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ABSTRACT 

Software ecosystems provide an effective way through which software solutions can be constructed by 

composing software components, typically applications, developed by internal and external developers 

on top of a software platform. Third party development increases the potential of a software ecosystem 

to effectively and quickly respond to context-specific software requirements. The boundary resources 

model gives a theoretical account for cultivation of third party development premised on the role of 

platform boundary resources such as application programming interfaces (API). However, from a 

longitudinal case study of the DHIS2 software ecosystem, this paper observes that no matter how good 

the boundary resources a software ecosystem provides, third party development remains a mere 

possibility until there exists adequate external generative capacity. Taking into consideration this 

observation, this paper contributes by extending the boundary resources model to foreground external 

generative capacity alongside boundary resources as factors that influence third party development.   

Keywords 

Software Platforms, Software Ecosystems, Third Party Development, Boundary Resources, Generative 

Capacity, Developing Countries 

 

INTRODUCTION 

Software ecosystems provide an effective way through which software solutions can be constructed by 

composing software components, typically applications, developed by internal and external actors on top 

of a software platform (Manikas and Hansen, 2013). By leveraging an existing software platform 

alongside applications specific to it, the time, cost and risk of implementing a software solution can be 

reduced. A software ecosystem consists of a software platform, a set of applications specific to the 

platform, a set of internal and external developers (also referred to as third party developers), a 

community of domain experts, and a community of end users whose information needs are met by the 



Msiska  Cultivating Third Party Development in Platform-centric Software Ecosystems 

 

The African Journal of Information Systems, Volume 10, Issue 4, Article 6 350 

software platform and associated applications (Bosch and Bosch-Sijtsema, 2010). Software ecosystems 

exist within a larger competitive environment, often competing with other rival ecosystems for end users 

as well as third party developers (Tiwana, 2013). Google’s Android and Apple’s iOS ecosystems are 

popular examples in this regard.  

Core to a platform-centric software ecosystem is a software platform, a software system with an 

extensible codebase that provides core functionality shared by applications that interoperate with it, 

interfaces through which they interoperate, and resources with which derivative applications can be 

created (Eck et al., 2015; Ghazawneh and Henfridsson, 2013). The value of a software ecosystem to its 

end users is partly established by the range of applications specific to its platform. Applications, or apps, 

are add-on software subsystems that connect to the software platform and add functionality to it 

(Tiwana, 2013; Tiwana et al., 2010). Applications are a manifestation of “innovation on” (Grisot et al., 

2014) whereby innovations are built on top of and without disrupting an underlying artefact. 

Despite its benefits, the software ecosystem approach is not one without challenges. Challenges emanate 

from having a heterogeneous community of end users that are remote from platform developers. In this 

regard, one challenge faced by platform owners is lack of familiarity with the end user context which 

makes it difficult for them to make informed decisions on what services or applications to develop for 

the platform (Henfridsson and Lindgren, 2010). Another challenge is how to effectively respond to 

turbulent and often diverging demands for innovation from the end users (Ghazawneh and Henfridsson, 

2013). Consequently, third party development which involves devolving the development of 

applications on top of a software platform to external developers in or close to the end user community 

is increasingly attractive for software platform owners (Ghazawneh and Henfridsson, 2013) as it allows 

them to focus on the platform core and defer satisfying specific end user requirements to third party 

developers. Familiarity and proximity to the end user context enables third party developers to make 

informed decisions on applications to develop in response to specific demands for innovation among end 

users.  

Failure or delay responding to needs in the end user community can diminish the value of the software 

platform among its end users and give room to rival software ecosystems. The demise of once dominant 

Symbian and Blackberry ecosystems and rise of iOS and Android ecosystems is a good example in this 

regard. For platform owners, third party development is attractive because it increases the potential of a 

software ecosystem to effectively and quickly respond to specific end user needs. Third party 

development also works in favor of the end user community as it brings innovation close to the context 

of use. The proximity of third party developers to end users brings about agility in responding to 

innovation demands. As a result, enabling third party development is not only in the interest of platform 

owners but platform adopters as well. 

