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Abstract

Accumulation of dysfunctional and damaged cellular proteins and organelles occurs

during aging, resulting in a disruption of cellular homeostasis and progressive degen-

eration and increases the risk of cell death. Moderating the accrual of these defunct

components is likely a key in the promotion of longevity. While exercise is known

to promote healthy aging and mitigate age‐related pathologies, the molecular under-

pinnings of this phenomenon remain largely unclear. However, recent evidences

suggest that exercise modulates the proteome. Similarly, caloric restriction (CR), a

known promoter of lifespan, is understood to augment intracellular protein quality.

Autophagy is an evolutionary conserved recycling pathway responsible for the

degradation, then turnover of cellular proteins and organelles. This housekeeping

system has been reliably linked to the aging process. Moreover, autophagic activity

declines during aging. The target of rapamycin complex 1 (TORC1), a central kinase

involved in protein translation, is a negative regulator of autophagy, and inhibition

of TORC1 enhances lifespan. Inhibition of TORC1 may reduce the production of

cellular proteins which may otherwise contribute to the deleterious accumulation

observed in aging. TORC1 may also exert its effects in an autophagy‐dependent
manner. Exercise and CR result in a concomitant downregulation of TORC1 activity

and upregulation of autophagy in a number of tissues. Moreover, exercise‐induced
TORC1 and autophagy signaling share common pathways with that of CR. There-

fore, the longevity effects of exercise and CR may stem from the maintenance of

the proteome by balancing the synthesis and recycling of intracellular proteins and

thus may represent practical means to promote longevity.

K E YWORD S
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1 | INTRODUCTION

Aging is a biological phenomenon characterized at the cellular level

by a progressive accumulation of dysfunctional proteins and dam-

aged organelles. Accrual and aggregation of these defunct compo-

nents result in disruption of cellular homeostasis, progressive

degeneration, and increases the risk of cell death (Lopez‐Otin,

Blasco, Partridge, Serrano, & Kroemer, 2013). Accordingly, it has

been proposed that escalating malfunction in the regulatory pro-

cesses required for the maintenance, repair, and turnover of defec-

tive protein structures and organelles is likely to represent a primary
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cause of the cumulative cellular disorganization associated with aging

(Demontis & Perrimon, 2010; Madeo, Zimmermann, Maiuri, & Kroe-

mer, 2015). Autophagy is an evolutionary conserved cellular house-

keeping pathway responsible for the degradation of misfolded

proteins and exhausted organelles and has been increasingly demon-

strated to play a major role in maintaining cellular homeostasis and

influencing lifespan and longevity (Filfan et al., 2017; Madeo et al.,

2015; Madeo, Tavernarakis, & Kroemer, 2010). Compromised autop-

hagic capability facilitates reduced lifespan and precipitates prema-

ture aging in numerous model species (Alvers et al., 2009; Hars

et al., 2007; Juhasz, Erdi, Sass, & Neufeld, 2007; Kang, You, & Avery,

2007; Toth et al., 2008), while enhanced autophagy has been shown

to promote longevity (Demontis & Perrimon, 2010; Eisenberg et al.,

2009; Pyo et al., 2013; Simonsen et al., 2008). Moreover, autophagic

activity appears to decline naturally with age (Cuervo & Macian,

2014; Donati, Recchia, Cavallini, & Bergamini, 2008; Mejias‐Pena
et al., 2016), thus progressively challenging proteostasis and con-

tributing to the accumulation of inutile cellular components often

associated with aging (Madeo et al., 2015).

Intracellular protein quality concurrently depends upon protein

synthesis (Salminen & Kaarniranta, 2009). As such, the degradation

of superfluous and dysfunctional cytosolic components, as occurs

through autophagy, represents only one aspect of intracellular pro-

tein accumulation, which is ultimately balanced by the regulatory ele-

ments managing synthesis of new cellular proteins.

The target of rapamycin complex 1 (TORC1; known as mTORC1

in mammalian species) is a central regulatory kinase that regulates

cellular growth and protein synthesis. This complex is stimulated by

nutrient availability (i.e., amino acids), mechanical stress, and growth

factors (i.e., insulin‐like growth factor 1 [IGF‐1]) and is inhibited by

nutrient deprivation, energetic stress, and the macrocyclic polyketide

rapamycin (Chantranupong et al., 2014; Jung, Ro, Cao, Otto, & Kim,

2010; Meijer, Lorin, Blommaart, & Codogno, 2015). Recently, TORC1

activity has been linked to lifespan and the aging process whereby

inhibition of the TORC1 pathway is consistently observed to

enhance longevity in animal and cellular models (Lamming, Ye, Saba-

tini, & Baur, 2013; Pani, 2011; Xu, Cai, & Wei, 2014). While TORC1

moderation of lifespan has been reported in a variety of model

organisms, the underlying mechanisms have yet to be cogently eluci-

dated (Kaeberlein, 2013; Xu et al., 2014). However, it has been long

understood that TORC1 serves as an inhibitor of autophagy, and

thus, it has further been suggested that autophagy represents a key

link between TORC1 activity and the aging process (Pani, 2011;

Wei, Zhang, & Cai, 2013; Xu et al., 2014). The TORC1 pathway may

then dually contribute to the detrimental accumulation of cytosolic

proteins observed during aging, acting both through upregulation of

protein synthesis and the downregulation of autophagic degradation

(Laplante & Sabatini, 2012; Xu et al., 2014).

Caloric restriction (CR) has been shown to be a reliable method

of lifespan extension and/or moderator of age‐related disease

through modulation of autophagic activity in numerous model spe-

cies ranging from yeast to humans (Bitto et al., 2016; Morselli et al.,

2010; Most, Tosti, Redman, & Fontana, 2016). Similarly, regular

exercise has long been known to promote healthy aging and mitigate

age‐related disease (Booth, Roberts, & Laye, 2012; Bouzid, Filaire,

McCall, & Fabre, 2015; Vina, Rodriguez‐Manas, Salvador‐Pascual,
Tarazona‐Santabalbina, & Gomez‐Cabrera, 2016). Though the mecha-

nisms underlying the exercise‐mediated effects on longevity have

yet to be fully understood, exercise also influences autophagic and

mTORC1 activity in rodent and human models (Halling, Ringholm,

Olesen, Prats, & Pilegaard, 2017; He, Bassik, et al., 2012; Jamart,

Benoit, et al., 2012; Schwalm et al., 2015). Moreover, CR and exer-

cise exert their effects on autophagy and mTORC1 activity through

common pathways in rodent and human models (Egan et al., 2011;

Medina et al., 2015; Ng & Tang, 2013; Tam & Siu, 2014; Watson &

Baar, 2014). While presently the long‐term effects of chronic exer-

cise on the interplay between these proteostatic systems and long-

evity have yet to be characterized, the robust effects of exercise on

the aging process may in large part mirror those of CR given their

shared modulatory roles in autophagy and mTORC1 activity. This

review will discuss the current literature relating autophagy and

mTORC1 activity to the aging process and highlight evidence of the

effects of CR and exercise on these regulatory pathways, as well as

the associated implications for healthy human aging.

