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RESEARCH ARTICLE
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Abstract

Resistance training may differentially affect morphological adaptations along the length of

uni-articular and bi-articular muscles. The purpose of this study was to compare changes in

muscle morphology along the length of the rectus femoris (RF) and vastus lateralis (VL) in

response to resistance training. Following a 2-wk preparatory phase, 15 resistance-trained

men (24.0 ± 3.0 y, 90.0 ± 13.8 kg, 174.9 ± 20.7 cm) completed pre-training (PRE) assess-

ments of muscle thickness (MT), pennation angle (PA), cross-sectional area (CSA), and

echo-intensity in the RF and VL at 30, 50, and 70% of each muscle’s length; fascicle length

(FL) was estimated from respective measurements of MT and PA within each muscle and

region. Participants then began a high intensity, low volume (4 x 3–5 repetitions, 3min rest)

lower-body resistance training program, and repeated all PRE-assessments after 8 weeks

(2 d � wk-1) of training (POST). Although three-way (muscle [RF, VL] x region [30, 50, 70%] x

time [PRE, POST]) repeated measures analysis of variance did not reveal significant inter-

actions for any assessment of morphology, significant simple (muscle x time) effects were

observed for CSA (p = 0.002) and FL (p = 0.016). Specifically, average CSA changes

favored the VL (2.96 ± 0.69 cm2, p < 0.001) over the RF (0.59 ± 0.20 cm2, p = 0.011), while

significant decreases in average FL were noted for the RF (–1.03 ± 0.30 cm, p = 0.004) but

not the VL (–0.05 ± 0.36 cm, p = 0.901). No other significant differences were observed. The

findings of this study demonstrate the occurrence of non-homogenous adaptations in RF

and VL muscle size and architecture following 8 weeks of high-intensity resistance training

in resistance-trained men. However, training does not appear to influence region-specific

adaptations in either muscle.
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Introduction

Exercise selection and modality influence the degree to which specific muscles are activated

during training. Activation increases when exercises become more complex [1], while the

range of motion may alter the percent contribution of various muscle groups associated with

the exercise [2]. These differences appear to be modulated by each muscle’s specific role during

movement. For instance, the bi-articular m. rectus femoris (RF) and the mono-articular m. vas-
tus lateralis (VL) possess a similar function during knee extension, and thus, are similarly acti-

vated during that exercise [3]. However, their functional roles are different when an exercise

requires simultaneous motion at the hip and knee joints (e.g., back squat or deadlift) [4]. Dur-

ing the descent phase of the squat or deadlift, proximal RF fibers shorten to flex the hip, while

VL and distal RF fibers lengthen to flex the knee. This process is then reversed during the

ascent. Since the relative intensity (i.e., percent of maximal strength) will vary throughout

dynamic motion, due to changes in velocity and mechanical advantage [4, 5], it is possible that

the degree of stimulus exposure is also different between the RF and VL. Indeed, RF activation

has been observed to be 32% greater during the ascent phase of a squat compared to the

descent, whereas VL contribution remained consistent [6]. Relative force production also

appears to be different between the RF and VL during the squat [7], though this has not been

statistically assessed. Consequently, these acute differences may affect training adaptations.

Adaptations to skeletal muscle are thought to be specific to the imposed demand of exercise

[5, 8] with changes in its metabolic and structural composition mirroring functional require-

ments [9]. Activated skeletal muscle fibers will hypertrophy in response to the mechanical

stress and fatigue induced by repeated training sessions [10, 11]. However, uniform growth

throughout each muscle cannot be expected. Architectural changes have been observed to vary

between muscles [12, 13], as well as across the width [14, 15] and length [12, 13] of specific

muscles. These differences appear to be affected by training modality and potentially training

experience. In untrained men, Narici and colleagues (1996) reported hypertrophy differences

between each of the quadriceps muscles following 6-months of unilateral leg extensions per-

formed every other day, and that changes favored the most distal portions of the RF and VL.

