
Kennesaw State University
DigitalCommons@Kennesaw State University

Master of Science in Computer Science Theses Department of Computer Science

Spring 2-18-2019

American Sign Language Recognition Using
Machine Learning and Computer Vision
Kshitij Bantupalli

Ying Xie
College of Computing and Software Engineering - Information Technology

Follow this and additional works at: https://digitalcommons.kennesaw.edu/cs_etd

Part of the Robotics Commons

This Thesis is brought to you for free and open access by the Department of Computer Science at DigitalCommons@Kennesaw State University. It has
been accepted for inclusion in Master of Science in Computer Science Theses by an authorized administrator of DigitalCommons@Kennesaw State
University. For more information, please contact digitalcommons@kennesaw.edu.

Recommended Citation
Bantupalli, Kshitij and Xie, Ying, "American Sign Language Recognition Using Machine Learning and Computer Vision" (2019).
Master of Science in Computer Science Theses. 21.
https://digitalcommons.kennesaw.edu/cs_etd/21

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@Kennesaw State University

https://core.ac.uk/display/231829055?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.kennesaw.edu?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/cs_etd?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/cs?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/cs_etd?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/cs_etd/21?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

i

AMERICAN SIGN LANGUAGE RECOGNITION USING MACHINE 1

LEARNING AND COMPUTER VISION 2

 3

 4

A Thesis Presented to 5

Dr Selena He 6

Faculty of College of Computing and Software Engineering 7

 8

By 9

 10

Kshitij Bantupalli 11

 12

In Partial Fulfillment 13

Of Requirements for the Degree 14

Master of Science – Computer Science 15

 16

 17

Kennesaw State University 18

December 2018 19

 20

ii

AMERICAN SIGN LANGUAGE RECOGNITION USING MACHINE 1

LEARNING AND COMPUTER VISION 2

 3

 4

 5

 6

Approved: 7

 8

 9

_________________ 10

Dr. Selena He 11

 12

 13

 14

_________________ 15

Dr Dan Lo 16

 17

 18

_________________ 19

John Preston 20

iii

 1

In presenting this thesis as a partial fulfillment of the requirements for an advanced 2

degree from Kennesaw State University, I agree that the university library shall make it 3

available for inspection and circulation in accordance with its regulations governing 4

materials of this type. I agree that permission to copy from, or to publish, this thesis may 5

be granted by the professor under whose direction it was written, or, in his absence, by 6

the dean of the appropriate school when such copying or publication is solely for 7

scholarly purposes and does not involve potential financial gain. It is understood that any 8

copying from or publication of this thesis which involves potential financial gain will not 9

be allowed without written permission. 10

 11

 12

 13

 14

 15

_______________________ 16

Kshitij Bantupalli 17

 18

 19

iv

Notice to Borrowers 1

 2

Unpublished theses deposited in the Library of Kennesaw State University must be used 3

only in accordance with the stipulations prescribed by the author in the preceding 4

statement. 5

 6

The author of this thesis is: 7

 8

Kshitij Bantupalli 9

3840 Fenway Crossing, Marietta, GA 30075 10

 11

 12

The director of this thesis is: 13

 14

 15

Dr. Selena He 16

363 J Building, 1100 South Marietta Pkwy 17

Marietta, GA 30060 18

 19

 20

v

Users of this thesis not regularly enrolled as students at Kennesaw State University are 1

requirement to attest acceptance of the preceding stipulations by signing below. Libraries 2

borrowing this thesis for use of their patrons are required to see that each user records 3

here the information requested. 4

 5

Name of user Address Date Type of use (Examination only or copying) 6

 7

8

vi

AMERICAN SIGN LANGUAGE RECOGNITION USING MACHINE 1

LEARNING AND COMPUTER VISION 2

 3

 4

 5

A Thesis Presented to 6

Dr Selena He 7

Faculty of College of Computing and Software Engineering 8

 9

By 10

 11

Kshitij Bantupalli 12

 13

In Partial Fulfillment 14

Of Requirements for the Degree 15

Master of Science – Computer Science 16

 17

Kennesaw State University 18

December 2018 19

 20

vii

Abstract 1

 2

 3

Speech impairment is a disability which affects an individual’s ability to communicate 4

using speech and hearing. People who are affected by this use other media of 5

communication such as sign language. Although sign language is ubiquitous in recent 6

times, there remains a challenge for non-sign language speakers to communicate with 7

sign language speakers or signers. With recent advances in deep learning and computer 8

vision there has been promising progress in the fields of motion and gesture recognition 9

using deep learning and computer vision-based techniques. The focus of this work is to 10

create a vision-based application which offers sign language translation to text thus 11

aiding communication between signers and non-signers. The proposed model takes video 12

sequences and extracts temporal and spatial features from them. We then use Inception, a 13

CNN (Convolutional Neural Network) for recognizing spatial features. We then use an 14

RNN (Recurrent Neural Network) to train on temporal features. The dataset used is the 15

American Sign Language Dataset. 16

 17

viii

Table of Contents 1

Chapter I Introduction………..1 2

Chapter II Literature Review…………………………………………………………………………………………………….3 3

Chapter III Machine Learning using Convolutional Neural Networks (CNN) ……………………………7 4