2 | HOUSEKEEPING AND AGING:
AUTOPHAGY ‐MEDIATED EFFECTS

Autophagy is a proteostatic process that has been highly conserved

throughout evolution and is present in all known eukaryotic cells,

from yeast to humans (Madeo et al., 2015; Most et al., 2016). The

umbrella term “autophagy” is often subdivided into three primary

pathways, each dependent on lysosomal degradation, which are

chaperone‐mediated autophagy, microautophagy, and macroau-

tophagy (Feng, He, Yao, & Klionsky, 2014). Macroautophagy is cur-

rently best understood (as well as the primary type of autophagy

studied within the context of exercise) (Halling & Pilegaard, 2017;

Vainshtein & Hood, 2016) and will serve as the focus in the current

discussion, being referred to as autophagy hereafter. This process

functions through bulk (Feng et al., 2014) as well as selective degra-

dation (Johansen & Lamark, 2011; Li & Vierstra, 2012) of cellular

material including organelles, cytosolic proteins, and protein aggre-

gates; all of which are sequestered by double‐membrane vesicles

called autophagosomes and then transported to the lysosome for

degradation (Feng et al., 2014). Various proteins, designated as

autophagy‐related genes (Atgs), associated with sequestering cytoso-

lic components and autophagosome formation have been identified

as crucial to normal autophagic function largely through the study of

mutant model organisms deficient in autophagic activity (Feng et al.,

2014). Notably, TORC1 negatively regulates autophagy by directly

interacting with Atgs, ultimately preventing the formation of the

autophagosome (Kim & Guan, 2015; Meijer et al., 2015). More

specifically, hyperphosphorylation of Atg13 and Atg1 (known as

ULK1 in mammals) by TORC1 prevents the association of these pro-

teins, which is required to initiate autophagosome formation (Meijer

et al., 2015). Additionally, TORC1 inhibits autophagy at the
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transcriptional level (Martina, Chen, Gucek, & Puertollano, 2012).

Transcription factor EB (TFEB), the primary regulator of cellular recy-

cling that coordinates the expression of lysosomal and autophagic

genes via the CLEAR (coordinated lysosomal expression and regula-

tion) network (Sardiello et al., 2009; Settembre et al., 2011), is phos-

phorylated by TORC1 on the lysosomal membrane, thus preventing

its translocation to the nucleus and subsequent transcription of Atgs

(Martina et al., 2012).

An age‐related decline in overall proteolytic activity has been

observed in a broad range of organisms, and the progressive accu-

mulation of damaged proteins with age has been extensively docu-

mented (Demontis & Perrimon, 2010; Liang & Jung, 2010; Martinez‐
Lopez, Athonvarangkul, & Singh, 2015; Rajawat & Bossis, 2008).

Moreover, a natural decline in autophagic function has been

reported in several specific organs and tissues with advancing age

and has been observed across a number of model species, including

mammals (Donati et al., 2008; Martinez‐Lopez et al., 2015; Mejias‐
Pena et al., 2016; Phadwal et al., 2012). The degenerative loss of

autophagic activity in aged cells is likely to increasingly constrain the

ability of the cell to sustain a healthy proteome and organelle popu-

lation, contributing to a progressive loss of cellular function, and

eventually precipitating cell death (Cuervo & Macian, 2014; Rubin-

sztein, Marino, & Kroemer, 2011). Though the mechanisms underly-

ing the escalating impairment of autophagic function in aging cells

remain poorly understood, decreased Atg expression at the mRNA

and protein level has been implicated as a contributing factor (Car-

ames, Taniguchi, Otsuki, Blanco, & Lotz, 2010; Lipinski et al., 2010;

Rubinsztein et al., 2011). It has also been reported that ancillary pro-

teins necessary for the induction of autophagy, such as Sirtuin 1

(SIRT1), display a similarly reduced expression in aged cells, concomi-

tant with diminished autophagy (de Kreutzenberg et al., 2010;

Rubinsztein et al., 2011). At present, it remains unclear whether

these decrements in Atgs and/or upstream signaling targets are the

primary source of age‐dependent autophagic malfunction (Martinez‐
Lopez et al., 2015; Rubinsztein et al., 2011), as it has also been sug-

gested that the decline in basal autophagy may be at least partially

mediated by excess TORC1 activity (Lee et al., 2010; Pani, 2011; Xu

et al., 2014).

To date, it has been well documented that inhibition of autop-

hagy results in premature aging across a variety of species (Rubin-

sztein et al., 2011). Loss‐of‐function mutations in select Atg proteins

(Atg1, Atg7, Atg18, and beclin‐1) have been directly demonstrated to

decrease lifespan in the nematode Caenorhabditis elegans (C. elegans)

(Toth et al., 2008). Similarly, silencing the expression of Atg1, an

essential protein of autophagosome formation, was also observed to

significantly reduce lifespan in the fruit fly Drosophila melanogaster

(D. melanogaster) (Lee et al., 2010). In mice, knockout of Atg proteins

engenders age‐associated defects, including accumulation of dys-

functional organelles (Hartleben et al., 2010; Komatsu et al., 2005;

Masiero et al., 2009), abnormal protein aggregation (Liang & Jung,

2010; Liang, Wang, Peng, Gan, & Guan, 2010; Wu et al., 2009), dis-

organized mitochondria (Komatsu et al., 2005; Masiero et al., 2009),

and endoplasmic stress (Hartleben et al., 2010).

Moreover, an accumulating body of evidence has suggested that

lifespan extension can result from a maintained autophagic function

with experimentally enhanced autophagy shown to delay the aging

phenotype and extend longevity (Martinez‐Lopez et al., 2015; Raja-

wat, Hilioti, & Bossis, 2009; Rubinsztein et al., 2011). It has been

observed that various interventions leading to an upregulation of

autophagic activity can extend longevity in C. elegans (Hansen et al.,

2008; Melendez et al., 2003), as well as in the yeast Saccharomyces

cerevisiae (S. cerevisiae) (Eisenberg et al., 2009), while also promoting

longevity in individual cells and tissues (Demontis & Perrimon, 2010;

Donati, Taddei, Cavallini, & Bergamini, 2006). Thus, augmenting

autophagic function may represent a therapeutic target in promoting

longevity in humans.

3 | TOR AND AGING

Target of rapamycin complex 1 (mTORC1 in mammals) is one of two

functionally and compositionally distinct multi‐protein TOR com-

plexes; the second being TOR complex 2 (TORC2). Both complexes

are highly conserved in all known eukaryotic cells (Meijer et al.,

2015; Xu et al., 2014). TORC1 is a primary mediator of protein syn-

thesis and cell growth, whereas TORC2 remains poorly understood.

TORC2 has been suggested to regulate spatial coordination of the

cytoskeleton (Sarbassov et al., 2004; Xu et al., 2014), while also

being involved in TORC1 activation via the Akt pathway (Jung et al.,

2010; Sarbassov et al., 2006; Sarbassov, Guertin, Ali, & Sabatini,

2005). Acute rapamycin treatment strongly inhibits TORC1 activity,

but the effects of TORC2 are not fully characterized as rapamycin

cannot bind to the fully assembled TORC2 complex (Kaeberlein,

2013; Xu et al., 2014). However, it has been demonstrated that

chronic rapamycin treatment can also disrupt TORC2 activity by pre-

venting the formation of the TORC2 complex (Sarbassov et al.,

2006). Accordingly, in research involving long‐term rapamycin treat-

ment, especially those related to research on aging, the role of

TORC2 remains unclear (Kaeberlein, 2013; Xu et al., 2014).

It has been well established that inhibition of the TORC1 path-

way results in extended lifespan and promotes healthy aging in

numerous model species (Kaeberlein, 2013; Kapahi et al., 2010;

Laplante & Sabatini, 2012; Xu et al., 2014). While TORC1 is also

known to act as an inhibitor of autophagy, it has yet to be conclu-

sively established that the lifespan‐extending effects of TORC1 sup-

pression are directly attributable to subsequent increased autophagic

activity, the reduction of the synthesis of new cellular proteins, or

some combination of the two (Kaeberlein, 2013; Kapahi et al., 2010;

Meijer et al., 2015; Pani, 2011; Xu et al., 2014). It may be that con-

tinuing protein synthetic activity via TORC1 in postmitotic cells (i.e.,

mature cells which have entered cell cycle arrest, and no longer

replicate) leads to an overload of the mechanisms responsible for

cellular degradation, including autophagy, and the accumulation of

superfluous cytosolic components. Eventually, an insufficiency of

degradation systems in these senescent cells results in protein aggre-

gation and pathological cellular disorganization (Pani, 2011; Xu et al.,

2014).
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The initial observation of extended lifespan accompanying

TORC1 inhibition was made in C. elegans, where reducing TORC1

activity increased lifespan more than twofold (Vellai et al., 2003).