Likewise, serial sarcomere additions (or losses) have been noted to occur across the width and

depth of the tibialis anterior following 6 weeks of eccentric training using various starting posi-

tions (i.e., degree of plantar flexion) in rabbits [15]. In contrast, greater VL hypertrophy (mid-

dle to distal regions) compared to limited RF hypertrophy has been documented in untrained,

older women when training included both a single- and a multi-joint exercise (i.e., leg press)

[13]. Although these findings highlight the occurrence of non-homogenous adaptations

throughout skeletal muscle, uniform changes have also been documented following a similar

training protocol (i.e., 5 weeks of leg extensions) [16]. These findings may be limited by partic-

ipant training experience and the simplicity of each study’s respective programming. Greater

medial (5 cm from midline) adaptations in VL thickness (and possibly pennation angle) com-

pared to those found at the midline were observed following a 15-week, periodized, mixed-

method (i.e., resistance, Olympic, and plyometric training) protocol [14]. Still, programming

was meant to develop strength and power for sports performance in Division I soccer athletes;

muscle hypertrophy was a secondary training goal. Thus, it remains unclear whether changes

in muscle architecture would be homogenous following a protocol designed for muscle growth

in trained individuals.

When training for hypertrophy, contractile proteins are expected to be added to existing

sarcomeres [17] to increase fiber diameter and length, making the fiber stronger and more

durable against future damage brought on by the same stimulus [18]. This effect is more pro-

nounced in untrained lifters because most training designs are novel to this population and

Non-uniform adaptations to muscle following resistance training
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their muscle fibers have yet to develop a “resistance” to various stimuli. Therefore, slight differ-

ences in programming may not alter the training response. For instance, the addition of sin-

gle-joint exercises (i.e., triceps extension and elbow flexion) to a multi-joint resistance training

program did not result in greater hypertrophy for untrained men [19]. Conversely, greater pre-

cision in programming characteristics (i.e., intensity, volume, density) is needed for initiating

this process in trained adults [5, 8]. For these individuals, set frequency [20], training intensity

and volume [21, 22] and rest intervals [23] have all been found to influence the hypertrophy

response. However, in several cases, the observed hypertrophy was not consistent across each

site [21–23], nor were these differences compared. Therefore, the purpose of this study was to

compare changes between RF and VL architecture along their longitudinal axis following 8

weeks of resistance training in resistance-trained men. Based on previous reports [12–14, 24],

we hypothesized that architectural changes would be different between the RF and VL, and

that these changes would vary along each muscle’s length.

Materials and methods

Study design

Reductions in skeletal muscle characteristics (i.e., size and architecture) may occur within as

little as 2 weeks of detraining (i.e., cessation of training) in resistance-trained populations [25].

Therefore, to assess the effect of training on muscular adaptations across RF and VL regions,

this study did not employ the use of a control group. Instead, a within-subjects design was

used where pre-training (PRE) assessments of muscle morphology were compared to those

observed following 8 weeks of resistance training (POST). Initially, all participants reported to

the Human Performance Laboratory (HPL) to complete an obligatory 2-week preparatory

training program. Subsequently, PRE-assessments of muscle morphology were performed on

all participants. The participants then returned to the HPL on the following week (i.e., week 3)

to begin the 8-week training program. During the week following the 8-week training inter-

vention (i.e., week 11), all PRE-assessments were repeated. Comparisons were made between

muscles and across regions over time.

Participants

Following an explanation of all procedures, risks, and benefits, 15 physically-active, resistance-

trained men (24.0 ± 3.0 years; 90.0 ± 13.8 kg; 174.9 ± 20.7 cm) provided their informed written

consent to participate in this study. All participants were free of any physical limitations

(determined by medical history questionnaire and PAR-Q) and had been regularly participat-

ing in resistance training for a minimum of 2 years (5.7 ± 2.2 years) at the time of recruitment.

Participants described their prior training habits to be different from the present training regi-

men in terms of exercise order and groupings. Approximately 87% described their normal rep-

etition range to be higher (i.e., 6–12 RM range) than the 3–5 RM range used in this study.

Additionally, 47% reported using shorter rest periods (i.e., < 3 minutes), while 13.3% had not

tracked their rest times previously. The remaining participants employed a similar training

scheme to the program used in this study. This investigation was approved by the New

England Institutional Review Board.