 LeNet Architecture………………………………………………………………………………………………………9 5

 Convolution…….11 6

 ReLU…….14 7

 Pooling Layer……….15 8

 Fully Connected Layer……………………………………………………………………………………………….16 9

 The Complete Architecture……………………………………………………………………………………….17 10

 Inception………..18 11

 Regularization……..19 12

Chapter IV Recurrent Neural Networks………………………………………………………………………………..21 13

 What can RNN’s do?...22 14

 Vanishing Gradient Problem…………………………………………………………………………………….23 15

 LSTM………..25 16

 Training an RNN……………………………………………………………………………………………………….27 17

 Extensions to RNN……………………………………………………………………………………………………27 18

Chapter V Sign Language Dataset………………………………………………………………………………………..29 19

Chapter VI Methodology and Experimental Results Section……………………………………………….32 20

ix

 Objectives……..32 1

 Retraining Inception Model……………………………………………………………………………………..33 2

 Predicting Labels with CNN………………………………………………………………………………………35 3

 Training and Setting up RNN…………………………………………………………………………………….36 4

 Results……..39 5

Chapter VII Conclusions and Future Work…………………………………………………………………………...42 6

 Problems Faced by The Model…………………………………………………………………………….……42 7

 Potential Improvements…………………………………………………………………………………………..43 8

Chapter VIII Bibliography……………………………………………………………………………………………………..44 9

 10

 11

 12

 13

 14

x

List of Figures 1

Figure 1 Workflow of Nandy et al. ... 4 2

Figure 2 LS-HAN Network .. 5 3

Figure 3 Model for Lu et al. .. 8 4

Figure 4 A ConvNet Architecture Explained ... 9 5

Figure 5 A Simple ConvNet .. 10 6

Figure 6 Convolution Operation and Convolved Feature .. 12 7

Figure 7 ReLU Operation .. 15 8

Figure 8 Max Pooling Layer .. 16 9

Figure 9 SoftMax Function ... 17 10

Figure 10 Inception Module, Naive Version .. 19 11

Figure 11 A Simplified Representation of an RNN ... 23 12

Figure 12 Long short-term memory ... 26 13

Figure 13 Vanishing Gradient over Layers ... 27 14

Figure 14 An Example from the Custom Dataset ... 31 15

Figure 15 Experimental Process ... 34 16

Figure 16 Model for predicting labels .. 36 17

Figure 17 Frame Prediction for Gesture .. 37 18

Figure 18 RNN Model ... 38 19

Figure 19 RNN Training .. 39 20

 21

xi

List of Tables 1

Table 1 List of Gestures .. 33 2

Table 2 Final Results ... 41 3

 4

 5

1

Chapter I

Introduction

Sign language is a form of communication used by people with impaired hearing and

speech. People use sign language gestures as a means of non-verbal communication to

express their thoughts and emotions. But non-signers find it extremely difficult to

understand, hence trained sign language interpreters are needed during medical and legal

appointments, educational and training sessions. Over the past five years, there has been

an increasing demand for interpreting services. Other means, such as video remote human

interpreting using high-speed internet connections, have been introduced. They will thus

provide an easy to use sign language interpreting service, which can be used, but has major

limitation such as accessibility to internet and an appropriate device.

To address this, we use an ensemble of two models to recognize gestures in sign language.

We use a custom recorded American Sign Language dataset based off an existing dataset

[1] for training the model to recognize gestures. The dataset is very comprehensive and

has 150 different gestures performed multiple times giving us variation in context and

video conditions. For simplicity, the videos are recording at a common frame rate. We

propose to use a CNN (Convolutional Neural Network) named Inception to extract spatial

features from the video stream for Sign Language Recognition (SLR). Then by using a

LSTM (Long Short-Term Memory), an RNN (Recurrent Neural Network) model, we can

extract temporal features from the video sequences.

2

A proposed improvement is to test the model with more gestures to see how accuracy scales

with larger sample sizes and compare the performance of two different outputs of a CNN.

Another proposed improvement is to use newer technologies and compare performance to

see if the model can have better performance.

3

Chapter II

Literature Review

Literature review the problem shows that there have been several approaches to address

the issue of gesture recognition in video using several different methods. One of the

messages used Hidden Markov Models (HMM) to recognize facial expressions from video

sequences combined with Bayesian Network Classifiers and Gaussian Tree Augmented

Naive Bayes Classifier. Francois also published a paper on human posture recognition in a

video sequence using methods based on 2 D and 3 D appearance. The work mentions using

PCA to recognize silhouettes from a static camera and then using 3 D to model posture for

recognition. This approach has the drawback of having intermediary gestures which may

lead to ambiguity in training and therefore lower accuracy in prediction.

Let's approach the analysis of video segments using neural networks which involves

extracting visual information in the form of feature vectors. Neural networks do face issues

such as tracking of hands, segmentation of subject from the background and environment,

illumination, variation, occlusion, movement and position. The paper splits the dataset into

segments, extracts features and classifies using Euclidean distance and K-nearest neighbor.

4

Figure 1 Workflow of Nandy et al.

Work done by blank defines how to do continuous Indian sign language recognition. The

paper proposes frame extraction from video data, preprocessing the data, extracting key

frames from the data followed by extracting other features, recognition and finally

optimization. Preprocessing is done by converting the video to a sequence of RGB frames.

Each frame having the same dimensions. Skin color segmentation is used to extract skin

regions with the help of AHS we gradient. The images of obtained were converted to binary

form. Food keyframes were extracted by calculating a gradient between the frames. And

features were extracted from the keyframes using an orientation histogram. Classification

was done by Euclidean distance, Manhattan distance, chess board distance and

Mahalanobis distance.

5

Figure 2 LS-HAN Network

In a paper by Jie et al. [2], the authors recognized problems in SLR such as problems in

recognition when the signs are broken down to individual words and the issues with

continuous SLR. They decided to solve the problem without isolating individual signs,

which removes an extra level of preprocessing (temporal segmentation) and another extra

layer of post-processing because they believed that temporal segmentation is crucial to

SLR and without its errors propagate into subsequent steps. Combined with the strenuous

labelling of individual words adds a huge challenge to SLR without temporal segmentation.

They addressed this issue with a new framework called Hierarchical Attention Network

with Latent Space (LS-HAN), which eliminates the preprocessing of temporal

segmentation. The framework consists of a two-stream CNN for video feature

representation generation, a Latent Space for semantic gap bridging and a Hierarchical

Attention Network for space-based recognition.

6

Other approaches to SLR include using an external device such as a Leap Motion controller

to recognize movement and gestures such as the work done by Chong et al. [3]. The study

differs from other work because it includes the complete grammar of the American Sign

Language which consists of 26 letters and 10 digits. The work is aimed dynamic

movements and extracting features to study and classify them. The experimental results

have been promising with accuracies of 80.30% for Support Vector Machines (SVM) and

93.81% for Deep Neural Networks (DNN).