Similar findings have been reported in numerous species using multi-

ple methods of mTORC1 inactivation (Kapahi et al., 2010; Pani,

2011; Xu et al., 2014). In mice, the direct genetic knockdown of

mTORC1 resulted in a 20% lifespan extension and a prominent

reduction in age‐associated pathologies (Wu et al., 2013). Adminis-

tration of rapamycin initiated at 600 days in mice, an age analogous

to approximately 50 years in humans, extended lifespan up to 14%

in female and 9% in male animals (Harrison et al., 2009). Additionally,

3 months of rapamycin treatment increased life expectancy by up to

60% in middle‐aged mice (Bitto et al., 2016). Downregulation of

TORC1 activity in D. melanogaster through genetic manipulation of

the upstream nutrient‐sensing pathways normally responsible for

activating TORC1 also extended lifespan by approximately 15%

(Kapahi et al., 2004). In counterpoint, silencing expression of Sestrin,

a TORC1 inhibitor, has been shown to instigate numerous age‐re-
lated pathologies, which were then prevented by pharmacological

inhibition of TORC1 in D. melanogaster (Lee et al., 2010).

In addition, manipulation of the TORC1 activator ras homologue

in brain (Rheb) (Honjoh, Yamamoto, Uno, & Nishida, 2009), as well

as downstream targets of TORC1, such as S6K (a ribosomal kinase

involved in translation), and eukaryotic translation initiation factor

(known as 4E‐BP1), has also been shown to produce significant lifes-

pan extension in a variety of model organisms (Kapahi et al., 2010;

Xu et al., 2014). With regard to the downstream targets of TORC1

involved in gene translation, deletion of the gene encoding for the

homologue of human S6K1 in yeast (Sch9) has been reported to pro-

duce up to a 90% increase in lifespan (Fabrizio, Pozza, Pletcher, Gen-

dron, & Longo, 2001). Similarly, mRNA knockdown of the S6K1

homologue in C. elegans has been reported to extend longevity by a

mean of 22% (Pan et al., 2007). This effect was potentiated to 46%

by simultaneous suppression of the eIF4G homologue, which is

another key initiator of gene translation known to be positively regu-

lated by TORC1 (Pan et al., 2007). In mice, the knockout of S6K1

has also been shown to extend mean lifespan by approximately 19%

(Selman et al., 2009). Similarly, overexpression of 4E‐BP1 in D. me-

lanogaster, which is negatively regulated by TORC1 and inhibits

translation initiation by suppressing eIF4G, increased lifespan by

11% and 22% in males and females, respectively (Zid et al., 2009).

Similarly, reduced cytosolic protein synthesis has been shown to

suppress age‐associated mitochondrial degeneration in yeast (Wang,

Zuo, Kucejova, & Chen, 2008).

This evidence suggests that normal levels of autophagy may be

sufficient to maintain cytosolic proteostasis if the rate of protein and

organelle synthesis is reduced; however, it may also be possible that

the reduced levels of autophagy observed in older cells may not be

linked to aging, but simply offer an indirect reflection of excess

TORC1 activity (Pani, 2011). At present, it remains unclear whether

the lifespan‐extending effects of TORC1 pathway inhibition are pri-

marily attributable to reductions in protein synthetic activity, to the

removal of autophagy inhibition, or to a combination of these effects

(Kaeberlein, 2013; Rubinsztein et al., 2011). However, it has been

observed that knockdown of Atg genes critical to autophagic func-

tion abrogates the life‐extending effects of rapamycin, suggesting

autophagy does possess a key role in TORC1‐mediated life extension

(Bjedov et al., 2010; Rubinsztein et al., 2011).

4 | CALORIC RESTRICTION PROMOTES
LIFESPAN AND HEALTH IN AGING

Lifespan extension via autophagy has been closely linked to CR (Ber-

gamini, Cavallini, Donati, & Gori, 2007; Madeo et al., 2015). In this

parlance, CR is defined as a sustained decrement in daily energy

intake, which yet remains adequate to avoid evoking malnutrition,

and typically corresponds to 20%–40% caloric reduction in higher

mammals (Bergamini et al., 2007; Mirzaei, Suarez, & Longo, 2014).

Caloric restriction has been demonstrated to enhance lifespan and/or

reduce many pathological manifestations of aging in a wide range of

organisms, from yeast, S. cerevisiae and C. elegans to rodents and pri-

mates, including humans (Figure 1) (Colman et al., 2009; Fontana,

Partridge, & Longo, 2010; Madeo et al., 2015; Mirzaei et al., 2014;

Rubinsztein et al., 2011; Weindruch, Walford, Fligiel, & Guthrie,

1986), and represents the only known nongenetic intervention to

promote these indications in higher organisms (Wang, Liang, & Van-

houtte, 2011). Caloric restriction has been shown to promote health

and protect against a number of age‐related pathologies in humans

including cancer, type 2 diabetes, cardiovascular disease, nephropa-

thy, and neurodegenerative disease (Cangemi, Friedmann, Holloszy,

& Fontana, 2010; Fontana & Klein, 2007; Fontana, Meyer, Klein, &

Holloszy, 2004; Meyer et al., 2006; Most et al., 2016; Stein et al.,

2012; Yang et al., 2014).

Even modest implementations of CR, such as intermittent fasting

protocols, can promote health (Brandhorst et al., 2015; Martin, Matt-

son, & Maudsley, 2006; Wei et al., 2017; Zuo et al., 2016). Six days

of mild CR followed by 1 day of fasting (120 kcal), rendering a

weekly CR of 30%, improved body composition, plasma lipids, and

adipokines (Kroeger et al., 2012). Additionally, various fasting inter-

ventions have demonstrated improvements in symptomology in type

2 diabetes (Barnosky, Hoddy, Unterman, & Varady, 2014). Wei et al.

(2017) recently showed reducing energy intake (to 750–1,100 kcal/

day) for only five consecutive days per month for 3 months resulted

in improvements in body composition, blood pressure, fasting glu-

cose, triglycerides, total and low‐density lipoprotein cholesterol, C‐
reactive protein, and IGF‐1. Notably, IGF‐1 is an upstream regulator

of TORC1 (Jung et al., 2010).

Indeed, it has been observed that long‐term CR is a strong physi-

ological promoter of autophagy, resulting in an upregulation of a

number of autophagy‐related modulators and transcripts (Mercken

et al., 2013; Yang et al., 2016). Caloric restriction‐mediated autop-

hagy activity is largely accomplished through activation of the nutri-

ent sensors 5' adenosine monophosphate‐activated protein kinase

(AMPK) and SIRT1 (Egan et al., 2011; Meijer et al., 2015; Ng & Tang,

2013). AMPK is a highly conserved kinase that becomes activated

during periods of energetic stress, when reductions of ATP
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precipitates increased intracellular AMP and ADP concentrations,

such as during nutrient starvation or exercise (Gwinn et al., 2008;

Hawley & Houmard, 2004; Salminen & Kaarniranta, 2012). More-

over, crosstalk between AMPK and SIRT1, an NAD+‐dependent pro-
tein deacetylase also sensitive to energetic challenges, has been

implicated in mediating the aging process (Salminen & Kaarniranta,

2012; Wang et al., 2011). These effectors act to augment the activ-

ity of transcriptional factors involved with the expression of several

Atgs, including FOXO1 and FOXO3 (Salminen & Kaarniranta, 2012;

Vainshtein & Hood, 2016) as well as exert inhibitory effects on

TORC1 (Ghosh, McBurney, & Robbins, 2010; Wang et al., 2011).