Ultrasonography measurements

Following 15 minutes of rest in the supine position, to allow for redistribution of body fluids

[26], ultrasound images of the RF and VL were collected from the dominant thigh of each par-

ticipant using a 12-MHz linear probe scanning head (General Electric LOGIQ P5, Wauwatosa,

Non-uniform adaptations to muscle following resistance training
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WI, USA). The same investigator identified all anatomical locations of interest using previ-

ously described landmark standards [26–28] to measure muscle thickness (MT; ±0.1 cm), CSA

(±0.1 cm2), echo intensity (EI; ±0.1 arbitrary units [au]), and pennation angle (PA; ±0.1˚). For

each muscle, images were collected from distal to proximal along the longitudinal distance of

the midline at 30% (i.e., Distal), 50% (i.e., middle), and 70% (i.e., proximal) of each muscle’s

length. For CSA and EI, the extended field of view mode (Gain = 50 dB; Depth = 5cm) was

used to capture two consecutive panoramic images of the muscular regions of interest. For MT

and PA, two images were collected from the same sites described for CSA and EI, but with the

probe oriented longitudinal to the muscle tissue interface using Brightness Mode (B-mode)

ultrasound. All collected images were transferred to a personal computer and analyzed by the

same investigator using Image J (National Institutes of Health, Bethesda, MD, USA, version

1.45s).

The averaged values from both images for each measure within a specific region were used

for statistical analysis. Fascicle length (FL; ±0.1 cm) for each muscle within each region was

estimated using associated images for MT and PA. This methodology for determination of fas-

cicle length has a reported estimated coefficient of variation of 4.7% [29] and can be found

using the following equation [29–31]: Fascicle = MT • SIN (PA)-1. The reliability of these pro-

cedures for assessing MT (ICC3,K = 0.88–0.92, SEM3,K = 0.15–0.39 cm), CSA (ICC3,K = 0.88–

0.99, SEM3,K = 0.81–2.38 cm2), EI (ICC3,K = 0.74–0.95, SEM3,K = 2.59–6.44 au), PA (ICC3,K =

0.81–0.97, SEM3,K = 0.27–1.44˚), and FL (ICC3,K = 0.81–0.96, SEM3,K = 0.74–1.35 cm) at 30%,

50%, and 70% of the RF and VL length had been previously determined in 10 active, resis-

tance-trained men (25.3 ± 2.0 years; 90.8 ± 6.8 kg; 180.3 ± 7.1 cm).

Resistance training intervention

The details of training and strength testing have been described elsewhere [21]. Briefly, all par-

ticipants completed a 2-week preparatory phase prior to the 8-week intervention to familiarize

them with the training exercises, protocol, and proper lifting technique. Performance during

this phase, along with one-repetition maximum (1RM) strength assessed in the back squat,

was used to calculate the intensity loads used during the intervention. The high-intensity, low-

volume training program (4 sets of 3–5 repetitions, 3-minute rest intervals) used in this study

included four closed-chain, lower-body exercises (i.e., barbell back squat, deadlift, barbell

lunge, and leg press) that were performed on two training sessions per week. The initial inten-

sity load was set at 90% of each participant’s tested (back squat) or estimated 1RM (all other

exercises) [32]. Training loads were progressively increased when all prescribed repetitions for

an exercise were achieved on two consecutive workouts. All participants were required to com-

plete at least 14 (of 16) training sessions (~87.5%). All sessions were completed under the

direct supervision of certified strength and conditioning specialists (CSCS).

Nutrient intake and dietary analysis

During the training intervention, the participants were instructed to maintain their normal

dietary intake habits. To ensure that post-exercise nutrition was consistent, each participant

was provided ~235 mL of chocolate milk (170 calories; 2.5 g fat; 29 g carbohydrate; 9 g pro-

tein), or Lactaid1 (150 calories; 2.5 g fat; 24 g carbohydrate; 8 g protein) for lactose-intolerant

participants, following each training session. Further, total kilocalorie and macronutrient

intake from all food and beverage sources were monitored via 3-day (two weekdays and one

weekend day) food diaries, given the effect any changes would have on muscular adaptation.