Research in the fields of hand gesture recognition also aid to SLR research such as the

work by Linqin et al. [4] . In it, the authors have used RGB-D data to recognize human

gestures for human-computer interaction. They approach the problem by calculating

Euclidean distance between hand joints and shoulder features to generate a unifying feature

descriptor. A dynamic time warping (IDTW) algorithm is proposed to obtain final

recognition results, which works by applying weighted distance and restricted search path

to avoid major computation costs unlike conventional approaches. The experimental

results of this method show an average accuracy of 96.5% and better. The idea is to develop

real time gesture recognition which could also be extended to SLR.

The work done by Ronchetti et al. [5] on the Argentinian sign language offers another

approach to the problem; using a database of handshapes of the Argentinian Sign Language

and a technique for processing images, extracting descriptors and handshape classification

using ProbSom. The technique is very similar to Support Vector Machines (SVM),

7

Random Forests and Neural Networks. The overall accuracy of the approach was upwards

of 90%.

Hardie et al. [6] used an external device called Myo armband to collect data about the

position of a user’s hands and fingers over time. The authors of the paper use these

technologies along with sign language translation as they consider each sign a combination

of gestures. We use the same approach of considering each sign as a gesture. The paper

utilizes a dataset collected by a group at University of South Wales, which contains

parameters, such as hand positions, hand rotation, and finger bend for 95 unique signs.

Each sign has an input stream and they predict which sign the stream falls into. The

classification is made using SVM and logistic regression models. Lower quality of the data

requires a more sophisticated approach, so they explore different methods of temporal

classification.

The literature review shows that there have been different approaches to this problem

within neural networks itself. The input feed to the neural networks plays a big role in how

the architecture of the network is shaped, such is a 3DCNN model would take RGB input

along with the depth field. So, for the purpose of validation the results of our model were

compared to two very similar approaches to the problem. Lu et al. [7] used a general CNN

network to extract spatial features and used an LSTM to extract sequence features. Vivek

et al. [8] used CNN models with RGB inputs for their architecture. The authors of [8]

worked on American Sign Language with a custom dataset of their own making. The

architecture in [7] was a pretrained CNN called ResNet along with a custom LSTM of their

8

design whereas [8] used a CNN for stationary hand gestures so we had to take the liberty

of extending their base model with the LSTM from our network.

Figure 3 Model for Lu et al.

9

Chapter III

Machine Learning using Convolutional Neural Networks (CNN)

CNN’s or ConvNets are a category of neural networks which are respectable in the field of

image recognition and classification. [9]CNN’s use multilayer perceptron’s which require

minimal preprocessing to “train” the architecture to perform the task of

recognition/classification very effective. [10]CNN’s were modelled to perform like

biological processes in terms of connectivity patterns between neurons in the visual cortex

of animals. CNN’s tend to perform better than other image and video recognition

algorithms in fields of image classification, medical image analysis and natural language

processing.

Figure 4 A ConvNet Architecture Explained

10

LeNet Architecture

LeNet was one of very first CNN’s to be mainstream and paved the way for future research

into the field of multilayer perceptron’s and CNN’s alike. This revolutionary work by Yann

LeCun [9] was named LeNet5 and was a result of many previous successful iterations since

1988. The LeNet was developed mainly for character recognition tasks such as digits and

zip codes. Since then the MNIST dataset [11] was created and is still curated as a

benchmark to test every new proposed neural network architecture for accuracy.

Figure 5 A Simple ConvNet

The CNN in the figure above takes a 32x32 image from the MNIST handwritten image

dataset and classifies it to a possible of 26 letters in the English alphabet.

There are four key operations in the image above:

 1.Convolution

11

 2.Non-Linearity (ReLU)

 3. Pooling or Sub Sampling

 4. Classification (Fully Connected Layer)

These operations are the fundamental blocks of every CNN. Let’s try to understand each

in detail and how each operation works.

12

Convolution

Let’s take the example of MNIST handwritten digits. If we represent each image as a matrix

of pixel values we have a 2 D matrix with values ranging from 0 to 255. ConvNets derive

the word convolution from this step. The purpose of convolution is to extract features from

the input data whether it be image, video or sequential data. Convolution works by

preserving spatial relationships between pixels by learning image features using small

ROI’s. If we go back to considering each image as a matrix of pixels, convolution

summarizes blocks of data from the matrix to a smaller dimension.

Figure 6 Convolution Operation and Convolved Feature

The computation is achieved by computing element wise multiplication and adding the

outputs to get a representation of the ROI over the original image.

13

In CNN terminology, the 3x3 matrix is called a “filter” or “feature detector” and the matrix

formed by sliding the filter over the image is called a “Convolved Feature” or “Feature

Map”. The process is repeated till the input image is converted to a series of feature maps.

There are several options the convolution function can use to generate a feature map such

as:

1. Edge Detection

2. Sharpen

3. Blur

All these are achieved just by changing the numeric values of the filter matrix before the

convolution operation [12], this means that different filters achieve different results

depending on what the end goal of the model is.

In theory, CNN “learns” the values of the filters during the training process thanks to

backpropagation of gradients and loss between the perceptron’s of the neural network. The

size of the filter, architecture and the number of filters is modifiable to achieve different

results. The size of the feature map is a product of:

1. Depth: The depth of the volume determines the number of connected neurons

in a layer and the input volume. We train these neurons through

backpropagation to learn features. Let’s say we take an image classification

14

problem; the input layer takes an image and succeeding layers extract features

from the image such as edges, blobs etc.

2. Stride: Stride refers to the number of pixels by which the filter moves over the

input image. When the stride is 4, it moves 4 pixels after forming a feature map.

Having a larger stride forms smaller feature map. Having a lower stride size

leads to heavily overlapping receptive fields between columns. When resulting

fields overlap less, then we get smaller spatial dimensions/feature maps [13])..