Notably, these signaling targets are involved in the longevity‐promot-

ing effects of metformin (Cabreiro et al., 2013; Mouchiroud, Molin,

Dalliere, & Solari, 2010) as well as the acute response to exercise

(Hawley, Hargreaves, Joyner, & Zierath, 2014).

Additionally, TFEB, a transcription factor involved in coordinating

the expression of lysosomal and autophagic genes, has been shown

to be activated during energy deprivation (Medina et al., 2015). At

energy balance, TFEB is phosphorylated by mTORC1 on the lysoso-

mal membrane preventing its translocation to the nucleus. During

starvation, mTORC1 disassociates from the lysosome, releasing

TFEB. At the same time, Ca++ is released from the lysosome into

the cytosol, activating calcineurin which dephosphorylates TFEB and

promotes its translocation to the nucleus where it initiates the tran-

scription of a number of Atgs and proteins (Palmieri et al., 2011; Set-

tembre et al., 2011). Interestingly, the response is elicited by

exercise as well (Medina et al., 2015).

Increasingly, autophagic activity has been shown to act as a key

mediator of the observed impact of CR on lifespan (Bergamini et al.,

2007; Cuervo et al., 2005) with the inhibition of autophagy demon-

strated to largely mitigate its longevity‐enhancing effects (Jia &

Levine, 2007; Rubinsztein et al., 2011). Moreover, it has been

observed that CR is capable of attenuating the impairment of

autophagic activity observed in aging (Wohlgemuth, Seo, Marzetti,

Lees, & Leeuwenburgh, 2010). The induction of autophagy through

CR is at least partially mediated by the inhibition of TORC1 (Kenyon,

2010), which alleviates the suppressive influence TORC1 normally

exerts on autophagic activity, as well as upregulating activity of

AMPK (Jung et al., 2010; Meijer et al., 2015) and SIRT1 (Ma et al.,

2015; Wang et al., 2011). While the mechanisms underlying SIRT1

regulation of TORC1 largely remain unclear, it is hypothesized that

SIRT1 may act through interaction with tuberous sclerosis complex 2

(TSC2), a known TORC1 inhibitor (Ghosh et al., 2010; Ma et al.,

2015). The relationship between AMPK and TORC1, however, is

more well characterized. AMPK acts to suppress TORC1 activity in

at least two ways: firstly, by activating TSC2, which prevents TORC1

from binding to a key activator, Rheb, on the lysosomal membrane

(Inoki, Zhu, & Guan, 2003; Jung et al., 2010); and secondly, through

direct inhibitory phosphorylation of a primary regulatory protein

complex of TORC1, known as RAPTOR (Gwinn et al., 2008; Jung

et al., 2010).

Some of the first data of long‐term CR on autophagic function in

humans were collected from 15 lean and weight‐stable members of

the Calorie Restriction Society who had practiced 30% CR for an

average of 9.6 years. Upregulation of a number of autophagy modu-

lators and gene and protein expression was noted including AMPK

and SIRT family transcripts, ULK1, ATG101, APG12, GAPRAP/GATE‐
6, beclin‐1, autophagin‐1, and LC3 gene expression, as well as pro-

tein expression of FOXOs, PGC1α, beclin‐1, and LC3 compared to

age‐matched controls practicing a typical Western diet (Mercken

et al., 2013; Yang et al., 2016).

It is also interesting to note that suppression of the TORC1 path-

way has been shown to potentiate longevity beyond the maximum

extension achieved with CR alone (Bjedov et al., 2010; Grandison,

Piper, & Partridge, 2009). Conversely, knockdown of Atg abolishes

the life‐extending effects elicited by rapamycin, suggesting a key

TORC1

Caloric restriction

C. Elegans Drosopholia Mice Nonhuman Primates Humans
Lifespan increase 

2- to 3-fold 
Lifespan  increase 2-fold Lifespan increase 30%–50% Reduced mortality, 

attenuated age-related 
pathologies

Attenuated age-related 
pathologies, reduced risk 

for chronic disease

Yeast
Lifespan increase 3-fold

Autophagy

AMPK
SIRT1

F IGURE 1 Influence of caloric
restriction on life span and age‐related
pathologies in various model organisms
and potential underlying pathways
(represented by dashed lines). Caloric
restriction activates 5′ adenosine
monophosphate kinase (AMPK) and
Sirtuin‐1 and downregulates target of
rapamycin complex 1 (TORC1). AMPK and
SIRT1 in turn stimulate autophagy and
further inhibit TORC1. Blue arrow head
and red capped head represent activation
and inhibition, respectively
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relationship between TORC1 and autophagy with regard to aging

(Bjedov et al., 2010; Rubinsztein et al., 2011), as rapamycin is a

potent inhibitor of TORC1 and is known to induce autophagy

under normal conditions (Kaeberlein, 2013; Xu et al., 2014). Treat-

ment with rapamycin has been consistently shown to enhance

lifespan in model species; however, the extent to which this effect

is mediated by the subsequent induction of autophagy remains

unclear (Kaeberlein, 2013; Pani, 2011; Rubinsztein et al., 2011; Xu

et al., 2014).

5 | EXERCISE MAY MAINTAIN THE
PROTEOME

As discussed, energetic stress is a potent stimulator of autophagy;

accordingly, exercise has been shown to augment acute autophagic

activity in skeletal muscle (Jamart, Benoit, et al., 2012; Jamart, Fran-

caux, et al., 2012; Tam et al., 2015; Vainshtein & Hood, 2016) as

well as several other tissues including heart (He, Bassik, et al., 2012),

liver (Ghareghani et al., 2017; He, Bassik, et al., 2012), pancreatic β

cells (He, Bassik, et al., 2012), adipose tissue (He, Bassik, et al.,

2012), peripheral blood mononuclear cells (PBMCs) (Dokladny et al.,

2013), and brain (He, Sumpter, & Levine, 2012).

While some data do exist relating to other forms of autophagy

(Li et al., 2016; Ulbricht et al., 2015), macroautophagy currently is

the most studied and is generally the form referred to as “au-

tophagy” within the context of exercise and training. One key func-

tion of autophagy in skeletal muscle is the provision of an

emergency alternative energy source (Tam & Siu, 2014; Vainshtein,

Grumati, Sandri, & Bonaldo, 2014). However, a number of other cel-

lular challenges elicited by exercise may promote increased autopha-

gic activity in exercised muscle as well, including widespread protein

and/or mitochondrial damage, elevated mitochondrial respiration,

high concentrations of reactive oxygen species (ROS), the presence

of certain cytokines, and various elements of the immune response

(Tam et al., 2015; Vainshtein & Hood, 2016).

During exercise, autophagy mediates the clearance of proteins

and organelles damaged by heat, pH changes, or mechanical stress

which likely acts to prevent accumulation of these cytosolic compo-

nents and maintain myocyte function (Schwalm et al., 2015; Vain-

shtein et al., 2014). Moreover, alterations in calcium, NAD+, and

ROS levels also are strong instigators of autophagic activity (Vain-

shtein & Hood, 2016). As such, the magnitude of the autophagic

response to exercise depends in part on the extent of cellular stress

and protein damage (Schwalm et al., 2015; Vainshtein & Hood,

2016). Unlike other tissues such as the liver and pancreas, upregula-

tion of autophagy in skeletal muscle persists for days, rather than

hours, following a period of energy insufficiency, indicating an ele-

vated importance of autophagic function in skeletal muscle pro-

teostasis (Mizushima, Yamamoto, Matsui, Yoshimori, & Ohsumi,

2004; Sandri, 2010).