Furthermore, third party development can accelerate innovation in a software ecosystem (Bosch, 2009) 

and be the basis for market leadership (Ghazawneh and Henfridsson, 2013). For example, in the year 

2012 Apple’s iOS ecosystem had about 200,000 external developers through which it was able to muster 

enough innovative third-party applications to usurp market leadership from the Blackberry ecosystem 

which only had 8000 external developers (Tiwana, 2013).  The wealth of derivative applications needed 

for a software ecosystem to stay competitive is difficult to accomplish using in-house developers alone. 

Thus, to successfully build platform-centric software ecosystems third party development must be 

cultivated and this entails shifting design capability to external actors (Prügl and Schreier, 2006; von 

Hippel and Katz, 2002). This shift is necessary to build or enhance the generative capacity (Avital and 

Te’eni, 2009) of external developers. 
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This paper is based on a case study of the District Health Information Software version 2 (DHIS2) 

software ecosystem. DHIS2 is an open source software platform that enables governments and 

organizations to collect, manage and analyses data in the health domain and beyond. It is currently in 

use by ministries of health in more than 60 countries. The DHIS2 platform is developed under the 

Health Information Systems Program (HISP) at University of Oslo in Norway. DHIS2 supports third 

party development by providing an application programming interface (API) with which third party 

applications can be constructed. Despite the provision of the API and associated platform boundary 

resources to facilitate third party development, the quality and number of third party applications in 

DHIS2 app store is still limited (Polak, 2015). A large part of DHIS2’s end user community is in 

developing countries and the shortage of ICT skills in such countries are well documented (Kimaro, 

2006; Kimaro and Nhampossa, 2005; Mutula and Van Brakel, 2007). The dearth of generative capacity 

in developing countries leaves a majority of DHIS2 end users dependent on core developers for the 

implementation of desired applications. This creates an innovation bottleneck which often results in 

failure or delays in responding to specific end user needs. 

Coming from this background, this paper uses the DHIS2 software ecosystem as a case to address the 

question: how can third party development in a platform-centric software ecosystem be cultivated? The 

boundary resources model (Ghazawneh and Henfridsson, 2013) provides a theoretical account for 

cultivating third party development premised on the role played by boundary resources in enabling third 

party development. However, as observed in the DHIS2 software ecosystem, providing platform 

boundary resources alone is not enough as a catalyst for third party development. Besides platform 

boundary resources, third party development also depends on the generative capacity of external 

developers. With this in consideration, this paper extends the boundary resources model to foreground 

external generative capacity alongside boundary resources as factors that have influence on third party 

development. 

BOUNDARY RESOURCES MODEL 

Platform boundary resources are software tools and regulations that serve as the interface between 

platform owners and third-party developers facilitating the development of third party applications 

(Ghazawneh and Henfridsson, 2013). Such boundary resources typically consist of software 

development kits (SDKs) and application programming interfaces (APIs). Platform boundary resources 

have the power to stimulate or constrain generativity in a software ecosystem (ibid.). The boundary 

resources model, illustrated in Figure 1, is a set of related constructs that provides an intellectual 

structure with which the role of platform boundary resources in stimulating third party development can 

be understood. 

In the model, boundary resources design is a process involving the platform owner developing new or 

modified boundary resources to enhance external contributions and address control concerns. The design 

of boundary resources can be reactive or proactive. The design of boundary resources to enhance 

opportunities for external contribution increases the scope and diversity of the software platform and is 

thus denoted resourcing the software platform. On the other hand, control concerns may emerge when 

third party developers launch applications that represent potential threats to the platform. As a result, 

boundary resources may be (re)designed to address the platform owner’s control concerns, a process 

referred to as securing. Finally, boundary resources use is a process involving third party developers 

developing end user applications by leveraging the boundary resources offered by the platform owner. 
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Figure 1: The Boundary Resources Model (Ghazawneh and Henfridsson, 2013) 

 

Generativity and the Boundary Resources Model 

The term generativity has been used to describe the ability of a technology artefact, for example a 

software platform, to attract or evoke innovations from external actors. In general terms, generativity 

refers to the ability or capacity to generate or produce something (Avital and Te’eni, 2009). With respect 

to technology artefacts, generativity has been defined as the overall capacity of a technology or a system 

to be malleable or changed by diverse groups of actors in ways unanticipated by its creators (Eck et al., 

2015; Zittrain, 2008, 2006). This means that the extent of third party development in each software 

ecosystem depends on the generativity of the corresponding software platform. 