3. Zero-padding: Sometimes the input matrix is padded with zeroes to apply the

filter to elements in the border of the image. Adding zero padding is called wide

convolution which is different from narrow convolution which is the case for

non-padded images. The size of the padding can be considered a

hyperparameter and it provides control of the output volume spatial size.

Connectivity is an issue to consider when dealing with high-dimensional inputs such as

images, because connecting all the neurons with previous volumes does not take spatial

structure into account. CNN’s take advantage of local connection between neurons of

nearby layers, the extent of which is a hyperparameter called receptive field. The connects

are always in local in space, but they extend to the depth of input volume.

Free parameters are controlled in convolutional layers by using the concept of parameter

sharing. It relies on the assumption that a patch feature is reusable and can be used in

different layers of the neural network.

15

ReLU

The Non-Linearity operation is used after the convolution operation mentioned above.

ReLU stands for Rectified Linear Unit and is a non-linear operation [14]. It is applied to

each element individually and it replaces all negative pixel values in the feature map to

zero. The purpose of the ReLU is to introduce non-linearity since real world training is

non-linear and the CNN should model to that.

Figure 7 ReLU Operation

ReLU function works by giving a max between an input number and 0.

𝐴(𝑥) = max⁡(0, 𝑥)

ReLU is also a very computationally cheap activation function unlike other activation

functions such as sigmoid and tanh because it requires simpler mathematical operations

which is a good point to consider when designing neural networks.

16

The Pooling Step

Pooling or subsampling is a layer which reduces dimensionality of feature maps generated

from the convolutional layer while retaining the most important information [15]. Pooling

can be of several different types such as: Max, Average, Sum etc.

Max Pooling is when we define a window of a certain size and take the largest element

from it. Instead of taking the largest element we could also take an average (Average

Pooling) or sum all the elements in it (Sum Pooling). We continue to move the filter over

the entire image like the stride we took in convolution till we have a pooled layer of the

specified type in the architecture.

Figure 8 Max Pooling Layer

The pooling layer further reduces the dimensionality of the input image and therefore

reduces the number of parameters and computations in the network. It gives us a

representation of the input image in a cleaner more concise form.

17

Fully Connected Layer

The fully connected layer is a multilayer perceptron which uses activation functions such

as SoftMax in the output layer. There are several activation functions like SoftMax, but we

shall only discuss SoftMax for the purposes of thesis. The term fully connected layer

implies that every neuron in the layer is connected to every neuron in the previous layer.

The convolutional layer along with the pulling layer generates a summarization of the

original input image which is fed into the fully connected layer. The fully connected layer

send gives an output which can be either classification or regression.

Figure 9 SoftMax Function

The fully connected layer allows for operation such as backpropagation which are key

features which enable a neural network to perform classification with a high accuracy like

it does. The SoftMax layer uses a SoftMax function to squash a vector between zero and

one and it is the most used activation function in classification.

18

The Complete Architecture

Now that we have covered individual elements of a CNN, lets look at how it all comes

together. The training of the CNN can be summarized as follows:

1. Initialize all filters and parameters to perform the convolution step on the input

images.

2. The architecture takes an input image and goes through all the above steps in a

sequential order and finds an output. The outputs are propagated backwards through

the network to “train” the network.

3. Step 2 is repeated till the predicted outputs are close to ground truth and cannot be

changed further.

The above-mentioned steps essentially train the neural network to perform a specific task.

When a new image is introduced to the neural network after it has been trained it can predict

a class of the image based on the training dataset. The training dataset plays a huge role in

the accuracy and performance of the model.

19

Inception

Inception is a Google Net model designed to classify images with astound accuracy in

2014. It was developed by Yann LeCun and his team working at Google who came up with

an innovative solution to increasing accuracy of a deep neural network instead of stacking

layers. Inception was a heavily engineered, complex network which used a lot of tricks to

get high speed and accuracy from the model.

Since its creation Inception v1 has gone to become Inception v2, Inception v3, Inception

v4 and finally Inception ResNet. We have used Inception v4 in the ensemble of models for

SLR in our work.

Figure 10 Inception Module, Naive Version

20

Let’s look at the Inception module which is what sets the network apart from other models

and what guarantees high levels of accuracy and performance.

Revisiting the problem of selecting appropriate filter size and type of activation function

of the pooling layer when designing a neural network. The task of testing every

combination with trial and error is not only time consuming but also trivial. You may/may

not find the optimal combination. Inception solves this performing all possible parameters

in parallel before going to the next layer. If the next layer is also an Inception module, then

each of the convolutions feature maps will be passed through the mixture of convolutions

of the current layer. The idea is that you don’t have to spend time worrying about hyper-

parameters when the network can do that for you.

Regularization Methods

Regularization is an approach to introducing additional information to solve an ill-posed

problem to prevent overfitting. Let’s look at the different types of regularization which

CNN’s offer.

1. Dropout: The fully connected layer is prone to overfitting due to the number of

parameters it occupies [16]. The prevent this we use dropout. At each training stage,

individual nodes are “dropped out” of the net with either probability 1-p or kept

with probability p. The removed nodes are then reinserted into the network with

original weights. The probability that a hidden node would be dropped is 0.5 and

21

during testing we find an average of all possible 2n. Dropout decreases overfitting

by avoiding training all nodes on all training data. Dropout also significantly

improves training speed.

2. DropConnect: DropConnect [17] is the generalization of dropout in which each

connect can be dropped with probability 1-p. DropConnect is like dropout, it

introduces dynamic sparsity, but the sparsity is on the weights rather than the output

vectors.

22

Chapter IV

Recurrent Neural Networks

Recurrent Neural Networks (RNN) are a class of neural networks where neurons are

directly connected to form a directed graph. One of the features of an RNN is the ability to

exhibit temporal dynamic behavior for a time sensitive sequence. RNN’s are known for

high accuracy in time bound sequences of data because of the structure and layout of the

network [18].

