
Kennesaw State University
DigitalCommons@Kennesaw State University

Faculty Publications

2010

An Attempt to Find Neighbors
Yong Shi
Kennesaw State University, yshi5@kennesaw.edu

Ryan Rosenblum
Kennesaw State University

Follow this and additional works at: https://digitalcommons.kennesaw.edu/facpubs

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Faculty
Publications by an authorized administrator of DigitalCommons@Kennesaw State University. For more information, please contact
digitalcommons@kennesaw.edu.

Recommended Citation
Yong Shi, Ryan Rosenblum, "An Attempt to Find Neighbors," cyberc, pp.318-320, 2010 International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery, 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@Kennesaw State University

https://core.ac.uk/display/231828911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.kennesaw.edu?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F1588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/facpubs?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F1588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/facpubs?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F1588&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F1588&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

An Attempt to Find Neighbors
Yong Shi and Ryan Rosenblum

Department of Computer Science and Information Systems
Kennesaw State University
1000 Chastain Road
Kennesaw, GA 30144

Abstract—In this paper, we present our continuous research on
similarity search problems. Previously we proposed PanKNN[18]
which is a novel technique that explores the meaning of K
nearest neighbors from a new perspective, redefines the distances
between data points and a given query point Q, and efficiently
and effectively selects data points which are closest to Q. It can be
applied in various data mining fields. In this paper, we present
our approach to solving the similarity search problem in the
presence of obstacles. We apply the concept of obstacle points
and process the similarity search problems in a different way.
This approach can assist to improve the performance of existing
data analysis approaches.

I. INTRODUCTION

Huge amount of data have been generated in many dis-
ciplines nowadays. The similarity search problem has been
studied in the last decade, and many algorithms haves been
proposed to solve the K nearest neighbor search[13], [17],
[2], [12], [9]. We previously proposed PanKNN[18] which
is a novel technique that explores the meaning of K nearest
neighbors from a new perspective, redefines the distances
between data points and a given query point Q, and efficiently
and effectively selects data points which are closest to Q. In
this paper, we first give a brief introduction about our previ-
ous work on PanKNN and discuss the Fuzzy concept; then,
we propose to use the Fuzzy concept to design OPanKNN
algorithm that targets solving the nearest neighbors problems
in the presence of obstacles.

II. RELATED WORK

The similarity between two data points used to be based
on a similarity function such as Euclidean distance which
aggregates the difference between each dimension of the two
data points in traditional nearest neighbor problems. In those
applications, the nearest neighbor problems are solved based
on the distance between the data point and the query point over
a fixed set of dimensions (features). However, such approaches
only focus on full similarities, i.e., the similarity in full data
space of the data set. Also early methods [1], [6], [21] suffer
from the ”cure of dimensionality”. In a high dimensional
space the data are usually sparse, and widely used distance
metric such as Euclidean distance may not work well as
dimensionality goes higher. Recent research [7] shows that
in high dimensions nearest neighbor queries become unstable:
the difference of the distances of farthest and nearest points
to some query point does not increase as fast as the minimum

of the two, thus the distance between two data points in high
dimensionality is less meaningful. Some approaches [14], [4],
[3] are proposed targeting partial similarities. However, they
have limitations such as the requirement of the fixed subset
of dimensions, or fixed number of dimensions as the input
parameter(s) for the algorithms.
There are quite a few approached designed to detect clusters

in the presence of obstacles and facilitators. For example,
COD CLARANS [5] is a modified version of the CLARANS
[15] partitioning algorithm which performs clustering pro-
cesses in the presence of obstacles. AUTOCLUST+ [11] is
a version of AUTOCLUST [10] enhanced to handle obstacles,
which does not require parameters. DBRS+ [19] is derived
from DBRS [20], and it handles both obstacles and facilitators.
However, none of these algorithms considers detecting outliers
simultaneously with clustering process. In many cases, outliers
are as important as clusters, such as credit card fraud detection,
discovery of criminal activities, discovery of computer intru-
sion, and etc. These approaches do not consider the presence
of obstacles as well.