Notwithstanding the importance of software platform generativity, third party development is an activity 

carried out by human beings and is subject to their competences. Therefore, the generative capacity of 

external developers is equally important in cultivating third party development. In this case, generative 

capacity is an attribute of a person that refers to one’s ability to produce something in a particular 

context (Avital and Te’eni, 2009). Therefore, third party development in a software ecosystem depends 

on the generative capacity of its third-party developers as much as it depends on the generativity of its 

software platform. The boundary resources model, by focusing on platform boundary resources, 

emphasizes the importance of software platform generativity and backgrounds the generative capacity of 

third party developers.   
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Community Boundaries and the Boundary Resources Model 

A software ecosystem has several communities of practice (CoPs). A community of practice is a group 

of people pursuing a common objective (a joint enterprise), sharing a repertoire of tools and ways to 

solve recurring problems (a practice) and having a shared domain of interest (an identity) that makes 

them different from other people (Wenger, 2011). With respect to software ecosystems, each of the 

communities of internal developers, external developers, domain experts and end users constitute a 

community of practice. CoPs are important social units through which competences and experiences can 

be exchanged and acquired.  

The existence of a community of practices implicitly suggests the existence of boundaries. Boundaries 

are a separation between two groups of people arising from differences in enterprise, repertoires and 

capabilities (Wenger, 2000). Boundaries are channels through which competences, experiences and 

resources can be exchanged, allowing co-learning across communities and enriching capacities on each 

side of the boundary. The exchange across boundaries is facilitated by three bridges: boundary objects, 

boundary interactions and brokers (Wenger, 2000).  Boundary objects are artefacts, for example tools 

and documents, linking or shared by communities of practice across a boundary. Boundary interactions 

are events or encounters (for example visits and meetings) that provide direct exposure to members of an 

external CoP. Lastly, brokers are human actors that operate between communities of practice and 

engaged in ‘import-export’ of competences, knowledge and resources. 

The boundary resource model is based on the boundary object (Bergman et al., 2007; Carlile, 2002; Star 

and Griesemer, 1989; Wenger, 2000) construct. The model focuses on the role played by software 

artefacts, such as APIs and SDKs, in cultivating third party development. The model is, however, silent 

on the potential role-played human agents operating between internal developers and third-party 

developers in shaping third party development. Similarly, the role of boundary interactions such as 

events aimed at enhancing the capacity of third party developers is left in the background.  Our 

understanding of how to cultivate third party development can, therefore, be further strengthened by 

drawing insights from boundary interactions and brokers in addition to those from boundary objects.  

METHODOLOGY 

As stated in the introduction, the aim of this paper is to address the question how can third development 

in a platform-centric software ecosystem be cultivated? To answer this question a longitudinal case 

study (Creswell, 2014; Yin, 2013; Zainal, 2007) involving the DHIS2 software platform was carried out. 

The transitions DHIS2 has undergone to allow and foster third party innovations make it an ideal case 

for addressing the research question above. DHIS2 traces its origin to DHIS 1.0 which was a desktop 

application based on proprietary Microsoft technologies such as Microsoft Access. Challenges with 

proprietary technology led to the release of DHIS2, an open source web based application. Growing 

worldwide usage of DHIS2 made it difficult for University of Oslo to effectively and timely address 

divergent user requirements. To relieve the burden on University of Oslo there was a need to support 

third party innovations as a result DHIS2 embraced a software platform approach. The ongoing quest to 

encourage the development of third party applications on top of it makes the DHIS2 software platform 

an interesting case in trying to understand how to cultivate third party development. 

Different data collection strategies were employed during the case study running from 2014 to 2017. 

These included: interviews, field experiments (pilots), participant observation and document reviews. As 

part of observations, in 2014 the researcher attended four weeks of the open source software 

development masters course at the University of Oslo. During the course master students are taught the 
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fundamentals of DHIS2 application development. Going further with observations, between 2014 and 

2017 the researcher attended three DHIS2 expert academies in Oslo (Norway) and 1 DHIS2 application 

development academy in Dar es Salaam (Tanzania). These observations were complemented by field 

experiments (pilots) in Malawi in form of two application development workshops carried out in 

Malawi. The first workshop took place in March 2016 and focused on development of web applications 

on top of DHIS2. The second workshop took place in October 2017 and focused on development of 

Android applications on top of DHIS2. 