There are 2 broad classes of recurrent neural networks where one is finite impulse and the

other is infinite impulse. Both the classes of networks exhibit dynamic behavior [19]. The

infinite impulse recurrent network is a directed cyclic graph whereas the finite impulse is

directed acyclic.

Traditional RNN’s operate on the assumption that outputs produced from predeceasing

layers are important for successive accuracies. RNN’s can retain information which makes

them very effective in working with sequential data. They can retain information because

of “memory” which captures information about outputs.

23

Figure 11 A Simplified Representation of an RNN

Figure 8 shows the internal working of an RNN. As we can see the outputs h from the

previous layer is fed to the next layer along with new input x from the sequence. The arrows

denote the hidden memory and the “storing” of previous outputs and feeding to the next

layer.

The hidden state of the RNN is basically the memory of the network and it captures

information from previous time steps. An RNN also uses the same parameters at all the

layers unlike the CNN architecture. The frequency of the outputs from RNN can be

tweaked depending on how often it is required.

What can RNN’s do?

RNN’s are used in natural language processing tasks quite often [20]. The most commonly

used version of RNN’s are called Long Short-Term Memory or LSTM’s which is also what

we use for our model for SLR. RNN’s can perform a variety of tasks such as:

1. Language Modelling and Generating Text: RNN’s can be used to predict the

probability a word occurring in a sentence such as a generative model. Such models

24

are called Language Models and they take an input of words and give a possible

combination of outputs of words.

2. Machine Translation: Machine Translation is like Language Modelling in which

we output a sequence of words, the difference between the two is that Language

Translation does not require completed text to generate new text whereas Machine

Translation requires completed text to give an output.

3. Speech Recognition: If an RNN is given a sequence of audio signals, it can be

possibly trained to recognize speech and meaningful sentences from recorded

audio.

Vanishing Gradient Problem

The vanishing gradient problem is a trouble found in training artificial neural networks. In

such neural networks, the weights of the neural networks are updated after every pass. But

the problem is sometimes the gradient would be vanishingly small, which prevents the

weight from changing values. The worst case being that the neural network stops updating

entirely.

Let’s take an example of a traditional activation function such as the hyperbolic tangent

function which have gradients in the range (0, 1) and uses backpropagation. Over n layers,

the gradient decreases exponentially and the front n layers train very slowly.

25

Solutions to vanishing gradient:

1. Multi-level hierarchy: Jurgen Schmidhuber proposed multi-layer hierarchy of

networks which are pretrained through unsupervised learning and then fine-tuned

through backpropagation.

2. Related approach: Similar approaches have been used in feed forward neural

networks which are used to classify labeled data. A deep belief network model by

Hinton involves learning the distribution of a high-level model using latent

variables.

3. LSTM: Will be covered in the next section.

4. Faster hardware: Hardware has been advancing since neural networks were

introduced to the computing world, making backpropagation feasible for several

layers deeper than vanishing gradient is recognized for.

5. Residual networks: One of the newer ways to deal with vanishing gradient problem

is to use residual networks called ResNet. ResNet have a higher training error than

a shallow network meaning that data was disappearing through the layers of the

network, and the output of the shallow layer diminishes through the layers of the

deeper network yielding poorer results. We can improve the performance by

splitting the deep network into chinks and passing the input into each chunk

directly. ResNet yields lower training error than their shallower counterparts by

simply reintroducing outputs from shallower layers.

6. Other activation functions: Rectifiers such as ReLU suffer less from vanishing

gradient problem.

26

LSTM

Long short-term memory (LSTM) networks were discovered in 1997 and set accuracy

records in multiple application domains [21].

Around 2007, LSTM’s started to be used extensively for speech recognition with incredible

results and soon after in 2009, an RNN based architecture designed to recognize patterns

won several contests by setting benchmarks for accuracy in handwritten data recognition.

Figure 12 Long short-term memory

LSTM’s are a deep learning architecture designed to avoid the vanishing gradient problem.

The vanishing gradient problem is an issue that deep learning models face during training

that arises due to loss of accuracy during backpropagation. Backpropagation allows each

27

of the networks weights to update slightly depending on training progress, but sometimes

the gradient will be vanishingly small, prevent weights from changing values which may

lead to the neural network to stop training entirely. Backpropagation initially discouraged

researchers when they tried to make neural networks from scratch, and the vanishing

gradient problem gave poor results, till the problem was correctly identified and possible

solutions were invented, one of which are LSTM’s.

Figure 13 Vanishing Gradient over Layers

LSTM’s are augmented by recurring gates which are called “forget” gates [22]. It prevents

backpropagated errors from the vanishing gradient problem, which gives LSTM’s freedom

to learn tasks that require memories of events which happened millions of time steps

earlier. LSTM’s are also very specific and can be modified for specific tasks depending on

the need of it.

28

Training an RNN

The steps required to training an RNN are very similar to training a CNN like we covered

in the previous chapter. The concept of backpropagation is also the same, except there are

slight modifications to the entire process itself. Unlike a CNN, the parameters between

layers does not change in an RNN, so the parameters are shared by all time steps in the

network, the gradient at each output depends not only on calculations on current time step

but also previous time steps [20].

Training an RNN at a certain time step requires the calculation of gradient n steps behind

it. This process is called Backpropagation Through Time (BPTT), which is underlying

principle behind RNN architectures. Traditionally vanilla RNN’s suffer from

vanishing/exploding gradient problem, but specialized RNN’s (LSTM) exist which do not

suffer from that problem.

Extensions to RNN

RNN’s are modifiable to be suited to perform specific tasks with high accuracy. One of the

variations of which we discussed above known as the LSTM. Let’s look at a few more

popular variations of a vanilla RNN.

29

Bidirectional RNN’s: Bidirectional RNN’s are rooted on the idea that the output at a certain

time step may be dependent not only on previous time steps but also on future time steps.

Let’s look at the example of predicting a missing member of a sequence. The RNN requires

knowledge of previous time steps and future time steps to make a prediction. Bidirectional

RNN’s are two RNN’s working on top of each other.