In part, exercise acts to initiate autophagy in skeletal muscle

through the same pathways as CR; namely, AMPK and SIRT1 are

sensitive to alterations in AMP and NAD+, respectively. AMPK and

SIRT1 both act to upregulate expression of Atgs by activating

FOXO1 and FOXO3, increasing PGC1‐α activity, and inhibiting

mTORC1 (Vainshtein & Hood, 2016), while AMPK also initiates

autophagosome formation via ULK1 (Hardie, 2011; He, Bassik, et al.,

2012; Mooren & Kruger, 2015). Though mTORC1 activity may also

become reduced in response to diminished nutrient availability

through ancillary pathways (Kim et al., 2016; Sarbassov, Ali, & Saba-

tini, 2005), the relationship between AMPK and mTORC1 is well

documented (Vainshtein & Hood, 2016; Xu, Ji, & Yan, 2012). AMPK

is specifically sensitive to changes in the cellular ratio of AMP to

ATP and so may be strongly augmented during exercise (Hawley

et al., 2014). Furthermore, exercise‐induced AMPK activation is

reported to increase with increasing exercise duration (He, Bassik,

et al., 2012) and intensity (Schwalm et al., 2015; Tadaishi et al.,

2011). Similarly, the influence of exercise on mTORC1 activation

depends in large part on the type of exercise performed, as

mTORC1 integrates stimulus from growth factors, nutrient availabil-

ity, and, most uniquely, mechanical loading (i.e., resistance exercise)

(Goodman et al., 2011; Kim et al., 2016; Watson & Baar, 2014).

While energy demands dictate a downregulation of mTORC1‐medi-

ated anabolism during exercise that is likely affected via AMPK acti-

vation, mTORC1 activity is generally observed to be upregulated in

the adaptive postexercise period, often despite a continuing elevated

activity of AMPK (Kumar, Atherton, Smith, & Rennie, 2009; Row-

lands et al., 2011). In addition, postexercise upregulation of the

mTORC1 pathway has been shown to be potentiated by amino acid

consumption following both endurance or resistance‐based exercise,

highlighting the dynamic nature of mTORC1 activation (Karlsson

et al., 2004; Rowlands et al., 2011). Adding to this complexity, the

mTORC1 pathway seems to be independently moderated by

mechanical load‐induced stress which differentiates the magnitude

of mTORC1 responses to resistance versus endurance exercise

(Goodman et al., 2011; Spangenburg, Le Roith, Ward, & Bodine,

2008).

mTORC1 has also been implicated in regulating autophagy activ-

ity through mediating TFEB localization which may be subsequently

modulated by exercise and nutrient deprivation (Medina et al.,

2015). At rest, mTORC1 phosphorylates TFEB on the lysosomal sur-

face, confining it in the cytosol. During exercise, TFEB translocates

to the nucleus as a result of the disassociation of mTORC1 from the

lysosome and its dephosphorylation by Ca++‐dependent calcineurin

where it then activates the CLEAR gene network and the transcrip-

tion of Atgs and proteins.

In addition to serving as a means to meet the energetic demands

of exercise, autophagy is understood to facilitate exercise in numer-

ous ways in skeletal muscle (Dokladny et al., 2013; Grumati et al.,

2011; He, Bassik, et al., 2012; Jamart, Francaux, et al., 2012; Mass-

chelein et al., 2014; Schwalm et al., 2015). Using a mutant rodent

model that inhibits exercise‐induced autophagy, He, Bassik, et al.

(2012)) reported the autophagy‐deficient mice demonstrated

impaired glucose uptake, GLUT4 translocation, and AMPK activation

during acute exercise. Moreover, data exist suggesting autophagy

possesses a role in conferring the benefits of exercise, including
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enhanced endurance (He, Bassik, et al., 2012; Lira et al., 2013), mito-

chondrial biogenesis (Grumati et al., 2011; Ju et al., 2016; Lira et al.,

2013), and angiogenesis (Lira et al., 2013). Chaperone‐mediated

selective autophagy has also been shown to be involved in skeletal

muscle cytoskeleton maintenance and adaptation in response to

resistance training (Ulbricht et al., 2015).

While exercise‐induced skeletal muscle autophagy is presently

the most studied, there are data showing enhanced autophagic

activity in other tissues, thus demonstrating acute exercise is cap-

able of instigating a global autophagic response (Figure 2) (He,

Bassik, et al., 2012; He, Sumpter, et al., 2012). In their study, He

et al. reported acute endurance exercise increased autophagy

activity in heart, liver, pancreatic β cells, and adipose tissue of

wild‐type mice but not in exercise‐stimulated autophagy‐deficient
mutant mice (He, Bassik, et al., 2012). Moreover, the group

showed acute exercise increased autophagic flux in the anterior

cerebral cortex (He, Sumpter, et al., 2012). Li and coworkers

showed a number of mitochondrial autophagy (mitophagy)‐related
proteins and flux were upregulated in myocardium of mice during

exercise and up to 24 hr postexercise; this paralleled an increase

in inflammatory markers NLRP3 and IL1β (Li et al., 2016). Addi-

tionally, expression of several Atgs was rescued in mouse hepato-

cytes following a high‐fat diet in response to 10 weeks of

endurance exercise and was associated with reduced lipid content

and lipogenic gene expression (Ghareghani et al., 2017). Further,

one hour of exercise in a warm environment (30°C) increased

autophagy in PBMCs (Dokladny et al., 2013). Notably, Miejas‐Pena
and coworkers have shown 8 weeks of aerobic training (Mejias‐

Pena et al., 2016) and 8 weeks of resistance training (Mejias‐Pena
et al., 2017) augment expression in several Atgs and basal autop-

hagic activity in PBMCs in elderly subjects.

These noted systemic autophagic effects suggest exercise could

possess a role in modulating some of the age‐related pathologies

that autophagy has been reported to be implicated in, which include

type 2 diabetes (Gonzalez et al., 2011; Quan, Jung, & Lee, 2013),

neurodegeneration (Komatsu et al., 2006; Yang et al., 2014), car-

diomyopathy (Nair & Ren, 2012; Tanaka et al., 2000), cancer (Cao &

Klionsky, 2007; Cecconi & Levine, 2008), and chronic inflammation

(Jo, Shin, & Choi, 2012; Levine, Mizushima, & Virgin, 2011) while

bolstering muscle quality and function (Fan et al., 2016; Vainshtein

et al., 2014). These autophagy‐related conditions largely lie within

the parameters of age‐related health benefits exercise has been doc-

umented to augment (Atherton, Phillips, & Wilkinson, 2015; Moore

et al., 2016; Sanchez, Bernardi, Py, & Candau, 2014; Vainshtein

et al., 2014; Woods, Wilund, Martin, & Kistler, 2012).

6 | THE ROLE OF EXERCISE INTENSITY IN
THE AUTOPHAGIC RESPONSE

Emerging evidence suggests that the autophagic response to exer-

cise may occur in a biphasic manner in that acute cellular perturba-

tions induce a precipitous increase in autophagic flux occurring

acutely following insult and is mediated by posttranslational protein

modification (Vainshtein & Hood, 2016). Moreover, autophagy

appears to work in concert with another major proteolytic pathway,

the ubiquitin‐proteasome system (UPS), whereby the immediate

Peripheral blood mononuclear cells
(human; endurance and resistance training)
Chronic effects:
↑ Autophagy activity
↑ Autophagy-related proteins

Adipocytes (mouse)
Acute effects:
↑ Autophagy activity

Pancreatic β cells (mouse)
Acute effects:
↑ Autophagy activity

Skeletal muscle (human and mouse)
Acute effects:
↑ Autophagy activity
↑ Autophagy-related proteins
↑ Autophagy signaling
Chronic effects:
↑ Autophagy activity
↑ Autophagy-related proteins
↑ Autophagy signaling

Cerebral cortex (mouse)
Acute effects:
↑ Autophagy activity

Liver (mouse)
Acute effects:
↑ Autophagy activity
Chronic Effects:
↑ Autophagy activity
↑ Autophagy-related proteins
↑ Autophagy signaling

Cardiac muscle (mouse)
Acute effects:
↑ Autophagy activity

F IGURE 2 Effects of acute and chronic exercise on autophagy in multiple tissues
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postexercise cellular degradation activity is mediated by the UPS,

while autophagy activity demonstrates a more delayed response

(Tam & Siu, 2014; Vainshtein & Hood, 2016); however, both systems

have been shown to be activated simultaneously in some conditions

(Jamart, Benoit, et al., 2012; Jamart, Francaux, et al., 2012). The

exercise‐elicited autophagic response appears to be regulated in a

duration and intensity‐dependent manner (Jamart, Benoit, et al.,

2012; Schwalm et al., 2015; Tachtsis, Smiles, Lane, Hawley, & Cam-

era, 2016), although an established “dose” of exercise to initiate

autophagy has yet to be determined.