Over the period between 2014 and 2017, several interviews were carried involving organizers, 

facilitators, students and participants of DHIS2 related courses, academies and workshops. Participants 

in the academies and workshops were people interested in developing or already developing applications 

for the DHIS2 platform. These interviews centered around the various boundary resources, boundary 

interactions and human agents and how they are shaping third party software development in the DHIS2 

ecosystem. Respondents in the interviews were given an informed consent form ensuring their privacy 

and confidentiality among other things. Altogether, 33 interviews have been conducted between 2014 

and 2017. This is summarized in table below. 

Table 1. Data Collection Summary 

Period Data Collection Event Interviews Other Techniques 

August 2014 Open Source Software Development 

course, MSc in Information Systems 

Program, University of Oslo, Norway 

0 Participant observation 

August 2015 DHIS2 Experts Academy, University of 

Oslo, Norway 

2 Participant observation 

March 2016 DHIS2 Web Apps Development 

Workshop, Zomba, Malawi 

5 Field experiment, Participant 

observation 

August 2016 DHIS2 Experts Academy, University of 

Oslo, Norway 

3 Participant observation, Meetings 

January 2017 DHIS2 Web Apps Development 

Workshop, Kampala, Uganda 

7 Field experiment, Participant 

observation 

August 2017 DHIS2 Experts Academy, University of 

Oslo, Norway 

3 Participant observation, meetings 

October 2017 DHIS2 Android Apps Development 

Workshop, Zomba, Malawi 

2 Field experiment, Participant 

observation 

November 2017 DHIS2 Web Apps Development 

Academy, Dar es Salaam, Tanzania 

11 Participant observation 

 

Document reviews were carried by going through documentation, reports, research accounts and other 

written material on DHIS2. Further data was collected through participation in projects that aimed at 

either building capacities of third party developers’ capacity to build DHIS2 applications or actually 

developing a DHIS2 application. This included participating in the content development, facilitation and 

organization for the DHIS2 application workshops in Malawi. In addition, data was collected by 

participating in the mHealth4Afrika project which is an ongoing joint project involving University of 

Oslo (Norway), University of Gondar (Ethiopia), University of Malawi (Malawi), Strathmore University 

(Kenya), Nelson Mandela Metropolitan University (South Africa) and International Information 

Management Corporation (Ireland) building a maternal and child health records system on top of 

DHIS2. 
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The data collected using the various data collection techniques outlined above was recorded in various 

forms: field notes, google forms and sheets, audio recordings and photos. This data included among 

other things existing boundary resources in DHIS2 ecosystem and their generative attributes, proposed 

boundary resources, capacity building initiatives and respective factors for the success or failure of such 

initiatives. Where audio recordings were captured they were later transcribed to provide a corresponding 

textual account. Using the boundary resources model, generativity concept - generative capacity, and 

community of practice concepts - brokers, boundary interactions and boundary objects as analytical lens 

the data collected was thematically analyzed. The results of this analysis are presented in the discussion 

and concluding remarks sections below. 

THE CASE OF DHIS2 

DHIS2 (figure 2) is an open source software platform developed by the Health Information Systems 

Program (HISP) at the University of Oslo (HISP UiO). It is used primarily to collect, manage, aggregate, 

analyze and visualize routine health data by ministries of health and other stakeholders in developing 

countries. Although it is primarily built for use in the health domain, the generic nature of DHIS2 has 

seen its use in other domains grow over the years. Over the period of its existence, DHIS2 has evolved 

from a desktop application built around proprietary technologies to an open source and web based 

application, and now, to an open source software platform with a RESTful Web API that supports 

creation of third party innovations using ubiquitous web technologies such as JavaScript, CSS and 

HTML5. 

 

 

Figure 2: DHIS2 Timeline (adapted from a slide in the DHIS2 Online Academy) 

 

DHIS2 traces its origin to the Reconstruction and Development program in post-apartheid South Africa 

under which HISP was initiated in 1995. One of the aims of the program was creating a unified HIS 

across the country. To fulfil this aim, a pilot project to develop a district-based HIS in the Western Cape 

Province was proposed. Between 1996 and 1998, the pilot project received financial backing from the 
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Norwegian Agency for Development Cooperation (NORAD) and resulted in a prototype of what was 

called District Health Information Software (DHIS) released in 1998. Successful implementations in the 

Western Cape led to the adoption of DHIS by the Eastern Cape Province in the same year and by the 

year 2000 several other provinces in South Africa had adopted DHIS. 