Deep RNN’s: Deep RNN’s are like Bidirectional RNN’s, but with more layers per time

step. These types of architectures take a higher learning capacity, more data and more time

to train but can be used to model architectures for longer sequences. Like Deep RNN’s,

Wide RNN’s are neural networks with more nodes rather than layers per time step.

30

Chapter V

Sign Language Dataset

The dataset used was a custom American Sign Language Dataset based off an existing

dataset curated by Needell et al. [23]. The authors of the Neidel dataset collected data from

recording ASL native signers under supervision of Neidel. Video stimuli was presented to

the signers, and they were asked to produce the sign as they naturally would. The video

stimuli also included variations of a sign which existed in the dictionary. The signers did

not always produce the same sign however, there was variation in the signs produced. The

variations were classified and labelled accordingly.

The signers were recorded using four synchronized cameras, providing a side view, a close

and higher resolution view. Video processing was applied to ensure the frame rate over the

videos stay the same and the resolution was high enough that the signs performed were

legible to be recognized.

A custom dataset was used because of several drawbacks present in the original dataset.

The presence of multiple interpretations of a single sign gesture led to lower accuracy of

the model because of wrong features being extracted during the training process. The

presence of variation in clothing and facial expressions also led to lower accuracy due to a

lot of irrelevant features being trained to the model decreasing accuracy greatly.

31

We decided to use the most common 150 words in American Sign Language as a starting

point. Each word was individually recorded 4 times (3 for test, 1 for training) whilst

keeping the same clothes and removing facial features. The variation between multiple

gestures accounted for variation in practical scenarios.

Figure 14 An Example from the Custom Dataset

The videos were recorded on an iPhone 6 camera at 60 frames per second. The videos

were all recorded at a constant 720p resolution. Each video was then preprocessed before

feeding to the model. Preprocessing the model involved breaking down each video to a

size of 300 frames, which was used as the standard length of gestures. The dataset was

then augmented to increase the size of training and test for better performance in training.

The completed dataset will be available online without augmentation.

32
 Id Gesture Id Gesture Id Gesture Id Gesture

1 Accept 46 Breakfast 91 Father 136 Mad

2 Again 47 Brother 92 Fine 137 Marry

3 Beach 48 Buy 93 Friend 138 Meat

4 Bear 49 Busy 94 Fish 139 Milk

5 Become 50 Candy 95 Food 140 Mother

6 Blood 51 Cheese 96 Friday 141 More

7 Care 52 Clean 97 Change 142 Math

8 Certify 53 Coffee 98 Good 143 Me

9 Disconnect 54 Cold 99 Grandfather 144 Mean

10 Hit 55 Cookie 100 Grandmother 145 Mushroom

11 More 56 Cousin 101 Grapes 146 Monkey

12 Like 57 Cute 102 Green 147 Niece

13 Help 58 Cat 103 Garage 148 Nephew

14 Animal 59 Cow 104 Girl 149 Nice

15 Bird 60 Child 105 Girlfriend 150 Meaning

16 Cat 61 Car 106 Granddaughter

17 Cow 62 Carrot 107 Grandson

18 Elephant 63 Cherry 108 Green Beans

19 Horse 64 Chicken 109 Grey

20 Lion 65 Children 110 Gross

21 Black 66 Dispatch 111 Giraffe

22 Finish 67 Coke 112 Go

23 Apple 68 College 113 Happy

24 Aunt 69 Color 114 Hamburger

25 Angry 70 Cook 115 Hot

26 Apartment 71 Drink 116 Hurt

27 Baby 72 Daughter 117 Husband

28 Bad 73 Delicious 118 Help

29 Banana 74 Divorce 119 Horse

30 Beautiful 75 Date 120 Home

31 Bicycle 76 Deaf 121 Hot dog

32 Blue 77 Depressed 122 House

33 Boy 78 Different 123 Hungry

34 Bread 79 Dining

Room

124 Ice Cream

35 Brown 80 Dinner 125 Jam

36 Butter 81 Door 126 Ketchup

37 Bird 82 Dog 127 Kitchen

38 Better 83 Eat 128 Know

39 Bachelor 84 Exciting 129 Lemon

40 Bacon 85 Big 130 Lunch

41 Bald 86 Eggs 131 Like

42 Bathroom 87 English 132 Lion

33

Chapter VI

Methodology and Experimental Results

Two main concepts the RNN and Inception (CNN) have been introduced and discussed in

detail in previous chapter. CNN is focused on temporal feature extraction and the RNN is

more focused on sequence recognition. In this chapter, we will connect the two fields and

apply the technique of CNN to recognize individual gestures from images, and the

recognize the sequences of images using an RNN.

Objectives

There are several goals that we will accomplish in this chapter.

• Examine the process of extracting images from gesture videos.

• Obtain the results of the CNN with predicted labels and the output of the pool layer.

• Build an RNN framework.

• Pass the labels to the RNN framework and train the RNN.

• Predict results.

43 Bedroom 88 Enter 133 Lettuce

44 Bitter 89 Family 134 Living Room

45 Boyfriend 90 Fruit 135 Love

Table 1 List of Gestures

34

Figure 15 Experimental Process

Retraining Inception Model

In practice its hard to train a CNN from scratch, because it is rare to find a dataset to train

it to the appropriate parameters. A solution to which is using a pretrained CNN as a starting

point and use transfer learning. Several transfer learning scenarios exist such as [24]:

1. CNN as fixed feature extractor: Using a CNN which is pretrained and removing the

last fully-connected layer, then use the rest of the CNN as a fixed feature extractor

for the new dataset. Once we retrain the CNN we then use a classifier for the new

dataset.

2. Fine-Tuning the CNN: The second strategy is to not only retrain the CNN but also

modify the weights for the new dataset. It is possible to retrain every layer and

modify or keep existing layers. This is used when earlier training of the model has

generic features and we need to fine tune for specific features in the new dataset.

