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ABSTRACT 
We explore the concept of a personal internet shopping agent (PISA) that can be automated to 
perform shopping tasks online. PISAs, which can operate in either manual or fully automated 
mode, are inevitable due to increasingly sophisticated artificial intelligence applications in 
retailing and ongoing consumer acceptance of advanced technologies. After proposing a generic 
PISA model comprised of four sub-systems, we close with a brief discussion about concerns and 
implications arising from PISA usage. 

Introduction 
 

Non-human shopping assistance is already a fact of consumer life. In brick-and-mortar stores, 
consumers are increasingly comfortable shopping with robot companions (Bertacchini, Bilotta, 
& Pantano, 2017). Online, many consumers rely on recommendation engines and shopping 
agents to speed shopping tasks and minimize cognitive overload (Aljukhadar, Senecal, & 
Daoust, 2010). These examples illustrate consumers’ relentless efforts to simplify their lives by 
semi-automating repetitive and tiresome shopping tasks (Dawar, 2016). 

Would consumers miss shopping as it has existed for more than a century? Would they willingly 
cede their purchase-related activities a personalized shopping agent built around a sophisticated 
artificial intelligence (AI) system? What would that system entail and what are its implications 
for consumer marketing? We now explore answers to these questions. 

Shopping: Desirable or Undesirable? 
 

For every text that extols the love of shopping—for recreation, self-expression, or youthful self-
definition (Pooler, 2003; Yarrow & O’Donnell, 2009)—there is another text about apathetic 
shoppers (predominantly male and price insensitive (Reid & Brown, 1996)) or irrational 
purchase decisions (Graves, 2010). As a contrasting model of shopping vividly illustrates, 
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shopping can both liberate and constrain ‘the self’ (Compeau, Monroe, Grewal, & Reynolds, 
2016). 

For consumers, shopping has provided utilitarian, social/psychological, and 
hedonic/recreational/leisure benefits. Utilitarian benefits included bargain hunting (e.g., save 
money, find best deal in minimal time), acquiring valued items, and reconnaissance (i.e., learn 
for future purchases). Social/psychological benefits included communicating wealth and power 
(e.g., conspicuous consumption), discovering new things, expressing/defining oneself (especially 
among adolescents and young adults), avoiding regret over opportunity costs associated with a 
bypassed purchase (e.g., failure to maintain a fashionable wardrobe), emulating members of an 
aspirational group (e.g., wearing designer brands worn by idolized celebrities), showing group 
affiliation (e.g., adapting an in-group’s fashion sense), and celebrating special occasions through 
ritualized consumption (Hine, 2002; Pooler, 2003). Hedonic/recreational/leisure reasons for 
shopping related to adventure (for sensory and intellectual stimulation), socializing with friends 
and family, interacting with others, creating a sense of community, self-gratification (e.g., 
'treating' oneself), information gathering (about trends, fashions, and products), finding ‘perfect’ 
gifts, self-definition (through trial-and-error, especially among Millennials), psychological gains 
from finding bargains (e.g., confirming intelligence and deal-finding ability), stress reduction, 
entertainment, prestige/conspicuous consumption, fantasy, and escapism (Arnold & Reynolds, 
2003; Babin, Darden, & Griffin, 1994; Bäckström, 2011; Hirschman, 1983; H.-S. Kim, 2006; D. 
Lee & Hyman, 2008; Mano & Oliver, 1993; Scarpi, Pizza, & Visentin, 2014; Sherry, 1990). 

Of course, with benefits came costs. Shopping, especially processes associated with product 
search and evoked set creation, is time intensive, mentally exhausting, and repetitive (Karimi, 
Papamichail, & Holland, 2015; Punj, 2012). On average, shoppers reported spending 1.63 hours 
each weekday and 1.87 hours daily on weekends and holiday to purchase goods and services 
(U.S. Bureau of Labor Statistics, 2017). Online shopping takes the average adult consumer five 
hours weekly, with Millennials and Gen Xers taking six hours, Baby Boomers taking four hours, 
and seniors taking 2.5 hours (V12 Data, 2017). In addition, shopping encourages materialism and 
other attitudes/behaviors contrary to human flourishing (i.e., true happiness) (Seligman, 2002). 
Consumers pursuing materialistic goals often focus excessively on acquiring goods and shopping 
is the venue for achieving such goals (Goldsmith, Flynn, & Clark, 2011). 

Given increasingly hectic lifestyles, evermore pervasive preferences for vacating the hedonic 
treadmill, the relative attractiveness of many non-shopping-related activities, and rapid 
enhancements in AI-related technology, is the ‘next big thing’ a personal internet shopping agent 
(PISA) capable of supplanting most human shopping activity? How would such a PISA appear? 
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Personal Internet Shopping Agent (PISA) Framework 
 

A ‘bot’ is a software application that runs automated tasks over the internet; in a retail context, it 
is called a ‘shopping bot’ (or [intelligent] shopping agent or [intelligent] recommendation agent). 
Initially, shopping bots were designed to help consumers make better choices and decisions 
when shopping online. At their heart, shopping bots would perform simple and repetitive tasks or 
relieve consumers from information overload (Aljukhadar, Senecal, & Daoust, 2012-13). 