Aerobic exercise for 60 min or greater at 55%–70% VO2max has

been shown to stimulate autophagic activity in skeletal muscle

(Jamart, Benoit, et al., 2012; Jamart, Francaux, et al., 2012; Moller

et al., 2015; Schwalm et al., 2015). Table 1 depicts the current data

of the autophagy response to acute exercise in skeletal muscle. Pro-

longed endurance exercise (i.e., 150 and 200 km marathon running)

increased markers of autophagy and a number of related proteins in

ultra‐endurance‐trained males (Jamart, Benoit, et al., 2012; Jamart,

Francaux, et al., 2012). More modest bouts of exercise have also

promoted an autophagic response. Cycling exercise for 60–120 min

at ~50% VO2max (Moller et al., 2015) and 55% and 70% VO2peak

(Schwalm et al., 2015) has also augmented autophagy in recreation-

ally active and trained males, respectively.

Conversely, 20 min of cycling at ~50% VO2max did not alter

autophagic activity in healthy adults (Masschelein et al., 2014).

Positive regulators of autophagy (AMPK and FOXO1/3a) were also

unaffected, suggesting the exercise stimulus did not meet a mini-

mum threshold of duration and/or intensity. Whereas 60 min of

cycling at ~50% VO2max induced autophagy (Moller et al., 2015),

60 min at 70% VO2max did not produce a response (Tachtsis

et al., 2016). However, this discrepancy may stem from the timing

of postexercise muscle biopsies. Moller et al. performed biopsies

90 min postexercise while Tachtsis et al. performed biopsies 3 hr

following exercise. Additionally, Tachtsis et al. used untrained

males in their investigation, whereas Moller et al. studied recre-

ationally trained males.

These findings help highlight the importance of exercise duration

and intensity in stimulating autophagic induction and point to a

threshold for activation, likely involving AMPK‐mediated determina-

tion of energy insufficiency. Importantly, the extreme elevations in

autophagic activity observed with ultra‐endurance performance are

likely indicative of excessive muscle damage and energetic protein

catabolism, thus offering intriguing implications regarding the J‐
shaped relationship observed between mortality and exercise partici-

pation (Arem et al., 2015; Kelly et al., 2014; Schnohr, O'Keefe, Mar-

ott, Lange, & Jensen, 2015). Data are needed characterizing the

autophagic response to high and maximal intensity, and short dura-

tion exercise, such as high‐intensity interval training. Little data

speak to the autophagic response to resistance exercise (Fry et al.,

2013; Glynn et al., 2010; Smiles et al., 2015; Ulbricht et al., 2015)

(Table 2) and subsequent implications on aging; however, given the

role of protein turnover in response to resistance exercise, autop-

hagy may be important.

7 | CHRONIC EFFECTS OF EXERCISE ON
AUTOPHAGIC ACTIVITY

Currently, the long‐term effects of exercise on autophagic activity

are ill‐characterized; however, they appear mediated by activation

of a transcriptional program (Vainshtein & Hood, 2016). While

emerging data in both rodent and human models do point to

chronic exercise augmenting autophagy activity (Feng et al., 2011;

Ghareghani et al., 2017; Lira et al., 2013; Mejias‐Pena et al.,

2017, 2016; Wohlgemuth et al., 2011), its interaction with longev-

ity has yet to be established. Chronic endurance exercise has long

been known to promote healthy aging and mitigate age‐related
disease (Arem et al., 2015; Kelly et al., 2014; Schnohr et al.,

2015; Vina et al., 2016), and evidence demonstrates an inverse

relationship between regular exercise and mortality (Ruiz, Moran,

Arenas, & Lucia, 2011; Teramoto & Bungum, 2010; Vina et al.,

2016). Longitudinal data show that physically active men and

women have ~30% lower risk of death versus inactive counter-

parts (Schnohr et al., 2015). Moreover, highly trained individuals

have been reported to have greater life expectancy. Male Finnish

champion skiers lived 2.8–4.3 years longer than the general male

population (Karvonen, Klemola, Virkajarvi, & Kekkonen, 1974), Tour

de France cyclists from Belgium, France, and Italy had an 11%

greater average longevity (Sanchis‐Gomar, Olaso‐Gonzalez, Corella,

Gomez‐Cabrera, & Vina, 2011), and French cyclists had 41% lower

mortality rate compared to the general male population (Marijon

et al., 2013). While genetic and other lifestyle factors must

undoubtedly be considered in these observations, regular exercise

does appear to be associated with longevity. While an optimal

“dose” of exercise for the promotion of longevity is unclear (Vina

et al., 2016), so too are the mechanistic underpinnings. Considering

it has been documented that CR can attenuate the age‐related
impairment in autophagy (Wohlgemuth et al., 2010) and that CR

and exercise share common autophagic mediators, namely AMPK,

SIRT1, and recently elucidated, TFEB, it is interesting to speculate

whether the observed long‐term benefits of exercise relate to mech-

anisms underlying the positive effects of CR on lifespan and age‐re-
lated disease, with autophagy linked to the longevity enhancements

induced by both interventions (Vainshtein et al., 2014; Wohlgemuth

et al., 2010).

Skeletal muscle autophagy has been studied following regular

exercise. In mice, 3 months of endurance exercise has been reported

to produce no changes in resting levels of LC3‐II/LC3‐I ratio within

skeletal muscle (Grumati et al., 2011). Conversely, it has been

reported that following 4 and 8 weeks of endurance training, mark-

ers of autophagy activity including LC3, Atg7, beclin‐1, and FOXO3

were significantly upregulated in skeletal muscle of mice (Feng et al.,

2011; Lira et al., 2013). Lifelong combination of CR and exercise

yielded greater skeletal muscle expression of Atg 7 and Atg 9 and

LAMP‐2 mRNA abundance in mice (Wohlgemuth et al., 2010). While

scant research is presently available in humans, one exploratory

study in older, overweight women reported ~300% increases in

Atg7, LC3, and FOXO3 mRNA expression following 6 months of
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TABLE 1 A summary of studies investigating the autophagic response to acute endurance exercise in skeletal muscle

Author Subjects Exercise protocol Markers of autophagic activity

Jamart, Benoit, et al.

(2012), Jamart,

Francaux, et al.

(2012)

8 experienced

ultra‐endurance‐
trained males

200 km run

(competitive

race)

3 hr post‐race:
Atg4: ↑ 40%

Atg12: ↑ 57%

GABARAPL1: ↑ 286%

LC3B: ↑ 103%

Cathespin L: ↑ 123%

BNIP3: ↑ 123%

BNIP31: ↑123%

beclin−1: ↔
ULK1: ↔

Jamart, Benoit, et al.

(2012), Jamart,

Francaux, et al.