These diaries were collected during the first and last week of the training intervention. The

FoodWorks Dietary Analysis software version 13 (The Nutrition Company, Long Valley, NJ)

Non-uniform adaptations to muscle following resistance training
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was used to analyze each food diary. For statistical analysis, total caloric and protein intake

were analyzed relative to body mass.

Statistical analysis

Statistical Software (V. 24.0, SPSS Inc., Chicago, IL) was used to determine if differences

between regions and muscles existed following training. Data were analyzed using separate

three-way (muscle [RF, VL] x region [30%, 50%, 70%] x time [PRE, POST]) repeated measures

analyses of variance (RM_ANOVA) with repeated measures for each measure of muscle mor-

phology. Significant interactions between factors and simple main effects were further exam-

ined via a separate two-way RM_ANOVA (i.e., region x time, muscle x time) and applying

Bonferroni adjustments to confidence intervals when appropriate. Statistical significance was

set at an alpha level of p� 0.05. Observed differences were further evaluated using effect sizes

(η2
P: Partial eta squared) and the following levels: small effect (0.01–0.058), medium effect

(0.059–0.137), and large effect (> 0.138) [33]. To assess whether the observed differences

could be considered real, changes were compared to their calculated minimal difference (MD)

[34] by creating a 95% confidence interval (C.I.) about the standard error of the measurement

(SEM). MD was then calculated using the following equation (MD = SEM x 1.96 x
p

2). Any

change occurring within this confidence interval was interpreted as being consistent with the

measurement error of the test, while changes occurring outside of the interval reflect real

changes in body composition. All data are reported as mean ± standard error (SE) of the

mean.

Results

Following 8-weeks of training, a significant main effect for time was observed for CSA

(F = 19.9, p< 0.001, ɳ2
P = 0.59), where average muscle size (i.e., combination of RF and VL)

increased by 1.78 ± 0.40 cm2 (95% C.I. = 0.92–2.63 cm2). Additionally, trends for time were

noted where average PA increased (F = 4.1, p = 0.063, ɳ2
P = 0.23) by 0.69 ± 0.34˚ (95% C.I. =

–0.04–1.43) and average FL decreased (F = 3.7, p = 0.076, ɳ2
P = 0.21) by –0.54 ± 0.28 (95%

C.I. = –1.14–0.07). Marginal estimates for measures of muscle morphology across 8-weeks of

training are presented in Table 1.

Three-way ANOVA did not reveal a significant muscle x region x time interaction for MT

(F = 0.3, p = 0.741, ɳ2
P = 0.02), CSA (F = 1.9, p = 0.189, ɳ2

P = 0.12), PA (F = 0.3, p = 0.757,

ɳ2
P = 0.02), or FL (F = 0.6, p = 0.544, ɳ2

P = 0.04), though a trend for EI (F = 3.2, p = 0.057,

ɳ2
P = 0.19) was noted. Exploratory post-hoc analysis revealed a significant increase in RF EI at

70% (3.70 ± 1.09 au, p = 0.004) but not at any other location.

Table 1. Changes in marginal estimates of combined RF and VL morphology following 8-weeks of resistance training (mean ± SE).

PRE 95% C.I. POST 95% C.I. Δ 95% C.I.

Muscle thickness (cm) 2.13 ± 0.07 (1.98–2.28) 2.13 ± 0.07 (1.99–2.27) 0.00 ± 0.01 (-0.02–0.02)

Cross-sectional area (cm2) 23.05 ± 1.23 (20.42–25.68) 24.82 ± 1.26� (22.11–27.53) 1.78 ± 0.40 (-2.63–-0.92)

Echo intensity (au) 60.03 ± 1.57 (56.66–63.40) 60.67 ± 1.20 (58.11–63.23) 0.65 ± 0.91 (-2.59–1.30)

Pennation angle (˚) 13.05 ± 0.37 (12.27–13.84) 13.74 ± 0.34† (13.01–14.48) 0.69 ± 0.34 (-1.43–0.04)