Predictions about future retailing include substantial changes in consumption behavior (Pantano 
& Timmermans, 2014) and increasingly prominent query-based AI systems (Grewal, 
Roggeveen, & Nordfält, 2017). In assisting consumers by facilitating product searches and 
purchase decisions, these systems approximate human intelligence. Initially, internet shopping 
bots/agents relied on crude information gathering, processing, and presentation. Currently, 
shopping engines rely on AI-powered subsystems that improve performance functionality and 
adaptivity to user needs and preferences. 

The PISA framework presented here assumes a two-decade evolution from predominantly 
human-centric shopping augmented by internet-facilitated information search to predominantly 
autonomous, AI-powered personal shopping agents. That is, PISAs are ‘next generation digital 
assistants’ capable of replacing consumers’ efforts to perform automatable rudimentary and 
repetitive shopping activities. Preliminary efforts by retailers such as Amazon (e.g., recurring 
orders, dash-buttons, and embedded recommendation engines) and Google (e.g., digital 
concierge) suggest increasingly automated purchasing processes meant to overhaul and simplify 
consumers’ lives (Farah & Ramadan, 2017; Google, 2018). 

Research on intelligent shopping agents has emerged from several disciplines: 
marketing/retailing, economics, business information systems, and computer science. Because 
researchers frequently adopt a silo approach, their efforts to understand intelligent agent 
functionality have focused on domain-specific rather than integrative inquiries. Marketing and 
retailing scholars have considered shopping agents from the consumer’s/user’s perspective; for 
example, they have studied agent interface design, users’ satisfaction, users’ cognitive effort, and 
gender differences (Doong & Wang, 2011; Verruck & Nique, 2017; Xu, Benbasat, & Cenfetelli, 
2014). Their research suggests ‘smart’ recommendation agents (which focus on effort reduction) 
outperform ‘knowledgeable’ recommendation agents (which focus on seeking better product fit) 
for easing consumers’ decision-making burden (Punj & Moore, 2007). In contrast, computer and 
decision scientists have considered shopping agents from a systems perspective: for example, 
they have studied objective performance (number of vendors, price dispersion, low/high price) 
and recommendation bias (Ma, Liao, & Lee, 2010; Xiao & Benbasat, 2018). 

The Figure depicts a generic blueprint for PISAs. An independent PISA is comprised of four 
subsystems. To initiate PISA activity, a user requests a specific product offering through a GUI-
based shopping agent console. Based on the request, a pre-processing filter—Subsystem #1—
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fulfills the following functions: determine spidering pattern; fetch data; parse and identify useful 
data/information; and file information from online sources. 

----- Figure goes about here ----- 

Information passed to Subsystem #1 originates mainly in big data repositories and/or the internet. 
Some information, such as past shopping behavior or family buying history, may be stored in 
proprietary user-only accessible personal data sources (e.g., emails or invoices). Depending on 
the task, Subsystem #1 will seek information from sources that best match the consumer’s 
goal(s) and the buying situation. For example, requests to repurchase OTC medicines will be 
treated differently than requests to repurchase light bulbs. 

Subsystem #2 or the ‘PISA engine’ is the decision-making model manager that creates buying 
solutions with information passed from the pre-processing filter (i.e., Subsystem #1). This 
subsystem specifies and optimizes the decision-making model (H.-J. Kim, Kim, & Lee, 2009). 
First, it identifies decision goals (e.g., least expensive or highest quality) and factors in shopper-
specified constraints (e.g., deliver in under two days). At this stage, consumers can provide 
qualitative information (e.g. preference for ‘esthetic look’) about the purchasing decision. The 
model can be optimized and solved for various endogenous and exogenous constraints, such as 
product availability, inventory levels, discount rates, consumers’ ability to receive orders, and 
consumption conditions. Systems combining qualitative and quantitative inputs produce 
shopping solutions consumers favor (K. C. Lee & Kwon, 2008). 

The engine is programmed to create a marketing offering matrix for comparison shopping. More 
sophisticated than bots, PISAs would incorporate sufficient AI to refine a consumer’s initial 
decision parameters, conduct thorough product searches, and either suggest or order products 
matching that consumer’s preferences. Most shopping bots already include algorithms that learn 
from consumers’ previous queries. With further IT advances, shopping bots will evolve into 
PISAs, which will operate under a reinforcement learning principle: the engine is given a task to 
achieve and it learns by trial-and-error interactions with its environment (Yuan & Liu, 2000). 