(2012)

11 experienced

ultra‐endurance‐
trained males

149.8 km run 10 min postexercise

LC3B‐II: ↑ 554%

cAtg12: ↑ 36%

Atg7: ↔

BNIP3: ↔

beclin−1: ↔
AMPK: ↑ 247%

FOXO3a: ↓ 49%

mTOR: ↓ 32%

Masschelein et al.

(2014)

11 healthy

monozygotic

twins

20 min cycling

~50% VO2max

Im postexercise

LC3‐II (protein expression): ↔

LC3‐I (protein expression): ↔

LC3‐II:I (protein ratio): ↔

cATG12 (protein expression): ↔

p62 (protein expression): ↔

BNIP3 (mRNA expression): ↔

FOXO1/3a (phosphorylation): ↔

AMPK (phosphorylation): ↔

Moller et al. (2015) 8 recreationally‐
active males

60 min cycling

~50% VO2max

90 min postexercise

AMPK (phosphorylation): ↑

mTOR (phosphorylation): ↔

ULK1 (phosphorylation): ↑

ULK1 (protein expression): ↔

LC3B‐II (protein expression): ↓

GABARAP (protein expression): ↓

Atg5 (protein expression): ↓

LC3B‐I (protein expression): ↔

LC3B‐II:I (protein ratio): ↓

p62 (protein expression): ↔

beclin−1 (protein expression): ↔

Tachtsis et al.

(2016)

16 healthy,

untrained males

60 min cycling

~70% VO2max

3 hr postexercise

p53 (nuclear protein localization) ↑

Atg5 (protein expression) ↓

ULK1 (protein expression) ↔

LC3B‐I (protein expression) ↔

LC3B‐II (protein expression) ↔

LC3B‐II:I (protein ratio) ↔

p62 (protein expression) ↔

Schwalm et al.

(2015)

23 trained males 2 hr cycling: 55%

VO2peak (fasted

and fed) or 70%

VO2peak (fasted

and fed)

Im post, 1 hr postexercise

ULK1Ser757 (phosphorylation):

55% VO2peak fasted: ↔ Im post; ↔ 1 hr

70% VO2peak fasted: ↔ Im post; ↔ 1 hr

55% VO2peak fed: ↓ Im post; ↓1 hr

70% VO2peak fed: ↓Im post; ↓1 hr

AMPK(phosphorylation):

55% VO2peak fasted: ↔ Im post; ↔ 1 hr

70% VO2peak fasted: ↑ Im post; ↔ 1 hr

55% VO2peak fed: ↑ Im post; ↔ 1 hr

70% VO2peak fed: ↑ Im post; ↔ 1 hr

ULK1Ser317(phosphorylation):

55% VO2peak fasted: ↑ Im post; ↔ 1 hr

70% VO2peak fasted: ↑ Im post; ↑ 1 hr

55% VO2peak fed: ↑ Im post; ↑ 1 hr

70% VO2peak fed: ↑ Im post; ↑ 1 hr

LC3B‐II (protein expression):

55% VO2peak fasted: ↓ Im post; ↓ 1 hr

70% VO2peak fasted: ↓ Im post; ↓ 1 hr

55% VO2peak fed: ↓ Im post; ↔ 1 hr

70% VO2peak fed: ↓ Im post; ↓ 1 hr

LC3B‐I (protein expression):

55% VO2peak fasted: ↔ Im post; ↔ 1 hr

70% VO2peak fasted: ↔ Im post; ↔ 1 hr

55% VO2peak fed: ↔ Im post; ↔ 1 hr

70% VO2peak fed: ↔ Im post; ↔ 1 hr

LC3B‐II:I (protein ratio):

55% VO2peak fasted: ↓ Im post; ↓ 1 hr

70% VO2peak fasted: ↓ Im post; ↓ 1 hr

55% VO2peak fed: ↓ Im post; ↔ 1 hr

70% VO2peak fed: ↓ Im post; ↓ 1 hr

p62 (mRNA expression):

55% VO2peak fasted: ↔ Im post; ↔ 1 hr

70% VO2peak fasted: ↔ Im post; ↓ 1 hr

55% VO2peak fed: ↔ Im post; ↔ 1 hr

70% VO2peak fed: ↔ Im post; ↓ 1 hr

p62 (protein expression):

55% VO2peak fasted: ↔ Im post; ↑ 1 hr

70% VO2peak fasted: ↑ Im post; ↑ 1 hr

55% VO2peak fed: ↔Im post; ↑ 1 hr

70% VO2peak fed: ↑ Im post; ↑ 1 hr

GABARAPL1 (mRNA exrepression):

55% VO2peak fasted: ↔ Im post; ↔1 hr

70% VO2peak fasted: ↑ Im post; ↑ 1 hr

55% VO2peak fed: ↔Im post; ↑ 1 hr

70% VO2peak fed: ↑ Im post; ↑ 1 hr

Cathespin L (mRNA expression):

55% VO2peak fasted: ↔ Im post; ↔ 1 hr

70% VO2peak fasted: ↑ Im post; ↑ 1 hr

55% VO2peak fed: ↔ Im post; ↔ 1 hr

70% VO2peak fed: ↑ Im post; ↑ 1 hr

Note. hr: hour(s); Im: immediate; km: kilometers; min: minute(s); VO2max: maximum oxygen consumption; VO2peak: peak oxygen consumption.
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moderate intensity walking and resistance training, which was

accompanied by improvements in physical performance and body

composition (Wohlgemuth et al., 2011).

It is also interesting to note that autophagic activity appears to

be necessary for the normal adaptations of skeletal muscle (He, Bas-

sik, et al., 2012; Lira et al., 2013; Tam et al., 2015). Recent evidence

suggests that autophagy may be an important aspect of the fiber‐
type shifting induced by chronic exercise, with autophagic activity

preferentially upregulated in muscle fibers undergoing transition

toward the oxidative phenotype (Tam et al., 2015). Additionally, mice

bred to be deficient in beclin‐1 (Atg6) and saw decreased improve-

ments in aerobic capacity with exercise training alongside decreased

angiogenesis and decreased mitochondrial content (Lira et al., 2013).

And mice deficient in exercise‐stimulated autophagy showed lower

mitochondrial uncoupling protein 1 mRNA following 8 weeks of

endurance training compared to wild‐type controls (He, Bassik, et al.,

2012).

Given aging is an organismal phenomenon, it is pertinent to

establish the global effects of long‐term exercise on autophagy and

determine its role beyond exercised skeletal muscle. While evidences

exist demonstrating acute exercise is capable of upregulating autop-

hagic activity and/or Atg expression in a number of tissues apart

from skeletal muscle including heart (He, Bassik, et al., 2012; Li

et al., 2016), liver (Ghareghani et al., 2017; He, Bassik, et al., 2012),

pancreatic β cells (He, Bassik, et al., 2012), adipose tissue (He, Bassik,

et al., 2012), and brain (He, Sumpter, et al., 2012), limited data are

currently available noting the chronic effects of exercise training in

nonskeletal muscle tissues.

TABLE 2 A summary of studies investigating the autophagic response to acute resistance exercise in skeletal muscle

Author Subjects Exercise protocol Markers of autophagic activity

Fry et al.