From South Africa DHIS was later introduced to other developing countries including Mozambique, 

Malawi and India. At the time, DHIS was a desktop application built using Microsoft Access. This 

presented two challenges. First, as a desktop application it lacked support for sharing data between 

geographically distant stakeholders. Second, the use of proprietary Microsoft technology made scaling 

the solution costly as rolling out entailed paying license fees for each workstation where DHIS was 

installed. To address these two challenges, HISP UiO, with support from various international donors, 

embarked on a project to develop an open source and web based version of the software. This resulted in 

what is now known as DHIS2. 

 

Platformisation of DHIS2 

With DHIS2 now a free, open source and web-based application the problems of shared access and cost 

of scaling were alleviated. This has since led to increased adoption of DHIS2 by ministries of health and 

non-governmental organizations in developing countries. It is currently in use in more than 60 countries. 

This includes, among others, countries in the Eastern and Southern Africa region such as Uganda, 

Kenya, Rwanda, Tanzania, Malawi, Zambia, Zimbabwe, South Africa and Mozambique. 

The increased adoption of DHIS2 came with its own challenges. First, because of increased adoption 

there was also an increase in user requirements that the developers at HISP UiO had to address to satisfy 

the end user community. At the same time, the different context under which the end users operate 

meant that the user requirements were divergent and often competing. Effectively and timely addressing 

such divergent end user requirements became a challenge. This resulted in complaints and queries from 

the end-user community regarding how user requirements are prioritized and addressed.  

With the switch to being open source, it had been envisaged that the innovation burden on DHIS2 will 

be shared between HISP UiO developers and external developers in the end user community. However, 

the core of DHIS2 was developed using Java and requisite skills were not as ubiquitous among external 

developers in the end user community. As a result, a large part of the end user community remained 

dependent on HISP UiO for the implementation of requirements specific to their context. This created an 

innovation bottleneck against developers at HISP UiO resulting in delays and sometimes failure to 

respond to some end user requirements.  

The core of DHIS2 is developed using Java and a stack of related software development frameworks. 

For most external developers, developing for DHIS2 meant learning a new programming language as 

well as a stack of associated technologies used and therefore not as attractive.  To effectively and timely 

address end user requirements it became necessary to devise a way to allow external developers develop 

solutions on top of DHIS2 without requiring them to learn Java and a stack of software frameworks used 

by HISP UiO. This has seen DHIS2 evolving from a mere open source software to now an open source 

software platform. 
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DHIS2 Boundary Resources 

As a software platform DHIS2 (figure 3) provides a range of boundary resources to enable third party 

development. First, within its core DHIS2 supports the creation of custom modules that can co-exist 

with core modules. Such modules must be written in Java alongside frameworks such as Spring and 

Hibernate. Second, DHIS2 now has a RESTful Web API with which external developers can develop 

third party applications on top of DHIS2. The API continues to evolve with each new version of DHIS2 

with the aim of offering better support to third party developers. 

 

 

Figure 3: DHIS2 Software Ecosystem 

Using the Web API, external developers do not necessarily need to learn a new programming language 

just to develop applications for DHIS2. As long as the programming language they are familiar with has 

features to handle web-based data they can use it to develop applications for DHIS2. Typically, third 

party DHIS2 applications are web applications written using JavaScript, CSS and HTML5. However, 

the flexibility of the Web API allows for creation of different kinds of applications as well. For example, 

the popularity of Android as a computing platform in developing countries has attracted interest in 

DHIS2 Android applications. 

In addition to the Web API, HISP UiO has developed other auxiliary boundary resources to support 

specific developer needs. One of such resources is the d2 library, a JavaScript library which provides a 

level of abstraction above the Web API allowing third party developers to develop web applications 

without requiring in depth knowledge of the API. Another of such auxiliary boundary resources is the 

DHIS2 Android SDK, currently in beta, which abstracts the Web API when building Android 

applications on top of DHIS2. Besides boundary resources created by HISP UiO a number of 

community-driven boundary resources. For example, some third-party developers have created “seed 

applications” which are dummy applications containing boiler plate code that allows new developers to 

quickly get started building DHIS2 applications. 
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To facilitate distribution of third party applications, a dedicated online app store for DHIS2 web 

applications (figure 4) was created and can currently be accessed on https://play.dhis2.org/appstore/. 