Fascicle length (cm) 9.84 ± 0.36 (9.07–10.62) 9.31 ± 0.31† (8.64–9.97) -0.54 ± 0.28 (-0.07–1.14)

Note:

�Significantly (p < 0.05) different from PRE;
†Different (p < 0.10) from PRE.

https://doi.org/10.1371/journal.pone.0198304.t001
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A significant simple (muscle x time) effect was observed for CSA (F = 14.1, p = 0.002,

ɳ2
P = 0.50) where changes favored the VL (2.96 ± 0.69 cm2, 95% C.I. = 1.48–4.44 cm2,

p < 0.001) over the RF (0.59 ± 0.20 cm2, 95% C.I. = 0.15–1.03 cm2, p = 0.011). A significant

simple (muscle x time) effect was also observed for FL (F = 7.5, p = 0.016, ɳ2
P = 0.35) where

RF decreased (–1.03 ± 0.30 cm, 95% C.I. = –1.68 ––0.38 cm, p = 0.004) and VL did not

change (–0.05 ± 0.36 cm, 95% C.I. = –0.82–0.73 cm, p = 0.901). Additionally, trends were

noted for MT (F = 4.3, p = 0.058, ɳ2
P = 0.23) and PA (F = 3.3, p = 0.091, ɳ2

P = 0.19). Differ-

ences between muscles and regions at PRE and POST for each assessment of muscle mor-

phology are illustrated in Fig 1.

Although, no other statistical differences were observed, a larger percentage of participants

experienced changes in VL morphology compared to the RF for CSA (all regions), EI (all

regions), PA (30% and 70%), and FL (50% and 70%). Similar adaptations were noted between

muscles for PA at 50% (20% for RF and VL), while a greater percentage of participants

exceeded the MD for FL at 30% in the RF (33.3%) compared to VL (6.7%). Within the RF, a

larger percentage of participants experienced changes that exceeded the MD at 30% (CSA, PA,

and FL) compared to other regions. In contrast, changes exceeding the MD for each VL region

varied by morphological assessment. Changes in MT (RF and VL) did not exceed the MD for

any region. Regional changes in VL and RF morphology and the percentage of participants

exceeding each measure’s respective MD are presented in Table 2.

No differences in relative kilocalorie or protein intake across 8-weeks of resistance training

were observed and have been previously reported elsewhere [21].

Fig 1. Regional and muscular differences in muscle morphology across 8-weeks of resistance training. (A.

Muscle thickness; B. Cross-sectional area; C. Echo-intensity; D. Pennation angle; and E. Fascicle length). Note:
� = Significant (p< 0.05) difference between PRE and POST; † = Significant (p< 0.05) differences between RF and

VL; # = Difference (p < 0.10) between PRE and POST; ‡ = Difference (p < 0.10) between RF and VL; N.S. = Not

significant.

https://doi.org/10.1371/journal.pone.0198304.g001
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Discussion

The purpose of this investigation was to determine whether changes in morphology across the

RF and VL were uniform following 8 weeks of resistance training in resistance-trained men.

We hypothesized that changes would differ between these muscles, as well as along their longi-

tudinal axes, due to differences in their functional role during multi-joint, lower-body exer-

cises (e.g., squat and deadlift) [4]. Overall, we observed greater hypertrophy in the VL

compared to the RF, which was consistent with what was observed by Häkkinen and col-

leagues (2001) but not others [12, 16, 24]. Following training that solely featured open-chain

exercises (i.e., leg extensions), similar [16] or greater [12, 24] RF hypertrophy, compared to the

VL, had been noted. Additionally, we observed decreased FL and a trend for increased PA in

the RF with no changes occurring in the VL. These findings differed from those of Seynnes

and colleagues (2007) who reported uniform increases in FL and PA. Further, aside from a

trend towards decreased proximal RF muscle quality (via EI), we found no region-specific dif-

ferences in morphological adaptations. Previously, differences had been reported along the

longitudinal axis [12, 13, 24] following resistance training protocols that have either solely fea-

tured unilateral leg extensions [12, 24] or included only a single multi-joint exercise [13] in

adults with limited training experience. However, our study appears to be the first to examine

regional differences in muscular changes following a training program that solely used multi-

ple-joint exercises in a group of resistance-trained men.