3. Pretrained model: Since newer models of CNN take several weeks to train across

GPU’s, it is common to use checkpoints for finetuning [19].

35

Deciding which transfer learning to use depends on several factors such as size of the new

dataset and its similarity to the original dataset. There are several rules which help you

decide [19]:

1. If the new dataset is small, you should not fine tune the CNN to avoid overfitting.

It is a better idea to use higher level features instead of finer details.

2. If the new dataset is large and like the original training dataset then the CNN will

have accuracy with good accuracy.

3. If the new dataset is small but also different from the original, using a linear

classifier is the best idea, since CNN’s pick up dataset specific terms.

4. If the new dataset is large and different we might have to retrain the CNN from

scratch.

After reading every video in the dataset along with its corresponding gesture, we extract

frames (pictures) from the videos of length 300. We ensure that the 300 frames capture all

the important details from the corresponding gesture. After extracting frames and labelling

images we run a retraining script to retrain Inception model discussed in the previous

chapter. The top layer (bottleneck) is trained to recognize specific classes of images [25].

A SoftMax layer is used on the end to train for final class predictions.

36

Predicting Labels With CNN

Once the model is retrained, we predict labels for individual gestures by feeding it to the

trained CNN. The process and the model are described below.

Figure 16 Model for predicting labels

If we take a gesture like again, the gesture gets broken into frames and each frame has an

associated prediction and label attached to it.

The second approach to the problem was recording the output of the pool layer of the

CNN instead of using the predicted label from the CNN. The preprocessing for both the

approaches was the same, but the output varied and was stored independently.

37

Figure 17 Frame Prediction for Gesture

Training and Setting up an RNN

We create an RNN model based on LSTM’s which were discussed in the previous chapter.

The first layer is used to feed input to the succeeding layers. The model we use is a wide

network consisting of 256 LSTM units. The wide layer is followed by a fully connected

layer with SoftMax activation. The size of the input layer is determined by the size of the

input being fed, which in our case is 300. The fully connected layer is every neuron

connected to every neuron of the previous layer and it consists of neurons equal to the

number of classes. Finally, the model is finished by a regression layer to the input. We used

ADAM [26], a stochastic optimizer as a gradient descent optimizer to minimize the

provided loss function categorical cross entropy.

38

Figure 18 RNN Model

Other options we tested were using a wider RNN network with 512 LSTM units and a

deeper RNN network with three layers of 64 LSTM units. After testing we concluded that

the wide model with 256 units gave the best performance.

After defining the RNN model, we pass the video frames of both the approaches along with

label information to the completed model for final gesture prediction.

39

Figure 19 RNN Training

Results

The dataset used was the custom dataset recorded for this thesis, which has been described

in the section above. It consisted of a total of 150 most common ASL signs. It was

augmented to increase the number of images per class before training and testing. The

augmentations consisted of resizing, expanding and shrinking the images. It also accounted

for variation. The dataset consisted of videos, which were broken down to frames by using

OpenCV in Python. The dataset was split into 80% for training and 20% for testing

randomly.

The hyperparameters of the model like batch size of the model was set to 32 and with 10

epochs and a dropout of 0.3. ADAM was chosen to regularize for stochastic gradient

descent. The hyperparameters were chosen after several runs and comparing the model

accuracy. The model was also chosen after multiple experiments consisting of variation of

40

dropout, number of LSTM layers and number of LSTM nodes. During training of the

model, a 10% split was used as validation set and was split at random from the training set.

The metric used to compare model performance was accuracy of class prediction by the

model. We used two different approaches with the same model, comparing accuracies of

two different outputs from the CNN to the RNN: a. Using the output of the final SoftMax

layer i.e.. Final predictions and b. Using the output of the pool layer which is a 2048 sized

vector.

For the sake of validation, we also compared the performance of the model to two existing

models on SLR. Vivek [8] developed a model for American Sign Language recognition

consisting of a custom CNN model consisting of 6 convolutional layers with a dropout of

0.25. and a final dropout layer of dropout 0.5. We extended that CNN model with the RNN

we developed and trained it on our dataset. The original model was trained on a custom

dataset of the authors based on the ASL dataset consisting of only static hand gestures. We

also compared the model to a model developed by Lu [7] on SLR. The model consisted of

a pretrained CNN named ResNet which was trained by transfer learning for the VIVA

Gesture dataset followed by an RNN developed by the authors. The model was trained for

20 epochs with a learning rate of 1-e4 and ADAM for stochastic gradient descent. The

batch size was set to 48 and 8-fold cross validation was used by the authors. The authors

also performed augmentation on their dataset like ours. We trained the model on our dataset

and compared the accuracy of the models with the same hyperparameters but without the

cross validation.

The accuracy of the models stabilized with higher size of the dataset, although using the

pool layer approach yielded poorer results than using the prediction layer. We evaluate the

41

CNN and RNN independently using the same training and testing dataset this ensures that

the test data has not been seen by the CNN and the RNN. The models did not use cross

validation for training.

of Signs Accuracy with

SoftMax Layer

Accuracy with

Pool Layer

Accuracy of

Vivek et al. [8]

Accuracy of Lu et al.

[7]

10 (20 samples) 75% 55% 82% 82%

50 (100 samples) 87% 58% 84% 81%

100 (200 samples) 91% 58% 84% 83%

150 (300 samples) 90% 55% 81% 83%

Table 2 Final Results on Testing Dataset

From the results we can see that the performance of the model improves with increase in

the dataset size. The pool layer approached showed lower accuracy could possibly be

because of conflicting features or too many features in the training set. The model

performed these results on a dataset which consisted of well-lit subjects with minimal

motion. If the subject were to have too much haphazard motion, the accuracy of the model

would suffer.

The accuracy of misclassified signs did not correct with an increase in sample size, in fact

originally correctly classified signs were later misclassified when increasing the number of

signs which leads to a conclusion that there could possibly be too little difference between

those signs for the model to differentiate and we need more features or more distinction to

have better accuracy.