There is also a dedicated app store for DHIS2 Android applications which can currently be accessed on 

https://www.dhis2.org/appstore-android. The number of available applications in both app stores is 

however limited. At the time of writing, there were 5 applications in the DHIS2 Android app store and 

13 applications in the DHIS2 Web Applications app store. Most of these apps, particularly on the DHIS2 

Android app store, are developed by HISP UiO. 

 

 

Figure 4: DHIS2 App Store 

 

Building Third Party Development Capacity 

Despite the existence of a range of boundary resources to support development of third party 

applications on top of the DHIS2 platform, the range of applications available in its app stores is 

however limited. Furthermore, several applications in the app stores have been developed by HISP UiO 

itself. Providing the boundary resources has not necessarily resulted in distributing the innovation 
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burden as much as it was envisaged in the platformisation of DHIS2. This is partly attributed to lack of 

awareness and requisite development capacity among potential third-party developers. 

To address the capacity and awareness gap, HISP UiO, in collaboration with its global partners, has 

several initiatives aimed at enhancing the generative capacity of prospective third-party developers. 

Since the inception of DHIS2, University of Oslo has been running a master course on Open Source 

Software Development centered on the software. The course has evolved over the years to embrace the 

platform approach taken on DHIS2. In the course, students work on different projects developing third 

party applications on top of DHIS2. In Malawi, the University of Oslo is working in collaboration with 

University of Malawi where a similar course was introduced as part of a Master of Science in 

Informatics program.  

Within the DHIS2 community, DHIS2 academies have been a popular vehicle for building different 

kinds of capacity among end users and technical personnel (e.g. as shown in figure 5). Topics at such 

academies have ranged from information use through to customization and implementation of DHIS2. 

The DHIS2 community is now exploiting the same vehicle to cultivate generative capacities of 

prospective third-party developers. With funding from UNICEF, in March 2016, HISP UiO in 

collaboration with the University of Malawi held a DHIS2 Application Development Workshop in 

Zomba, Malawi as a pilot for a potential DHIS2 Application Development academy. The workshop 

drew participants from Malawi, Kenya, Ethiopia and Zambia. A similar pilot workshop was carried out 

in January 2017 in Kampala, Uganda and attracted participants from Rwanda, Kenya, Uganda, 

Tanzania, Malawi, and South Africa. Following feedback from the pilots a full scale DHIS2 Application 

Development Academy took place in November 2017 in Dar es Salaam, Tanzania. 

 

Figure 5: DHIS2 Academies Website 

 

In addition to academies, other avenues for cultivating the generative capacity of third party developers 

are being explored. For example, recently the University of Oslo entered an agreement with University 

of Malawi and the Eduardo Mondlane University in Mozambique for a staff and student exchange 

program which will among other things allow HISP UiO to host technical personnel from Malawi and 
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Mozambique as a form of internship. In Tanzania, HISP Tanzania has an internal developer mentorship 

program where experienced DHIS2 developers work with new recruits to build their capacity. This has 

led to HISP Tanzania amassing adequate local capacity which has enabled them to develop several 

third-party applications on top of DHIS2. All these efforts are being done in complement to existing 

efforts on the boundary resources described in the earlier section. 

 

DISCUSSION 

The platformisation of DHIS2 and the provision of various boundary resources has made it possible for 

external developers to develop third party applications on top of DHIS2. The aim has been to usher in an 

era of distributed innovation whereby the innovation burden on DHIS2 is distributed between internal 

developers at HISP UiO and third-party developers within the ecosystem. HISP UiO sees the provision 

of boundary resources as critical to the achievement of this aim. This agrees with the intellectual account 

provided by the boundary resources model (Ghazawneh and Henfridsson, 2013). Without boundary 

resources, third party developers cannot extend DHIS2 functionality without the risk of forking the 

software. With appropriate boundary resources, useful third-party applications can be developed while at 

the same time circumventing forkability. 

However, empirical data from the DHIS2 ecosystem indicate that provision of boundary resources is not 

in itself an endgame in cultivating third party development. Besides providing boundary resources, it 

was observed that third party development requires building generative capacities of third party 

developers. This agrees with the argument that third-party development demands shifting of software 

design and development capabilities from internal to external developers (Prügl and Schreier, 2006; von 

Hippel and Katz, 2002). This calls for the extension of the boundary resources model to foreground 

generative capacity alongside boundary resources as factors having impact on third party development. 

