Biology, 2006; 241(4):954-

63. 

8. Reis BY, Kohane IS, Mandl KD, “An Epidemiological Network Model for 

Disease Outbreak Detection”, PLoS Med, 2007; 4(6):e210. 

9. Paul JA, Sambhoos K, Hariharan G., “Using Dynamic Graph Matching and 

Gravity Models for Early Detection of Bioterrorist Attacks”, Journal of 

Homeland Security and Emergency Management, 2009; 6(1-17). 

10. Colizza V, Barrat A, Barthelemy M, Valleron A-J, Vespignani A., “Modeling 

the Worldwide Spread of Pandemic Influenza: Baseline Case and 

Containment Interventions”, PLoS Medicine, 2007; 4:0095-110. 

11. Das TK, Savachkin A, Zhu Y., “A Large Scale Simulation Model of 

Pandemic Influenza Outbreaks for Development of Dynamic Mitigation 

Strategies”, IIE Transactions, 2007; 40(9):893-905. 

12. Mathews JD, McCaw CT, McVernon J, McBryde ES, McCaw JM., “A 

Biological Model for Influenza Transmission: Pandemic Planning 

Implications of Asymptomatic Infection and Immunity”, PLoS ONE. 2007; 

2(11):e1220. 

13. Ekici A, Keskinocak P, Swann JL, “Pandemic Influenza Response” Winter 

Simulation Conference; 2008; Miami, Florida. 

14. Medlock J, Galvani AP., “Optimizing Influenza Vaccine Distribution” 

Science, August 20, 2009:1175570. 

24 JHSEM: Vol. 9 [2012], No. 2, Article 9

Brought to you by | University of Michigan
Authenticated

Download Date | 5/19/15 7:25 PM



15. Si Wei L, Ren Y, Suen CY., “Hierarchical Attributed Graph Representation 

and Recognition of Handwritten Chinese Characters”, Pattern Recognition. 

1991; 24(7):617-32. 

16. Li Y, Blostein D, Abolmaesumi P, “Asymmetric Inexact Matching Of 

Spatially-Attributed Graphs”, 2005; Heidelberg, D-69121, Germany: Springer 

Verlag. 

17. Tong H, Faloutsos C, Gallagher B, Eliassi-Rad T, “Fast Best-Effort Pattern 

Matching in Large Attributed Graphs”, 2007, New York, NY 10036-5701, 

United States: Association for Computing Machinery. 

18. Conte D, Foggia P, Sansone C, Vento. M., “Thirty Years of Graph Matching 

in Pattern Recognition”, International Journal of Pattern Recognition and 

Artificial Intelligence, 2004; 18(3):265-98. 

19. Hlaoui A, Shengrui W, “A New Algorithm for Inexact Graph Matching”, 

Proceedings of 16
th

 International Conference on Pattern Recognition; 2002. 

20. Romanowski CJ, Nagi R, “On Comparing Bills Of Materials: A 

Similarity/Distance Measure for Unordered Trees”, IEEE Transactions on 

Systems, Man and Cybernetics, Part A, 2005; 35(2):249. 

21. Cesar JRM, Bengoetxea E, Bloch I, Larranaga P., “Inexact graph matching for 

model-based recognition: Evaluation and comparison of optimization 

algorithms”, Pattern Recognition, 2005; 38(11):2099. 

22. Salcedo-Sanz S, Xu Y, Yao X., “Hybrid Meta-Heuristics Algorithms for Task 

Assignment in Heterogeneous Computing Systems”, Computers & Operations 

Research. 2006; 33(3):820. 

23. Cross ADJ, Wilson RC, Hancock ER., “Inexact Graph Matching Using 

Genetic Search” Pattern Recognition. 1997; 30(6):953. 

24. Gold S, Rangarajan A., “A Graduated Assignment Algorithm for Graph 

Matching” IEEE Transactions on Pattern Analysis and Machine Intelligence, 

1996; 18(4):377. 

25. Wilson RC, Hancock ER., “Structural Matching by Discrete Relaxation” 

Pattern Analysis and Machine Intelligence, IEEE Transactions on. 1997; 

19(6):634. 

26. Finch AM, Wilson RC, Hancock ER., “Symbolic graph matching with the EM 

algorithm”, Pattern Recognition. 1998; 31(11):1777. 

27. Cohen MA, Lee HL, “The determinants of spatial distribution of hospital 

utilization in a region Medical Care”, 1985; 23(1):27-38. 

28. Hunt-McCool J, Kiker Bf, Chung Y., “Estimates of the demand for medical 

care under different functional forms”, Journal of Applied Econometrics. 

1994; 9:201-18. 

  

25Paul and Sambhoos: Decision Support Tools For Mitigating Infectious Disease Spread

Published by De Gruyter, 2012

Brought to you by | University of Michigan
Authenticated

Download Date | 5/19/15 7:25 PM



29. Perea-Milla E, Pons SM, Rivas-Ruiz1 F, Gallofre A, Jurado EN, Ales MAN, 

“Estimation of the Real Population and its Impact on the Utilization of 

Healthcare Services in Mediterranean Resort Regions: An Ecological Study”, 

BMC Health Services Research 2007; 7:13. 

30. Congdon P., “The Development of Gravity Models for Hospital Patient Flows 

Under System Change: A Bayesian Modeling Approach”, Health Care 

Management Science, 2001; 4:289-304. 

31. Stoto MA, Schonlau M, Mariano LT., “Syndromic Surveillance: Is it Worth 

the Effort?” chance. 2004; 17(1):19-24. 

32. Stotz A, Nagi R, Sudit M, “Incremental Graph Matching for Situation 

Awareness” Information Fusion; 2009; Seattle, WA. 

33. MacQueen JB, “Some Methods for Classification and Analysis of 

Multivariate Observations”, Proceedings of 5-th Berkeley Symposium on 

Mathematical Statistics and Probability. Berkeley, University of California 

Press. 1967; 1:281-97. 

34. Rousseeuw PJ., “Silhouettes: A Graphical Aid to the Interpretation and 

Validation of Cluster Analysis”, Computational and Applied Mathematics. 

1987; 20(53–65). 

35. Yi P, George SK, Paul JA, Lin L., “Hospital Capacity Planning for Disaster 

Emergency Management”, Socio-Economic Planning Sciences. 2010; 44(3): 

151-160. 

36. IDcide - Local Information Data Server, 2011  

http://www.idcide.com/citydata/ny/buffalo.htm. 

26 JHSEM: Vol. 9 [2012], No. 2, Article 9

Brought to you by | University of Michigan
Authenticated

Download Date | 5/19/15 7:25 PM


	Graph Matching Based Decision Support Tools For Mitigating Spread Of Infectious Diseases Like H1N1
	Recommended Citation

	Journal of Homeland Security and Emergency Management
	Graph Matching Based Decision Support Tools For Mitigating Spread Of Infectious Diseases Like H1N1
	Graph Matching Based Decision Support Tools For Mitigating Spread Of Infectious Diseases Like H1N1
	Abstract