III. FUZZY CONCEPT

Various data sets in the real world are not naturally well
organized and fuzzy concept can be applied to further improve
the data analysis approaches. The concept of fuzzy sets was
first introduced by Zadeh [23] to represent vagueness. The use
of fuzzy set theory is becoming popular because it produces
not only crisp decision when necessary but also corresponding
degree of membership. Usually, membership functions are
defined based on a distance function, such that membership
degrees express proximities of entities to cluster centers. In
conventional clustering, sample is either assigned to or not
assigned to a group. Assigning each data point to exactly
one cluster often causes problems, because in real world
problems a crisp separation of clusters is rarely possible due
to overlapping of classes. Also there are exceptions which
cannot be suitably assigned to any cluster. Fuzzy sets extend
to clustering in that objects of the data set may be fractionally
assigned to multiple clusters, that is, each point of data set
belongs to groups by a membership function. This allows for
ambiguity in the data and yields detailed information about the
structure of the data, and the algorithms adapt to noisy data
and classes that are not well separated. Most fuzzy cluster
analysis methods optimize a subjective function that evaluates
a given fuzzy assignment of data to clusters.

2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery

978-0-7695-4235-5/10 $26.00 © 2010 IEEE

DOI 10.1109/CyberC.2010.64

318

One of the classic fuzzy clustering approach is the Fuzzy
C-means Method designed by Bezdek, J. C [8]. In brief, for a
data set X with size of n and cluster number of c, it extends the
classical within groups sum of squared error objective function
to a fuzzy version by minimizing the objective function with
weighting exponent m, 1 ≤ m < ∞. On the other hand, the
fuzzy C-Means (FCM) uses an iterative optimization of the
objective function, based on the weighted similarity measure
between xk and the cluster center vi.

IV. SOLVING SIMILARITY PROBLEMS
We will briefly introduce our previous work on

PanKNN[18] in this section. PanKNN is a novel approach
to nearest neighbor problems in which we also analyze the
nearest neighbor problems for a new perspective. We define
the new meaning for the K nearest neighbors problem, and
design algorithms accordingly. The similarity between a
data point and a query point is not based on the difference
aggregation on all the dimensions. We propose self-adaptive
strategies to dynamically select dimensions based on the
different situation of the comparison.
For a given data point Xi, and a given query point Q,

we call the distance between Xi and Q as Pan-distance
PD(Xi, Q). PD(Xi, Q) does not calculate the aggregated
differences between Xi and Q on all dimensions. Instead,
it only take into account those dimensions on which Xi is
close enough to Q, and sum them up. This strategy not only
avoids the negative impacts from those dimensions on which
Xi is far to Q, but also eliminate the curse of dimensionality
caused by similarity functions such as Euclidean distance
which calculates the square root of the sum of squares of
distances on each dimensions. On more dimensionsXi is close
(within the sets of K nearest neighbor) to Q, the smaller Pan-
distance Xi has to Q. If we have two data points Xi and
Xj , we judge which data point is closer to Q based on how
many dimensions on which they are close enough (within
dimension-wise K nearest neighbors) to Q, as well as their
average distances to Q on such dimensions.
Given a data set DS, we first calculate the difference δil of

each data point Xi to the query point Q on each dimensionDl.
Then we sort the ids on each dimension Dl based on δil, and
select the first K ids on each dimension Dl and put them into
KSl. We put all the ids in all KSl to the set GS, and calculate
the PD(Xi, Q) for each data point if its id is in GS. Finally,
we sort the ids based on the Pan-distance and select the first
K ids in the sorted list as the ids of K nearest neighbors of
Q. We do not need to calculate the difference using different
number of dimensions. The number of dimensions and the
subset of dimensions associated with data point Xi are both
dynamically decided depending on the values of Xi and their
rankings on different dimensions.

V. SEARCHING NEAREST NEIGHBORS
The PanKNN algorithm solves the similarity search prob-

lems in a new perspective efficiently and effectively. However,
it does not consider the cases where there are obstacles in the
date sets from which we try to find the nearest neighbors for

a given query point Q (an example is shown in figure ??). In
this section we propose to design an algorithm in the presence
of obstacles, which will be referred to as OPanKNN.
Let n denote the total number of data points and d be the

dimensionality of the data space. Let Dl be the lth dimension,
where l = 1, 2, ..., d. Let the input d-dimensional data set be
X

X = {X1, X2, ..., Xn} (1)

which is normalized to be within the hypercube [0, 1]d ⊂ Rd.
Each data point Xi is a d-dimensional vector:

Xi = [xi1, xi2, ..., xid]. (2)

Data point Xi has the id number i. Let Q be the query
point: Q = [q1, q2, ..., qd]. Let Δi = [δi1, δi2, ..., δid] as the
array of differences between the data point Xi and the query
point Q on each dimension. There are obstacles existing in
the data set as well. Obstacles can be represented in various
ways. One simple and efficient way is to represent them as
multi-dimensional points like the data points in the data set
and the query point Q. Let m be the total number of obstacle
points, and we can represent the set of obstacle points as:

C = {C1, C2, ..., Cm} (3)

which is also normalized to be within the hypercube
[0, 1]d ⊂ Rd. Each obstacle point Ch is a d-dimensional vector:

Ch = [ch1, ch2, ..., chd]. (4)

Each value chl where h=1,2,...,m and l=1,2,...,d represents
a obstacle point on dimension Dl where values on the two
different sides of chl are obstructed to be in the same segment
(zone).
Since the full data space is normalized, the value range of

the data points on each dimension Dl, where l = 1, 2, ..., d
should be within the interval [0,1], as well as the value range
of the obstacle points. On dimension Dl, the values of all the
obstacle points are:

c1l, c2l, ..., cml (5)

We sort them in ascending order

c1l
′, c2l

′, ..., cml
′ (6)

where c1l
′ >= 0 and cml

′ <= 1.
For the purpose of consistency, let c0l

′ represent 0, and let
cm+1,l

′ represent 1. Thus the value range on dimension Dl

can be divided into m+1 zones (segments):

[c0l
′, c1l

′), [c1l
′, c2l

′), ..., [cml
′, cm+1,l

′] (7)

We use Zl0, Zl1, ..., Zl,m+1 to represent them respectively.
For a given query point, Q = [q1, q2, ..., qd], suppose its value
ql on Dl ∈ [ckl

′, ck+1l
′), or Zlk where k=0,1,...,m . For each

data point Xi in X, on each dimension Dl, where l=1,2,...,d,
we not only check if its value xil on Dl is close to ql which
is the value of Q on Dl, but also check if xil is in the same
segment of ql on Dl. If xil is not in the same segment of
ql , even if xil is one of the K closest value to ql, we still
can not say it is very close Q on Dl. On the other hand, it is

319

also inappropriate to completely discard xil in the following
calculation. Here we adopt the fuzzy concept to determine
the weight xil should have when we calculate the distance
between Xi and Q.
Given a data set DS of n data points X = {X1, X2, ..., Xn}

with d dimensions D1, D2, ..., Dd, a query point Q, and a set
of obstacle points C = {C1, C2, ..., Cm} in the same data
space, we first sort the data points on each dimension Dl, l=1,
2, ..., d, based on δil which is the difference between data
point Xi and Q on dimension Dl. On each dimension Dl,
l=1, 2, ..., d, let KSl be the set which contains the ids of the
first K data points in the sorted list. We call these first K data
points as dimension-wise K nearest neighbor to Q on Dl.
Those K data points which ids are in KSl, however, might

not be in the same segment (zone) with ql. This is due to the
possibility that Zlk which ql belongs to contains less than K
data points.
For each data point Xi, i=1, 2, ... n, let Fi be an array

containing values in the range of [0,1]: Fi = [fi1, fi2, ..., fid]
in which fij represents the degree of the possibility that
dimension j should be considered when we calculate the
distance between Xi and Q.
Given two d-dimensional points Xi = [xi1, xi2, ..., xid] and

Q = [q1, q2, ..., qd], with the existence of obstacle points C =
{C1, C2, ..., Cm}, and Dl as the dimension l, l=1, 2, ..., d, the
Pan-distance of Xi to Q in the presence of obstacles

PDO(Xi, Q) =
∑d

l=1 δil ∗ fil

(
∑d

l=1 bil)2
(8)

where δil is the difference between Xi and Q on Dl, fil is
a value between [0,1] depending on whether i ∈ KSl and
whether xil is in the same segment with ql on Dl. PDO(Xi,
Q) can also be defined as the product of the average distance
of Xi to Q on those dimensions on which Xi is within the set
of dimension-wise K nearest neighbor to Q, and the weight
to the average difference based on on how many dimensions
on which Xi is within the set of K nearest neighbor to Q.
Given a data set DS of n data points X = {X1, X2, ..., Xn}

with Dl as the dimension l, l=1, 2, ..., d, a query point Q
in the same data space, and a set of obstacle points C =
{C1, C2, ..., Cm}, we try to find a set PKS which consists of
k data points from DS so that for any data point Xi ∈ PKS
and any data point Xj ∈ DS−PKS, the PDO(Xi, Q) is less
than or equal to PDO(Xj , Q). The set PKS is the Pan-K
Nearest Neighbor set of Q in DS in the presence of obstacles.