The quadriceps muscle group is comprised of four muscles that insert into the patella ten-

don but originate from various structures of the hip and femur. Due to differences in origina-

tion, their individual functions are affected by movement. During the concentric phase of a leg

extension, the quadriceps muscles are activated together to equally contribute to force produc-

tion [35, 36]; though RF activation may increase during the eccentric phase [12]. In contrast,

RF activation is less than the VL’s during a closed-chain exercise (e.g., leg press, squat) [35–37]

and may also be less during the eccentric phase compared to the concentric phase [6].

Table 2. Percentage of participants exceeding the minimal difference for regional changes in muscle morphology following 8-weeks of resistance training

(mean ± SE).

Distal Middle Proximal

Δ MD %Exceeding MD Δ MD %Exceeding MD Δ MD %Exceeding MD

Muscle Thickness (cm)

Rectus Femoris -0.002 ± 0.018 0.62 0.0 -0.047 ± 0.019 0.45 0.0 -0.030 ± 0.036 1.03 0.0

Vastus Lateralis 0.036 ± 0.022 0.48 0.0 0.031 ± 0.020 0.42 0.0 0.011 ± 0.033 0.38 0.0

Cross-sectional Area (cm2)

Rectus Femoris 0.675 ± 0.289 2.20 13.3 0.446 ± 0.340 4.6 6.7 0.657 ± 0.391 3.69 0.0

Vastus Lateralis 2.545 ± 0.854 3.99 33.3 4.283 ± 1.345 3.05 53.3 2.051 ± 0.862 6.44 6.7

Echo intensity (au)

Rectus Femoris -1.580 ± 1.563 14.27 0.0 2.075 ± 1.223 6.97 13.3 3.703 ± 1.093 16.38 0.0

Vastus Lateralis 0.120 ± 1.867 7.55 20.0 -0.412 ± 1.401 6.47 20.0 -0.054 ± 1.530 9.26 20.0

Pennation angle (°)

Rectus Femoris 0.420 ± 0.937 3.16 33.3 2.020 ± 0.577 3.67 20.0 1.090 ± 0.730 3.46 13.3

Vastus Lateralis -0.027 ± 0.609 1.68 53.3 0.430 ± 0.568 1.91 20.0 0.223 ± 1.099 0.75 80.0

Fascicle length (cm)

Rectus Femoris -0.331 ± 0.800 2.94 33.3 -1.869 ± 0.512 3.21 13.3 -0.887 ± 0.547 3.62 13.3

Vastus Lateralis 0.270 ± 0.298 1.90 6.7 -0.058 ± 0.439 2.73 20.0 -0.349 ± 0.946 3.16 40.0

Note: Δ = PRE-POST changes; MD = Minimal Difference

https://doi.org/10.1371/journal.pone.0198304.t002
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Previously, greater RF (than VL) hypertrophy has been found when training only included leg

extensions [12, 24]. However, our training protocol only included closed-chain exercises and

resulted in greater VL hypertrophy. When training has previously included a closed-chain

exercise, adaptations favored the VL [13]. Thus, it is possible that greater VL adaptations, and

potentially reduced RF quality, may have been related to our programming design being more

specific to VL activation. While this cannot be confirmed from our previous report of similar

changes in VL (–1.62 ± 1.80 V � sec �%1RM-1) and RF (–1.72 ± 1.47 V � sec �%1RM-1) activa-

tion across maximal and submaximal strength testing [21], activation was only assessed at 50%

of muscle length. It remains unclear whether adaptational differences in activation exist along

the length of each muscle following this type of programming in trained individuals.