42

Chapter VII

Conclusions and Future Work

In this paper we introduced a way to recognize American Sign Language using machine

learning. It is an approach to solve the problems faced by people with hearing and speech

impairments. Its composed of 2 major components, analyzing the gestures from images

and classifying images. Since we are dealing with a smaller dataset, using a larger dataset

may provide better results.

We investigated two approaches to classification: using the pool layer and using the

SoftMax layer for final predictions. The SoftMax layer provided better results because of

distinct features. The sheer number of features in a 2048 vector confused the network

leading to poorer results.

Problems Faced by The Model

One of the problems the model faced was the presence of facial features and skin tones.

While testing with different skin tones, the model dropped accuracy if it hadn’t been trained

on a certain skin tone was made to predict on it.

43

The model also suffered from loss of accuracy with the inclusion of faces. Faces of signers

vary, which leads to model to train incorrect features from the videos. The videos had to

be trimmed to include only gestures which were only extended to the neck of the signer.

The model also performed poorly when there was variation in clothing. Maybe using a ROI

to isolate hand gestures from the images would help accuracy, but for the context of this

paper, a consistent full-sleeved shirt was used in all the gesture recordings.

Potential Improvements

One of the potential improvements would be to experiment with different RNN

architectures for the output of the pool layer. Including GRU and Independent RNN’s.

In terms of CNN improvements, using Capsule Networks [27] instead of Inception may

yield better results than Inception along with working on integrating the CNN and RNN

model into one ensemble. Generally using two different models to feed into each other,

suffers from loss of data and increase of training time, whereas using one ensemble allows

for careful monitoring of input data and precise corrections to the model.

44

Chapter VIII

Bibliography

[1] V. Athitsos, C. Neidle, S. Sclaroff and J. Nash, "The American Sign Language Lexicon Video

Dataset," 2008 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition Workshops, 2008.

[2] J. Huang, W. Zhou and Q. Zhang, "Video-based Sign Language Recognition without

Temporal Segmentation," arXiv, 2018.

[3] T.-W. Chong and B.-G. Lee, "American Sign Language Recognition Using Leap Motion

Controller with Machine Learning Approach," Sensors, vol. 18, 2018.

[4] C. Linqin, C. Shuangjie and X. Min, "Dynamic hand gesture recognition using RGB-D data

for natural human-computer interaction," Journal of Intelligent and Fuzzy Systems, 2017.

[5] F. Ronchetti, Q. Facundo and A. E. Cesar, "Handshake recognition for argentinian sign

language using probsom," Journal of Computer Science & Technology, 2016.

[6] C. Hardie and D. Fahim, "Sign Language Recognition Using Temporal Classification," arXiv,

2017.

[7] D. Lu, C. Qiu and Y. Xiao, "Temporal Convolutional Neural Network for Gesture

Recognition," Beijing, China.

[8] V. Bheda and D. N. Radpour, "Using Deep Convolutional Networks for Gesture Recognition

in American Sign Language," Department of Computer Science, State University of New

York Buffalo, New York.

[9] Y. LeCun, "LeNet-5, Convolutional Neural Networks".

[10] M. Masakazu, K. Mori, Y. Mitari and Y. Kaneda, "Subject independent facial expression

recognition with robust face detection using a convolutional neural network," Science

Direct, 2003.

[11] Y. LeCun, C. Cortes and B. Christopher, "MNIST handwritten digit database".

[12] J. Ludwig, "Image Convolution," Portland State University.

[13] "cs231n.github.io," [Online].

[14] A. Krizhevsky, I. Sutskever and G. Hinton, "Imagenet classification with deep convolutional

neural networks," Advances in Neural Information Processing Systems.

45

[15] D. Scherer, A. Muller and S. Behnke, "Evaluation of Pooling Operations in Convolutional

Architectures for Object Recognition," 20th International Conference on Thessaloniki,

Greece, 2010.

[16] N. Srivastava, H. Geoffrey and K. Alex, "Dropout: A Simple Way to Prevent Neural

Networks from overfitting," Journal of Machine Learning Research, 1929-1958.

[17] "Regularization of Neural Networks using DropConnect," ICML, 2013.

[18] H. Sak, A. Senior and F. Beaufays, "Long Short Term Memory recurrent neural network

architectures for large scale acoustic modelling," 2014.

[19] M. Milos, "Comparitive analysis of Recurrent and Finite Impulse Response Neural

Networks in Time Series Prediction," Indian Journal of Computer and Engineering, 2012.

[20] D. Britz, "Recurrent Neural Networks Tutorial, Part 1 – Introduction to RNNs," WILDML, 17

September 2015. [Online]. Available: http://www.wildml.com/2015/09/recurrent-neural-

networks-tutorial-part-1-introduction-to-rnns/.

[21] J. Schmidhuber, "Habilitation thesis: System modeling and optimization," Credit

assignment across the equivalent of 1200 layers in an RNN, p. 150.

[22] F. Gers, N. Nicol and J. Schmidhuber, "Learning Precise Timing with LSTM Recurrent

Networks," ResearchGate, p. 143, 2017.

[23] C. Neidle and A. Thangali, "Challenges in Development of the American Sign Language

Lexicon Video Dataset Corupus," 5th Workshop on the Representation and Processing of

Sign Language, 2012.

[24] "http://cs231n.github.io/transfer-learning/," [Online].

[25] "https://becominghuman.ai/transfer-learning-retraining-inception-v3-for-custom-image-

classification-2820f653c557," [Online].

[26] Kingma, Diedrick and J. Ba, "ADAM: A method for stochastic optimization," arXiv, 2014.

[27] G. Hindon, "Dynamic Routing Between Capsule".

	Kennesaw State University
	DigitalCommons@Kennesaw State University
	Spring 2-18-2019

	American Sign Language Recognition Using Machine Learning and Computer Vision
	Kshitij Bantupalli
	Ying Xie
	Recommended Citation

	tmp.1550505249.pdf.kZOgB