VI. CONCLUSION

In the paper we present our strategy to design the similarity
search approaches in the presence of obstacles. On each
dimension we divide the value range into segments based on
the obstacle points and conduct our OPanKNN algorithm to
find K nearest neighboring points for a given query point
Q. In the future work, we will conduct more experiments
on synthetic and real data sets to test and demonstrate the
efficiency and effectiveness of our approach.

REFERENCES
[1] White D.A. and Jain R. Similarity Indexing with the SS-tree. In

Proceedings of the 12th Intl. Conf. on Data Engineering, pages 516–523,
New Orleans, Louisiana, February 1996.

[2] E. Achtert, C. Böhm, P. Kröger, P. Kunath, A. Pryakhin, and M. Renz.
Efficient reverse k-nearest neighbor search in arbitrary metric spaces. In
SIGMOD ’06, pages 515–526, New York, NY, USA, 2006. ACM.

[3] C. C. Aggarwal. Towards meaningful high-dimensional nearest neighbor
search by human-computer interaction. In ICDE, 2002.

[4] C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On the surprising
behavior of distance metrics in high dimensional space. Lecture Notes
in Computer Science, 1973, 2001.

[5] Anthony K.H. Tung, Jean Hou and Jiawei Han. Spatial clustering
in the presence of obstacles. In ICDE ’01: Proceedings of the 17th
International Conference on Data Engineering, page 359, Washington,
DC, USA, 2001. IEEE Computer Society.

[6] D. A. Berchtold S., Keim and H.-P. Kriegel. The X-tree : An index
structure for high-dimensional data. In VLDB’96, pages 28–39, Bombay,
India, 1996.

[7] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is “nearest
neighbor” meaningful? In International Conference on Database Theory
99, pages 217–235, Jerusalem, Israel, 1999.

[8] J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function
Algorithms. Kluwer Academic Publishers, Norwell, MA, USA, 1981.

[9] B. Cui, H. Shen, J. Shen, and K. Tan. Exploring bit-difference for
approximate KNN search in high-dimensional databases. In Australasian
Database Conference, 2005., 2005.

[10] V. Estivill-Castro and I. Lee. Autoclust: Automatic clustering via bound-
ary extraction for mining massive point-data sets. In In Proceedings
of the 5th International Conference on Geocomputation, pages 23–25,
2000.

[11] V. Estivill-Castro and I. Lee. Autoclust+: Automatic clustering of point-
data sets in the presence of obstacles. In TSDM ’00: Proceedings
of the First International Workshop on Temporal, Spatial, and Spatio-
Temporal Data Mining-Revised Papers, pages 133–146, London, UK,
2001. Springer-Verlag.

[12] R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity search and
classification via rank aggregation, 2003.

[13] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high
dimensions via hashing. In The VLDB Journal, pages 518–529, 1999.

[14] A. Hinneburg, C. C. Aggarwal, and D. A. Keim. What is the nearest
neighbor in high dimensional spaces? In The VLDB Journal, pages
506–515, 2000.

[15] R. T. Ng and J. Han. Efficient and effective clustering methods for
spatial data mining. In VLDB ’94: Proceedings of the 20th International
Conference on Very Large Data Bases, pages 144–155, San Francisco,
CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[16] Rothman, Milton A. The laws of physics. New York, Basic Books,
1963.

[17] T. Seidl and H.-P. Kriegel. Optimal multi-step k-nearest neighbor search.
SIGMOD Rec., 27(2):154–165, 1998.

[18] Y. Shi and L. Zhang. A dimension-wise approach to similarity
search problems. In the 4th International Conference on Data Mining
(DMIN’08), 2008.

[19] O. Z. University and O. R. Zaane. Clustering spatial data when facing
physical constraints. In In Proc. of the IEEE International Conf. on
Data Mining, pages 737–740, 2002.

[20] X. Wang and H. J. Hamilton. Dbrs: A density-based spatial clustering
method with random sampling. In PAKDD, pages 563–575, 2003.

[21] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and
performance study for similarity-search methods in high-dimensional
spaces. In Proc. 24th Int. Conf. Very Large Data Bases, VLDB, pages
194–205, 24–27 1998.

[22] Yong Shi, Yuqing Song and Aidong Zhang. A shrinking-based clus-
tering approach for multidimensional data. In IEEE Transactions on
Knowledge and Data Engineering (TKDE), pages 1389–1403, 2005.

[23] L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

320

	Kennesaw State University
	DigitalCommons@Kennesaw State University
	2010

	An Attempt to Find Neighbors
	Yong Shi
	Ryan Rosenblum
	Recommended Citation

	An Attempt to Find Neighbors