(2013)

16 younger

(8 females,

8 males) and

16 older

(8 females,

8 males)

individuals

8 sets of 10

repetitions of

leg extension

at 70% 1RM

3 hr, 6 hr, and 24 hr postexercise

FOXO3a (phosphorylation):

Younger: ↓ 3 hr; ↓ 6 hr; ↓24 hr

Older: ↓ 3 hr; ↓ 6 hr; ↓24 hr

AMPK (phosphorylation):

Younger: ↔ 3 hr;↔ 6 hr; ↔ 24 hr

Older: ↔ 3 hr;↔ 6 hr; ↔ 24 hr

GABARAP (mRNA expression):

Younger: ↓ 3 hr;↔ 6 hr; ↔ 24 hr

Older: ↓ 3 hr;↔ 6 hr; ↔ 24 hr

LC3B‐II (protein expression):

Younger: ↔ 3 hr;↓ 6 hr; ↓24 hr

Older: ↓ 3 hr; ↓ 6 hr; ↓24 hr

LC3B‐I (protein expression):

Younger: ↔ 3 hr;↔ 6 hr; ↔ 24 hr

Older: ↔ 3 hr;↔ 6 hr; ↔ 24 hr

LC3B‐II:I (protein ratio):

Younger: ↓ 3 hr; ↓ 6 hr; ↓24 hr

Older: ↓ 3 hr; ↓ 6 hr; ↓24 hr

Atg7 (protein expression):

Younger: ↔ 3 hr;↔ 6 hr; ↔ 24 hr

Older: ↔ 3 hr;↔ 6 hr; ↑ 24 hr

beclin−1 (protein expression):

Younger: ↔ 3 hr;↔ 6 hr; ↔ 24 hr

Older: ↔ 3 hr;↔ 6 hr; ↔ 24 hr

Glynn et al.

(2010)

13 young

healthy

males

10 sets of 10

repetitions of

leg extension

at 70% 1RM

1 hr postexercise

AMPK (phosphorylation): ↑

LC3B‐II (protein expression): ↔

LC3B‐I (protein expression): ↔

Smiles et al.

(2015)

15 (8 males,

7 females)

resistance‐
trained

individuals

6 sets of 8

repetitions at

≈80% 1RM;

following

5 days of

energy deficit

1 hr, 4 hr postexercise

FOXO1 (protein expression): ↔ 1 hr; ↔ 4 hr

FOXO1 (phosphorylation): ↔ 1 hr; ↔ 4 hr

FOXO3a (protein expression): ↔ 1 hr; ↔ 4 hr

LC3B‐I (protein expression): ↔ 1 hr; ↓ 4 hr

ULK1 (phosphorylation): ↔ 1 hr; ↔ 4 hr

Atg5 (protein expression): ↔ 1 hr (vs. EB);

↔ 4 hr

cAtg12 (protein expression): ↔ 1 hr; ↔ 4 hr

beclin−1 (protein expression): ↔ 1 hr; ↔ 4 hr

p62 (protein expression): ↔ 1 hr; ↔ 4 hr

FOXO1 (mRNA expression): ↔ 1 hr; ↔ 4 hr

LC3B (mRNA expression): ↔ 1 hr; ↔ 4 hr

Atg12 (mRNA expression): ↔ 1 hr; ↔ 4 hr

Atg4b (mRNA expression): ↔ 1 hr; ↔ 4 hr

beclin−1 (mRNA expression): ↔

1 hr; ↔ 4 hr

GABARAP (mRNA expression): ↔

1 hr; ↔ 4 hr

BNIP (mRNA expression): ↔ 1 hr; ↔ 4 hr

SIRT1 (mRNA expression): ↔ 1 hr; ↔ 4 hr

Ulbricht et al.

(2015)

11 moderately‐
trained males

3 sets of 8 ecc

repetitions at

100% of max ecc

force and 3 sets

of 10 conc

repetitions

at 75% of max

conc and ecc force

15 min, 30 min, 1 hr, 4 hr, 24 hr postexercise

BAG3 (protein expression):

75% max conc and ecc: ↔ all time points

100% max ecc: ↓ 24 hr

BAG3 (mRNA expression):

75% max conc and ecc: ↔ all time points

100% max ecc: ↓ 24 hr

HSPB8 (protein expression):

75% max conc and ecc: ↔ all time points

100% max ecc: ↓ 24 hr

HSBP8 (mRNA expression):

75% max conc and ecc: ↔ all time points

100% max ecc: ↑ 4 hr

FLNC (protein expression):

75% max conc and ecc: ↔ all time points

100% max ecc: ↓ 1 hr

LC3 colocalization with FLNC and BAG3

75% max conc and ecc: ↔ 24 hr

100% max ecc: ↑ 24 hr

SYNPO2 localization BAG3

75% max conc and ecc: ↔ 24 hr

100% max ecc: ↑ 24 hr

Note. 1RM: one repetition maximum; conc: concentric; ecc: eccentric; hr: hour.
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Ghareghani et al. (2017) reported that 10 weeks of endurance

training rescued the high‐fat diet‐induced attenuation of Atg expres-

sion in hepatocytes of mice. This occurred with a concomitant eleva-

tion of AMPK and reduced mTOR expression as well as lower lipid

content and lipogenic gene expression. Miejas‐Pena and coworkers

(Mejias‐Pena et al., 2016) observed an increased expression in sev-

eral Atgs and basal autophagic activity in PBMCs following 8 weeks

of aerobic training in elderly subjects. Additionally, He's group (He,

Bassik, et al., 2012) showed favorable changes in several health

parameters following 8 weeks of endurance training following a

high‐fat diet in wild‐type mice versus autophagy‐deficient mutant

mice, including in serum leptin, triglycerides, cholesterol, and adipo-

nectin, glucose tolerance, basal metabolic rate, and heat production

and lesser weight gain. While preliminary, these data show chronic

exercise may modulate autophagic function on an organismal scale;

this potentially intimates autophagy in mediating the promotion of

healthy aging elicited by regular exercise (Figure 3).

8 | CONCLUSIONS

Investigation into the mechanisms underpinning lifespan and longev-

ity shows that the appropriate maintenance of the proteome and

organelle population is key in the augmentation of lifespan and/or

mitigation of many pathologies associated with the aging process

(Balch, Morimoto, Dillin, & Kelly, 2008; Xu et al., 2014). Autophagy

and mTORC1 represent key proteostatic pathways and are likely

implicated in affecting the aging phenotype. (Rubinsztein et al.,

2011; Wei et al., 2013). Moreover, autophagic function declines dur-

ing aging (Cuervo & Macian, 2014; Mejias‐Pena et al., 2016; Salmi-

nen & Kaarniranta, 2012) and current investigation offers strong

empirical support for the important influence exerted by autophagy

over organismal lifespan (Jung et al., 2010; Madeo et al., 2015; Mar-

tinez‐Lopez et al., 2015). The similar outcomes observed with manip-

ulation of mTORC1, in which inhibition is known to upregulate

autophagic activity, provide further evidence of a potent role for

autophagy in the aging process, though reductions in mTORC1 activ-

ity may also attenuate aging in an autophagy‐independent manner

(Kapahi et al., 2010; Xu et al., 2014). Research exploring CR offers a

particularly novel window into the impact of autophagic function

and mTORC1 activity on lifespan and longevity enhancement

(Madeo et al., 2015; Rubinsztein et al., 2011). In humans and

rodents, acute exercise has been shown to promote autophagic

activity in numerous tissues (He, Bassik, et al., 2012; Mooren & Kru-

ger, 2015; Schwalm et al., 2015) and chronic exercise may also lead

to upregulation of basal autophagy levels (Feng et al., 2011; Lira

et al., 2013; Luo et al., 2013). Given that regular exercise is well evi-

denced to promote healthy aging and to mitigate age‐related
pathologies (Bouzid et al., 2015), while sharing prominent signaling

pathways with CR (Rubinsztein et al., 2011), it is interesting to spec-

ulate that the similarities in health and longevity outcomes may be

traced to proteostatic maintenance as a common mediator. Cur-

rently, however, our understanding of the molecular mechanisms

underlying cellular and organismal aging and the interplay between

exercise and development of the aging phenotype require further

study, especially in humans. Further inquiry detailing the relationship

between autophagy and aging in humans, as well as potential behav-

ioral modulators such as CR and exercise, likely represents promising

means to further our understanding of human lifespan while poten-

tially bearing application for the promotion of longevity.
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