Subsystem #3 or the ‘post-processing filter’ is designed to limit full engine output to consumer-
relevant information about available products. The PISA engine may generate buying solutions 
comprised of hundreds or even thousands of products when consumers seek multi-product 
solutions. For consumers, usefulness and the need for Subsystem #3 is only relevant if they 
choose to be involved (manual PISA mode) and the large volume of PISA-aggregated data 
compels engine-based organizing prior to human processing. In such cases, only a subset of 
solutions will be fed in Subsystem #4. In a fully automated and AI-controlled operation mode, 
the post-processing filter may not require activation. 

Subsystem #4 is the visualization matrix/action module. Output from the post-processing filter is 
presented to consumers in the most accessible format for making purchase decisions. 
(Fortunately, information presentation format does affect how consumers make decisions when 
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using recommendation engines (K.C. Lee & Kwon, 2008).) Alternatively, if consumers permit, 
then the PISA can act autonomously (i.e., complete purchases without consulting the consumer). 
Regardless, recommendation agents should align with consumer decision processes, which 
requires embedding AI as a tool for algorithm learning (Xiao & Benbasat, 2007). 

The Table highlights possible levels of PISA control. At one extreme, users could fully control 
their PISA, thus limiting it to performing requested and monitored shopping tasks. At the other 
extreme, users could relegate inputs to an AI-enabled shopping console, thus allowing their PISA 
to make automated purchases. The latter extreme comes with many legal issues relating to 
contractual validity (i.e., capacity, consent, and liability for mistakes) (Bain, 2003). For example, 
who should bear the cost for an ‘incorrect purchase’ executed by a PISA? Hence, a suitable legal 
framework must precede full PISA implementation. 

----- Table goes about here ----- 

 

Implications for Consumer Marketing 
 

As envisioned, PISAs will be strictly software-based virtual entities developed by either an 
independent party, such as a programming group, or by a single- or multi-corporate-sponsor, 
such as Amazon (e.g., Alexa). Independent PISAs would be available for rent or purchase, 
whereas corporate-sponsored PISAs would be free because they would selectively present 
product offerings (e.g., a Wal-Mart PISA would focus predominantly on products sold by Wal-
Mart). Consumers are likely to adopt recommendation agents they believe to be useful and 
controllable (Zhu, Chang, Luo, & Li, 2014). 

Currently, there are three basic concerns for AI agents: incompleteness of information, 
oversimplification, and inability to mimic human behavior (Redmond, 2002). “In the age of Big 
Data, how do consumers view and assess the promise of personalization systems that may 
threaten to control or limit the information that they can access or share?” (Labrecque, Esche, 
Mathwick, Novak, & Hofacker, 2013, p. 266). This presents a moral issue rather than a ‘limited 
information availability’ issue. For example, should PISAs be permitted to scour the ‘dark web’ 
and purchase items that are, at best, semi-legal (Weisskopf, 2015)? 

PISAs designed and trained to approximate a single consumer’s behavior may be unable to 
account for new and untested products, gift-giving behavior, and/or impulse buying, among the 
many non-routine purchasing situations. In such cases, consumers may prefer to mitigate the AI 
engine’s influence and instruct their PISA to perform a task for which it may not be fully trained. 
Obviously, avoiding oversimplification by inserting human agency into an otherwise automated 
purchase aid largely defeats the time- and effort-saving purpose of using PISAs. 
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From the consumer’s psychological perspective, price is a unique and critical attribute that is not 
straightforward to model. For example, consumers are more price sensitive when focusing only 
on price, yet they exhibit less price sensitivity when focusing on quality-related attributes (Lynch 
& Ariely, 2000). If PISAs are programmed to avoid consumer biases, then they are not 
mimicking fault-prone human decision makers, which seems preferable but contrary to one of 
the aforementioned AI concerns. 

Conclusions 
 

If exponential IT advances lead to a forecasted IT singularity within next 30-40 years (Kurzweil, 
2005; Rifkin, 2014), then it is reasonable to estimate PISAs will be available in 10-15 years. As 
PISAs are inevitable, a debate about their eventual emergence is moot. Hence, marketing and 
retailing scholars should focus on how consumers and marketing practitioners will respond post-
arrival to increasingly sophisticated PISAs. If nothing else, these scholars must safeguard 
consumers, as there is no guarantee competition, even among independently developed PISAs, 
will avoid many associated technical and societal problems. 

 
Table 1. Levels of PISA Control (selected AI questions) 

 

Level 1 – User controlled 

What sources to search? 

What attributes to include? 

What is the search timeline? 

How much of past behavior to include? 

Level 1 – AI controlled 

Decisions relegated to AI 

Level 2 – User controlled 

What are important attributes? 

How many recommendations to generate? 

What information should be included/excluded in the process? 

Level 2 – AI controlled 

 

Decisions relegated to AI 

Level 3 – User controlled 

How many recommendations to present? 

What is the level of detail about each recommendation? 

Familiar or novel recommendations to display? 

Level 3 – AI controlled 

 

Decisions relegated to AI 

Level 4 – User controlled Level 4 – AI controlled 
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What should be the navigation and layout of the report? 

Should the agent take action or ask for action approval? 

 

Decisions relegated to AI 
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