Sections 5.1 and 5.2 present two dimensions that can be used to extend the boundary resources model. 

Section 5.3 concludes the discussion by providing an extended boundary resources model and is 

followed by concluding remarks. 

Software Development and Capacity Building Boundary Resources 

The boundary resources model is based on the boundary object concept (Ghazawneh and Henfridsson, 

2013, 2010). Drawing from this concept the model defines boundary resources as software tools and 

regulations that serve as an arm’s length interface between platform owners and third-party developers 

facilitating the development of third party applications (Ghazawneh and Henfridsson, 2013). With this 

definition, our understanding of boundary resources is limited to technical artefacts, such as SDKS, 

APIs and libraries that are provided alongside a platform to facilitate third party development. However, 

the boundary between platform owners and external developers is not characterized by boundary objects 

alone. Besides boundary objects, boundary interactions and human agents as brokers are deployed to 

facilitate third party development. For example, the DHIS2 ecosystem has application development 

academies and workshops as boundary interactions aimed at cultivating third party development. Such 

boundary interactions rely on facilitators and mentors entrusted with the task of instituting a shift in 

software design capabilities from internal developers to third party developers. Just like the boundary 

objects, these boundary interactions and brokers can be regarded as boundary resources facilitating third 

party development. This calls for extending our understanding of boundary resources to include brokers 

and boundary interactions in addition to boundary objects. 
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Extending our understanding of boundary resources to include brokers and boundary interactions allows 

for a distinction between software development and capacity building boundary resources. Software 

development boundary resources are software artefacts that are used to develop third party applications. 

Such boundary resources include SDKs, API, seed applications and libraries. On the other hand, 

capacity building boundary resources are boundary objects, boundary interactions and brokers that are 

used to build the third-party development capacity of external developers. Within the DHIS2 ecosystem, 

such boundary resources include capacity building events such as application development academies 

and workshops, boundary objects such as developer documentation, and brokers such as academy and 

workshop facilitators and experienced developers acting as mentors for new third-party developers. To 

cultivate third party development, both software development and capacity building boundary resources 

are required. 

While this paper uses the distinction between software development and capacity building boundary 

resources to extend the boundary resources, further distinction can be made between endo-platform 

boundary resources and exo-platform boundary resources, and between platform-owner driven boundary 

resources and community driven boundary resources. Endo-platform boundary resources are boundary 

resources that come bundled as part of the software platform. These include software artefacts such as 

APIs, SDKs and libraries. On the other hand, Exo-platform boundary resources are boundary resources 

that exist outside the software platform. These include software artefacts such as documentation, 

boundary interactions such as academies and brokers such as facilitators and mentors. Going further 

with this discussion, platform-owner driven boundary resources are those that are put in place by the 

platform owner to facilitate third party development. On the other hand, community-driven boundary 

resources are those that are derived through efforts by third party developers or other stakeholders other 

than the platform owner. 

Internal and External Generative Capacity 

The case of the DHIS2 reveals that third-party development requires more than just providing software 

development resources such as SDKs and APIs. There is a need to propagate software design and 

development capabilities to external developers to enable them to develop third party applications. 

Therefore, provision of software development boundary resources must be complemented by 

mechanisms aimed at building the generative capacities of external developers. In the DHIS2 ecosystem 

such mechanisms include application development academies and workshops.  In literature on software 

platform generativity, the term generative capacity has been used to describe a collection of 

competences that enable an individual to produce something innovative in a particular context. With 

respect to third party development, generative capacity relates to a developer’s ability to develop third 

party applications on top of a given software platform. 

In this regard, distinction can be made between internal generative capacity and external generative 

capacity. Internal generative capacity refers to platform owners’ software development and related 

competencies that enable them design, develop and maintain the software platform and platform owner 

driven boundary resources. On the other hand, external generative capacity refers to third party 

developers’ software development and related competences that enable them to design, develop and 

maintain third party applications and community-driven boundary resources. No matter how good the 

software development boundary resources a software ecosystem has, third party development remains a 

mere possibility until there exists adequate external generative capacity. 
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Extended Boundary resources model 

Taking into consideration the foregoing discussion the paper presents, an extended boundary resources 

model in figure 6 is shown below. Below the figure descriptions of each of the construct used in the 

model are provided.  In the extended boundary resources model the paper introduces the constructs 

internal generative capacity, external generative capacity, generative capacity use and extends the 

boundary resources use construct to include the use of capacity building boundary resources by platform 

owners and other stakeholders in the ecosystem to build external generative capacity. In addition, 

constructs software development boundary resources and capacity building boundary resources replace 

the boundary resources construct. Adding these constructs helps foreground other factors critical for 

third party development besides provision of software development boundary resources. 