In addition to hypertrophy differences, differences in architectural changes were also seen

between muscles. Increased PA and decreased FL occurred in the RF while no changes were

seen in the VL. Changes in muscle size are thought to affect muscle architecture [14, 24, 38–

40]. Specifically, increased MT has been associated with increased PA [24, 38, 39] but not FL

[14, 24, 39], though individuals who possess greater CSA have been found to have greater PA

and FL [40]. Following resistance exercise, damaged areas of muscle are inhabited by satellite

cells, which fuse to the existing muscle tissue [41] and add new contractile proteins that

increase the diameter of existing sarcomeres and length of fibers [17]. Although changes in

muscle thickness and fiber diameter should affect fiber orientation and insertion angle,

changes in FL may be dependent upon exercise modality. When training is predominantly

comprised of muscle-lengthening actions (i.e., eccentric training), a greater number of sarco-

meres are added in serial fashion compared to concentric-only or mixed contractions [42, 43].

Here, the training protocol included exercises that incorporated both eccentric and concentric

contractions. However, the degree and duration of eccentric tension may have varied based on

individual technique (e.g., speed of lowering the bar during the deadlift, degree of hip extensor

involvement, range of motion). This variability was reflected in the standard errors for FL

changes being larger than their respective means, as well as in the percentage of participants

exceeding the MD needed to observe “real” changes at each measurement site (see Table 2). It

is also possible that FL adaptations were missed because measurements used for FL estimation

were collected along the midline of each muscle. Previously, Wells and colleagues (2014)

reported differences between FL changes observed along the VL midline (at 50% muscle

length) and a site located 5 cm medially. It is possible that our training protocol, how partici-

pants performed the exercises, and the specific sites used for FL estimation, limited our poten-

tial for observing improvements in FL.

Aside from a trend towards increased EI (at proximal RF), our data did not support our

hypothesis that adaptations would differ between muscle regions. Previously, morphological

changes along the longitudinal axis of the RF and VL have been reported to be equivocal [12,

13, 16, 24] when multi-joint exercises are used sparingly or are non-existent in adults with lim-

ited training experience. When programming only included leg extensions, hypertrophy has

been found to be greater in the distal quadriceps regions after 3–6 months of training [12, 24].

Conversely, Häkkinen and colleagues (2001) noted similar hypertrophy along the length of the

quadriceps, but not when individual muscles were considered. Interestingly, Seynnes and col-

leagues (2007) reported no differences between the distal region and muscle belly. However,

those findings may have been limited by a much shorter training period (i.e., 5 weeks) and an

inappropriate statistical analysis (i.e., separate paired t-Tests). As we have previously discussed,

the lack of regional differences may be related to quadriceps recruitment during various exer-

cise modalities. Quadriceps activation favors the distal regions during an open-chain, leg

extension, whereas greater proximal activation occurs in tasks that require active hip flexion

[44]. During complex motions (e.g., walking) the contribution of proximal and distal RF

Non-uniform adaptations to muscle following resistance training
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regions have been shown to vary throughout the motion and in relation to velocity [45].

Beyond these studies, however, little is known about regional differences in quadriceps activa-

tion during multi-joint, closed-chain exercises. It is possible that the trend observed in reduced

proximal RF quality (i.e., increased EI) may be indicative of a detraining effect brought on by a

reduced contribution from this region throughout training.

The findings of this study demonstrate the occurrence of non-homogenous adaptations in

RF and VL morphology following 8 weeks of resistance training in resistance-trained men.

The training program resulted in greater VL hypertrophy, which may have been the conse-

quence of reduced RF contribution during closed-chain, multi-joint exercises. Further, the

high degree of variability in which these exercises can be performed (e.g., speed of lowering

the bar during the deadlift, degree of hip extensor involvement, range of motion) may have

been responsible for the observed increase in PA and decrease in FL of the RF. Contrary to our

hypothesis, however, we did not observe differences between regions (i.e., proximal, middle,

and distal) of either muscle, save for a trend in reduced proximal RF quality. Since little is

known regarding region-specific quadriceps activation during closed-chain, multi-joint exer-

cises, it remains unclear why regional adaptations were uniform. Nevertheless, it may be advis-

able for strength coaches and athletes to incorporate hip flexion exercises within lower-body

resistance training programs to avoid potential reductions in proximal RF quality.
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