 

Figure 6: Extended Boundary Resources Model 

Constructs 

Platform: “The extensible codebase of a software based system that provides core functionality shared 

by modules that interoperate with it and the interfaces through which they interoperate” (Tiwana et al. 

2010, p. 676) 
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Software Development Boundary Resources: boundary objects in form of software artefacts that are 

used to develop third party applications. Such boundary resources include SDKs, API, seed applications 

and libraries. 

Capacity Building Boundary Resources: boundary objects, boundary interactions and brokers that are 

used to build the third-party development capacity of external developers. Such boundary resources 

include, amongst other things, capacity building events such as application development academies and 

workshops. 

Third Party Applications: Executable pieces of software that are offered as applications, services, or 

systems to end users of the platform. 

Internal Generative Capacity: platform owners’ software development and related competencies that 

enable them design, develop and maintain the software platform and platform owner driven boundary 

resources 

External Generative Capacity: third party developers’ software development and related competences 

that enable them to design, develop and maintain third party applications and community-driven 

boundary resources 

Generative Capacity Use: the use of internal generative capacity by platform owners to design, 

develop and maintain the software platform and platform owner driven boundary resources, and the use 

of external generative capacity by third party developers to develop third party applications and 

community-driven resources 

Boundary Resources Use: the use of software development boundary resources by third party 

developers to build third party applications and the use of capacity building boundary resources by 

platform owners and other stakeholders to build external generative capacity. 

Resourcing: The process by which the scope and diversity of a platform is enhanced. 

Securing: The process by which the control of a platform and its related services is increased. 

CONCLUSION 

The boundary resources model aims to provide an intellectual account for cultivating third party 

development in platform-centric software ecosystems. Empirical data from renowned platform centric 

software ecosystems such as Google’s Android and Apple’s iOS renders credence to the argument 

advanced by the model that boundary resources are critical to third party development. In this study, 

empirical data from the DHIS2 software ecosystem also supports this argument. However, further 

observations reveal that boundary resources are not in themselves an endgame in cultivating third party 

development. Analyzing the data with respect to constructs from generativity literature reveals that 

external generative capacity has a role to play in cultivating third party development.  

In addition, analyzing the data with respect to constructs from community boundaries literature reveals 

that boundary resources are more than technical artefacts – they are socio-technical artefacts comprising 

of not only boundary objects but also boundary interactions and brokers. Extending our understanding of 

boundary resources to include boundary interactions and brokers, allow a distinction between software 

development and capacity building boundary resources both of which are required to cultivate third 

party development. The paper makes further distinction between exo-platform boundary resources and 

endo-platform boundary resources, and between platform-owner driven boundary resources and 

community driven boundary resources. 
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Based on these analytical results, the paper has proposed an extended boundary resources model 

presented in the discussion above. In the extended boundary resources model the paper introduces the 

constructs internal generative capacity, external generative capacity, generative capacity use and extends 

the boundary resources use construct to include the use of capacity building boundary resources by 

platform owners and other stakeholders in the ecosystem to build external generative capacity. In 

addition, constructs software development boundary resources and capacity building boundary resources 

replace the boundary resources construct. Adding these constructs helps foreground other factors critical 

for third party development besides provision of software development boundary resources. 

In doing this, it is worth noting that every research has its limitations. Further knowledge can be 

obtained by augmenting this research with further studies. In the future, for example, research could 

look at the interplay between factors that influence third party development as put across in the extended 

boundary resources model and developer motivation factors. There are a lot of accounts on developer 

motivation factors in the open source literature  which can provide a good starting point(Aknouche and 

Shoan, 2013; Fogel, 2005; Hars and Ou, 2002). Notwithstanding the importance of such interplay, for 

the sake of brevity and simplicity, such an analytical account is beyond the scope of this paper.  
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